Coverage Report

Created: 2019-07-24 05:18

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/clang/lib/CodeGen/CodeGenTypes.h
Line
Count
Source
1
//===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This is the code that handles AST -> LLVM type lowering.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
14
#define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
15
16
#include "CGCall.h"
17
#include "clang/Basic/ABI.h"
18
#include "clang/CodeGen/CGFunctionInfo.h"
19
#include "llvm/ADT/DenseMap.h"
20
#include "llvm/IR/Module.h"
21
22
namespace llvm {
23
class FunctionType;
24
class DataLayout;
25
class Type;
26
class LLVMContext;
27
class StructType;
28
}
29
30
namespace clang {
31
class ASTContext;
32
template <typename> class CanQual;
33
class CXXConstructorDecl;
34
class CXXDestructorDecl;
35
class CXXMethodDecl;
36
class CodeGenOptions;
37
class FieldDecl;
38
class FunctionProtoType;
39
class ObjCInterfaceDecl;
40
class ObjCIvarDecl;
41
class PointerType;
42
class QualType;
43
class RecordDecl;
44
class TagDecl;
45
class TargetInfo;
46
class Type;
47
typedef CanQual<Type> CanQualType;
48
class GlobalDecl;
49
50
namespace CodeGen {
51
class ABIInfo;
52
class CGCXXABI;
53
class CGRecordLayout;
54
class CodeGenModule;
55
class RequiredArgs;
56
57
/// This class organizes the cross-module state that is used while lowering
58
/// AST types to LLVM types.
59
class CodeGenTypes {
60
  CodeGenModule &CGM;
61
  // Some of this stuff should probably be left on the CGM.
62
  ASTContext &Context;
63
  llvm::Module &TheModule;
64
  const TargetInfo &Target;
65
  CGCXXABI &TheCXXABI;
66
67
  // This should not be moved earlier, since its initialization depends on some
68
  // of the previous reference members being already initialized
69
  const ABIInfo &TheABIInfo;
70
71
  /// The opaque type map for Objective-C interfaces. All direct
72
  /// manipulation is done by the runtime interfaces, which are
73
  /// responsible for coercing to the appropriate type; these opaque
74
  /// types are never refined.
75
  llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
76
77
  /// Maps clang struct type with corresponding record layout info.
78
  llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
79
80
  /// Contains the LLVM IR type for any converted RecordDecl.
81
  llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
82
83
  /// Hold memoized CGFunctionInfo results.
84
  llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
85
86
  /// This set keeps track of records that we're currently converting
87
  /// to an IR type.  For example, when converting:
88
  /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
89
  /// types will be in this set.
90
  llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
91
92
  llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
93
94
  /// True if we didn't layout a function due to a being inside
95
  /// a recursive struct conversion, set this to true.
96
  bool SkippedLayout;
97
98
  SmallVector<const RecordDecl *, 8> DeferredRecords;
99
100
  /// This map keeps cache of llvm::Types and maps clang::Type to
101
  /// corresponding llvm::Type.
102
  llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
103
104
  llvm::SmallSet<const Type *, 8> RecordsWithOpaqueMemberPointers;
105
106
  /// Helper for ConvertType.
107
  llvm::Type *ConvertFunctionTypeInternal(QualType FT);
108
109
public:
110
  CodeGenTypes(CodeGenModule &cgm);
111
  ~CodeGenTypes();
112
113
147k
  const llvm::DataLayout &getDataLayout() const {
114
147k
    return TheModule.getDataLayout();
115
147k
  }
116
4.82M
  ASTContext &getContext() const { return Context; }
117
300k
  const ABIInfo &getABIInfo() const { return TheABIInfo; }
118
20.6k
  const TargetInfo &getTarget() const { return Target; }
119
323k
  CGCXXABI &getCXXABI() const { return TheCXXABI; }
120
1.33M
  llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
121
  const CodeGenOptions &getCodeGenOpts() const;
122
123
  /// Convert clang calling convention to LLVM callilng convention.
124
  unsigned ClangCallConvToLLVMCallConv(CallingConv CC);
125
126
  /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
127
  /// qualification.
128
  CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD);
129
130
  /// ConvertType - Convert type T into a llvm::Type.
131
  llvm::Type *ConvertType(QualType T);
132
133
  /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
134
  /// ConvertType in that it is used to convert to the memory representation for
135
  /// a type.  For example, the scalar representation for _Bool is i1, but the
136
  /// memory representation is usually i8 or i32, depending on the target.
137
  llvm::Type *ConvertTypeForMem(QualType T);
138
139
  /// GetFunctionType - Get the LLVM function type for \arg Info.
140
  llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
141
142
  llvm::FunctionType *GetFunctionType(GlobalDecl GD);
143
144
  /// isFuncTypeConvertible - Utility to check whether a function type can
145
  /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
146
  /// type).
147
  bool isFuncTypeConvertible(const FunctionType *FT);
148
  bool isFuncParamTypeConvertible(QualType Ty);
149
150
  /// Determine if a C++ inheriting constructor should have parameters matching
151
  /// those of its inherited constructor.
152
  bool inheritingCtorHasParams(const InheritedConstructor &Inherited,
153
                               CXXCtorType Type);
154
155
  /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
156
  /// given a CXXMethodDecl. If the method to has an incomplete return type,
157
  /// and/or incomplete argument types, this will return the opaque type.
158
  llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
159
160
  const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
161
162
  /// UpdateCompletedType - When we find the full definition for a TagDecl,
163
  /// replace the 'opaque' type we previously made for it if applicable.
164
  void UpdateCompletedType(const TagDecl *TD);
165
166
  /// Remove stale types from the type cache when an inheritance model
167
  /// gets assigned to a class.
168
  void RefreshTypeCacheForClass(const CXXRecordDecl *RD);
169
170
  // The arrangement methods are split into three families:
171
  //   - those meant to drive the signature and prologue/epilogue
172
  //     of a function declaration or definition,
173
  //   - those meant for the computation of the LLVM type for an abstract
174
  //     appearance of a function, and
175
  //   - those meant for performing the IR-generation of a call.
176
  // They differ mainly in how they deal with optional (i.e. variadic)
177
  // arguments, as well as unprototyped functions.
178
  //
179
  // Key points:
180
  // - The CGFunctionInfo for emitting a specific call site must include
181
  //   entries for the optional arguments.
182
  // - The function type used at the call site must reflect the formal
183
  //   signature of the declaration being called, or else the call will
184
  //   go awry.
185
  // - For the most part, unprototyped functions are called by casting to
186
  //   a formal signature inferred from the specific argument types used
187
  //   at the call-site.  However, some targets (e.g. x86-64) screw with
188
  //   this for compatibility reasons.
189
190
  const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
191
192
  /// Given a function info for a declaration, return the function info
193
  /// for a call with the given arguments.
194
  ///
195
  /// Often this will be able to simply return the declaration info.
196
  const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI,
197
                                    const CallArgList &args);
198
199
  /// Free functions are functions that are compatible with an ordinary
200
  /// C function pointer type.
201
  const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
202
  const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
203
                                                const FunctionType *Ty,
204
                                                bool ChainCall);
205
  const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
206
  const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
207
208
  /// A nullary function is a freestanding function of type 'void ()'.
209
  /// This method works for both calls and declarations.
210
  const CGFunctionInfo &arrangeNullaryFunction();
211
212
  /// A builtin function is a freestanding function using the default
213
  /// C conventions.
214
  const CGFunctionInfo &
215
  arrangeBuiltinFunctionDeclaration(QualType resultType,
216
                                    const FunctionArgList &args);
217
  const CGFunctionInfo &
218
  arrangeBuiltinFunctionDeclaration(CanQualType resultType,
219
                                    ArrayRef<CanQualType> argTypes);
220
  const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType,
221
                                                   const CallArgList &args);
222
223
  /// Objective-C methods are C functions with some implicit parameters.
224
  const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
225
  const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
226
                                                        QualType receiverType);
227
  const CGFunctionInfo &arrangeUnprototypedObjCMessageSend(
228
                                                     QualType returnType,
229
                                                     const CallArgList &args);
230
231
  /// Block invocation functions are C functions with an implicit parameter.
232
  const CGFunctionInfo &arrangeBlockFunctionDeclaration(
233
                                                 const FunctionProtoType *type,
234
                                                 const FunctionArgList &args);
235
  const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
236
                                                 const FunctionType *type);
237
238
  /// C++ methods have some special rules and also have implicit parameters.
239
  const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
240
  const CGFunctionInfo &arrangeCXXStructorDeclaration(GlobalDecl GD);
241
  const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
242
                                                  const CXXConstructorDecl *D,
243
                                                  CXXCtorType CtorKind,
244
                                                  unsigned ExtraPrefixArgs,
245
                                                  unsigned ExtraSuffixArgs,
246
                                                  bool PassProtoArgs = true);
247
248
  const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
249
                                             const FunctionProtoType *type,
250
                                             RequiredArgs required,
251
                                             unsigned numPrefixArgs);
252
  const CGFunctionInfo &
253
  arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD);
254
  const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
255
                                                 CXXCtorType CT);
256
  const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
257
                                             const FunctionProtoType *FTP,
258
                                             const CXXMethodDecl *MD);
259
260
  /// "Arrange" the LLVM information for a call or type with the given
261
  /// signature.  This is largely an internal method; other clients
262
  /// should use one of the above routines, which ultimately defer to
263
  /// this.
264
  ///
265
  /// \param argTypes - must all actually be canonical as params
266
  const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
267
                                                bool instanceMethod,
268
                                                bool chainCall,
269
                                                ArrayRef<CanQualType> argTypes,
270
                                                FunctionType::ExtInfo info,
271
                    ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
272
                                                RequiredArgs args);
273
274
  /// Compute a new LLVM record layout object for the given record.
275
  CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
276
                                      llvm::StructType *Ty);
277
278
  /// addRecordTypeName - Compute a name from the given record decl with an
279
  /// optional suffix and name the given LLVM type using it.
280
  void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
281
                         StringRef suffix);
282
283
284
public:  // These are internal details of CGT that shouldn't be used externally.
285
  /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
286
  llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
287
288
  /// getExpandedTypes - Expand the type \arg Ty into the LLVM
289
  /// argument types it would be passed as. See ABIArgInfo::Expand.
290
  void getExpandedTypes(QualType Ty,
291
                        SmallVectorImpl<llvm::Type *>::iterator &TI);
292
293
  /// IsZeroInitializable - Return whether a type can be
294
  /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
295
  bool isZeroInitializable(QualType T);
296
297
  /// Check if the pointer type can be zero-initialized (in the C++ sense)
298
  /// with an LLVM zeroinitializer.
299
  bool isPointerZeroInitializable(QualType T);
300
301
  /// IsZeroInitializable - Return whether a record type can be
302
  /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
303
  bool isZeroInitializable(const RecordDecl *RD);
304
305
  bool isRecordLayoutComplete(const Type *Ty) const;
306
133k
  bool noRecordsBeingLaidOut() const {
307
133k
    return RecordsBeingLaidOut.empty();
308
133k
  }
309
667k
  bool isRecordBeingLaidOut(const Type *Ty) const {
310
667k
    return RecordsBeingLaidOut.count(Ty);
311
667k
  }
312
313
};
314
315
}  // end namespace CodeGen
316
}  // end namespace clang
317
318
#endif