Coverage Report

Created: 2018-09-19 20:53

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/include/llvm/Analysis/MemorySSAUpdater.h
Line
Count
Source (jump to first uncovered line)
1
//===- MemorySSAUpdater.h - Memory SSA Updater-------------------*- C++ -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// \file
11
// An automatic updater for MemorySSA that handles arbitrary insertion,
12
// deletion, and moves.  It performs phi insertion where necessary, and
13
// automatically updates the MemorySSA IR to be correct.
14
// While updating loads or removing instructions is often easy enough to not
15
// need this, updating stores should generally not be attemped outside this
16
// API.
17
//
18
// Basic API usage:
19
// Create the memory access you want for the instruction (this is mainly so
20
// we know where it is, without having to duplicate the entire set of create
21
// functions MemorySSA supports).
22
// Call insertDef or insertUse depending on whether it's a MemoryUse or a
23
// MemoryDef.
24
// That's it.
25
//
26
// For moving, first, move the instruction itself using the normal SSA
27
// instruction moving API, then just call moveBefore, moveAfter,or moveTo with
28
// the right arguments.
29
//
30
//===----------------------------------------------------------------------===//
31
32
#ifndef LLVM_ANALYSIS_MEMORYSSAUPDATER_H
33
#define LLVM_ANALYSIS_MEMORYSSAUPDATER_H
34
35
#include "llvm/ADT/SmallPtrSet.h"
36
#include "llvm/ADT/SmallSet.h"
37
#include "llvm/ADT/SmallVector.h"
38
#include "llvm/Analysis/LoopIterator.h"
39
#include "llvm/Analysis/MemorySSA.h"
40
#include "llvm/IR/BasicBlock.h"
41
#include "llvm/IR/CFGDiff.h"
42
#include "llvm/IR/Dominators.h"
43
#include "llvm/IR/Module.h"
44
#include "llvm/IR/OperandTraits.h"
45
#include "llvm/IR/Type.h"
46
#include "llvm/IR/Use.h"
47
#include "llvm/IR/User.h"
48
#include "llvm/IR/Value.h"
49
#include "llvm/IR/ValueHandle.h"
50
#include "llvm/IR/ValueMap.h"
51
#include "llvm/Pass.h"
52
#include "llvm/Support/Casting.h"
53
#include "llvm/Support/ErrorHandling.h"
54
55
namespace llvm {
56
57
class Function;
58
class Instruction;
59
class MemoryAccess;
60
class LLVMContext;
61
class raw_ostream;
62
63
using ValueToValueMapTy = ValueMap<const Value *, WeakTrackingVH>;
64
using PhiToDefMap = SmallDenseMap<MemoryPhi *, MemoryAccess *>;
65
using CFGUpdate = cfg::Update<BasicBlock *>;
66
using GraphDiffInvBBPair =
67
    std::pair<const GraphDiff<BasicBlock *> *, Inverse<BasicBlock *>>;
68
69
class MemorySSAUpdater {
70
private:
71
  MemorySSA *MSSA;
72
73
  /// We use WeakVH rather than a costly deletion to deal with dangling pointers.
74
  /// MemoryPhis are created eagerly and sometimes get zapped shortly afterwards.
75
  SmallVector<WeakVH, 16> InsertedPHIs;
76
77
  SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
78
  SmallSet<AssertingVH<MemoryPhi>, 8> NonOptPhis;
79
80
public:
81
1.47M
  MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
82
83
  /// Insert a definition into the MemorySSA IR.  RenameUses will rename any use
84
  /// below the new def block (and any inserted phis).  RenameUses should be set
85
  /// to true if the definition may cause new aliases for loads below it.  This
86
  /// is not the case for hoisting or sinking or other forms of code *movement*.
87
  /// It *is* the case for straight code insertion.
88
  /// For example:
89
  /// store a
90
  /// if (foo) { }
91
  /// load a
92
  ///
93
  /// Moving the store into the if block, and calling insertDef, does not
94
  /// require RenameUses.
95
  /// However, changing it to:
96
  /// store a
97
  /// if (foo) { store b }
98
  /// load a
99
  /// Where a mayalias b, *does* require RenameUses be set to true.
100
  void insertDef(MemoryDef *Def, bool RenameUses = false);
101
  void insertUse(MemoryUse *Use);
102
  /// Update the MemoryPhi in `To` following an edge deletion between `From` and
103
  /// `To`. If `To` becomes unreachable, a call to removeBlocks should be made.
104
  void removeEdge(BasicBlock *From, BasicBlock *To);
105
  /// Update the MemoryPhi in `To` to have a single incoming edge from `From`,
106
  /// following a CFG change that replaced multiple edges (switch) with a direct
107
  /// branch.
108
  void removeDuplicatePhiEdgesBetween(BasicBlock *From, BasicBlock *To);
109
  /// Update MemorySSA after a loop was cloned, given the blocks in RPO order,
110
  /// the exit blocks and a 1:1 mapping of all blocks and instructions
111
  /// cloned. This involves duplicating all defs and uses in the cloned blocks
112
  /// Updating phi nodes in exit block successors is done separately.
113
  void updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
114
                           ArrayRef<BasicBlock *> ExitBlocks,
115
                           const ValueToValueMapTy &VM,
116
                           bool IgnoreIncomingWithNoClones = false);
117
  // Block BB was fully or partially cloned into its predecessor P1. Map
118
  // contains the 1:1 mapping of instructions cloned and VM[BB]=P1.
119
  void updateForClonedBlockIntoPred(BasicBlock *BB, BasicBlock *P1,
120
                                    const ValueToValueMapTy &VM);
121
  /// Update phi nodes in exit block successors following cloning. Exit blocks
122
  /// that were not cloned don't have additional predecessors added.
123
  void updateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
124
                                     const ValueToValueMapTy &VMap,
125
                                     DominatorTree &DT);
126
  void updateExitBlocksForClonedLoop(
127
      ArrayRef<BasicBlock *> ExitBlocks,
128
      ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT);
129
130
  /// Apply CFG updates, analogous with the DT edge updates.
131
  void applyUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT);
132
  /// Apply CFG insert updates, analogous with the DT edge updates.
133
  void applyInsertUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT);
134
135
  void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
136
  void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
137
  void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
138
                   MemorySSA::InsertionPlace Where);
139
  /// `From` block was spliced into `From` and `To`. There is a CFG edge from
140
  /// `From` to `To`. Move all accesses from `From` to `To` starting at
141
  /// instruction `Start`. `To` is newly created BB, so empty of
142
  /// MemorySSA::MemoryAccesses. Edges are already updated, so successors of
143
  /// `To` with MPhi nodes need to update incoming block.
144
  /// |------|        |------|
145
  /// | From |        | From |
146
  /// |      |        |------|
147
  /// |      |           ||
148
  /// |      |   =>      \/
149
  /// |      |        |------|  <- Start
150
  /// |      |        |  To  |
151
  /// |------|        |------|
152
  void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To,
153
                                Instruction *Start);
154
  /// `From` block was merged into `To`. There is a CFG edge from `To` to
155
  /// `From`.`To` still branches to `From`, but all instructions were moved and
156
  /// `From` is now an empty block; `From` is about to be deleted. Move all
157
  /// accesses from `From` to `To` starting at instruction `Start`. `To` may
158
  /// have multiple successors, `From` has a single predecessor. `From` may have
159
  /// successors with MPhi nodes, replace their incoming block with `To`.
160
  /// |------|        |------|
161
  /// |  To  |        |  To  |
162
  /// |------|        |      |
163
  ///    ||      =>   |      |
164
  ///    \/           |      |
165
  /// |------|        |      |  <- Start
166
  /// | From |        |      |
167
  /// |------|        |------|
168
  void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
169
                               Instruction *Start);
170
  /// A new empty BasicBlock (New) now branches directly to Old. Some of
171
  /// Old's predecessors (Preds) are now branching to New instead of Old.
172
  /// If New is the only predecessor, move Old's Phi, if present, to New.
173
  /// Otherwise, add a new Phi in New with appropriate incoming values, and
174
  /// update the incoming values in Old's Phi node too, if present.
175
  void wireOldPredecessorsToNewImmediatePredecessor(
176
      BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
177
      bool IdenticalEdgesWereMerged = true);
178
  // The below are utility functions. Other than creation of accesses to pass
179
  // to insertDef, and removeAccess to remove accesses, you should generally
180
  // not attempt to update memoryssa yourself. It is very non-trivial to get
181
  // the edge cases right, and the above calls already operate in near-optimal
182
  // time bounds.
183
184
  /// Create a MemoryAccess in MemorySSA at a specified point in a block,
185
  /// with a specified clobbering definition.
186
  ///
187
  /// Returns the new MemoryAccess.
188
  /// This should be called when a memory instruction is created that is being
189
  /// used to replace an existing memory instruction. It will *not* create PHI
190
  /// nodes, or verify the clobbering definition. The insertion place is used
191
  /// solely to determine where in the memoryssa access lists the instruction
192
  /// will be placed. The caller is expected to keep ordering the same as
193
  /// instructions.
194
  /// It will return the new MemoryAccess.
195
  /// Note: If a MemoryAccess already exists for I, this function will make it
196
  /// inaccessible and it *must* have removeMemoryAccess called on it.
197
  MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
198
                                       const BasicBlock *BB,
199
                                       MemorySSA::InsertionPlace Point);
200
201
  /// Create a MemoryAccess in MemorySSA before or after an existing
202
  /// MemoryAccess.
203
  ///
204
  /// Returns the new MemoryAccess.
205
  /// This should be called when a memory instruction is created that is being
206
  /// used to replace an existing memory instruction. It will *not* create PHI
207
  /// nodes, or verify the clobbering definition.
208
  ///
209
  /// Note: If a MemoryAccess already exists for I, this function will make it
210
  /// inaccessible and it *must* have removeMemoryAccess called on it.
211
  MemoryUseOrDef *createMemoryAccessBefore(Instruction *I,
212
                                           MemoryAccess *Definition,
213
                                           MemoryUseOrDef *InsertPt);
214
  MemoryUseOrDef *createMemoryAccessAfter(Instruction *I,
215
                                          MemoryAccess *Definition,
216
                                          MemoryAccess *InsertPt);
217
218
  /// Remove a MemoryAccess from MemorySSA, including updating all
219
  /// definitions and uses.
220
  /// This should be called when a memory instruction that has a MemoryAccess
221
  /// associated with it is erased from the program.  For example, if a store or
222
  /// load is simply erased (not replaced), removeMemoryAccess should be called
223
  /// on the MemoryAccess for that store/load.
224
  void removeMemoryAccess(MemoryAccess *);
225
226
  /// Remove MemoryAccess for a given instruction, if a MemoryAccess exists.
227
  /// This should be called when an instruction (load/store) is deleted from
228
  /// the program.
229
0
  void removeMemoryAccess(const Instruction *I) {
230
0
    if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
231
0
      removeMemoryAccess(MA);
232
0
  }
233
234
  /// Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
235
  /// Assumption we make here: all uses of deleted defs and phi must either
236
  /// occur in blocks about to be deleted (thus will be deleted as well), or
237
  /// they occur in phis that will simply lose an incoming value.
238
  /// Deleted blocks still have successor info, but their predecessor edges and
239
  /// Phi nodes may already be updated. Instructions in DeadBlocks should be
240
  /// deleted after this call.
241
  void removeBlocks(const SmallPtrSetImpl<BasicBlock *> &DeadBlocks);
242
243
  /// Get handle on MemorySSA.
244
0
  MemorySSA* getMemorySSA() const { return MSSA; }
245
246
private:
247
  // Move What before Where in the MemorySSA IR.
248
  template <class WhereType>
249
  void moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where);
250
  // Move all memory accesses from `From` to `To` starting at `Start`.
251
  // Restrictions apply, see public wrappers of this method.
252
  void moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start);
253
  MemoryAccess *getPreviousDef(MemoryAccess *);
254
  MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
255
  MemoryAccess *
256
  getPreviousDefFromEnd(BasicBlock *,
257
                        DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
258
  MemoryAccess *
259
  getPreviousDefRecursive(BasicBlock *,
260
                          DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
261
  MemoryAccess *recursePhi(MemoryAccess *Phi);
262
  template <class RangeType>
263
  MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
264
  void fixupDefs(const SmallVectorImpl<WeakVH> &);
265
  // Clone all uses and defs from BB to NewBB given a 1:1 map of all
266
  // instructions and blocks cloned, and a map of MemoryPhi : Definition
267
  // (MemoryAccess Phi or Def). VMap maps old instructions to cloned
268
  // instructions and old blocks to cloned blocks. MPhiMap, is created in the
269
  // caller of this private method, and maps existing MemoryPhis to new
270
  // definitions that new MemoryAccesses must point to. These definitions may
271
  // not necessarily be MemoryPhis themselves, they may be MemoryDefs. As such,
272
  // the map is between MemoryPhis and MemoryAccesses, where the MemoryAccesses
273
  // may be MemoryPhis or MemoryDefs and not MemoryUses.
274
  void cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
275
                        const ValueToValueMapTy &VMap, PhiToDefMap &MPhiMap);
276
  template <typename Iter>
277
  void privateUpdateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
278
                                            Iter ValuesBegin, Iter ValuesEnd,
279
                                            DominatorTree &DT);
280
  void applyInsertUpdates(ArrayRef<CFGUpdate>, DominatorTree &DT,
281
                          const GraphDiff<BasicBlock *> *GD);
282
};
283
} // end namespace llvm
284
285
#endif // LLVM_ANALYSIS_MEMORYSSAUPDATER_H