Coverage Report

Created: 2017-10-03 07:32

/Users/buildslave/jenkins/sharedspace/clang-stage2-coverage-R@2/llvm/lib/Target/SystemZ/SystemZTargetMachine.cpp
Line
Count
Source (jump to first uncovered line)
1
//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
10
#include "SystemZTargetMachine.h"
11
#include "MCTargetDesc/SystemZMCTargetDesc.h"
12
#include "SystemZ.h"
13
#include "SystemZMachineScheduler.h"
14
#include "SystemZTargetTransformInfo.h"
15
#include "llvm/ADT/Optional.h"
16
#include "llvm/ADT/STLExtras.h"
17
#include "llvm/ADT/SmallVector.h"
18
#include "llvm/ADT/StringRef.h"
19
#include "llvm/Analysis/TargetTransformInfo.h"
20
#include "llvm/CodeGen/Passes.h"
21
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22
#include "llvm/CodeGen/TargetPassConfig.h"
23
#include "llvm/IR/DataLayout.h"
24
#include "llvm/Support/CodeGen.h"
25
#include "llvm/Support/TargetRegistry.h"
26
#include "llvm/Target/TargetLoweringObjectFile.h"
27
#include "llvm/Transforms/Scalar.h"
28
#include <string>
29
30
using namespace llvm;
31
32
123k
extern "C" void LLVMInitializeSystemZTarget() {
33
123k
  // Register the target.
34
123k
  RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
35
123k
}
36
37
// Determine whether we use the vector ABI.
38
857
static bool UsesVectorABI(StringRef CPU, StringRef FS) {
39
857
  // We use the vector ABI whenever the vector facility is avaiable.
40
857
  // This is the case by default if CPU is z13 or later, and can be
41
857
  // overridden via "[+-]vector" feature string elements.
42
857
  bool VectorABI = true;
43
857
  if (
CPU.empty() || 857
CPU == "generic"435
||
44
857
      
CPU == "z10"434
||
CPU == "z196"330
||
CPU == "zEC12"278
)
45
593
    VectorABI = false;
46
857
47
857
  SmallVector<StringRef, 3> Features;
48
857
  FS.split(Features, ',', -1, false /* KeepEmpty */);
49
63
  for (auto &Feature : Features) {
50
63
    if (
Feature == "vector" || 63
Feature == "+vector"63
)
51
27
      VectorABI = true;
52
63
    if (Feature == "-vector")
53
6
      VectorABI = false;
54
63
  }
55
857
56
857
  return VectorABI;
57
857
}
58
59
static std::string computeDataLayout(const Triple &TT, StringRef CPU,
60
857
                                     StringRef FS) {
61
857
  bool VectorABI = UsesVectorABI(CPU, FS);
62
857
  std::string Ret;
63
857
64
857
  // Big endian.
65
857
  Ret += "E";
66
857
67
857
  // Data mangling.
68
857
  Ret += DataLayout::getManglingComponent(TT);
69
857
70
857
  // Make sure that global data has at least 16 bits of alignment by
71
857
  // default, so that we can refer to it using LARL.  We don't have any
72
857
  // special requirements for stack variables though.
73
857
  Ret += "-i1:8:16-i8:8:16";
74
857
75
857
  // 64-bit integers are naturally aligned.
76
857
  Ret += "-i64:64";
77
857
78
857
  // 128-bit floats are aligned only to 64 bits.
79
857
  Ret += "-f128:64";
80
857
81
857
  // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
82
857
  if (VectorABI)
83
269
    Ret += "-v128:64";
84
857
85
857
  // We prefer 16 bits of aligned for all globals; see above.
86
857
  Ret += "-a:8:16";
87
857
88
857
  // Integer registers are 32 or 64 bits.
89
857
  Ret += "-n32:64";
90
857
91
857
  return Ret;
92
857
}
93
94
1.71k
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
95
1.71k
  // Static code is suitable for use in a dynamic executable; there is no
96
1.71k
  // separate DynamicNoPIC model.
97
1.71k
  if (
!RM.hasValue() || 1.71k
*RM == Reloc::DynamicNoPIC100
)
98
1.61k
    return Reloc::Static;
99
100
  return *RM;
100
100
}
101
102
// For SystemZ we define the models as follows:
103
//
104
// Small:  BRASL can call any function and will use a stub if necessary.
105
//         Locally-binding symbols will always be in range of LARL.
106
//
107
// Medium: BRASL can call any function and will use a stub if necessary.
108
//         GOT slots and locally-defined text will always be in range
109
//         of LARL, but other symbols might not be.
110
//
111
// Large:  Equivalent to Medium for now.
112
//
113
// Kernel: Equivalent to Medium for now.
114
//
115
// This means that any PIC module smaller than 4GB meets the
116
// requirements of Small, so Small seems like the best default there.
117
//
118
// All symbols bind locally in a non-PIC module, so the choice is less
119
// obvious.  There are two cases:
120
//
121
// - When creating an executable, PLTs and copy relocations allow
122
//   us to treat external symbols as part of the executable.
123
//   Any executable smaller than 4GB meets the requirements of Small,
124
//   so that seems like the best default.
125
//
126
// - When creating JIT code, stubs will be in range of BRASL if the
127
//   image is less than 4GB in size.  GOT entries will likewise be
128
//   in range of LARL.  However, the JIT environment has no equivalent
129
//   of copy relocs, so locally-binding data symbols might not be in
130
//   the range of LARL.  We need the Medium model in that case.
131
static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
132
857
                                              Reloc::Model RM, bool JIT) {
133
857
  if (CM)
134
2
    return *CM;
135
855
  
if (855
JIT855
)
136
0
    
return RM == Reloc::PIC_ ? 0
CodeModel::Small0
:
CodeModel::Medium0
;
137
855
  return CodeModel::Small;
138
855
}
139
140
SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
141
                                           StringRef CPU, StringRef FS,
142
                                           const TargetOptions &Options,
143
                                           Optional<Reloc::Model> RM,
144
                                           Optional<CodeModel::Model> CM,
145
                                           CodeGenOpt::Level OL, bool JIT)
146
    : LLVMTargetMachine(
147
          T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
148
          getEffectiveRelocModel(RM),
149
          getEffectiveCodeModel(CM, getEffectiveRelocModel(RM), JIT), OL),
150
      TLOF(llvm::make_unique<TargetLoweringObjectFileELF>()),
151
857
      Subtarget(TT, CPU, FS, *this) {
152
857
  initAsmInfo();
153
857
}
154
155
847
SystemZTargetMachine::~SystemZTargetMachine() = default;
156
157
namespace {
158
159
/// SystemZ Code Generator Pass Configuration Options.
160
class SystemZPassConfig : public TargetPassConfig {
161
public:
162
  SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
163
819
    : TargetPassConfig(TM, PM) {}
164
165
4.75k
  SystemZTargetMachine &getSystemZTargetMachine() const {
166
4.75k
    return getTM<SystemZTargetMachine>();
167
4.75k
  }
168
169
  ScheduleDAGInstrs *
170
2.85k
  createPostMachineScheduler(MachineSchedContext *C) const override {
171
2.85k
    return new ScheduleDAGMI(C,
172
2.85k
                             llvm::make_unique<SystemZPostRASchedStrategy>(C),
173
2.85k
                             /*RemoveKillFlags=*/true);
174
2.85k
  }
175
176
  void addIRPasses() override;
177
  bool addInstSelector() override;
178
  bool addILPOpts() override;
179
  void addPreSched2() override;
180
  void addPreEmitPass() override;
181
};
182
183
} // end anonymous namespace
184
185
796
void SystemZPassConfig::addIRPasses() {
186
796
  if (
getOptLevel() != CodeGenOpt::None796
) {
187
789
    addPass(createSystemZTDCPass());
188
789
    addPass(createLoopDataPrefetchPass());
189
789
  }
190
796
191
796
  TargetPassConfig::addIRPasses();
192
796
}
193
194
796
bool SystemZPassConfig::addInstSelector() {
195
796
  addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
196
796
197
796
 if (getOptLevel() != CodeGenOpt::None)
198
789
    addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
199
796
200
796
  return false;
201
796
}
202
203
789
bool SystemZPassConfig::addILPOpts() {
204
789
  addPass(&EarlyIfConverterID);
205
789
  return true;
206
789
}
207
208
796
void SystemZPassConfig::addPreSched2() {
209
796
  addPass(createSystemZExpandPseudoPass(getSystemZTargetMachine()));
210
796
211
796
  if (getOptLevel() != CodeGenOpt::None)
212
789
    addPass(&IfConverterID);
213
796
}
214
215
796
void SystemZPassConfig::addPreEmitPass() {
216
796
  // Do instruction shortening before compare elimination because some
217
796
  // vector instructions will be shortened into opcodes that compare
218
796
  // elimination recognizes.
219
796
  if (getOptLevel() != CodeGenOpt::None)
220
789
    addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
221
796
222
796
  // We eliminate comparisons here rather than earlier because some
223
796
  // transformations can change the set of available CC values and we
224
796
  // generally want those transformations to have priority.  This is
225
796
  // especially true in the commonest case where the result of the comparison
226
796
  // is used by a single in-range branch instruction, since we will then
227
796
  // be able to fuse the compare and the branch instead.
228
796
  //
229
796
  // For example, two-address NILF can sometimes be converted into
230
796
  // three-address RISBLG.  NILF produces a CC value that indicates whether
231
796
  // the low word is zero, but RISBLG does not modify CC at all.  On the
232
796
  // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
233
796
  // The CC value produced by NILL isn't useful for our purposes, but the
234
796
  // value produced by RISBG can be used for any comparison with zero
235
796
  // (not just equality).  So there are some transformations that lose
236
796
  // CC values (while still being worthwhile) and others that happen to make
237
796
  // the CC result more useful than it was originally.
238
796
  //
239
796
  // Another reason is that we only want to use BRANCH ON COUNT in cases
240
796
  // where we know that the count register is not going to be spilled.
241
796
  //
242
796
  // Doing it so late makes it more likely that a register will be reused
243
796
  // between the comparison and the branch, but it isn't clear whether
244
796
  // preventing that would be a win or not.
245
796
  if (getOptLevel() != CodeGenOpt::None)
246
789
    addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
247
796
  addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
248
796
249
796
  // Do final scheduling after all other optimizations, to get an
250
796
  // optimal input for the decoder (branch relaxation must happen
251
796
  // after block placement).
252
796
  if (getOptLevel() != CodeGenOpt::None)
253
789
    addPass(&PostMachineSchedulerID);
254
796
}
255
256
819
TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
257
819
  return new SystemZPassConfig(*this, PM);
258
819
}
259
260
930
TargetIRAnalysis SystemZTargetMachine::getTargetIRAnalysis() {
261
58.1k
  return TargetIRAnalysis([this](const Function &F) {
262
58.1k
    return TargetTransformInfo(SystemZTTIImpl(this, F));
263
58.1k
  });
264
930
}