Coverage Report

Created: 2017-10-03 07:32

/Users/buildslave/jenkins/sharedspace/clang-stage2-coverage-R@2/llvm/include/llvm/Transforms/Utils/Cloning.h
Line
Count
Source
1
//===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file defines various functions that are used to clone chunks of LLVM
11
// code for various purposes.  This varies from copying whole modules into new
12
// modules, to cloning functions with different arguments, to inlining
13
// functions, to copying basic blocks to support loop unrolling or superblock
14
// formation, etc.
15
//
16
//===----------------------------------------------------------------------===//
17
18
#ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
19
#define LLVM_TRANSFORMS_UTILS_CLONING_H
20
21
#include "llvm/ADT/SmallVector.h"
22
#include "llvm/ADT/Twine.h"
23
#include "llvm/Analysis/AliasAnalysis.h"
24
#include "llvm/Analysis/AssumptionCache.h"
25
#include "llvm/IR/CallSite.h"
26
#include "llvm/IR/ValueHandle.h"
27
#include "llvm/Transforms/Utils/ValueMapper.h"
28
#include <functional>
29
#include <memory>
30
#include <vector>
31
32
namespace llvm {
33
34
class AllocaInst;
35
class BasicBlock;
36
class BlockFrequencyInfo;
37
class CallInst;
38
class CallGraph;
39
class DebugInfoFinder;
40
class DominatorTree;
41
class Function;
42
class Instruction;
43
class InvokeInst;
44
class Loop;
45
class LoopInfo;
46
class Module;
47
class ProfileSummaryInfo;
48
class ReturnInst;
49
50
/// Return an exact copy of the specified module
51
///
52
std::unique_ptr<Module> CloneModule(const Module *M);
53
std::unique_ptr<Module> CloneModule(const Module *M, ValueToValueMapTy &VMap);
54
55
/// Return a copy of the specified module. The ShouldCloneDefinition function
56
/// controls whether a specific GlobalValue's definition is cloned. If the
57
/// function returns false, the module copy will contain an external reference
58
/// in place of the global definition.
59
std::unique_ptr<Module>
60
CloneModule(const Module *M, ValueToValueMapTy &VMap,
61
            function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
62
63
/// ClonedCodeInfo - This struct can be used to capture information about code
64
/// being cloned, while it is being cloned.
65
struct ClonedCodeInfo {
66
  /// ContainsCalls - This is set to true if the cloned code contains a normal
67
  /// call instruction.
68
  bool ContainsCalls = false;
69
70
  /// ContainsDynamicAllocas - This is set to true if the cloned code contains
71
  /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
72
  /// the entry block or they are in the entry block but are not a constant
73
  /// size.
74
  bool ContainsDynamicAllocas = false;
75
76
  /// All cloned call sites that have operand bundles attached are appended to
77
  /// this vector.  This vector may contain nulls or undefs if some of the
78
  /// originally inserted callsites were DCE'ed after they were cloned.
79
  std::vector<WeakTrackingVH> OperandBundleCallSites;
80
81
251k
  ClonedCodeInfo() = default;
82
};
83
84
/// CloneBasicBlock - Return a copy of the specified basic block, but without
85
/// embedding the block into a particular function.  The block returned is an
86
/// exact copy of the specified basic block, without any remapping having been
87
/// performed.  Because of this, this is only suitable for applications where
88
/// the basic block will be inserted into the same function that it was cloned
89
/// from (loop unrolling would use this, for example).
90
///
91
/// Also, note that this function makes a direct copy of the basic block, and
92
/// can thus produce illegal LLVM code.  In particular, it will copy any PHI
93
/// nodes from the original block, even though there are no predecessors for the
94
/// newly cloned block (thus, phi nodes will have to be updated).  Also, this
95
/// block will branch to the old successors of the original block: these
96
/// successors will have to have any PHI nodes updated to account for the new
97
/// incoming edges.
98
///
99
/// The correlation between instructions in the source and result basic blocks
100
/// is recorded in the VMap map.
101
///
102
/// If you have a particular suffix you'd like to use to add to any cloned
103
/// names, specify it as the optional third parameter.
104
///
105
/// If you would like the basic block to be auto-inserted into the end of a
106
/// function, you can specify it as the optional fourth parameter.
107
///
108
/// If you would like to collect additional information about the cloned
109
/// function, you can specify a ClonedCodeInfo object with the optional fifth
110
/// parameter.
111
///
112
BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
113
                            const Twine &NameSuffix = "", Function *F = nullptr,
114
                            ClonedCodeInfo *CodeInfo = nullptr,
115
                            DebugInfoFinder *DIFinder = nullptr);
116
117
/// CloneFunction - Return a copy of the specified function and add it to that
118
/// function's module.  Also, any references specified in the VMap are changed
119
/// to refer to their mapped value instead of the original one.  If any of the
120
/// arguments to the function are in the VMap, the arguments are deleted from
121
/// the resultant function.  The VMap is updated to include mappings from all of
122
/// the instructions and basicblocks in the function from their old to new
123
/// values.  The final argument captures information about the cloned code if
124
/// non-null.
125
///
126
/// VMap contains no non-identity GlobalValue mappings and debug info metadata
127
/// will not be cloned.
128
///
129
Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
130
                        ClonedCodeInfo *CodeInfo = nullptr);
131
132
/// Clone OldFunc into NewFunc, transforming the old arguments into references
133
/// to VMap values.  Note that if NewFunc already has basic blocks, the ones
134
/// cloned into it will be added to the end of the function.  This function
135
/// fills in a list of return instructions, and can optionally remap types
136
/// and/or append the specified suffix to all values cloned.
137
///
138
/// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
139
/// mappings.
140
///
141
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
142
                       ValueToValueMapTy &VMap, bool ModuleLevelChanges,
143
                       SmallVectorImpl<ReturnInst*> &Returns,
144
                       const char *NameSuffix = "",
145
                       ClonedCodeInfo *CodeInfo = nullptr,
146
                       ValueMapTypeRemapper *TypeMapper = nullptr,
147
                       ValueMaterializer *Materializer = nullptr);
148
149
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
150
                               const Instruction *StartingInst,
151
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
152
                               SmallVectorImpl<ReturnInst *> &Returns,
153
                               const char *NameSuffix = "",
154
                               ClonedCodeInfo *CodeInfo = nullptr);
155
156
/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
157
/// except that it does some simple constant prop and DCE on the fly.  The
158
/// effect of this is to copy significantly less code in cases where (for
159
/// example) a function call with constant arguments is inlined, and those
160
/// constant arguments cause a significant amount of code in the callee to be
161
/// dead.  Since this doesn't produce an exactly copy of the input, it can't be
162
/// used for things like CloneFunction or CloneModule.
163
///
164
/// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
165
/// mappings.
166
///
167
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
168
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
169
                               SmallVectorImpl<ReturnInst*> &Returns,
170
                               const char *NameSuffix = "",
171
                               ClonedCodeInfo *CodeInfo = nullptr,
172
                               Instruction *TheCall = nullptr);
173
174
/// InlineFunctionInfo - This class captures the data input to the
175
/// InlineFunction call, and records the auxiliary results produced by it.
176
class InlineFunctionInfo {
177
public:
178
  explicit InlineFunctionInfo(CallGraph *cg = nullptr,
179
                              std::function<AssumptionCache &(Function &)>
180
                                  *GetAssumptionCache = nullptr,
181
                              ProfileSummaryInfo *PSI = nullptr,
182
                              BlockFrequencyInfo *CallerBFI = nullptr,
183
                              BlockFrequencyInfo *CalleeBFI = nullptr)
184
      : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
185
344k
        CallerBFI(CallerBFI), CalleeBFI(CalleeBFI) {}
186
187
  /// CG - If non-null, InlineFunction will update the callgraph to reflect the
188
  /// changes it makes.
189
  CallGraph *CG;
190
  std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
191
  ProfileSummaryInfo *PSI;
192
  BlockFrequencyInfo *CallerBFI, *CalleeBFI;
193
194
  /// StaticAllocas - InlineFunction fills this in with all static allocas that
195
  /// get copied into the caller.
196
  SmallVector<AllocaInst *, 4> StaticAllocas;
197
198
  /// InlinedCalls - InlineFunction fills this in with callsites that were
199
  /// inlined from the callee.  This is only filled in if CG is non-null.
200
  SmallVector<WeakTrackingVH, 8> InlinedCalls;
201
202
  /// All of the new call sites inlined into the caller.
203
  ///
204
  /// 'InlineFunction' fills this in by scanning the inlined instructions, and
205
  /// only if CG is null. If CG is non-null, instead the value handle
206
  /// `InlinedCalls` above is used.
207
  SmallVector<CallSite, 8> InlinedCallSites;
208
209
255k
  void reset() {
210
255k
    StaticAllocas.clear();
211
255k
    InlinedCalls.clear();
212
255k
    InlinedCallSites.clear();
213
255k
  }
214
};
215
216
/// InlineFunction - This function inlines the called function into the basic
217
/// block of the caller.  This returns false if it is not possible to inline
218
/// this call.  The program is still in a well defined state if this occurs
219
/// though.
220
///
221
/// Note that this only does one level of inlining.  For example, if the
222
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
223
/// exists in the instruction stream.  Similarly this will inline a recursive
224
/// function by one level.
225
///
226
/// Note that while this routine is allowed to cleanup and optimize the
227
/// *inlined* code to minimize the actual inserted code, it must not delete
228
/// code in the caller as users of this routine may have pointers to
229
/// instructions in the caller that need to remain stable.
230
bool InlineFunction(CallInst *C, InlineFunctionInfo &IFI,
231
                    AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
232
bool InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
233
                    AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
234
bool InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
235
                    AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
236
237
/// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
238
/// Blocks.
239
///
240
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
241
/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
242
/// Note: Only innermost loops are supported.
243
Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
244
                             Loop *OrigLoop, ValueToValueMapTy &VMap,
245
                             const Twine &NameSuffix, LoopInfo *LI,
246
                             DominatorTree *DT,
247
                             SmallVectorImpl<BasicBlock *> &Blocks);
248
249
/// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
250
void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
251
                               ValueToValueMapTy &VMap);
252
253
/// Split edge between BB and PredBB and duplicate all non-Phi instructions
254
/// from BB between its beginning and the StopAt instruction into the split
255
/// block. Phi nodes are not duplicated, but their uses are handled correctly:
256
/// we replace them with the uses of corresponding Phi inputs. ValueMapping
257
/// is used to map the original instructions from BB to their newly-created
258
/// copies. Returns the split block.
259
BasicBlock *
260
DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
261
                                    Instruction *StopAt,
262
                                    ValueToValueMapTy &ValueMapping);
263
} // end namespace llvm
264
265
#endif // LLVM_TRANSFORMS_UTILS_CLONING_H