Coverage Report

Created: 2018-07-19 03:59

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/include/llvm/ADT/APInt.h
Line
Count
Source (jump to first uncovered line)
1
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
///
10
/// \file
11
/// This file implements a class to represent arbitrary precision
12
/// integral constant values and operations on them.
13
///
14
//===----------------------------------------------------------------------===//
15
16
#ifndef LLVM_ADT_APINT_H
17
#define LLVM_ADT_APINT_H
18
19
#include "llvm/Support/Compiler.h"
20
#include "llvm/Support/MathExtras.h"
21
#include <cassert>
22
#include <climits>
23
#include <cstring>
24
#include <string>
25
26
namespace llvm {
27
class FoldingSetNodeID;
28
class StringRef;
29
class hash_code;
30
class raw_ostream;
31
32
template <typename T> class SmallVectorImpl;
33
template <typename T> class ArrayRef;
34
35
class APInt;
36
37
inline APInt operator-(APInt);
38
39
//===----------------------------------------------------------------------===//
40
//                              APInt Class
41
//===----------------------------------------------------------------------===//
42
43
/// Class for arbitrary precision integers.
44
///
45
/// APInt is a functional replacement for common case unsigned integer type like
46
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49
/// and methods to manipulate integer values of any bit-width. It supports both
50
/// the typical integer arithmetic and comparison operations as well as bitwise
51
/// manipulation.
52
///
53
/// The class has several invariants worth noting:
54
///   * All bit, byte, and word positions are zero-based.
55
///   * Once the bit width is set, it doesn't change except by the Truncate,
56
///     SignExtend, or ZeroExtend operations.
57
///   * All binary operators must be on APInt instances of the same bit width.
58
///     Attempting to use these operators on instances with different bit
59
///     widths will yield an assertion.
60
///   * The value is stored canonically as an unsigned value. For operations
61
///     where it makes a difference, there are both signed and unsigned variants
62
///     of the operation. For example, sdiv and udiv. However, because the bit
63
///     widths must be the same, operations such as Mul and Add produce the same
64
///     results regardless of whether the values are interpreted as signed or
65
///     not.
66
///   * In general, the class tries to follow the style of computation that LLVM
67
///     uses in its IR. This simplifies its use for LLVM.
68
///
69
class LLVM_NODISCARD APInt {
70
public:
71
  typedef uint64_t WordType;
72
73
  /// This enum is used to hold the constants we needed for APInt.
74
  enum : unsigned {
75
    /// Byte size of a word.
76
    APINT_WORD_SIZE = sizeof(WordType),
77
    /// Bits in a word.
78
    APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
79
  };
80
81
  enum class Rounding {
82
    DOWN,
83
    TOWARD_ZERO,
84
    UP,
85
  };
86
87
  static const WordType WORD_MAX = ~WordType(0);
88
89
private:
90
  /// This union is used to store the integer value. When the
91
  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
92
  union {
93
    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
94
    uint64_t *pVal; ///< Used to store the >64 bits integer value.
95
  } U;
96
97
  unsigned BitWidth; ///< The number of bits in this APInt.
98
99
  friend struct DenseMapAPIntKeyInfo;
100
101
  friend class APSInt;
102
103
  /// Fast internal constructor
104
  ///
105
  /// This constructor is used only internally for speed of construction of
106
  /// temporaries. It is unsafe for general use so it is not public.
107
492M
  APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
108
492M
    U.pVal = val;
109
492M
  }
110
111
  /// Determine if this APInt just has one word to store value.
112
  ///
113
  /// \returns true if the number of bits <= 64, false otherwise.
114
39.3G
  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
115
116
  /// Determine which word a bit is in.
117
  ///
118
  /// \returns the word position for the specified bit position.
119
57.1M
  static unsigned whichWord(unsigned bitPosition) {
120
57.1M
    return bitPosition / APINT_BITS_PER_WORD;
121
57.1M
  }
122
123
  /// Determine which bit in a word a bit is in.
124
  ///
125
  /// \returns the bit position in a word for the specified bit position
126
  /// in the APInt.
127
757M
  static unsigned whichBit(unsigned bitPosition) {
128
757M
    return bitPosition % APINT_BITS_PER_WORD;
129
757M
  }
130
131
  /// Get a single bit mask.
132
  ///
133
  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
134
  /// This method generates and returns a uint64_t (word) mask for a single
135
  /// bit at a specific bit position. This is used to mask the bit in the
136
  /// corresponding word.
137
752M
  static uint64_t maskBit(unsigned bitPosition) {
138
752M
    return 1ULL << whichBit(bitPosition);
139
752M
  }
140
141
  /// Clear unused high order bits
142
  ///
143
  /// This method is used internally to clear the top "N" bits in the high order
144
  /// word that are not used by the APInt. This is needed after the most
145
  /// significant word is assigned a value to ensure that those bits are
146
  /// zero'd out.
147
4.98G
  APInt &clearUnusedBits() {
148
4.98G
    // Compute how many bits are used in the final word
149
4.98G
    unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
150
4.98G
151
4.98G
    // Mask out the high bits.
152
4.98G
    uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
153
4.98G
    if (isSingleWord())
154
4.90G
      U.VAL &= mask;
155
80.7M
    else
156
80.7M
      U.pVal[getNumWords() - 1] &= mask;
157
4.98G
    return *this;
158
4.98G
  }
159
160
  /// Get the word corresponding to a bit position
161
  /// \returns the corresponding word for the specified bit position.
162
580M
  uint64_t getWord(unsigned bitPosition) const {
163
580M
    return isSingleWord() ? 
U.VAL540M
:
U.pVal[whichWord(bitPosition)]40.0M
;
164
580M
  }
165
166
  /// Utility method to change the bit width of this APInt to new bit width,
167
  /// allocating and/or deallocating as necessary. There is no guarantee on the
168
  /// value of any bits upon return. Caller should populate the bits after.
169
  void reallocate(unsigned NewBitWidth);
170
171
  /// Convert a char array into an APInt
172
  ///
173
  /// \param radix 2, 8, 10, 16, or 36
174
  /// Converts a string into a number.  The string must be non-empty
175
  /// and well-formed as a number of the given base. The bit-width
176
  /// must be sufficient to hold the result.
177
  ///
178
  /// This is used by the constructors that take string arguments.
179
  ///
180
  /// StringRef::getAsInteger is superficially similar but (1) does
181
  /// not assume that the string is well-formed and (2) grows the
182
  /// result to hold the input.
183
  void fromString(unsigned numBits, StringRef str, uint8_t radix);
184
185
  /// An internal division function for dividing APInts.
186
  ///
187
  /// This is used by the toString method to divide by the radix. It simply
188
  /// provides a more convenient form of divide for internal use since KnuthDiv
189
  /// has specific constraints on its inputs. If those constraints are not met
190
  /// then it provides a simpler form of divide.
191
  static void divide(const WordType *LHS, unsigned lhsWords,
192
                     const WordType *RHS, unsigned rhsWords, WordType *Quotient,
193
                     WordType *Remainder);
194
195
  /// out-of-line slow case for inline constructor
196
  void initSlowCase(uint64_t val, bool isSigned);
197
198
  /// shared code between two array constructors
199
  void initFromArray(ArrayRef<uint64_t> array);
200
201
  /// out-of-line slow case for inline copy constructor
202
  void initSlowCase(const APInt &that);
203
204
  /// out-of-line slow case for shl
205
  void shlSlowCase(unsigned ShiftAmt);
206
207
  /// out-of-line slow case for lshr.
208
  void lshrSlowCase(unsigned ShiftAmt);
209
210
  /// out-of-line slow case for ashr.
211
  void ashrSlowCase(unsigned ShiftAmt);
212
213
  /// out-of-line slow case for operator=
214
  void AssignSlowCase(const APInt &RHS);
215
216
  /// out-of-line slow case for operator==
217
  bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
218
219
  /// out-of-line slow case for countLeadingZeros
220
  unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
221
222
  /// out-of-line slow case for countLeadingOnes.
223
  unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
224
225
  /// out-of-line slow case for countTrailingZeros.
226
  unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
227
228
  /// out-of-line slow case for countTrailingOnes
229
  unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
230
231
  /// out-of-line slow case for countPopulation
232
  unsigned countPopulationSlowCase() const LLVM_READONLY;
233
234
  /// out-of-line slow case for intersects.
235
  bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
236
237
  /// out-of-line slow case for isSubsetOf.
238
  bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
239
240
  /// out-of-line slow case for setBits.
241
  void setBitsSlowCase(unsigned loBit, unsigned hiBit);
242
243
  /// out-of-line slow case for flipAllBits.
244
  void flipAllBitsSlowCase();
245
246
  /// out-of-line slow case for operator&=.
247
  void AndAssignSlowCase(const APInt& RHS);
248
249
  /// out-of-line slow case for operator|=.
250
  void OrAssignSlowCase(const APInt& RHS);
251
252
  /// out-of-line slow case for operator^=.
253
  void XorAssignSlowCase(const APInt& RHS);
254
255
  /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
256
  /// to, or greater than RHS.
257
  int compare(const APInt &RHS) const LLVM_READONLY;
258
259
  /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
260
  /// to, or greater than RHS.
261
  int compareSigned(const APInt &RHS) const LLVM_READONLY;
262
263
public:
264
  /// \name Constructors
265
  /// @{
266
267
  /// Create a new APInt of numBits width, initialized as val.
268
  ///
269
  /// If isSigned is true then val is treated as if it were a signed value
270
  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
271
  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
272
  /// the range of val are zero filled).
273
  ///
274
  /// \param numBits the bit width of the constructed APInt
275
  /// \param val the initial value of the APInt
276
  /// \param isSigned how to treat signedness of val
277
  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
278
2.88G
      : BitWidth(numBits) {
279
2.88G
    assert(BitWidth && "bitwidth too small");
280
2.88G
    if (isSingleWord()) {
281
2.86G
      U.VAL = val;
282
2.86G
      clearUnusedBits();
283
2.86G
    } else {
284
22.8M
      initSlowCase(val, isSigned);
285
22.8M
    }
286
2.88G
  }
287
288
  /// Construct an APInt of numBits width, initialized as bigVal[].
289
  ///
290
  /// Note that bigVal.size() can be smaller or larger than the corresponding
291
  /// bit width but any extraneous bits will be dropped.
292
  ///
293
  /// \param numBits the bit width of the constructed APInt
294
  /// \param bigVal a sequence of words to form the initial value of the APInt
295
  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
296
297
  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
298
  /// deprecated because this constructor is prone to ambiguity with the
299
  /// APInt(unsigned, uint64_t, bool) constructor.
300
  ///
301
  /// If this overload is ever deleted, care should be taken to prevent calls
302
  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
303
  /// constructor.
304
  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
305
306
  /// Construct an APInt from a string representation.
307
  ///
308
  /// This constructor interprets the string \p str in the given radix. The
309
  /// interpretation stops when the first character that is not suitable for the
310
  /// radix is encountered, or the end of the string. Acceptable radix values
311
  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
312
  /// string to require more bits than numBits.
313
  ///
314
  /// \param numBits the bit width of the constructed APInt
315
  /// \param str the string to be interpreted
316
  /// \param radix the radix to use for the conversion
317
  APInt(unsigned numBits, StringRef str, uint8_t radix);
318
319
  /// Simply makes *this a copy of that.
320
  /// Copy Constructor.
321
4.24G
  APInt(const APInt &that) : BitWidth(that.BitWidth) {
322
4.24G
    if (isSingleWord())
323
4.17G
      U.VAL = that.U.VAL;
324
71.5M
    else
325
71.5M
      initSlowCase(that);
326
4.24G
  }
327
328
  /// Move Constructor.
329
3.83G
  APInt(APInt &&that) : BitWidth(that.BitWidth) {
330
3.83G
    memcpy(&U, &that.U, sizeof(U));
331
3.83G
    that.BitWidth = 0;
332
3.83G
  }
333
334
  /// Destructor.
335
12.1G
  ~APInt() {
336
12.1G
    if (needsCleanup())
337
115M
      delete[] U.pVal;
338
12.1G
  }
339
340
  /// Default constructor that creates an uninteresting APInt
341
  /// representing a 1-bit zero value.
342
  ///
343
  /// This is useful for object deserialization (pair this with the static
344
  ///  method Read).
345
730M
  explicit APInt() : BitWidth(1) { U.VAL = 0; }
346
347
  /// Returns whether this instance allocated memory.
348
12.1G
  bool needsCleanup() const { return !isSingleWord(); }
349
350
  /// Used to insert APInt objects, or objects that contain APInt objects, into
351
  ///  FoldingSets.
352
  void Profile(FoldingSetNodeID &id) const;
353
354
  /// @}
355
  /// \name Value Tests
356
  /// @{
357
358
  /// Determine sign of this APInt.
359
  ///
360
  /// This tests the high bit of this APInt to determine if it is set.
361
  ///
362
  /// \returns true if this APInt is negative, false otherwise
363
295M
  bool isNegative() const { return (*this)[BitWidth - 1]; }
364
365
  /// Determine if this APInt Value is non-negative (>= 0)
366
  ///
367
  /// This tests the high bit of the APInt to determine if it is unset.
368
28.2M
  bool isNonNegative() const { return !isNegative(); }
369
370
  /// Determine if sign bit of this APInt is set.
371
  ///
372
  /// This tests the high bit of this APInt to determine if it is set.
373
  ///
374
  /// \returns true if this APInt has its sign bit set, false otherwise.
375
220M
  bool isSignBitSet() const { return (*this)[BitWidth-1]; }
376
377
  /// Determine if sign bit of this APInt is clear.
378
  ///
379
  /// This tests the high bit of this APInt to determine if it is clear.
380
  ///
381
  /// \returns true if this APInt has its sign bit clear, false otherwise.
382
1.18M
  bool isSignBitClear() const { return !isSignBitSet(); }
383
384
  /// Determine if this APInt Value is positive.
385
  ///
386
  /// This tests if the value of this APInt is positive (> 0). Note
387
  /// that 0 is not a positive value.
388
  ///
389
  /// \returns true if this APInt is positive.
390
24.3M
  bool isStrictlyPositive() const { return isNonNegative() && 
!isNullValue()15.7M
; }
391
392
  /// Determine if all bits are set
393
  ///
394
  /// This checks to see if the value has all bits of the APInt are set or not.
395
304M
  bool isAllOnesValue() const {
396
304M
    if (isSingleWord())
397
298M
      return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
398
5.93M
    return countTrailingOnesSlowCase() == BitWidth;
399
5.93M
  }
400
401
  /// Determine if all bits are clear
402
  ///
403
  /// This checks to see if the value has all bits of the APInt are clear or
404
  /// not.
405
933M
  bool isNullValue() const { return !*this; }
406
407
  /// Determine if this is a value of 1.
408
  ///
409
  /// This checks to see if the value of this APInt is one.
410
104M
  bool isOneValue() const {
411
104M
    if (isSingleWord())
412
102M
      return U.VAL == 1;
413
2.10M
    return countLeadingZerosSlowCase() == BitWidth - 1;
414
2.10M
  }
415
416
  /// Determine if this is the largest unsigned value.
417
  ///
418
  /// This checks to see if the value of this APInt is the maximum unsigned
419
  /// value for the APInt's bit width.
420
215M
  bool isMaxValue() const { return isAllOnesValue(); }
421
422
  /// Determine if this is the largest signed value.
423
  ///
424
  /// This checks to see if the value of this APInt is the maximum signed
425
  /// value for the APInt's bit width.
426
10.4M
  bool isMaxSignedValue() const {
427
10.4M
    if (isSingleWord())
428
10.4M
      return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
429
1.43k
    return !isNegative() && 
countTrailingOnesSlowCase() == BitWidth - 1983
;
430
1.43k
  }
431
432
  /// Determine if this is the smallest unsigned value.
433
  ///
434
  /// This checks to see if the value of this APInt is the minimum unsigned
435
  /// value for the APInt's bit width.
436
108M
  bool isMinValue() const { return isNullValue(); }
437
438
  /// Determine if this is the smallest signed value.
439
  ///
440
  /// This checks to see if the value of this APInt is the minimum signed
441
  /// value for the APInt's bit width.
442
58.6M
  bool isMinSignedValue() const {
443
58.6M
    if (isSingleWord())
444
58.5M
      return U.VAL == (WordType(1) << (BitWidth - 1));
445
29.4k
    return isNegative() && 
countTrailingZerosSlowCase() == BitWidth - 115.6k
;
446
29.4k
  }
447
448
  /// Check if this APInt has an N-bits unsigned integer value.
449
3.23M
  bool isIntN(unsigned N) const {
450
3.23M
    assert(N && "N == 0 ???");
451
3.23M
    return getActiveBits() <= N;
452
3.23M
  }
453
454
  /// Check if this APInt has an N-bits signed integer value.
455
17.2k
  bool isSignedIntN(unsigned N) const {
456
17.2k
    assert(N && "N == 0 ???");
457
17.2k
    return getMinSignedBits() <= N;
458
17.2k
  }
459
460
  /// Check if this APInt's value is a power of two greater than zero.
461
  ///
462
  /// \returns true if the argument APInt value is a power of two > 0.
463
4.20M
  bool isPowerOf2() const {
464
4.20M
    if (isSingleWord())
465
4.13M
      return isPowerOf2_64(U.VAL);
466
69.3k
    return countPopulationSlowCase() == 1;
467
69.3k
  }
468
469
  /// Check if the APInt's value is returned by getSignMask.
470
  ///
471
  /// \returns true if this is the value returned by getSignMask.
472
8.20M
  bool isSignMask() const { return isMinSignedValue(); }
473
474
  /// Convert APInt to a boolean value.
475
  ///
476
  /// This converts the APInt to a boolean value as a test against zero.
477
14.0M
  bool getBoolValue() const { return !!*this; }
478
479
  /// If this value is smaller than the specified limit, return it, otherwise
480
  /// return the limit value.  This causes the value to saturate to the limit.
481
59.0M
  uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
482
59.0M
    return ugt(Limit) ? 
Limit69.5k
:
getZExtValue()58.9M
;
483
59.0M
  }
484
485
  /// Check if the APInt consists of a repeated bit pattern.
486
  ///
487
  /// e.g. 0x01010101 satisfies isSplat(8).
488
  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
489
  /// width without remainder.
490
  bool isSplat(unsigned SplatSizeInBits) const;
491
492
  /// \returns true if this APInt value is a sequence of \param numBits ones
493
  /// starting at the least significant bit with the remainder zero.
494
48.4k
  bool isMask(unsigned numBits) const {
495
48.4k
    assert(numBits != 0 && "numBits must be non-zero");
496
48.4k
    assert(numBits <= BitWidth && "numBits out of range");
497
48.4k
    if (isSingleWord())
498
47.4k
      return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
499
991
    unsigned Ones = countTrailingOnesSlowCase();
500
991
    return (numBits == Ones) &&
501
991
           
((Ones + countLeadingZerosSlowCase()) == BitWidth)876
;
502
991
  }
503
504
  /// \returns true if this APInt is a non-empty sequence of ones starting at
505
  /// the least significant bit with the remainder zero.
506
  /// Ex. isMask(0x0000FFFFU) == true.
507
1.87M
  bool isMask() const {
508
1.87M
    if (isSingleWord())
509
1.86M
      return isMask_64(U.VAL);
510
4.01k
    unsigned Ones = countTrailingOnesSlowCase();
511
4.01k
    return (Ones > 0) && 
((Ones + countLeadingZerosSlowCase()) == BitWidth)1.71k
;
512
4.01k
  }
513
514
  /// Return true if this APInt value contains a sequence of ones with
515
  /// the remainder zero.
516
  bool isShiftedMask() const {
517
    if (isSingleWord())
518
      return isShiftedMask_64(U.VAL);
519
    unsigned Ones = countPopulationSlowCase();
520
    unsigned LeadZ = countLeadingZerosSlowCase();
521
    return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
522
  }
523
524
  /// @}
525
  /// \name Value Generators
526
  /// @{
527
528
  /// Gets maximum unsigned value of APInt for specific bit width.
529
252M
  static APInt getMaxValue(unsigned numBits) {
530
252M
    return getAllOnesValue(numBits);
531
252M
  }
532
533
  /// Gets maximum signed value of APInt for a specific bit width.
534
33.3M
  static APInt getSignedMaxValue(unsigned numBits) {
535
33.3M
    APInt API = getAllOnesValue(numBits);
536
33.3M
    API.clearBit(numBits - 1);
537
33.3M
    return API;
538
33.3M
  }
539
540
  /// Gets minimum unsigned value of APInt for a specific bit width.
541
77.1M
  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
542
543
  /// Gets minimum signed value of APInt for a specific bit width.
544
90.8M
  static APInt getSignedMinValue(unsigned numBits) {
545
90.8M
    APInt API(numBits, 0);
546
90.8M
    API.setBit(numBits - 1);
547
90.8M
    return API;
548
90.8M
  }
549
550
  /// Get the SignMask for a specific bit width.
551
  ///
552
  /// This is just a wrapper function of getSignedMinValue(), and it helps code
553
  /// readability when we want to get a SignMask.
554
1.46M
  static APInt getSignMask(unsigned BitWidth) {
555
1.46M
    return getSignedMinValue(BitWidth);
556
1.46M
  }
557
558
  /// Get the all-ones value.
559
  ///
560
  /// \returns the all-ones value for an APInt of the specified bit-width.
561
352M
  static APInt getAllOnesValue(unsigned numBits) {
562
352M
    return APInt(numBits, WORD_MAX, true);
563
352M
  }
564
565
  /// Get the '0' value.
566
  ///
567
  /// \returns the '0' value for an APInt of the specified bit-width.
568
76.3M
  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
569
570
  /// Compute an APInt containing numBits highbits from this APInt.
571
  ///
572
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
573
  /// the low bits and right shift to the least significant bit.
574
  ///
575
  /// \returns the high "numBits" bits of this APInt.
576
  APInt getHiBits(unsigned numBits) const;
577
578
  /// Compute an APInt containing numBits lowbits from this APInt.
579
  ///
580
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
581
  /// the high bits.
582
  ///
583
  /// \returns the low "numBits" bits of this APInt.
584
  APInt getLoBits(unsigned numBits) const;
585
586
  /// Return an APInt with exactly one bit set in the result.
587
1.77M
  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
588
1.77M
    APInt Res(numBits, 0);
589
1.77M
    Res.setBit(BitNo);
590
1.77M
    return Res;
591
1.77M
  }
592
593
  /// Get a value with a block of bits set.
594
  ///
595
  /// Constructs an APInt value that has a contiguous range of bits set. The
596
  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
597
  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
598
  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
599
  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
600
  ///
601
  /// \param numBits the intended bit width of the result
602
  /// \param loBit the index of the lowest bit set.
603
  /// \param hiBit the index of the highest bit set.
604
  ///
605
  /// \returns An APInt value with the requested bits set.
606
46.7k
  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
607
46.7k
    APInt Res(numBits, 0);
608
46.7k
    Res.setBits(loBit, hiBit);
609
46.7k
    return Res;
610
46.7k
  }
611
612
  /// Get a value with upper bits starting at loBit set.
613
  ///
614
  /// Constructs an APInt value that has a contiguous range of bits set. The
615
  /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
616
  /// bits will be zero. For example, with parameters(32, 12) you would get
617
  /// 0xFFFFF000.
618
  ///
619
  /// \param numBits the intended bit width of the result
620
  /// \param loBit the index of the lowest bit to set.
621
  ///
622
  /// \returns An APInt value with the requested bits set.
623
2.63M
  static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
624
2.63M
    APInt Res(numBits, 0);
625
2.63M
    Res.setBitsFrom(loBit);
626
2.63M
    return Res;
627
2.63M
  }
628
629
  /// Get a value with high bits set
630
  ///
631
  /// Constructs an APInt value that has the top hiBitsSet bits set.
632
  ///
633
  /// \param numBits the bitwidth of the result
634
  /// \param hiBitsSet the number of high-order bits set in the result.
635
12.6M
  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
636
12.6M
    APInt Res(numBits, 0);
637
12.6M
    Res.setHighBits(hiBitsSet);
638
12.6M
    return Res;
639
12.6M
  }
640
641
  /// Get a value with low bits set
642
  ///
643
  /// Constructs an APInt value that has the bottom loBitsSet bits set.
644
  ///
645
  /// \param numBits the bitwidth of the result
646
  /// \param loBitsSet the number of low-order bits set in the result.
647
51.4M
  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
648
51.4M
    APInt Res(numBits, 0);
649
51.4M
    Res.setLowBits(loBitsSet);
650
51.4M
    return Res;
651
51.4M
  }
652
653
  /// Return a value containing V broadcasted over NewLen bits.
654
  static APInt getSplat(unsigned NewLen, const APInt &V);
655
656
  /// Determine if two APInts have the same value, after zero-extending
657
  /// one of them (if needed!) to ensure that the bit-widths match.
658
50
  static bool isSameValue(const APInt &I1, const APInt &I2) {
659
50
    if (I1.getBitWidth() == I2.getBitWidth())
660
50
      return I1 == I2;
661
0
662
0
    if (I1.getBitWidth() > I2.getBitWidth())
663
0
      return I1 == I2.zext(I1.getBitWidth());
664
0
665
0
    return I1.zext(I2.getBitWidth()) == I2;
666
0
  }
667
668
  /// Overload to compute a hash_code for an APInt value.
669
  friend hash_code hash_value(const APInt &Arg);
670
671
  /// This function returns a pointer to the internal storage of the APInt.
672
  /// This is useful for writing out the APInt in binary form without any
673
  /// conversions.
674
131M
  const uint64_t *getRawData() const {
675
131M
    if (isSingleWord())
676
125M
      return &U.VAL;
677
6.05M
    return &U.pVal[0];
678
6.05M
  }
679
680
  /// @}
681
  /// \name Unary Operators
682
  /// @{
683
684
  /// Postfix increment operator.
685
  ///
686
  /// Increments *this by 1.
687
  ///
688
  /// \returns a new APInt value representing the original value of *this.
689
2.27k
  const APInt operator++(int) {
690
2.27k
    APInt API(*this);
691
2.27k
    ++(*this);
692
2.27k
    return API;
693
2.27k
  }
694
695
  /// Prefix increment operator.
696
  ///
697
  /// \returns *this incremented by one
698
  APInt &operator++();
699
700
  /// Postfix decrement operator.
701
  ///
702
  /// Decrements *this by 1.
703
  ///
704
  /// \returns a new APInt value representing the original value of *this.
705
0
  const APInt operator--(int) {
706
0
    APInt API(*this);
707
0
    --(*this);
708
0
    return API;
709
0
  }
710
711
  /// Prefix decrement operator.
712
  ///
713
  /// \returns *this decremented by one.
714
  APInt &operator--();
715
716
  /// Logical negation operator.
717
  ///
718
  /// Performs logical negation operation on this APInt.
719
  ///
720
  /// \returns true if *this is zero, false otherwise.
721
1.23G
  bool operator!() const {
722
1.23G
    if (isSingleWord())
723
1.23G
      return U.VAL == 0;
724
7.99M
    return countLeadingZerosSlowCase() == BitWidth;
725
7.99M
  }
726
727
  /// @}
728
  /// \name Assignment Operators
729
  /// @{
730
731
  /// Copy assignment operator.
732
  ///
733
  /// \returns *this after assignment of RHS.
734
327M
  APInt &operator=(const APInt &RHS) {
735
327M
    // If the bitwidths are the same, we can avoid mucking with memory
736
327M
    if (isSingleWord() && 
RHS.isSingleWord()326M
) {
737
326M
      U.VAL = RHS.U.VAL;
738
326M
      BitWidth = RHS.BitWidth;
739
326M
      return clearUnusedBits();
740
326M
    }
741
575k
742
575k
    AssignSlowCase(RHS);
743
575k
    return *this;
744
575k
  }
745
746
  /// Move assignment operator.
747
1.63G
  APInt &operator=(APInt &&that) {
748
1.63G
#ifdef _MSC_VER
749
1.63G
    // The MSVC std::shuffle implementation still does self-assignment.
750
1.63G
    if (this == &that)
751
1.63G
      return *this;
752
1.63G
#endif
753
1.63G
    assert(this != &that && "Self-move not supported");
754
1.63G
    if (!isSingleWord())
755
16.4M
      delete[] U.pVal;
756
1.63G
757
1.63G
    // Use memcpy so that type based alias analysis sees both VAL and pVal
758
1.63G
    // as modified.
759
1.63G
    memcpy(&U, &that.U, sizeof(U));
760
1.63G
761
1.63G
    BitWidth = that.BitWidth;
762
1.63G
    that.BitWidth = 0;
763
1.63G
764
1.63G
    return *this;
765
1.63G
  }
766
767
  /// Assignment operator.
768
  ///
769
  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
770
  /// the bit width, the excess bits are truncated. If the bit width is larger
771
  /// than 64, the value is zero filled in the unspecified high order bits.
772
  ///
773
  /// \returns *this after assignment of RHS value.
774
62.7M
  APInt &operator=(uint64_t RHS) {
775
62.7M
    if (isSingleWord()) {
776
61.0M
      U.VAL = RHS;
777
61.0M
      clearUnusedBits();
778
61.0M
    } else {
779
1.69M
      U.pVal[0] = RHS;
780
1.69M
      memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
781
1.69M
    }
782
62.7M
    return *this;
783
62.7M
  }
784
785
  /// Bitwise AND assignment operator.
786
  ///
787
  /// Performs a bitwise AND operation on this APInt and RHS. The result is
788
  /// assigned to *this.
789
  ///
790
  /// \returns *this after ANDing with RHS.
791
550M
  APInt &operator&=(const APInt &RHS) {
792
550M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
793
550M
    if (isSingleWord())
794
547M
      U.VAL &= RHS.U.VAL;
795
2.84M
    else
796
2.84M
      AndAssignSlowCase(RHS);
797
550M
    return *this;
798
550M
  }
799
800
  /// Bitwise AND assignment operator.
801
  ///
802
  /// Performs a bitwise AND operation on this APInt and RHS. RHS is
803
  /// logically zero-extended or truncated to match the bit-width of
804
  /// the LHS.
805
3.12k
  APInt &operator&=(uint64_t RHS) {
806
3.12k
    if (isSingleWord()) {
807
3.12k
      U.VAL &= RHS;
808
3.12k
      return *this;
809
3.12k
    }
810
9
    U.pVal[0] &= RHS;
811
9
    memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
812
9
    return *this;
813
9
  }
814
815
  /// Bitwise OR assignment operator.
816
  ///
817
  /// Performs a bitwise OR operation on this APInt and RHS. The result is
818
  /// assigned *this;
819
  ///
820
  /// \returns *this after ORing with RHS.
821
407M
  APInt &operator|=(const APInt &RHS) {
822
407M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
823
407M
    if (isSingleWord())
824
400M
      U.VAL |= RHS.U.VAL;
825
7.53M
    else
826
7.53M
      OrAssignSlowCase(RHS);
827
407M
    return *this;
828
407M
  }
829
830
  /// Bitwise OR assignment operator.
831
  ///
832
  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
833
  /// logically zero-extended or truncated to match the bit-width of
834
  /// the LHS.
835
1.32M
  APInt &operator|=(uint64_t RHS) {
836
1.32M
    if (isSingleWord()) {
837
40.6k
      U.VAL |= RHS;
838
40.6k
      clearUnusedBits();
839
1.28M
    } else {
840
1.28M
      U.pVal[0] |= RHS;
841
1.28M
    }
842
1.32M
    return *this;
843
1.32M
  }
844
845
  /// Bitwise XOR assignment operator.
846
  ///
847
  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
848
  /// assigned to *this.
849
  ///
850
  /// \returns *this after XORing with RHS.
851
224M
  APInt &operator^=(const APInt &RHS) {
852
224M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
853
224M
    if (isSingleWord())
854
224M
      U.VAL ^= RHS.U.VAL;
855
201k
    else
856
201k
      XorAssignSlowCase(RHS);
857
224M
    return *this;
858
224M
  }
859
860
  /// Bitwise XOR assignment operator.
861
  ///
862
  /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
863
  /// logically zero-extended or truncated to match the bit-width of
864
  /// the LHS.
865
  APInt &operator^=(uint64_t RHS) {
866
    if (isSingleWord()) {
867
      U.VAL ^= RHS;
868
      clearUnusedBits();
869
    } else {
870
      U.pVal[0] ^= RHS;
871
    }
872
    return *this;
873
  }
874
875
  /// Multiplication assignment operator.
876
  ///
877
  /// Multiplies this APInt by RHS and assigns the result to *this.
878
  ///
879
  /// \returns *this
880
  APInt &operator*=(const APInt &RHS);
881
  APInt &operator*=(uint64_t RHS);
882
883
  /// Addition assignment operator.
884
  ///
885
  /// Adds RHS to *this and assigns the result to *this.
886
  ///
887
  /// \returns *this
888
  APInt &operator+=(const APInt &RHS);
889
  APInt &operator+=(uint64_t RHS);
890
891
  /// Subtraction assignment operator.
892
  ///
893
  /// Subtracts RHS from *this and assigns the result to *this.
894
  ///
895
  /// \returns *this
896
  APInt &operator-=(const APInt &RHS);
897
  APInt &operator-=(uint64_t RHS);
898
899
  /// Left-shift assignment function.
900
  ///
901
  /// Shifts *this left by shiftAmt and assigns the result to *this.
902
  ///
903
  /// \returns *this after shifting left by ShiftAmt
904
62.6M
  APInt &operator<<=(unsigned ShiftAmt) {
905
62.6M
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
906
62.6M
    if (isSingleWord()) {
907
53.8M
      if (ShiftAmt == BitWidth)
908
26.6k
        U.VAL = 0;
909
53.8M
      else
910
53.8M
        U.VAL <<= ShiftAmt;
911
53.8M
      return clearUnusedBits();
912
53.8M
    }
913
8.74M
    shlSlowCase(ShiftAmt);
914
8.74M
    return *this;
915
8.74M
  }
916
917
  /// Left-shift assignment function.
918
  ///
919
  /// Shifts *this left by shiftAmt and assigns the result to *this.
920
  ///
921
  /// \returns *this after shifting left by ShiftAmt
922
  APInt &operator<<=(const APInt &ShiftAmt);
923
924
  /// @}
925
  /// \name Binary Operators
926
  /// @{
927
928
  /// Multiplication operator.
929
  ///
930
  /// Multiplies this APInt by RHS and returns the result.
931
  APInt operator*(const APInt &RHS) const;
932
933
  /// Left logical shift operator.
934
  ///
935
  /// Shifts this APInt left by \p Bits and returns the result.
936
27.5M
  APInt operator<<(unsigned Bits) const { return shl(Bits); }
937
938
  /// Left logical shift operator.
939
  ///
940
  /// Shifts this APInt left by \p Bits and returns the result.
941
36.4k
  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
942
943
  /// Arithmetic right-shift function.
944
  ///
945
  /// Arithmetic right-shift this APInt by shiftAmt.
946
8.92M
  APInt ashr(unsigned ShiftAmt) const {
947
8.92M
    APInt R(*this);
948
8.92M
    R.ashrInPlace(ShiftAmt);
949
8.92M
    return R;
950
8.92M
  }
951
952
  /// Arithmetic right-shift this APInt by ShiftAmt in place.
953
9.39M
  void ashrInPlace(unsigned ShiftAmt) {
954
9.39M
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
955
9.39M
    if (isSingleWord()) {
956
9.17M
      int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
957
9.17M
      if (ShiftAmt == BitWidth)
958
5.26k
        U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
959
9.17M
      else
960
9.17M
        U.VAL = SExtVAL >> ShiftAmt;
961
9.17M
      clearUnusedBits();
962
9.17M
      return;
963
9.17M
    }
964
211k
    ashrSlowCase(ShiftAmt);
965
211k
  }
966
967
  /// Logical right-shift function.
968
  ///
969
  /// Logical right-shift this APInt by shiftAmt.
970
27.1M
  APInt lshr(unsigned shiftAmt) const {
971
27.1M
    APInt R(*this);
972
27.1M
    R.lshrInPlace(shiftAmt);
973
27.1M
    return R;
974
27.1M
  }
975
976
  /// Logical right-shift this APInt by ShiftAmt in place.
977
36.7M
  void lshrInPlace(unsigned ShiftAmt) {
978
36.7M
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
979
36.7M
    if (isSingleWord()) {
980
33.8M
      if (ShiftAmt == BitWidth)
981
5.27k
        U.VAL = 0;
982
33.7M
      else
983
33.7M
        U.VAL >>= ShiftAmt;
984
33.8M
      return;
985
33.8M
    }
986
2.93M
    lshrSlowCase(ShiftAmt);
987
2.93M
  }
988
989
  /// Left-shift function.
990
  ///
991
  /// Left-shift this APInt by shiftAmt.
992
39.8M
  APInt shl(unsigned shiftAmt) const {
993
39.8M
    APInt R(*this);
994
39.8M
    R <<= shiftAmt;
995
39.8M
    return R;
996
39.8M
  }
997
998
  /// Rotate left by rotateAmt.
999
  APInt rotl(unsigned rotateAmt) const;
1000
1001
  /// Rotate right by rotateAmt.
1002
  APInt rotr(unsigned rotateAmt) const;
1003
1004
  /// Arithmetic right-shift function.
1005
  ///
1006
  /// Arithmetic right-shift this APInt by shiftAmt.
1007
179k
  APInt ashr(const APInt &ShiftAmt) const {
1008
179k
    APInt R(*this);
1009
179k
    R.ashrInPlace(ShiftAmt);
1010
179k
    return R;
1011
179k
  }
1012
1013
  /// Arithmetic right-shift this APInt by shiftAmt in place.
1014
  void ashrInPlace(const APInt &shiftAmt);
1015
1016
  /// Logical right-shift function.
1017
  ///
1018
  /// Logical right-shift this APInt by shiftAmt.
1019
287k
  APInt lshr(const APInt &ShiftAmt) const {
1020
287k
    APInt R(*this);
1021
287k
    R.lshrInPlace(ShiftAmt);
1022
287k
    return R;
1023
287k
  }
1024
1025
  /// Logical right-shift this APInt by ShiftAmt in place.
1026
  void lshrInPlace(const APInt &ShiftAmt);
1027
1028
  /// Left-shift function.
1029
  ///
1030
  /// Left-shift this APInt by shiftAmt.
1031
856k
  APInt shl(const APInt &ShiftAmt) const {
1032
856k
    APInt R(*this);
1033
856k
    R <<= ShiftAmt;
1034
856k
    return R;
1035
856k
  }
1036
1037
  /// Rotate left by rotateAmt.
1038
  APInt rotl(const APInt &rotateAmt) const;
1039
1040
  /// Rotate right by rotateAmt.
1041
  APInt rotr(const APInt &rotateAmt) const;
1042
1043
  /// Unsigned division operation.
1044
  ///
1045
  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1046
  /// RHS are treated as unsigned quantities for purposes of this division.
1047
  ///
1048
  /// \returns a new APInt value containing the division result, rounded towards
1049
  /// zero.
1050
  APInt udiv(const APInt &RHS) const;
1051
  APInt udiv(uint64_t RHS) const;
1052
1053
  /// Signed division function for APInt.
1054
  ///
1055
  /// Signed divide this APInt by APInt RHS.
1056
  ///
1057
  /// The result is rounded towards zero.
1058
  APInt sdiv(const APInt &RHS) const;
1059
  APInt sdiv(int64_t RHS) const;
1060
1061
  /// Unsigned remainder operation.
1062
  ///
1063
  /// Perform an unsigned remainder operation on this APInt with RHS being the
1064
  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1065
  /// of this operation. Note that this is a true remainder operation and not a
1066
  /// modulo operation because the sign follows the sign of the dividend which
1067
  /// is *this.
1068
  ///
1069
  /// \returns a new APInt value containing the remainder result
1070
  APInt urem(const APInt &RHS) const;
1071
  uint64_t urem(uint64_t RHS) const;
1072
1073
  /// Function for signed remainder operation.
1074
  ///
1075
  /// Signed remainder operation on APInt.
1076
  APInt srem(const APInt &RHS) const;
1077
  int64_t srem(int64_t RHS) const;
1078
1079
  /// Dual division/remainder interface.
1080
  ///
1081
  /// Sometimes it is convenient to divide two APInt values and obtain both the
1082
  /// quotient and remainder. This function does both operations in the same
1083
  /// computation making it a little more efficient. The pair of input arguments
1084
  /// may overlap with the pair of output arguments. It is safe to call
1085
  /// udivrem(X, Y, X, Y), for example.
1086
  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1087
                      APInt &Remainder);
1088
  static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1089
                      uint64_t &Remainder);
1090
1091
  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1092
                      APInt &Remainder);
1093
  static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1094
                      int64_t &Remainder);
1095
1096
  // Operations that return overflow indicators.
1097
  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1098
  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1099
  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1100
  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1101
  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1102
  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1103
  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1104
  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1105
  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1106
1107
  /// Array-indexing support.
1108
  ///
1109
  /// \returns the bit value at bitPosition
1110
580M
  bool operator[](unsigned bitPosition) const {
1111
580M
    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1112
580M
    return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1113
580M
  }
1114
1115
  /// @}
1116
  /// \name Comparison Operators
1117
  /// @{
1118
1119
  /// Equality operator.
1120
  ///
1121
  /// Compares this APInt with RHS for the validity of the equality
1122
  /// relationship.
1123
1.87G
  bool operator==(const APInt &RHS) const {
1124
1.87G
    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1125
1.87G
    if (isSingleWord())
1126
1.81G
      return U.VAL == RHS.U.VAL;
1127
61.9M
    return EqualSlowCase(RHS);
1128
61.9M
  }
1129
1130
  /// Equality operator.
1131
  ///
1132
  /// Compares this APInt with a uint64_t for the validity of the equality
1133
  /// relationship.
1134
  ///
1135
  /// \returns true if *this == Val
1136
255M
  bool operator==(uint64_t Val) const {
1137
255M
    return (isSingleWord() || 
getActiveBits() <= 646.78M
) &&
getZExtValue() == Val253M
;
1138
255M
  }
1139
1140
  /// Equality comparison.
1141
  ///
1142
  /// Compares this APInt with RHS for the validity of the equality
1143
  /// relationship.
1144
  ///
1145
  /// \returns true if *this == Val
1146
2.69M
  bool eq(const APInt &RHS) const { return (*this) == RHS; }
1147
1148
  /// Inequality operator.
1149
  ///
1150
  /// Compares this APInt with RHS for the validity of the inequality
1151
  /// relationship.
1152
  ///
1153
  /// \returns true if *this != Val
1154
24.3M
  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1155
1156
  /// Inequality operator.
1157
  ///
1158
  /// Compares this APInt with a uint64_t for the validity of the inequality
1159
  /// relationship.
1160
  ///
1161
  /// \returns true if *this != Val
1162
86.8M
  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1163
1164
  /// Inequality comparison
1165
  ///
1166
  /// Compares this APInt with RHS for the validity of the inequality
1167
  /// relationship.
1168
  ///
1169
  /// \returns true if *this != Val
1170
  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1171
1172
  /// Unsigned less than comparison
1173
  ///
1174
  /// Regards both *this and RHS as unsigned quantities and compares them for
1175
  /// the validity of the less-than relationship.
1176
  ///
1177
  /// \returns true if *this < RHS when both are considered unsigned.
1178
159M
  bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1179
1180
  /// Unsigned less than comparison
1181
  ///
1182
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1183
  /// the validity of the less-than relationship.
1184
  ///
1185
  /// \returns true if *this < RHS when considered unsigned.
1186
27.8M
  bool ult(uint64_t RHS) const {
1187
27.8M
    // Only need to check active bits if not a single word.
1188
27.8M
    return (isSingleWord() || 
getActiveBits() <= 64122k
) &&
getZExtValue() < RHS27.8M
;
1189
27.8M
  }
1190
1191
  /// Signed less than comparison
1192
  ///
1193
  /// Regards both *this and RHS as signed quantities and compares them for
1194
  /// validity of the less-than relationship.
1195
  ///
1196
  /// \returns true if *this < RHS when both are considered signed.
1197
15.4M
  bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1198
1199
  /// Signed less than comparison
1200
  ///
1201
  /// Regards both *this as a signed quantity and compares it with RHS for
1202
  /// the validity of the less-than relationship.
1203
  ///
1204
  /// \returns true if *this < RHS when considered signed.
1205
242k
  bool slt(int64_t RHS) const {
1206
242k
    return (!isSingleWord() && 
getMinSignedBits() > 6414
) ?
isNegative()8
1207
242k
                                                        : 
getSExtValue() < RHS242k
;
1208
242k
  }
1209
1210
  /// Unsigned less or equal comparison
1211
  ///
1212
  /// Regards both *this and RHS as unsigned quantities and compares them for
1213
  /// validity of the less-or-equal relationship.
1214
  ///
1215
  /// \returns true if *this <= RHS when both are considered unsigned.
1216
461M
  bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1217
1218
  /// Unsigned less or equal comparison
1219
  ///
1220
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1221
  /// the validity of the less-or-equal relationship.
1222
  ///
1223
  /// \returns true if *this <= RHS when considered unsigned.
1224
448k
  bool ule(uint64_t RHS) const { return !ugt(RHS); }
1225
1226
  /// Signed less or equal comparison
1227
  ///
1228
  /// Regards both *this and RHS as signed quantities and compares them for
1229
  /// validity of the less-or-equal relationship.
1230
  ///
1231
  /// \returns true if *this <= RHS when both are considered signed.
1232
136M
  bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1233
1234
  /// Signed less or equal comparison
1235
  ///
1236
  /// Regards both *this as a signed quantity and compares it with RHS for the
1237
  /// validity of the less-or-equal relationship.
1238
  ///
1239
  /// \returns true if *this <= RHS when considered signed.
1240
136
  bool sle(uint64_t RHS) const { return !sgt(RHS); }
1241
1242
  /// Unsigned greather than comparison
1243
  ///
1244
  /// Regards both *this and RHS as unsigned quantities and compares them for
1245
  /// the validity of the greater-than relationship.
1246
  ///
1247
  /// \returns true if *this > RHS when both are considered unsigned.
1248
360M
  bool ugt(const APInt &RHS) const { return !ule(RHS); }
1249
1250
  /// Unsigned greater than comparison
1251
  ///
1252
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1253
  /// the validity of the greater-than relationship.
1254
  ///
1255
  /// \returns true if *this > RHS when considered unsigned.
1256
71.5M
  bool ugt(uint64_t RHS) const {
1257
71.5M
    // Only need to check active bits if not a single word.
1258
71.5M
    return (!isSingleWord() && 
getActiveBits() > 64504k
) ||
getZExtValue() > RHS71.5M
;
1259
71.5M
  }
1260
1261
  /// Signed greather than comparison
1262
  ///
1263
  /// Regards both *this and RHS as signed quantities and compares them for the
1264
  /// validity of the greater-than relationship.
1265
  ///
1266
  /// \returns true if *this > RHS when both are considered signed.
1267
134M
  bool sgt(const APInt &RHS) const { return !sle(RHS); }
1268
1269
  /// Signed greater than comparison
1270
  ///
1271
  /// Regards both *this as a signed quantity and compares it with RHS for
1272
  /// the validity of the greater-than relationship.
1273
  ///
1274
  /// \returns true if *this > RHS when considered signed.
1275
1.50k
  bool sgt(int64_t RHS) const {
1276
1.50k
    return (!isSingleWord() && 
getMinSignedBits() > 6412
) ?
!isNegative()8
1277
1.50k
                                                        : 
getSExtValue() > RHS1.49k
;
1278
1.50k
  }
1279
1280
  /// Unsigned greater or equal comparison
1281
  ///
1282
  /// Regards both *this and RHS as unsigned quantities and compares them for
1283
  /// validity of the greater-or-equal relationship.
1284
  ///
1285
  /// \returns true if *this >= RHS when both are considered unsigned.
1286
7.37M
  bool uge(const APInt &RHS) const { return !ult(RHS); }
1287
1288
  /// Unsigned greater or equal comparison
1289
  ///
1290
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1291
  /// the validity of the greater-or-equal relationship.
1292
  ///
1293
  /// \returns true if *this >= RHS when considered unsigned.
1294
20.7M
  bool uge(uint64_t RHS) const { return !ult(RHS); }
1295
1296
  /// Signed greater or equal comparison
1297
  ///
1298
  /// Regards both *this and RHS as signed quantities and compares them for
1299
  /// validity of the greater-or-equal relationship.
1300
  ///
1301
  /// \returns true if *this >= RHS when both are considered signed.
1302
1.74M
  bool sge(const APInt &RHS) const { return !slt(RHS); }
1303
1304
  /// Signed greater or equal comparison
1305
  ///
1306
  /// Regards both *this as a signed quantity and compares it with RHS for
1307
  /// the validity of the greater-or-equal relationship.
1308
  ///
1309
  /// \returns true if *this >= RHS when considered signed.
1310
122k
  bool sge(int64_t RHS) const { return !slt(RHS); }
1311
1312
  /// This operation tests if there are any pairs of corresponding bits
1313
  /// between this APInt and RHS that are both set.
1314
518M
  bool intersects(const APInt &RHS) const {
1315
518M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1316
518M
    if (isSingleWord())
1317
517M
      return (U.VAL & RHS.U.VAL) != 0;
1318
1.05M
    return intersectsSlowCase(RHS);
1319
1.05M
  }
1320
1321
  /// This operation checks that all bits set in this APInt are also set in RHS.
1322
90.9M
  bool isSubsetOf(const APInt &RHS) const {
1323
90.9M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1324
90.9M
    if (isSingleWord())
1325
90.6M
      return (U.VAL & ~RHS.U.VAL) == 0;
1326
290k
    return isSubsetOfSlowCase(RHS);
1327
290k
  }
1328
1329
  /// @}
1330
  /// \name Resizing Operators
1331
  /// @{
1332
1333
  /// Truncate to new width.
1334
  ///
1335
  /// Truncate the APInt to a specified width. It is an error to specify a width
1336
  /// that is greater than or equal to the current width.
1337
  APInt trunc(unsigned width) const;
1338
1339
  /// Sign extend to a new width.
1340
  ///
1341
  /// This operation sign extends the APInt to a new width. If the high order
1342
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1343
  /// It is an error to specify a width that is less than or equal to the
1344
  /// current width.
1345
  APInt sext(unsigned width) const;
1346
1347
  /// Zero extend to a new width.
1348
  ///
1349
  /// This operation zero extends the APInt to a new width. The high order bits
1350
  /// are filled with 0 bits.  It is an error to specify a width that is less
1351
  /// than or equal to the current width.
1352
  APInt zext(unsigned width) const;
1353
1354
  /// Sign extend or truncate to width
1355
  ///
1356
  /// Make this APInt have the bit width given by \p width. The value is sign
1357
  /// extended, truncated, or left alone to make it that width.
1358
  APInt sextOrTrunc(unsigned width) const;
1359
1360
  /// Zero extend or truncate to width
1361
  ///
1362
  /// Make this APInt have the bit width given by \p width. The value is zero
1363
  /// extended, truncated, or left alone to make it that width.
1364
  APInt zextOrTrunc(unsigned width) const;
1365
1366
  /// Sign extend or truncate to width
1367
  ///
1368
  /// Make this APInt have the bit width given by \p width. The value is sign
1369
  /// extended, or left alone to make it that width.
1370
  APInt sextOrSelf(unsigned width) const;
1371
1372
  /// Zero extend or truncate to width
1373
  ///
1374
  /// Make this APInt have the bit width given by \p width. The value is zero
1375
  /// extended, or left alone to make it that width.
1376
  APInt zextOrSelf(unsigned width) const;
1377
1378
  /// @}
1379
  /// \name Bit Manipulation Operators
1380
  /// @{
1381
1382
  /// Set every bit to 1.
1383
122M
  void setAllBits() {
1384
122M
    if (isSingleWord())
1385
121M
      U.VAL = WORD_MAX;
1386
1.21M
    else
1387
1.21M
      // Set all the bits in all the words.
1388
1.21M
      memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1389
122M
    // Clear the unused ones
1390
122M
    clearUnusedBits();
1391
122M
  }
1392
1393
  /// Set a given bit to 1.
1394
  ///
1395
  /// Set the given bit to 1 whose position is given as "bitPosition".
1396
125M
  void setBit(unsigned BitPosition) {
1397
125M
    assert(BitPosition <= BitWidth && "BitPosition out of range");
1398
125M
    WordType Mask = maskBit(BitPosition);
1399
125M
    if (isSingleWord())
1400
121M
      U.VAL |= Mask;
1401
3.82M
    else
1402
3.82M
      U.pVal[whichWord(BitPosition)] |= Mask;
1403
125M
  }
1404
1405
  /// Set the sign bit to 1.
1406
21.9M
  void setSignBit() {
1407
21.9M
    setBit(BitWidth - 1);
1408
21.9M
  }
1409
1410
  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1411
220M
  void setBits(unsigned loBit, unsigned hiBit) {
1412
220M
    assert(hiBit <= BitWidth && "hiBit out of range");
1413
220M
    assert(loBit <= BitWidth && "loBit out of range");
1414
220M
    assert(loBit <= hiBit && "loBit greater than hiBit");
1415
220M
    if (loBit == hiBit)
1416
104M
      return;
1417
116M
    if (loBit < APINT_BITS_PER_WORD && 
hiBit <= APINT_BITS_PER_WORD114M
) {
1418
114M
      uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1419
114M
      mask <<= loBit;
1420
114M
      if (isSingleWord())
1421
113M
        U.VAL |= mask;
1422
1.33M
      else
1423
1.33M
        U.pVal[0] |= mask;
1424
114M
    } else {
1425
1.68M
      setBitsSlowCase(loBit, hiBit);
1426
1.68M
    }
1427
116M
  }
1428
1429
  /// Set the top bits starting from loBit.
1430
20.0M
  void setBitsFrom(unsigned loBit) {
1431
20.0M
    return setBits(loBit, BitWidth);
1432
20.0M
  }
1433
1434
  /// Set the bottom loBits bits.
1435
156M
  void setLowBits(unsigned loBits) {
1436
156M
    return setBits(0, loBits);
1437
156M
  }
1438
1439
  /// Set the top hiBits bits.
1440
42.9M
  void setHighBits(unsigned hiBits) {
1441
42.9M
    return setBits(BitWidth - hiBits, BitWidth);
1442
42.9M
  }
1443
1444
  /// Set every bit to 0.
1445
1.23G
  void clearAllBits() {
1446
1.23G
    if (isSingleWord())
1447
1.22G
      U.VAL = 0;
1448
2.23M
    else
1449
2.23M
      memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1450
1.23G
  }
1451
1452
  /// Set a given bit to 0.
1453
  ///
1454
  /// Set the given bit to 0 whose position is given as "bitPosition".
1455
40.2M
  void clearBit(unsigned BitPosition) {
1456
40.2M
    assert(BitPosition <= BitWidth && "BitPosition out of range");
1457
40.2M
    WordType Mask = ~maskBit(BitPosition);
1458
40.2M
    if (isSingleWord())
1459
38.8M
      U.VAL &= Mask;
1460
1.41M
    else
1461
1.41M
      U.pVal[whichWord(BitPosition)] &= Mask;
1462
40.2M
  }
1463
1464
  /// Set the sign bit to 0.
1465
6.17M
  void clearSignBit() {
1466
6.17M
    clearBit(BitWidth - 1);
1467
6.17M
  }
1468
1469
  /// Toggle every bit to its opposite value.
1470
589M
  void flipAllBits() {
1471
589M
    if (isSingleWord()) {
1472
584M
      U.VAL ^= WORD_MAX;
1473
584M
      clearUnusedBits();
1474
584M
    } else {
1475
5.06M
      flipAllBitsSlowCase();
1476
5.06M
    }
1477
589M
  }
1478
1479
  /// Toggles a given bit to its opposite value.
1480
  ///
1481
  /// Toggle a given bit to its opposite value whose position is given
1482
  /// as "bitPosition".
1483
  void flipBit(unsigned bitPosition);
1484
1485
  /// Negate this APInt in place.
1486
75.5M
  void negate() {
1487
75.5M
    flipAllBits();
1488
75.5M
    ++(*this);
1489
75.5M
  }
1490
1491
  /// Insert the bits from a smaller APInt starting at bitPosition.
1492
  void insertBits(const APInt &SubBits, unsigned bitPosition);
1493
1494
  /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1495
  APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1496
1497
  /// @}
1498
  /// \name Value Characterization Functions
1499
  /// @{
1500
1501
  /// Return the number of bits in the APInt.
1502
5.05G
  unsigned getBitWidth() const { return BitWidth; }
1503
1504
  /// Get the number of words.
1505
  ///
1506
  /// Here one word's bitwidth equals to that of uint64_t.
1507
  ///
1508
  /// \returns the number of words to hold the integer value of this APInt.
1509
615M
  unsigned getNumWords() const { return getNumWords(BitWidth); }
1510
1511
  /// Get the number of words.
1512
  ///
1513
  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1514
  ///
1515
  /// \returns the number of words to hold the integer value with a given bit
1516
  /// width.
1517
673M
  static unsigned getNumWords(unsigned BitWidth) {
1518
673M
    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1519
673M
  }
1520
1521
  /// Compute the number of active bits in the value
1522
  ///
1523
  /// This function returns the number of active bits which is defined as the
1524
  /// bit width minus the number of leading zeros. This is used in several
1525
  /// computations to see how "wide" the value is.
1526
70.5M
  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1527
1528
  /// Compute the number of active words in the value of this APInt.
1529
  ///
1530
  /// This is used in conjunction with getActiveData to extract the raw value of
1531
  /// the APInt.
1532
23
  unsigned getActiveWords() const {
1533
23
    unsigned numActiveBits = getActiveBits();
1534
23
    return numActiveBits ? 
whichWord(numActiveBits - 1) + 122
:
11
;
1535
23
  }
1536
1537
  /// Get the minimum bit size for this signed APInt
1538
  ///
1539
  /// Computes the minimum bit width for this APInt while considering it to be a
1540
  /// signed (and probably negative) value. If the value is not negative, this
1541
  /// function returns the same value as getActiveBits()+1. Otherwise, it
1542
  /// returns the smallest bit width that will retain the negative value. For
1543
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1544
  /// for -1, this function will always return 1.
1545
20.5M
  unsigned getMinSignedBits() const {
1546
20.5M
    if (isNegative())
1547
3.33M
      return BitWidth - countLeadingOnes() + 1;
1548
17.1M
    return getActiveBits() + 1;
1549
17.1M
  }
1550
1551
  /// Get zero extended value
1552
  ///
1553
  /// This method attempts to return the value of this APInt as a zero extended
1554
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1555
  /// uint64_t. Otherwise an assertion will result.
1556
1.00G
  uint64_t getZExtValue() const {
1557
1.00G
    if (isSingleWord())
1558
993M
      return U.VAL;
1559
6.38M
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1560
6.38M
    return U.pVal[0];
1561
6.38M
  }
1562
1563
  /// Get sign extended value
1564
  ///
1565
  /// This method attempts to return the value of this APInt as a sign extended
1566
  /// int64_t. The bit width must be <= 64 or the value must fit within an
1567
  /// int64_t. Otherwise an assertion will result.
1568
260M
  int64_t getSExtValue() const {
1569
260M
    if (isSingleWord())
1570
260M
      return SignExtend64(U.VAL, BitWidth);
1571
1.39k
    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1572
1.39k
    return int64_t(U.pVal[0]);
1573
1.39k
  }
1574
1575
  /// Get bits required for string value.
1576
  ///
1577
  /// This method determines how many bits are required to hold the APInt
1578
  /// equivalent of the string given by \p str.
1579
  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1580
1581
  /// The APInt version of the countLeadingZeros functions in
1582
  ///   MathExtras.h.
1583
  ///
1584
  /// It counts the number of zeros from the most significant bit to the first
1585
  /// one bit.
1586
  ///
1587
  /// \returns BitWidth if the value is zero, otherwise returns the number of
1588
  ///   zeros from the most significant bit to the first one bits.
1589
90.1M
  unsigned countLeadingZeros() const {
1590
90.1M
    if (isSingleWord()) {
1591
67.5M
      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1592
67.5M
      return llvm::countLeadingZeros(U.VAL) - unusedBits;
1593
67.5M
    }
1594
22.5M
    return countLeadingZerosSlowCase();
1595
22.5M
  }
1596
1597
  /// Count the number of leading one bits.
1598
  ///
1599
  /// This function is an APInt version of the countLeadingOnes
1600
  /// functions in MathExtras.h. It counts the number of ones from the most
1601
  /// significant bit to the first zero bit.
1602
  ///
1603
  /// \returns 0 if the high order bit is not set, otherwise returns the number
1604
  /// of 1 bits from the most significant to the least
1605
53.4M
  unsigned countLeadingOnes() const {
1606
53.4M
    if (isSingleWord())
1607
53.4M
      return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1608
32.4k
    return countLeadingOnesSlowCase();
1609
32.4k
  }
1610
1611
  /// Computes the number of leading bits of this APInt that are equal to its
1612
  /// sign bit.
1613
1.09M
  unsigned getNumSignBits() const {
1614
1.09M
    return isNegative() ? 
countLeadingOnes()41.0k
:
countLeadingZeros()1.05M
;
1615
1.09M
  }
1616
1617
  /// Count the number of trailing zero bits.
1618
  ///
1619
  /// This function is an APInt version of the countTrailingZeros
1620
  /// functions in MathExtras.h. It counts the number of zeros from the least
1621
  /// significant bit to the first set bit.
1622
  ///
1623
  /// \returns BitWidth if the value is zero, otherwise returns the number of
1624
  /// zeros from the least significant bit to the first one bit.
1625
4.71M
  unsigned countTrailingZeros() const {
1626
4.71M
    if (isSingleWord())
1627
4.62M
      return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1628
88.7k
    return countTrailingZerosSlowCase();
1629
88.7k
  }
1630
1631
  /// Count the number of trailing one bits.
1632
  ///
1633
  /// This function is an APInt version of the countTrailingOnes
1634
  /// functions in MathExtras.h. It counts the number of ones from the least
1635
  /// significant bit to the first zero bit.
1636
  ///
1637
  /// \returns BitWidth if the value is all ones, otherwise returns the number
1638
  /// of ones from the least significant bit to the first zero bit.
1639
212M
  unsigned countTrailingOnes() const {
1640
212M
    if (isSingleWord())
1641
211M
      return llvm::countTrailingOnes(U.VAL);
1642
1.21M
    return countTrailingOnesSlowCase();
1643
1.21M
  }
1644
1645
  /// Count the number of bits set.
1646
  ///
1647
  /// This function is an APInt version of the countPopulation functions
1648
  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1649
  ///
1650
  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1651
179M
  unsigned countPopulation() const {
1652
179M
    if (isSingleWord())
1653
179M
      return llvm::countPopulation(U.VAL);
1654
219k
    return countPopulationSlowCase();
1655
219k
  }
1656
1657
  /// @}
1658
  /// \name Conversion Functions
1659
  /// @{
1660
  void print(raw_ostream &OS, bool isSigned) const;
1661
1662
  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1663
  /// SmallString.
1664
  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1665
                bool formatAsCLiteral = false) const;
1666
1667
  /// Considers the APInt to be unsigned and converts it into a string in the
1668
  /// radix given. The radix can be 2, 8, 10 16, or 36.
1669
1.52k
  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1670
1.52k
    toString(Str, Radix, false, false);
1671
1.52k
  }
1672
1673
  /// Considers the APInt to be signed and converts it into a string in the
1674
  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1675
0
  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1676
0
    toString(Str, Radix, true, false);
1677
0
  }
1678
1679
  /// Return the APInt as a std::string.
1680
  ///
1681
  /// Note that this is an inefficient method.  It is better to pass in a
1682
  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1683
  /// for the string.
1684
  std::string toString(unsigned Radix, bool Signed) const;
1685
1686
  /// \returns a byte-swapped representation of this APInt Value.
1687
  APInt byteSwap() const;
1688
1689
  /// \returns the value with the bit representation reversed of this APInt
1690
  /// Value.
1691
  APInt reverseBits() const;
1692
1693
  /// Converts this APInt to a double value.
1694
  double roundToDouble(bool isSigned) const;
1695
1696
  /// Converts this unsigned APInt to a double value.
1697
  double roundToDouble() const { return roundToDouble(false); }
1698
1699
  /// Converts this signed APInt to a double value.
1700
  double signedRoundToDouble() const { return roundToDouble(true); }
1701
1702
  /// Converts APInt bits to a double
1703
  ///
1704
  /// The conversion does not do a translation from integer to double, it just
1705
  /// re-interprets the bits as a double. Note that it is valid to do this on
1706
  /// any bit width. Exactly 64 bits will be translated.
1707
24.8k
  double bitsToDouble() const {
1708
24.8k
    return BitsToDouble(getWord(0));
1709
24.8k
  }
1710
1711
  /// Converts APInt bits to a double
1712
  ///
1713
  /// The conversion does not do a translation from integer to float, it just
1714
  /// re-interprets the bits as a float. Note that it is valid to do this on
1715
  /// any bit width. Exactly 32 bits will be translated.
1716
11.5k
  float bitsToFloat() const {
1717
11.5k
    return BitsToFloat(getWord(0));
1718
11.5k
  }
1719
1720
  /// Converts a double to APInt bits.
1721
  ///
1722
  /// The conversion does not do a translation from double to integer, it just
1723
  /// re-interprets the bits of the double.
1724
5.44M
  static APInt doubleToBits(double V) {
1725
5.44M
    return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1726
5.44M
  }
1727
1728
  /// Converts a float to APInt bits.
1729
  ///
1730
  /// The conversion does not do a translation from float to integer, it just
1731
  /// re-interprets the bits of the float.
1732
23.0k
  static APInt floatToBits(float V) {
1733
23.0k
    return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1734
23.0k
  }
1735
1736
  /// @}
1737
  /// \name Mathematics Operations
1738
  /// @{
1739
1740
  /// \returns the floor log base 2 of this APInt.
1741
472k
  unsigned logBase2() const { return getActiveBits() -  1; }
1742
1743
  /// \returns the ceil log base 2 of this APInt.
1744
684k
  unsigned ceilLogBase2() const {
1745
684k
    APInt temp(*this);
1746
684k
    --temp;
1747
684k
    return temp.getActiveBits();
1748
684k
  }
1749
1750
  /// \returns the nearest log base 2 of this APInt. Ties round up.
1751
  ///
1752
  /// NOTE: When we have a BitWidth of 1, we define:
1753
  ///
1754
  ///   log2(0) = UINT32_MAX
1755
  ///   log2(1) = 0
1756
  ///
1757
  /// to get around any mathematical concerns resulting from
1758
  /// referencing 2 in a space where 2 does no exist.
1759
  unsigned nearestLogBase2() const {
1760
    // Special case when we have a bitwidth of 1. If VAL is 1, then we
1761
    // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
1762
    // UINT32_MAX.
1763
    if (BitWidth == 1)
1764
      return U.VAL - 1;
1765
1766
    // Handle the zero case.
1767
    if (isNullValue())
1768
      return UINT32_MAX;
1769
1770
    // The non-zero case is handled by computing:
1771
    //
1772
    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1773
    //
1774
    // where x[i] is referring to the value of the ith bit of x.
1775
    unsigned lg = logBase2();
1776
    return lg + unsigned((*this)[lg - 1]);
1777
  }
1778
1779
  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1780
  /// otherwise
1781
432k
  int32_t exactLogBase2() const {
1782
432k
    if (!isPowerOf2())
1783
185k
      return -1;
1784
246k
    return logBase2();
1785
246k
  }
1786
1787
  /// Compute the square root
1788
  APInt sqrt() const;
1789
1790
  /// Get the absolute value;
1791
  ///
1792
  /// If *this is < 0 then return -(*this), otherwise *this;
1793
9.96M
  APInt abs() const {
1794
9.96M
    if (isNegative())
1795
2.60M
      return -(*this);
1796
7.36M
    return *this;
1797
7.36M
  }
1798
1799
  /// \returns the multiplicative inverse for a given modulo.
1800
  APInt multiplicativeInverse(const APInt &modulo) const;
1801
1802
  /// @}
1803
  /// \name Support for division by constant
1804
  /// @{
1805
1806
  /// Calculate the magic number for signed division by a constant.
1807
  struct ms;
1808
  ms magic() const;
1809
1810
  /// Calculate the magic number for unsigned division by a constant.
1811
  struct mu;
1812
  mu magicu(unsigned LeadingZeros = 0) const;
1813
1814
  /// @}
1815
  /// \name Building-block Operations for APInt and APFloat
1816
  /// @{
1817
1818
  // These building block operations operate on a representation of arbitrary
1819
  // precision, two's-complement, bignum integer values. They should be
1820
  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1821
  // generally a pointer to the base of an array of integer parts, representing
1822
  // an unsigned bignum, and a count of how many parts there are.
1823
1824
  /// Sets the least significant part of a bignum to the input value, and zeroes
1825
  /// out higher parts.
1826
  static void tcSet(WordType *, WordType, unsigned);
1827
1828
  /// Assign one bignum to another.
1829
  static void tcAssign(WordType *, const WordType *, unsigned);
1830
1831
  /// Returns true if a bignum is zero, false otherwise.
1832
  static bool tcIsZero(const WordType *, unsigned);
1833
1834
  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1835
  static int tcExtractBit(const WordType *, unsigned bit);
1836
1837
  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1838
  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1839
  /// significant bit of DST.  All high bits above srcBITS in DST are
1840
  /// zero-filled.
1841
  static void tcExtract(WordType *, unsigned dstCount,
1842
                        const WordType *, unsigned srcBits,
1843
                        unsigned srcLSB);
1844
1845
  /// Set the given bit of a bignum.  Zero-based.
1846
  static void tcSetBit(WordType *, unsigned bit);
1847
1848
  /// Clear the given bit of a bignum.  Zero-based.
1849
  static void tcClearBit(WordType *, unsigned bit);
1850
1851
  /// Returns the bit number of the least or most significant set bit of a
1852
  /// number.  If the input number has no bits set -1U is returned.
1853
  static unsigned tcLSB(const WordType *, unsigned n);
1854
  static unsigned tcMSB(const WordType *parts, unsigned n);
1855
1856
  /// Negate a bignum in-place.
1857
  static void tcNegate(WordType *, unsigned);
1858
1859
  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1860
  static WordType tcAdd(WordType *, const WordType *,
1861
                        WordType carry, unsigned);
1862
  /// DST += RHS.  Returns the carry flag.
1863
  static WordType tcAddPart(WordType *, WordType, unsigned);
1864
1865
  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1866
  static WordType tcSubtract(WordType *, const WordType *,
1867
                             WordType carry, unsigned);
1868
  /// DST -= RHS.  Returns the carry flag.
1869
  static WordType tcSubtractPart(WordType *, WordType, unsigned);
1870
1871
  /// DST += SRC * MULTIPLIER + PART   if add is true
1872
  /// DST  = SRC * MULTIPLIER + PART   if add is false
1873
  ///
1874
  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1875
  /// start at the same point, i.e. DST == SRC.
1876
  ///
1877
  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1878
  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1879
  /// result, and if all of the omitted higher parts were zero return zero,
1880
  /// otherwise overflow occurred and return one.
1881
  static int tcMultiplyPart(WordType *dst, const WordType *src,
1882
                            WordType multiplier, WordType carry,
1883
                            unsigned srcParts, unsigned dstParts,
1884
                            bool add);
1885
1886
  /// DST = LHS * RHS, where DST has the same width as the operands and is
1887
  /// filled with the least significant parts of the result.  Returns one if
1888
  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1889
  /// operands.
1890
  static int tcMultiply(WordType *, const WordType *, const WordType *,
1891
                        unsigned);
1892
1893
  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1894
  /// operands. No overflow occurs. DST must be disjoint from both operands.
1895
  static void tcFullMultiply(WordType *, const WordType *,
1896
                             const WordType *, unsigned, unsigned);
1897
1898
  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1899
  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1900
  /// REMAINDER to the remainder, return zero.  i.e.
1901
  ///
1902
  ///  OLD_LHS = RHS * LHS + REMAINDER
1903
  ///
1904
  /// SCRATCH is a bignum of the same size as the operands and result for use by
1905
  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1906
  /// REMAINDER and SCRATCH must be distinct.
1907
  static int tcDivide(WordType *lhs, const WordType *rhs,
1908
                      WordType *remainder, WordType *scratch,
1909
                      unsigned parts);
1910
1911
  /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1912
  /// restrictions on Count.
1913
  static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1914
1915
  /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1916
  /// restrictions on Count.
1917
  static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1918
1919
  /// The obvious AND, OR and XOR and complement operations.
1920
  static void tcAnd(WordType *, const WordType *, unsigned);
1921
  static void tcOr(WordType *, const WordType *, unsigned);
1922
  static void tcXor(WordType *, const WordType *, unsigned);
1923
  static void tcComplement(WordType *, unsigned);
1924
1925
  /// Comparison (unsigned) of two bignums.
1926
  static int tcCompare(const WordType *, const WordType *, unsigned);
1927
1928
  /// Increment a bignum in-place.  Return the carry flag.
1929
4.62M
  static WordType tcIncrement(WordType *dst, unsigned parts) {
1930
4.62M
    return tcAddPart(dst, 1, parts);
1931
4.62M
  }
1932
1933
  /// Decrement a bignum in-place.  Return the borrow flag.
1934
253
  static WordType tcDecrement(WordType *dst, unsigned parts) {
1935
253
    return tcSubtractPart(dst, 1, parts);
1936
253
  }
1937
1938
  /// Set the least significant BITS and clear the rest.
1939
  static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1940
1941
  /// debug method
1942
  void dump() const;
1943
1944
  /// @}
1945
};
1946
1947
/// Magic data for optimising signed division by a constant.
1948
struct APInt::ms {
1949
  APInt m;    ///< magic number
1950
  unsigned s; ///< shift amount
1951
};
1952
1953
/// Magic data for optimising unsigned division by a constant.
1954
struct APInt::mu {
1955
  APInt m;    ///< magic number
1956
  bool a;     ///< add indicator
1957
  unsigned s; ///< shift amount
1958
};
1959
1960
21.9k
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1961
1962
73.2k
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1963
1964
/// Unary bitwise complement operator.
1965
///
1966
/// \returns an APInt that is the bitwise complement of \p v.
1967
513M
inline APInt operator~(APInt v) {
1968
513M
  v.flipAllBits();
1969
513M
  return v;
1970
513M
}
1971
1972
270M
inline APInt operator&(APInt a, const APInt &b) {
1973
270M
  a &= b;
1974
270M
  return a;
1975
270M
}
1976
1977
12.2M
inline APInt operator&(const APInt &a, APInt &&b) {
1978
12.2M
  b &= a;
1979
12.2M
  return std::move(b);
1980
12.2M
}
1981
1982
3.00k
inline APInt operator&(APInt a, uint64_t RHS) {
1983
3.00k
  a &= RHS;
1984
3.00k
  return a;
1985
3.00k
}
1986
1987
inline APInt operator&(uint64_t LHS, APInt b) {
1988
  b &= LHS;
1989
  return b;
1990
}
1991
1992
334M
inline APInt operator|(APInt a, const APInt &b) {
1993
334M
  a |= b;
1994
334M
  return a;
1995
334M
}
1996
1997
15.9M
inline APInt operator|(const APInt &a, APInt &&b) {
1998
15.9M
  b |= a;
1999
15.9M
  return std::move(b);
2000
15.9M
}
2001
2002
22.0k
inline APInt operator|(APInt a, uint64_t RHS) {
2003
22.0k
  a |= RHS;
2004
22.0k
  return a;
2005
22.0k
}
2006
2007
inline APInt operator|(uint64_t LHS, APInt b) {
2008
  b |= LHS;
2009
  return b;
2010
}
2011
2012
220M
inline APInt operator^(APInt a, const APInt &b) {
2013
220M
  a ^= b;
2014
220M
  return a;
2015
220M
}
2016
2017
4.78M
inline APInt operator^(const APInt &a, APInt &&b) {
2018
4.78M
  b ^= a;
2019
4.78M
  return std::move(b);
2020
4.78M
}
2021
2022
inline APInt operator^(APInt a, uint64_t RHS) {
2023
  a ^= RHS;
2024
  return a;
2025
}
2026
2027
inline APInt operator^(uint64_t LHS, APInt b) {
2028
  b ^= LHS;
2029
  return b;
2030
}
2031
2032
962k
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2033
962k
  I.print(OS, true);
2034
962k
  return OS;
2035
962k
}
2036
2037
53.5M
inline APInt operator-(APInt v) {
2038
53.5M
  v.negate();
2039
53.5M
  return v;
2040
53.5M
}
2041
2042
76.1M
inline APInt operator+(APInt a, const APInt &b) {
2043
76.1M
  a += b;
2044
76.1M
  return a;
2045
76.1M
}
2046
2047
67.3M
inline APInt operator+(const APInt &a, APInt &&b) {
2048
67.3M
  b += a;
2049
67.3M
  return std::move(b);
2050
67.3M
}
2051
2052
379M
inline APInt operator+(APInt a, uint64_t RHS) {
2053
379M
  a += RHS;
2054
379M
  return a;
2055
379M
}
2056
2057
inline APInt operator+(uint64_t LHS, APInt b) {
2058
  b += LHS;
2059
  return b;
2060
}
2061
2062
61.6M
inline APInt operator-(APInt a, const APInt &b) {
2063
61.6M
  a -= b;
2064
61.6M
  return a;
2065
61.6M
}
2066
2067
2.74M
inline APInt operator-(const APInt &a, APInt &&b) {
2068
2.74M
  b.negate();
2069
2.74M
  b += a;
2070
2.74M
  return std::move(b);
2071
2.74M
}
2072
2073
158M
inline APInt operator-(APInt a, uint64_t RHS) {
2074
158M
  a -= RHS;
2075
158M
  return a;
2076
158M
}
2077
2078
inline APInt operator-(uint64_t LHS, APInt b) {
2079
  b.negate();
2080
  b += LHS;
2081
  return b;
2082
}
2083
2084
4.82M
inline APInt operator*(APInt a, uint64_t RHS) {
2085
4.82M
  a *= RHS;
2086
4.82M
  return a;
2087
4.82M
}
2088
2089
24
inline APInt operator*(uint64_t LHS, APInt b) {
2090
24
  b *= LHS;
2091
24
  return b;
2092
24
}
2093
2094
2095
namespace APIntOps {
2096
2097
/// Determine the smaller of two APInts considered to be signed.
2098
113k
inline const APInt &smin(const APInt &A, const APInt &B) {
2099
113k
  return A.slt(B) ? 
A74.8k
:
B38.9k
;
2100
113k
}
2101
2102
/// Determine the larger of two APInts considered to be signed.
2103
467k
inline const APInt &smax(const APInt &A, const APInt &B) {
2104
467k
  return A.sgt(B) ? 
A114k
:
B352k
;
2105
467k
}
2106
2107
/// Determine the smaller of two APInts considered to be signed.
2108
203k
inline const APInt &umin(const APInt &A, const APInt &B) {
2109
203k
  return A.ult(B) ? 
A78.2k
:
B125k
;
2110
203k
}
2111
2112
/// Determine the larger of two APInts considered to be unsigned.
2113
235k
inline const APInt &umax(const APInt &A, const APInt &B) {
2114
235k
  return A.ugt(B) ? 
A42.9k
:
B192k
;
2115
235k
}
2116
2117
/// Compute GCD of two unsigned APInt values.
2118
///
2119
/// This function returns the greatest common divisor of the two APInt values
2120
/// using Stein's algorithm.
2121
///
2122
/// \returns the greatest common divisor of A and B.
2123
APInt GreatestCommonDivisor(APInt A, APInt B);
2124
2125
/// Converts the given APInt to a double value.
2126
///
2127
/// Treats the APInt as an unsigned value for conversion purposes.
2128
inline double RoundAPIntToDouble(const APInt &APIVal) {
2129
  return APIVal.roundToDouble();
2130
}
2131
2132
/// Converts the given APInt to a double value.
2133
///
2134
/// Treats the APInt as a signed value for conversion purposes.
2135
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2136
  return APIVal.signedRoundToDouble();
2137
}
2138
2139
/// Converts the given APInt to a float vlalue.
2140
inline float RoundAPIntToFloat(const APInt &APIVal) {
2141
  return float(RoundAPIntToDouble(APIVal));
2142
}
2143
2144
/// Converts the given APInt to a float value.
2145
///
2146
/// Treast the APInt as a signed value for conversion purposes.
2147
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2148
  return float(APIVal.signedRoundToDouble());
2149
}
2150
2151
/// Converts the given double value into a APInt.
2152
///
2153
/// This function convert a double value to an APInt value.
2154
APInt RoundDoubleToAPInt(double Double, unsigned width);
2155
2156
/// Converts a float value into a APInt.
2157
///
2158
/// Converts a float value into an APInt value.
2159
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2160
  return RoundDoubleToAPInt(double(Float), width);
2161
}
2162
2163
/// Return A unsign-divided by B, rounded by the given rounding mode.
2164
APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2165
2166
/// Return A sign-divided by B, rounded by the given rounding mode.
2167
APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2168
2169
} // End of APIntOps namespace
2170
2171
// See friend declaration above. This additional declaration is required in
2172
// order to compile LLVM with IBM xlC compiler.
2173
hash_code hash_value(const APInt &Arg);
2174
} // End of llvm namespace
2175
2176
#endif