Coverage Report

Created: 2019-07-24 05:18

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/include/llvm/CodeGen/LiveVariables.h
Line
Count
Source (jump to first uncovered line)
1
//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the LiveVariables analysis pass.  For each machine
10
// instruction in the function, this pass calculates the set of registers that
11
// are immediately dead after the instruction (i.e., the instruction calculates
12
// the value, but it is never used) and the set of registers that are used by
13
// the instruction, but are never used after the instruction (i.e., they are
14
// killed).
15
//
16
// This class computes live variables using a sparse implementation based on
17
// the machine code SSA form.  This class computes live variable information for
18
// each virtual and _register allocatable_ physical register in a function.  It
19
// uses the dominance properties of SSA form to efficiently compute live
20
// variables for virtual registers, and assumes that physical registers are only
21
// live within a single basic block (allowing it to do a single local analysis
22
// to resolve physical register lifetimes in each basic block).  If a physical
23
// register is not register allocatable, it is not tracked.  This is useful for
24
// things like the stack pointer and condition codes.
25
//
26
//===----------------------------------------------------------------------===//
27
28
#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
29
#define LLVM_CODEGEN_LIVEVARIABLES_H
30
31
#include "llvm/ADT/DenseMap.h"
32
#include "llvm/ADT/IndexedMap.h"
33
#include "llvm/ADT/SmallSet.h"
34
#include "llvm/ADT/SmallVector.h"
35
#include "llvm/ADT/SparseBitVector.h"
36
#include "llvm/CodeGen/MachineFunctionPass.h"
37
#include "llvm/CodeGen/MachineInstr.h"
38
#include "llvm/CodeGen/TargetRegisterInfo.h"
39
40
namespace llvm {
41
42
class MachineBasicBlock;
43
class MachineRegisterInfo;
44
45
class LiveVariables : public MachineFunctionPass {
46
public:
47
  static char ID; // Pass identification, replacement for typeid
48
35.3k
  LiveVariables() : MachineFunctionPass(ID) {
49
35.3k
    initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
50
35.3k
  }
51
52
  /// VarInfo - This represents the regions where a virtual register is live in
53
  /// the program.  We represent this with three different pieces of
54
  /// information: the set of blocks in which the instruction is live
55
  /// throughout, the set of blocks in which the instruction is actually used,
56
  /// and the set of non-phi instructions that are the last users of the value.
57
  ///
58
  /// In the common case where a value is defined and killed in the same block,
59
  /// There is one killing instruction, and AliveBlocks is empty.
60
  ///
61
  /// Otherwise, the value is live out of the block.  If the value is live
62
  /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
63
  /// where the liveness range ends are not included in AliveBlocks, instead
64
  /// being captured by the Kills set.  In these blocks, the value is live into
65
  /// the block (unless the value is defined and killed in the same block) and
66
  /// lives until the specified instruction.  Note that there cannot ever be a
67
  /// value whose Kills set contains two instructions from the same basic block.
68
  ///
69
  /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
70
  /// value in one of its predecessor blocks, it is not listed in the kills set,
71
  /// but does include the predecessor block in the AliveBlocks set (unless that
72
  /// block also defines the value).  This leads to the (perfectly sensical)
73
  /// situation where a value is defined in a block, and the last use is a phi
74
  /// node in the successor.  In this case, AliveBlocks is empty (the value is
75
  /// not live across any  blocks) and Kills is empty (phi nodes are not
76
  /// included). This is sensical because the value must be live to the end of
77
  /// the block, but is not live in any successor blocks.
78
  struct VarInfo {
79
    /// AliveBlocks - Set of blocks in which this value is alive completely
80
    /// through.  This is a bit set which uses the basic block number as an
81
    /// index.
82
    ///
83
    SparseBitVector<> AliveBlocks;
84
85
    /// Kills - List of MachineInstruction's which are the last use of this
86
    /// virtual register (kill it) in their basic block.
87
    ///
88
    std::vector<MachineInstr*> Kills;
89
90
    /// removeKill - Delete a kill corresponding to the specified
91
    /// machine instruction. Returns true if there was a kill
92
    /// corresponding to this instruction, false otherwise.
93
379k
    bool removeKill(MachineInstr &MI) {
94
379k
      std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
95
379k
      if (I == Kills.end())
96
2.10k
        return false;
97
377k
      Kills.erase(I);
98
377k
      return true;
99
377k
    }
100
101
    /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
102
    MachineInstr *findKill(const MachineBasicBlock *MBB) const;
103
104
    /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
105
    /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
106
    /// MBB, it is not considered live in.
107
    bool isLiveIn(const MachineBasicBlock &MBB,
108
                  unsigned Reg,
109
                  MachineRegisterInfo &MRI);
110
111
    void dump() const;
112
  };
113
114
private:
115
  /// VirtRegInfo - This list is a mapping from virtual register number to
116
  /// variable information.
117
  ///
118
  IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
119
120
  /// PHIJoins - list of virtual registers that are PHI joins. These registers
121
  /// may have multiple definitions, and they require special handling when
122
  /// building live intervals.
123
  SparseBitVector<> PHIJoins;
124
125
private:   // Intermediate data structures
126
  MachineFunction *MF;
127
128
  MachineRegisterInfo* MRI;
129
130
  const TargetRegisterInfo *TRI;
131
132
  // PhysRegInfo - Keep track of which instruction was the last def of a
133
  // physical register. This is a purely local property, because all physical
134
  // register references are presumed dead across basic blocks.
135
  std::vector<MachineInstr *> PhysRegDef;
136
137
  // PhysRegInfo - Keep track of which instruction was the last use of a
138
  // physical register. This is a purely local property, because all physical
139
  // register references are presumed dead across basic blocks.
140
  std::vector<MachineInstr *> PhysRegUse;
141
142
  std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
143
144
  // DistanceMap - Keep track the distance of a MI from the start of the
145
  // current basic block.
146
  DenseMap<MachineInstr*, unsigned> DistanceMap;
147
148
  /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
149
  /// uses. Pay special attention to the sub-register uses which may come below
150
  /// the last use of the whole register.
151
  bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
152
153
  /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
154
  void HandleRegMask(const MachineOperand&);
155
156
  void HandlePhysRegUse(unsigned Reg, MachineInstr &MI);
157
  void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
158
                        SmallVectorImpl<unsigned> &Defs);
159
  void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
160
161
  /// FindLastRefOrPartRef - Return the last reference or partial reference of
162
  /// the specified register.
163
  MachineInstr *FindLastRefOrPartRef(unsigned Reg);
164
165
  /// FindLastPartialDef - Return the last partial def of the specified
166
  /// register. Also returns the sub-registers that're defined by the
167
  /// instruction.
168
  MachineInstr *FindLastPartialDef(unsigned Reg,
169
                                   SmallSet<unsigned,4> &PartDefRegs);
170
171
  /// analyzePHINodes - Gather information about the PHI nodes in here. In
172
  /// particular, we want to map the variable information of a virtual
173
  /// register which is used in a PHI node. We map that to the BB the vreg
174
  /// is coming from.
175
  void analyzePHINodes(const MachineFunction& Fn);
176
177
  void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
178
179
  void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
180
public:
181
182
  bool runOnMachineFunction(MachineFunction &MF) override;
183
184
  /// RegisterDefIsDead - Return true if the specified instruction defines the
185
  /// specified register, but that definition is dead.
186
  bool RegisterDefIsDead(MachineInstr &MI, unsigned Reg) const;
187
188
  //===--------------------------------------------------------------------===//
189
  //  API to update live variable information
190
191
  /// replaceKillInstruction - Update register kill info by replacing a kill
192
  /// instruction with a new one.
193
  void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI,
194
                              MachineInstr &NewMI);
195
196
  /// addVirtualRegisterKilled - Add information about the fact that the
197
  /// specified register is killed after being used by the specified
198
  /// instruction. If AddIfNotFound is true, add a implicit operand if it's
199
  /// not found.
200
  void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI,
201
2.30M
                                bool AddIfNotFound = false) {
202
2.30M
    if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
203
2.30M
      getVarInfo(IncomingReg).Kills.push_back(&MI);
204
2.30M
  }
205
206
  /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
207
  /// register from the live variable information. Returns true if the
208
  /// variable was marked as killed by the specified instruction,
209
  /// false otherwise.
210
6.79k
  bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI) {
211
6.79k
    if (!getVarInfo(reg).removeKill(MI))
212
0
      return false;
213
6.79k
214
6.79k
    bool Removed = false;
215
16.3k
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; 
++i9.53k
) {
216
16.3k
      MachineOperand &MO = MI.getOperand(i);
217
16.3k
      if (MO.isReg() && 
MO.isKill()15.9k
&&
MO.getReg() == reg8.99k
) {
218
6.79k
        MO.setIsKill(false);
219
6.79k
        Removed = true;
220
6.79k
        break;
221
6.79k
      }
222
16.3k
    }
223
6.79k
224
6.79k
    assert(Removed && "Register is not used by this instruction!");
225
6.79k
    (void)Removed;
226
6.79k
    return true;
227
6.79k
  }
228
229
  /// removeVirtualRegistersKilled - Remove all killed info for the specified
230
  /// instruction.
231
  void removeVirtualRegistersKilled(MachineInstr &MI);
232
233
  /// addVirtualRegisterDead - Add information about the fact that the specified
234
  /// register is dead after being used by the specified instruction. If
235
  /// AddIfNotFound is true, add a implicit operand if it's not found.
236
  void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI,
237
6
                              bool AddIfNotFound = false) {
238
6
    if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
239
6
      getVarInfo(IncomingReg).Kills.push_back(&MI);
240
6
  }
241
242
  /// removeVirtualRegisterDead - Remove the specified kill of the virtual
243
  /// register from the live variable information. Returns true if the
244
  /// variable was marked dead at the specified instruction, false
245
  /// otherwise.
246
2.10k
  bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI) {
247
2.10k
    if (!getVarInfo(reg).removeKill(MI))
248
2.10k
      return false;
249
6
250
6
    bool Removed = false;
251
6
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; 
++i0
) {
252
6
      MachineOperand &MO = MI.getOperand(i);
253
6
      if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
254
6
        MO.setIsDead(false);
255
6
        Removed = true;
256
6
        break;
257
6
      }
258
6
    }
259
6
    assert(Removed && "Register is not defined by this instruction!");
260
6
    (void)Removed;
261
6
    return true;
262
6
  }
263
264
  void getAnalysisUsage(AnalysisUsage &AU) const override;
265
266
495k
  void releaseMemory() override {
267
495k
    VirtRegInfo.clear();
268
495k
  }
269
270
  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
271
  /// register.
272
  VarInfo &getVarInfo(unsigned RegIdx);
273
274
  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
275
                               MachineBasicBlock *BB);
276
  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
277
                               MachineBasicBlock *BB,
278
                               std::vector<MachineBasicBlock*> &WorkList);
279
  void HandleVirtRegDef(unsigned reg, MachineInstr &MI);
280
  void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr &MI);
281
282
177k
  bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
283
177k
    return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
284
177k
  }
285
286
  /// isLiveOut - Determine if Reg is live out from MBB, when not considering
287
  /// PHI nodes. This means that Reg is either killed by a successor block or
288
  /// passed through one.
289
  bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
290
291
  /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
292
  /// variables that are live out of DomBB and live into SuccBB will be marked
293
  /// as passing live through BB. This method assumes that the machine code is
294
  /// still in SSA form.
295
  void addNewBlock(MachineBasicBlock *BB,
296
                   MachineBasicBlock *DomBB,
297
                   MachineBasicBlock *SuccBB);
298
299
  /// isPHIJoin - Return true if Reg is a phi join register.
300
0
  bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
301
302
  /// setPHIJoin - Mark Reg as a phi join register.
303
632k
  void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
304
};
305
306
} // End llvm namespace
307
308
#endif