Coverage Report

Created: 2018-09-21 05:35

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/clang/include/clang/AST/ASTContext.h
Line
Count
Source (jump to first uncovered line)
1
//===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
/// \file
11
/// Defines the clang::ASTContext interface.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16
#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18
#include "clang/AST/ASTTypeTraits.h"
19
#include "clang/AST/CanonicalType.h"
20
#include "clang/AST/CommentCommandTraits.h"
21
#include "clang/AST/ComparisonCategories.h"
22
#include "clang/AST/Decl.h"
23
#include "clang/AST/DeclBase.h"
24
#include "clang/AST/DeclarationName.h"
25
#include "clang/AST/Expr.h"
26
#include "clang/AST/ExternalASTSource.h"
27
#include "clang/AST/NestedNameSpecifier.h"
28
#include "clang/AST/PrettyPrinter.h"
29
#include "clang/AST/RawCommentList.h"
30
#include "clang/AST/TemplateBase.h"
31
#include "clang/AST/TemplateName.h"
32
#include "clang/AST/Type.h"
33
#include "clang/Basic/AddressSpaces.h"
34
#include "clang/Basic/AttrKinds.h"
35
#include "clang/Basic/IdentifierTable.h"
36
#include "clang/Basic/LLVM.h"
37
#include "clang/Basic/LangOptions.h"
38
#include "clang/Basic/Linkage.h"
39
#include "clang/Basic/OperatorKinds.h"
40
#include "clang/Basic/PartialDiagnostic.h"
41
#include "clang/Basic/SanitizerBlacklist.h"
42
#include "clang/Basic/SourceLocation.h"
43
#include "clang/Basic/Specifiers.h"
44
#include "clang/Basic/TargetInfo.h"
45
#include "clang/Basic/XRayLists.h"
46
#include "llvm/ADT/APSInt.h"
47
#include "llvm/ADT/ArrayRef.h"
48
#include "llvm/ADT/DenseMap.h"
49
#include "llvm/ADT/FoldingSet.h"
50
#include "llvm/ADT/IntrusiveRefCntPtr.h"
51
#include "llvm/ADT/MapVector.h"
52
#include "llvm/ADT/None.h"
53
#include "llvm/ADT/Optional.h"
54
#include "llvm/ADT/PointerIntPair.h"
55
#include "llvm/ADT/PointerUnion.h"
56
#include "llvm/ADT/SmallVector.h"
57
#include "llvm/ADT/StringMap.h"
58
#include "llvm/ADT/StringRef.h"
59
#include "llvm/ADT/TinyPtrVector.h"
60
#include "llvm/ADT/Triple.h"
61
#include "llvm/ADT/iterator_range.h"
62
#include "llvm/Support/AlignOf.h"
63
#include "llvm/Support/Allocator.h"
64
#include "llvm/Support/Casting.h"
65
#include "llvm/Support/Compiler.h"
66
#include <cassert>
67
#include <cstddef>
68
#include <cstdint>
69
#include <iterator>
70
#include <memory>
71
#include <string>
72
#include <type_traits>
73
#include <utility>
74
#include <vector>
75
76
namespace llvm {
77
78
struct fltSemantics;
79
80
} // namespace llvm
81
82
namespace clang {
83
84
class APFixedPoint;
85
class APValue;
86
class ASTMutationListener;
87
class ASTRecordLayout;
88
class AtomicExpr;
89
class BlockExpr;
90
class BuiltinTemplateDecl;
91
class CharUnits;
92
class CXXABI;
93
class CXXConstructorDecl;
94
class CXXMethodDecl;
95
class CXXRecordDecl;
96
class DiagnosticsEngine;
97
class Expr;
98
class FixedPointSemantics;
99
class MangleContext;
100
class MangleNumberingContext;
101
class MaterializeTemporaryExpr;
102
class MemberSpecializationInfo;
103
class Module;
104
class ObjCCategoryDecl;
105
class ObjCCategoryImplDecl;
106
class ObjCContainerDecl;
107
class ObjCImplDecl;
108
class ObjCImplementationDecl;
109
class ObjCInterfaceDecl;
110
class ObjCIvarDecl;
111
class ObjCMethodDecl;
112
class ObjCPropertyDecl;
113
class ObjCPropertyImplDecl;
114
class ObjCProtocolDecl;
115
class ObjCTypeParamDecl;
116
class Preprocessor;
117
class Stmt;
118
class StoredDeclsMap;
119
class TemplateDecl;
120
class TemplateParameterList;
121
class TemplateTemplateParmDecl;
122
class TemplateTypeParmDecl;
123
class UnresolvedSetIterator;
124
class UsingShadowDecl;
125
class VarTemplateDecl;
126
class VTableContextBase;
127
128
namespace Builtin {
129
130
class Context;
131
132
} // namespace Builtin
133
134
enum BuiltinTemplateKind : int;
135
136
namespace comments {
137
138
class FullComment;
139
140
} // namespace comments
141
142
struct TypeInfo {
143
  uint64_t Width = 0;
144
  unsigned Align = 0;
145
  bool AlignIsRequired : 1;
146
147
1.18M
  TypeInfo() : AlignIsRequired(false) {}
148
  TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
149
976k
      : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
150
};
151
152
/// Holds long-lived AST nodes (such as types and decls) that can be
153
/// referred to throughout the semantic analysis of a file.
154
class ASTContext : public RefCountedBase<ASTContext> {
155
public:
156
  /// Copy initialization expr of a __block variable and a boolean flag that
157
  /// indicates whether the expression can throw.
158
  struct BlockVarCopyInit {
159
127
    BlockVarCopyInit() = default;
160
    BlockVarCopyInit(Expr *CopyExpr, bool CanThrow)
161
509
        : ExprAndFlag(CopyExpr, CanThrow) {}
162
127
    void setExprAndFlag(Expr *CopyExpr, bool CanThrow) {
163
127
      ExprAndFlag.setPointerAndInt(CopyExpr, CanThrow);
164
127
    }
165
326
    Expr *getCopyExpr() const { return ExprAndFlag.getPointer(); }
166
633
    bool canThrow() const { return ExprAndFlag.getInt(); }
167
    llvm::PointerIntPair<Expr *, 1, bool> ExprAndFlag;
168
  };
169
170
private:
171
  friend class NestedNameSpecifier;
172
173
  mutable SmallVector<Type *, 0> Types;
174
  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
175
  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
176
  mutable llvm::FoldingSet<PointerType> PointerTypes;
177
  mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
178
  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
179
  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
180
  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
181
  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
182
  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
183
  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
184
  mutable std::vector<VariableArrayType*> VariableArrayTypes;
185
  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
186
  mutable llvm::FoldingSet<DependentSizedExtVectorType>
187
    DependentSizedExtVectorTypes;
188
  mutable llvm::FoldingSet<DependentAddressSpaceType>
189
      DependentAddressSpaceTypes;
190
  mutable llvm::FoldingSet<VectorType> VectorTypes;
191
  mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
192
  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
193
  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
194
    FunctionProtoTypes;
195
  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
196
  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
197
  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
198
  mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
199
  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
200
    SubstTemplateTypeParmTypes;
201
  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
202
    SubstTemplateTypeParmPackTypes;
203
  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
204
    TemplateSpecializationTypes;
205
  mutable llvm::FoldingSet<ParenType> ParenTypes;
206
  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
207
  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
208
  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
209
                                     ASTContext&>
210
    DependentTemplateSpecializationTypes;
211
  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
212
  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
213
  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
214
  mutable llvm::FoldingSet<DependentUnaryTransformType>
215
    DependentUnaryTransformTypes;
216
  mutable llvm::FoldingSet<AutoType> AutoTypes;
217
  mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
218
    DeducedTemplateSpecializationTypes;
219
  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
220
  llvm::FoldingSet<AttributedType> AttributedTypes;
221
  mutable llvm::FoldingSet<PipeType> PipeTypes;
222
223
  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
224
  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
225
  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
226
    SubstTemplateTemplateParms;
227
  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
228
                                     ASTContext&>
229
    SubstTemplateTemplateParmPacks;
230
231
  /// The set of nested name specifiers.
232
  ///
233
  /// This set is managed by the NestedNameSpecifier class.
234
  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
235
  mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
236
237
  /// A cache mapping from RecordDecls to ASTRecordLayouts.
238
  ///
239
  /// This is lazily created.  This is intentionally not serialized.
240
  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
241
    ASTRecordLayouts;
242
  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
243
    ObjCLayouts;
244
245
  /// A cache from types to size and alignment information.
246
  using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
247
  mutable TypeInfoMap MemoizedTypeInfo;
248
249
  /// A cache from types to unadjusted alignment information. Only ARM and
250
  /// AArch64 targets need this information, keeping it separate prevents
251
  /// imposing overhead on TypeInfo size.
252
  using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
253
  mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
254
255
  /// A cache mapping from CXXRecordDecls to key functions.
256
  llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
257
258
  /// Mapping from ObjCContainers to their ObjCImplementations.
259
  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
260
261
  /// Mapping from ObjCMethod to its duplicate declaration in the same
262
  /// interface.
263
  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
264
265
  /// Mapping from __block VarDecls to BlockVarCopyInit.
266
  llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
267
268
  /// Mapping from class scope functions specialization to their
269
  /// template patterns.
270
  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
271
    ClassScopeSpecializationPattern;
272
273
  /// Mapping from materialized temporaries with static storage duration
274
  /// that appear in constant initializers to their evaluated values.  These are
275
  /// allocated in a std::map because their address must be stable.
276
  llvm::DenseMap<const MaterializeTemporaryExpr *, APValue *>
277
    MaterializedTemporaryValues;
278
279
  /// Representation of a "canonical" template template parameter that
280
  /// is used in canonical template names.
281
  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
282
    TemplateTemplateParmDecl *Parm;
283
284
  public:
285
    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
286
1.72k
        : Parm(Parm) {}
287
288
4.35k
    TemplateTemplateParmDecl *getParam() const { return Parm; }
289
290
4.50k
    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
291
292
    static void Profile(llvm::FoldingSetNodeID &ID,
293
                        TemplateTemplateParmDecl *Parm);
294
  };
295
  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
296
    CanonTemplateTemplateParms;
297
298
  TemplateTemplateParmDecl *
299
    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
300
301
  /// The typedef for the __int128_t type.
302
  mutable TypedefDecl *Int128Decl = nullptr;
303
304
  /// The typedef for the __uint128_t type.
305
  mutable TypedefDecl *UInt128Decl = nullptr;
306
307
  /// The typedef for the target specific predefined
308
  /// __builtin_va_list type.
309
  mutable TypedefDecl *BuiltinVaListDecl = nullptr;
310
311
  /// The typedef for the predefined \c __builtin_ms_va_list type.
312
  mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
313
314
  /// The typedef for the predefined \c id type.
315
  mutable TypedefDecl *ObjCIdDecl = nullptr;
316
317
  /// The typedef for the predefined \c SEL type.
318
  mutable TypedefDecl *ObjCSelDecl = nullptr;
319
320
  /// The typedef for the predefined \c Class type.
321
  mutable TypedefDecl *ObjCClassDecl = nullptr;
322
323
  /// The typedef for the predefined \c Protocol class in Objective-C.
324
  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
325
326
  /// The typedef for the predefined 'BOOL' type.
327
  mutable TypedefDecl *BOOLDecl = nullptr;
328
329
  // Typedefs which may be provided defining the structure of Objective-C
330
  // pseudo-builtins
331
  QualType ObjCIdRedefinitionType;
332
  QualType ObjCClassRedefinitionType;
333
  QualType ObjCSelRedefinitionType;
334
335
  /// The identifier 'bool'.
336
  mutable IdentifierInfo *BoolName = nullptr;
337
338
  /// The identifier 'NSObject'.
339
  mutable IdentifierInfo *NSObjectName = nullptr;
340
341
  /// The identifier 'NSCopying'.
342
  IdentifierInfo *NSCopyingName = nullptr;
343
344
  /// The identifier '__make_integer_seq'.
345
  mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
346
347
  /// The identifier '__type_pack_element'.
348
  mutable IdentifierInfo *TypePackElementName = nullptr;
349
350
  QualType ObjCConstantStringType;
351
  mutable RecordDecl *CFConstantStringTagDecl = nullptr;
352
  mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
353
354
  mutable QualType ObjCSuperType;
355
356
  QualType ObjCNSStringType;
357
358
  /// The typedef declaration for the Objective-C "instancetype" type.
359
  TypedefDecl *ObjCInstanceTypeDecl = nullptr;
360
361
  /// The type for the C FILE type.
362
  TypeDecl *FILEDecl = nullptr;
363
364
  /// The type for the C jmp_buf type.
365
  TypeDecl *jmp_bufDecl = nullptr;
366
367
  /// The type for the C sigjmp_buf type.
368
  TypeDecl *sigjmp_bufDecl = nullptr;
369
370
  /// The type for the C ucontext_t type.
371
  TypeDecl *ucontext_tDecl = nullptr;
372
373
  /// Type for the Block descriptor for Blocks CodeGen.
374
  ///
375
  /// Since this is only used for generation of debug info, it is not
376
  /// serialized.
377
  mutable RecordDecl *BlockDescriptorType = nullptr;
378
379
  /// Type for the Block descriptor for Blocks CodeGen.
380
  ///
381
  /// Since this is only used for generation of debug info, it is not
382
  /// serialized.
383
  mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
384
385
  /// Declaration for the CUDA cudaConfigureCall function.
386
  FunctionDecl *cudaConfigureCallDecl = nullptr;
387
388
  /// Keeps track of all declaration attributes.
389
  ///
390
  /// Since so few decls have attrs, we keep them in a hash map instead of
391
  /// wasting space in the Decl class.
392
  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
393
394
  /// A mapping from non-redeclarable declarations in modules that were
395
  /// merged with other declarations to the canonical declaration that they were
396
  /// merged into.
397
  llvm::DenseMap<Decl*, Decl*> MergedDecls;
398
399
  /// A mapping from a defining declaration to a list of modules (other
400
  /// than the owning module of the declaration) that contain merged
401
  /// definitions of that entity.
402
  llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
403
404
  /// Initializers for a module, in order. Each Decl will be either
405
  /// something that has a semantic effect on startup (such as a variable with
406
  /// a non-constant initializer), or an ImportDecl (which recursively triggers
407
  /// initialization of another module).
408
  struct PerModuleInitializers {
409
    llvm::SmallVector<Decl*, 4> Initializers;
410
    llvm::SmallVector<uint32_t, 4> LazyInitializers;
411
412
    void resolve(ASTContext &Ctx);
413
  };
414
  llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
415
416
187k
  ASTContext &this_() { return *this; }
417
418
public:
419
  /// A type synonym for the TemplateOrInstantiation mapping.
420
  using TemplateOrSpecializationInfo =
421
      llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
422
423
private:
424
  friend class ASTDeclReader;
425
  friend class ASTReader;
426
  friend class ASTWriter;
427
  friend class CXXRecordDecl;
428
429
  /// A mapping to contain the template or declaration that
430
  /// a variable declaration describes or was instantiated from,
431
  /// respectively.
432
  ///
433
  /// For non-templates, this value will be NULL. For variable
434
  /// declarations that describe a variable template, this will be a
435
  /// pointer to a VarTemplateDecl. For static data members
436
  /// of class template specializations, this will be the
437
  /// MemberSpecializationInfo referring to the member variable that was
438
  /// instantiated or specialized. Thus, the mapping will keep track of
439
  /// the static data member templates from which static data members of
440
  /// class template specializations were instantiated.
441
  ///
442
  /// Given the following example:
443
  ///
444
  /// \code
445
  /// template<typename T>
446
  /// struct X {
447
  ///   static T value;
448
  /// };
449
  ///
450
  /// template<typename T>
451
  ///   T X<T>::value = T(17);
452
  ///
453
  /// int *x = &X<int>::value;
454
  /// \endcode
455
  ///
456
  /// This mapping will contain an entry that maps from the VarDecl for
457
  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
458
  /// class template X) and will be marked TSK_ImplicitInstantiation.
459
  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
460
  TemplateOrInstantiation;
461
462
  /// Keeps track of the declaration from which a using declaration was
463
  /// created during instantiation.
464
  ///
465
  /// The source and target declarations are always a UsingDecl, an
466
  /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
467
  ///
468
  /// For example:
469
  /// \code
470
  /// template<typename T>
471
  /// struct A {
472
  ///   void f();
473
  /// };
474
  ///
475
  /// template<typename T>
476
  /// struct B : A<T> {
477
  ///   using A<T>::f;
478
  /// };
479
  ///
480
  /// template struct B<int>;
481
  /// \endcode
482
  ///
483
  /// This mapping will contain an entry that maps from the UsingDecl in
484
  /// B<int> to the UnresolvedUsingDecl in B<T>.
485
  llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
486
487
  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
488
    InstantiatedFromUsingShadowDecl;
489
490
  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
491
492
  /// Mapping that stores the methods overridden by a given C++
493
  /// member function.
494
  ///
495
  /// Since most C++ member functions aren't virtual and therefore
496
  /// don't override anything, we store the overridden functions in
497
  /// this map on the side rather than within the CXXMethodDecl structure.
498
  using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
499
  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
500
501
  /// Mapping from each declaration context to its corresponding
502
  /// mangling numbering context (used for constructs like lambdas which
503
  /// need to be consistently numbered for the mangler).
504
  llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
505
      MangleNumberingContexts;
506
507
  /// Side-table of mangling numbers for declarations which rarely
508
  /// need them (like static local vars).
509
  llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
510
  llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
511
512
  /// Mapping that stores parameterIndex values for ParmVarDecls when
513
  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
514
  using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
515
  ParameterIndexTable ParamIndices;
516
517
  ImportDecl *FirstLocalImport = nullptr;
518
  ImportDecl *LastLocalImport = nullptr;
519
520
  TranslationUnitDecl *TUDecl;
521
  mutable ExternCContextDecl *ExternCContext = nullptr;
522
  mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
523
  mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
524
525
  /// The associated SourceManager object.
526
  SourceManager &SourceMgr;
527
528
  /// The language options used to create the AST associated with
529
  ///  this ASTContext object.
530
  LangOptions &LangOpts;
531
532
  /// Blacklist object that is used by sanitizers to decide which
533
  /// entities should not be instrumented.
534
  std::unique_ptr<SanitizerBlacklist> SanitizerBL;
535
536
  /// Function filtering mechanism to determine whether a given function
537
  /// should be imbued with the XRay "always" or "never" attributes.
538
  std::unique_ptr<XRayFunctionFilter> XRayFilter;
539
540
  /// The allocator used to create AST objects.
541
  ///
542
  /// AST objects are never destructed; rather, all memory associated with the
543
  /// AST objects will be released when the ASTContext itself is destroyed.
544
  mutable llvm::BumpPtrAllocator BumpAlloc;
545
546
  /// Allocator for partial diagnostics.
547
  PartialDiagnostic::StorageAllocator DiagAllocator;
548
549
  /// The current C++ ABI.
550
  std::unique_ptr<CXXABI> ABI;
551
  CXXABI *createCXXABI(const TargetInfo &T);
552
553
  /// The logical -> physical address space map.
554
  const LangASMap *AddrSpaceMap = nullptr;
555
556
  /// Address space map mangling must be used with language specific
557
  /// address spaces (e.g. OpenCL/CUDA)
558
  bool AddrSpaceMapMangling;
559
560
  const TargetInfo *Target = nullptr;
561
  const TargetInfo *AuxTarget = nullptr;
562
  clang::PrintingPolicy PrintingPolicy;
563
564
public:
565
  IdentifierTable &Idents;
566
  SelectorTable &Selectors;
567
  Builtin::Context &BuiltinInfo;
568
  mutable DeclarationNameTable DeclarationNames;
569
  IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
570
  ASTMutationListener *Listener = nullptr;
571
572
  /// Contains parents of a node.
573
  using ParentVector = llvm::SmallVector<ast_type_traits::DynTypedNode, 2>;
574
575
  /// Maps from a node to its parents. This is used for nodes that have
576
  /// pointer identity only, which are more common and we can save space by
577
  /// only storing a unique pointer to them.
578
  using ParentMapPointers =
579
      llvm::DenseMap<const void *,
580
                     llvm::PointerUnion4<const Decl *, const Stmt *,
581
                                         ast_type_traits::DynTypedNode *,
582
                                         ParentVector *>>;
583
584
  /// Parent map for nodes without pointer identity. We store a full
585
  /// DynTypedNode for all keys.
586
  using ParentMapOtherNodes =
587
      llvm::DenseMap<ast_type_traits::DynTypedNode,
588
                     llvm::PointerUnion4<const Decl *, const Stmt *,
589
                                         ast_type_traits::DynTypedNode *,
590
                                         ParentVector *>>;
591
592
  /// Container for either a single DynTypedNode or for an ArrayRef to
593
  /// DynTypedNode. For use with ParentMap.
594
  class DynTypedNodeList {
595
    using DynTypedNode = ast_type_traits::DynTypedNode;
596
597
    llvm::AlignedCharArrayUnion<ast_type_traits::DynTypedNode,
598
                                ArrayRef<DynTypedNode>> Storage;
599
    bool IsSingleNode;
600
601
  public:
602
10.2k
    DynTypedNodeList(const DynTypedNode &N) : IsSingleNode(true) {
603
10.2k
      new (Storage.buffer) DynTypedNode(N);
604
10.2k
    }
605
606
98
    DynTypedNodeList(ArrayRef<DynTypedNode> A) : IsSingleNode(false) {
607
98
      new (Storage.buffer) ArrayRef<DynTypedNode>(A);
608
98
    }
609
610
26.2k
    const ast_type_traits::DynTypedNode *begin() const {
611
26.2k
      if (!IsSingleNode)
612
146
        return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
613
146
            ->begin();
614
26.1k
      return reinterpret_cast<const DynTypedNode *>(Storage.buffer);
615
26.1k
    }
616
617
10.3k
    const ast_type_traits::DynTypedNode *end() const {
618
10.3k
      if (!IsSingleNode)
619
113
        return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
620
113
            ->end();
621
10.2k
      return reinterpret_cast<const DynTypedNode *>(Storage.buffer) + 1;
622
10.2k
    }
623
624
4.22k
    size_t size() const { return end() - begin(); }
625
    bool empty() const { return begin() == end(); }
626
627
15.9k
    const DynTypedNode &operator[](size_t N) const {
628
15.9k
      assert(N < size() && "Out of bounds!");
629
15.9k
      return *(begin() + N);
630
15.9k
    }
631
  };
632
633
  /// Returns the parents of the given node.
634
  ///
635
  /// Note that this will lazily compute the parents of all nodes
636
  /// and store them for later retrieval. Thus, the first call is O(n)
637
  /// in the number of AST nodes.
638
  ///
639
  /// Caveats and FIXMEs:
640
  /// Calculating the parent map over all AST nodes will need to load the
641
  /// full AST. This can be undesirable in the case where the full AST is
642
  /// expensive to create (for example, when using precompiled header
643
  /// preambles). Thus, there are good opportunities for optimization here.
644
  /// One idea is to walk the given node downwards, looking for references
645
  /// to declaration contexts - once a declaration context is found, compute
646
  /// the parent map for the declaration context; if that can satisfy the
647
  /// request, loading the whole AST can be avoided. Note that this is made
648
  /// more complex by statements in templates having multiple parents - those
649
  /// problems can be solved by building closure over the templated parts of
650
  /// the AST, which also avoids touching large parts of the AST.
651
  /// Additionally, we will want to add an interface to already give a hint
652
  /// where to search for the parents, for example when looking at a statement
653
  /// inside a certain function.
654
  ///
655
  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
656
  /// NestedNameSpecifier or NestedNameSpecifierLoc.
657
884
  template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node) {
658
884
    return getParents(ast_type_traits::DynTypedNode::create(Node));
659
884
  }
660
661
  DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node);
662
663
43.4M
  const clang::PrintingPolicy &getPrintingPolicy() const {
664
43.4M
    return PrintingPolicy;
665
43.4M
  }
666
667
1.94M
  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
668
1.94M
    PrintingPolicy = Policy;
669
1.94M
  }
670
671
36.7M
  SourceManager& getSourceManager() { return SourceMgr; }
672
29.3k
  const SourceManager& getSourceManager() const { return SourceMgr; }
673
674
4.54k
  llvm::BumpPtrAllocator &getAllocator() const {
675
4.54k
    return BumpAlloc;
676
4.54k
  }
677
678
242M
  void *Allocate(size_t Size, unsigned Align = 8) const {
679
242M
    return BumpAlloc.Allocate(Size, Align);
680
242M
  }
681
409k
  template <typename T> T *Allocate(size_t Num = 1) const {
682
409k
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
683
409k
  }
char* clang::ASTContext::Allocate<char>(unsigned long) const
Line
Count
Source
681
578
  template <typename T> T *Allocate(size_t Num = 1) const {
682
578
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
683
578
  }
clang::TemplateArgument* clang::ASTContext::Allocate<clang::TemplateArgument>(unsigned long) const
Line
Count
Source
681
407k
  template <typename T> T *Allocate(size_t Num = 1) const {
682
407k
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
683
407k
  }
clang::BlockDecl::Capture* clang::ASTContext::Allocate<clang::BlockDecl::Capture>(unsigned long) const
Line
Count
Source
681
1.50k
  template <typename T> T *Allocate(size_t Num = 1) const {
682
1.50k
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
683
1.50k
  }
Unexecuted instantiation: clang::QualType* clang::ASTContext::Allocate<clang::QualType>(unsigned long) const
684
748k
  void Deallocate(void *Ptr) const {}
685
686
  /// Return the total amount of physical memory allocated for representing
687
  /// AST nodes and type information.
688
  size_t getASTAllocatedMemory() const {
689
    return BumpAlloc.getTotalMemory();
690
  }
691
692
  /// Return the total memory used for various side tables.
693
  size_t getSideTableAllocatedMemory() const;
694
695
5.17M
  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
696
5.17M
    return DiagAllocator;
697
5.17M
  }
698
699
74.3M
  const TargetInfo &getTargetInfo() const { return *Target; }
700
0
  const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
701
702
  /// getIntTypeForBitwidth -
703
  /// sets integer QualTy according to specified details:
704
  /// bitwidth, signed/unsigned.
705
  /// Returns empty type if there is no appropriate target types.
706
  QualType getIntTypeForBitwidth(unsigned DestWidth,
707
                                 unsigned Signed) const;
708
709
  /// getRealTypeForBitwidth -
710
  /// sets floating point QualTy according to specified bitwidth.
711
  /// Returns empty type if there is no appropriate target types.
712
  QualType getRealTypeForBitwidth(unsigned DestWidth) const;
713
714
  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
715
716
392M
  const LangOptions& getLangOpts() const { return LangOpts; }
717
718
4.59k
  const SanitizerBlacklist &getSanitizerBlacklist() const {
719
4.59k
    return *SanitizerBL;
720
4.59k
  }
721
722
17
  const XRayFunctionFilter &getXRayFilter() const {
723
17
    return *XRayFilter;
724
17
  }
725
726
  DiagnosticsEngine &getDiagnostics() const;
727
728
400
  FullSourceLoc getFullLoc(SourceLocation Loc) const {
729
400
    return FullSourceLoc(Loc,SourceMgr);
730
400
  }
731
732
  /// All comments in this translation unit.
733
  RawCommentList Comments;
734
735
  /// True if comments are already loaded from ExternalASTSource.
736
  mutable bool CommentsLoaded = false;
737
738
  class RawCommentAndCacheFlags {
739
  public:
740
    enum Kind {
741
      /// We searched for a comment attached to the particular declaration, but
742
      /// didn't find any.
743
      ///
744
      /// getRaw() == 0.
745
      NoCommentInDecl = 0,
746
747
      /// We have found a comment attached to this particular declaration.
748
      ///
749
      /// getRaw() != 0.
750
      FromDecl,
751
752
      /// This declaration does not have an attached comment, and we have
753
      /// searched the redeclaration chain.
754
      ///
755
      /// If getRaw() == 0, the whole redeclaration chain does not have any
756
      /// comments.
757
      ///
758
      /// If getRaw() != 0, it is a comment propagated from other
759
      /// redeclaration.
760
      FromRedecl
761
    };
762
763
15.7k
    Kind getKind() const LLVM_READONLY {
764
15.7k
      return Data.getInt();
765
15.7k
    }
766
767
10.4k
    void setKind(Kind K) {
768
10.4k
      Data.setInt(K);
769
10.4k
    }
770
771
10.4k
    const RawComment *getRaw() const LLVM_READONLY {
772
10.4k
      return Data.getPointer();
773
10.4k
    }
774
775
6.34k
    void setRaw(const RawComment *RC) {
776
6.34k
      Data.setPointer(RC);
777
6.34k
    }
778
779
6.73k
    const Decl *getOriginalDecl() const LLVM_READONLY {
780
6.73k
      return OriginalDecl;
781
6.73k
    }
782
783
10.4k
    void setOriginalDecl(const Decl *Orig) {
784
10.4k
      OriginalDecl = Orig;
785
10.4k
    }
786
787
  private:
788
    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
789
    const Decl *OriginalDecl;
790
  };
791
792
  /// Mapping from declarations to comments attached to any
793
  /// redeclaration.
794
  ///
795
  /// Raw comments are owned by Comments list.  This mapping is populated
796
  /// lazily.
797
  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
798
799
  /// Mapping from declarations to parsed comments attached to any
800
  /// redeclaration.
801
  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
802
803
  /// Return the documentation comment attached to a given declaration,
804
  /// without looking into cache.
805
  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
806
807
public:
808
762
  RawCommentList &getRawCommentList() {
809
762
    return Comments;
810
762
  }
811
812
4.53M
  void addComment(const RawComment &RC) {
813
4.53M
    assert(LangOpts.RetainCommentsFromSystemHeaders ||
814
4.53M
           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
815
4.53M
    Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
816
4.53M
  }
817
818
  /// Return the documentation comment attached to a given declaration.
819
  /// Returns nullptr if no comment is attached.
820
  ///
821
  /// \param OriginalDecl if not nullptr, is set to declaration AST node that
822
  /// had the comment, if the comment we found comes from a redeclaration.
823
  const RawComment *
824
  getRawCommentForAnyRedecl(const Decl *D,
825
                            const Decl **OriginalDecl = nullptr) const;
826
827
  /// Return parsed documentation comment attached to a given declaration.
828
  /// Returns nullptr if no comment is attached.
829
  ///
830
  /// \param PP the Preprocessor used with this TU.  Could be nullptr if
831
  /// preprocessor is not available.
832
  comments::FullComment *getCommentForDecl(const Decl *D,
833
                                           const Preprocessor *PP) const;
834
835
  /// Return parsed documentation comment attached to a given declaration.
836
  /// Returns nullptr if no comment is attached. Does not look at any
837
  /// redeclarations of the declaration.
838
  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
839
840
  comments::FullComment *cloneFullComment(comments::FullComment *FC,
841
                                         const Decl *D) const;
842
843
private:
844
  mutable comments::CommandTraits CommentCommandTraits;
845
846
  /// Iterator that visits import declarations.
847
  class import_iterator {
848
    ImportDecl *Import = nullptr;
849
850
  public:
851
    using value_type = ImportDecl *;
852
    using reference = ImportDecl *;
853
    using pointer = ImportDecl *;
854
    using difference_type = int;
855
    using iterator_category = std::forward_iterator_tag;
856
857
2.07k
    import_iterator() = default;
858
2.07k
    explicit import_iterator(ImportDecl *Import) : Import(Import) {}
859
860
63
    reference operator*() const { return Import; }
861
    pointer operator->() const { return Import; }
862
863
63
    import_iterator &operator++() {
864
63
      Import = ASTContext::getNextLocalImport(Import);
865
63
      return *this;
866
63
    }
867
868
0
    import_iterator operator++(int) {
869
0
      import_iterator Other(*this);
870
0
      ++(*this);
871
0
      return Other;
872
0
    }
873
874
0
    friend bool operator==(import_iterator X, import_iterator Y) {
875
0
      return X.Import == Y.Import;
876
0
    }
877
878
2.14k
    friend bool operator!=(import_iterator X, import_iterator Y) {
879
2.14k
      return X.Import != Y.Import;
880
2.14k
    }
881
  };
882
883
public:
884
8.59k
  comments::CommandTraits &getCommentCommandTraits() const {
885
8.59k
    return CommentCommandTraits;
886
8.59k
  }
887
888
  /// Retrieve the attributes for the given declaration.
889
  AttrVec& getDeclAttrs(const Decl *D);
890
891
  /// Erase the attributes corresponding to the given declaration.
892
  void eraseDeclAttrs(const Decl *D);
893
894
  /// If this variable is an instantiated static data member of a
895
  /// class template specialization, returns the templated static data member
896
  /// from which it was instantiated.
897
  // FIXME: Remove ?
898
  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
899
                                                           const VarDecl *Var);
900
901
  TemplateOrSpecializationInfo
902
  getTemplateOrSpecializationInfo(const VarDecl *Var);
903
904
  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
905
906
  void setClassScopeSpecializationPattern(FunctionDecl *FD,
907
                                          FunctionDecl *Pattern);
908
909
  /// Note that the static data member \p Inst is an instantiation of
910
  /// the static data member template \p Tmpl of a class template.
911
  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
912
                                           TemplateSpecializationKind TSK,
913
                        SourceLocation PointOfInstantiation = SourceLocation());
914
915
  void setTemplateOrSpecializationInfo(VarDecl *Inst,
916
                                       TemplateOrSpecializationInfo TSI);
917
918
  /// If the given using decl \p Inst is an instantiation of a
919
  /// (possibly unresolved) using decl from a template instantiation,
920
  /// return it.
921
  NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
922
923
  /// Remember that the using decl \p Inst is an instantiation
924
  /// of the using decl \p Pattern of a class template.
925
  void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
926
927
  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
928
                                          UsingShadowDecl *Pattern);
929
  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
930
931
  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
932
933
  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
934
935
  // Access to the set of methods overridden by the given C++ method.
936
  using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
937
  overridden_cxx_method_iterator
938
  overridden_methods_begin(const CXXMethodDecl *Method) const;
939
940
  overridden_cxx_method_iterator
941
  overridden_methods_end(const CXXMethodDecl *Method) const;
942
943
  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
944
945
  using overridden_method_range =
946
      llvm::iterator_range<overridden_cxx_method_iterator>;
947
948
  overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
949
950
  /// Note that the given C++ \p Method overrides the given \p
951
  /// Overridden method.
952
  void addOverriddenMethod(const CXXMethodDecl *Method,
953
                           const CXXMethodDecl *Overridden);
954
955
  /// Return C++ or ObjC overridden methods for the given \p Method.
956
  ///
957
  /// An ObjC method is considered to override any method in the class's
958
  /// base classes, its protocols, or its categories' protocols, that has
959
  /// the same selector and is of the same kind (class or instance).
960
  /// A method in an implementation is not considered as overriding the same
961
  /// method in the interface or its categories.
962
  void getOverriddenMethods(
963
                        const NamedDecl *Method,
964
                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
965
966
  /// Notify the AST context that a new import declaration has been
967
  /// parsed or implicitly created within this translation unit.
968
  void addedLocalImportDecl(ImportDecl *Import);
969
970
63
  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
971
63
    return Import->NextLocalImport;
972
63
  }
973
974
  using import_range = llvm::iterator_range<import_iterator>;
975
976
2.07k
  import_range local_imports() const {
977
2.07k
    return import_range(import_iterator(FirstLocalImport), import_iterator());
978
2.07k
  }
979
980
47.6k
  Decl *getPrimaryMergedDecl(Decl *D) {
981
47.6k
    Decl *Result = MergedDecls.lookup(D);
982
47.6k
    return Result ? 
Result748
:
D46.8k
;
983
47.6k
  }
984
398
  void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
985
398
    MergedDecls[D] = Primary;
986
398
  }
987
988
  /// Note that the definition \p ND has been merged into module \p M,
989
  /// and should be visible whenever \p M is visible.
990
  void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
991
                                 bool NotifyListeners = true);
992
993
  /// Clean up the merged definition list. Call this if you might have
994
  /// added duplicates into the list.
995
  void deduplicateMergedDefinitonsFor(NamedDecl *ND);
996
997
  /// Get the additional modules in which the definition \p Def has
998
  /// been merged.
999
11.3k
  ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def) {
1000
11.3k
    auto MergedIt =
1001
11.3k
        MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1002
11.3k
    if (MergedIt == MergedDefModules.end())
1003
10.2k
      return None;
1004
1.08k
    return MergedIt->second;
1005
1.08k
  }
1006
1007
  /// Add a declaration to the list of declarations that are initialized
1008
  /// for a module. This will typically be a global variable (with internal
1009
  /// linkage) that runs module initializers, such as the iostream initializer,
1010
  /// or an ImportDecl nominating another module that has initializers.
1011
  void addModuleInitializer(Module *M, Decl *Init);
1012
1013
  void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1014
1015
  /// Get the initializations to perform when importing a module, if any.
1016
  ArrayRef<Decl*> getModuleInitializers(Module *M);
1017
1018
15.9M
  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
1019
1020
  ExternCContextDecl *getExternCContextDecl() const;
1021
  BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1022
  BuiltinTemplateDecl *getTypePackElementDecl() const;
1023
1024
  // Builtin Types.
1025
  CanQualType VoidTy;
1026
  CanQualType BoolTy;
1027
  CanQualType CharTy;
1028
  CanQualType WCharTy;  // [C++ 3.9.1p5].
1029
  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1030
  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1031
  CanQualType Char8Ty;  // [C++20 proposal]
1032
  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1033
  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1034
  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1035
  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1036
  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1037
  CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
1038
  CanQualType ShortAccumTy, AccumTy,
1039
      LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1040
  CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1041
  CanQualType ShortFractTy, FractTy, LongFractTy;
1042
  CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1043
  CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1044
  CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1045
      SatUnsignedLongAccumTy;
1046
  CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1047
  CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1048
      SatUnsignedLongFractTy;
1049
  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1050
  CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1051
  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1052
  CanQualType Float128ComplexTy;
1053
  CanQualType VoidPtrTy, NullPtrTy;
1054
  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1055
  CanQualType BuiltinFnTy;
1056
  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1057
  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1058
  CanQualType ObjCBuiltinBoolTy;
1059
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1060
  CanQualType SingletonId;
1061
#include "clang/Basic/OpenCLImageTypes.def"
1062
  CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1063
  CanQualType OCLQueueTy, OCLReserveIDTy;
1064
  CanQualType OMPArraySectionTy;
1065
1066
  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1067
  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1068
  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1069
1070
  // Decl used to help define __builtin_va_list for some targets.
1071
  // The decl is built when constructing 'BuiltinVaListDecl'.
1072
  mutable Decl *VaListTagDecl;
1073
1074
  ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1075
             SelectorTable &sels, Builtin::Context &builtins);
1076
  ASTContext(const ASTContext &) = delete;
1077
  ASTContext &operator=(const ASTContext &) = delete;
1078
  ~ASTContext();
1079
1080
  /// Attach an external AST source to the AST context.
1081
  ///
1082
  /// The external AST source provides the ability to load parts of
1083
  /// the abstract syntax tree as needed from some external storage,
1084
  /// e.g., a precompiled header.
1085
  void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1086
1087
  /// Retrieve a pointer to the external AST source associated
1088
  /// with this AST context, if any.
1089
200M
  ExternalASTSource *getExternalSource() const {
1090
200M
    return ExternalSource.get();
1091
200M
  }
1092
1093
  /// Attach an AST mutation listener to the AST context.
1094
  ///
1095
  /// The AST mutation listener provides the ability to track modifications to
1096
  /// the abstract syntax tree entities committed after they were initially
1097
  /// created.
1098
37.2k
  void setASTMutationListener(ASTMutationListener *Listener) {
1099
37.2k
    this->Listener = Listener;
1100
37.2k
  }
1101
1102
  /// Retrieve a pointer to the AST mutation listener associated
1103
  /// with this AST context, if any.
1104
20.7M
  ASTMutationListener *getASTMutationListener() const { return Listener; }
1105
1106
  void PrintStats() const;
1107
2.14k
  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1108
1109
  BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1110
                                                const IdentifierInfo *II) const;
1111
1112
  /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1113
  /// declaration.
1114
  RecordDecl *buildImplicitRecord(StringRef Name,
1115
                                  RecordDecl::TagKind TK = TTK_Struct) const;
1116
1117
  /// Create a new implicit TU-level typedef declaration.
1118
  TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1119
1120
  /// Retrieve the declaration for the 128-bit signed integer type.
1121
  TypedefDecl *getInt128Decl() const;
1122
1123
  /// Retrieve the declaration for the 128-bit unsigned integer type.
1124
  TypedefDecl *getUInt128Decl() const;
1125
1126
  //===--------------------------------------------------------------------===//
1127
  //                           Type Constructors
1128
  //===--------------------------------------------------------------------===//
1129
1130
private:
1131
  /// Return a type with extended qualifiers.
1132
  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1133
1134
  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1135
1136
  QualType getPipeType(QualType T, bool ReadOnly) const;
1137
1138
public:
1139
  /// Return the uniqued reference to the type for an address space
1140
  /// qualified type with the specified type and address space.
1141
  ///
1142
  /// The resulting type has a union of the qualifiers from T and the address
1143
  /// space. If T already has an address space specifier, it is silently
1144
  /// replaced.
1145
  QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1146
1147
  /// Remove any existing address space on the type and returns the type
1148
  /// with qualifiers intact (or that's the idea anyway)
1149
  ///
1150
  /// The return type should be T with all prior qualifiers minus the address
1151
  /// space.
1152
  QualType removeAddrSpaceQualType(QualType T) const;
1153
1154
  /// Apply Objective-C protocol qualifiers to the given type.
1155
  /// \param allowOnPointerType specifies if we can apply protocol
1156
  /// qualifiers on ObjCObjectPointerType. It can be set to true when
1157
  /// constructing the canonical type of a Objective-C type parameter.
1158
  QualType applyObjCProtocolQualifiers(QualType type,
1159
      ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1160
      bool allowOnPointerType = false) const;
1161
1162
  /// Return the uniqued reference to the type for an Objective-C
1163
  /// gc-qualified type.
1164
  ///
1165
  /// The resulting type has a union of the qualifiers from T and the gc
1166
  /// attribute.
1167
  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1168
1169
  /// Return the uniqued reference to the type for a \c restrict
1170
  /// qualified type.
1171
  ///
1172
  /// The resulting type has a union of the qualifiers from \p T and
1173
  /// \c restrict.
1174
2.33k
  QualType getRestrictType(QualType T) const {
1175
2.33k
    return T.withFastQualifiers(Qualifiers::Restrict);
1176
2.33k
  }
1177
1178
  /// Return the uniqued reference to the type for a \c volatile
1179
  /// qualified type.
1180
  ///
1181
  /// The resulting type has a union of the qualifiers from \p T and
1182
  /// \c volatile.
1183
2.34M
  QualType getVolatileType(QualType T) const {
1184
2.34M
    return T.withFastQualifiers(Qualifiers::Volatile);
1185
2.34M
  }
1186
1187
  /// Return the uniqued reference to the type for a \c const
1188
  /// qualified type.
1189
  ///
1190
  /// The resulting type has a union of the qualifiers from \p T and \c const.
1191
  ///
1192
  /// It can be reasonably expected that this will always be equivalent to
1193
  /// calling T.withConst().
1194
34
  QualType getConstType(QualType T) const { return T.withConst(); }
1195
1196
  /// Change the ExtInfo on a function type.
1197
  const FunctionType *adjustFunctionType(const FunctionType *Fn,
1198
                                         FunctionType::ExtInfo EInfo);
1199
1200
  /// Adjust the given function result type.
1201
  CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1202
1203
  /// Change the result type of a function type once it is deduced.
1204
  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1205
1206
  /// Get a function type and produce the equivalent function type with the
1207
  /// specified exception specification. Type sugar that can be present on a
1208
  /// declaration of a function with an exception specification is permitted
1209
  /// and preserved. Other type sugar (for instance, typedefs) is not.
1210
  QualType getFunctionTypeWithExceptionSpec(
1211
      QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1212
1213
  /// Determine whether two function types are the same, ignoring
1214
  /// exception specifications in cases where they're part of the type.
1215
  bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1216
1217
  /// Change the exception specification on a function once it is
1218
  /// delay-parsed, instantiated, or computed.
1219
  void adjustExceptionSpec(FunctionDecl *FD,
1220
                           const FunctionProtoType::ExceptionSpecInfo &ESI,
1221
                           bool AsWritten = false);
1222
1223
  /// Return the uniqued reference to the type for a complex
1224
  /// number with the specified element type.
1225
  QualType getComplexType(QualType T) const;
1226
150k
  CanQualType getComplexType(CanQualType T) const {
1227
150k
    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1228
150k
  }
1229
1230
  /// Return the uniqued reference to the type for a pointer to
1231
  /// the specified type.
1232
  QualType getPointerType(QualType T) const;
1233
2.25M
  CanQualType getPointerType(CanQualType T) const {
1234
2.25M
    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1235
2.25M
  }
1236
1237
  /// Return the uniqued reference to a type adjusted from the original
1238
  /// type to a new type.
1239
  QualType getAdjustedType(QualType Orig, QualType New) const;
1240
0
  CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1241
0
    return CanQualType::CreateUnsafe(
1242
0
        getAdjustedType((QualType)Orig, (QualType)New));
1243
0
  }
1244
1245
  /// Return the uniqued reference to the decayed version of the given
1246
  /// type.  Can only be called on array and function types which decay to
1247
  /// pointer types.
1248
  QualType getDecayedType(QualType T) const;
1249
0
  CanQualType getDecayedType(CanQualType T) const {
1250
0
    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1251
0
  }
1252
1253
  /// Return the uniqued reference to the atomic type for the specified
1254
  /// type.
1255
  QualType getAtomicType(QualType T) const;
1256
1257
  /// Return the uniqued reference to the type for a block of the
1258
  /// specified type.
1259
  QualType getBlockPointerType(QualType T) const;
1260
1261
  /// Gets the struct used to keep track of the descriptor for pointer to
1262
  /// blocks.
1263
  QualType getBlockDescriptorType() const;
1264
1265
  /// Return a read_only pipe type for the specified type.
1266
  QualType getReadPipeType(QualType T) const;
1267
1268
  /// Return a write_only pipe type for the specified type.
1269
  QualType getWritePipeType(QualType T) const;
1270
1271
  /// Gets the struct used to keep track of the extended descriptor for
1272
  /// pointer to blocks.
1273
  QualType getBlockDescriptorExtendedType() const;
1274
1275
  /// Map an AST Type to an OpenCLTypeKind enum value.
1276
  TargetInfo::OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1277
1278
  /// Get address space for OpenCL type.
1279
  LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1280
1281
124
  void setcudaConfigureCallDecl(FunctionDecl *FD) {
1282
124
    cudaConfigureCallDecl = FD;
1283
124
  }
1284
1285
3.53k
  FunctionDecl *getcudaConfigureCallDecl() {
1286
3.53k
    return cudaConfigureCallDecl;
1287
3.53k
  }
1288
1289
  /// Returns true iff we need copy/dispose helpers for the given type.
1290
  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1291
1292
  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1293
  /// is set to false in this case. If HasByrefExtendedLayout returns true,
1294
  /// byref variable has extended lifetime.
1295
  bool getByrefLifetime(QualType Ty,
1296
                        Qualifiers::ObjCLifetime &Lifetime,
1297
                        bool &HasByrefExtendedLayout) const;
1298
1299
  /// Return the uniqued reference to the type for an lvalue reference
1300
  /// to the specified type.
1301
  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1302
    const;
1303
1304
  /// Return the uniqued reference to the type for an rvalue reference
1305
  /// to the specified type.
1306
  QualType getRValueReferenceType(QualType T) const;
1307
1308
  /// Return the uniqued reference to the type for a member pointer to
1309
  /// the specified type in the specified class.
1310
  ///
1311
  /// The class \p Cls is a \c Type because it could be a dependent name.
1312
  QualType getMemberPointerType(QualType T, const Type *Cls) const;
1313
1314
  /// Return a non-unique reference to the type for a variable array of
1315
  /// the specified element type.
1316
  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1317
                                ArrayType::ArraySizeModifier ASM,
1318
                                unsigned IndexTypeQuals,
1319
                                SourceRange Brackets) const;
1320
1321
  /// Return a non-unique reference to the type for a dependently-sized
1322
  /// array of the specified element type.
1323
  ///
1324
  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1325
  /// point.
1326
  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1327
                                      ArrayType::ArraySizeModifier ASM,
1328
                                      unsigned IndexTypeQuals,
1329
                                      SourceRange Brackets) const;
1330
1331
  /// Return a unique reference to the type for an incomplete array of
1332
  /// the specified element type.
1333
  QualType getIncompleteArrayType(QualType EltTy,
1334
                                  ArrayType::ArraySizeModifier ASM,
1335
                                  unsigned IndexTypeQuals) const;
1336
1337
  /// Return the unique reference to the type for a constant array of
1338
  /// the specified element type.
1339
  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1340
                                ArrayType::ArraySizeModifier ASM,
1341
                                unsigned IndexTypeQuals) const;
1342
1343
  /// Returns a vla type where known sizes are replaced with [*].
1344
  QualType getVariableArrayDecayedType(QualType Ty) const;
1345
1346
  /// Return the unique reference to a vector type of the specified
1347
  /// element type and size.
1348
  ///
1349
  /// \pre \p VectorType must be a built-in type.
1350
  QualType getVectorType(QualType VectorType, unsigned NumElts,
1351
                         VectorType::VectorKind VecKind) const;
1352
  /// Return the unique reference to the type for a dependently sized vector of
1353
  /// the specified element type.
1354
  QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1355
                                  SourceLocation AttrLoc,
1356
                                  VectorType::VectorKind VecKind) const;
1357
1358
  /// Return the unique reference to an extended vector type
1359
  /// of the specified element type and size.
1360
  ///
1361
  /// \pre \p VectorType must be a built-in type.
1362
  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1363
1364
  /// \pre Return a non-unique reference to the type for a dependently-sized
1365
  /// vector of the specified element type.
1366
  ///
1367
  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1368
  /// point.
1369
  QualType getDependentSizedExtVectorType(QualType VectorType,
1370
                                          Expr *SizeExpr,
1371
                                          SourceLocation AttrLoc) const;
1372
1373
  QualType getDependentAddressSpaceType(QualType PointeeType,
1374
                                        Expr *AddrSpaceExpr,
1375
                                        SourceLocation AttrLoc) const;
1376
1377
  /// Return a K&R style C function type like 'int()'.
1378
  QualType getFunctionNoProtoType(QualType ResultTy,
1379
                                  const FunctionType::ExtInfo &Info) const;
1380
1381
1.42k
  QualType getFunctionNoProtoType(QualType ResultTy) const {
1382
1.42k
    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1383
1.42k
  }
1384
1385
  /// Return a normal function type with a typed argument list.
1386
  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1387
10.3M
                           const FunctionProtoType::ExtProtoInfo &EPI) const {
1388
10.3M
    return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1389
10.3M
  }
1390
1391
  QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1392
1393
private:
1394
  /// Return a normal function type with a typed argument list.
1395
  QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1396
                                   const FunctionProtoType::ExtProtoInfo &EPI,
1397
                                   bool OnlyWantCanonical) const;
1398
1399
public:
1400
  /// Return the unique reference to the type for the specified type
1401
  /// declaration.
1402
  QualType getTypeDeclType(const TypeDecl *Decl,
1403
69.9M
                           const TypeDecl *PrevDecl = nullptr) const {
1404
69.9M
    assert(Decl && "Passed null for Decl param");
1405
69.9M
    if (Decl->TypeForDecl) 
return QualType(Decl->TypeForDecl, 0)64.6M
;
1406
5.26M
1407
5.26M
    if (PrevDecl) {
1408
1.75M
      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1409
1.75M
      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1410
1.75M
      return QualType(PrevDecl->TypeForDecl, 0);
1411
1.75M
    }
1412
3.51M
1413
3.51M
    return getTypeDeclTypeSlow(Decl);
1414
3.51M
  }
1415
1416
  /// Return the unique reference to the type for the specified
1417
  /// typedef-name decl.
1418
  QualType getTypedefType(const TypedefNameDecl *Decl,
1419
                          QualType Canon = QualType()) const;
1420
1421
  QualType getRecordType(const RecordDecl *Decl) const;
1422
1423
  QualType getEnumType(const EnumDecl *Decl) const;
1424
1425
  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1426
1427
  QualType getAttributedType(attr::Kind attrKind,
1428
                             QualType modifiedType,
1429
                             QualType equivalentType);
1430
1431
  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1432
                                        QualType Replacement) const;
1433
  QualType getSubstTemplateTypeParmPackType(
1434
                                          const TemplateTypeParmType *Replaced,
1435
                                            const TemplateArgument &ArgPack);
1436
1437
  QualType
1438
  getTemplateTypeParmType(unsigned Depth, unsigned Index,
1439
                          bool ParameterPack,
1440
                          TemplateTypeParmDecl *ParmDecl = nullptr) const;
1441
1442
  QualType getTemplateSpecializationType(TemplateName T,
1443
                                         ArrayRef<TemplateArgument> Args,
1444
                                         QualType Canon = QualType()) const;
1445
1446
  QualType
1447
  getCanonicalTemplateSpecializationType(TemplateName T,
1448
                                         ArrayRef<TemplateArgument> Args) const;
1449
1450
  QualType getTemplateSpecializationType(TemplateName T,
1451
                                         const TemplateArgumentListInfo &Args,
1452
                                         QualType Canon = QualType()) const;
1453
1454
  TypeSourceInfo *
1455
  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1456
                                    const TemplateArgumentListInfo &Args,
1457
                                    QualType Canon = QualType()) const;
1458
1459
  QualType getParenType(QualType NamedType) const;
1460
1461
  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1462
                             NestedNameSpecifier *NNS, QualType NamedType,
1463
                             TagDecl *OwnedTagDecl = nullptr) const;
1464
  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1465
                                NestedNameSpecifier *NNS,
1466
                                const IdentifierInfo *Name,
1467
                                QualType Canon = QualType()) const;
1468
1469
  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1470
                                                  NestedNameSpecifier *NNS,
1471
                                                  const IdentifierInfo *Name,
1472
                                    const TemplateArgumentListInfo &Args) const;
1473
  QualType getDependentTemplateSpecializationType(
1474
      ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1475
      const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1476
1477
  TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1478
1479
  /// Get a template argument list with one argument per template parameter
1480
  /// in a template parameter list, such as for the injected class name of
1481
  /// a class template.
1482
  void getInjectedTemplateArgs(const TemplateParameterList *Params,
1483
                               SmallVectorImpl<TemplateArgument> &Args);
1484
1485
  QualType getPackExpansionType(QualType Pattern,
1486
                                Optional<unsigned> NumExpansions);
1487
1488
  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1489
                                ObjCInterfaceDecl *PrevDecl = nullptr) const;
1490
1491
  /// Legacy interface: cannot provide type arguments or __kindof.
1492
  QualType getObjCObjectType(QualType Base,
1493
                             ObjCProtocolDecl * const *Protocols,
1494
                             unsigned NumProtocols) const;
1495
1496
  QualType getObjCObjectType(QualType Base,
1497
                             ArrayRef<QualType> typeArgs,
1498
                             ArrayRef<ObjCProtocolDecl *> protocols,
1499
                             bool isKindOf) const;
1500
1501
  QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1502
                                ArrayRef<ObjCProtocolDecl *> protocols,
1503
                                QualType Canonical = QualType()) const;
1504
1505
  bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1506
1507
  /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1508
  /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1509
  /// of protocols.
1510
  bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1511
                                            ObjCInterfaceDecl *IDecl);
1512
1513
  /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1514
  QualType getObjCObjectPointerType(QualType OIT) const;
1515
1516
  /// GCC extension.
1517
  QualType getTypeOfExprType(Expr *e) const;
1518
  QualType getTypeOfType(QualType t) const;
1519
1520
  /// C++11 decltype.
1521
  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1522
1523
  /// Unary type transforms
1524
  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1525
                                 UnaryTransformType::UTTKind UKind) const;
1526
1527
  /// C++11 deduced auto type.
1528
  QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1529
                       bool IsDependent) const;
1530
1531
  /// C++11 deduction pattern for 'auto' type.
1532
  QualType getAutoDeductType() const;
1533
1534
  /// C++11 deduction pattern for 'auto &&' type.
1535
  QualType getAutoRRefDeductType() const;
1536
1537
  /// C++17 deduced class template specialization type.
1538
  QualType getDeducedTemplateSpecializationType(TemplateName Template,
1539
                                                QualType DeducedType,
1540
                                                bool IsDependent) const;
1541
1542
  /// Return the unique reference to the type for the specified TagDecl
1543
  /// (struct/union/class/enum) decl.
1544
  QualType getTagDeclType(const TagDecl *Decl) const;
1545
1546
  /// Return the unique type for "size_t" (C99 7.17), defined in
1547
  /// <stddef.h>.
1548
  ///
1549
  /// The sizeof operator requires this (C99 6.5.3.4p4).
1550
  CanQualType getSizeType() const;
1551
1552
  /// Return the unique signed counterpart of
1553
  /// the integer type corresponding to size_t.
1554
  CanQualType getSignedSizeType() const;
1555
1556
  /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1557
  /// <stdint.h>.
1558
  CanQualType getIntMaxType() const;
1559
1560
  /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1561
  /// <stdint.h>.
1562
  CanQualType getUIntMaxType() const;
1563
1564
  /// Return the unique wchar_t type available in C++ (and available as
1565
  /// __wchar_t as a Microsoft extension).
1566
0
  QualType getWCharType() const { return WCharTy; }
1567
1568
  /// Return the type of wide characters. In C++, this returns the
1569
  /// unique wchar_t type. In C99, this returns a type compatible with the type
1570
  /// defined in <stddef.h> as defined by the target.
1571
33.2k
  QualType getWideCharType() const { return WideCharTy; }
1572
1573
  /// Return the type of "signed wchar_t".
1574
  ///
1575
  /// Used when in C++, as a GCC extension.
1576
  QualType getSignedWCharType() const;
1577
1578
  /// Return the type of "unsigned wchar_t".
1579
  ///
1580
  /// Used when in C++, as a GCC extension.
1581
  QualType getUnsignedWCharType() const;
1582
1583
  /// In C99, this returns a type compatible with the type
1584
  /// defined in <stddef.h> as defined by the target.
1585
22
  QualType getWIntType() const { return WIntTy; }
1586
1587
  /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1588
  /// as defined by the target.
1589
  QualType getIntPtrType() const;
1590
1591
  /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1592
  /// as defined by the target.
1593
  QualType getUIntPtrType() const;
1594
1595
  /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1596
  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1597
  QualType getPointerDiffType() const;
1598
1599
  /// Return the unique unsigned counterpart of "ptrdiff_t"
1600
  /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1601
  /// in the definition of %tu format specifier.
1602
  QualType getUnsignedPointerDiffType() const;
1603
1604
  /// Return the unique type for "pid_t" defined in
1605
  /// <sys/types.h>. We need this to compute the correct type for vfork().
1606
  QualType getProcessIDType() const;
1607
1608
  /// Return the C structure type used to represent constant CFStrings.
1609
  QualType getCFConstantStringType() const;
1610
1611
  /// Returns the C struct type for objc_super
1612
  QualType getObjCSuperType() const;
1613
2
  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1614
1615
  /// Get the structure type used to representation CFStrings, or NULL
1616
  /// if it hasn't yet been built.
1617
3.49k
  QualType getRawCFConstantStringType() const {
1618
3.49k
    if (CFConstantStringTypeDecl)
1619
3.49k
      return getTypedefType(CFConstantStringTypeDecl);
1620
0
    return QualType();
1621
0
  }
1622
  void setCFConstantStringType(QualType T);
1623
  TypedefDecl *getCFConstantStringDecl() const;
1624
  RecordDecl *getCFConstantStringTagDecl() const;
1625
1626
  // This setter/getter represents the ObjC type for an NSConstantString.
1627
  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1628
1.53k
  QualType getObjCConstantStringInterface() const {
1629
1.53k
    return ObjCConstantStringType;
1630
1.53k
  }
1631
1632
208
  QualType getObjCNSStringType() const {
1633
208
    return ObjCNSStringType;
1634
208
  }
1635
1636
83
  void setObjCNSStringType(QualType T) {
1637
83
    ObjCNSStringType = T;
1638
83
  }
1639
1640
  /// Retrieve the type that \c id has been defined to, which may be
1641
  /// different from the built-in \c id if \c id has been typedef'd.
1642
19
  QualType getObjCIdRedefinitionType() const {
1643
19
    if (ObjCIdRedefinitionType.isNull())
1644
18
      return getObjCIdType();
1645
1
    return ObjCIdRedefinitionType;
1646
1
  }
1647
1648
  /// Set the user-written type that redefines \c id.
1649
64
  void setObjCIdRedefinitionType(QualType RedefType) {
1650
64
    ObjCIdRedefinitionType = RedefType;
1651
64
  }
1652
1653
  /// Retrieve the type that \c Class has been defined to, which may be
1654
  /// different from the built-in \c Class if \c Class has been typedef'd.
1655
9
  QualType getObjCClassRedefinitionType() const {
1656
9
    if (ObjCClassRedefinitionType.isNull())
1657
6
      return getObjCClassType();
1658
3
    return ObjCClassRedefinitionType;
1659
3
  }
1660
1661
  /// Set the user-written type that redefines 'SEL'.
1662
53
  void setObjCClassRedefinitionType(QualType RedefType) {
1663
53
    ObjCClassRedefinitionType = RedefType;
1664
53
  }
1665
1666
  /// Retrieve the type that 'SEL' has been defined to, which may be
1667
  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1668
4
  QualType getObjCSelRedefinitionType() const {
1669
4
    if (ObjCSelRedefinitionType.isNull())
1670
0
      return getObjCSelType();
1671
4
    return ObjCSelRedefinitionType;
1672
4
  }
1673
1674
  /// Set the user-written type that redefines 'SEL'.
1675
48
  void setObjCSelRedefinitionType(QualType RedefType) {
1676
48
    ObjCSelRedefinitionType = RedefType;
1677
48
  }
1678
1679
  /// Retrieve the identifier 'NSObject'.
1680
208
  IdentifierInfo *getNSObjectName() const {
1681
208
    if (!NSObjectName) {
1682
65
      NSObjectName = &Idents.get("NSObject");
1683
65
    }
1684
208
1685
208
    return NSObjectName;
1686
208
  }
1687
1688
  /// Retrieve the identifier 'NSCopying'.
1689
19
  IdentifierInfo *getNSCopyingName() {
1690
19
    if (!NSCopyingName) {
1691
4
      NSCopyingName = &Idents.get("NSCopying");
1692
4
    }
1693
19
1694
19
    return NSCopyingName;
1695
19
  }
1696
1697
548
  CanQualType getNSUIntegerType() const {
1698
548
    assert(Target && "Expected target to be initialized");
1699
548
    const llvm::Triple &T = Target->getTriple();
1700
548
    // Windows is LLP64 rather than LP64
1701
548
    if (T.isOSWindows() && 
T.isArch64Bit()8
)
1702
4
      return UnsignedLongLongTy;
1703
544
    return UnsignedLongTy;
1704
544
  }
1705
1706
768
  CanQualType getNSIntegerType() const {
1707
768
    assert(Target && "Expected target to be initialized");
1708
768
    const llvm::Triple &T = Target->getTriple();
1709
768
    // Windows is LLP64 rather than LP64
1710
768
    if (T.isOSWindows() && 
T.isArch64Bit()0
)
1711
0
      return LongLongTy;
1712
768
    return LongTy;
1713
768
  }
1714
1715
  /// Retrieve the identifier 'bool'.
1716
9.78M
  IdentifierInfo *getBoolName() const {
1717
9.78M
    if (!BoolName)
1718
13.1k
      BoolName = &Idents.get("bool");
1719
9.78M
    return BoolName;
1720
9.78M
  }
1721
1722
4.22M
  IdentifierInfo *getMakeIntegerSeqName() const {
1723
4.22M
    if (!MakeIntegerSeqName)
1724
18.7k
      MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1725
4.22M
    return MakeIntegerSeqName;
1726
4.22M
  }
1727
1728
4.22M
  IdentifierInfo *getTypePackElementName() const {
1729
4.22M
    if (!TypePackElementName)
1730
18.7k
      TypePackElementName = &Idents.get("__type_pack_element");
1731
4.22M
    return TypePackElementName;
1732
4.22M
  }
1733
1734
  /// Retrieve the Objective-C "instancetype" type, if already known;
1735
  /// otherwise, returns a NULL type;
1736
62.1k
  QualType getObjCInstanceType() {
1737
62.1k
    return getTypeDeclType(getObjCInstanceTypeDecl());
1738
62.1k
  }
1739
1740
  /// Retrieve the typedef declaration corresponding to the Objective-C
1741
  /// "instancetype" type.
1742
  TypedefDecl *getObjCInstanceTypeDecl();
1743
1744
  /// Set the type for the C FILE type.
1745
2.73k
  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1746
1747
  /// Retrieve the C FILE type.
1748
25.8k
  QualType getFILEType() const {
1749
25.8k
    if (FILEDecl)
1750
22.4k
      return getTypeDeclType(FILEDecl);
1751
3.37k
    return QualType();
1752
3.37k
  }
1753
1754
  /// Set the type for the C jmp_buf type.
1755
61
  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1756
61
    this->jmp_bufDecl = jmp_bufDecl;
1757
61
  }
1758
1759
  /// Retrieve the C jmp_buf type.
1760
3.68k
  QualType getjmp_bufType() const {
1761
3.68k
    if (jmp_bufDecl)
1762
186
      return getTypeDeclType(jmp_bufDecl);
1763
3.49k
    return QualType();
1764
3.49k
  }
1765
1766
  /// Set the type for the C sigjmp_buf type.
1767
40
  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1768
40
    this->sigjmp_bufDecl = sigjmp_bufDecl;
1769
40
  }
1770
1771
  /// Retrieve the C sigjmp_buf type.
1772
3.56k
  QualType getsigjmp_bufType() const {
1773
3.56k
    if (sigjmp_bufDecl)
1774
66
      return getTypeDeclType(sigjmp_bufDecl);
1775
3.49k
    return QualType();
1776
3.49k
  }
1777
1778
  /// Set the type for the C ucontext_t type.
1779
2.18k
  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1780
2.18k
    this->ucontext_tDecl = ucontext_tDecl;
1781
2.18k
  }
1782
1783
  /// Retrieve the C ucontext_t type.
1784
3.49k
  QualType getucontext_tType() const {
1785
3.49k
    if (ucontext_tDecl)
1786
0
      return getTypeDeclType(ucontext_tDecl);
1787
3.49k
    return QualType();
1788
3.49k
  }
1789
1790
  /// The result type of logical operations, '<', '>', '!=', etc.
1791
1.96M
  QualType getLogicalOperationType() const {
1792
1.96M
    return getLangOpts().CPlusPlus ? 
BoolTy1.75M
:
IntTy214k
;
1793
1.96M
  }
1794
1795
  /// Emit the Objective-CC type encoding for the given type \p T into
1796
  /// \p S.
1797
  ///
1798
  /// If \p Field is specified then record field names are also encoded.
1799
  void getObjCEncodingForType(QualType T, std::string &S,
1800
                              const FieldDecl *Field=nullptr,
1801
                              QualType *NotEncodedT=nullptr) const;
1802
1803
  /// Emit the Objective-C property type encoding for the given
1804
  /// type \p T into \p S.
1805
  void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1806
1807
  void getLegacyIntegralTypeEncoding(QualType &t) const;
1808
1809
  /// Put the string version of the type qualifiers \p QT into \p S.
1810
  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1811
                                       std::string &S) const;
1812
1813
  /// Emit the encoded type for the function \p Decl into \p S.
1814
  ///
1815
  /// This is in the same format as Objective-C method encodings.
1816
  ///
1817
  /// \returns true if an error occurred (e.g., because one of the parameter
1818
  /// types is incomplete), false otherwise.
1819
  std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1820
1821
  /// Emit the encoded type for the method declaration \p Decl into
1822
  /// \p S.
1823
  std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1824
                                           bool Extended = false) const;
1825
1826
  /// Return the encoded type for this block declaration.
1827
  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1828
1829
  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1830
  /// this method declaration. If non-NULL, Container must be either
1831
  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1832
  /// only be NULL when getting encodings for protocol properties.
1833
  std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1834
                                             const Decl *Container) const;
1835
1836
  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1837
                                      ObjCProtocolDecl *rProto) const;
1838
1839
  ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1840
                                                  const ObjCPropertyDecl *PD,
1841
                                                  const Decl *Container) const;
1842
1843
  /// Return the size of type \p T for Objective-C encoding purpose,
1844
  /// in characters.
1845
  CharUnits getObjCEncodingTypeSize(QualType T) const;
1846
1847
  /// Retrieve the typedef corresponding to the predefined \c id type
1848
  /// in Objective-C.
1849
  TypedefDecl *getObjCIdDecl() const;
1850
1851
  /// Represents the Objective-CC \c id type.
1852
  ///
1853
  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1854
  /// pointer type, a pointer to a struct.
1855
117k
  QualType getObjCIdType() const {
1856
117k
    return getTypeDeclType(getObjCIdDecl());
1857
117k
  }
1858
1859
  /// Retrieve the typedef corresponding to the predefined 'SEL' type
1860
  /// in Objective-C.
1861
  TypedefDecl *getObjCSelDecl() const;
1862
1863
  /// Retrieve the type that corresponds to the predefined Objective-C
1864
  /// 'SEL' type.
1865
129k
  QualType getObjCSelType() const {
1866
129k
    return getTypeDeclType(getObjCSelDecl());
1867
129k
  }
1868
1869
  /// Retrieve the typedef declaration corresponding to the predefined
1870
  /// Objective-C 'Class' type.
1871
  TypedefDecl *getObjCClassDecl() const;
1872
1873
  /// Represents the Objective-C \c Class type.
1874
  ///
1875
  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1876
  /// pointer type, a pointer to a struct.
1877
105k
  QualType getObjCClassType() const {
1878
105k
    return getTypeDeclType(getObjCClassDecl());
1879
105k
  }
1880
1881
  /// Retrieve the Objective-C class declaration corresponding to
1882
  /// the predefined \c Protocol class.
1883
  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1884
1885
  /// Retrieve declaration of 'BOOL' typedef
1886
473
  TypedefDecl *getBOOLDecl() const {
1887
473
    return BOOLDecl;
1888
473
  }
1889
1890
  /// Save declaration of 'BOOL' typedef
1891
30
  void setBOOLDecl(TypedefDecl *TD) {
1892
30
    BOOLDecl = TD;
1893
30
  }
1894
1895
  /// type of 'BOOL' type.
1896
135
  QualType getBOOLType() const {
1897
135
    return getTypeDeclType(getBOOLDecl());
1898
135
  }
1899
1900
  /// Retrieve the type of the Objective-C \c Protocol class.
1901
102k
  QualType getObjCProtoType() const {
1902
102k
    return getObjCInterfaceType(getObjCProtocolDecl());
1903
102k
  }
1904
1905
  /// Retrieve the C type declaration corresponding to the predefined
1906
  /// \c __builtin_va_list type.
1907
  TypedefDecl *getBuiltinVaListDecl() const;
1908
1909
  /// Retrieve the type of the \c __builtin_va_list type.
1910
123k
  QualType getBuiltinVaListType() const {
1911
123k
    return getTypeDeclType(getBuiltinVaListDecl());
1912
123k
  }
1913
1914
  /// Retrieve the C type declaration corresponding to the predefined
1915
  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1916
  /// for some targets.
1917
  Decl *getVaListTagDecl() const;
1918
1919
  /// Retrieve the C type declaration corresponding to the predefined
1920
  /// \c __builtin_ms_va_list type.
1921
  TypedefDecl *getBuiltinMSVaListDecl() const;
1922
1923
  /// Retrieve the type of the \c __builtin_ms_va_list type.
1924
102k
  QualType getBuiltinMSVaListType() const {
1925
102k
    return getTypeDeclType(getBuiltinMSVaListDecl());
1926
102k
  }
1927
1928
  /// Return whether a declaration to a builtin is allowed to be
1929
  /// overloaded/redeclared.
1930
  bool canBuiltinBeRedeclared(const FunctionDecl *) const;
1931
1932
  /// Return a type with additional \c const, \c volatile, or
1933
  /// \c restrict qualifiers.
1934
2.72M
  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1935
2.72M
    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1936
2.72M
  }
1937
1938
  /// Un-split a SplitQualType.
1939
1.94k
  QualType getQualifiedType(SplitQualType split) const {
1940
1.94k
    return getQualifiedType(split.Ty, split.Quals);
1941
1.94k
  }
1942
1943
  /// Return a type with additional qualifiers.
1944
41.1M
  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1945
41.1M
    if (!Qs.hasNonFastQualifiers())
1946
41.0M
      return T.withFastQualifiers(Qs.getFastQualifiers());
1947
11.7k
    QualifierCollector Qc(Qs);
1948
11.7k
    const Type *Ptr = Qc.strip(T);
1949
11.7k
    return getExtQualType(Ptr, Qc);
1950
11.7k
  }
1951
1952
  /// Return a type with additional qualifiers.
1953
558k
  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1954
558k
    if (!Qs.hasNonFastQualifiers())
1955
555k
      return QualType(T, Qs.getFastQualifiers());
1956
2.87k
    return getExtQualType(T, Qs);
1957
2.87k
  }
1958
1959
  /// Return a type with the given lifetime qualifier.
1960
  ///
1961
  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1962
  QualType getLifetimeQualifiedType(QualType type,
1963
3.89k
                                    Qualifiers::ObjCLifetime lifetime) {
1964
3.89k
    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1965
3.89k
    assert(lifetime != Qualifiers::OCL_None);
1966
3.89k
1967
3.89k
    Qualifiers qs;
1968
3.89k
    qs.addObjCLifetime(lifetime);
1969
3.89k
    return getQualifiedType(type, qs);
1970
3.89k
  }
1971
1972
  /// getUnqualifiedObjCPointerType - Returns version of
1973
  /// Objective-C pointer type with lifetime qualifier removed.
1974
2.08k
  QualType getUnqualifiedObjCPointerType(QualType type) const {
1975
2.08k
    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1976
2.08k
        
!type.getQualifiers().hasObjCLifetime()140
)
1977
2.08k
      return type;
1978
4
    Qualifiers Qs = type.getQualifiers();
1979
4
    Qs.removeObjCLifetime();
1980
4
    return getQualifiedType(type.getUnqualifiedType(), Qs);
1981
4
  }
1982
1983
  unsigned char getFixedPointScale(QualType Ty) const;
1984
  unsigned char getFixedPointIBits(QualType Ty) const;
1985
  FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
1986
  APFixedPoint getFixedPointMax(QualType Ty) const;
1987
  APFixedPoint getFixedPointMin(QualType Ty) const;
1988
1989
  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1990
                                         SourceLocation NameLoc) const;
1991
1992
  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1993
                                         UnresolvedSetIterator End) const;
1994
1995
  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1996
                                        bool TemplateKeyword,
1997
                                        TemplateDecl *Template) const;
1998
1999
  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2000
                                        const IdentifierInfo *Name) const;
2001
  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2002
                                        OverloadedOperatorKind Operator) const;
2003
  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2004
                                            TemplateName replacement) const;
2005
  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2006
                                        const TemplateArgument &ArgPack) const;
2007
2008
  enum GetBuiltinTypeError {
2009
    /// No error
2010
    GE_None,
2011
2012
    /// Missing a type from <stdio.h>
2013
    GE_Missing_stdio,
2014
2015
    /// Missing a type from <setjmp.h>
2016
    GE_Missing_setjmp,
2017
2018
    /// Missing a type from <ucontext.h>
2019
    GE_Missing_ucontext
2020
  };
2021
2022
  /// Return the type for the specified builtin.
2023
  ///
2024
  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2025
  /// arguments to the builtin that are required to be integer constant
2026
  /// expressions.
2027
  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2028
                          unsigned *IntegerConstantArgs = nullptr) const;
2029
2030
  /// Types and expressions required to build C++2a three-way comparisons
2031
  /// using operator<=>, including the values return by builtin <=> operators.
2032
  ComparisonCategories CompCategories;
2033
2034
private:
2035
  CanQualType getFromTargetType(unsigned Type) const;
2036
  TypeInfo getTypeInfoImpl(const Type *T) const;
2037
2038
  //===--------------------------------------------------------------------===//
2039
  //                         Type Predicates.
2040
  //===--------------------------------------------------------------------===//
2041
2042
public:
2043
  /// Return one of the GCNone, Weak or Strong Objective-C garbage
2044
  /// collection attributes.
2045
  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2046
2047
  /// Return true if the given vector types are of the same unqualified
2048
  /// type or if they are equivalent to the same GCC vector type.
2049
  ///
2050
  /// \note This ignores whether they are target-specific (AltiVec or Neon)
2051
  /// types.
2052
  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2053
2054
  /// Return true if this is an \c NSObject object with its \c NSObject
2055
  /// attribute set.
2056
5.97k
  static bool isObjCNSObjectType(QualType Ty) {
2057
5.97k
    return Ty->isObjCNSObjectType();
2058
5.97k
  }
2059
2060
  //===--------------------------------------------------------------------===//
2061
  //                         Type Sizing and Analysis
2062
  //===--------------------------------------------------------------------===//
2063
2064
  /// Return the APFloat 'semantics' for the specified scalar floating
2065
  /// point type.
2066
  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2067
2068
  /// Get the size and alignment of the specified complete type in bits.
2069
  TypeInfo getTypeInfo(const Type *T) const;
2070
52.8M
  TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2071
2072
  /// Get default simd alignment of the specified complete type in bits.
2073
  unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2074
2075
  /// Return the size of the specified (complete) type \p T, in bits.
2076
51.2M
  uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2077
670k
  uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2078
2079
  /// Return the size of the character type, in bits.
2080
28.0M
  uint64_t getCharWidth() const {
2081
28.0M
    return getTypeSize(CharTy);
2082
28.0M
  }
2083
2084
  /// Convert a size in bits to a size in characters.
2085
  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2086
2087
  /// Convert a size in characters to a size in bits.
2088
  int64_t toBits(CharUnits CharSize) const;
2089
2090
  /// Return the size of the specified (complete) type \p T, in
2091
  /// characters.
2092
  CharUnits getTypeSizeInChars(QualType T) const;
2093
  CharUnits getTypeSizeInChars(const Type *T) const;
2094
2095
  /// Return the ABI-specified alignment of a (complete) type \p T, in
2096
  /// bits.
2097
1.55M
  unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2098
173
  unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2099
2100
  /// Return the ABI-specified natural alignment of a (complete) type \p T,
2101
  /// before alignment adjustments, in bits.
2102
  ///
2103
  /// This alignment is curently used only by ARM and AArch64 when passing
2104
  /// arguments of a composite type.
2105
211
  unsigned getTypeUnadjustedAlign(QualType T) const {
2106
211
    return getTypeUnadjustedAlign(T.getTypePtr());
2107
211
  }
2108
  unsigned getTypeUnadjustedAlign(const Type *T) const;
2109
2110
  /// Return the ABI-specified alignment of a type, in bits, or 0 if
2111
  /// the type is incomplete and we cannot determine the alignment (for
2112
  /// example, from alignment attributes).
2113
  unsigned getTypeAlignIfKnown(QualType T) const;
2114
2115
  /// Return the ABI-specified alignment of a (complete) type \p T, in
2116
  /// characters.
2117
  CharUnits getTypeAlignInChars(QualType T) const;
2118
  CharUnits getTypeAlignInChars(const Type *T) const;
2119
2120
  /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2121
  /// in characters, before alignment adjustments. This method does not work on
2122
  /// incomplete types.
2123
  CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2124
  CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2125
2126
  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2127
  // type is a record, its data size is returned.
2128
  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
2129
2130
  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
2131
  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
2132
2133
  /// Determine if the alignment the type has was required using an
2134
  /// alignment attribute.
2135
  bool isAlignmentRequired(const Type *T) const;
2136
  bool isAlignmentRequired(QualType T) const;
2137
2138
  /// Return the "preferred" alignment of the specified type \p T for
2139
  /// the current target, in bits.
2140
  ///
2141
  /// This can be different than the ABI alignment in cases where it is
2142
  /// beneficial for performance to overalign a data type.
2143
  unsigned getPreferredTypeAlign(const Type *T) const;
2144
2145
  /// Return the default alignment for __attribute__((aligned)) on
2146
  /// this target, to be used if no alignment value is specified.
2147
  unsigned getTargetDefaultAlignForAttributeAligned() const;
2148
2149
  /// Return the alignment in bits that should be given to a
2150
  /// global variable with type \p T.
2151
  unsigned getAlignOfGlobalVar(QualType T) const;
2152
2153
  /// Return the alignment in characters that should be given to a
2154
  /// global variable with type \p T.
2155
  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2156
2157
  /// Return a conservative estimate of the alignment of the specified
2158
  /// decl \p D.
2159
  ///
2160
  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2161
  /// alignment.
2162
  ///
2163
  /// If \p ForAlignof, references are treated like their underlying type
2164
  /// and  large arrays don't get any special treatment. If not \p ForAlignof
2165
  /// it computes the value expected by CodeGen: references are treated like
2166
  /// pointers and large arrays get extra alignment.
2167
  CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2168
2169
  /// Get or compute information about the layout of the specified
2170
  /// record (struct/union/class) \p D, which indicates its size and field
2171
  /// position information.
2172
  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2173
2174
  /// Get or compute information about the layout of the specified
2175
  /// Objective-C interface.
2176
  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2177
    const;
2178
2179
  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2180
                        bool Simple = false) const;
2181
2182
  /// Get or compute information about the layout of the specified
2183
  /// Objective-C implementation.
2184
  ///
2185
  /// This may differ from the interface if synthesized ivars are present.
2186
  const ASTRecordLayout &
2187
  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2188
2189
  /// Get our current best idea for the key function of the
2190
  /// given record decl, or nullptr if there isn't one.
2191
  ///
2192
  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2193
  ///   ...the first non-pure virtual function that is not inline at the
2194
  ///   point of class definition.
2195
  ///
2196
  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2197
  /// virtual functions that are defined 'inline', which means that
2198
  /// the result of this computation can change.
2199
  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2200
2201
  /// Observe that the given method cannot be a key function.
2202
  /// Checks the key-function cache for the method's class and clears it
2203
  /// if matches the given declaration.
2204
  ///
2205
  /// This is used in ABIs where out-of-line definitions marked
2206
  /// inline are not considered to be key functions.
2207
  ///
2208
  /// \param method should be the declaration from the class definition
2209
  void setNonKeyFunction(const CXXMethodDecl *method);
2210
2211
  /// Loading virtual member pointers using the virtual inheritance model
2212
  /// always results in an adjustment using the vbtable even if the index is
2213
  /// zero.
2214
  ///
2215
  /// This is usually OK because the first slot in the vbtable points
2216
  /// backwards to the top of the MDC.  However, the MDC might be reusing a
2217
  /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2218
  /// points to the start of the nv-base which introduced the vbptr and *not*
2219
  /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2220
  CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2221
2222
  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2223
  uint64_t getFieldOffset(const ValueDecl *FD) const;
2224
2225
  /// Get the offset of an ObjCIvarDecl in bits.
2226
  uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2227
                                const ObjCImplementationDecl *ID,
2228
                                const ObjCIvarDecl *Ivar) const;
2229
2230
  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2231
2232
  VTableContextBase *getVTableContext();
2233
2234
  MangleContext *createMangleContext();
2235
2236
  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2237
                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2238
2239
  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2240
  void CollectInheritedProtocols(const Decl *CDecl,
2241
                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2242
2243
  /// Return true if the specified type has unique object representations
2244
  /// according to (C++17 [meta.unary.prop]p9)
2245
  bool hasUniqueObjectRepresentations(QualType Ty) const;
2246
2247
  //===--------------------------------------------------------------------===//
2248
  //                            Type Operators
2249
  //===--------------------------------------------------------------------===//
2250
2251
  /// Return the canonical (structural) type corresponding to the
2252
  /// specified potentially non-canonical type \p T.
2253
  ///
2254
  /// The non-canonical version of a type may have many "decorated" versions of
2255
  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2256
  /// returned type is guaranteed to be free of any of these, allowing two
2257
  /// canonical types to be compared for exact equality with a simple pointer
2258
  /// comparison.
2259
679M
  CanQualType getCanonicalType(QualType T) const {
2260
679M
    return CanQualType::CreateUnsafe(T.getCanonicalType());
2261
679M
  }
2262
2263
1.93M
  const Type *getCanonicalType(const Type *T) const {
2264
1.93M
    return T->getCanonicalTypeInternal().getTypePtr();
2265
1.93M
  }
2266
2267
  /// Return the canonical parameter type corresponding to the specific
2268
  /// potentially non-canonical one.
2269
  ///
2270
  /// Qualifiers are stripped off, functions are turned into function
2271
  /// pointers, and arrays decay one level into pointers.
2272
  CanQualType getCanonicalParamType(QualType T) const;
2273
2274
  /// Determine whether the given types \p T1 and \p T2 are equivalent.
2275
32.9M
  bool hasSameType(QualType T1, QualType T2) const {
2276
32.9M
    return getCanonicalType(T1) == getCanonicalType(T2);
2277
32.9M
  }
2278
60
  bool hasSameType(const Type *T1, const Type *T2) const {
2279
60
    return getCanonicalType(T1) == getCanonicalType(T2);
2280
60
  }
2281
2282
  /// Return this type as a completely-unqualified array type,
2283
  /// capturing the qualifiers in \p Quals.
2284
  ///
2285
  /// This will remove the minimal amount of sugaring from the types, similar
2286
  /// to the behavior of QualType::getUnqualifiedType().
2287
  ///
2288
  /// \param T is the qualified type, which may be an ArrayType
2289
  ///
2290
  /// \param Quals will receive the full set of qualifiers that were
2291
  /// applied to the array.
2292
  ///
2293
  /// \returns if this is an array type, the completely unqualified array type
2294
  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2295
  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2296
2297
  /// Determine whether the given types are equivalent after
2298
  /// cvr-qualifiers have been removed.
2299
99.2M
  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2300
99.2M
    return getCanonicalType(T1).getTypePtr() ==
2301
99.2M
           getCanonicalType(T2).getTypePtr();
2302
99.2M
  }
2303
2304
  bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2305
3.98k
                                       bool IsParam) const {
2306
3.98k
    auto SubTnullability = SubT->getNullability(*this);
2307
3.98k
    auto SuperTnullability = SuperT->getNullability(*this);
2308
3.98k
    if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2309
3.63k
      // Neither has nullability; return true
2310
3.63k
      if (!SubTnullability)
2311
1.57k
        return true;
2312
2.05k
      // Both have nullability qualifier.
2313
2.05k
      if (*SubTnullability == *SuperTnullability ||
2314
2.05k
          
*SubTnullability == NullabilityKind::Unspecified34
||
2315
2.05k
          
*SuperTnullability == NullabilityKind::Unspecified34
)
2316
2.02k
        return true;
2317
34
2318
34
      if (IsParam) {
2319
2
        // Ok for the superclass method parameter to be "nonnull" and the subclass
2320
2
        // method parameter to be "nullable"
2321
2
        return (*SuperTnullability == NullabilityKind::NonNull &&
2322
2
                
*SubTnullability == NullabilityKind::Nullable1
);
2323
2
      }
2324
32
      else {
2325
32
        // For the return type, it's okay for the superclass method to specify
2326
32
        // "nullable" and the subclass method specify "nonnull"
2327
32
        return (*SuperTnullability == NullabilityKind::Nullable &&
2328
32
                
*SubTnullability == NullabilityKind::NonNull31
);
2329
32
      }
2330
349
    }
2331
349
    return true;
2332
349
  }
2333
2334
  bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2335
                           const ObjCMethodDecl *MethodImp);
2336
2337
  bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2338
  bool UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2339
2340
  /// Determine if two types are similar, according to the C++ rules. That is,
2341
  /// determine if they are the same other than qualifiers on the initial
2342
  /// sequence of pointer / pointer-to-member / array (and in Clang, object
2343
  /// pointer) types and their element types.
2344
  ///
2345
  /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2346
  /// those qualifiers are also ignored in the 'similarity' check.
2347
  bool hasSimilarType(QualType T1, QualType T2);
2348
2349
  /// Determine if two types are similar, ignoring only CVR qualifiers.
2350
  bool hasCvrSimilarType(QualType T1, QualType T2);
2351
2352
  /// Retrieves the "canonical" nested name specifier for a
2353
  /// given nested name specifier.
2354
  ///
2355
  /// The canonical nested name specifier is a nested name specifier
2356
  /// that uniquely identifies a type or namespace within the type
2357
  /// system. For example, given:
2358
  ///
2359
  /// \code
2360
  /// namespace N {
2361
  ///   struct S {
2362
  ///     template<typename T> struct X { typename T* type; };
2363
  ///   };
2364
  /// }
2365
  ///
2366
  /// template<typename T> struct Y {
2367
  ///   typename N::S::X<T>::type member;
2368
  /// };
2369
  /// \endcode
2370
  ///
2371
  /// Here, the nested-name-specifier for N::S::X<T>:: will be
2372
  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2373
  /// by declarations in the type system and the canonical type for
2374
  /// the template type parameter 'T' is template-param-0-0.
2375
  NestedNameSpecifier *
2376
  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2377
2378
  /// Retrieves the default calling convention for the current target.
2379
  CallingConv getDefaultCallingConvention(bool IsVariadic,
2380
                                          bool IsCXXMethod) const;
2381
2382
  /// Retrieves the "canonical" template name that refers to a
2383
  /// given template.
2384
  ///
2385
  /// The canonical template name is the simplest expression that can
2386
  /// be used to refer to a given template. For most templates, this
2387
  /// expression is just the template declaration itself. For example,
2388
  /// the template std::vector can be referred to via a variety of
2389
  /// names---std::vector, \::std::vector, vector (if vector is in
2390
  /// scope), etc.---but all of these names map down to the same
2391
  /// TemplateDecl, which is used to form the canonical template name.
2392
  ///
2393
  /// Dependent template names are more interesting. Here, the
2394
  /// template name could be something like T::template apply or
2395
  /// std::allocator<T>::template rebind, where the nested name
2396
  /// specifier itself is dependent. In this case, the canonical
2397
  /// template name uses the shortest form of the dependent
2398
  /// nested-name-specifier, which itself contains all canonical
2399
  /// types, values, and templates.
2400
  TemplateName getCanonicalTemplateName(TemplateName Name) const;
2401
2402
  /// Determine whether the given template names refer to the same
2403
  /// template.
2404
  bool hasSameTemplateName(TemplateName X, TemplateName Y);
2405
2406
  /// Retrieve the "canonical" template argument.
2407
  ///
2408
  /// The canonical template argument is the simplest template argument
2409
  /// (which may be a type, value, expression, or declaration) that
2410
  /// expresses the value of the argument.
2411
  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2412
    const;
2413
2414
  /// Type Query functions.  If the type is an instance of the specified class,
2415
  /// return the Type pointer for the underlying maximally pretty type.  This
2416
  /// is a member of ASTContext because this may need to do some amount of
2417
  /// canonicalization, e.g. to move type qualifiers into the element type.
2418
  const ArrayType *getAsArrayType(QualType T) const;
2419
2.58M
  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2420
2.58M
    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2421
2.58M
  }
2422
928k
  const VariableArrayType *getAsVariableArrayType(QualType T) const {
2423
928k
    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2424
928k
  }
2425
2.12M
  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2426
2.12M
    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2427
2.12M
  }
2428
  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2429
510
    const {
2430
510
    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2431
510
  }
2432
2433
  /// Return the innermost element type of an array type.
2434
  ///
2435
  /// For example, will return "int" for int[m][n]
2436
  QualType getBaseElementType(const ArrayType *VAT) const;
2437
2438
  /// Return the innermost element type of a type (which needn't
2439
  /// actually be an array type).
2440
  QualType getBaseElementType(QualType QT) const;
2441
2442
  /// Return number of constant array elements.
2443
  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2444
2445
  /// Perform adjustment on the parameter type of a function.
2446
  ///
2447
  /// This routine adjusts the given parameter type @p T to the actual
2448
  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2449
  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2450
  QualType getAdjustedParameterType(QualType T) const;
2451
2452
  /// Retrieve the parameter type as adjusted for use in the signature
2453
  /// of a function, decaying array and function types and removing top-level
2454
  /// cv-qualifiers.
2455
  QualType getSignatureParameterType(QualType T) const;
2456
2457
  QualType getExceptionObjectType(QualType T) const;
2458
2459
  /// Return the properly qualified result of decaying the specified
2460
  /// array type to a pointer.
2461
  ///
2462
  /// This operation is non-trivial when handling typedefs etc.  The canonical
2463
  /// type of \p T must be an array type, this returns a pointer to a properly
2464
  /// qualified element of the array.
2465
  ///
2466
  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2467
  QualType getArrayDecayedType(QualType T) const;
2468
2469
  /// Return the type that \p PromotableType will promote to: C99
2470
  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2471
  QualType getPromotedIntegerType(QualType PromotableType) const;
2472
2473
  /// Recurses in pointer/array types until it finds an Objective-C
2474
  /// retainable type and returns its ownership.
2475
  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2476
2477
  /// Whether this is a promotable bitfield reference according
2478
  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2479
  ///
2480
  /// \returns the type this bit-field will promote to, or NULL if no
2481
  /// promotion occurs.
2482
  QualType isPromotableBitField(Expr *E) const;
2483
2484
  /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2485
  ///
2486
  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2487
  /// \p LHS < \p RHS, return -1.
2488
  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2489
2490
  /// Compare the rank of the two specified floating point types,
2491
  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2492
  ///
2493
  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2494
  /// \p LHS < \p RHS, return -1.
2495
  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2496
2497
  /// Return a real floating point or a complex type (based on
2498
  /// \p typeDomain/\p typeSize).
2499
  ///
2500
  /// \param typeDomain a real floating point or complex type.
2501
  /// \param typeSize a real floating point or complex type.
2502
  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2503
                                             QualType typeDomain) const;
2504
2505
883k
  unsigned getTargetAddressSpace(QualType T) const {
2506
883k
    return getTargetAddressSpace(T.getQualifiers());
2507
883k
  }
2508
2509
883k
  unsigned getTargetAddressSpace(Qualifiers Q) const {
2510
883k
    return getTargetAddressSpace(Q.getAddressSpace());
2511
883k
  }
2512
2513
  unsigned getTargetAddressSpace(LangAS AS) const;
2514
2515
  LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2516
2517
  /// Get target-dependent integer value for null pointer which is used for
2518
  /// constant folding.
2519
  uint64_t getTargetNullPointerValue(QualType QT) const;
2520
2521
55
  bool addressSpaceMapManglingFor(LangAS AS) const {
2522
55
    return AddrSpaceMapMangling || 
isTargetAddressSpace(AS)24
;
2523
55
  }
2524
2525
private:
2526
  // Helper for integer ordering
2527
  unsigned getIntegerRank(const Type *T) const;
2528
2529
public:
2530
  //===--------------------------------------------------------------------===//
2531
  //                    Type Compatibility Predicates
2532
  //===--------------------------------------------------------------------===//
2533
2534
  /// Compatibility predicates used to check assignment expressions.
2535
  bool typesAreCompatible(QualType T1, QualType T2,
2536
                          bool CompareUnqualified = false); // C99 6.2.7p1
2537
2538
  bool propertyTypesAreCompatible(QualType, QualType);
2539
  bool typesAreBlockPointerCompatible(QualType, QualType);
2540
2541
1.31k
  bool isObjCIdType(QualType T) const {
2542
1.31k
    return T == getObjCIdType();
2543
1.31k
  }
2544
2545
  bool isObjCClassType(QualType T) const {
2546
    return T == getObjCClassType();
2547
  }
2548
2549
7.88k
  bool isObjCSelType(QualType T) const {
2550
7.88k
    return T == getObjCSelType();
2551
7.88k
  }
2552
2553
  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
2554
                                         bool ForCompare);
2555
2556
  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
2557
2558
  // Check the safety of assignment from LHS to RHS
2559
  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2560
                               const ObjCObjectPointerType *RHSOPT);
2561
  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2562
                               const ObjCObjectType *RHS);
2563
  bool canAssignObjCInterfacesInBlockPointer(
2564
                                          const ObjCObjectPointerType *LHSOPT,
2565
                                          const ObjCObjectPointerType *RHSOPT,
2566
                                          bool BlockReturnType);
2567
  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2568
  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2569
                                   const ObjCObjectPointerType *RHSOPT);
2570
  bool canBindObjCObjectType(QualType To, QualType From);
2571
2572
  // Functions for calculating composite types
2573
  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2574
                      bool Unqualified = false, bool BlockReturnType = false);
2575
  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2576
                              bool Unqualified = false);
2577
  QualType mergeFunctionParameterTypes(QualType, QualType,
2578
                                       bool OfBlockPointer = false,
2579
                                       bool Unqualified = false);
2580
  QualType mergeTransparentUnionType(QualType, QualType,
2581
                                     bool OfBlockPointer=false,
2582
                                     bool Unqualified = false);
2583
2584
  QualType mergeObjCGCQualifiers(QualType, QualType);
2585
2586
  /// This function merges the ExtParameterInfo lists of two functions. It
2587
  /// returns true if the lists are compatible. The merged list is returned in
2588
  /// NewParamInfos.
2589
  ///
2590
  /// \param FirstFnType The type of the first function.
2591
  ///
2592
  /// \param SecondFnType The type of the second function.
2593
  ///
2594
  /// \param CanUseFirst This flag is set to true if the first function's
2595
  /// ExtParameterInfo list can be used as the composite list of
2596
  /// ExtParameterInfo.
2597
  ///
2598
  /// \param CanUseSecond This flag is set to true if the second function's
2599
  /// ExtParameterInfo list can be used as the composite list of
2600
  /// ExtParameterInfo.
2601
  ///
2602
  /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2603
  /// empty if none of the flags are set.
2604
  ///
2605
  bool mergeExtParameterInfo(
2606
      const FunctionProtoType *FirstFnType,
2607
      const FunctionProtoType *SecondFnType,
2608
      bool &CanUseFirst, bool &CanUseSecond,
2609
      SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2610
2611
  void ResetObjCLayout(const ObjCContainerDecl *CD);
2612
2613
  //===--------------------------------------------------------------------===//
2614
  //                    Integer Predicates
2615
  //===--------------------------------------------------------------------===//
2616
2617
  // The width of an integer, as defined in C99 6.2.6.2. This is the number
2618
  // of bits in an integer type excluding any padding bits.
2619
  unsigned getIntWidth(QualType T) const;
2620
2621
  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2622
  // unsigned integer type.  This method takes a signed type, and returns the
2623
  // corresponding unsigned integer type.
2624
  // With the introduction of fixed point types in ISO N1169, this method also
2625
  // accepts fixed point types and returns the corresponding unsigned type for
2626
  // a given fixed point type.
2627
  QualType getCorrespondingUnsignedType(QualType T) const;
2628
2629
  // Per ISO N1169, this method accepts fixed point types and returns the
2630
  // corresponding saturated type for a given fixed point type.
2631
  QualType getCorrespondingSaturatedType(QualType Ty) const;
2632
2633
  //===--------------------------------------------------------------------===//
2634
  //                    Integer Values
2635
  //===--------------------------------------------------------------------===//
2636
2637
  /// Make an APSInt of the appropriate width and signedness for the
2638
  /// given \p Value and integer \p Type.
2639
2.20M
  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2640
2.20M
    // If Type is a signed integer type larger than 64 bits, we need to be sure
2641
2.20M
    // to sign extend Res appropriately.
2642
2.20M
    llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2643
2.20M
    Res = Value;
2644
2.20M
    unsigned Width = getIntWidth(Type);
2645
2.20M
    if (Width != Res.getBitWidth())
2646
1.82M
      return Res.extOrTrunc(Width);
2647
379k
    return Res;
2648
379k
  }
2649
2650
  bool isSentinelNullExpr(const Expr *E);
2651
2652
  /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2653
  /// none exists.
2654
  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2655
2656
  /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2657
  /// none exists.
2658
  ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2659
2660
  /// Return true if there is at least one \@implementation in the TU.
2661
39
  bool AnyObjCImplementation() {
2662
39
    return !ObjCImpls.empty();
2663
39
  }
2664
2665
  /// Set the implementation of ObjCInterfaceDecl.
2666
  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2667
                             ObjCImplementationDecl *ImplD);
2668
2669
  /// Set the implementation of ObjCCategoryDecl.
2670
  void setObjCImplementation(ObjCCategoryDecl *CatD,
2671
                             ObjCCategoryImplDecl *ImplD);
2672
2673
  /// Get the duplicate declaration of a ObjCMethod in the same
2674
  /// interface, or null if none exists.
2675
  const ObjCMethodDecl *
2676
  getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2677
2678
  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2679
                                  const ObjCMethodDecl *Redecl);
2680
2681
  /// Returns the Objective-C interface that \p ND belongs to if it is
2682
  /// an Objective-C method/property/ivar etc. that is part of an interface,
2683
  /// otherwise returns null.
2684
  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2685
2686
  /// Set the copy inialization expression of a block var decl. \p CanThrow
2687
  /// indicates whether the copy expression can throw or not.
2688
  void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2689
2690
  /// Get the copy initialization expression of the VarDecl \p VD, or
2691
  /// nullptr if none exists.
2692
  BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2693
2694
  /// Allocate an uninitialized TypeSourceInfo.
2695
  ///
2696
  /// The caller should initialize the memory held by TypeSourceInfo using
2697
  /// the TypeLoc wrappers.
2698
  ///
2699
  /// \param T the type that will be the basis for type source info. This type
2700
  /// should refer to how the declarator was written in source code, not to
2701
  /// what type semantic analysis resolved the declarator to.
2702
  ///
2703
  /// \param Size the size of the type info to create, or 0 if the size
2704
  /// should be calculated based on the type.
2705
  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2706
2707
  /// Allocate a TypeSourceInfo where all locations have been
2708
  /// initialized to a given location, which defaults to the empty
2709
  /// location.
2710
  TypeSourceInfo *
2711
  getTrivialTypeSourceInfo(QualType T,
2712
                           SourceLocation Loc = SourceLocation()) const;
2713
2714
  /// Add a deallocation callback that will be invoked when the
2715
  /// ASTContext is destroyed.
2716
  ///
2717
  /// \param Callback A callback function that will be invoked on destruction.
2718
  ///
2719
  /// \param Data Pointer data that will be provided to the callback function
2720
  /// when it is called.
2721
  void AddDeallocation(void (*Callback)(void*), void *Data);
2722
2723
  /// If T isn't trivially destructible, calls AddDeallocation to register it
2724
  /// for destruction.
2725
  template <typename T>
2726
610k
  void addDestruction(T *Ptr) {
2727
610k
    if (!std::is_trivially_destructible<T>::value) {
2728
588k
      auto DestroyPtr = [](void *V) 
{ static_cast<T *>(V)->~T(); }40.0k
;
void clang::ASTContext::addDestruction<clang::APValue>(clang::APValue*)::'lambda'(void*)::operator()(void*) const
Line
Count
Source
2728
2.43k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
void clang::ASTContext::addDestruction<clang::FunctionTemplateDecl::Common>(clang::FunctionTemplateDecl::Common*)::'lambda'(void*)::operator()(void*) const
Line
Count
Source
2728
18.0k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
void clang::ASTContext::addDestruction<clang::ClassTemplateDecl::Common>(clang::ClassTemplateDecl::Common*)::'lambda'(void*)::operator()(void*) const
Line
Count
Source
2728
18.7k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
void clang::ASTContext::addDestruction<clang::VarTemplateDecl::Common>(clang::VarTemplateDecl::Common*)::'lambda'(void*)::operator()(void*) const
Line
Count
Source
2728
818
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2729
588k
      AddDeallocation(DestroyPtr, Ptr);
2730
588k
    }
2731
610k
  }
void clang::ASTContext::addDestruction<clang::APValue>(clang::APValue*)
Line
Count
Source
2726
17.7k
  void addDestruction(T *Ptr) {
2727
17.7k
    if (!std::is_trivially_destructible<T>::value) {
2728
17.7k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2729
17.7k
      AddDeallocation(DestroyPtr, Ptr);
2730
17.7k
    }
2731
17.7k
  }
void clang::ASTContext::addDestruction<clang::FunctionTemplateDecl::Common>(clang::FunctionTemplateDecl::Common*)
Line
Count
Source
2726
302k
  void addDestruction(T *Ptr) {
2727
302k
    if (!std::is_trivially_destructible<T>::value) {
2728
302k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2729
302k
      AddDeallocation(DestroyPtr, Ptr);
2730
302k
    }
2731
302k
  }
void clang::ASTContext::addDestruction<clang::ClassTemplateDecl::Common>(clang::ClassTemplateDecl::Common*)
Line
Count
Source
2726
267k
  void addDestruction(T *Ptr) {
2727
267k
    if (!std::is_trivially_destructible<T>::value) {
2728
267k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2729
267k
      AddDeallocation(DestroyPtr, Ptr);
2730
267k
    }
2731
267k
  }
void clang::ASTContext::addDestruction<clang::RedeclarableTemplateDecl::CommonBase>(clang::RedeclarableTemplateDecl::CommonBase*)
Line
Count
Source
2726
22.0k
  void addDestruction(T *Ptr) {
2727
22.0k
    if (!std::is_trivially_destructible<T>::value) {
2728
0
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2729
0
      AddDeallocation(DestroyPtr, Ptr);
2730
0
    }
2731
22.0k
  }
void clang::ASTContext::addDestruction<clang::VarTemplateDecl::Common>(clang::VarTemplateDecl::Common*)
Line
Count
Source
2726
821
  void addDestruction(T *Ptr) {
2727
821
    if (!std::is_trivially_destructible<T>::value) {
2728
821
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2729
821
      AddDeallocation(DestroyPtr, Ptr);
2730
821
    }
2731
821
  }
2732
2733
  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2734
  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2735
2736
  /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2737
  /// lazily, only when used; this is only relevant for function or file scoped
2738
  /// var definitions.
2739
  ///
2740
  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2741
  /// it is not used.
2742
  bool DeclMustBeEmitted(const Decl *D);
2743
2744
  /// Visits all versions of a multiversioned function with the passed
2745
  /// predicate.
2746
  void forEachMultiversionedFunctionVersion(
2747
      const FunctionDecl *FD,
2748
      llvm::function_ref<void(FunctionDecl *)> Pred) const;
2749
2750
  const CXXConstructorDecl *
2751
  getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2752
2753
  void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2754
                                            CXXConstructorDecl *CD);
2755
2756
  void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2757
2758
  TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2759
2760
  void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2761
2762
  DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2763
2764
  void setManglingNumber(const NamedDecl *ND, unsigned Number);
2765
  unsigned getManglingNumber(const NamedDecl *ND) const;
2766
2767
  void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2768
  unsigned getStaticLocalNumber(const VarDecl *VD) const;
2769
2770
  /// Retrieve the context for computing mangling numbers in the given
2771
  /// DeclContext.
2772
  MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2773
2774
  std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2775
2776
  /// Used by ParmVarDecl to store on the side the
2777
  /// index of the parameter when it exceeds the size of the normal bitfield.
2778
  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2779
2780
  /// Used by ParmVarDecl to retrieve on the side the
2781
  /// index of the parameter when it exceeds the size of the normal bitfield.
2782
  unsigned getParameterIndex(const ParmVarDecl *D) const;
2783
2784
  /// Get the storage for the constant value of a materialized temporary
2785
  /// of static storage duration.
2786
  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2787
                                         bool MayCreate);
2788
2789
  //===--------------------------------------------------------------------===//
2790
  //                    Statistics
2791
  //===--------------------------------------------------------------------===//
2792
2793
  /// The number of implicitly-declared default constructors.
2794
  static unsigned NumImplicitDefaultConstructors;
2795
2796
  /// The number of implicitly-declared default constructors for
2797
  /// which declarations were built.
2798
  static unsigned NumImplicitDefaultConstructorsDeclared;
2799
2800
  /// The number of implicitly-declared copy constructors.
2801
  static unsigned NumImplicitCopyConstructors;
2802
2803
  /// The number of implicitly-declared copy constructors for
2804
  /// which declarations were built.
2805
  static unsigned NumImplicitCopyConstructorsDeclared;
2806
2807
  /// The number of implicitly-declared move constructors.
2808
  static unsigned NumImplicitMoveConstructors;
2809
2810
  /// The number of implicitly-declared move constructors for
2811
  /// which declarations were built.
2812
  static unsigned NumImplicitMoveConstructorsDeclared;
2813
2814
  /// The number of implicitly-declared copy assignment operators.
2815
  static unsigned NumImplicitCopyAssignmentOperators;
2816
2817
  /// The number of implicitly-declared copy assignment operators for
2818
  /// which declarations were built.
2819
  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2820
2821
  /// The number of implicitly-declared move assignment operators.
2822
  static unsigned NumImplicitMoveAssignmentOperators;
2823
2824
  /// The number of implicitly-declared move assignment operators for
2825
  /// which declarations were built.
2826
  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2827
2828
  /// The number of implicitly-declared destructors.
2829
  static unsigned NumImplicitDestructors;
2830
2831
  /// The number of implicitly-declared destructors for which
2832
  /// declarations were built.
2833
  static unsigned NumImplicitDestructorsDeclared;
2834
2835
public:
2836
  /// Initialize built-in types.
2837
  ///
2838
  /// This routine may only be invoked once for a given ASTContext object.
2839
  /// It is normally invoked after ASTContext construction.
2840
  ///
2841
  /// \param Target The target
2842
  void InitBuiltinTypes(const TargetInfo &Target,
2843
                        const TargetInfo *AuxTarget = nullptr);
2844
2845
private:
2846
  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2847
2848
  // Return the Objective-C type encoding for a given type.
2849
  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2850
                                  bool ExpandPointedToStructures,
2851
                                  bool ExpandStructures,
2852
                                  const FieldDecl *Field,
2853
                                  bool OutermostType = false,
2854
                                  bool EncodingProperty = false,
2855
                                  bool StructField = false,
2856
                                  bool EncodeBlockParameters = false,
2857
                                  bool EncodeClassNames = false,
2858
                                  bool EncodePointerToObjCTypedef = false,
2859
                                  QualType *NotEncodedT=nullptr) const;
2860
2861
  // Adds the encoding of the structure's members.
2862
  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2863
                                       const FieldDecl *Field,
2864
                                       bool includeVBases = true,
2865
                                       QualType *NotEncodedT=nullptr) const;
2866
2867
public:
2868
  // Adds the encoding of a method parameter or return type.
2869
  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2870
                                         QualType T, std::string& S,
2871
                                         bool Extended) const;
2872
2873
  /// Returns true if this is an inline-initialized static data member
2874
  /// which is treated as a definition for MSVC compatibility.
2875
  bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
2876
2877
  enum class InlineVariableDefinitionKind {
2878
    /// Not an inline variable.
2879
    None,
2880
2881
    /// Weak definition of inline variable.
2882
    Weak,
2883
2884
    /// Weak for now, might become strong later in this TU.
2885
    WeakUnknown,
2886
2887
    /// Strong definition.
2888
    Strong
2889
  };
2890
2891
  /// Determine whether a definition of this inline variable should
2892
  /// be treated as a weak or strong definition. For compatibility with
2893
  /// C++14 and before, for a constexpr static data member, if there is an
2894
  /// out-of-line declaration of the member, we may promote it from weak to
2895
  /// strong.
2896
  InlineVariableDefinitionKind
2897
  getInlineVariableDefinitionKind(const VarDecl *VD) const;
2898
2899
private:
2900
  friend class DeclarationNameTable;
2901
  friend class DeclContext;
2902
2903
  const ASTRecordLayout &
2904
  getObjCLayout(const ObjCInterfaceDecl *D,
2905
                const ObjCImplementationDecl *Impl) const;
2906
2907
  /// A set of deallocations that should be performed when the
2908
  /// ASTContext is destroyed.
2909
  // FIXME: We really should have a better mechanism in the ASTContext to
2910
  // manage running destructors for types which do variable sized allocation
2911
  // within the AST. In some places we thread the AST bump pointer allocator
2912
  // into the datastructures which avoids this mess during deallocation but is
2913
  // wasteful of memory, and here we require a lot of error prone book keeping
2914
  // in order to track and run destructors while we're tearing things down.
2915
  using DeallocationFunctionsAndArguments =
2916
      llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
2917
  DeallocationFunctionsAndArguments Deallocations;
2918
2919
  // FIXME: This currently contains the set of StoredDeclMaps used
2920
  // by DeclContext objects.  This probably should not be in ASTContext,
2921
  // but we include it here so that ASTContext can quickly deallocate them.
2922
  llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
2923
2924
  std::unique_ptr<ParentMapPointers> PointerParents;
2925
  std::unique_ptr<ParentMapOtherNodes> OtherParents;
2926
2927
  std::unique_ptr<VTableContextBase> VTContext;
2928
2929
  void ReleaseDeclContextMaps();
2930
  void ReleaseParentMapEntries();
2931
2932
public:
2933
  enum PragmaSectionFlag : unsigned {
2934
    PSF_None = 0,
2935
    PSF_Read = 0x1,
2936
    PSF_Write = 0x2,
2937
    PSF_Execute = 0x4,
2938
    PSF_Implicit = 0x8,
2939
    PSF_Invalid = 0x80000000U,
2940
  };
2941
2942
  struct SectionInfo {
2943
    DeclaratorDecl *Decl;
2944
    SourceLocation PragmaSectionLocation;
2945
    int SectionFlags;
2946
2947
205
    SectionInfo() = default;
2948
    SectionInfo(DeclaratorDecl *Decl,
2949
                SourceLocation PragmaSectionLocation,
2950
                int SectionFlags)
2951
        : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
2952
205
          SectionFlags(SectionFlags) {}
2953
  };
2954
2955
  llvm::StringMap<SectionInfo> SectionInfos;
2956
};
2957
2958
/// Utility function for constructing a nullary selector.
2959
802k
inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
2960
802k
  IdentifierInfo* II = &Ctx.Idents.get(name);
2961
802k
  return Ctx.Selectors.getSelector(0, &II);
2962
802k
}
2963
2964
/// Utility function for constructing an unary selector.
2965
652
inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
2966
652
  IdentifierInfo* II = &Ctx.Idents.get(name);
2967
652
  return Ctx.Selectors.getSelector(1, &II);
2968
652
}
2969
2970
} // namespace clang
2971
2972
// operator new and delete aren't allowed inside namespaces.
2973
2974
/// Placement new for using the ASTContext's allocator.
2975
///
2976
/// This placement form of operator new uses the ASTContext's allocator for
2977
/// obtaining memory.
2978
///
2979
/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2980
/// here need to also be made there.
2981
///
2982
/// We intentionally avoid using a nothrow specification here so that the calls
2983
/// to this operator will not perform a null check on the result -- the
2984
/// underlying allocator never returns null pointers.
2985
///
2986
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2987
/// @code
2988
/// // Default alignment (8)
2989
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2990
/// // Specific alignment
2991
/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2992
/// @endcode
2993
/// Memory allocated through this placement new operator does not need to be
2994
/// explicitly freed, as ASTContext will free all of this memory when it gets
2995
/// destroyed. Please note that you cannot use delete on the pointer.
2996
///
2997
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2998
/// @param C The ASTContext that provides the allocator.
2999
/// @param Alignment The alignment of the allocated memory (if the underlying
3000
///                  allocator supports it).
3001
/// @return The allocated memory. Could be nullptr.
3002
inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3003
126M
                          size_t Alignment) {
3004
126M
  return C.Allocate(Bytes, Alignment);
3005
126M
}
3006
3007
/// Placement delete companion to the new above.
3008
///
3009
/// This operator is just a companion to the new above. There is no way of
3010
/// invoking it directly; see the new operator for more details. This operator
3011
/// is called implicitly by the compiler if a placement new expression using
3012
/// the ASTContext throws in the object constructor.
3013
0
inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3014
0
  C.Deallocate(Ptr);
3015
0
}
3016
3017
/// This placement form of operator new[] uses the ASTContext's allocator for
3018
/// obtaining memory.
3019
///
3020
/// We intentionally avoid using a nothrow specification here so that the calls
3021
/// to this operator will not perform a null check on the result -- the
3022
/// underlying allocator never returns null pointers.
3023
///
3024
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3025
/// @code
3026
/// // Default alignment (8)
3027
/// char *data = new (Context) char[10];
3028
/// // Specific alignment
3029
/// char *data = new (Context, 4) char[10];
3030
/// @endcode
3031
/// Memory allocated through this placement new[] operator does not need to be
3032
/// explicitly freed, as ASTContext will free all of this memory when it gets
3033
/// destroyed. Please note that you cannot use delete on the pointer.
3034
///
3035
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3036
/// @param C The ASTContext that provides the allocator.
3037
/// @param Alignment The alignment of the allocated memory (if the underlying
3038
///                  allocator supports it).
3039
/// @return The allocated memory. Could be nullptr.
3040
inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3041
22.1M
                            size_t Alignment = 8) {
3042
22.1M
  return C.Allocate(Bytes, Alignment);
3043
22.1M
}
3044
3045
/// Placement delete[] companion to the new[] above.
3046
///
3047
/// This operator is just a companion to the new[] above. There is no way of
3048
/// invoking it directly; see the new[] operator for more details. This operator
3049
/// is called implicitly by the compiler if a placement new[] expression using
3050
/// the ASTContext throws in the object constructor.
3051
0
inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3052
0
  C.Deallocate(Ptr);
3053
0
}
3054
3055
/// Create the representation of a LazyGenerationalUpdatePtr.
3056
template <typename Owner, typename T,
3057
          void (clang::ExternalASTSource::*Update)(Owner)>
3058
typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3059
    clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3060
21.7M
        const clang::ASTContext &Ctx, T Value) {
3061
21.7M
  // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3062
21.7M
  // include ASTContext.h. We explicitly instantiate it for all relevant types
3063
21.7M
  // in ASTContext.cpp.
3064
21.7M
  if (auto *Source = Ctx.getExternalSource())
3065
486k
    return new (Ctx) LazyData(Source, Value);
3066
21.2M
  return Value;
3067
21.2M
}
3068
3069
#endif // LLVM_CLANG_AST_ASTCONTEXT_H