Coverage Report

Created: 2019-02-21 13:17

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/clang/include/clang/AST/ASTContext.h
Line
Count
Source (jump to first uncovered line)
1
//===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file
10
/// Defines the clang::ASTContext interface.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15
#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17
#include "clang/AST/ASTContextAllocate.h"
18
#include "clang/AST/ASTTypeTraits.h"
19
#include "clang/AST/CanonicalType.h"
20
#include "clang/AST/CommentCommandTraits.h"
21
#include "clang/AST/ComparisonCategories.h"
22
#include "clang/AST/Decl.h"
23
#include "clang/AST/DeclBase.h"
24
#include "clang/AST/DeclarationName.h"
25
#include "clang/AST/Expr.h"
26
#include "clang/AST/ExternalASTSource.h"
27
#include "clang/AST/NestedNameSpecifier.h"
28
#include "clang/AST/PrettyPrinter.h"
29
#include "clang/AST/RawCommentList.h"
30
#include "clang/AST/TemplateBase.h"
31
#include "clang/AST/TemplateName.h"
32
#include "clang/AST/Type.h"
33
#include "clang/Basic/AddressSpaces.h"
34
#include "clang/Basic/AttrKinds.h"
35
#include "clang/Basic/IdentifierTable.h"
36
#include "clang/Basic/LLVM.h"
37
#include "clang/Basic/LangOptions.h"
38
#include "clang/Basic/Linkage.h"
39
#include "clang/Basic/OperatorKinds.h"
40
#include "clang/Basic/PartialDiagnostic.h"
41
#include "clang/Basic/SanitizerBlacklist.h"
42
#include "clang/Basic/SourceLocation.h"
43
#include "clang/Basic/Specifiers.h"
44
#include "clang/Basic/TargetInfo.h"
45
#include "clang/Basic/XRayLists.h"
46
#include "llvm/ADT/APSInt.h"
47
#include "llvm/ADT/ArrayRef.h"
48
#include "llvm/ADT/DenseMap.h"
49
#include "llvm/ADT/FoldingSet.h"
50
#include "llvm/ADT/IntrusiveRefCntPtr.h"
51
#include "llvm/ADT/MapVector.h"
52
#include "llvm/ADT/None.h"
53
#include "llvm/ADT/Optional.h"
54
#include "llvm/ADT/PointerIntPair.h"
55
#include "llvm/ADT/PointerUnion.h"
56
#include "llvm/ADT/SmallVector.h"
57
#include "llvm/ADT/StringMap.h"
58
#include "llvm/ADT/StringRef.h"
59
#include "llvm/ADT/TinyPtrVector.h"
60
#include "llvm/ADT/Triple.h"
61
#include "llvm/ADT/iterator_range.h"
62
#include "llvm/Support/AlignOf.h"
63
#include "llvm/Support/Allocator.h"
64
#include "llvm/Support/Casting.h"
65
#include "llvm/Support/Compiler.h"
66
#include <cassert>
67
#include <cstddef>
68
#include <cstdint>
69
#include <iterator>
70
#include <memory>
71
#include <string>
72
#include <type_traits>
73
#include <utility>
74
#include <vector>
75
76
namespace llvm {
77
78
struct fltSemantics;
79
80
} // namespace llvm
81
82
namespace clang {
83
84
class APFixedPoint;
85
class APValue;
86
class ASTMutationListener;
87
class ASTRecordLayout;
88
class AtomicExpr;
89
class BlockExpr;
90
class BuiltinTemplateDecl;
91
class CharUnits;
92
class CXXABI;
93
class CXXConstructorDecl;
94
class CXXMethodDecl;
95
class CXXRecordDecl;
96
class DiagnosticsEngine;
97
class Expr;
98
class FixedPointSemantics;
99
class MangleContext;
100
class MangleNumberingContext;
101
class MaterializeTemporaryExpr;
102
class MemberSpecializationInfo;
103
class Module;
104
class ObjCCategoryDecl;
105
class ObjCCategoryImplDecl;
106
class ObjCContainerDecl;
107
class ObjCImplDecl;
108
class ObjCImplementationDecl;
109
class ObjCInterfaceDecl;
110
class ObjCIvarDecl;
111
class ObjCMethodDecl;
112
class ObjCPropertyDecl;
113
class ObjCPropertyImplDecl;
114
class ObjCProtocolDecl;
115
class ObjCTypeParamDecl;
116
class Preprocessor;
117
class Stmt;
118
class StoredDeclsMap;
119
class TemplateDecl;
120
class TemplateParameterList;
121
class TemplateTemplateParmDecl;
122
class TemplateTypeParmDecl;
123
class UnresolvedSetIterator;
124
class UsingShadowDecl;
125
class VarTemplateDecl;
126
class VTableContextBase;
127
128
namespace Builtin {
129
130
class Context;
131
132
} // namespace Builtin
133
134
enum BuiltinTemplateKind : int;
135
136
namespace comments {
137
138
class FullComment;
139
140
} // namespace comments
141
142
struct TypeInfo {
143
  uint64_t Width = 0;
144
  unsigned Align = 0;
145
  bool AlignIsRequired : 1;
146
147
1.20M
  TypeInfo() : AlignIsRequired(false) {}
148
  TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
149
979k
      : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
150
};
151
152
/// Holds long-lived AST nodes (such as types and decls) that can be
153
/// referred to throughout the semantic analysis of a file.
154
class ASTContext : public RefCountedBase<ASTContext> {
155
public:
156
  /// Copy initialization expr of a __block variable and a boolean flag that
157
  /// indicates whether the expression can throw.
158
  struct BlockVarCopyInit {
159
113
    BlockVarCopyInit() = default;
160
    BlockVarCopyInit(Expr *CopyExpr, bool CanThrow)
161
572
        : ExprAndFlag(CopyExpr, CanThrow) {}
162
113
    void setExprAndFlag(Expr *CopyExpr, bool CanThrow) {
163
113
      ExprAndFlag.setPointerAndInt(CopyExpr, CanThrow);
164
113
    }
165
323
    Expr *getCopyExpr() const { return ExprAndFlag.getPointer(); }
166
708
    bool canThrow() const { return ExprAndFlag.getInt(); }
167
    llvm::PointerIntPair<Expr *, 1, bool> ExprAndFlag;
168
  };
169
170
private:
171
  friend class NestedNameSpecifier;
172
173
  mutable SmallVector<Type *, 0> Types;
174
  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
175
  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
176
  mutable llvm::FoldingSet<PointerType> PointerTypes;
177
  mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
178
  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
179
  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
180
  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
181
  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
182
  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
183
  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
184
  mutable std::vector<VariableArrayType*> VariableArrayTypes;
185
  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
186
  mutable llvm::FoldingSet<DependentSizedExtVectorType>
187
    DependentSizedExtVectorTypes;
188
  mutable llvm::FoldingSet<DependentAddressSpaceType>
189
      DependentAddressSpaceTypes;
190
  mutable llvm::FoldingSet<VectorType> VectorTypes;
191
  mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
192
  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
193
  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
194
    FunctionProtoTypes;
195
  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
196
  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
197
  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
198
  mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
199
  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
200
    SubstTemplateTypeParmTypes;
201
  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
202
    SubstTemplateTypeParmPackTypes;
203
  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
204
    TemplateSpecializationTypes;
205
  mutable llvm::FoldingSet<ParenType> ParenTypes;
206
  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
207
  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
208
  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
209
                                     ASTContext&>
210
    DependentTemplateSpecializationTypes;
211
  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
212
  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
213
  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
214
  mutable llvm::FoldingSet<DependentUnaryTransformType>
215
    DependentUnaryTransformTypes;
216
  mutable llvm::FoldingSet<AutoType> AutoTypes;
217
  mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
218
    DeducedTemplateSpecializationTypes;
219
  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
220
  llvm::FoldingSet<AttributedType> AttributedTypes;
221
  mutable llvm::FoldingSet<PipeType> PipeTypes;
222
223
  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
224
  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
225
  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
226
    SubstTemplateTemplateParms;
227
  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
228
                                     ASTContext&>
229
    SubstTemplateTemplateParmPacks;
230
231
  /// The set of nested name specifiers.
232
  ///
233
  /// This set is managed by the NestedNameSpecifier class.
234
  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
235
  mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
236
237
  /// A cache mapping from RecordDecls to ASTRecordLayouts.
238
  ///
239
  /// This is lazily created.  This is intentionally not serialized.
240
  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
241
    ASTRecordLayouts;
242
  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
243
    ObjCLayouts;
244
245
  /// A cache from types to size and alignment information.
246
  using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
247
  mutable TypeInfoMap MemoizedTypeInfo;
248
249
  /// A cache from types to unadjusted alignment information. Only ARM and
250
  /// AArch64 targets need this information, keeping it separate prevents
251
  /// imposing overhead on TypeInfo size.
252
  using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
253
  mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
254
255
  /// A cache mapping from CXXRecordDecls to key functions.
256
  llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
257
258
  /// Mapping from ObjCContainers to their ObjCImplementations.
259
  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
260
261
  /// Mapping from ObjCMethod to its duplicate declaration in the same
262
  /// interface.
263
  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
264
265
  /// Mapping from __block VarDecls to BlockVarCopyInit.
266
  llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
267
268
  /// Mapping from class scope functions specialization to their
269
  /// template patterns.
270
  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
271
    ClassScopeSpecializationPattern;
272
273
  /// Mapping from materialized temporaries with static storage duration
274
  /// that appear in constant initializers to their evaluated values.  These are
275
  /// allocated in a std::map because their address must be stable.
276
  llvm::DenseMap<const MaterializeTemporaryExpr *, APValue *>
277
    MaterializedTemporaryValues;
278
279
  /// Representation of a "canonical" template template parameter that
280
  /// is used in canonical template names.
281
  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
282
    TemplateTemplateParmDecl *Parm;
283
284
  public:
285
    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
286
1.71k
        : Parm(Parm) {}
287
288
4.34k
    TemplateTemplateParmDecl *getParam() const { return Parm; }
289
290
4.46k
    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
291
292
    static void Profile(llvm::FoldingSetNodeID &ID,
293
                        TemplateTemplateParmDecl *Parm);
294
  };
295
  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
296
    CanonTemplateTemplateParms;
297
298
  TemplateTemplateParmDecl *
299
    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
300
301
  /// The typedef for the __int128_t type.
302
  mutable TypedefDecl *Int128Decl = nullptr;
303
304
  /// The typedef for the __uint128_t type.
305
  mutable TypedefDecl *UInt128Decl = nullptr;
306
307
  /// The typedef for the target specific predefined
308
  /// __builtin_va_list type.
309
  mutable TypedefDecl *BuiltinVaListDecl = nullptr;
310
311
  /// The typedef for the predefined \c __builtin_ms_va_list type.
312
  mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
313
314
  /// The typedef for the predefined \c id type.
315
  mutable TypedefDecl *ObjCIdDecl = nullptr;
316
317
  /// The typedef for the predefined \c SEL type.
318
  mutable TypedefDecl *ObjCSelDecl = nullptr;
319
320
  /// The typedef for the predefined \c Class type.
321
  mutable TypedefDecl *ObjCClassDecl = nullptr;
322
323
  /// The typedef for the predefined \c Protocol class in Objective-C.
324
  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
325
326
  /// The typedef for the predefined 'BOOL' type.
327
  mutable TypedefDecl *BOOLDecl = nullptr;
328
329
  // Typedefs which may be provided defining the structure of Objective-C
330
  // pseudo-builtins
331
  QualType ObjCIdRedefinitionType;
332
  QualType ObjCClassRedefinitionType;
333
  QualType ObjCSelRedefinitionType;
334
335
  /// The identifier 'bool'.
336
  mutable IdentifierInfo *BoolName = nullptr;
337
338
  /// The identifier 'NSObject'.
339
  mutable IdentifierInfo *NSObjectName = nullptr;
340
341
  /// The identifier 'NSCopying'.
342
  IdentifierInfo *NSCopyingName = nullptr;
343
344
  /// The identifier '__make_integer_seq'.
345
  mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
346
347
  /// The identifier '__type_pack_element'.
348
  mutable IdentifierInfo *TypePackElementName = nullptr;
349
350
  QualType ObjCConstantStringType;
351
  mutable RecordDecl *CFConstantStringTagDecl = nullptr;
352
  mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
353
354
  mutable QualType ObjCSuperType;
355
356
  QualType ObjCNSStringType;
357
358
  /// The typedef declaration for the Objective-C "instancetype" type.
359
  TypedefDecl *ObjCInstanceTypeDecl = nullptr;
360
361
  /// The type for the C FILE type.
362
  TypeDecl *FILEDecl = nullptr;
363
364
  /// The type for the C jmp_buf type.
365
  TypeDecl *jmp_bufDecl = nullptr;
366
367
  /// The type for the C sigjmp_buf type.
368
  TypeDecl *sigjmp_bufDecl = nullptr;
369
370
  /// The type for the C ucontext_t type.
371
  TypeDecl *ucontext_tDecl = nullptr;
372
373
  /// Type for the Block descriptor for Blocks CodeGen.
374
  ///
375
  /// Since this is only used for generation of debug info, it is not
376
  /// serialized.
377
  mutable RecordDecl *BlockDescriptorType = nullptr;
378
379
  /// Type for the Block descriptor for Blocks CodeGen.
380
  ///
381
  /// Since this is only used for generation of debug info, it is not
382
  /// serialized.
383
  mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
384
385
  /// Declaration for the CUDA cudaConfigureCall function.
386
  FunctionDecl *cudaConfigureCallDecl = nullptr;
387
388
  /// Keeps track of all declaration attributes.
389
  ///
390
  /// Since so few decls have attrs, we keep them in a hash map instead of
391
  /// wasting space in the Decl class.
392
  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
393
394
  /// A mapping from non-redeclarable declarations in modules that were
395
  /// merged with other declarations to the canonical declaration that they were
396
  /// merged into.
397
  llvm::DenseMap<Decl*, Decl*> MergedDecls;
398
399
  /// A mapping from a defining declaration to a list of modules (other
400
  /// than the owning module of the declaration) that contain merged
401
  /// definitions of that entity.
402
  llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
403
404
  /// Initializers for a module, in order. Each Decl will be either
405
  /// something that has a semantic effect on startup (such as a variable with
406
  /// a non-constant initializer), or an ImportDecl (which recursively triggers
407
  /// initialization of another module).
408
  struct PerModuleInitializers {
409
    llvm::SmallVector<Decl*, 4> Initializers;
410
    llvm::SmallVector<uint32_t, 4> LazyInitializers;
411
412
    void resolve(ASTContext &Ctx);
413
  };
414
  llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
415
416
196k
  ASTContext &this_() { return *this; }
417
418
public:
419
  /// A type synonym for the TemplateOrInstantiation mapping.
420
  using TemplateOrSpecializationInfo =
421
      llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
422
423
private:
424
  friend class ASTDeclReader;
425
  friend class ASTReader;
426
  friend class ASTWriter;
427
  friend class CXXRecordDecl;
428
429
  /// A mapping to contain the template or declaration that
430
  /// a variable declaration describes or was instantiated from,
431
  /// respectively.
432
  ///
433
  /// For non-templates, this value will be NULL. For variable
434
  /// declarations that describe a variable template, this will be a
435
  /// pointer to a VarTemplateDecl. For static data members
436
  /// of class template specializations, this will be the
437
  /// MemberSpecializationInfo referring to the member variable that was
438
  /// instantiated or specialized. Thus, the mapping will keep track of
439
  /// the static data member templates from which static data members of
440
  /// class template specializations were instantiated.
441
  ///
442
  /// Given the following example:
443
  ///
444
  /// \code
445
  /// template<typename T>
446
  /// struct X {
447
  ///   static T value;
448
  /// };
449
  ///
450
  /// template<typename T>
451
  ///   T X<T>::value = T(17);
452
  ///
453
  /// int *x = &X<int>::value;
454
  /// \endcode
455
  ///
456
  /// This mapping will contain an entry that maps from the VarDecl for
457
  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
458
  /// class template X) and will be marked TSK_ImplicitInstantiation.
459
  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
460
  TemplateOrInstantiation;
461
462
  /// Keeps track of the declaration from which a using declaration was
463
  /// created during instantiation.
464
  ///
465
  /// The source and target declarations are always a UsingDecl, an
466
  /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
467
  ///
468
  /// For example:
469
  /// \code
470
  /// template<typename T>
471
  /// struct A {
472
  ///   void f();
473
  /// };
474
  ///
475
  /// template<typename T>
476
  /// struct B : A<T> {
477
  ///   using A<T>::f;
478
  /// };
479
  ///
480
  /// template struct B<int>;
481
  /// \endcode
482
  ///
483
  /// This mapping will contain an entry that maps from the UsingDecl in
484
  /// B<int> to the UnresolvedUsingDecl in B<T>.
485
  llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
486
487
  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
488
    InstantiatedFromUsingShadowDecl;
489
490
  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
491
492
  /// Mapping that stores the methods overridden by a given C++
493
  /// member function.
494
  ///
495
  /// Since most C++ member functions aren't virtual and therefore
496
  /// don't override anything, we store the overridden functions in
497
  /// this map on the side rather than within the CXXMethodDecl structure.
498
  using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
499
  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
500
501
  /// Mapping from each declaration context to its corresponding
502
  /// mangling numbering context (used for constructs like lambdas which
503
  /// need to be consistently numbered for the mangler).
504
  llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
505
      MangleNumberingContexts;
506
507
  /// Side-table of mangling numbers for declarations which rarely
508
  /// need them (like static local vars).
509
  llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
510
  llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
511
512
  /// Mapping that stores parameterIndex values for ParmVarDecls when
513
  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
514
  using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
515
  ParameterIndexTable ParamIndices;
516
517
  ImportDecl *FirstLocalImport = nullptr;
518
  ImportDecl *LastLocalImport = nullptr;
519
520
  TranslationUnitDecl *TUDecl;
521
  mutable ExternCContextDecl *ExternCContext = nullptr;
522
  mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
523
  mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
524
525
  /// The associated SourceManager object.
526
  SourceManager &SourceMgr;
527
528
  /// The language options used to create the AST associated with
529
  ///  this ASTContext object.
530
  LangOptions &LangOpts;
531
532
  /// Blacklist object that is used by sanitizers to decide which
533
  /// entities should not be instrumented.
534
  std::unique_ptr<SanitizerBlacklist> SanitizerBL;
535
536
  /// Function filtering mechanism to determine whether a given function
537
  /// should be imbued with the XRay "always" or "never" attributes.
538
  std::unique_ptr<XRayFunctionFilter> XRayFilter;
539
540
  /// The allocator used to create AST objects.
541
  ///
542
  /// AST objects are never destructed; rather, all memory associated with the
543
  /// AST objects will be released when the ASTContext itself is destroyed.
544
  mutable llvm::BumpPtrAllocator BumpAlloc;
545
546
  /// Allocator for partial diagnostics.
547
  PartialDiagnostic::StorageAllocator DiagAllocator;
548
549
  /// The current C++ ABI.
550
  std::unique_ptr<CXXABI> ABI;
551
  CXXABI *createCXXABI(const TargetInfo &T);
552
553
  /// The logical -> physical address space map.
554
  const LangASMap *AddrSpaceMap = nullptr;
555
556
  /// Address space map mangling must be used with language specific
557
  /// address spaces (e.g. OpenCL/CUDA)
558
  bool AddrSpaceMapMangling;
559
560
  const TargetInfo *Target = nullptr;
561
  const TargetInfo *AuxTarget = nullptr;
562
  clang::PrintingPolicy PrintingPolicy;
563
564
public:
565
  IdentifierTable &Idents;
566
  SelectorTable &Selectors;
567
  Builtin::Context &BuiltinInfo;
568
  mutable DeclarationNameTable DeclarationNames;
569
  IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
570
  ASTMutationListener *Listener = nullptr;
571
572
  /// Container for either a single DynTypedNode or for an ArrayRef to
573
  /// DynTypedNode. For use with ParentMap.
574
  class DynTypedNodeList {
575
    using DynTypedNode = ast_type_traits::DynTypedNode;
576
577
    llvm::AlignedCharArrayUnion<ast_type_traits::DynTypedNode,
578
                                ArrayRef<DynTypedNode>> Storage;
579
    bool IsSingleNode;
580
581
  public:
582
10.6k
    DynTypedNodeList(const DynTypedNode &N) : IsSingleNode(true) {
583
10.6k
      new (Storage.buffer) DynTypedNode(N);
584
10.6k
    }
585
586
652
    DynTypedNodeList(ArrayRef<DynTypedNode> A) : IsSingleNode(false) {
587
652
      new (Storage.buffer) ArrayRef<DynTypedNode>(A);
588
652
    }
589
590
31.4k
    const ast_type_traits::DynTypedNode *begin() const {
591
31.4k
      if (!IsSingleNode)
592
726
        return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
593
726
            ->begin();
594
30.7k
      return reinterpret_cast<const DynTypedNode *>(Storage.buffer);
595
30.7k
    }
596
597
15.2k
    const ast_type_traits::DynTypedNode *end() const {
598
15.2k
      if (!IsSingleNode)
599
694
        return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
600
694
            ->end();
601
14.5k
      return reinterpret_cast<const DynTypedNode *>(Storage.buffer) + 1;
602
14.5k
    }
603
604
4.58k
    size_t size() const { return end() - begin(); }
605
10.5k
    bool empty() const { return begin() == end(); }
606
607
16.2k
    const DynTypedNode &operator[](size_t N) const {
608
16.2k
      assert(N < size() && "Out of bounds!");
609
16.2k
      return *(begin() + N);
610
16.2k
    }
611
  };
612
613
  // A traversal scope limits the parts of the AST visible to certain analyses.
614
  // RecursiveASTVisitor::TraverseAST will only visit reachable nodes, and
615
  // getParents() will only observe reachable parent edges.
616
  //
617
  // The scope is defined by a set of "top-level" declarations.
618
  // Initially, it is the entire TU: {getTranslationUnitDecl()}.
619
  // Changing the scope clears the parent cache, which is expensive to rebuild.
620
5.64k
  std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
621
  void setTraversalScope(const std::vector<Decl *> &);
622
623
  /// Returns the parents of the given node (within the traversal scope).
624
  ///
625
  /// Note that this will lazily compute the parents of all nodes
626
  /// and store them for later retrieval. Thus, the first call is O(n)
627
  /// in the number of AST nodes.
628
  ///
629
  /// Caveats and FIXMEs:
630
  /// Calculating the parent map over all AST nodes will need to load the
631
  /// full AST. This can be undesirable in the case where the full AST is
632
  /// expensive to create (for example, when using precompiled header
633
  /// preambles). Thus, there are good opportunities for optimization here.
634
  /// One idea is to walk the given node downwards, looking for references
635
  /// to declaration contexts - once a declaration context is found, compute
636
  /// the parent map for the declaration context; if that can satisfy the
637
  /// request, loading the whole AST can be avoided. Note that this is made
638
  /// more complex by statements in templates having multiple parents - those
639
  /// problems can be solved by building closure over the templated parts of
640
  /// the AST, which also avoids touching large parts of the AST.
641
  /// Additionally, we will want to add an interface to already give a hint
642
  /// where to search for the parents, for example when looking at a statement
643
  /// inside a certain function.
644
  ///
645
  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
646
  /// NestedNameSpecifier or NestedNameSpecifierLoc.
647
884
  template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node) {
648
884
    return getParents(ast_type_traits::DynTypedNode::create(Node));
649
884
  }
650
651
  DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node);
652
653
43.9M
  const clang::PrintingPolicy &getPrintingPolicy() const {
654
43.9M
    return PrintingPolicy;
655
43.9M
  }
656
657
1.94M
  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
658
1.94M
    PrintingPolicy = Policy;
659
1.94M
  }
660
661
42.6M
  SourceManager& getSourceManager() { return SourceMgr; }
662
27.6k
  const SourceManager& getSourceManager() const { return SourceMgr; }
663
664
3.49k
  llvm::BumpPtrAllocator &getAllocator() const {
665
3.49k
    return BumpAlloc;
666
3.49k
  }
667
668
236M
  void *Allocate(size_t Size, unsigned Align = 8) const {
669
236M
    return BumpAlloc.Allocate(Size, Align);
670
236M
  }
671
447k
  template <typename T> T *Allocate(size_t Num = 1) const {
672
447k
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
673
447k
  }
char* clang::ASTContext::Allocate<char>(unsigned long) const
Line
Count
Source
671
578
  template <typename T> T *Allocate(size_t Num = 1) const {
672
578
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
673
578
  }
clang::TemplateArgument* clang::ASTContext::Allocate<clang::TemplateArgument>(unsigned long) const
Line
Count
Source
671
445k
  template <typename T> T *Allocate(size_t Num = 1) const {
672
445k
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
673
445k
  }
clang::BlockDecl::Capture* clang::ASTContext::Allocate<clang::BlockDecl::Capture>(unsigned long) const
Line
Count
Source
671
1.56k
  template <typename T> T *Allocate(size_t Num = 1) const {
672
1.56k
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
673
1.56k
  }
clang::OMPClause** clang::ASTContext::Allocate<clang::OMPClause*>(unsigned long) const
Line
Count
Source
671
256
  template <typename T> T *Allocate(size_t Num = 1) const {
672
256
    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
673
256
  }
Unexecuted instantiation: clang::QualType* clang::ASTContext::Allocate<clang::QualType>(unsigned long) const
674
746k
  void Deallocate(void *Ptr) const {}
675
676
  /// Return the total amount of physical memory allocated for representing
677
  /// AST nodes and type information.
678
  size_t getASTAllocatedMemory() const {
679
    return BumpAlloc.getTotalMemory();
680
  }
681
682
  /// Return the total memory used for various side tables.
683
  size_t getSideTableAllocatedMemory() const;
684
685
5.12M
  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
686
5.12M
    return DiagAllocator;
687
5.12M
  }
688
689
77.3M
  const TargetInfo &getTargetInfo() const { return *Target; }
690
91
  const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
691
692
  /// getIntTypeForBitwidth -
693
  /// sets integer QualTy according to specified details:
694
  /// bitwidth, signed/unsigned.
695
  /// Returns empty type if there is no appropriate target types.
696
  QualType getIntTypeForBitwidth(unsigned DestWidth,
697
                                 unsigned Signed) const;
698
699
  /// getRealTypeForBitwidth -
700
  /// sets floating point QualTy according to specified bitwidth.
701
  /// Returns empty type if there is no appropriate target types.
702
  QualType getRealTypeForBitwidth(unsigned DestWidth) const;
703
704
  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
705
706
407M
  const LangOptions& getLangOpts() const { return LangOpts; }
707
708
6.60k
  const SanitizerBlacklist &getSanitizerBlacklist() const {
709
6.60k
    return *SanitizerBL;
710
6.60k
  }
711
712
17
  const XRayFunctionFilter &getXRayFilter() const {
713
17
    return *XRayFilter;
714
17
  }
715
716
  DiagnosticsEngine &getDiagnostics() const;
717
718
419
  FullSourceLoc getFullLoc(SourceLocation Loc) const {
719
419
    return FullSourceLoc(Loc,SourceMgr);
720
419
  }
721
722
  /// All comments in this translation unit.
723
  RawCommentList Comments;
724
725
  /// True if comments are already loaded from ExternalASTSource.
726
  mutable bool CommentsLoaded = false;
727
728
  class RawCommentAndCacheFlags {
729
  public:
730
    enum Kind {
731
      /// We searched for a comment attached to the particular declaration, but
732
      /// didn't find any.
733
      ///
734
      /// getRaw() == 0.
735
      NoCommentInDecl = 0,
736
737
      /// We have found a comment attached to this particular declaration.
738
      ///
739
      /// getRaw() != 0.
740
      FromDecl,
741
742
      /// This declaration does not have an attached comment, and we have
743
      /// searched the redeclaration chain.
744
      ///
745
      /// If getRaw() == 0, the whole redeclaration chain does not have any
746
      /// comments.
747
      ///
748
      /// If getRaw() != 0, it is a comment propagated from other
749
      /// redeclaration.
750
      FromRedecl
751
    };
752
753
16.0k
    Kind getKind() const LLVM_READONLY {
754
16.0k
      return Data.getInt();
755
16.0k
    }
756
757
10.6k
    void setKind(Kind K) {
758
10.6k
      Data.setInt(K);
759
10.6k
    }
760
761
10.5k
    const RawComment *getRaw() const LLVM_READONLY {
762
10.5k
      return Data.getPointer();
763
10.5k
    }
764
765
6.45k
    void setRaw(const RawComment *RC) {
766
6.45k
      Data.setPointer(RC);
767
6.45k
    }
768
769
6.82k
    const Decl *getOriginalDecl() const LLVM_READONLY {
770
6.82k
      return OriginalDecl;
771
6.82k
    }
772
773
10.6k
    void setOriginalDecl(const Decl *Orig) {
774
10.6k
      OriginalDecl = Orig;
775
10.6k
    }
776
777
  private:
778
    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
779
    const Decl *OriginalDecl;
780
  };
781
782
  /// Mapping from declarations to comments attached to any
783
  /// redeclaration.
784
  ///
785
  /// Raw comments are owned by Comments list.  This mapping is populated
786
  /// lazily.
787
  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
788
789
  /// Mapping from declarations to parsed comments attached to any
790
  /// redeclaration.
791
  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
792
793
  /// Return the documentation comment attached to a given declaration,
794
  /// without looking into cache.
795
  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
796
797
public:
798
804
  RawCommentList &getRawCommentList() {
799
804
    return Comments;
800
804
  }
801
802
4.47M
  void addComment(const RawComment &RC) {
803
4.47M
    assert(LangOpts.RetainCommentsFromSystemHeaders ||
804
4.47M
           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
805
4.47M
    Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
806
4.47M
  }
807
808
  /// Return the documentation comment attached to a given declaration.
809
  /// Returns nullptr if no comment is attached.
810
  ///
811
  /// \param OriginalDecl if not nullptr, is set to declaration AST node that
812
  /// had the comment, if the comment we found comes from a redeclaration.
813
  const RawComment *
814
  getRawCommentForAnyRedecl(const Decl *D,
815
                            const Decl **OriginalDecl = nullptr) const;
816
817
  /// Return parsed documentation comment attached to a given declaration.
818
  /// Returns nullptr if no comment is attached.
819
  ///
820
  /// \param PP the Preprocessor used with this TU.  Could be nullptr if
821
  /// preprocessor is not available.
822
  comments::FullComment *getCommentForDecl(const Decl *D,
823
                                           const Preprocessor *PP) const;
824
825
  /// Return parsed documentation comment attached to a given declaration.
826
  /// Returns nullptr if no comment is attached. Does not look at any
827
  /// redeclarations of the declaration.
828
  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
829
830
  comments::FullComment *cloneFullComment(comments::FullComment *FC,
831
                                         const Decl *D) const;
832
833
private:
834
  mutable comments::CommandTraits CommentCommandTraits;
835
836
  /// Iterator that visits import declarations.
837
  class import_iterator {
838
    ImportDecl *Import = nullptr;
839
840
  public:
841
    using value_type = ImportDecl *;
842
    using reference = ImportDecl *;
843
    using pointer = ImportDecl *;
844
    using difference_type = int;
845
    using iterator_category = std::forward_iterator_tag;
846
847
2.09k
    import_iterator() = default;
848
2.09k
    explicit import_iterator(ImportDecl *Import) : Import(Import) {}
849
850
63
    reference operator*() const { return Import; }
851
    pointer operator->() const { return Import; }
852
853
63
    import_iterator &operator++() {
854
63
      Import = ASTContext::getNextLocalImport(Import);
855
63
      return *this;
856
63
    }
857
858
0
    import_iterator operator++(int) {
859
0
      import_iterator Other(*this);
860
0
      ++(*this);
861
0
      return Other;
862
0
    }
863
864
0
    friend bool operator==(import_iterator X, import_iterator Y) {
865
0
      return X.Import == Y.Import;
866
0
    }
867
868
2.16k
    friend bool operator!=(import_iterator X, import_iterator Y) {
869
2.16k
      return X.Import != Y.Import;
870
2.16k
    }
871
  };
872
873
public:
874
8.63k
  comments::CommandTraits &getCommentCommandTraits() const {
875
8.63k
    return CommentCommandTraits;
876
8.63k
  }
877
878
  /// Retrieve the attributes for the given declaration.
879
  AttrVec& getDeclAttrs(const Decl *D);
880
881
  /// Erase the attributes corresponding to the given declaration.
882
  void eraseDeclAttrs(const Decl *D);
883
884
  /// If this variable is an instantiated static data member of a
885
  /// class template specialization, returns the templated static data member
886
  /// from which it was instantiated.
887
  // FIXME: Remove ?
888
  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
889
                                                           const VarDecl *Var);
890
891
  TemplateOrSpecializationInfo
892
  getTemplateOrSpecializationInfo(const VarDecl *Var);
893
894
  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
895
896
  void setClassScopeSpecializationPattern(FunctionDecl *FD,
897
                                          FunctionDecl *Pattern);
898
899
  /// Note that the static data member \p Inst is an instantiation of
900
  /// the static data member template \p Tmpl of a class template.
901
  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
902
                                           TemplateSpecializationKind TSK,
903
                        SourceLocation PointOfInstantiation = SourceLocation());
904
905
  void setTemplateOrSpecializationInfo(VarDecl *Inst,
906
                                       TemplateOrSpecializationInfo TSI);
907
908
  /// If the given using decl \p Inst is an instantiation of a
909
  /// (possibly unresolved) using decl from a template instantiation,
910
  /// return it.
911
  NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
912
913
  /// Remember that the using decl \p Inst is an instantiation
914
  /// of the using decl \p Pattern of a class template.
915
  void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
916
917
  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
918
                                          UsingShadowDecl *Pattern);
919
  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
920
921
  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
922
923
  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
924
925
  // Access to the set of methods overridden by the given C++ method.
926
  using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
927
  overridden_cxx_method_iterator
928
  overridden_methods_begin(const CXXMethodDecl *Method) const;
929
930
  overridden_cxx_method_iterator
931
  overridden_methods_end(const CXXMethodDecl *Method) const;
932
933
  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
934
935
  using overridden_method_range =
936
      llvm::iterator_range<overridden_cxx_method_iterator>;
937
938
  overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
939
940
  /// Note that the given C++ \p Method overrides the given \p
941
  /// Overridden method.
942
  void addOverriddenMethod(const CXXMethodDecl *Method,
943
                           const CXXMethodDecl *Overridden);
944
945
  /// Return C++ or ObjC overridden methods for the given \p Method.
946
  ///
947
  /// An ObjC method is considered to override any method in the class's
948
  /// base classes, its protocols, or its categories' protocols, that has
949
  /// the same selector and is of the same kind (class or instance).
950
  /// A method in an implementation is not considered as overriding the same
951
  /// method in the interface or its categories.
952
  void getOverriddenMethods(
953
                        const NamedDecl *Method,
954
                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
955
956
  /// Notify the AST context that a new import declaration has been
957
  /// parsed or implicitly created within this translation unit.
958
  void addedLocalImportDecl(ImportDecl *Import);
959
960
63
  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
961
63
    return Import->NextLocalImport;
962
63
  }
963
964
  using import_range = llvm::iterator_range<import_iterator>;
965
966
2.09k
  import_range local_imports() const {
967
2.09k
    return import_range(import_iterator(FirstLocalImport), import_iterator());
968
2.09k
  }
969
970
46.0k
  Decl *getPrimaryMergedDecl(Decl *D) {
971
46.0k
    Decl *Result = MergedDecls.lookup(D);
972
46.0k
    return Result ? 
Result747
:
D45.2k
;
973
46.0k
  }
974
398
  void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
975
398
    MergedDecls[D] = Primary;
976
398
  }
977
978
  /// Note that the definition \p ND has been merged into module \p M,
979
  /// and should be visible whenever \p M is visible.
980
  void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
981
                                 bool NotifyListeners = true);
982
983
  /// Clean up the merged definition list. Call this if you might have
984
  /// added duplicates into the list.
985
  void deduplicateMergedDefinitonsFor(NamedDecl *ND);
986
987
  /// Get the additional modules in which the definition \p Def has
988
  /// been merged.
989
12.7k
  ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def) {
990
12.7k
    auto MergedIt =
991
12.7k
        MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
992
12.7k
    if (MergedIt == MergedDefModules.end())
993
11.6k
      return None;
994
1.08k
    return MergedIt->second;
995
1.08k
  }
996
997
  /// Add a declaration to the list of declarations that are initialized
998
  /// for a module. This will typically be a global variable (with internal
999
  /// linkage) that runs module initializers, such as the iostream initializer,
1000
  /// or an ImportDecl nominating another module that has initializers.
1001
  void addModuleInitializer(Module *M, Decl *Init);
1002
1003
  void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1004
1005
  /// Get the initializations to perform when importing a module, if any.
1006
  ArrayRef<Decl*> getModuleInitializers(Module *M);
1007
1008
16.3M
  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
1009
1010
  ExternCContextDecl *getExternCContextDecl() const;
1011
  BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1012
  BuiltinTemplateDecl *getTypePackElementDecl() const;
1013
1014
  // Builtin Types.
1015
  CanQualType VoidTy;
1016
  CanQualType BoolTy;
1017
  CanQualType CharTy;
1018
  CanQualType WCharTy;  // [C++ 3.9.1p5].
1019
  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1020
  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1021
  CanQualType Char8Ty;  // [C++20 proposal]
1022
  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1023
  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1024
  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1025
  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1026
  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1027
  CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
1028
  CanQualType ShortAccumTy, AccumTy,
1029
      LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1030
  CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1031
  CanQualType ShortFractTy, FractTy, LongFractTy;
1032
  CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1033
  CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1034
  CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1035
      SatUnsignedLongAccumTy;
1036
  CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1037
  CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1038
      SatUnsignedLongFractTy;
1039
  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1040
  CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1041
  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1042
  CanQualType Float128ComplexTy;
1043
  CanQualType VoidPtrTy, NullPtrTy;
1044
  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1045
  CanQualType BuiltinFnTy;
1046
  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1047
  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1048
  CanQualType ObjCBuiltinBoolTy;
1049
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1050
  CanQualType SingletonId;
1051
#include "clang/Basic/OpenCLImageTypes.def"
1052
  CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1053
  CanQualType OCLQueueTy, OCLReserveIDTy;
1054
  CanQualType OMPArraySectionTy;
1055
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1056
  CanQualType Id##Ty;
1057
#include "clang/Basic/OpenCLExtensionTypes.def"
1058
1059
  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1060
  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1061
  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1062
1063
  // Decl used to help define __builtin_va_list for some targets.
1064
  // The decl is built when constructing 'BuiltinVaListDecl'.
1065
  mutable Decl *VaListTagDecl;
1066
1067
  ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1068
             SelectorTable &sels, Builtin::Context &builtins);
1069
  ASTContext(const ASTContext &) = delete;
1070
  ASTContext &operator=(const ASTContext &) = delete;
1071
  ~ASTContext();
1072
1073
  /// Attach an external AST source to the AST context.
1074
  ///
1075
  /// The external AST source provides the ability to load parts of
1076
  /// the abstract syntax tree as needed from some external storage,
1077
  /// e.g., a precompiled header.
1078
  void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1079
1080
  /// Retrieve a pointer to the external AST source associated
1081
  /// with this AST context, if any.
1082
200M
  ExternalASTSource *getExternalSource() const {
1083
200M
    return ExternalSource.get();
1084
200M
  }
1085
1086
  /// Attach an AST mutation listener to the AST context.
1087
  ///
1088
  /// The AST mutation listener provides the ability to track modifications to
1089
  /// the abstract syntax tree entities committed after they were initially
1090
  /// created.
1091
39.0k
  void setASTMutationListener(ASTMutationListener *Listener) {
1092
39.0k
    this->Listener = Listener;
1093
39.0k
  }
1094
1095
  /// Retrieve a pointer to the AST mutation listener associated
1096
  /// with this AST context, if any.
1097
21.1M
  ASTMutationListener *getASTMutationListener() const { return Listener; }
1098
1099
  void PrintStats() const;
1100
2.20k
  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1101
1102
  BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1103
                                                const IdentifierInfo *II) const;
1104
1105
  /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1106
  /// declaration.
1107
  RecordDecl *buildImplicitRecord(StringRef Name,
1108
                                  RecordDecl::TagKind TK = TTK_Struct) const;
1109
1110
  /// Create a new implicit TU-level typedef declaration.
1111
  TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1112
1113
  /// Retrieve the declaration for the 128-bit signed integer type.
1114
  TypedefDecl *getInt128Decl() const;
1115
1116
  /// Retrieve the declaration for the 128-bit unsigned integer type.
1117
  TypedefDecl *getUInt128Decl() const;
1118
1119
  //===--------------------------------------------------------------------===//
1120
  //                           Type Constructors
1121
  //===--------------------------------------------------------------------===//
1122
1123
private:
1124
  /// Return a type with extended qualifiers.
1125
  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1126
1127
  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1128
1129
  QualType getPipeType(QualType T, bool ReadOnly) const;
1130
1131
public:
1132
  /// Return the uniqued reference to the type for an address space
1133
  /// qualified type with the specified type and address space.
1134
  ///
1135
  /// The resulting type has a union of the qualifiers from T and the address
1136
  /// space. If T already has an address space specifier, it is silently
1137
  /// replaced.
1138
  QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1139
1140
  /// Remove any existing address space on the type and returns the type
1141
  /// with qualifiers intact (or that's the idea anyway)
1142
  ///
1143
  /// The return type should be T with all prior qualifiers minus the address
1144
  /// space.
1145
  QualType removeAddrSpaceQualType(QualType T) const;
1146
1147
  /// Apply Objective-C protocol qualifiers to the given type.
1148
  /// \param allowOnPointerType specifies if we can apply protocol
1149
  /// qualifiers on ObjCObjectPointerType. It can be set to true when
1150
  /// constructing the canonical type of a Objective-C type parameter.
1151
  QualType applyObjCProtocolQualifiers(QualType type,
1152
      ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1153
      bool allowOnPointerType = false) const;
1154
1155
  /// Return the uniqued reference to the type for an Objective-C
1156
  /// gc-qualified type.
1157
  ///
1158
  /// The resulting type has a union of the qualifiers from T and the gc
1159
  /// attribute.
1160
  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1161
1162
  /// Return the uniqued reference to the type for a \c restrict
1163
  /// qualified type.
1164
  ///
1165
  /// The resulting type has a union of the qualifiers from \p T and
1166
  /// \c restrict.
1167
2.33k
  QualType getRestrictType(QualType T) const {
1168
2.33k
    return T.withFastQualifiers(Qualifiers::Restrict);
1169
2.33k
  }
1170
1171
  /// Return the uniqued reference to the type for a \c volatile
1172
  /// qualified type.
1173
  ///
1174
  /// The resulting type has a union of the qualifiers from \p T and
1175
  /// \c volatile.
1176
2.40M
  QualType getVolatileType(QualType T) const {
1177
2.40M
    return T.withFastQualifiers(Qualifiers::Volatile);
1178
2.40M
  }
1179
1180
  /// Return the uniqued reference to the type for a \c const
1181
  /// qualified type.
1182
  ///
1183
  /// The resulting type has a union of the qualifiers from \p T and \c const.
1184
  ///
1185
  /// It can be reasonably expected that this will always be equivalent to
1186
  /// calling T.withConst().
1187
34
  QualType getConstType(QualType T) const { return T.withConst(); }
1188
1189
  /// Change the ExtInfo on a function type.
1190
  const FunctionType *adjustFunctionType(const FunctionType *Fn,
1191
                                         FunctionType::ExtInfo EInfo);
1192
1193
  /// Adjust the given function result type.
1194
  CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1195
1196
  /// Change the result type of a function type once it is deduced.
1197
  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1198
1199
  /// Get a function type and produce the equivalent function type with the
1200
  /// specified exception specification. Type sugar that can be present on a
1201
  /// declaration of a function with an exception specification is permitted
1202
  /// and preserved. Other type sugar (for instance, typedefs) is not.
1203
  QualType getFunctionTypeWithExceptionSpec(
1204
      QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1205
1206
  /// Determine whether two function types are the same, ignoring
1207
  /// exception specifications in cases where they're part of the type.
1208
  bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1209
1210
  /// Change the exception specification on a function once it is
1211
  /// delay-parsed, instantiated, or computed.
1212
  void adjustExceptionSpec(FunctionDecl *FD,
1213
                           const FunctionProtoType::ExceptionSpecInfo &ESI,
1214
                           bool AsWritten = false);
1215
1216
  /// Return the uniqued reference to the type for a complex
1217
  /// number with the specified element type.
1218
  QualType getComplexType(QualType T) const;
1219
157k
  CanQualType getComplexType(CanQualType T) const {
1220
157k
    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1221
157k
  }
1222
1223
  /// Return the uniqued reference to the type for a pointer to
1224
  /// the specified type.
1225
  QualType getPointerType(QualType T) const;
1226
2.66M
  CanQualType getPointerType(CanQualType T) const {
1227
2.66M
    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1228
2.66M
  }
1229
1230
  /// Return the uniqued reference to a type adjusted from the original
1231
  /// type to a new type.
1232
  QualType getAdjustedType(QualType Orig, QualType New) const;
1233
0
  CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1234
0
    return CanQualType::CreateUnsafe(
1235
0
        getAdjustedType((QualType)Orig, (QualType)New));
1236
0
  }
1237
1238
  /// Return the uniqued reference to the decayed version of the given
1239
  /// type.  Can only be called on array and function types which decay to
1240
  /// pointer types.
1241
  QualType getDecayedType(QualType T) const;
1242
0
  CanQualType getDecayedType(CanQualType T) const {
1243
0
    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1244
0
  }
1245
1246
  /// Return the uniqued reference to the atomic type for the specified
1247
  /// type.
1248
  QualType getAtomicType(QualType T) const;
1249
1250
  /// Return the uniqued reference to the type for a block of the
1251
  /// specified type.
1252
  QualType getBlockPointerType(QualType T) const;
1253
1254
  /// Gets the struct used to keep track of the descriptor for pointer to
1255
  /// blocks.
1256
  QualType getBlockDescriptorType() const;
1257
1258
  /// Return a read_only pipe type for the specified type.
1259
  QualType getReadPipeType(QualType T) const;
1260
1261
  /// Return a write_only pipe type for the specified type.
1262
  QualType getWritePipeType(QualType T) const;
1263
1264
  /// Gets the struct used to keep track of the extended descriptor for
1265
  /// pointer to blocks.
1266
  QualType getBlockDescriptorExtendedType() const;
1267
1268
  /// Map an AST Type to an OpenCLTypeKind enum value.
1269
  TargetInfo::OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1270
1271
  /// Get address space for OpenCL type.
1272
  LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1273
1274
145
  void setcudaConfigureCallDecl(FunctionDecl *FD) {
1275
145
    cudaConfigureCallDecl = FD;
1276
145
  }
1277
1278
3.57k
  FunctionDecl *getcudaConfigureCallDecl() {
1279
3.57k
    return cudaConfigureCallDecl;
1280
3.57k
  }
1281
1282
  /// Returns true iff we need copy/dispose helpers for the given type.
1283
  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1284
1285
  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1286
  /// is set to false in this case. If HasByrefExtendedLayout returns true,
1287
  /// byref variable has extended lifetime.
1288
  bool getByrefLifetime(QualType Ty,
1289
                        Qualifiers::ObjCLifetime &Lifetime,
1290
                        bool &HasByrefExtendedLayout) const;
1291
1292
  /// Return the uniqued reference to the type for an lvalue reference
1293
  /// to the specified type.
1294
  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1295
    const;
1296
1297
  /// Return the uniqued reference to the type for an rvalue reference
1298
  /// to the specified type.
1299
  QualType getRValueReferenceType(QualType T) const;
1300
1301
  /// Return the uniqued reference to the type for a member pointer to
1302
  /// the specified type in the specified class.
1303
  ///
1304
  /// The class \p Cls is a \c Type because it could be a dependent name.
1305
  QualType getMemberPointerType(QualType T, const Type *Cls) const;
1306
1307
  /// Return a non-unique reference to the type for a variable array of
1308
  /// the specified element type.
1309
  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1310
                                ArrayType::ArraySizeModifier ASM,
1311
                                unsigned IndexTypeQuals,
1312
                                SourceRange Brackets) const;
1313
1314
  /// Return a non-unique reference to the type for a dependently-sized
1315
  /// array of the specified element type.
1316
  ///
1317
  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1318
  /// point.
1319
  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1320
                                      ArrayType::ArraySizeModifier ASM,
1321
                                      unsigned IndexTypeQuals,
1322
                                      SourceRange Brackets) const;
1323
1324
  /// Return a unique reference to the type for an incomplete array of
1325
  /// the specified element type.
1326
  QualType getIncompleteArrayType(QualType EltTy,
1327
                                  ArrayType::ArraySizeModifier ASM,
1328
                                  unsigned IndexTypeQuals) const;
1329
1330
  /// Return the unique reference to the type for a constant array of
1331
  /// the specified element type.
1332
  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1333
                                ArrayType::ArraySizeModifier ASM,
1334
                                unsigned IndexTypeQuals) const;
1335
1336
  /// Returns a vla type where known sizes are replaced with [*].
1337
  QualType getVariableArrayDecayedType(QualType Ty) const;
1338
1339
  /// Return the unique reference to a vector type of the specified
1340
  /// element type and size.
1341
  ///
1342
  /// \pre \p VectorType must be a built-in type.
1343
  QualType getVectorType(QualType VectorType, unsigned NumElts,
1344
                         VectorType::VectorKind VecKind) const;
1345
  /// Return the unique reference to the type for a dependently sized vector of
1346
  /// the specified element type.
1347
  QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1348
                                  SourceLocation AttrLoc,
1349
                                  VectorType::VectorKind VecKind) const;
1350
1351
  /// Return the unique reference to an extended vector type
1352
  /// of the specified element type and size.
1353
  ///
1354
  /// \pre \p VectorType must be a built-in type.
1355
  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1356
1357
  /// \pre Return a non-unique reference to the type for a dependently-sized
1358
  /// vector of the specified element type.
1359
  ///
1360
  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1361
  /// point.
1362
  QualType getDependentSizedExtVectorType(QualType VectorType,
1363
                                          Expr *SizeExpr,
1364
                                          SourceLocation AttrLoc) const;
1365
1366
  QualType getDependentAddressSpaceType(QualType PointeeType,
1367
                                        Expr *AddrSpaceExpr,
1368
                                        SourceLocation AttrLoc) const;
1369
1370
  /// Return a K&R style C function type like 'int()'.
1371
  QualType getFunctionNoProtoType(QualType ResultTy,
1372
                                  const FunctionType::ExtInfo &Info) const;
1373
1374
1.42k
  QualType getFunctionNoProtoType(QualType ResultTy) const {
1375
1.42k
    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1376
1.42k
  }
1377
1378
  /// Return a normal function type with a typed argument list.
1379
  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1380
10.6M
                           const FunctionProtoType::ExtProtoInfo &EPI) const {
1381
10.6M
    return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1382
10.6M
  }
1383
1384
  QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1385
1386
private:
1387
  /// Return a normal function type with a typed argument list.
1388
  QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1389
                                   const FunctionProtoType::ExtProtoInfo &EPI,
1390
                                   bool OnlyWantCanonical) const;
1391
1392
public:
1393
  /// Return the unique reference to the type for the specified type
1394
  /// declaration.
1395
  QualType getTypeDeclType(const TypeDecl *Decl,
1396
71.4M
                           const TypeDecl *PrevDecl = nullptr) const {
1397
71.4M
    assert(Decl && "Passed null for Decl param");
1398
71.4M
    if (Decl->TypeForDecl) 
return QualType(Decl->TypeForDecl, 0)66.1M
;
1399
5.35M
1400
5.35M
    if (PrevDecl) {
1401
1.78M
      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1402
1.78M
      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1403
1.78M
      return QualType(PrevDecl->TypeForDecl, 0);
1404
1.78M
    }
1405
3.57M
1406
3.57M
    return getTypeDeclTypeSlow(Decl);
1407
3.57M
  }
1408
1409
  /// Return the unique reference to the type for the specified
1410
  /// typedef-name decl.
1411
  QualType getTypedefType(const TypedefNameDecl *Decl,
1412
                          QualType Canon = QualType()) const;
1413
1414
  QualType getRecordType(const RecordDecl *Decl) const;
1415
1416
  QualType getEnumType(const EnumDecl *Decl) const;
1417
1418
  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1419
1420
  QualType getAttributedType(attr::Kind attrKind,
1421
                             QualType modifiedType,
1422
                             QualType equivalentType);
1423
1424
  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1425
                                        QualType Replacement) const;
1426
  QualType getSubstTemplateTypeParmPackType(
1427
                                          const TemplateTypeParmType *Replaced,
1428
                                            const TemplateArgument &ArgPack);
1429
1430
  QualType
1431
  getTemplateTypeParmType(unsigned Depth, unsigned Index,
1432
                          bool ParameterPack,
1433
                          TemplateTypeParmDecl *ParmDecl = nullptr) const;
1434
1435
  QualType getTemplateSpecializationType(TemplateName T,
1436
                                         ArrayRef<TemplateArgument> Args,
1437
                                         QualType Canon = QualType()) const;
1438
1439
  QualType
1440
  getCanonicalTemplateSpecializationType(TemplateName T,
1441
                                         ArrayRef<TemplateArgument> Args) const;
1442
1443
  QualType getTemplateSpecializationType(TemplateName T,
1444
                                         const TemplateArgumentListInfo &Args,
1445
                                         QualType Canon = QualType()) const;
1446
1447
  TypeSourceInfo *
1448
  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1449
                                    const TemplateArgumentListInfo &Args,
1450
                                    QualType Canon = QualType()) const;
1451
1452
  QualType getParenType(QualType NamedType) const;
1453
1454
  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1455
                             NestedNameSpecifier *NNS, QualType NamedType,
1456
                             TagDecl *OwnedTagDecl = nullptr) const;
1457
  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1458
                                NestedNameSpecifier *NNS,
1459
                                const IdentifierInfo *Name,
1460
                                QualType Canon = QualType()) const;
1461
1462
  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1463
                                                  NestedNameSpecifier *NNS,
1464
                                                  const IdentifierInfo *Name,
1465
                                    const TemplateArgumentListInfo &Args) const;
1466
  QualType getDependentTemplateSpecializationType(
1467
      ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1468
      const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1469
1470
  TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1471
1472
  /// Get a template argument list with one argument per template parameter
1473
  /// in a template parameter list, such as for the injected class name of
1474
  /// a class template.
1475
  void getInjectedTemplateArgs(const TemplateParameterList *Params,
1476
                               SmallVectorImpl<TemplateArgument> &Args);
1477
1478
  QualType getPackExpansionType(QualType Pattern,
1479
                                Optional<unsigned> NumExpansions);
1480
1481
  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1482
                                ObjCInterfaceDecl *PrevDecl = nullptr) const;
1483
1484
  /// Legacy interface: cannot provide type arguments or __kindof.
1485
  QualType getObjCObjectType(QualType Base,
1486
                             ObjCProtocolDecl * const *Protocols,
1487
                             unsigned NumProtocols) const;
1488
1489
  QualType getObjCObjectType(QualType Base,
1490
                             ArrayRef<QualType> typeArgs,
1491
                             ArrayRef<ObjCProtocolDecl *> protocols,
1492
                             bool isKindOf) const;
1493
1494
  QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1495
                                ArrayRef<ObjCProtocolDecl *> protocols,
1496
                                QualType Canonical = QualType()) const;
1497
1498
  bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1499
1500
  /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1501
  /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1502
  /// of protocols.
1503
  bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1504
                                            ObjCInterfaceDecl *IDecl);
1505
1506
  /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1507
  QualType getObjCObjectPointerType(QualType OIT) const;
1508
1509
  /// GCC extension.
1510
  QualType getTypeOfExprType(Expr *e) const;
1511
  QualType getTypeOfType(QualType t) const;
1512
1513
  /// C++11 decltype.
1514
  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1515
1516
  /// Unary type transforms
1517
  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1518
                                 UnaryTransformType::UTTKind UKind) const;
1519
1520
  /// C++11 deduced auto type.
1521
  QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1522
                       bool IsDependent) const;
1523
1524
  /// C++11 deduction pattern for 'auto' type.
1525
  QualType getAutoDeductType() const;
1526
1527
  /// C++11 deduction pattern for 'auto &&' type.
1528
  QualType getAutoRRefDeductType() const;
1529
1530
  /// C++17 deduced class template specialization type.
1531
  QualType getDeducedTemplateSpecializationType(TemplateName Template,
1532
                                                QualType DeducedType,
1533
                                                bool IsDependent) const;
1534
1535
  /// Return the unique reference to the type for the specified TagDecl
1536
  /// (struct/union/class/enum) decl.
1537
  QualType getTagDeclType(const TagDecl *Decl) const;
1538
1539
  /// Return the unique type for "size_t" (C99 7.17), defined in
1540
  /// <stddef.h>.
1541
  ///
1542
  /// The sizeof operator requires this (C99 6.5.3.4p4).
1543
  CanQualType getSizeType() const;
1544
1545
  /// Return the unique signed counterpart of
1546
  /// the integer type corresponding to size_t.
1547
  CanQualType getSignedSizeType() const;
1548
1549
  /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1550
  /// <stdint.h>.
1551
  CanQualType getIntMaxType() const;
1552
1553
  /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1554
  /// <stdint.h>.
1555
  CanQualType getUIntMaxType() const;
1556
1557
  /// Return the unique wchar_t type available in C++ (and available as
1558
  /// __wchar_t as a Microsoft extension).
1559
0
  QualType getWCharType() const { return WCharTy; }
1560
1561
  /// Return the type of wide characters. In C++, this returns the
1562
  /// unique wchar_t type. In C99, this returns a type compatible with the type
1563
  /// defined in <stddef.h> as defined by the target.
1564
34.7k
  QualType getWideCharType() const { return WideCharTy; }
1565
1566
  /// Return the type of "signed wchar_t".
1567
  ///
1568
  /// Used when in C++, as a GCC extension.
1569
  QualType getSignedWCharType() const;
1570
1571
  /// Return the type of "unsigned wchar_t".
1572
  ///
1573
  /// Used when in C++, as a GCC extension.
1574
  QualType getUnsignedWCharType() const;
1575
1576
  /// In C99, this returns a type compatible with the type
1577
  /// defined in <stddef.h> as defined by the target.
1578
22
  QualType getWIntType() const { return WIntTy; }
1579
1580
  /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1581
  /// as defined by the target.
1582
  QualType getIntPtrType() const;
1583
1584
  /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1585
  /// as defined by the target.
1586
  QualType getUIntPtrType() const;
1587
1588
  /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1589
  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1590
  QualType getPointerDiffType() const;
1591
1592
  /// Return the unique unsigned counterpart of "ptrdiff_t"
1593
  /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1594
  /// in the definition of %tu format specifier.
1595
  QualType getUnsignedPointerDiffType() const;
1596
1597
  /// Return the unique type for "pid_t" defined in
1598
  /// <sys/types.h>. We need this to compute the correct type for vfork().
1599
  QualType getProcessIDType() const;
1600
1601
  /// Return the C structure type used to represent constant CFStrings.
1602
  QualType getCFConstantStringType() const;
1603
1604
  /// Returns the C struct type for objc_super
1605
  QualType getObjCSuperType() const;
1606
2
  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1607
1608
  /// Get the structure type used to representation CFStrings, or NULL
1609
  /// if it hasn't yet been built.
1610
3.53k
  QualType getRawCFConstantStringType() const {
1611
3.53k
    if (CFConstantStringTypeDecl)
1612
3.53k
      return getTypedefType(CFConstantStringTypeDecl);
1613
0
    return QualType();
1614
0
  }
1615
  void setCFConstantStringType(QualType T);
1616
  TypedefDecl *getCFConstantStringDecl() const;
1617
  RecordDecl *getCFConstantStringTagDecl() const;
1618
1619
  // This setter/getter represents the ObjC type for an NSConstantString.
1620
  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1621
1.54k
  QualType getObjCConstantStringInterface() const {
1622
1.54k
    return ObjCConstantStringType;
1623
1.54k
  }
1624
1625
209
  QualType getObjCNSStringType() const {
1626
209
    return ObjCNSStringType;
1627
209
  }
1628
1629
84
  void setObjCNSStringType(QualType T) {
1630
84
    ObjCNSStringType = T;
1631
84
  }
1632
1633
  /// Retrieve the type that \c id has been defined to, which may be
1634
  /// different from the built-in \c id if \c id has been typedef'd.
1635
19
  QualType getObjCIdRedefinitionType() const {
1636
19
    if (ObjCIdRedefinitionType.isNull())
1637
18
      return getObjCIdType();
1638
1
    return ObjCIdRedefinitionType;
1639
1
  }
1640
1641
  /// Set the user-written type that redefines \c id.
1642
64
  void setObjCIdRedefinitionType(QualType RedefType) {
1643
64
    ObjCIdRedefinitionType = RedefType;
1644
64
  }
1645
1646
  /// Retrieve the type that \c Class has been defined to, which may be
1647
  /// different from the built-in \c Class if \c Class has been typedef'd.
1648
9
  QualType getObjCClassRedefinitionType() const {
1649
9
    if (ObjCClassRedefinitionType.isNull())
1650
6
      return getObjCClassType();
1651
3
    return ObjCClassRedefinitionType;
1652
3
  }
1653
1654
  /// Set the user-written type that redefines 'SEL'.
1655
53
  void setObjCClassRedefinitionType(QualType RedefType) {
1656
53
    ObjCClassRedefinitionType = RedefType;
1657
53
  }
1658
1659
  /// Retrieve the type that 'SEL' has been defined to, which may be
1660
  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1661
4
  QualType getObjCSelRedefinitionType() const {
1662
4
    if (ObjCSelRedefinitionType.isNull())
1663
0
      return getObjCSelType();
1664
4
    return ObjCSelRedefinitionType;
1665
4
  }
1666
1667
  /// Set the user-written type that redefines 'SEL'.
1668
49
  void setObjCSelRedefinitionType(QualType RedefType) {
1669
49
    ObjCSelRedefinitionType = RedefType;
1670
49
  }
1671
1672
  /// Retrieve the identifier 'NSObject'.
1673
216
  IdentifierInfo *getNSObjectName() const {
1674
216
    if (!NSObjectName) {
1675
68
      NSObjectName = &Idents.get("NSObject");
1676
68
    }
1677
216
1678
216
    return NSObjectName;
1679
216
  }
1680
1681
  /// Retrieve the identifier 'NSCopying'.
1682
19
  IdentifierInfo *getNSCopyingName() {
1683
19
    if (!NSCopyingName) {
1684
4
      NSCopyingName = &Idents.get("NSCopying");
1685
4
    }
1686
19
1687
19
    return NSCopyingName;
1688
19
  }
1689
1690
618
  CanQualType getNSUIntegerType() const {
1691
618
    assert(Target && "Expected target to be initialized");
1692
618
    const llvm::Triple &T = Target->getTriple();
1693
618
    // Windows is LLP64 rather than LP64
1694
618
    if (T.isOSWindows() && 
T.isArch64Bit()8
)
1695
4
      return UnsignedLongLongTy;
1696
614
    return UnsignedLongTy;
1697
614
  }
1698
1699
908
  CanQualType getNSIntegerType() const {
1700
908
    assert(Target && "Expected target to be initialized");
1701
908
    const llvm::Triple &T = Target->getTriple();
1702
908
    // Windows is LLP64 rather than LP64
1703
908
    if (T.isOSWindows() && 
T.isArch64Bit()0
)
1704
0
      return LongLongTy;
1705
908
    return LongTy;
1706
908
  }
1707
1708
  /// Retrieve the identifier 'bool'.
1709
10.5M
  IdentifierInfo *getBoolName() const {
1710
10.5M
    if (!BoolName)
1711
13.3k
      BoolName = &Idents.get("bool");
1712
10.5M
    return BoolName;
1713
10.5M
  }
1714
1715
4.16M
  IdentifierInfo *getMakeIntegerSeqName() const {
1716
4.16M
    if (!MakeIntegerSeqName)
1717
19.7k
      MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1718
4.16M
    return MakeIntegerSeqName;
1719
4.16M
  }
1720
1721
4.16M
  IdentifierInfo *getTypePackElementName() const {
1722
4.16M
    if (!TypePackElementName)
1723
19.7k
      TypePackElementName = &Idents.get("__type_pack_element");
1724
4.16M
    return TypePackElementName;
1725
4.16M
  }
1726
1727
  /// Retrieve the Objective-C "instancetype" type, if already known;
1728
  /// otherwise, returns a NULL type;
1729
62.9k
  QualType getObjCInstanceType() {
1730
62.9k
    return getTypeDeclType(getObjCInstanceTypeDecl());
1731
62.9k
  }
1732
1733
  /// Retrieve the typedef declaration corresponding to the Objective-C
1734
  /// "instancetype" type.
1735
  TypedefDecl *getObjCInstanceTypeDecl();
1736
1737
  /// Set the type for the C FILE type.
1738
2.72k
  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1739
1740
  /// Retrieve the C FILE type.
1741
26.0k
  QualType getFILEType() const {
1742
26.0k
    if (FILEDecl)
1743
22.6k
      return getTypeDeclType(FILEDecl);
1744
3.41k
    return QualType();
1745
3.41k
  }
1746
1747
  /// Set the type for the C jmp_buf type.
1748
46
  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1749
46
    this->jmp_bufDecl = jmp_bufDecl;
1750
46
  }
1751
1752
  /// Retrieve the C jmp_buf type.
1753
3.68k
  QualType getjmp_bufType() const {
1754
3.68k
    if (jmp_bufDecl)
1755
152
      return getTypeDeclType(jmp_bufDecl);
1756
3.53k
    return QualType();
1757
3.53k
  }
1758
1759
  /// Set the type for the C sigjmp_buf type.
1760
24
  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1761
24
    this->sigjmp_bufDecl = sigjmp_bufDecl;
1762
24
  }
1763
1764
  /// Retrieve the C sigjmp_buf type.
1765
3.58k
  QualType getsigjmp_bufType() const {
1766
3.58k
    if (sigjmp_bufDecl)
1767
48
      return getTypeDeclType(sigjmp_bufDecl);
1768
3.53k
    return QualType();
1769
3.53k
  }
1770
1771
  /// Set the type for the C ucontext_t type.
1772
2.15k
  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1773
2.15k
    this->ucontext_tDecl = ucontext_tDecl;
1774
2.15k
  }
1775
1776
  /// Retrieve the C ucontext_t type.
1777
3.53k
  QualType getucontext_tType() const {
1778
3.53k
    if (ucontext_tDecl)
1779
0
      return getTypeDeclType(ucontext_tDecl);
1780
3.53k
    return QualType();
1781
3.53k
  }
1782
1783
  /// The result type of logical operations, '<', '>', '!=', etc.
1784
1.96M
  QualType getLogicalOperationType() const {
1785
1.96M
    return getLangOpts().CPlusPlus ? 
BoolTy1.74M
:
IntTy219k
;
1786
1.96M
  }
1787
1788
  /// Emit the Objective-CC type encoding for the given type \p T into
1789
  /// \p S.
1790
  ///
1791
  /// If \p Field is specified then record field names are also encoded.
1792
  void getObjCEncodingForType(QualType T, std::string &S,
1793
                              const FieldDecl *Field=nullptr,
1794
                              QualType *NotEncodedT=nullptr) const;
1795
1796
  /// Emit the Objective-C property type encoding for the given
1797
  /// type \p T into \p S.
1798
  void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1799
1800
  void getLegacyIntegralTypeEncoding(QualType &t) const;
1801
1802
  /// Put the string version of the type qualifiers \p QT into \p S.
1803
  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1804
                                       std::string &S) const;
1805
1806
  /// Emit the encoded type for the function \p Decl into \p S.
1807
  ///
1808
  /// This is in the same format as Objective-C method encodings.
1809
  ///
1810
  /// \returns true if an error occurred (e.g., because one of the parameter
1811
  /// types is incomplete), false otherwise.
1812
  std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1813
1814
  /// Emit the encoded type for the method declaration \p Decl into
1815
  /// \p S.
1816
  std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1817
                                           bool Extended = false) const;
1818
1819
  /// Return the encoded type for this block declaration.
1820
  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1821
1822
  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1823
  /// this method declaration. If non-NULL, Container must be either
1824
  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1825
  /// only be NULL when getting encodings for protocol properties.
1826
  std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1827
                                             const Decl *Container) const;
1828
1829
  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1830
                                      ObjCProtocolDecl *rProto) const;
1831
1832
  ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1833
                                                  const ObjCPropertyDecl *PD,
1834
                                                  const Decl *Container) const;
1835
1836
  /// Return the size of type \p T for Objective-C encoding purpose,
1837
  /// in characters.
1838
  CharUnits getObjCEncodingTypeSize(QualType T) const;
1839
1840
  /// Retrieve the typedef corresponding to the predefined \c id type
1841
  /// in Objective-C.
1842
  TypedefDecl *getObjCIdDecl() const;
1843
1844
  /// Represents the Objective-CC \c id type.
1845
  ///
1846
  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1847
  /// pointer type, a pointer to a struct.
1848
121k
  QualType getObjCIdType() const {
1849
121k
    return getTypeDeclType(getObjCIdDecl());
1850
121k
  }
1851
1852
  /// Retrieve the typedef corresponding to the predefined 'SEL' type
1853
  /// in Objective-C.
1854
  TypedefDecl *getObjCSelDecl() const;
1855
1856
  /// Retrieve the type that corresponds to the predefined Objective-C
1857
  /// 'SEL' type.
1858
133k
  QualType getObjCSelType() const {
1859
133k
    return getTypeDeclType(getObjCSelDecl());
1860
133k
  }
1861
1862
  /// Retrieve the typedef declaration corresponding to the predefined
1863
  /// Objective-C 'Class' type.
1864
  TypedefDecl *getObjCClassDecl() const;
1865
1866
  /// Represents the Objective-C \c Class type.
1867
  ///
1868
  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1869
  /// pointer type, a pointer to a struct.
1870
109k
  QualType getObjCClassType() const {
1871
109k
    return getTypeDeclType(getObjCClassDecl());
1872
109k
  }
1873
1874
  /// Retrieve the Objective-C class declaration corresponding to
1875
  /// the predefined \c Protocol class.
1876
  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1877
1878
  /// Retrieve declaration of 'BOOL' typedef
1879
473
  TypedefDecl *getBOOLDecl() const {
1880
473
    return BOOLDecl;
1881
473
  }
1882
1883
  /// Save declaration of 'BOOL' typedef
1884
30
  void setBOOLDecl(TypedefDecl *TD) {
1885
30
    BOOLDecl = TD;
1886
30
  }
1887
1888
  /// type of 'BOOL' type.
1889
135
  QualType getBOOLType() const {
1890
135
    return getTypeDeclType(getBOOLDecl());
1891
135
  }
1892
1893
  /// Retrieve the type of the Objective-C \c Protocol class.
1894
106k
  QualType getObjCProtoType() const {
1895
106k
    return getObjCInterfaceType(getObjCProtocolDecl());
1896
106k
  }
1897
1898
  /// Retrieve the C type declaration corresponding to the predefined
1899
  /// \c __builtin_va_list type.
1900
  TypedefDecl *getBuiltinVaListDecl() const;
1901
1902
  /// Retrieve the type of the \c __builtin_va_list type.
1903
127k
  QualType getBuiltinVaListType() const {
1904
127k
    return getTypeDeclType(getBuiltinVaListDecl());
1905
127k
  }
1906
1907
  /// Retrieve the C type declaration corresponding to the predefined
1908
  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1909
  /// for some targets.
1910
  Decl *getVaListTagDecl() const;
1911
1912
  /// Retrieve the C type declaration corresponding to the predefined
1913
  /// \c __builtin_ms_va_list type.
1914
  TypedefDecl *getBuiltinMSVaListDecl() const;
1915
1916
  /// Retrieve the type of the \c __builtin_ms_va_list type.
1917
106k
  QualType getBuiltinMSVaListType() const {
1918
106k
    return getTypeDeclType(getBuiltinMSVaListDecl());
1919
106k
  }
1920
1921
  /// Return whether a declaration to a builtin is allowed to be
1922
  /// overloaded/redeclared.
1923
  bool canBuiltinBeRedeclared(const FunctionDecl *) const;
1924
1925
  /// Return a type with additional \c const, \c volatile, or
1926
  /// \c restrict qualifiers.
1927
117k
  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1928
117k
    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1929
117k
  }
1930
1931
  /// Un-split a SplitQualType.
1932
1.98k
  QualType getQualifiedType(SplitQualType split) const {
1933
1.98k
    return getQualifiedType(split.Ty, split.Quals);
1934
1.98k
  }
1935
1936
  /// Return a type with additional qualifiers.
1937
43.9M
  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1938
43.9M
    if (!Qs.hasNonFastQualifiers())
1939
43.9M
      return T.withFastQualifiers(Qs.getFastQualifiers());
1940
13.4k
    QualifierCollector Qc(Qs);
1941
13.4k
    const Type *Ptr = Qc.strip(T);
1942
13.4k
    return getExtQualType(Ptr, Qc);
1943
13.4k
  }
1944
1945
  /// Return a type with additional qualifiers.
1946
890k
  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1947
890k
    if (!Qs.hasNonFastQualifiers())
1948
887k
      return QualType(T, Qs.getFastQualifiers());
1949
2.95k
    return getExtQualType(T, Qs);
1950
2.95k
  }
1951
1952
  /// Return a type with the given lifetime qualifier.
1953
  ///
1954
  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1955
  QualType getLifetimeQualifiedType(QualType type,
1956
4.08k
                                    Qualifiers::ObjCLifetime lifetime) {
1957
4.08k
    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1958
4.08k
    assert(lifetime != Qualifiers::OCL_None);
1959
4.08k
1960
4.08k
    Qualifiers qs;
1961
4.08k
    qs.addObjCLifetime(lifetime);
1962
4.08k
    return getQualifiedType(type, qs);
1963
4.08k
  }
1964
1965
  /// getUnqualifiedObjCPointerType - Returns version of
1966
  /// Objective-C pointer type with lifetime qualifier removed.
1967
2.16k
  QualType getUnqualifiedObjCPointerType(QualType type) const {
1968
2.16k
    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1969
2.16k
        
!type.getQualifiers().hasObjCLifetime()140
)
1970
2.15k
      return type;
1971
4
    Qualifiers Qs = type.getQualifiers();
1972
4
    Qs.removeObjCLifetime();
1973
4
    return getQualifiedType(type.getUnqualifiedType(), Qs);
1974
4
  }
1975
1976
  unsigned char getFixedPointScale(QualType Ty) const;
1977
  unsigned char getFixedPointIBits(QualType Ty) const;
1978
  FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
1979
  APFixedPoint getFixedPointMax(QualType Ty) const;
1980
  APFixedPoint getFixedPointMin(QualType Ty) const;
1981
1982
  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1983
                                         SourceLocation NameLoc) const;
1984
1985
  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1986
                                         UnresolvedSetIterator End) const;
1987
1988
  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1989
                                        bool TemplateKeyword,
1990
                                        TemplateDecl *Template) const;
1991
1992
  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1993
                                        const IdentifierInfo *Name) const;
1994
  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1995
                                        OverloadedOperatorKind Operator) const;
1996
  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1997
                                            TemplateName replacement) const;
1998
  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1999
                                        const TemplateArgument &ArgPack) const;
2000
2001
  enum GetBuiltinTypeError {
2002
    /// No error
2003
    GE_None,
2004
2005
    /// Missing a type
2006
    GE_Missing_type,
2007
2008
    /// Missing a type from <stdio.h>
2009
    GE_Missing_stdio,
2010
2011
    /// Missing a type from <setjmp.h>
2012
    GE_Missing_setjmp,
2013
2014
    /// Missing a type from <ucontext.h>
2015
    GE_Missing_ucontext
2016
  };
2017
2018
  /// Return the type for the specified builtin.
2019
  ///
2020
  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2021
  /// arguments to the builtin that are required to be integer constant
2022
  /// expressions.
2023
  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2024
                          unsigned *IntegerConstantArgs = nullptr) const;
2025
2026
  /// Types and expressions required to build C++2a three-way comparisons
2027
  /// using operator<=>, including the values return by builtin <=> operators.
2028
  ComparisonCategories CompCategories;
2029
2030
private:
2031
  CanQualType getFromTargetType(unsigned Type) const;
2032
  TypeInfo getTypeInfoImpl(const Type *T) const;
2033
2034
  //===--------------------------------------------------------------------===//
2035
  //                         Type Predicates.
2036
  //===--------------------------------------------------------------------===//
2037
2038
public:
2039
  /// Return one of the GCNone, Weak or Strong Objective-C garbage
2040
  /// collection attributes.
2041
  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2042
2043
  /// Return true if the given vector types are of the same unqualified
2044
  /// type or if they are equivalent to the same GCC vector type.
2045
  ///
2046
  /// \note This ignores whether they are target-specific (AltiVec or Neon)
2047
  /// types.
2048
  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2049
2050
  /// Return true if this is an \c NSObject object with its \c NSObject
2051
  /// attribute set.
2052
6.27k
  static bool isObjCNSObjectType(QualType Ty) {
2053
6.27k
    return Ty->isObjCNSObjectType();
2054
6.27k
  }
2055
2056
  //===--------------------------------------------------------------------===//
2057
  //                         Type Sizing and Analysis
2058
  //===--------------------------------------------------------------------===//
2059
2060
  /// Return the APFloat 'semantics' for the specified scalar floating
2061
  /// point type.
2062
  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2063
2064
  /// Get the size and alignment of the specified complete type in bits.
2065
  TypeInfo getTypeInfo(const Type *T) const;
2066
53.5M
  TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2067
2068
  /// Get default simd alignment of the specified complete type in bits.
2069
  unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2070
2071
  /// Return the size of the specified (complete) type \p T, in bits.
2072
51.9M
  uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2073
671k
  uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2074
2075
  /// Return the size of the character type, in bits.
2076
27.3M
  uint64_t getCharWidth() const {
2077
27.3M
    return getTypeSize(CharTy);
2078
27.3M
  }
2079
2080
  /// Convert a size in bits to a size in characters.
2081
  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2082
2083
  /// Convert a size in characters to a size in bits.
2084
  int64_t toBits(CharUnits CharSize) const;
2085
2086
  /// Return the size of the specified (complete) type \p T, in
2087
  /// characters.
2088
  CharUnits getTypeSizeInChars(QualType T) const;
2089
  CharUnits getTypeSizeInChars(const Type *T) const;
2090
2091
8
  Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2092
8
    if (Ty->isIncompleteType() || Ty->isDependentType())
2093
0
      return None;
2094
8
    return getTypeSizeInChars(Ty);
2095
8
  }
2096
2097
8
  Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2098
8
    return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2099
8
  }
2100
2101
  /// Return the ABI-specified alignment of a (complete) type \p T, in
2102
  /// bits.
2103
1.51M
  unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2104
2.39k
  unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2105
2106
  /// Return the ABI-specified natural alignment of a (complete) type \p T,
2107
  /// before alignment adjustments, in bits.
2108
  ///
2109
  /// This alignment is curently used only by ARM and AArch64 when passing
2110
  /// arguments of a composite type.
2111
227
  unsigned getTypeUnadjustedAlign(QualType T) const {
2112
227
    return getTypeUnadjustedAlign(T.getTypePtr());
2113
227
  }
2114
  unsigned getTypeUnadjustedAlign(const Type *T) const;
2115
2116
  /// Return the ABI-specified alignment of a type, in bits, or 0 if
2117
  /// the type is incomplete and we cannot determine the alignment (for
2118
  /// example, from alignment attributes).
2119
  unsigned getTypeAlignIfKnown(QualType T) const;
2120
2121
  /// Return the ABI-specified alignment of a (complete) type \p T, in
2122
  /// characters.
2123
  CharUnits getTypeAlignInChars(QualType T) const;
2124
  CharUnits getTypeAlignInChars(const Type *T) const;
2125
2126
  /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2127
  /// in characters, before alignment adjustments. This method does not work on
2128
  /// incomplete types.
2129
  CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2130
  CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2131
2132
  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2133
  // type is a record, its data size is returned.
2134
  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
2135
2136
  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
2137
  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
2138
2139
  /// Determine if the alignment the type has was required using an
2140
  /// alignment attribute.
2141
  bool isAlignmentRequired(const Type *T) const;
2142
  bool isAlignmentRequired(QualType T) const;
2143
2144
  /// Return the "preferred" alignment of the specified type \p T for
2145
  /// the current target, in bits.
2146
  ///
2147
  /// This can be different than the ABI alignment in cases where it is
2148
  /// beneficial for performance to overalign a data type.
2149
  unsigned getPreferredTypeAlign(const Type *T) const;
2150
2151
  /// Return the default alignment for __attribute__((aligned)) on
2152
  /// this target, to be used if no alignment value is specified.
2153
  unsigned getTargetDefaultAlignForAttributeAligned() const;
2154
2155
  /// Return the alignment in bits that should be given to a
2156
  /// global variable with type \p T.
2157
  unsigned getAlignOfGlobalVar(QualType T) const;
2158
2159
  /// Return the alignment in characters that should be given to a
2160
  /// global variable with type \p T.
2161
  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2162
2163
  /// Return a conservative estimate of the alignment of the specified
2164
  /// decl \p D.
2165
  ///
2166
  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2167
  /// alignment.
2168
  ///
2169
  /// If \p ForAlignof, references are treated like their underlying type
2170
  /// and  large arrays don't get any special treatment. If not \p ForAlignof
2171
  /// it computes the value expected by CodeGen: references are treated like
2172
  /// pointers and large arrays get extra alignment.
2173
  CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2174
2175
  /// Get or compute information about the layout of the specified
2176
  /// record (struct/union/class) \p D, which indicates its size and field
2177
  /// position information.
2178
  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2179
2180
  /// Get or compute information about the layout of the specified
2181
  /// Objective-C interface.
2182
  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2183
    const;
2184
2185
  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2186
                        bool Simple = false) const;
2187
2188
  /// Get or compute information about the layout of the specified
2189
  /// Objective-C implementation.
2190
  ///
2191
  /// This may differ from the interface if synthesized ivars are present.
2192
  const ASTRecordLayout &
2193
  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2194
2195
  /// Get our current best idea for the key function of the
2196
  /// given record decl, or nullptr if there isn't one.
2197
  ///
2198
  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2199
  ///   ...the first non-pure virtual function that is not inline at the
2200
  ///   point of class definition.
2201
  ///
2202
  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2203
  /// virtual functions that are defined 'inline', which means that
2204
  /// the result of this computation can change.
2205
  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2206
2207
  /// Observe that the given method cannot be a key function.
2208
  /// Checks the key-function cache for the method's class and clears it
2209
  /// if matches the given declaration.
2210
  ///
2211
  /// This is used in ABIs where out-of-line definitions marked
2212
  /// inline are not considered to be key functions.
2213
  ///
2214
  /// \param method should be the declaration from the class definition
2215
  void setNonKeyFunction(const CXXMethodDecl *method);
2216
2217
  /// Loading virtual member pointers using the virtual inheritance model
2218
  /// always results in an adjustment using the vbtable even if the index is
2219
  /// zero.
2220
  ///
2221
  /// This is usually OK because the first slot in the vbtable points
2222
  /// backwards to the top of the MDC.  However, the MDC might be reusing a
2223
  /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2224
  /// points to the start of the nv-base which introduced the vbptr and *not*
2225
  /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2226
  CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2227
2228
  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2229
  uint64_t getFieldOffset(const ValueDecl *FD) const;
2230
2231
  /// Get the offset of an ObjCIvarDecl in bits.
2232
  uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2233
                                const ObjCImplementationDecl *ID,
2234
                                const ObjCIvarDecl *Ivar) const;
2235
2236
  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2237
2238
  VTableContextBase *getVTableContext();
2239
2240
  /// If \p T is null pointer, assume the target in ASTContext.
2241
  MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2242
2243
  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2244
                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2245
2246
  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2247
  void CollectInheritedProtocols(const Decl *CDecl,
2248
                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2249
2250
  /// Return true if the specified type has unique object representations
2251
  /// according to (C++17 [meta.unary.prop]p9)
2252
  bool hasUniqueObjectRepresentations(QualType Ty) const;
2253
2254
  //===--------------------------------------------------------------------===//
2255
  //                            Type Operators
2256
  //===--------------------------------------------------------------------===//
2257
2258
  /// Return the canonical (structural) type corresponding to the
2259
  /// specified potentially non-canonical type \p T.
2260
  ///
2261
  /// The non-canonical version of a type may have many "decorated" versions of
2262
  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2263
  /// returned type is guaranteed to be free of any of these, allowing two
2264
  /// canonical types to be compared for exact equality with a simple pointer
2265
  /// comparison.
2266
685M
  CanQualType getCanonicalType(QualType T) const {
2267
685M
    return CanQualType::CreateUnsafe(T.getCanonicalType());
2268
685M
  }
2269
2270
1.94M
  const Type *getCanonicalType(const Type *T) const {
2271
1.94M
    return T->getCanonicalTypeInternal().getTypePtr();
2272
1.94M
  }
2273
2274
  /// Return the canonical parameter type corresponding to the specific
2275
  /// potentially non-canonical one.
2276
  ///
2277
  /// Qualifiers are stripped off, functions are turned into function
2278
  /// pointers, and arrays decay one level into pointers.
2279
  CanQualType getCanonicalParamType(QualType T) const;
2280
2281
  /// Determine whether the given types \p T1 and \p T2 are equivalent.
2282
33.9M
  bool hasSameType(QualType T1, QualType T2) const {
2283
33.9M
    return getCanonicalType(T1) == getCanonicalType(T2);
2284
33.9M
  }
2285
60
  bool hasSameType(const Type *T1, const Type *T2) const {
2286
60
    return getCanonicalType(T1) == getCanonicalType(T2);
2287
60
  }
2288
2289
  /// Return this type as a completely-unqualified array type,
2290
  /// capturing the qualifiers in \p Quals.
2291
  ///
2292
  /// This will remove the minimal amount of sugaring from the types, similar
2293
  /// to the behavior of QualType::getUnqualifiedType().
2294
  ///
2295
  /// \param T is the qualified type, which may be an ArrayType
2296
  ///
2297
  /// \param Quals will receive the full set of qualifiers that were
2298
  /// applied to the array.
2299
  ///
2300
  /// \returns if this is an array type, the completely unqualified array type
2301
  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2302
  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2303
2304
  /// Determine whether the given types are equivalent after
2305
  /// cvr-qualifiers have been removed.
2306
98.7M
  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2307
98.7M
    return getCanonicalType(T1).getTypePtr() ==
2308
98.7M
           getCanonicalType(T2).getTypePtr();
2309
98.7M
  }
2310
2311
  bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2312
4.00k
                                       bool IsParam) const {
2313
4.00k
    auto SubTnullability = SubT->getNullability(*this);
2314
4.00k
    auto SuperTnullability = SuperT->getNullability(*this);
2315
4.00k
    if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2316
3.64k
      // Neither has nullability; return true
2317
3.64k
      if (!SubTnullability)
2318
1.58k
        return true;
2319
2.05k
      // Both have nullability qualifier.
2320
2.05k
      if (*SubTnullability == *SuperTnullability ||
2321
2.05k
          
*SubTnullability == NullabilityKind::Unspecified34
||
2322
2.05k
          
*SuperTnullability == NullabilityKind::Unspecified34
)
2323
2.02k
        return true;
2324
34
2325
34
      if (IsParam) {
2326
2
        // Ok for the superclass method parameter to be "nonnull" and the subclass
2327
2
        // method parameter to be "nullable"
2328
2
        return (*SuperTnullability == NullabilityKind::NonNull &&
2329
2
                
*SubTnullability == NullabilityKind::Nullable1
);
2330
2
      }
2331
32
      else {
2332
32
        // For the return type, it's okay for the superclass method to specify
2333
32
        // "nullable" and the subclass method specify "nonnull"
2334
32
        return (*SuperTnullability == NullabilityKind::Nullable &&
2335
32
                
*SubTnullability == NullabilityKind::NonNull31
);
2336
32
      }
2337
364
    }
2338
364
    return true;
2339
364
  }
2340
2341
  bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2342
                           const ObjCMethodDecl *MethodImp);
2343
2344
  bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2345
  bool UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2346
2347
  /// Determine if two types are similar, according to the C++ rules. That is,
2348
  /// determine if they are the same other than qualifiers on the initial
2349
  /// sequence of pointer / pointer-to-member / array (and in Clang, object
2350
  /// pointer) types and their element types.
2351
  ///
2352
  /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2353
  /// those qualifiers are also ignored in the 'similarity' check.
2354
  bool hasSimilarType(QualType T1, QualType T2);
2355
2356
  /// Determine if two types are similar, ignoring only CVR qualifiers.
2357
  bool hasCvrSimilarType(QualType T1, QualType T2);
2358
2359
  /// Retrieves the "canonical" nested name specifier for a
2360
  /// given nested name specifier.
2361
  ///
2362
  /// The canonical nested name specifier is a nested name specifier
2363
  /// that uniquely identifies a type or namespace within the type
2364
  /// system. For example, given:
2365
  ///
2366
  /// \code
2367
  /// namespace N {
2368
  ///   struct S {
2369
  ///     template<typename T> struct X { typename T* type; };
2370
  ///   };
2371
  /// }
2372
  ///
2373
  /// template<typename T> struct Y {
2374
  ///   typename N::S::X<T>::type member;
2375
  /// };
2376
  /// \endcode
2377
  ///
2378
  /// Here, the nested-name-specifier for N::S::X<T>:: will be
2379
  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2380
  /// by declarations in the type system and the canonical type for
2381
  /// the template type parameter 'T' is template-param-0-0.
2382
  NestedNameSpecifier *
2383
  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2384
2385
  /// Retrieves the default calling convention for the current target.
2386
  CallingConv getDefaultCallingConvention(bool IsVariadic,
2387
                                          bool IsCXXMethod) const;
2388
2389
  /// Retrieves the "canonical" template name that refers to a
2390
  /// given template.
2391
  ///
2392
  /// The canonical template name is the simplest expression that can
2393
  /// be used to refer to a given template. For most templates, this
2394
  /// expression is just the template declaration itself. For example,
2395
  /// the template std::vector can be referred to via a variety of
2396
  /// names---std::vector, \::std::vector, vector (if vector is in
2397
  /// scope), etc.---but all of these names map down to the same
2398
  /// TemplateDecl, which is used to form the canonical template name.
2399
  ///
2400
  /// Dependent template names are more interesting. Here, the
2401
  /// template name could be something like T::template apply or
2402
  /// std::allocator<T>::template rebind, where the nested name
2403
  /// specifier itself is dependent. In this case, the canonical
2404
  /// template name uses the shortest form of the dependent
2405
  /// nested-name-specifier, which itself contains all canonical
2406
  /// types, values, and templates.
2407
  TemplateName getCanonicalTemplateName(TemplateName Name) const;
2408
2409
  /// Determine whether the given template names refer to the same
2410
  /// template.
2411
  bool hasSameTemplateName(TemplateName X, TemplateName Y);
2412
2413
  /// Retrieve the "canonical" template argument.
2414
  ///
2415
  /// The canonical template argument is the simplest template argument
2416
  /// (which may be a type, value, expression, or declaration) that
2417
  /// expresses the value of the argument.
2418
  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2419
    const;
2420
2421
  /// Type Query functions.  If the type is an instance of the specified class,
2422
  /// return the Type pointer for the underlying maximally pretty type.  This
2423
  /// is a member of ASTContext because this may need to do some amount of
2424
  /// canonicalization, e.g. to move type qualifiers into the element type.
2425
  const ArrayType *getAsArrayType(QualType T) const;
2426
2.57M
  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2427
2.57M
    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2428
2.57M
  }
2429
943k
  const VariableArrayType *getAsVariableArrayType(QualType T) const {
2430
943k
    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2431
943k
  }
2432
2.11M
  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2433
2.11M
    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2434
2.11M
  }
2435
  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2436
586
    const {
2437
586
    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2438
586
  }
2439
2440
  /// Return the innermost element type of an array type.
2441
  ///
2442
  /// For example, will return "int" for int[m][n]
2443
  QualType getBaseElementType(const ArrayType *VAT) const;
2444
2445
  /// Return the innermost element type of a type (which needn't
2446
  /// actually be an array type).
2447
  QualType getBaseElementType(QualType QT) const;
2448
2449
  /// Return number of constant array elements.
2450
  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2451
2452
  /// Perform adjustment on the parameter type of a function.
2453
  ///
2454
  /// This routine adjusts the given parameter type @p T to the actual
2455
  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2456
  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2457
  QualType getAdjustedParameterType(QualType T) const;
2458
2459
  /// Retrieve the parameter type as adjusted for use in the signature
2460
  /// of a function, decaying array and function types and removing top-level
2461
  /// cv-qualifiers.
2462
  QualType getSignatureParameterType(QualType T) const;
2463
2464
  QualType getExceptionObjectType(QualType T) const;
2465
2466
  /// Return the properly qualified result of decaying the specified
2467
  /// array type to a pointer.
2468
  ///
2469
  /// This operation is non-trivial when handling typedefs etc.  The canonical
2470
  /// type of \p T must be an array type, this returns a pointer to a properly
2471
  /// qualified element of the array.
2472
  ///
2473
  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2474
  QualType getArrayDecayedType(QualType T) const;
2475
2476
  /// Return the type that \p PromotableType will promote to: C99
2477
  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2478
  QualType getPromotedIntegerType(QualType PromotableType) const;
2479
2480
  /// Recurses in pointer/array types until it finds an Objective-C
2481
  /// retainable type and returns its ownership.
2482
  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2483
2484
  /// Whether this is a promotable bitfield reference according
2485
  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2486
  ///
2487
  /// \returns the type this bit-field will promote to, or NULL if no
2488
  /// promotion occurs.
2489
  QualType isPromotableBitField(Expr *E) const;
2490
2491
  /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2492
  ///
2493
  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2494
  /// \p LHS < \p RHS, return -1.
2495
  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2496
2497
  /// Compare the rank of the two specified floating point types,
2498
  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2499
  ///
2500
  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2501
  /// \p LHS < \p RHS, return -1.
2502
  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2503
2504
  /// Compare the rank of two floating point types as above, but compare equal
2505
  /// if both types have the same floating-point semantics on the target (i.e.
2506
  /// long double and double on AArch64 will return 0).
2507
  int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2508
2509
  /// Return a real floating point or a complex type (based on
2510
  /// \p typeDomain/\p typeSize).
2511
  ///
2512
  /// \param typeDomain a real floating point or complex type.
2513
  /// \param typeSize a real floating point or complex type.
2514
  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2515
                                             QualType typeDomain) const;
2516
2517
893k
  unsigned getTargetAddressSpace(QualType T) const {
2518
893k
    return getTargetAddressSpace(T.getQualifiers());
2519
893k
  }
2520
2521
893k
  unsigned getTargetAddressSpace(Qualifiers Q) const {
2522
893k
    return getTargetAddressSpace(Q.getAddressSpace());
2523
893k
  }
2524
2525
  unsigned getTargetAddressSpace(LangAS AS) const;
2526
2527
  LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2528
2529
  /// Get target-dependent integer value for null pointer which is used for
2530
  /// constant folding.
2531
  uint64_t getTargetNullPointerValue(QualType QT) const;
2532
2533
171
  bool addressSpaceMapManglingFor(LangAS AS) const {
2534
171
    return AddrSpaceMapMangling || 
isTargetAddressSpace(AS)60
;
2535
171
  }
2536
2537
private:
2538
  // Helper for integer ordering
2539
  unsigned getIntegerRank(const Type *T) const;
2540
2541
public:
2542
  //===--------------------------------------------------------------------===//
2543
  //                    Type Compatibility Predicates
2544
  //===--------------------------------------------------------------------===//
2545
2546
  /// Compatibility predicates used to check assignment expressions.
2547
  bool typesAreCompatible(QualType T1, QualType T2,
2548
                          bool CompareUnqualified = false); // C99 6.2.7p1
2549
2550
  bool propertyTypesAreCompatible(QualType, QualType);
2551
  bool typesAreBlockPointerCompatible(QualType, QualType);
2552
2553
1.31k
  bool isObjCIdType(QualType T) const {
2554
1.31k
    return T == getObjCIdType();
2555
1.31k
  }
2556
2557
  bool isObjCClassType(QualType T) const {
2558
    return T == getObjCClassType();
2559
  }
2560
2561
7.99k
  bool isObjCSelType(QualType T) const {
2562
7.99k
    return T == getObjCSelType();
2563
7.99k
  }
2564
2565
  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
2566
                                         bool ForCompare);
2567
2568
  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
2569
2570
  // Check the safety of assignment from LHS to RHS
2571
  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2572
                               const ObjCObjectPointerType *RHSOPT);
2573
  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2574
                               const ObjCObjectType *RHS);
2575
  bool canAssignObjCInterfacesInBlockPointer(
2576
                                          const ObjCObjectPointerType *LHSOPT,
2577
                                          const ObjCObjectPointerType *RHSOPT,
2578
                                          bool BlockReturnType);
2579
  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2580
  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2581
                                   const ObjCObjectPointerType *RHSOPT);
2582
  bool canBindObjCObjectType(QualType To, QualType From);
2583
2584
  // Functions for calculating composite types
2585
  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2586
                      bool Unqualified = false, bool BlockReturnType = false);
2587
  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2588
                              bool Unqualified = false);
2589
  QualType mergeFunctionParameterTypes(QualType, QualType,
2590
                                       bool OfBlockPointer = false,
2591
                                       bool Unqualified = false);
2592
  QualType mergeTransparentUnionType(QualType, QualType,
2593
                                     bool OfBlockPointer=false,
2594
                                     bool Unqualified = false);
2595
2596
  QualType mergeObjCGCQualifiers(QualType, QualType);
2597
2598
  /// This function merges the ExtParameterInfo lists of two functions. It
2599
  /// returns true if the lists are compatible. The merged list is returned in
2600
  /// NewParamInfos.
2601
  ///
2602
  /// \param FirstFnType The type of the first function.
2603
  ///
2604
  /// \param SecondFnType The type of the second function.
2605
  ///
2606
  /// \param CanUseFirst This flag is set to true if the first function's
2607
  /// ExtParameterInfo list can be used as the composite list of
2608
  /// ExtParameterInfo.
2609
  ///
2610
  /// \param CanUseSecond This flag is set to true if the second function's
2611
  /// ExtParameterInfo list can be used as the composite list of
2612
  /// ExtParameterInfo.
2613
  ///
2614
  /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2615
  /// empty if none of the flags are set.
2616
  ///
2617
  bool mergeExtParameterInfo(
2618
      const FunctionProtoType *FirstFnType,
2619
      const FunctionProtoType *SecondFnType,
2620
      bool &CanUseFirst, bool &CanUseSecond,
2621
      SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2622
2623
  void ResetObjCLayout(const ObjCContainerDecl *CD);
2624
2625
  //===--------------------------------------------------------------------===//
2626
  //                    Integer Predicates
2627
  //===--------------------------------------------------------------------===//
2628
2629
  // The width of an integer, as defined in C99 6.2.6.2. This is the number
2630
  // of bits in an integer type excluding any padding bits.
2631
  unsigned getIntWidth(QualType T) const;
2632
2633
  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2634
  // unsigned integer type.  This method takes a signed type, and returns the
2635
  // corresponding unsigned integer type.
2636
  // With the introduction of fixed point types in ISO N1169, this method also
2637
  // accepts fixed point types and returns the corresponding unsigned type for
2638
  // a given fixed point type.
2639
  QualType getCorrespondingUnsignedType(QualType T) const;
2640
2641
  // Per ISO N1169, this method accepts fixed point types and returns the
2642
  // corresponding saturated type for a given fixed point type.
2643
  QualType getCorrespondingSaturatedType(QualType Ty) const;
2644
2645
  // This method accepts fixed point types and returns the corresponding signed
2646
  // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2647
  // fixed point types because there are unsigned integer types like bool and
2648
  // char8_t that don't have signed equivalents.
2649
  QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2650
2651
  //===--------------------------------------------------------------------===//
2652
  //                    Integer Values
2653
  //===--------------------------------------------------------------------===//
2654
2655
  /// Make an APSInt of the appropriate width and signedness for the
2656
  /// given \p Value and integer \p Type.
2657
2.25M
  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2658
2.25M
    // If Type is a signed integer type larger than 64 bits, we need to be sure
2659
2.25M
    // to sign extend Res appropriately.
2660
2.25M
    llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2661
2.25M
    Res = Value;
2662
2.25M
    unsigned Width = getIntWidth(Type);
2663
2.25M
    if (Width != Res.getBitWidth())
2664
1.84M
      return Res.extOrTrunc(Width);
2665
403k
    return Res;
2666
403k
  }
2667
2668
  bool isSentinelNullExpr(const Expr *E);
2669
2670
  /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2671
  /// none exists.
2672
  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2673
2674
  /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2675
  /// none exists.
2676
  ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2677
2678
  /// Return true if there is at least one \@implementation in the TU.
2679
40
  bool AnyObjCImplementation() {
2680
40
    return !ObjCImpls.empty();
2681
40
  }
2682
2683
  /// Set the implementation of ObjCInterfaceDecl.
2684
  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2685
                             ObjCImplementationDecl *ImplD);
2686
2687
  /// Set the implementation of ObjCCategoryDecl.
2688
  void setObjCImplementation(ObjCCategoryDecl *CatD,
2689
                             ObjCCategoryImplDecl *ImplD);
2690
2691
  /// Get the duplicate declaration of a ObjCMethod in the same
2692
  /// interface, or null if none exists.
2693
  const ObjCMethodDecl *
2694
  getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2695
2696
  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2697
                                  const ObjCMethodDecl *Redecl);
2698
2699
  /// Returns the Objective-C interface that \p ND belongs to if it is
2700
  /// an Objective-C method/property/ivar etc. that is part of an interface,
2701
  /// otherwise returns null.
2702
  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2703
2704
  /// Set the copy inialization expression of a block var decl. \p CanThrow
2705
  /// indicates whether the copy expression can throw or not.
2706
  void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2707
2708
  /// Get the copy initialization expression of the VarDecl \p VD, or
2709
  /// nullptr if none exists.
2710
  BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2711
2712
  /// Allocate an uninitialized TypeSourceInfo.
2713
  ///
2714
  /// The caller should initialize the memory held by TypeSourceInfo using
2715
  /// the TypeLoc wrappers.
2716
  ///
2717
  /// \param T the type that will be the basis for type source info. This type
2718
  /// should refer to how the declarator was written in source code, not to
2719
  /// what type semantic analysis resolved the declarator to.
2720
  ///
2721
  /// \param Size the size of the type info to create, or 0 if the size
2722
  /// should be calculated based on the type.
2723
  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2724
2725
  /// Allocate a TypeSourceInfo where all locations have been
2726
  /// initialized to a given location, which defaults to the empty
2727
  /// location.
2728
  TypeSourceInfo *
2729
  getTrivialTypeSourceInfo(QualType T,
2730
                           SourceLocation Loc = SourceLocation()) const;
2731
2732
  /// Add a deallocation callback that will be invoked when the
2733
  /// ASTContext is destroyed.
2734
  ///
2735
  /// \param Callback A callback function that will be invoked on destruction.
2736
  ///
2737
  /// \param Data Pointer data that will be provided to the callback function
2738
  /// when it is called.
2739
  void AddDeallocation(void (*Callback)(void*), void *Data);
2740
2741
  /// If T isn't trivially destructible, calls AddDeallocation to register it
2742
  /// for destruction.
2743
  template <typename T>
2744
625k
  void addDestruction(T *Ptr) {
2745
625k
    if (!std::is_trivially_destructible<T>::value) {
2746
602k
      auto DestroyPtr = [](void *V) 
{ static_cast<T *>(V)->~T(); }45.3k
;
void clang::ASTContext::addDestruction<clang::APValue>(clang::APValue*)::'lambda'(void*)::operator()(void*) const
Line
Count
Source
2746
2.75k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
void clang::ASTContext::addDestruction<clang::FunctionTemplateDecl::Common>(clang::FunctionTemplateDecl::Common*)::'lambda'(void*)::operator()(void*) const
Line
Count
Source
2746
21.7k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
void clang::ASTContext::addDestruction<clang::ClassTemplateDecl::Common>(clang::ClassTemplateDecl::Common*)::'lambda'(void*)::operator()(void*) const
Line
Count
Source
2746
19.8k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
void clang::ASTContext::addDestruction<clang::VarTemplateDecl::Common>(clang::VarTemplateDecl::Common*)::'lambda'(void*)::operator()(void*) const
Line
Count
Source
2746
979
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2747
602k
      AddDeallocation(DestroyPtr, Ptr);
2748
602k
    }
2749
625k
  }
void clang::ASTContext::addDestruction<clang::APValue>(clang::APValue*)
Line
Count
Source
2744
18.4k
  void addDestruction(T *Ptr) {
2745
18.4k
    if (!std::is_trivially_destructible<T>::value) {
2746
18.4k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2747
18.4k
      AddDeallocation(DestroyPtr, Ptr);
2748
18.4k
    }
2749
18.4k
  }
void clang::ASTContext::addDestruction<clang::FunctionTemplateDecl::Common>(clang::FunctionTemplateDecl::Common*)
Line
Count
Source
2744
314k
  void addDestruction(T *Ptr) {
2745
314k
    if (!std::is_trivially_destructible<T>::value) {
2746
314k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2747
314k
      AddDeallocation(DestroyPtr, Ptr);
2748
314k
    }
2749
314k
  }
void clang::ASTContext::addDestruction<clang::ClassTemplateDecl::Common>(clang::ClassTemplateDecl::Common*)
Line
Count
Source
2744
268k
  void addDestruction(T *Ptr) {
2745
268k
    if (!std::is_trivially_destructible<T>::value) {
2746
268k
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2747
268k
      AddDeallocation(DestroyPtr, Ptr);
2748
268k
    }
2749
268k
  }
void clang::ASTContext::addDestruction<clang::RedeclarableTemplateDecl::CommonBase>(clang::RedeclarableTemplateDecl::CommonBase*)
Line
Count
Source
2744
23.0k
  void addDestruction(T *Ptr) {
2745
23.0k
    if (!std::is_trivially_destructible<T>::value) {
2746
0
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2747
0
      AddDeallocation(DestroyPtr, Ptr);
2748
0
    }
2749
23.0k
  }
void clang::ASTContext::addDestruction<clang::VarTemplateDecl::Common>(clang::VarTemplateDecl::Common*)
Line
Count
Source
2744
982
  void addDestruction(T *Ptr) {
2745
982
    if (!std::is_trivially_destructible<T>::value) {
2746
982
      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2747
982
      AddDeallocation(DestroyPtr, Ptr);
2748
982
    }
2749
982
  }
2750
2751
  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2752
  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2753
2754
  /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2755
  /// lazily, only when used; this is only relevant for function or file scoped
2756
  /// var definitions.
2757
  ///
2758
  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2759
  /// it is not used.
2760
  bool DeclMustBeEmitted(const Decl *D);
2761
2762
  /// Visits all versions of a multiversioned function with the passed
2763
  /// predicate.
2764
  void forEachMultiversionedFunctionVersion(
2765
      const FunctionDecl *FD,
2766
      llvm::function_ref<void(FunctionDecl *)> Pred) const;
2767
2768
  const CXXConstructorDecl *
2769
  getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2770
2771
  void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2772
                                            CXXConstructorDecl *CD);
2773
2774
  void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2775
2776
  TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2777
2778
  void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2779
2780
  DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2781
2782
  void setManglingNumber(const NamedDecl *ND, unsigned Number);
2783
  unsigned getManglingNumber(const NamedDecl *ND) const;
2784
2785
  void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2786
  unsigned getStaticLocalNumber(const VarDecl *VD) const;
2787
2788
  /// Retrieve the context for computing mangling numbers in the given
2789
  /// DeclContext.
2790
  MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2791
2792
  std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2793
2794
  /// Used by ParmVarDecl to store on the side the
2795
  /// index of the parameter when it exceeds the size of the normal bitfield.
2796
  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2797
2798
  /// Used by ParmVarDecl to retrieve on the side the
2799
  /// index of the parameter when it exceeds the size of the normal bitfield.
2800
  unsigned getParameterIndex(const ParmVarDecl *D) const;
2801
2802
  /// Get the storage for the constant value of a materialized temporary
2803
  /// of static storage duration.
2804
  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2805
                                         bool MayCreate);
2806
2807
  //===--------------------------------------------------------------------===//
2808
  //                    Statistics
2809
  //===--------------------------------------------------------------------===//
2810
2811
  /// The number of implicitly-declared default constructors.
2812
  static unsigned NumImplicitDefaultConstructors;
2813
2814
  /// The number of implicitly-declared default constructors for
2815
  /// which declarations were built.
2816
  static unsigned NumImplicitDefaultConstructorsDeclared;
2817
2818
  /// The number of implicitly-declared copy constructors.
2819
  static unsigned NumImplicitCopyConstructors;
2820
2821
  /// The number of implicitly-declared copy constructors for
2822
  /// which declarations were built.
2823
  static unsigned NumImplicitCopyConstructorsDeclared;
2824
2825
  /// The number of implicitly-declared move constructors.
2826
  static unsigned NumImplicitMoveConstructors;
2827
2828
  /// The number of implicitly-declared move constructors for
2829
  /// which declarations were built.
2830
  static unsigned NumImplicitMoveConstructorsDeclared;
2831
2832
  /// The number of implicitly-declared copy assignment operators.
2833
  static unsigned NumImplicitCopyAssignmentOperators;
2834
2835
  /// The number of implicitly-declared copy assignment operators for
2836
  /// which declarations were built.
2837
  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2838
2839
  /// The number of implicitly-declared move assignment operators.
2840
  static unsigned NumImplicitMoveAssignmentOperators;
2841
2842
  /// The number of implicitly-declared move assignment operators for
2843
  /// which declarations were built.
2844
  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2845
2846
  /// The number of implicitly-declared destructors.
2847
  static unsigned NumImplicitDestructors;
2848
2849
  /// The number of implicitly-declared destructors for which
2850
  /// declarations were built.
2851
  static unsigned NumImplicitDestructorsDeclared;
2852
2853
public:
2854
  /// Initialize built-in types.
2855
  ///
2856
  /// This routine may only be invoked once for a given ASTContext object.
2857
  /// It is normally invoked after ASTContext construction.
2858
  ///
2859
  /// \param Target The target
2860
  void InitBuiltinTypes(const TargetInfo &Target,
2861
                        const TargetInfo *AuxTarget = nullptr);
2862
2863
private:
2864
  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2865
2866
  // Return the Objective-C type encoding for a given type.
2867
  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2868
                                  bool ExpandPointedToStructures,
2869
                                  bool ExpandStructures,
2870
                                  const FieldDecl *Field,
2871
                                  bool OutermostType = false,
2872
                                  bool EncodingProperty = false,
2873
                                  bool StructField = false,
2874
                                  bool EncodeBlockParameters = false,
2875
                                  bool EncodeClassNames = false,
2876
                                  bool EncodePointerToObjCTypedef = false,
2877
                                  QualType *NotEncodedT=nullptr) const;
2878
2879
  // Adds the encoding of the structure's members.
2880
  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2881
                                       const FieldDecl *Field,
2882
                                       bool includeVBases = true,
2883
                                       QualType *NotEncodedT=nullptr) const;
2884
2885
public:
2886
  // Adds the encoding of a method parameter or return type.
2887
  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2888
                                         QualType T, std::string& S,
2889
                                         bool Extended) const;
2890
2891
  /// Returns true if this is an inline-initialized static data member
2892
  /// which is treated as a definition for MSVC compatibility.
2893
  bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
2894
2895
  enum class InlineVariableDefinitionKind {
2896
    /// Not an inline variable.
2897
    None,
2898
2899
    /// Weak definition of inline variable.
2900
    Weak,
2901
2902
    /// Weak for now, might become strong later in this TU.
2903
    WeakUnknown,
2904
2905
    /// Strong definition.
2906
    Strong
2907
  };
2908
2909
  /// Determine whether a definition of this inline variable should
2910
  /// be treated as a weak or strong definition. For compatibility with
2911
  /// C++14 and before, for a constexpr static data member, if there is an
2912
  /// out-of-line declaration of the member, we may promote it from weak to
2913
  /// strong.
2914
  InlineVariableDefinitionKind
2915
  getInlineVariableDefinitionKind(const VarDecl *VD) const;
2916
2917
private:
2918
  friend class DeclarationNameTable;
2919
  friend class DeclContext;
2920
2921
  const ASTRecordLayout &
2922
  getObjCLayout(const ObjCInterfaceDecl *D,
2923
                const ObjCImplementationDecl *Impl) const;
2924
2925
  /// A set of deallocations that should be performed when the
2926
  /// ASTContext is destroyed.
2927
  // FIXME: We really should have a better mechanism in the ASTContext to
2928
  // manage running destructors for types which do variable sized allocation
2929
  // within the AST. In some places we thread the AST bump pointer allocator
2930
  // into the datastructures which avoids this mess during deallocation but is
2931
  // wasteful of memory, and here we require a lot of error prone book keeping
2932
  // in order to track and run destructors while we're tearing things down.
2933
  using DeallocationFunctionsAndArguments =
2934
      llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
2935
  DeallocationFunctionsAndArguments Deallocations;
2936
2937
  // FIXME: This currently contains the set of StoredDeclMaps used
2938
  // by DeclContext objects.  This probably should not be in ASTContext,
2939
  // but we include it here so that ASTContext can quickly deallocate them.
2940
  llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
2941
2942
  std::vector<Decl *> TraversalScope;
2943
  class ParentMap;
2944
  std::unique_ptr<ParentMap> Parents;
2945
2946
  std::unique_ptr<VTableContextBase> VTContext;
2947
2948
  void ReleaseDeclContextMaps();
2949
2950
public:
2951
  enum PragmaSectionFlag : unsigned {
2952
    PSF_None = 0,
2953
    PSF_Read = 0x1,
2954
    PSF_Write = 0x2,
2955
    PSF_Execute = 0x4,
2956
    PSF_Implicit = 0x8,
2957
    PSF_Invalid = 0x80000000U,
2958
  };
2959
2960
  struct SectionInfo {
2961
    DeclaratorDecl *Decl;
2962
    SourceLocation PragmaSectionLocation;
2963
    int SectionFlags;
2964
2965
193
    SectionInfo() = default;
2966
    SectionInfo(DeclaratorDecl *Decl,
2967
                SourceLocation PragmaSectionLocation,
2968
                int SectionFlags)
2969
        : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
2970
193
          SectionFlags(SectionFlags) {}
2971
  };
2972
2973
  llvm::StringMap<SectionInfo> SectionInfos;
2974
};
2975
2976
/// Utility function for constructing a nullary selector.
2977
763k
inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
2978
763k
  IdentifierInfo* II = &Ctx.Idents.get(name);
2979
763k
  return Ctx.Selectors.getSelector(0, &II);
2980
763k
}
2981
2982
/// Utility function for constructing an unary selector.
2983
306
inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
2984
306
  IdentifierInfo* II = &Ctx.Idents.get(name);
2985
306
  return Ctx.Selectors.getSelector(1, &II);
2986
306
}
2987
2988
} // namespace clang
2989
2990
// operator new and delete aren't allowed inside namespaces.
2991
2992
/// Placement new for using the ASTContext's allocator.
2993
///
2994
/// This placement form of operator new uses the ASTContext's allocator for
2995
/// obtaining memory.
2996
///
2997
/// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
2998
/// Any changes here need to also be made there.
2999
///
3000
/// We intentionally avoid using a nothrow specification here so that the calls
3001
/// to this operator will not perform a null check on the result -- the
3002
/// underlying allocator never returns null pointers.
3003
///
3004
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3005
/// @code
3006
/// // Default alignment (8)
3007
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3008
/// // Specific alignment
3009
/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3010
/// @endcode
3011
/// Memory allocated through this placement new operator does not need to be
3012
/// explicitly freed, as ASTContext will free all of this memory when it gets
3013
/// destroyed. Please note that you cannot use delete on the pointer.
3014
///
3015
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3016
/// @param C The ASTContext that provides the allocator.
3017
/// @param Alignment The alignment of the allocated memory (if the underlying
3018
///                  allocator supports it).
3019
/// @return The allocated memory. Could be nullptr.
3020
inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3021
117M
                          size_t Alignment /* = 8 */) {
3022
117M
  return C.Allocate(Bytes, Alignment);
3023
117M
}
3024
3025
/// Placement delete companion to the new above.
3026
///
3027
/// This operator is just a companion to the new above. There is no way of
3028
/// invoking it directly; see the new operator for more details. This operator
3029
/// is called implicitly by the compiler if a placement new expression using
3030
/// the ASTContext throws in the object constructor.
3031
0
inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3032
0
  C.Deallocate(Ptr);
3033
0
}
3034
3035
/// This placement form of operator new[] uses the ASTContext's allocator for
3036
/// obtaining memory.
3037
///
3038
/// We intentionally avoid using a nothrow specification here so that the calls
3039
/// to this operator will not perform a null check on the result -- the
3040
/// underlying allocator never returns null pointers.
3041
///
3042
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3043
/// @code
3044
/// // Default alignment (8)
3045
/// char *data = new (Context) char[10];
3046
/// // Specific alignment
3047
/// char *data = new (Context, 4) char[10];
3048
/// @endcode
3049
/// Memory allocated through this placement new[] operator does not need to be
3050
/// explicitly freed, as ASTContext will free all of this memory when it gets
3051
/// destroyed. Please note that you cannot use delete on the pointer.
3052
///
3053
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3054
/// @param C The ASTContext that provides the allocator.
3055
/// @param Alignment The alignment of the allocated memory (if the underlying
3056
///                  allocator supports it).
3057
/// @return The allocated memory. Could be nullptr.
3058
inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3059
11.1M
                            size_t Alignment /* = 8 */) {
3060
11.1M
  return C.Allocate(Bytes, Alignment);
3061
11.1M
}
3062
3063
/// Placement delete[] companion to the new[] above.
3064
///
3065
/// This operator is just a companion to the new[] above. There is no way of
3066
/// invoking it directly; see the new[] operator for more details. This operator
3067
/// is called implicitly by the compiler if a placement new[] expression using
3068
/// the ASTContext throws in the object constructor.
3069
0
inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3070
0
  C.Deallocate(Ptr);
3071
0
}
3072
3073
/// Create the representation of a LazyGenerationalUpdatePtr.
3074
template <typename Owner, typename T,
3075
          void (clang::ExternalASTSource::*Update)(Owner)>
3076
typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3077
    clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3078
22.1M
        const clang::ASTContext &Ctx, T Value) {
3079
22.1M
  // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3080
22.1M
  // include ASTContext.h. We explicitly instantiate it for all relevant types
3081
22.1M
  // in ASTContext.cpp.
3082
22.1M
  if (auto *Source = Ctx.getExternalSource())
3083
495k
    return new (Ctx) LazyData(Source, Value);
3084
21.6M
  return Value;
3085
21.6M
}
3086
3087
#endif // LLVM_CLANG_AST_ASTCONTEXT_H