/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This contains code to emit Builtin calls as LLVM code. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "CGCUDARuntime.h" |
14 | | #include "CGCXXABI.h" |
15 | | #include "CGObjCRuntime.h" |
16 | | #include "CGOpenCLRuntime.h" |
17 | | #include "CGRecordLayout.h" |
18 | | #include "CodeGenFunction.h" |
19 | | #include "CodeGenModule.h" |
20 | | #include "ConstantEmitter.h" |
21 | | #include "PatternInit.h" |
22 | | #include "TargetInfo.h" |
23 | | #include "clang/AST/ASTContext.h" |
24 | | #include "clang/AST/Attr.h" |
25 | | #include "clang/AST/Decl.h" |
26 | | #include "clang/AST/OSLog.h" |
27 | | #include "clang/Basic/TargetBuiltins.h" |
28 | | #include "clang/Basic/TargetInfo.h" |
29 | | #include "clang/CodeGen/CGFunctionInfo.h" |
30 | | #include "llvm/ADT/APFloat.h" |
31 | | #include "llvm/ADT/APInt.h" |
32 | | #include "llvm/ADT/SmallPtrSet.h" |
33 | | #include "llvm/ADT/StringExtras.h" |
34 | | #include "llvm/Analysis/ValueTracking.h" |
35 | | #include "llvm/IR/DataLayout.h" |
36 | | #include "llvm/IR/InlineAsm.h" |
37 | | #include "llvm/IR/Intrinsics.h" |
38 | | #include "llvm/IR/IntrinsicsAArch64.h" |
39 | | #include "llvm/IR/IntrinsicsAMDGPU.h" |
40 | | #include "llvm/IR/IntrinsicsARM.h" |
41 | | #include "llvm/IR/IntrinsicsBPF.h" |
42 | | #include "llvm/IR/IntrinsicsHexagon.h" |
43 | | #include "llvm/IR/IntrinsicsNVPTX.h" |
44 | | #include "llvm/IR/IntrinsicsPowerPC.h" |
45 | | #include "llvm/IR/IntrinsicsR600.h" |
46 | | #include "llvm/IR/IntrinsicsRISCV.h" |
47 | | #include "llvm/IR/IntrinsicsS390.h" |
48 | | #include "llvm/IR/IntrinsicsVE.h" |
49 | | #include "llvm/IR/IntrinsicsWebAssembly.h" |
50 | | #include "llvm/IR/IntrinsicsX86.h" |
51 | | #include "llvm/IR/MDBuilder.h" |
52 | | #include "llvm/IR/MatrixBuilder.h" |
53 | | #include "llvm/Support/ConvertUTF.h" |
54 | | #include "llvm/Support/ScopedPrinter.h" |
55 | | #include "llvm/Support/X86TargetParser.h" |
56 | | #include <sstream> |
57 | | |
58 | | using namespace clang; |
59 | | using namespace CodeGen; |
60 | | using namespace llvm; |
61 | | |
62 | | static |
63 | 0 | int64_t clamp(int64_t Value, int64_t Low, int64_t High) { |
64 | 0 | return std::min(High, std::max(Low, Value)); |
65 | 0 | } |
66 | | |
67 | | static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, |
68 | 27 | Align AlignmentInBytes) { |
69 | 27 | ConstantInt *Byte; |
70 | 27 | switch (CGF.getLangOpts().getTrivialAutoVarInit()) { |
71 | 13 | case LangOptions::TrivialAutoVarInitKind::Uninitialized: |
72 | | // Nothing to initialize. |
73 | 13 | return; |
74 | 7 | case LangOptions::TrivialAutoVarInitKind::Zero: |
75 | 7 | Byte = CGF.Builder.getInt8(0x00); |
76 | 7 | break; |
77 | 7 | case LangOptions::TrivialAutoVarInitKind::Pattern: { |
78 | 7 | llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); |
79 | 7 | Byte = llvm::dyn_cast<llvm::ConstantInt>( |
80 | 7 | initializationPatternFor(CGF.CGM, Int8)); |
81 | 7 | break; |
82 | 0 | } |
83 | 27 | } |
84 | 14 | if (CGF.CGM.stopAutoInit()) |
85 | 8 | return; |
86 | 6 | auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); |
87 | 6 | I->addAnnotationMetadata("auto-init"); |
88 | 6 | } |
89 | | |
90 | | /// getBuiltinLibFunction - Given a builtin id for a function like |
91 | | /// "__builtin_fabsf", return a Function* for "fabsf". |
92 | | llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, |
93 | 1.52k | unsigned BuiltinID) { |
94 | 1.52k | assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); |
95 | | |
96 | | // Get the name, skip over the __builtin_ prefix (if necessary). |
97 | 0 | StringRef Name; |
98 | 1.52k | GlobalDecl D(FD); |
99 | | |
100 | | // TODO: This list should be expanded or refactored after all GCC-compatible |
101 | | // std libcall builtins are implemented. |
102 | 1.52k | static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{ |
103 | 1.52k | {Builtin::BI__builtin_printf, "__printfieee128"}, |
104 | 1.52k | {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"}, |
105 | 1.52k | {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"}, |
106 | 1.52k | {Builtin::BI__builtin_sprintf, "__sprintfieee128"}, |
107 | 1.52k | {Builtin::BI__builtin_snprintf, "__snprintfieee128"}, |
108 | 1.52k | {Builtin::BI__builtin_fprintf, "__fprintfieee128"}, |
109 | 1.52k | {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"}, |
110 | 1.52k | }; |
111 | | |
112 | | // If the builtin has been declared explicitly with an assembler label, |
113 | | // use the mangled name. This differs from the plain label on platforms |
114 | | // that prefix labels. |
115 | 1.52k | if (FD->hasAttr<AsmLabelAttr>()) |
116 | 0 | Name = getMangledName(D); |
117 | 1.52k | else { |
118 | | // TODO: This mutation should also be applied to other targets other than |
119 | | // PPC, after backend supports IEEE 128-bit style libcalls. |
120 | 1.52k | if (getTriple().isPPC64() && |
121 | 1.52k | &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()108 && |
122 | 1.52k | F128Builtins.find(BuiltinID) != F128Builtins.end()54 ) |
123 | 7 | Name = F128Builtins[BuiltinID]; |
124 | 1.51k | else |
125 | 1.51k | Name = Context.BuiltinInfo.getName(BuiltinID) + 10; |
126 | 1.52k | } |
127 | | |
128 | 1.52k | llvm::FunctionType *Ty = |
129 | 1.52k | cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); |
130 | | |
131 | 1.52k | return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); |
132 | 1.52k | } |
133 | | |
134 | | /// Emit the conversions required to turn the given value into an |
135 | | /// integer of the given size. |
136 | | static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, |
137 | 527 | QualType T, llvm::IntegerType *IntType) { |
138 | 527 | V = CGF.EmitToMemory(V, T); |
139 | | |
140 | 527 | if (V->getType()->isPointerTy()) |
141 | 16 | return CGF.Builder.CreatePtrToInt(V, IntType); |
142 | | |
143 | 511 | assert(V->getType() == IntType); |
144 | 0 | return V; |
145 | 527 | } |
146 | | |
147 | | static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, |
148 | 490 | QualType T, llvm::Type *ResultType) { |
149 | 490 | V = CGF.EmitFromMemory(V, T); |
150 | | |
151 | 490 | if (ResultType->isPointerTy()) |
152 | 10 | return CGF.Builder.CreateIntToPtr(V, ResultType); |
153 | | |
154 | 480 | assert(V->getType() == ResultType); |
155 | 0 | return V; |
156 | 490 | } |
157 | | |
158 | | /// Utility to insert an atomic instruction based on Intrinsic::ID |
159 | | /// and the expression node. |
160 | | static Value *MakeBinaryAtomicValue( |
161 | | CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, |
162 | 420 | AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
163 | | |
164 | 420 | QualType T = E->getType(); |
165 | 420 | assert(E->getArg(0)->getType()->isPointerType()); |
166 | 0 | assert(CGF.getContext().hasSameUnqualifiedType(T, |
167 | 420 | E->getArg(0)->getType()->getPointeeType())); |
168 | 0 | assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
169 | | |
170 | 0 | llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
171 | 420 | unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
172 | | |
173 | 420 | llvm::IntegerType *IntType = |
174 | 420 | llvm::IntegerType::get(CGF.getLLVMContext(), |
175 | 420 | CGF.getContext().getTypeSize(T)); |
176 | 420 | llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
177 | | |
178 | 420 | llvm::Value *Args[2]; |
179 | 420 | Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
180 | 420 | Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
181 | 420 | llvm::Type *ValueType = Args[1]->getType(); |
182 | 420 | Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
183 | | |
184 | 420 | llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
185 | 420 | Kind, Args[0], Args[1], Ordering); |
186 | 420 | return EmitFromInt(CGF, Result, T, ValueType); |
187 | 420 | } |
188 | | |
189 | 84 | static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { |
190 | 84 | Value *Val = CGF.EmitScalarExpr(E->getArg(0)); |
191 | 84 | Value *Address = CGF.EmitScalarExpr(E->getArg(1)); |
192 | | |
193 | | // Convert the type of the pointer to a pointer to the stored type. |
194 | 84 | Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); |
195 | 84 | unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace(); |
196 | 84 | Value *BC = CGF.Builder.CreateBitCast( |
197 | 84 | Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast"); |
198 | 84 | LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); |
199 | 84 | LV.setNontemporal(true); |
200 | 84 | CGF.EmitStoreOfScalar(Val, LV, false); |
201 | 84 | return nullptr; |
202 | 84 | } |
203 | | |
204 | 35 | static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { |
205 | 35 | Value *Address = CGF.EmitScalarExpr(E->getArg(0)); |
206 | | |
207 | 35 | LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); |
208 | 35 | LV.setNontemporal(true); |
209 | 35 | return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); |
210 | 35 | } |
211 | | |
212 | | static RValue EmitBinaryAtomic(CodeGenFunction &CGF, |
213 | | llvm::AtomicRMWInst::BinOp Kind, |
214 | 125 | const CallExpr *E) { |
215 | 125 | return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); |
216 | 125 | } |
217 | | |
218 | | /// Utility to insert an atomic instruction based Intrinsic::ID and |
219 | | /// the expression node, where the return value is the result of the |
220 | | /// operation. |
221 | | static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, |
222 | | llvm::AtomicRMWInst::BinOp Kind, |
223 | | const CallExpr *E, |
224 | | Instruction::BinaryOps Op, |
225 | 57 | bool Invert = false) { |
226 | 57 | QualType T = E->getType(); |
227 | 57 | assert(E->getArg(0)->getType()->isPointerType()); |
228 | 0 | assert(CGF.getContext().hasSameUnqualifiedType(T, |
229 | 57 | E->getArg(0)->getType()->getPointeeType())); |
230 | 0 | assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
231 | | |
232 | 0 | llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
233 | 57 | unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
234 | | |
235 | 57 | llvm::IntegerType *IntType = |
236 | 57 | llvm::IntegerType::get(CGF.getLLVMContext(), |
237 | 57 | CGF.getContext().getTypeSize(T)); |
238 | 57 | llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
239 | | |
240 | 57 | llvm::Value *Args[2]; |
241 | 57 | Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
242 | 57 | llvm::Type *ValueType = Args[1]->getType(); |
243 | 57 | Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
244 | 57 | Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
245 | | |
246 | 57 | llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
247 | 57 | Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); |
248 | 57 | Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); |
249 | 57 | if (Invert) |
250 | 11 | Result = |
251 | 11 | CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, |
252 | 11 | llvm::ConstantInt::getAllOnesValue(IntType)); |
253 | 57 | Result = EmitFromInt(CGF, Result, T, ValueType); |
254 | 57 | return RValue::get(Result); |
255 | 57 | } |
256 | | |
257 | | /// Utility to insert an atomic cmpxchg instruction. |
258 | | /// |
259 | | /// @param CGF The current codegen function. |
260 | | /// @param E Builtin call expression to convert to cmpxchg. |
261 | | /// arg0 - address to operate on |
262 | | /// arg1 - value to compare with |
263 | | /// arg2 - new value |
264 | | /// @param ReturnBool Specifies whether to return success flag of |
265 | | /// cmpxchg result or the old value. |
266 | | /// |
267 | | /// @returns result of cmpxchg, according to ReturnBool |
268 | | /// |
269 | | /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics |
270 | | /// invoke the function EmitAtomicCmpXchgForMSIntrin. |
271 | | static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, |
272 | 25 | bool ReturnBool) { |
273 | 25 | QualType T = ReturnBool ? E->getArg(1)->getType()12 : E->getType()13 ; |
274 | 25 | llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
275 | 25 | unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
276 | | |
277 | 25 | llvm::IntegerType *IntType = llvm::IntegerType::get( |
278 | 25 | CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); |
279 | 25 | llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
280 | | |
281 | 25 | Value *Args[3]; |
282 | 25 | Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
283 | 25 | Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
284 | 25 | llvm::Type *ValueType = Args[1]->getType(); |
285 | 25 | Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
286 | 25 | Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); |
287 | | |
288 | 25 | Value *Pair = CGF.Builder.CreateAtomicCmpXchg( |
289 | 25 | Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, |
290 | 25 | llvm::AtomicOrdering::SequentiallyConsistent); |
291 | 25 | if (ReturnBool) |
292 | | // Extract boolean success flag and zext it to int. |
293 | 12 | return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), |
294 | 12 | CGF.ConvertType(E->getType())); |
295 | 13 | else |
296 | | // Extract old value and emit it using the same type as compare value. |
297 | 13 | return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, |
298 | 13 | ValueType); |
299 | 25 | } |
300 | | |
301 | | /// This function should be invoked to emit atomic cmpxchg for Microsoft's |
302 | | /// _InterlockedCompareExchange* intrinsics which have the following signature: |
303 | | /// T _InterlockedCompareExchange(T volatile *Destination, |
304 | | /// T Exchange, |
305 | | /// T Comparand); |
306 | | /// |
307 | | /// Whereas the llvm 'cmpxchg' instruction has the following syntax: |
308 | | /// cmpxchg *Destination, Comparand, Exchange. |
309 | | /// So we need to swap Comparand and Exchange when invoking |
310 | | /// CreateAtomicCmpXchg. That is the reason we could not use the above utility |
311 | | /// function MakeAtomicCmpXchgValue since it expects the arguments to be |
312 | | /// already swapped. |
313 | | |
314 | | static |
315 | | Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, |
316 | 54 | AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { |
317 | 54 | assert(E->getArg(0)->getType()->isPointerType()); |
318 | 0 | assert(CGF.getContext().hasSameUnqualifiedType( |
319 | 54 | E->getType(), E->getArg(0)->getType()->getPointeeType())); |
320 | 0 | assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), |
321 | 54 | E->getArg(1)->getType())); |
322 | 0 | assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), |
323 | 54 | E->getArg(2)->getType())); |
324 | | |
325 | 0 | auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); |
326 | 54 | auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); |
327 | 54 | auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); |
328 | | |
329 | | // For Release ordering, the failure ordering should be Monotonic. |
330 | 54 | auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? |
331 | 11 | AtomicOrdering::Monotonic : |
332 | 54 | SuccessOrdering43 ; |
333 | | |
334 | | // The atomic instruction is marked volatile for consistency with MSVC. This |
335 | | // blocks the few atomics optimizations that LLVM has. If we want to optimize |
336 | | // _Interlocked* operations in the future, we will have to remove the volatile |
337 | | // marker. |
338 | 54 | auto *Result = CGF.Builder.CreateAtomicCmpXchg( |
339 | 54 | Destination, Comparand, Exchange, |
340 | 54 | SuccessOrdering, FailureOrdering); |
341 | 54 | Result->setVolatile(true); |
342 | 54 | return CGF.Builder.CreateExtractValue(Result, 0); |
343 | 54 | } |
344 | | |
345 | | // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are |
346 | | // prototyped like this: |
347 | | // |
348 | | // unsigned char _InterlockedCompareExchange128...( |
349 | | // __int64 volatile * _Destination, |
350 | | // __int64 _ExchangeHigh, |
351 | | // __int64 _ExchangeLow, |
352 | | // __int64 * _ComparandResult); |
353 | | static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF, |
354 | | const CallExpr *E, |
355 | 5 | AtomicOrdering SuccessOrdering) { |
356 | 5 | assert(E->getNumArgs() == 4); |
357 | 0 | llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0)); |
358 | 5 | llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1)); |
359 | 5 | llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2)); |
360 | 5 | llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3)); |
361 | | |
362 | 5 | assert(Destination->getType()->isPointerTy()); |
363 | 0 | assert(!ExchangeHigh->getType()->isPointerTy()); |
364 | 0 | assert(!ExchangeLow->getType()->isPointerTy()); |
365 | 0 | assert(ComparandPtr->getType()->isPointerTy()); |
366 | | |
367 | | // For Release ordering, the failure ordering should be Monotonic. |
368 | 5 | auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release |
369 | 5 | ? AtomicOrdering::Monotonic1 |
370 | 5 | : SuccessOrdering4 ; |
371 | | |
372 | | // Convert to i128 pointers and values. |
373 | 5 | llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128); |
374 | 5 | llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); |
375 | 5 | Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy); |
376 | 5 | Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy), |
377 | 5 | Int128Ty, CGF.getContext().toCharUnitsFromBits(128)); |
378 | | |
379 | | // (((i128)hi) << 64) | ((i128)lo) |
380 | 5 | ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty); |
381 | 5 | ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty); |
382 | 5 | ExchangeHigh = |
383 | 5 | CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64)); |
384 | 5 | llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow); |
385 | | |
386 | | // Load the comparand for the instruction. |
387 | 5 | llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult); |
388 | | |
389 | 5 | auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, |
390 | 5 | SuccessOrdering, FailureOrdering); |
391 | | |
392 | | // The atomic instruction is marked volatile for consistency with MSVC. This |
393 | | // blocks the few atomics optimizations that LLVM has. If we want to optimize |
394 | | // _Interlocked* operations in the future, we will have to remove the volatile |
395 | | // marker. |
396 | 5 | CXI->setVolatile(true); |
397 | | |
398 | | // Store the result as an outparameter. |
399 | 5 | CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0), |
400 | 5 | ComparandResult); |
401 | | |
402 | | // Get the success boolean and zero extend it to i8. |
403 | 5 | Value *Success = CGF.Builder.CreateExtractValue(CXI, 1); |
404 | 5 | return CGF.Builder.CreateZExt(Success, CGF.Int8Ty); |
405 | 5 | } |
406 | | |
407 | | static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, |
408 | 44 | AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
409 | 44 | assert(E->getArg(0)->getType()->isPointerType()); |
410 | | |
411 | 0 | auto *IntTy = CGF.ConvertType(E->getType()); |
412 | 44 | auto *Result = CGF.Builder.CreateAtomicRMW( |
413 | 44 | AtomicRMWInst::Add, |
414 | 44 | CGF.EmitScalarExpr(E->getArg(0)), |
415 | 44 | ConstantInt::get(IntTy, 1), |
416 | 44 | Ordering); |
417 | 44 | return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); |
418 | 44 | } |
419 | | |
420 | | static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, |
421 | 44 | AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
422 | 44 | assert(E->getArg(0)->getType()->isPointerType()); |
423 | | |
424 | 0 | auto *IntTy = CGF.ConvertType(E->getType()); |
425 | 44 | auto *Result = CGF.Builder.CreateAtomicRMW( |
426 | 44 | AtomicRMWInst::Sub, |
427 | 44 | CGF.EmitScalarExpr(E->getArg(0)), |
428 | 44 | ConstantInt::get(IntTy, 1), |
429 | 44 | Ordering); |
430 | 44 | return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); |
431 | 44 | } |
432 | | |
433 | | // Build a plain volatile load. |
434 | 16 | static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { |
435 | 16 | Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
436 | 16 | QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
437 | 16 | CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); |
438 | 16 | llvm::Type *ITy = |
439 | 16 | llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); |
440 | 16 | Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
441 | 16 | llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize); |
442 | 16 | Load->setVolatile(true); |
443 | 16 | return Load; |
444 | 16 | } |
445 | | |
446 | | // Build a plain volatile store. |
447 | 16 | static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { |
448 | 16 | Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
449 | 16 | Value *Value = CGF.EmitScalarExpr(E->getArg(1)); |
450 | 16 | QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
451 | 16 | CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); |
452 | 16 | llvm::Type *ITy = |
453 | 16 | llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); |
454 | 16 | Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
455 | 16 | llvm::StoreInst *Store = |
456 | 16 | CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); |
457 | 16 | Store->setVolatile(true); |
458 | 16 | return Store; |
459 | 16 | } |
460 | | |
461 | | // Emit a simple mangled intrinsic that has 1 argument and a return type |
462 | | // matching the argument type. Depending on mode, this may be a constrained |
463 | | // floating-point intrinsic. |
464 | | static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
465 | | const CallExpr *E, unsigned IntrinsicID, |
466 | 434 | unsigned ConstrainedIntrinsicID) { |
467 | 434 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
468 | | |
469 | 434 | if (CGF.Builder.getIsFPConstrained()) { |
470 | 56 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
471 | 56 | Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
472 | 56 | return CGF.Builder.CreateConstrainedFPCall(F, { Src0 }); |
473 | 378 | } else { |
474 | 378 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
475 | 378 | return CGF.Builder.CreateCall(F, Src0); |
476 | 378 | } |
477 | 434 | } |
478 | | |
479 | | // Emit an intrinsic that has 2 operands of the same type as its result. |
480 | | // Depending on mode, this may be a constrained floating-point intrinsic. |
481 | | static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
482 | | const CallExpr *E, unsigned IntrinsicID, |
483 | 109 | unsigned ConstrainedIntrinsicID) { |
484 | 109 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
485 | 109 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
486 | | |
487 | 109 | if (CGF.Builder.getIsFPConstrained()) { |
488 | 12 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
489 | 12 | Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
490 | 12 | return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 }); |
491 | 97 | } else { |
492 | 97 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
493 | 97 | return CGF.Builder.CreateCall(F, { Src0, Src1 }); |
494 | 97 | } |
495 | 109 | } |
496 | | |
497 | | // Emit an intrinsic that has 3 operands of the same type as its result. |
498 | | // Depending on mode, this may be a constrained floating-point intrinsic. |
499 | | static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
500 | | const CallExpr *E, unsigned IntrinsicID, |
501 | 30 | unsigned ConstrainedIntrinsicID) { |
502 | 30 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
503 | 30 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
504 | 30 | llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); |
505 | | |
506 | 30 | if (CGF.Builder.getIsFPConstrained()) { |
507 | 4 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
508 | 4 | Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
509 | 4 | return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 }); |
510 | 26 | } else { |
511 | 26 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
512 | 26 | return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); |
513 | 26 | } |
514 | 30 | } |
515 | | |
516 | | // Emit an intrinsic where all operands are of the same type as the result. |
517 | | // Depending on mode, this may be a constrained floating-point intrinsic. |
518 | | static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
519 | | unsigned IntrinsicID, |
520 | | unsigned ConstrainedIntrinsicID, |
521 | | llvm::Type *Ty, |
522 | 124 | ArrayRef<Value *> Args) { |
523 | 124 | Function *F; |
524 | 124 | if (CGF.Builder.getIsFPConstrained()) |
525 | 38 | F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty); |
526 | 86 | else |
527 | 86 | F = CGF.CGM.getIntrinsic(IntrinsicID, Ty); |
528 | | |
529 | 124 | if (CGF.Builder.getIsFPConstrained()) |
530 | 38 | return CGF.Builder.CreateConstrainedFPCall(F, Args); |
531 | 86 | else |
532 | 86 | return CGF.Builder.CreateCall(F, Args); |
533 | 124 | } |
534 | | |
535 | | // Emit a simple mangled intrinsic that has 1 argument and a return type |
536 | | // matching the argument type. |
537 | | static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
538 | | unsigned IntrinsicID, |
539 | 251 | llvm::StringRef Name = "") { |
540 | 251 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
541 | | |
542 | 251 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
543 | 251 | return CGF.Builder.CreateCall(F, Src0, Name); |
544 | 251 | } |
545 | | |
546 | | // Emit an intrinsic that has 2 operands of the same type as its result. |
547 | | static Value *emitBinaryBuiltin(CodeGenFunction &CGF, |
548 | | const CallExpr *E, |
549 | 48 | unsigned IntrinsicID) { |
550 | 48 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
551 | 48 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
552 | | |
553 | 48 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
554 | 48 | return CGF.Builder.CreateCall(F, { Src0, Src1 }); |
555 | 48 | } |
556 | | |
557 | | // Emit an intrinsic that has 3 operands of the same type as its result. |
558 | | static Value *emitTernaryBuiltin(CodeGenFunction &CGF, |
559 | | const CallExpr *E, |
560 | 14 | unsigned IntrinsicID) { |
561 | 14 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
562 | 14 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
563 | 14 | llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); |
564 | | |
565 | 14 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
566 | 14 | return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); |
567 | 14 | } |
568 | | |
569 | | // Emit an intrinsic that has 1 float or double operand, and 1 integer. |
570 | | static Value *emitFPIntBuiltin(CodeGenFunction &CGF, |
571 | | const CallExpr *E, |
572 | 16 | unsigned IntrinsicID) { |
573 | 16 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
574 | 16 | llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
575 | | |
576 | 16 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
577 | 16 | return CGF.Builder.CreateCall(F, {Src0, Src1}); |
578 | 16 | } |
579 | | |
580 | | // Emit an intrinsic that has overloaded integer result and fp operand. |
581 | | static Value * |
582 | | emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
583 | | unsigned IntrinsicID, |
584 | 56 | unsigned ConstrainedIntrinsicID) { |
585 | 56 | llvm::Type *ResultType = CGF.ConvertType(E->getType()); |
586 | 56 | llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
587 | | |
588 | 56 | if (CGF.Builder.getIsFPConstrained()) { |
589 | 16 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
590 | 16 | Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, |
591 | 16 | {ResultType, Src0->getType()}); |
592 | 16 | return CGF.Builder.CreateConstrainedFPCall(F, {Src0}); |
593 | 40 | } else { |
594 | 40 | Function *F = |
595 | 40 | CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()}); |
596 | 40 | return CGF.Builder.CreateCall(F, Src0); |
597 | 40 | } |
598 | 56 | } |
599 | | |
600 | | /// EmitFAbs - Emit a call to @llvm.fabs(). |
601 | 31 | static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { |
602 | 31 | Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); |
603 | 31 | llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); |
604 | 31 | Call->setDoesNotAccessMemory(); |
605 | 31 | return Call; |
606 | 31 | } |
607 | | |
608 | | /// Emit the computation of the sign bit for a floating point value. Returns |
609 | | /// the i1 sign bit value. |
610 | 31 | static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { |
611 | 31 | LLVMContext &C = CGF.CGM.getLLVMContext(); |
612 | | |
613 | 31 | llvm::Type *Ty = V->getType(); |
614 | 31 | int Width = Ty->getPrimitiveSizeInBits(); |
615 | 31 | llvm::Type *IntTy = llvm::IntegerType::get(C, Width); |
616 | 31 | V = CGF.Builder.CreateBitCast(V, IntTy); |
617 | 31 | if (Ty->isPPC_FP128Ty()) { |
618 | | // We want the sign bit of the higher-order double. The bitcast we just |
619 | | // did works as if the double-double was stored to memory and then |
620 | | // read as an i128. The "store" will put the higher-order double in the |
621 | | // lower address in both little- and big-Endian modes, but the "load" |
622 | | // will treat those bits as a different part of the i128: the low bits in |
623 | | // little-Endian, the high bits in big-Endian. Therefore, on big-Endian |
624 | | // we need to shift the high bits down to the low before truncating. |
625 | 14 | Width >>= 1; |
626 | 14 | if (CGF.getTarget().isBigEndian()) { |
627 | 9 | Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); |
628 | 9 | V = CGF.Builder.CreateLShr(V, ShiftCst); |
629 | 9 | } |
630 | | // We are truncating value in order to extract the higher-order |
631 | | // double, which we will be using to extract the sign from. |
632 | 14 | IntTy = llvm::IntegerType::get(C, Width); |
633 | 14 | V = CGF.Builder.CreateTrunc(V, IntTy); |
634 | 14 | } |
635 | 31 | Value *Zero = llvm::Constant::getNullValue(IntTy); |
636 | 31 | return CGF.Builder.CreateICmpSLT(V, Zero); |
637 | 31 | } |
638 | | |
639 | | static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, |
640 | 16.1k | const CallExpr *E, llvm::Constant *calleeValue) { |
641 | 16.1k | CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); |
642 | 16.1k | return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); |
643 | 16.1k | } |
644 | | |
645 | | /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* |
646 | | /// depending on IntrinsicID. |
647 | | /// |
648 | | /// \arg CGF The current codegen function. |
649 | | /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. |
650 | | /// \arg X The first argument to the llvm.*.with.overflow.*. |
651 | | /// \arg Y The second argument to the llvm.*.with.overflow.*. |
652 | | /// \arg Carry The carry returned by the llvm.*.with.overflow.*. |
653 | | /// \returns The result (i.e. sum/product) returned by the intrinsic. |
654 | | static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, |
655 | | const llvm::Intrinsic::ID IntrinsicID, |
656 | | llvm::Value *X, llvm::Value *Y, |
657 | 205 | llvm::Value *&Carry) { |
658 | | // Make sure we have integers of the same width. |
659 | 205 | assert(X->getType() == Y->getType() && |
660 | 205 | "Arguments must be the same type. (Did you forget to make sure both " |
661 | 205 | "arguments have the same integer width?)"); |
662 | | |
663 | 0 | Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); |
664 | 205 | llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); |
665 | 205 | Carry = CGF.Builder.CreateExtractValue(Tmp, 1); |
666 | 205 | return CGF.Builder.CreateExtractValue(Tmp, 0); |
667 | 205 | } |
668 | | |
669 | | static Value *emitRangedBuiltin(CodeGenFunction &CGF, |
670 | | unsigned IntrinsicID, |
671 | 6 | int low, int high) { |
672 | 6 | llvm::MDBuilder MDHelper(CGF.getLLVMContext()); |
673 | 6 | llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); |
674 | 6 | Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); |
675 | 6 | llvm::Instruction *Call = CGF.Builder.CreateCall(F); |
676 | 6 | Call->setMetadata(llvm::LLVMContext::MD_range, RNode); |
677 | 6 | return Call; |
678 | 6 | } |
679 | | |
680 | | namespace { |
681 | | struct WidthAndSignedness { |
682 | | unsigned Width; |
683 | | bool Signed; |
684 | | }; |
685 | | } |
686 | | |
687 | | static WidthAndSignedness |
688 | | getIntegerWidthAndSignedness(const clang::ASTContext &context, |
689 | 270 | const clang::QualType Type) { |
690 | 270 | assert(Type->isIntegerType() && "Given type is not an integer."); |
691 | 270 | unsigned Width = Type->isBooleanType() ? 118 |
692 | 270 | : Type->isBitIntType()252 ? context.getIntWidth(Type)45 |
693 | 252 | : context.getTypeInfo(Type).Width207 ; |
694 | 270 | bool Signed = Type->isSignedIntegerType(); |
695 | 270 | return {Width, Signed}; |
696 | 270 | } |
697 | | |
698 | | // Given one or more integer types, this function produces an integer type that |
699 | | // encompasses them: any value in one of the given types could be expressed in |
700 | | // the encompassing type. |
701 | | static struct WidthAndSignedness |
702 | 54 | EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { |
703 | 54 | assert(Types.size() > 0 && "Empty list of types."); |
704 | | |
705 | | // If any of the given types is signed, we must return a signed type. |
706 | 0 | bool Signed = false; |
707 | 162 | for (const auto &Type : Types) { |
708 | 162 | Signed |= Type.Signed; |
709 | 162 | } |
710 | | |
711 | | // The encompassing type must have a width greater than or equal to the width |
712 | | // of the specified types. Additionally, if the encompassing type is signed, |
713 | | // its width must be strictly greater than the width of any unsigned types |
714 | | // given. |
715 | 54 | unsigned Width = 0; |
716 | 162 | for (const auto &Type : Types) { |
717 | 162 | unsigned MinWidth = Type.Width + (Signed && !Type.Signed108 ); |
718 | 162 | if (Width < MinWidth) { |
719 | 63 | Width = MinWidth; |
720 | 63 | } |
721 | 162 | } |
722 | | |
723 | 54 | return {Width, Signed}; |
724 | 54 | } |
725 | | |
726 | 518 | Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { |
727 | 518 | llvm::Type *DestType = Int8PtrTy; |
728 | 518 | if (ArgValue->getType() != DestType) |
729 | 416 | ArgValue = |
730 | 416 | Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); |
731 | | |
732 | 518 | Intrinsic::ID inst = IsStart ? Intrinsic::vastart271 : Intrinsic::vaend247 ; |
733 | 518 | return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); |
734 | 518 | } |
735 | | |
736 | | /// Checks if using the result of __builtin_object_size(p, @p From) in place of |
737 | | /// __builtin_object_size(p, @p To) is correct |
738 | 38 | static bool areBOSTypesCompatible(int From, int To) { |
739 | | // Note: Our __builtin_object_size implementation currently treats Type=0 and |
740 | | // Type=2 identically. Encoding this implementation detail here may make |
741 | | // improving __builtin_object_size difficult in the future, so it's omitted. |
742 | 38 | return From == To || (12 From == 012 && To == 13 ) || (11 From == 311 && To == 23 ); |
743 | 38 | } |
744 | | |
745 | | static llvm::Value * |
746 | 35 | getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { |
747 | 35 | return ConstantInt::get(ResType, (Type & 2) ? 0 : -10 , /*isSigned=*/true); |
748 | 35 | } |
749 | | |
750 | | llvm::Value * |
751 | | CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
752 | | llvm::IntegerType *ResType, |
753 | | llvm::Value *EmittedE, |
754 | 107 | bool IsDynamic) { |
755 | 107 | uint64_t ObjectSize; |
756 | 107 | if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) |
757 | 55 | return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); |
758 | 52 | return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); |
759 | 107 | } |
760 | | |
761 | | /// Returns a Value corresponding to the size of the given expression. |
762 | | /// This Value may be either of the following: |
763 | | /// - A llvm::Argument (if E is a param with the pass_object_size attribute on |
764 | | /// it) |
765 | | /// - A call to the @llvm.objectsize intrinsic |
766 | | /// |
767 | | /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null |
768 | | /// and we wouldn't otherwise try to reference a pass_object_size parameter, |
769 | | /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. |
770 | | llvm::Value * |
771 | | CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, |
772 | | llvm::IntegerType *ResType, |
773 | 276 | llvm::Value *EmittedE, bool IsDynamic) { |
774 | | // We need to reference an argument if the pointer is a parameter with the |
775 | | // pass_object_size attribute. |
776 | 276 | if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { |
777 | 132 | auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); |
778 | 132 | auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); |
779 | 132 | if (Param != nullptr && PS != nullptr69 && |
780 | 132 | areBOSTypesCompatible(PS->getType(), Type)38 ) { |
781 | 28 | auto Iter = SizeArguments.find(Param); |
782 | 28 | assert(Iter != SizeArguments.end()); |
783 | | |
784 | 0 | const ImplicitParamDecl *D = Iter->second; |
785 | 28 | auto DIter = LocalDeclMap.find(D); |
786 | 28 | assert(DIter != LocalDeclMap.end()); |
787 | | |
788 | 0 | return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, |
789 | 28 | getContext().getSizeType(), E->getBeginLoc()); |
790 | 28 | } |
791 | 132 | } |
792 | | |
793 | | // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't |
794 | | // evaluate E for side-effects. In either case, we shouldn't lower to |
795 | | // @llvm.objectsize. |
796 | 248 | if (Type == 3 || (213 !EmittedE213 && E->HasSideEffects(getContext())173 )) |
797 | 35 | return getDefaultBuiltinObjectSizeResult(Type, ResType); |
798 | | |
799 | 213 | Value *Ptr = EmittedE ? EmittedE40 : EmitScalarExpr(E)173 ; |
800 | 213 | assert(Ptr->getType()->isPointerTy() && |
801 | 213 | "Non-pointer passed to __builtin_object_size?"); |
802 | | |
803 | 0 | Function *F = |
804 | 213 | CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); |
805 | | |
806 | | // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. |
807 | 213 | Value *Min = Builder.getInt1((Type & 2) != 0); |
808 | | // For GCC compatibility, __builtin_object_size treat NULL as unknown size. |
809 | 213 | Value *NullIsUnknown = Builder.getTrue(); |
810 | 213 | Value *Dynamic = Builder.getInt1(IsDynamic); |
811 | 213 | return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); |
812 | 248 | } |
813 | | |
814 | | namespace { |
815 | | /// A struct to generically describe a bit test intrinsic. |
816 | | struct BitTest { |
817 | | enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; |
818 | | enum InterlockingKind : uint8_t { |
819 | | Unlocked, |
820 | | Sequential, |
821 | | Acquire, |
822 | | Release, |
823 | | NoFence |
824 | | }; |
825 | | |
826 | | ActionKind Action; |
827 | | InterlockingKind Interlocking; |
828 | | bool Is64Bit; |
829 | | |
830 | | static BitTest decodeBitTestBuiltin(unsigned BuiltinID); |
831 | | }; |
832 | | } // namespace |
833 | | |
834 | 51 | BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { |
835 | 51 | switch (BuiltinID) { |
836 | | // Main portable variants. |
837 | 3 | case Builtin::BI_bittest: |
838 | 3 | return {TestOnly, Unlocked, false}; |
839 | 3 | case Builtin::BI_bittestandcomplement: |
840 | 3 | return {Complement, Unlocked, false}; |
841 | 3 | case Builtin::BI_bittestandreset: |
842 | 3 | return {Reset, Unlocked, false}; |
843 | 3 | case Builtin::BI_bittestandset: |
844 | 3 | return {Set, Unlocked, false}; |
845 | 3 | case Builtin::BI_interlockedbittestandreset: |
846 | 3 | return {Reset, Sequential, false}; |
847 | 6 | case Builtin::BI_interlockedbittestandset: |
848 | 6 | return {Set, Sequential, false}; |
849 | | |
850 | | // X86-specific 64-bit variants. |
851 | 3 | case Builtin::BI_bittest64: |
852 | 3 | return {TestOnly, Unlocked, true}; |
853 | 3 | case Builtin::BI_bittestandcomplement64: |
854 | 3 | return {Complement, Unlocked, true}; |
855 | 3 | case Builtin::BI_bittestandreset64: |
856 | 3 | return {Reset, Unlocked, true}; |
857 | 3 | case Builtin::BI_bittestandset64: |
858 | 3 | return {Set, Unlocked, true}; |
859 | 3 | case Builtin::BI_interlockedbittestandreset64: |
860 | 3 | return {Reset, Sequential, true}; |
861 | 3 | case Builtin::BI_interlockedbittestandset64: |
862 | 3 | return {Set, Sequential, true}; |
863 | | |
864 | | // ARM/AArch64-specific ordering variants. |
865 | 2 | case Builtin::BI_interlockedbittestandset_acq: |
866 | 2 | return {Set, Acquire, false}; |
867 | 2 | case Builtin::BI_interlockedbittestandset_rel: |
868 | 2 | return {Set, Release, false}; |
869 | 2 | case Builtin::BI_interlockedbittestandset_nf: |
870 | 2 | return {Set, NoFence, false}; |
871 | 2 | case Builtin::BI_interlockedbittestandreset_acq: |
872 | 2 | return {Reset, Acquire, false}; |
873 | 2 | case Builtin::BI_interlockedbittestandreset_rel: |
874 | 2 | return {Reset, Release, false}; |
875 | 2 | case Builtin::BI_interlockedbittestandreset_nf: |
876 | 2 | return {Reset, NoFence, false}; |
877 | 51 | } |
878 | 0 | llvm_unreachable("expected only bittest intrinsics"); |
879 | 0 | } |
880 | | |
881 | 13 | static char bitActionToX86BTCode(BitTest::ActionKind A) { |
882 | 13 | switch (A) { |
883 | 2 | case BitTest::TestOnly: return '\0'; |
884 | 2 | case BitTest::Complement: return 'c'; |
885 | 4 | case BitTest::Reset: return 'r'; |
886 | 5 | case BitTest::Set: return 's'; |
887 | 13 | } |
888 | 0 | llvm_unreachable("invalid action"); |
889 | 0 | } |
890 | | |
891 | | static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, |
892 | | BitTest BT, |
893 | | const CallExpr *E, Value *BitBase, |
894 | 13 | Value *BitPos) { |
895 | 13 | char Action = bitActionToX86BTCode(BT.Action); |
896 | 13 | char SizeSuffix = BT.Is64Bit ? 'q'6 : 'l'7 ; |
897 | | |
898 | | // Build the assembly. |
899 | 13 | SmallString<64> Asm; |
900 | 13 | raw_svector_ostream AsmOS(Asm); |
901 | 13 | if (BT.Interlocking != BitTest::Unlocked) |
902 | 5 | AsmOS << "lock "; |
903 | 13 | AsmOS << "bt"; |
904 | 13 | if (Action) |
905 | 11 | AsmOS << Action; |
906 | 13 | AsmOS << SizeSuffix << " $2, ($1)"; |
907 | | |
908 | | // Build the constraints. FIXME: We should support immediates when possible. |
909 | 13 | std::string Constraints = "={@ccc},r,r,~{cc},~{memory}"; |
910 | 13 | std::string MachineClobbers = CGF.getTarget().getClobbers(); |
911 | 13 | if (!MachineClobbers.empty()) { |
912 | 13 | Constraints += ','; |
913 | 13 | Constraints += MachineClobbers; |
914 | 13 | } |
915 | 13 | llvm::IntegerType *IntType = llvm::IntegerType::get( |
916 | 13 | CGF.getLLVMContext(), |
917 | 13 | CGF.getContext().getTypeSize(E->getArg(1)->getType())); |
918 | 13 | llvm::Type *IntPtrType = IntType->getPointerTo(); |
919 | 13 | llvm::FunctionType *FTy = |
920 | 13 | llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); |
921 | | |
922 | 13 | llvm::InlineAsm *IA = |
923 | 13 | llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
924 | 13 | return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); |
925 | 13 | } |
926 | | |
927 | | static llvm::AtomicOrdering |
928 | 38 | getBitTestAtomicOrdering(BitTest::InterlockingKind I) { |
929 | 38 | switch (I) { |
930 | 16 | case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; |
931 | 10 | case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; |
932 | 4 | case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; |
933 | 4 | case BitTest::Release: return llvm::AtomicOrdering::Release; |
934 | 4 | case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; |
935 | 38 | } |
936 | 0 | llvm_unreachable("invalid interlocking"); |
937 | 0 | } |
938 | | |
939 | | /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of |
940 | | /// bits and a bit position and read and optionally modify the bit at that |
941 | | /// position. The position index can be arbitrarily large, i.e. it can be larger |
942 | | /// than 31 or 63, so we need an indexed load in the general case. |
943 | | static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, |
944 | | unsigned BuiltinID, |
945 | 51 | const CallExpr *E) { |
946 | 51 | Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); |
947 | 51 | Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); |
948 | | |
949 | 51 | BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); |
950 | | |
951 | | // X86 has special BT, BTC, BTR, and BTS instructions that handle the array |
952 | | // indexing operation internally. Use them if possible. |
953 | 51 | if (CGF.getTarget().getTriple().isX86()) |
954 | 13 | return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); |
955 | | |
956 | | // Otherwise, use generic code to load one byte and test the bit. Use all but |
957 | | // the bottom three bits as the array index, and the bottom three bits to form |
958 | | // a mask. |
959 | | // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; |
960 | 38 | Value *ByteIndex = CGF.Builder.CreateAShr( |
961 | 38 | BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); |
962 | 38 | Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); |
963 | 38 | Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, |
964 | 38 | ByteIndex, "bittest.byteaddr"), |
965 | 38 | CGF.Int8Ty, CharUnits::One()); |
966 | 38 | Value *PosLow = |
967 | 38 | CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), |
968 | 38 | llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); |
969 | | |
970 | | // The updating instructions will need a mask. |
971 | 38 | Value *Mask = nullptr; |
972 | 38 | if (BT.Action != BitTest::TestOnly) { |
973 | 34 | Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, |
974 | 34 | "bittest.mask"); |
975 | 34 | } |
976 | | |
977 | | // Check the action and ordering of the interlocked intrinsics. |
978 | 38 | llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); |
979 | | |
980 | 38 | Value *OldByte = nullptr; |
981 | 38 | if (Ordering != llvm::AtomicOrdering::NotAtomic) { |
982 | | // Emit a combined atomicrmw load/store operation for the interlocked |
983 | | // intrinsics. |
984 | 22 | llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; |
985 | 22 | if (BT.Action == BitTest::Reset) { |
986 | 10 | Mask = CGF.Builder.CreateNot(Mask); |
987 | 10 | RMWOp = llvm::AtomicRMWInst::And; |
988 | 10 | } |
989 | 22 | OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, |
990 | 22 | Ordering); |
991 | 22 | } else { |
992 | | // Emit a plain load for the non-interlocked intrinsics. |
993 | 16 | OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); |
994 | 16 | Value *NewByte = nullptr; |
995 | 16 | switch (BT.Action) { |
996 | 4 | case BitTest::TestOnly: |
997 | | // Don't store anything. |
998 | 4 | break; |
999 | 4 | case BitTest::Complement: |
1000 | 4 | NewByte = CGF.Builder.CreateXor(OldByte, Mask); |
1001 | 4 | break; |
1002 | 4 | case BitTest::Reset: |
1003 | 4 | NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); |
1004 | 4 | break; |
1005 | 4 | case BitTest::Set: |
1006 | 4 | NewByte = CGF.Builder.CreateOr(OldByte, Mask); |
1007 | 4 | break; |
1008 | 16 | } |
1009 | 16 | if (NewByte) |
1010 | 12 | CGF.Builder.CreateStore(NewByte, ByteAddr); |
1011 | 16 | } |
1012 | | |
1013 | | // However we loaded the old byte, either by plain load or atomicrmw, shift |
1014 | | // the bit into the low position and mask it to 0 or 1. |
1015 | 38 | Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); |
1016 | 38 | return CGF.Builder.CreateAnd( |
1017 | 38 | ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); |
1018 | 38 | } |
1019 | | |
1020 | | static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF, |
1021 | | unsigned BuiltinID, |
1022 | 0 | const CallExpr *E) { |
1023 | 0 | Value *Addr = CGF.EmitScalarExpr(E->getArg(0)); |
1024 | |
|
1025 | 0 | SmallString<64> Asm; |
1026 | 0 | raw_svector_ostream AsmOS(Asm); |
1027 | 0 | llvm::IntegerType *RetType = CGF.Int32Ty; |
1028 | |
|
1029 | 0 | switch (BuiltinID) { |
1030 | 0 | case clang::PPC::BI__builtin_ppc_ldarx: |
1031 | 0 | AsmOS << "ldarx "; |
1032 | 0 | RetType = CGF.Int64Ty; |
1033 | 0 | break; |
1034 | 0 | case clang::PPC::BI__builtin_ppc_lwarx: |
1035 | 0 | AsmOS << "lwarx "; |
1036 | 0 | RetType = CGF.Int32Ty; |
1037 | 0 | break; |
1038 | 0 | case clang::PPC::BI__builtin_ppc_lharx: |
1039 | 0 | AsmOS << "lharx "; |
1040 | 0 | RetType = CGF.Int16Ty; |
1041 | 0 | break; |
1042 | 0 | case clang::PPC::BI__builtin_ppc_lbarx: |
1043 | 0 | AsmOS << "lbarx "; |
1044 | 0 | RetType = CGF.Int8Ty; |
1045 | 0 | break; |
1046 | 0 | default: |
1047 | 0 | llvm_unreachable("Expected only PowerPC load reserve intrinsics"); |
1048 | 0 | } |
1049 | | |
1050 | 0 | AsmOS << "$0, ${1:y}"; |
1051 | |
|
1052 | 0 | std::string Constraints = "=r,*Z,~{memory}"; |
1053 | 0 | std::string MachineClobbers = CGF.getTarget().getClobbers(); |
1054 | 0 | if (!MachineClobbers.empty()) { |
1055 | 0 | Constraints += ','; |
1056 | 0 | Constraints += MachineClobbers; |
1057 | 0 | } |
1058 | |
|
1059 | 0 | llvm::Type *IntPtrType = RetType->getPointerTo(); |
1060 | 0 | llvm::FunctionType *FTy = |
1061 | 0 | llvm::FunctionType::get(RetType, {IntPtrType}, false); |
1062 | |
|
1063 | 0 | llvm::InlineAsm *IA = |
1064 | 0 | llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
1065 | 0 | llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr}); |
1066 | 0 | CI->addParamAttr( |
1067 | 0 | 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType)); |
1068 | 0 | return CI; |
1069 | 0 | } |
1070 | | |
1071 | | namespace { |
1072 | | enum class MSVCSetJmpKind { |
1073 | | _setjmpex, |
1074 | | _setjmp3, |
1075 | | _setjmp |
1076 | | }; |
1077 | | } |
1078 | | |
1079 | | /// MSVC handles setjmp a bit differently on different platforms. On every |
1080 | | /// architecture except 32-bit x86, the frame address is passed. On x86, extra |
1081 | | /// parameters can be passed as variadic arguments, but we always pass none. |
1082 | | static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, |
1083 | 12 | const CallExpr *E) { |
1084 | 12 | llvm::Value *Arg1 = nullptr; |
1085 | 12 | llvm::Type *Arg1Ty = nullptr; |
1086 | 12 | StringRef Name; |
1087 | 12 | bool IsVarArg = false; |
1088 | 12 | if (SJKind == MSVCSetJmpKind::_setjmp3) { |
1089 | 2 | Name = "_setjmp3"; |
1090 | 2 | Arg1Ty = CGF.Int32Ty; |
1091 | 2 | Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); |
1092 | 2 | IsVarArg = true; |
1093 | 10 | } else { |
1094 | 10 | Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp"2 : "_setjmpex"8 ; |
1095 | 10 | Arg1Ty = CGF.Int8PtrTy; |
1096 | 10 | if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { |
1097 | 4 | Arg1 = CGF.Builder.CreateCall( |
1098 | 4 | CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); |
1099 | 4 | } else |
1100 | 6 | Arg1 = CGF.Builder.CreateCall( |
1101 | 6 | CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), |
1102 | 6 | llvm::ConstantInt::get(CGF.Int32Ty, 0)); |
1103 | 10 | } |
1104 | | |
1105 | | // Mark the call site and declaration with ReturnsTwice. |
1106 | 12 | llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; |
1107 | 12 | llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( |
1108 | 12 | CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, |
1109 | 12 | llvm::Attribute::ReturnsTwice); |
1110 | 12 | llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( |
1111 | 12 | llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, |
1112 | 12 | ReturnsTwiceAttr, /*Local=*/true); |
1113 | | |
1114 | 12 | llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( |
1115 | 12 | CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); |
1116 | 12 | llvm::Value *Args[] = {Buf, Arg1}; |
1117 | 12 | llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); |
1118 | 12 | CB->setAttributes(ReturnsTwiceAttr); |
1119 | 12 | return RValue::get(CB); |
1120 | 12 | } |
1121 | | |
1122 | | // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, |
1123 | | // we handle them here. |
1124 | | enum class CodeGenFunction::MSVCIntrin { |
1125 | | _BitScanForward, |
1126 | | _BitScanReverse, |
1127 | | _InterlockedAnd, |
1128 | | _InterlockedDecrement, |
1129 | | _InterlockedExchange, |
1130 | | _InterlockedExchangeAdd, |
1131 | | _InterlockedExchangeSub, |
1132 | | _InterlockedIncrement, |
1133 | | _InterlockedOr, |
1134 | | _InterlockedXor, |
1135 | | _InterlockedExchangeAdd_acq, |
1136 | | _InterlockedExchangeAdd_rel, |
1137 | | _InterlockedExchangeAdd_nf, |
1138 | | _InterlockedExchange_acq, |
1139 | | _InterlockedExchange_rel, |
1140 | | _InterlockedExchange_nf, |
1141 | | _InterlockedCompareExchange_acq, |
1142 | | _InterlockedCompareExchange_rel, |
1143 | | _InterlockedCompareExchange_nf, |
1144 | | _InterlockedCompareExchange128, |
1145 | | _InterlockedCompareExchange128_acq, |
1146 | | _InterlockedCompareExchange128_rel, |
1147 | | _InterlockedCompareExchange128_nf, |
1148 | | _InterlockedOr_acq, |
1149 | | _InterlockedOr_rel, |
1150 | | _InterlockedOr_nf, |
1151 | | _InterlockedXor_acq, |
1152 | | _InterlockedXor_rel, |
1153 | | _InterlockedXor_nf, |
1154 | | _InterlockedAnd_acq, |
1155 | | _InterlockedAnd_rel, |
1156 | | _InterlockedAnd_nf, |
1157 | | _InterlockedIncrement_acq, |
1158 | | _InterlockedIncrement_rel, |
1159 | | _InterlockedIncrement_nf, |
1160 | | _InterlockedDecrement_acq, |
1161 | | _InterlockedDecrement_rel, |
1162 | | _InterlockedDecrement_nf, |
1163 | | __fastfail, |
1164 | | }; |
1165 | | |
1166 | | static Optional<CodeGenFunction::MSVCIntrin> |
1167 | 6.53k | translateArmToMsvcIntrin(unsigned BuiltinID) { |
1168 | 6.53k | using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
1169 | 6.53k | switch (BuiltinID) { |
1170 | 6.40k | default: |
1171 | 6.40k | return None; |
1172 | 2 | case clang::ARM::BI_BitScanForward: |
1173 | 3 | case clang::ARM::BI_BitScanForward64: |
1174 | 3 | return MSVCIntrin::_BitScanForward; |
1175 | 2 | case clang::ARM::BI_BitScanReverse: |
1176 | 3 | case clang::ARM::BI_BitScanReverse64: |
1177 | 3 | return MSVCIntrin::_BitScanReverse; |
1178 | 1 | case clang::ARM::BI_InterlockedAnd64: |
1179 | 1 | return MSVCIntrin::_InterlockedAnd; |
1180 | 1 | case clang::ARM::BI_InterlockedExchange64: |
1181 | 1 | return MSVCIntrin::_InterlockedExchange; |
1182 | 1 | case clang::ARM::BI_InterlockedExchangeAdd64: |
1183 | 1 | return MSVCIntrin::_InterlockedExchangeAdd; |
1184 | 1 | case clang::ARM::BI_InterlockedExchangeSub64: |
1185 | 1 | return MSVCIntrin::_InterlockedExchangeSub; |
1186 | 1 | case clang::ARM::BI_InterlockedOr64: |
1187 | 1 | return MSVCIntrin::_InterlockedOr; |
1188 | 1 | case clang::ARM::BI_InterlockedXor64: |
1189 | 1 | return MSVCIntrin::_InterlockedXor; |
1190 | 1 | case clang::ARM::BI_InterlockedDecrement64: |
1191 | 1 | return MSVCIntrin::_InterlockedDecrement; |
1192 | 1 | case clang::ARM::BI_InterlockedIncrement64: |
1193 | 1 | return MSVCIntrin::_InterlockedIncrement; |
1194 | 1 | case clang::ARM::BI_InterlockedExchangeAdd8_acq: |
1195 | 2 | case clang::ARM::BI_InterlockedExchangeAdd16_acq: |
1196 | 4 | case clang::ARM::BI_InterlockedExchangeAdd_acq: |
1197 | 5 | case clang::ARM::BI_InterlockedExchangeAdd64_acq: |
1198 | 5 | return MSVCIntrin::_InterlockedExchangeAdd_acq; |
1199 | 1 | case clang::ARM::BI_InterlockedExchangeAdd8_rel: |
1200 | 2 | case clang::ARM::BI_InterlockedExchangeAdd16_rel: |
1201 | 4 | case clang::ARM::BI_InterlockedExchangeAdd_rel: |
1202 | 5 | case clang::ARM::BI_InterlockedExchangeAdd64_rel: |
1203 | 5 | return MSVCIntrin::_InterlockedExchangeAdd_rel; |
1204 | 1 | case clang::ARM::BI_InterlockedExchangeAdd8_nf: |
1205 | 2 | case clang::ARM::BI_InterlockedExchangeAdd16_nf: |
1206 | 4 | case clang::ARM::BI_InterlockedExchangeAdd_nf: |
1207 | 5 | case clang::ARM::BI_InterlockedExchangeAdd64_nf: |
1208 | 5 | return MSVCIntrin::_InterlockedExchangeAdd_nf; |
1209 | 1 | case clang::ARM::BI_InterlockedExchange8_acq: |
1210 | 2 | case clang::ARM::BI_InterlockedExchange16_acq: |
1211 | 4 | case clang::ARM::BI_InterlockedExchange_acq: |
1212 | 5 | case clang::ARM::BI_InterlockedExchange64_acq: |
1213 | 5 | return MSVCIntrin::_InterlockedExchange_acq; |
1214 | 1 | case clang::ARM::BI_InterlockedExchange8_rel: |
1215 | 2 | case clang::ARM::BI_InterlockedExchange16_rel: |
1216 | 4 | case clang::ARM::BI_InterlockedExchange_rel: |
1217 | 5 | case clang::ARM::BI_InterlockedExchange64_rel: |
1218 | 5 | return MSVCIntrin::_InterlockedExchange_rel; |
1219 | 1 | case clang::ARM::BI_InterlockedExchange8_nf: |
1220 | 2 | case clang::ARM::BI_InterlockedExchange16_nf: |
1221 | 4 | case clang::ARM::BI_InterlockedExchange_nf: |
1222 | 5 | case clang::ARM::BI_InterlockedExchange64_nf: |
1223 | 5 | return MSVCIntrin::_InterlockedExchange_nf; |
1224 | 1 | case clang::ARM::BI_InterlockedCompareExchange8_acq: |
1225 | 2 | case clang::ARM::BI_InterlockedCompareExchange16_acq: |
1226 | 4 | case clang::ARM::BI_InterlockedCompareExchange_acq: |
1227 | 5 | case clang::ARM::BI_InterlockedCompareExchange64_acq: |
1228 | 5 | return MSVCIntrin::_InterlockedCompareExchange_acq; |
1229 | 1 | case clang::ARM::BI_InterlockedCompareExchange8_rel: |
1230 | 2 | case clang::ARM::BI_InterlockedCompareExchange16_rel: |
1231 | 4 | case clang::ARM::BI_InterlockedCompareExchange_rel: |
1232 | 5 | case clang::ARM::BI_InterlockedCompareExchange64_rel: |
1233 | 5 | return MSVCIntrin::_InterlockedCompareExchange_rel; |
1234 | 1 | case clang::ARM::BI_InterlockedCompareExchange8_nf: |
1235 | 2 | case clang::ARM::BI_InterlockedCompareExchange16_nf: |
1236 | 4 | case clang::ARM::BI_InterlockedCompareExchange_nf: |
1237 | 5 | case clang::ARM::BI_InterlockedCompareExchange64_nf: |
1238 | 5 | return MSVCIntrin::_InterlockedCompareExchange_nf; |
1239 | 1 | case clang::ARM::BI_InterlockedOr8_acq: |
1240 | 2 | case clang::ARM::BI_InterlockedOr16_acq: |
1241 | 4 | case clang::ARM::BI_InterlockedOr_acq: |
1242 | 5 | case clang::ARM::BI_InterlockedOr64_acq: |
1243 | 5 | return MSVCIntrin::_InterlockedOr_acq; |
1244 | 1 | case clang::ARM::BI_InterlockedOr8_rel: |
1245 | 2 | case clang::ARM::BI_InterlockedOr16_rel: |
1246 | 4 | case clang::ARM::BI_InterlockedOr_rel: |
1247 | 5 | case clang::ARM::BI_InterlockedOr64_rel: |
1248 | 5 | return MSVCIntrin::_InterlockedOr_rel; |
1249 | 1 | case clang::ARM::BI_InterlockedOr8_nf: |
1250 | 2 | case clang::ARM::BI_InterlockedOr16_nf: |
1251 | 4 | case clang::ARM::BI_InterlockedOr_nf: |
1252 | 5 | case clang::ARM::BI_InterlockedOr64_nf: |
1253 | 5 | return MSVCIntrin::_InterlockedOr_nf; |
1254 | 1 | case clang::ARM::BI_InterlockedXor8_acq: |
1255 | 2 | case clang::ARM::BI_InterlockedXor16_acq: |
1256 | 4 | case clang::ARM::BI_InterlockedXor_acq: |
1257 | 5 | case clang::ARM::BI_InterlockedXor64_acq: |
1258 | 5 | return MSVCIntrin::_InterlockedXor_acq; |
1259 | 1 | case clang::ARM::BI_InterlockedXor8_rel: |
1260 | 2 | case clang::ARM::BI_InterlockedXor16_rel: |
1261 | 4 | case clang::ARM::BI_InterlockedXor_rel: |
1262 | 5 | case clang::ARM::BI_InterlockedXor64_rel: |
1263 | 5 | return MSVCIntrin::_InterlockedXor_rel; |
1264 | 1 | case clang::ARM::BI_InterlockedXor8_nf: |
1265 | 2 | case clang::ARM::BI_InterlockedXor16_nf: |
1266 | 4 | case clang::ARM::BI_InterlockedXor_nf: |
1267 | 5 | case clang::ARM::BI_InterlockedXor64_nf: |
1268 | 5 | return MSVCIntrin::_InterlockedXor_nf; |
1269 | 1 | case clang::ARM::BI_InterlockedAnd8_acq: |
1270 | 2 | case clang::ARM::BI_InterlockedAnd16_acq: |
1271 | 4 | case clang::ARM::BI_InterlockedAnd_acq: |
1272 | 5 | case clang::ARM::BI_InterlockedAnd64_acq: |
1273 | 5 | return MSVCIntrin::_InterlockedAnd_acq; |
1274 | 1 | case clang::ARM::BI_InterlockedAnd8_rel: |
1275 | 2 | case clang::ARM::BI_InterlockedAnd16_rel: |
1276 | 4 | case clang::ARM::BI_InterlockedAnd_rel: |
1277 | 5 | case clang::ARM::BI_InterlockedAnd64_rel: |
1278 | 5 | return MSVCIntrin::_InterlockedAnd_rel; |
1279 | 1 | case clang::ARM::BI_InterlockedAnd8_nf: |
1280 | 2 | case clang::ARM::BI_InterlockedAnd16_nf: |
1281 | 4 | case clang::ARM::BI_InterlockedAnd_nf: |
1282 | 5 | case clang::ARM::BI_InterlockedAnd64_nf: |
1283 | 5 | return MSVCIntrin::_InterlockedAnd_nf; |
1284 | 1 | case clang::ARM::BI_InterlockedIncrement16_acq: |
1285 | 3 | case clang::ARM::BI_InterlockedIncrement_acq: |
1286 | 4 | case clang::ARM::BI_InterlockedIncrement64_acq: |
1287 | 4 | return MSVCIntrin::_InterlockedIncrement_acq; |
1288 | 1 | case clang::ARM::BI_InterlockedIncrement16_rel: |
1289 | 3 | case clang::ARM::BI_InterlockedIncrement_rel: |
1290 | 4 | case clang::ARM::BI_InterlockedIncrement64_rel: |
1291 | 4 | return MSVCIntrin::_InterlockedIncrement_rel; |
1292 | 1 | case clang::ARM::BI_InterlockedIncrement16_nf: |
1293 | 3 | case clang::ARM::BI_InterlockedIncrement_nf: |
1294 | 4 | case clang::ARM::BI_InterlockedIncrement64_nf: |
1295 | 4 | return MSVCIntrin::_InterlockedIncrement_nf; |
1296 | 1 | case clang::ARM::BI_InterlockedDecrement16_acq: |
1297 | 3 | case clang::ARM::BI_InterlockedDecrement_acq: |
1298 | 4 | case clang::ARM::BI_InterlockedDecrement64_acq: |
1299 | 4 | return MSVCIntrin::_InterlockedDecrement_acq; |
1300 | 1 | case clang::ARM::BI_InterlockedDecrement16_rel: |
1301 | 3 | case clang::ARM::BI_InterlockedDecrement_rel: |
1302 | 4 | case clang::ARM::BI_InterlockedDecrement64_rel: |
1303 | 4 | return MSVCIntrin::_InterlockedDecrement_rel; |
1304 | 1 | case clang::ARM::BI_InterlockedDecrement16_nf: |
1305 | 3 | case clang::ARM::BI_InterlockedDecrement_nf: |
1306 | 4 | case clang::ARM::BI_InterlockedDecrement64_nf: |
1307 | 4 | return MSVCIntrin::_InterlockedDecrement_nf; |
1308 | 6.53k | } |
1309 | 0 | llvm_unreachable("must return from switch"); |
1310 | 0 | } |
1311 | | |
1312 | | static Optional<CodeGenFunction::MSVCIntrin> |
1313 | 3.86k | translateAarch64ToMsvcIntrin(unsigned BuiltinID) { |
1314 | 3.86k | using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
1315 | 3.86k | switch (BuiltinID) { |
1316 | 3.71k | default: |
1317 | 3.71k | return None; |
1318 | 3 | case clang::AArch64::BI_BitScanForward: |
1319 | 4 | case clang::AArch64::BI_BitScanForward64: |
1320 | 4 | return MSVCIntrin::_BitScanForward; |
1321 | 3 | case clang::AArch64::BI_BitScanReverse: |
1322 | 4 | case clang::AArch64::BI_BitScanReverse64: |
1323 | 4 | return MSVCIntrin::_BitScanReverse; |
1324 | 1 | case clang::AArch64::BI_InterlockedAnd64: |
1325 | 1 | return MSVCIntrin::_InterlockedAnd; |
1326 | 1 | case clang::AArch64::BI_InterlockedExchange64: |
1327 | 1 | return MSVCIntrin::_InterlockedExchange; |
1328 | 1 | case clang::AArch64::BI_InterlockedExchangeAdd64: |
1329 | 1 | return MSVCIntrin::_InterlockedExchangeAdd; |
1330 | 1 | case clang::AArch64::BI_InterlockedExchangeSub64: |
1331 | 1 | return MSVCIntrin::_InterlockedExchangeSub; |
1332 | 1 | case clang::AArch64::BI_InterlockedOr64: |
1333 | 1 | return MSVCIntrin::_InterlockedOr; |
1334 | 1 | case clang::AArch64::BI_InterlockedXor64: |
1335 | 1 | return MSVCIntrin::_InterlockedXor; |
1336 | 1 | case clang::AArch64::BI_InterlockedDecrement64: |
1337 | 1 | return MSVCIntrin::_InterlockedDecrement; |
1338 | 1 | case clang::AArch64::BI_InterlockedIncrement64: |
1339 | 1 | return MSVCIntrin::_InterlockedIncrement; |
1340 | 1 | case clang::AArch64::BI_InterlockedExchangeAdd8_acq: |
1341 | 2 | case clang::AArch64::BI_InterlockedExchangeAdd16_acq: |
1342 | 5 | case clang::AArch64::BI_InterlockedExchangeAdd_acq: |
1343 | 6 | case clang::AArch64::BI_InterlockedExchangeAdd64_acq: |
1344 | 6 | return MSVCIntrin::_InterlockedExchangeAdd_acq; |
1345 | 1 | case clang::AArch64::BI_InterlockedExchangeAdd8_rel: |
1346 | 2 | case clang::AArch64::BI_InterlockedExchangeAdd16_rel: |
1347 | 5 | case clang::AArch64::BI_InterlockedExchangeAdd_rel: |
1348 | 6 | case clang::AArch64::BI_InterlockedExchangeAdd64_rel: |
1349 | 6 | return MSVCIntrin::_InterlockedExchangeAdd_rel; |
1350 | 1 | case clang::AArch64::BI_InterlockedExchangeAdd8_nf: |
1351 | 2 | case clang::AArch64::BI_InterlockedExchangeAdd16_nf: |
1352 | 5 | case clang::AArch64::BI_InterlockedExchangeAdd_nf: |
1353 | 6 | case clang::AArch64::BI_InterlockedExchangeAdd64_nf: |
1354 | 6 | return MSVCIntrin::_InterlockedExchangeAdd_nf; |
1355 | 1 | case clang::AArch64::BI_InterlockedExchange8_acq: |
1356 | 2 | case clang::AArch64::BI_InterlockedExchange16_acq: |
1357 | 5 | case clang::AArch64::BI_InterlockedExchange_acq: |
1358 | 6 | case clang::AArch64::BI_InterlockedExchange64_acq: |
1359 | 6 | return MSVCIntrin::_InterlockedExchange_acq; |
1360 | 1 | case clang::AArch64::BI_InterlockedExchange8_rel: |
1361 | 2 | case clang::AArch64::BI_InterlockedExchange16_rel: |
1362 | 5 | case clang::AArch64::BI_InterlockedExchange_rel: |
1363 | 6 | case clang::AArch64::BI_InterlockedExchange64_rel: |
1364 | 6 | return MSVCIntrin::_InterlockedExchange_rel; |
1365 | 1 | case clang::AArch64::BI_InterlockedExchange8_nf: |
1366 | 2 | case clang::AArch64::BI_InterlockedExchange16_nf: |
1367 | 5 | case clang::AArch64::BI_InterlockedExchange_nf: |
1368 | 6 | case clang::AArch64::BI_InterlockedExchange64_nf: |
1369 | 6 | return MSVCIntrin::_InterlockedExchange_nf; |
1370 | 1 | case clang::AArch64::BI_InterlockedCompareExchange8_acq: |
1371 | 2 | case clang::AArch64::BI_InterlockedCompareExchange16_acq: |
1372 | 5 | case clang::AArch64::BI_InterlockedCompareExchange_acq: |
1373 | 6 | case clang::AArch64::BI_InterlockedCompareExchange64_acq: |
1374 | 6 | return MSVCIntrin::_InterlockedCompareExchange_acq; |
1375 | 1 | case clang::AArch64::BI_InterlockedCompareExchange8_rel: |
1376 | 2 | case clang::AArch64::BI_InterlockedCompareExchange16_rel: |
1377 | 5 | case clang::AArch64::BI_InterlockedCompareExchange_rel: |
1378 | 6 | case clang::AArch64::BI_InterlockedCompareExchange64_rel: |
1379 | 6 | return MSVCIntrin::_InterlockedCompareExchange_rel; |
1380 | 1 | case clang::AArch64::BI_InterlockedCompareExchange8_nf: |
1381 | 2 | case clang::AArch64::BI_InterlockedCompareExchange16_nf: |
1382 | 5 | case clang::AArch64::BI_InterlockedCompareExchange_nf: |
1383 | 6 | case clang::AArch64::BI_InterlockedCompareExchange64_nf: |
1384 | 6 | return MSVCIntrin::_InterlockedCompareExchange_nf; |
1385 | 1 | case clang::AArch64::BI_InterlockedCompareExchange128: |
1386 | 1 | return MSVCIntrin::_InterlockedCompareExchange128; |
1387 | 1 | case clang::AArch64::BI_InterlockedCompareExchange128_acq: |
1388 | 1 | return MSVCIntrin::_InterlockedCompareExchange128_acq; |
1389 | 1 | case clang::AArch64::BI_InterlockedCompareExchange128_nf: |
1390 | 1 | return MSVCIntrin::_InterlockedCompareExchange128_nf; |
1391 | 1 | case clang::AArch64::BI_InterlockedCompareExchange128_rel: |
1392 | 1 | return MSVCIntrin::_InterlockedCompareExchange128_rel; |
1393 | 1 | case clang::AArch64::BI_InterlockedOr8_acq: |
1394 | 2 | case clang::AArch64::BI_InterlockedOr16_acq: |
1395 | 5 | case clang::AArch64::BI_InterlockedOr_acq: |
1396 | 6 | case clang::AArch64::BI_InterlockedOr64_acq: |
1397 | 6 | return MSVCIntrin::_InterlockedOr_acq; |
1398 | 1 | case clang::AArch64::BI_InterlockedOr8_rel: |
1399 | 2 | case clang::AArch64::BI_InterlockedOr16_rel: |
1400 | 5 | case clang::AArch64::BI_InterlockedOr_rel: |
1401 | 6 | case clang::AArch64::BI_InterlockedOr64_rel: |
1402 | 6 | return MSVCIntrin::_InterlockedOr_rel; |
1403 | 1 | case clang::AArch64::BI_InterlockedOr8_nf: |
1404 | 2 | case clang::AArch64::BI_InterlockedOr16_nf: |
1405 | 5 | case clang::AArch64::BI_InterlockedOr_nf: |
1406 | 6 | case clang::AArch64::BI_InterlockedOr64_nf: |
1407 | 6 | return MSVCIntrin::_InterlockedOr_nf; |
1408 | 1 | case clang::AArch64::BI_InterlockedXor8_acq: |
1409 | 2 | case clang::AArch64::BI_InterlockedXor16_acq: |
1410 | 5 | case clang::AArch64::BI_InterlockedXor_acq: |
1411 | 6 | case clang::AArch64::BI_InterlockedXor64_acq: |
1412 | 6 | return MSVCIntrin::_InterlockedXor_acq; |
1413 | 1 | case clang::AArch64::BI_InterlockedXor8_rel: |
1414 | 2 | case clang::AArch64::BI_InterlockedXor16_rel: |
1415 | 5 | case clang::AArch64::BI_InterlockedXor_rel: |
1416 | 6 | case clang::AArch64::BI_InterlockedXor64_rel: |
1417 | 6 | return MSVCIntrin::_InterlockedXor_rel; |
1418 | 1 | case clang::AArch64::BI_InterlockedXor8_nf: |
1419 | 2 | case clang::AArch64::BI_InterlockedXor16_nf: |
1420 | 5 | case clang::AArch64::BI_InterlockedXor_nf: |
1421 | 6 | case clang::AArch64::BI_InterlockedXor64_nf: |
1422 | 6 | return MSVCIntrin::_InterlockedXor_nf; |
1423 | 1 | case clang::AArch64::BI_InterlockedAnd8_acq: |
1424 | 2 | case clang::AArch64::BI_InterlockedAnd16_acq: |
1425 | 5 | case clang::AArch64::BI_InterlockedAnd_acq: |
1426 | 6 | case clang::AArch64::BI_InterlockedAnd64_acq: |
1427 | 6 | return MSVCIntrin::_InterlockedAnd_acq; |
1428 | 1 | case clang::AArch64::BI_InterlockedAnd8_rel: |
1429 | 2 | case clang::AArch64::BI_InterlockedAnd16_rel: |
1430 | 5 | case clang::AArch64::BI_InterlockedAnd_rel: |
1431 | 6 | case clang::AArch64::BI_InterlockedAnd64_rel: |
1432 | 6 | return MSVCIntrin::_InterlockedAnd_rel; |
1433 | 1 | case clang::AArch64::BI_InterlockedAnd8_nf: |
1434 | 2 | case clang::AArch64::BI_InterlockedAnd16_nf: |
1435 | 5 | case clang::AArch64::BI_InterlockedAnd_nf: |
1436 | 6 | case clang::AArch64::BI_InterlockedAnd64_nf: |
1437 | 6 | return MSVCIntrin::_InterlockedAnd_nf; |
1438 | 1 | case clang::AArch64::BI_InterlockedIncrement16_acq: |
1439 | 4 | case clang::AArch64::BI_InterlockedIncrement_acq: |
1440 | 5 | case clang::AArch64::BI_InterlockedIncrement64_acq: |
1441 | 5 | return MSVCIntrin::_InterlockedIncrement_acq; |
1442 | 1 | case clang::AArch64::BI_InterlockedIncrement16_rel: |
1443 | 4 | case clang::AArch64::BI_InterlockedIncrement_rel: |
1444 | 5 | case clang::AArch64::BI_InterlockedIncrement64_rel: |
1445 | 5 | return MSVCIntrin::_InterlockedIncrement_rel; |
1446 | 1 | case clang::AArch64::BI_InterlockedIncrement16_nf: |
1447 | 4 | case clang::AArch64::BI_InterlockedIncrement_nf: |
1448 | 5 | case clang::AArch64::BI_InterlockedIncrement64_nf: |
1449 | 5 | return MSVCIntrin::_InterlockedIncrement_nf; |
1450 | 1 | case clang::AArch64::BI_InterlockedDecrement16_acq: |
1451 | 4 | case clang::AArch64::BI_InterlockedDecrement_acq: |
1452 | 5 | case clang::AArch64::BI_InterlockedDecrement64_acq: |
1453 | 5 | return MSVCIntrin::_InterlockedDecrement_acq; |
1454 | 1 | case clang::AArch64::BI_InterlockedDecrement16_rel: |
1455 | 4 | case clang::AArch64::BI_InterlockedDecrement_rel: |
1456 | 5 | case clang::AArch64::BI_InterlockedDecrement64_rel: |
1457 | 5 | return MSVCIntrin::_InterlockedDecrement_rel; |
1458 | 1 | case clang::AArch64::BI_InterlockedDecrement16_nf: |
1459 | 4 | case clang::AArch64::BI_InterlockedDecrement_nf: |
1460 | 5 | case clang::AArch64::BI_InterlockedDecrement64_nf: |
1461 | 5 | return MSVCIntrin::_InterlockedDecrement_nf; |
1462 | 3.86k | } |
1463 | 0 | llvm_unreachable("must return from switch"); |
1464 | 0 | } |
1465 | | |
1466 | | static Optional<CodeGenFunction::MSVCIntrin> |
1467 | 9.08k | translateX86ToMsvcIntrin(unsigned BuiltinID) { |
1468 | 9.08k | using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
1469 | 9.08k | switch (BuiltinID) { |
1470 | 9.05k | default: |
1471 | 9.05k | return None; |
1472 | 4 | case clang::X86::BI_BitScanForward: |
1473 | 7 | case clang::X86::BI_BitScanForward64: |
1474 | 7 | return MSVCIntrin::_BitScanForward; |
1475 | 4 | case clang::X86::BI_BitScanReverse: |
1476 | 7 | case clang::X86::BI_BitScanReverse64: |
1477 | 7 | return MSVCIntrin::_BitScanReverse; |
1478 | 2 | case clang::X86::BI_InterlockedAnd64: |
1479 | 2 | return MSVCIntrin::_InterlockedAnd; |
1480 | 1 | case clang::X86::BI_InterlockedCompareExchange128: |
1481 | 1 | return MSVCIntrin::_InterlockedCompareExchange128; |
1482 | 2 | case clang::X86::BI_InterlockedExchange64: |
1483 | 2 | return MSVCIntrin::_InterlockedExchange; |
1484 | 2 | case clang::X86::BI_InterlockedExchangeAdd64: |
1485 | 2 | return MSVCIntrin::_InterlockedExchangeAdd; |
1486 | 2 | case clang::X86::BI_InterlockedExchangeSub64: |
1487 | 2 | return MSVCIntrin::_InterlockedExchangeSub; |
1488 | 2 | case clang::X86::BI_InterlockedOr64: |
1489 | 2 | return MSVCIntrin::_InterlockedOr; |
1490 | 2 | case clang::X86::BI_InterlockedXor64: |
1491 | 2 | return MSVCIntrin::_InterlockedXor; |
1492 | 2 | case clang::X86::BI_InterlockedDecrement64: |
1493 | 2 | return MSVCIntrin::_InterlockedDecrement; |
1494 | 2 | case clang::X86::BI_InterlockedIncrement64: |
1495 | 2 | return MSVCIntrin::_InterlockedIncrement; |
1496 | 9.08k | } |
1497 | 0 | llvm_unreachable("must return from switch"); |
1498 | 0 | } |
1499 | | |
1500 | | // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated. |
1501 | | Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, |
1502 | 453 | const CallExpr *E) { |
1503 | 453 | switch (BuiltinID) { |
1504 | 14 | case MSVCIntrin::_BitScanForward: |
1505 | 28 | case MSVCIntrin::_BitScanReverse: { |
1506 | 28 | Address IndexAddress(EmitPointerWithAlignment(E->getArg(0))); |
1507 | 28 | Value *ArgValue = EmitScalarExpr(E->getArg(1)); |
1508 | | |
1509 | 28 | llvm::Type *ArgType = ArgValue->getType(); |
1510 | 28 | llvm::Type *IndexType = IndexAddress.getElementType(); |
1511 | 28 | llvm::Type *ResultType = ConvertType(E->getType()); |
1512 | | |
1513 | 28 | Value *ArgZero = llvm::Constant::getNullValue(ArgType); |
1514 | 28 | Value *ResZero = llvm::Constant::getNullValue(ResultType); |
1515 | 28 | Value *ResOne = llvm::ConstantInt::get(ResultType, 1); |
1516 | | |
1517 | 28 | BasicBlock *Begin = Builder.GetInsertBlock(); |
1518 | 28 | BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); |
1519 | 28 | Builder.SetInsertPoint(End); |
1520 | 28 | PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); |
1521 | | |
1522 | 28 | Builder.SetInsertPoint(Begin); |
1523 | 28 | Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); |
1524 | 28 | BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); |
1525 | 28 | Builder.CreateCondBr(IsZero, End, NotZero); |
1526 | 28 | Result->addIncoming(ResZero, Begin); |
1527 | | |
1528 | 28 | Builder.SetInsertPoint(NotZero); |
1529 | | |
1530 | 28 | if (BuiltinID == MSVCIntrin::_BitScanForward) { |
1531 | 14 | Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
1532 | 14 | Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
1533 | 14 | ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
1534 | 14 | Builder.CreateStore(ZeroCount, IndexAddress, false); |
1535 | 14 | } else { |
1536 | 14 | unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); |
1537 | 14 | Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); |
1538 | | |
1539 | 14 | Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
1540 | 14 | Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
1541 | 14 | ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
1542 | 14 | Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); |
1543 | 14 | Builder.CreateStore(Index, IndexAddress, false); |
1544 | 14 | } |
1545 | 28 | Builder.CreateBr(End); |
1546 | 28 | Result->addIncoming(ResOne, NotZero); |
1547 | | |
1548 | 28 | Builder.SetInsertPoint(End); |
1549 | 28 | return Result; |
1550 | 14 | } |
1551 | 21 | case MSVCIntrin::_InterlockedAnd: |
1552 | 21 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); |
1553 | 25 | case MSVCIntrin::_InterlockedExchange: |
1554 | 25 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); |
1555 | 21 | case MSVCIntrin::_InterlockedExchangeAdd: |
1556 | 21 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); |
1557 | 21 | case MSVCIntrin::_InterlockedExchangeSub: |
1558 | 21 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); |
1559 | 21 | case MSVCIntrin::_InterlockedOr: |
1560 | 21 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); |
1561 | 21 | case MSVCIntrin::_InterlockedXor: |
1562 | 21 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); |
1563 | 11 | case MSVCIntrin::_InterlockedExchangeAdd_acq: |
1564 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
1565 | 11 | AtomicOrdering::Acquire); |
1566 | 11 | case MSVCIntrin::_InterlockedExchangeAdd_rel: |
1567 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
1568 | 11 | AtomicOrdering::Release); |
1569 | 11 | case MSVCIntrin::_InterlockedExchangeAdd_nf: |
1570 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
1571 | 11 | AtomicOrdering::Monotonic); |
1572 | 11 | case MSVCIntrin::_InterlockedExchange_acq: |
1573 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
1574 | 11 | AtomicOrdering::Acquire); |
1575 | 11 | case MSVCIntrin::_InterlockedExchange_rel: |
1576 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
1577 | 11 | AtomicOrdering::Release); |
1578 | 11 | case MSVCIntrin::_InterlockedExchange_nf: |
1579 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
1580 | 11 | AtomicOrdering::Monotonic); |
1581 | 11 | case MSVCIntrin::_InterlockedCompareExchange_acq: |
1582 | 11 | return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); |
1583 | 11 | case MSVCIntrin::_InterlockedCompareExchange_rel: |
1584 | 11 | return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); |
1585 | 11 | case MSVCIntrin::_InterlockedCompareExchange_nf: |
1586 | 11 | return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); |
1587 | 2 | case MSVCIntrin::_InterlockedCompareExchange128: |
1588 | 2 | return EmitAtomicCmpXchg128ForMSIntrin( |
1589 | 2 | *this, E, AtomicOrdering::SequentiallyConsistent); |
1590 | 1 | case MSVCIntrin::_InterlockedCompareExchange128_acq: |
1591 | 1 | return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire); |
1592 | 1 | case MSVCIntrin::_InterlockedCompareExchange128_rel: |
1593 | 1 | return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release); |
1594 | 1 | case MSVCIntrin::_InterlockedCompareExchange128_nf: |
1595 | 1 | return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic); |
1596 | 11 | case MSVCIntrin::_InterlockedOr_acq: |
1597 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
1598 | 11 | AtomicOrdering::Acquire); |
1599 | 11 | case MSVCIntrin::_InterlockedOr_rel: |
1600 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
1601 | 11 | AtomicOrdering::Release); |
1602 | 11 | case MSVCIntrin::_InterlockedOr_nf: |
1603 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
1604 | 11 | AtomicOrdering::Monotonic); |
1605 | 11 | case MSVCIntrin::_InterlockedXor_acq: |
1606 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
1607 | 11 | AtomicOrdering::Acquire); |
1608 | 11 | case MSVCIntrin::_InterlockedXor_rel: |
1609 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
1610 | 11 | AtomicOrdering::Release); |
1611 | 11 | case MSVCIntrin::_InterlockedXor_nf: |
1612 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
1613 | 11 | AtomicOrdering::Monotonic); |
1614 | 11 | case MSVCIntrin::_InterlockedAnd_acq: |
1615 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
1616 | 11 | AtomicOrdering::Acquire); |
1617 | 11 | case MSVCIntrin::_InterlockedAnd_rel: |
1618 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
1619 | 11 | AtomicOrdering::Release); |
1620 | 11 | case MSVCIntrin::_InterlockedAnd_nf: |
1621 | 11 | return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
1622 | 11 | AtomicOrdering::Monotonic); |
1623 | 9 | case MSVCIntrin::_InterlockedIncrement_acq: |
1624 | 9 | return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); |
1625 | 9 | case MSVCIntrin::_InterlockedIncrement_rel: |
1626 | 9 | return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); |
1627 | 9 | case MSVCIntrin::_InterlockedIncrement_nf: |
1628 | 9 | return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); |
1629 | 9 | case MSVCIntrin::_InterlockedDecrement_acq: |
1630 | 9 | return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); |
1631 | 9 | case MSVCIntrin::_InterlockedDecrement_rel: |
1632 | 9 | return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); |
1633 | 9 | case MSVCIntrin::_InterlockedDecrement_nf: |
1634 | 9 | return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); |
1635 | | |
1636 | 17 | case MSVCIntrin::_InterlockedDecrement: |
1637 | 17 | return EmitAtomicDecrementValue(*this, E); |
1638 | 17 | case MSVCIntrin::_InterlockedIncrement: |
1639 | 17 | return EmitAtomicIncrementValue(*this, E); |
1640 | | |
1641 | 4 | case MSVCIntrin::__fastfail: { |
1642 | | // Request immediate process termination from the kernel. The instruction |
1643 | | // sequences to do this are documented on MSDN: |
1644 | | // https://msdn.microsoft.com/en-us/library/dn774154.aspx |
1645 | 4 | llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); |
1646 | 4 | StringRef Asm, Constraints; |
1647 | 4 | switch (ISA) { |
1648 | 0 | default: |
1649 | 0 | ErrorUnsupported(E, "__fastfail call for this architecture"); |
1650 | 0 | break; |
1651 | 1 | case llvm::Triple::x86: |
1652 | 2 | case llvm::Triple::x86_64: |
1653 | 2 | Asm = "int $$0x29"; |
1654 | 2 | Constraints = "{cx}"; |
1655 | 2 | break; |
1656 | 1 | case llvm::Triple::thumb: |
1657 | 1 | Asm = "udf #251"; |
1658 | 1 | Constraints = "{r0}"; |
1659 | 1 | break; |
1660 | 1 | case llvm::Triple::aarch64: |
1661 | 1 | Asm = "brk #0xF003"; |
1662 | 1 | Constraints = "{w0}"; |
1663 | 4 | } |
1664 | 4 | llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); |
1665 | 4 | llvm::InlineAsm *IA = |
1666 | 4 | llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
1667 | 4 | llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( |
1668 | 4 | getLLVMContext(), llvm::AttributeList::FunctionIndex, |
1669 | 4 | llvm::Attribute::NoReturn); |
1670 | 4 | llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); |
1671 | 4 | CI->setAttributes(NoReturnAttr); |
1672 | 4 | return CI; |
1673 | 4 | } |
1674 | 453 | } |
1675 | 0 | llvm_unreachable("Incorrect MSVC intrinsic!"); |
1676 | 0 | } |
1677 | | |
1678 | | namespace { |
1679 | | // ARC cleanup for __builtin_os_log_format |
1680 | | struct CallObjCArcUse final : EHScopeStack::Cleanup { |
1681 | 4 | CallObjCArcUse(llvm::Value *object) : object(object) {} |
1682 | | llvm::Value *object; |
1683 | | |
1684 | 4 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
1685 | 4 | CGF.EmitARCIntrinsicUse(object); |
1686 | 4 | } |
1687 | | }; |
1688 | | } |
1689 | | |
1690 | | Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, |
1691 | 98 | BuiltinCheckKind Kind) { |
1692 | 98 | assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) |
1693 | 98 | && "Unsupported builtin check kind"); |
1694 | | |
1695 | 0 | Value *ArgValue = EmitScalarExpr(E); |
1696 | 98 | if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()12 ) |
1697 | 92 | return ArgValue; |
1698 | | |
1699 | 6 | SanitizerScope SanScope(this); |
1700 | 6 | Value *Cond = Builder.CreateICmpNE( |
1701 | 6 | ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); |
1702 | 6 | EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), |
1703 | 6 | SanitizerHandler::InvalidBuiltin, |
1704 | 6 | {EmitCheckSourceLocation(E->getExprLoc()), |
1705 | 6 | llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, |
1706 | 6 | None); |
1707 | 6 | return ArgValue; |
1708 | 98 | } |
1709 | | |
1710 | | /// Get the argument type for arguments to os_log_helper. |
1711 | 140 | static CanQualType getOSLogArgType(ASTContext &C, int Size) { |
1712 | 140 | QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); |
1713 | 140 | return C.getCanonicalType(UnsignedTy); |
1714 | 140 | } |
1715 | | |
1716 | | llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( |
1717 | | const analyze_os_log::OSLogBufferLayout &Layout, |
1718 | 59 | CharUnits BufferAlignment) { |
1719 | 59 | ASTContext &Ctx = getContext(); |
1720 | | |
1721 | 59 | llvm::SmallString<64> Name; |
1722 | 59 | { |
1723 | 59 | raw_svector_ostream OS(Name); |
1724 | 59 | OS << "__os_log_helper"; |
1725 | 59 | OS << "_" << BufferAlignment.getQuantity(); |
1726 | 59 | OS << "_" << int(Layout.getSummaryByte()); |
1727 | 59 | OS << "_" << int(Layout.getNumArgsByte()); |
1728 | 59 | for (const auto &Item : Layout.Items) |
1729 | 86 | OS << "_" << int(Item.getSizeByte()) << "_" |
1730 | 86 | << int(Item.getDescriptorByte()); |
1731 | 59 | } |
1732 | | |
1733 | 59 | if (llvm::Function *F = CGM.getModule().getFunction(Name)) |
1734 | 23 | return F; |
1735 | | |
1736 | 36 | llvm::SmallVector<QualType, 4> ArgTys; |
1737 | 36 | FunctionArgList Args; |
1738 | 36 | Args.push_back(ImplicitParamDecl::Create( |
1739 | 36 | Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, |
1740 | 36 | ImplicitParamDecl::Other)); |
1741 | 36 | ArgTys.emplace_back(Ctx.VoidPtrTy); |
1742 | | |
1743 | 94 | for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I58 ) { |
1744 | 58 | char Size = Layout.Items[I].getSizeByte(); |
1745 | 58 | if (!Size) |
1746 | 2 | continue; |
1747 | | |
1748 | 56 | QualType ArgTy = getOSLogArgType(Ctx, Size); |
1749 | 56 | Args.push_back(ImplicitParamDecl::Create( |
1750 | 56 | Ctx, nullptr, SourceLocation(), |
1751 | 56 | &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, |
1752 | 56 | ImplicitParamDecl::Other)); |
1753 | 56 | ArgTys.emplace_back(ArgTy); |
1754 | 56 | } |
1755 | | |
1756 | 36 | QualType ReturnTy = Ctx.VoidTy; |
1757 | | |
1758 | | // The helper function has linkonce_odr linkage to enable the linker to merge |
1759 | | // identical functions. To ensure the merging always happens, 'noinline' is |
1760 | | // attached to the function when compiling with -Oz. |
1761 | 36 | const CGFunctionInfo &FI = |
1762 | 36 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); |
1763 | 36 | llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); |
1764 | 36 | llvm::Function *Fn = llvm::Function::Create( |
1765 | 36 | FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); |
1766 | 36 | Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); |
1767 | 36 | CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false); |
1768 | 36 | CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); |
1769 | 36 | Fn->setDoesNotThrow(); |
1770 | | |
1771 | | // Attach 'noinline' at -Oz. |
1772 | 36 | if (CGM.getCodeGenOpts().OptimizeSize == 2) |
1773 | 0 | Fn->addFnAttr(llvm::Attribute::NoInline); |
1774 | | |
1775 | 36 | auto NL = ApplyDebugLocation::CreateEmpty(*this); |
1776 | 36 | StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args); |
1777 | | |
1778 | | // Create a scope with an artificial location for the body of this function. |
1779 | 36 | auto AL = ApplyDebugLocation::CreateArtificial(*this); |
1780 | | |
1781 | 36 | CharUnits Offset; |
1782 | 36 | Address BufAddr = |
1783 | 36 | Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty, |
1784 | 36 | BufferAlignment); |
1785 | 36 | Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), |
1786 | 36 | Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); |
1787 | 36 | Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), |
1788 | 36 | Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); |
1789 | | |
1790 | 36 | unsigned I = 1; |
1791 | 58 | for (const auto &Item : Layout.Items) { |
1792 | 58 | Builder.CreateStore( |
1793 | 58 | Builder.getInt8(Item.getDescriptorByte()), |
1794 | 58 | Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); |
1795 | 58 | Builder.CreateStore( |
1796 | 58 | Builder.getInt8(Item.getSizeByte()), |
1797 | 58 | Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); |
1798 | | |
1799 | 58 | CharUnits Size = Item.size(); |
1800 | 58 | if (!Size.getQuantity()) |
1801 | 2 | continue; |
1802 | | |
1803 | 56 | Address Arg = GetAddrOfLocalVar(Args[I]); |
1804 | 56 | Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); |
1805 | 56 | Addr = |
1806 | 56 | Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast"); |
1807 | 56 | Builder.CreateStore(Builder.CreateLoad(Arg), Addr); |
1808 | 56 | Offset += Size; |
1809 | 56 | ++I; |
1810 | 56 | } |
1811 | | |
1812 | 36 | FinishFunction(); |
1813 | | |
1814 | 36 | return Fn; |
1815 | 59 | } |
1816 | | |
1817 | 59 | RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { |
1818 | 59 | assert(E.getNumArgs() >= 2 && |
1819 | 59 | "__builtin_os_log_format takes at least 2 arguments"); |
1820 | 0 | ASTContext &Ctx = getContext(); |
1821 | 59 | analyze_os_log::OSLogBufferLayout Layout; |
1822 | 59 | analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); |
1823 | 59 | Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); |
1824 | 59 | llvm::SmallVector<llvm::Value *, 4> RetainableOperands; |
1825 | | |
1826 | | // Ignore argument 1, the format string. It is not currently used. |
1827 | 59 | CallArgList Args; |
1828 | 59 | Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); |
1829 | | |
1830 | 86 | for (const auto &Item : Layout.Items) { |
1831 | 86 | int Size = Item.getSizeByte(); |
1832 | 86 | if (!Size) |
1833 | 2 | continue; |
1834 | | |
1835 | 84 | llvm::Value *ArgVal; |
1836 | | |
1837 | 84 | if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { |
1838 | 4 | uint64_t Val = 0; |
1839 | 16 | for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I12 ) |
1840 | 12 | Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; |
1841 | 4 | ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); |
1842 | 80 | } else if (const Expr *TheExpr = Item.getExpr()) { |
1843 | 78 | ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); |
1844 | | |
1845 | | // If a temporary object that requires destruction after the full |
1846 | | // expression is passed, push a lifetime-extended cleanup to extend its |
1847 | | // lifetime to the end of the enclosing block scope. |
1848 | 78 | auto LifetimeExtendObject = [&](const Expr *E) { |
1849 | 14 | E = E->IgnoreParenCasts(); |
1850 | | // Extend lifetimes of objects returned by function calls and message |
1851 | | // sends. |
1852 | | |
1853 | | // FIXME: We should do this in other cases in which temporaries are |
1854 | | // created including arguments of non-ARC types (e.g., C++ |
1855 | | // temporaries). |
1856 | 14 | if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)10 ) |
1857 | 8 | return true; |
1858 | 6 | return false; |
1859 | 14 | }; |
1860 | | |
1861 | 78 | if (TheExpr->getType()->isObjCRetainableType() && |
1862 | 78 | getLangOpts().ObjCAutoRefCount21 && LifetimeExtendObject(TheExpr)14 ) { |
1863 | 8 | assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && |
1864 | 8 | "Only scalar can be a ObjC retainable type"); |
1865 | 8 | if (!isa<Constant>(ArgVal)) { |
1866 | 8 | CleanupKind Cleanup = getARCCleanupKind(); |
1867 | 8 | QualType Ty = TheExpr->getType(); |
1868 | 8 | Address Alloca = Address::invalid(); |
1869 | 8 | Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca); |
1870 | 8 | ArgVal = EmitARCRetain(Ty, ArgVal); |
1871 | 8 | Builder.CreateStore(ArgVal, Addr); |
1872 | 8 | pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty, |
1873 | 8 | CodeGenFunction::destroyARCStrongPrecise, |
1874 | 8 | Cleanup & EHCleanup); |
1875 | | |
1876 | | // Push a clang.arc.use call to ensure ARC optimizer knows that the |
1877 | | // argument has to be alive. |
1878 | 8 | if (CGM.getCodeGenOpts().OptimizationLevel != 0) |
1879 | 4 | pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal); |
1880 | 8 | } |
1881 | 8 | } |
1882 | 78 | } else { |
1883 | 2 | ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); |
1884 | 2 | } |
1885 | | |
1886 | 0 | unsigned ArgValSize = |
1887 | 84 | CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); |
1888 | 84 | llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), |
1889 | 84 | ArgValSize); |
1890 | 84 | ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); |
1891 | 84 | CanQualType ArgTy = getOSLogArgType(Ctx, Size); |
1892 | | // If ArgVal has type x86_fp80, zero-extend ArgVal. |
1893 | 84 | ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); |
1894 | 84 | Args.add(RValue::get(ArgVal), ArgTy); |
1895 | 84 | } |
1896 | | |
1897 | 59 | const CGFunctionInfo &FI = |
1898 | 59 | CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); |
1899 | 59 | llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( |
1900 | 59 | Layout, BufAddr.getAlignment()); |
1901 | 59 | EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); |
1902 | 59 | return RValue::get(BufAddr.getPointer()); |
1903 | 59 | } |
1904 | | |
1905 | | static bool isSpecialUnsignedMultiplySignedResult( |
1906 | | unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, |
1907 | 72 | WidthAndSignedness ResultInfo) { |
1908 | 72 | return BuiltinID == Builtin::BI__builtin_mul_overflow && |
1909 | 72 | Op1Info.Width == Op2Info.Width39 && Op2Info.Width == ResultInfo.Width39 && |
1910 | 72 | !Op1Info.Signed33 && !Op2Info.Signed21 && ResultInfo.Signed21 ; |
1911 | 72 | } |
1912 | | |
1913 | | static RValue EmitCheckedUnsignedMultiplySignedResult( |
1914 | | CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, |
1915 | | const clang::Expr *Op2, WidthAndSignedness Op2Info, |
1916 | | const clang::Expr *ResultArg, QualType ResultQTy, |
1917 | 9 | WidthAndSignedness ResultInfo) { |
1918 | 9 | assert(isSpecialUnsignedMultiplySignedResult( |
1919 | 9 | Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && |
1920 | 9 | "Cannot specialize this multiply"); |
1921 | | |
1922 | 0 | llvm::Value *V1 = CGF.EmitScalarExpr(Op1); |
1923 | 9 | llvm::Value *V2 = CGF.EmitScalarExpr(Op2); |
1924 | | |
1925 | 9 | llvm::Value *HasOverflow; |
1926 | 9 | llvm::Value *Result = EmitOverflowIntrinsic( |
1927 | 9 | CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow); |
1928 | | |
1929 | | // The intrinsic call will detect overflow when the value is > UINT_MAX, |
1930 | | // however, since the original builtin had a signed result, we need to report |
1931 | | // an overflow when the result is greater than INT_MAX. |
1932 | 9 | auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width); |
1933 | 9 | llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax); |
1934 | | |
1935 | 9 | llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue); |
1936 | 9 | HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow); |
1937 | | |
1938 | 9 | bool isVolatile = |
1939 | 9 | ResultArg->getType()->getPointeeType().isVolatileQualified(); |
1940 | 9 | Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); |
1941 | 9 | CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, |
1942 | 9 | isVolatile); |
1943 | 9 | return RValue::get(HasOverflow); |
1944 | 9 | } |
1945 | | |
1946 | | /// Determine if a binop is a checked mixed-sign multiply we can specialize. |
1947 | | static bool isSpecialMixedSignMultiply(unsigned BuiltinID, |
1948 | | WidthAndSignedness Op1Info, |
1949 | | WidthAndSignedness Op2Info, |
1950 | 117 | WidthAndSignedness ResultInfo) { |
1951 | 117 | return BuiltinID == Builtin::BI__builtin_mul_overflow && |
1952 | 117 | std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width84 && |
1953 | 117 | Op1Info.Signed != Op2Info.Signed78 ; |
1954 | 117 | } |
1955 | | |
1956 | | /// Emit a checked mixed-sign multiply. This is a cheaper specialization of |
1957 | | /// the generic checked-binop irgen. |
1958 | | static RValue |
1959 | | EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, |
1960 | | WidthAndSignedness Op1Info, const clang::Expr *Op2, |
1961 | | WidthAndSignedness Op2Info, |
1962 | | const clang::Expr *ResultArg, QualType ResultQTy, |
1963 | 27 | WidthAndSignedness ResultInfo) { |
1964 | 27 | assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, |
1965 | 27 | Op2Info, ResultInfo) && |
1966 | 27 | "Not a mixed-sign multipliction we can specialize"); |
1967 | | |
1968 | | // Emit the signed and unsigned operands. |
1969 | 27 | const clang::Expr *SignedOp = Op1Info.Signed ? Op115 : Op212 ; |
1970 | 27 | const clang::Expr *UnsignedOp = Op1Info.Signed ? Op215 : Op112 ; |
1971 | 27 | llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); |
1972 | 27 | llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); |
1973 | 27 | unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width15 : Op2Info.Width12 ; |
1974 | 27 | unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width15 : Op1Info.Width12 ; |
1975 | | |
1976 | | // One of the operands may be smaller than the other. If so, [s|z]ext it. |
1977 | 27 | if (SignedOpWidth < UnsignedOpWidth) |
1978 | 3 | Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); |
1979 | 27 | if (UnsignedOpWidth < SignedOpWidth) |
1980 | 3 | Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); |
1981 | | |
1982 | 27 | llvm::Type *OpTy = Signed->getType(); |
1983 | 27 | llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); |
1984 | 27 | Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); |
1985 | 27 | llvm::Type *ResTy = ResultPtr.getElementType(); |
1986 | 27 | unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); |
1987 | | |
1988 | | // Take the absolute value of the signed operand. |
1989 | 27 | llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); |
1990 | 27 | llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); |
1991 | 27 | llvm::Value *AbsSigned = |
1992 | 27 | CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); |
1993 | | |
1994 | | // Perform a checked unsigned multiplication. |
1995 | 27 | llvm::Value *UnsignedOverflow; |
1996 | 27 | llvm::Value *UnsignedResult = |
1997 | 27 | EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, |
1998 | 27 | Unsigned, UnsignedOverflow); |
1999 | | |
2000 | 27 | llvm::Value *Overflow, *Result; |
2001 | 27 | if (ResultInfo.Signed) { |
2002 | | // Signed overflow occurs if the result is greater than INT_MAX or lesser |
2003 | | // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). |
2004 | 21 | auto IntMax = |
2005 | 21 | llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth); |
2006 | 21 | llvm::Value *MaxResult = |
2007 | 21 | CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), |
2008 | 21 | CGF.Builder.CreateZExt(IsNegative, OpTy)); |
2009 | 21 | llvm::Value *SignedOverflow = |
2010 | 21 | CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); |
2011 | 21 | Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); |
2012 | | |
2013 | | // Prepare the signed result (possibly by negating it). |
2014 | 21 | llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); |
2015 | 21 | llvm::Value *SignedResult = |
2016 | 21 | CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); |
2017 | 21 | Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); |
2018 | 21 | } else { |
2019 | | // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. |
2020 | 6 | llvm::Value *Underflow = CGF.Builder.CreateAnd( |
2021 | 6 | IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); |
2022 | 6 | Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); |
2023 | 6 | if (ResultInfo.Width < OpWidth) { |
2024 | 3 | auto IntMax = |
2025 | 3 | llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); |
2026 | 3 | llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( |
2027 | 3 | UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); |
2028 | 3 | Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); |
2029 | 3 | } |
2030 | | |
2031 | | // Negate the product if it would be negative in infinite precision. |
2032 | 6 | Result = CGF.Builder.CreateSelect( |
2033 | 6 | IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); |
2034 | | |
2035 | 6 | Result = CGF.Builder.CreateTrunc(Result, ResTy); |
2036 | 6 | } |
2037 | 27 | assert(Overflow && Result && "Missing overflow or result"); |
2038 | | |
2039 | 0 | bool isVolatile = |
2040 | 27 | ResultArg->getType()->getPointeeType().isVolatileQualified(); |
2041 | 27 | CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, |
2042 | 27 | isVolatile); |
2043 | 27 | return RValue::get(Overflow); |
2044 | 27 | } |
2045 | | |
2046 | | static bool |
2047 | | TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, |
2048 | 44 | llvm::SmallPtrSetImpl<const Decl *> &Seen) { |
2049 | 44 | if (const auto *Arr = Ctx.getAsArrayType(Ty)) |
2050 | 6 | Ty = Ctx.getBaseElementType(Arr); |
2051 | | |
2052 | 44 | const auto *Record = Ty->getAsCXXRecordDecl(); |
2053 | 44 | if (!Record) |
2054 | 12 | return false; |
2055 | | |
2056 | | // We've already checked this type, or are in the process of checking it. |
2057 | 32 | if (!Seen.insert(Record).second) |
2058 | 0 | return false; |
2059 | | |
2060 | 32 | assert(Record->hasDefinition() && |
2061 | 32 | "Incomplete types should already be diagnosed"); |
2062 | | |
2063 | 32 | if (Record->isDynamicClass()) |
2064 | 11 | return true; |
2065 | | |
2066 | 21 | for (FieldDecl *F : Record->fields()) { |
2067 | 20 | if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) |
2068 | 5 | return true; |
2069 | 20 | } |
2070 | 16 | return false; |
2071 | 21 | } |
2072 | | |
2073 | | /// Determine if the specified type requires laundering by checking if it is a |
2074 | | /// dynamic class type or contains a subobject which is a dynamic class type. |
2075 | 52 | static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { |
2076 | 52 | if (!CGM.getCodeGenOpts().StrictVTablePointers) |
2077 | 28 | return false; |
2078 | 24 | llvm::SmallPtrSet<const Decl *, 16> Seen; |
2079 | 24 | return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); |
2080 | 52 | } |
2081 | | |
2082 | 176 | RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { |
2083 | 176 | llvm::Value *Src = EmitScalarExpr(E->getArg(0)); |
2084 | 176 | llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); |
2085 | | |
2086 | | // The builtin's shift arg may have a different type than the source arg and |
2087 | | // result, but the LLVM intrinsic uses the same type for all values. |
2088 | 176 | llvm::Type *Ty = Src->getType(); |
2089 | 176 | ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); |
2090 | | |
2091 | | // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. |
2092 | 176 | unsigned IID = IsRotateRight ? Intrinsic::fshr88 : Intrinsic::fshl88 ; |
2093 | 176 | Function *F = CGM.getIntrinsic(IID, Ty); |
2094 | 176 | return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); |
2095 | 176 | } |
2096 | | |
2097 | | // Map math builtins for long-double to f128 version. |
2098 | 84 | static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) { |
2099 | 84 | switch (BuiltinID) { |
2100 | 0 | #define MUTATE_LDBL(func) \ |
2101 | 59 | case Builtin::BI__builtin_##func##l: \ |
2102 | 59 | return Builtin::BI__builtin_##func##f128; |
2103 | 1 | MUTATE_LDBL(0 sqrt) |
2104 | 1 | MUTATE_LDBL(0 cbrt) |
2105 | 1 | MUTATE_LDBL(0 fabs) |
2106 | 1 | MUTATE_LDBL(0 log) |
2107 | 1 | MUTATE_LDBL(0 log2) |
2108 | 1 | MUTATE_LDBL(0 log10) |
2109 | 1 | MUTATE_LDBL(0 log1p) |
2110 | 1 | MUTATE_LDBL(0 logb) |
2111 | 1 | MUTATE_LDBL(0 exp) |
2112 | 1 | MUTATE_LDBL(0 exp2) |
2113 | 1 | MUTATE_LDBL(0 expm1) |
2114 | 1 | MUTATE_LDBL(0 fdim) |
2115 | 1 | MUTATE_LDBL(0 hypot) |
2116 | 1 | MUTATE_LDBL(0 ilogb) |
2117 | 1 | MUTATE_LDBL(0 pow) |
2118 | 1 | MUTATE_LDBL(0 fmin) |
2119 | 1 | MUTATE_LDBL(0 fmax) |
2120 | 1 | MUTATE_LDBL(0 ceil) |
2121 | 1 | MUTATE_LDBL(0 trunc) |
2122 | 1 | MUTATE_LDBL(0 rint) |
2123 | 1 | MUTATE_LDBL(0 nearbyint) |
2124 | 1 | MUTATE_LDBL(0 round) |
2125 | 1 | MUTATE_LDBL(0 floor) |
2126 | 1 | MUTATE_LDBL(0 lround) |
2127 | 1 | MUTATE_LDBL(0 llround) |
2128 | 1 | MUTATE_LDBL(0 lrint) |
2129 | 1 | MUTATE_LDBL(0 llrint) |
2130 | 1 | MUTATE_LDBL(0 fmod) |
2131 | 1 | MUTATE_LDBL(0 modf) |
2132 | 1 | MUTATE_LDBL(0 nan) |
2133 | 1 | MUTATE_LDBL(0 nans) |
2134 | 0 | MUTATE_LDBL(inf) |
2135 | 1 | MUTATE_LDBL(0 fma) |
2136 | 1 | MUTATE_LDBL(0 sin) |
2137 | 1 | MUTATE_LDBL(0 cos) |
2138 | 1 | MUTATE_LDBL(0 tan) |
2139 | 1 | MUTATE_LDBL(0 sinh) |
2140 | 1 | MUTATE_LDBL(0 cosh) |
2141 | 1 | MUTATE_LDBL(0 tanh) |
2142 | 1 | MUTATE_LDBL(0 asin) |
2143 | 1 | MUTATE_LDBL(0 acos) |
2144 | 1 | MUTATE_LDBL(0 atan) |
2145 | 1 | MUTATE_LDBL(0 asinh) |
2146 | 1 | MUTATE_LDBL(0 acosh) |
2147 | 1 | MUTATE_LDBL(0 atanh) |
2148 | 1 | MUTATE_LDBL(0 atan2) |
2149 | 1 | MUTATE_LDBL(0 erf) |
2150 | 1 | MUTATE_LDBL(0 erfc) |
2151 | 1 | MUTATE_LDBL(0 ldexp) |
2152 | 1 | MUTATE_LDBL(0 frexp) |
2153 | 0 | MUTATE_LDBL(huge_val) |
2154 | 1 | MUTATE_LDBL(0 copysign) |
2155 | 1 | MUTATE_LDBL(0 nextafter) |
2156 | 2 | MUTATE_LDBL(0 nexttoward) |
2157 | 1 | MUTATE_LDBL(0 remainder) |
2158 | 1 | MUTATE_LDBL(0 remquo) |
2159 | 1 | MUTATE_LDBL(0 scalbln) |
2160 | 1 | MUTATE_LDBL(0 scalbn) |
2161 | 1 | MUTATE_LDBL(0 tgamma) |
2162 | 1 | MUTATE_LDBL(0 lgamma) |
2163 | 0 | #undef MUTATE_LDBL |
2164 | 25 | default: |
2165 | 25 | return BuiltinID; |
2166 | 84 | } |
2167 | 84 | } |
2168 | | |
2169 | | RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, |
2170 | | const CallExpr *E, |
2171 | 96.1k | ReturnValueSlot ReturnValue) { |
2172 | 96.1k | const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
2173 | | // See if we can constant fold this builtin. If so, don't emit it at all. |
2174 | | // TODO: Extend this handling to all builtin calls that we can constant-fold. |
2175 | 96.1k | Expr::EvalResult Result; |
2176 | 96.1k | if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext())82.8k && |
2177 | 96.1k | !Result.hasSideEffects()1.09k ) { |
2178 | 1.08k | if (Result.Val.isInt()) |
2179 | 532 | return RValue::get(llvm::ConstantInt::get(getLLVMContext(), |
2180 | 532 | Result.Val.getInt())); |
2181 | 556 | if (Result.Val.isFloat()) |
2182 | 190 | return RValue::get(llvm::ConstantFP::get(getLLVMContext(), |
2183 | 190 | Result.Val.getFloat())); |
2184 | 556 | } |
2185 | | |
2186 | | // If current long-double semantics is IEEE 128-bit, replace math builtins |
2187 | | // of long-double with f128 equivalent. |
2188 | | // TODO: This mutation should also be applied to other targets other than PPC, |
2189 | | // after backend supports IEEE 128-bit style libcalls. |
2190 | 95.4k | if (getTarget().getTriple().isPPC64() && |
2191 | 95.4k | &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()584 ) |
2192 | 84 | BuiltinID = mutateLongDoubleBuiltin(BuiltinID); |
2193 | | |
2194 | | // If the builtin has been declared explicitly with an assembler label, |
2195 | | // disable the specialized emitting below. Ideally we should communicate the |
2196 | | // rename in IR, or at least avoid generating the intrinsic calls that are |
2197 | | // likely to get lowered to the renamed library functions. |
2198 | 95.4k | const unsigned BuiltinIDIfNoAsmLabel = |
2199 | 95.4k | FD->hasAttr<AsmLabelAttr>() ? 0248 : BuiltinID95.1k ; |
2200 | | |
2201 | | // There are LLVM math intrinsics/instructions corresponding to math library |
2202 | | // functions except the LLVM op will never set errno while the math library |
2203 | | // might. Also, math builtins have the same semantics as their math library |
2204 | | // twins. Thus, we can transform math library and builtin calls to their |
2205 | | // LLVM counterparts if the call is marked 'const' (known to never set errno). |
2206 | 95.4k | if (FD->hasAttr<ConstAttr>()) { |
2207 | 31.5k | switch (BuiltinIDIfNoAsmLabel) { |
2208 | 4 | case Builtin::BIceil: |
2209 | 14 | case Builtin::BIceilf: |
2210 | 18 | case Builtin::BIceill: |
2211 | 25 | case Builtin::BI__builtin_ceil: |
2212 | 32 | case Builtin::BI__builtin_ceilf: |
2213 | 33 | case Builtin::BI__builtin_ceilf16: |
2214 | 43 | case Builtin::BI__builtin_ceill: |
2215 | 49 | case Builtin::BI__builtin_ceilf128: |
2216 | 49 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2217 | 49 | Intrinsic::ceil, |
2218 | 49 | Intrinsic::experimental_constrained_ceil)); |
2219 | | |
2220 | 5 | case Builtin::BIcopysign: |
2221 | 9 | case Builtin::BIcopysignf: |
2222 | 13 | case Builtin::BIcopysignl: |
2223 | 19 | case Builtin::BI__builtin_copysign: |
2224 | 25 | case Builtin::BI__builtin_copysignf: |
2225 | 26 | case Builtin::BI__builtin_copysignf16: |
2226 | 35 | case Builtin::BI__builtin_copysignl: |
2227 | 40 | case Builtin::BI__builtin_copysignf128: |
2228 | 40 | return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); |
2229 | | |
2230 | 4 | case Builtin::BIcos: |
2231 | 8 | case Builtin::BIcosf: |
2232 | 9 | case Builtin::BIcosl: |
2233 | 11 | case Builtin::BI__builtin_cos: |
2234 | 13 | case Builtin::BI__builtin_cosf: |
2235 | 14 | case Builtin::BI__builtin_cosf16: |
2236 | 16 | case Builtin::BI__builtin_cosl: |
2237 | 18 | case Builtin::BI__builtin_cosf128: |
2238 | 18 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2239 | 18 | Intrinsic::cos, |
2240 | 18 | Intrinsic::experimental_constrained_cos)); |
2241 | | |
2242 | 5 | case Builtin::BIexp: |
2243 | 8 | case Builtin::BIexpf: |
2244 | 11 | case Builtin::BIexpl: |
2245 | 13 | case Builtin::BI__builtin_exp: |
2246 | 15 | case Builtin::BI__builtin_expf: |
2247 | 16 | case Builtin::BI__builtin_expf16: |
2248 | 18 | case Builtin::BI__builtin_expl: |
2249 | 20 | case Builtin::BI__builtin_expf128: |
2250 | 20 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2251 | 20 | Intrinsic::exp, |
2252 | 20 | Intrinsic::experimental_constrained_exp)); |
2253 | | |
2254 | 1 | case Builtin::BIexp2: |
2255 | 2 | case Builtin::BIexp2f: |
2256 | 3 | case Builtin::BIexp2l: |
2257 | 5 | case Builtin::BI__builtin_exp2: |
2258 | 7 | case Builtin::BI__builtin_exp2f: |
2259 | 8 | case Builtin::BI__builtin_exp2f16: |
2260 | 10 | case Builtin::BI__builtin_exp2l: |
2261 | 12 | case Builtin::BI__builtin_exp2f128: |
2262 | 12 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2263 | 12 | Intrinsic::exp2, |
2264 | 12 | Intrinsic::experimental_constrained_exp2)); |
2265 | | |
2266 | 7 | case Builtin::BIfabs: |
2267 | 12 | case Builtin::BIfabsf: |
2268 | 16 | case Builtin::BIfabsl: |
2269 | 41 | case Builtin::BI__builtin_fabs: |
2270 | 49 | case Builtin::BI__builtin_fabsf: |
2271 | 50 | case Builtin::BI__builtin_fabsf16: |
2272 | 61 | case Builtin::BI__builtin_fabsl: |
2273 | 66 | case Builtin::BI__builtin_fabsf128: |
2274 | 66 | return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); |
2275 | | |
2276 | 35 | case Builtin::BIfloor: |
2277 | 39 | case Builtin::BIfloorf: |
2278 | 43 | case Builtin::BIfloorl: |
2279 | 50 | case Builtin::BI__builtin_floor: |
2280 | 57 | case Builtin::BI__builtin_floorf: |
2281 | 58 | case Builtin::BI__builtin_floorf16: |
2282 | 68 | case Builtin::BI__builtin_floorl: |
2283 | 74 | case Builtin::BI__builtin_floorf128: |
2284 | 74 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2285 | 74 | Intrinsic::floor, |
2286 | 74 | Intrinsic::experimental_constrained_floor)); |
2287 | | |
2288 | 5 | case Builtin::BIfma: |
2289 | 10 | case Builtin::BIfmaf: |
2290 | 15 | case Builtin::BIfmal: |
2291 | 19 | case Builtin::BI__builtin_fma: |
2292 | 23 | case Builtin::BI__builtin_fmaf: |
2293 | 24 | case Builtin::BI__builtin_fmaf16: |
2294 | 28 | case Builtin::BI__builtin_fmal: |
2295 | 30 | case Builtin::BI__builtin_fmaf128: |
2296 | 30 | return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E, |
2297 | 30 | Intrinsic::fma, |
2298 | 30 | Intrinsic::experimental_constrained_fma)); |
2299 | | |
2300 | 4 | case Builtin::BIfmax: |
2301 | 8 | case Builtin::BIfmaxf: |
2302 | 12 | case Builtin::BIfmaxl: |
2303 | 19 | case Builtin::BI__builtin_fmax: |
2304 | 26 | case Builtin::BI__builtin_fmaxf: |
2305 | 27 | case Builtin::BI__builtin_fmaxf16: |
2306 | 37 | case Builtin::BI__builtin_fmaxl: |
2307 | 43 | case Builtin::BI__builtin_fmaxf128: |
2308 | 43 | return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
2309 | 43 | Intrinsic::maxnum, |
2310 | 43 | Intrinsic::experimental_constrained_maxnum)); |
2311 | | |
2312 | 4 | case Builtin::BIfmin: |
2313 | 8 | case Builtin::BIfminf: |
2314 | 12 | case Builtin::BIfminl: |
2315 | 24 | case Builtin::BI__builtin_fmin: |
2316 | 31 | case Builtin::BI__builtin_fminf: |
2317 | 32 | case Builtin::BI__builtin_fminf16: |
2318 | 42 | case Builtin::BI__builtin_fminl: |
2319 | 48 | case Builtin::BI__builtin_fminf128: |
2320 | 48 | return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
2321 | 48 | Intrinsic::minnum, |
2322 | 48 | Intrinsic::experimental_constrained_minnum)); |
2323 | | |
2324 | | // fmod() is a special-case. It maps to the frem instruction rather than an |
2325 | | // LLVM intrinsic. |
2326 | 1 | case Builtin::BIfmod: |
2327 | 2 | case Builtin::BIfmodf: |
2328 | 3 | case Builtin::BIfmodl: |
2329 | 7 | case Builtin::BI__builtin_fmod: |
2330 | 11 | case Builtin::BI__builtin_fmodf: |
2331 | 12 | case Builtin::BI__builtin_fmodf16: |
2332 | 16 | case Builtin::BI__builtin_fmodl: |
2333 | 18 | case Builtin::BI__builtin_fmodf128: { |
2334 | 18 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
2335 | 18 | Value *Arg1 = EmitScalarExpr(E->getArg(0)); |
2336 | 18 | Value *Arg2 = EmitScalarExpr(E->getArg(1)); |
2337 | 18 | return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); |
2338 | 16 | } |
2339 | | |
2340 | 3 | case Builtin::BIlog: |
2341 | 6 | case Builtin::BIlogf: |
2342 | 9 | case Builtin::BIlogl: |
2343 | 11 | case Builtin::BI__builtin_log: |
2344 | 13 | case Builtin::BI__builtin_logf: |
2345 | 14 | case Builtin::BI__builtin_logf16: |
2346 | 16 | case Builtin::BI__builtin_logl: |
2347 | 18 | case Builtin::BI__builtin_logf128: |
2348 | 18 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2349 | 18 | Intrinsic::log, |
2350 | 18 | Intrinsic::experimental_constrained_log)); |
2351 | | |
2352 | 1 | case Builtin::BIlog10: |
2353 | 2 | case Builtin::BIlog10f: |
2354 | 3 | case Builtin::BIlog10l: |
2355 | 5 | case Builtin::BI__builtin_log10: |
2356 | 7 | case Builtin::BI__builtin_log10f: |
2357 | 8 | case Builtin::BI__builtin_log10f16: |
2358 | 10 | case Builtin::BI__builtin_log10l: |
2359 | 12 | case Builtin::BI__builtin_log10f128: |
2360 | 12 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2361 | 12 | Intrinsic::log10, |
2362 | 12 | Intrinsic::experimental_constrained_log10)); |
2363 | | |
2364 | 1 | case Builtin::BIlog2: |
2365 | 2 | case Builtin::BIlog2f: |
2366 | 3 | case Builtin::BIlog2l: |
2367 | 5 | case Builtin::BI__builtin_log2: |
2368 | 7 | case Builtin::BI__builtin_log2f: |
2369 | 8 | case Builtin::BI__builtin_log2f16: |
2370 | 10 | case Builtin::BI__builtin_log2l: |
2371 | 12 | case Builtin::BI__builtin_log2f128: |
2372 | 12 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2373 | 12 | Intrinsic::log2, |
2374 | 12 | Intrinsic::experimental_constrained_log2)); |
2375 | | |
2376 | 4 | case Builtin::BInearbyint: |
2377 | 8 | case Builtin::BInearbyintf: |
2378 | 12 | case Builtin::BInearbyintl: |
2379 | 19 | case Builtin::BI__builtin_nearbyint: |
2380 | 26 | case Builtin::BI__builtin_nearbyintf: |
2381 | 36 | case Builtin::BI__builtin_nearbyintl: |
2382 | 42 | case Builtin::BI__builtin_nearbyintf128: |
2383 | 42 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2384 | 42 | Intrinsic::nearbyint, |
2385 | 42 | Intrinsic::experimental_constrained_nearbyint)); |
2386 | | |
2387 | 3 | case Builtin::BIpow: |
2388 | 6 | case Builtin::BIpowf: |
2389 | 9 | case Builtin::BIpowl: |
2390 | 11 | case Builtin::BI__builtin_pow: |
2391 | 13 | case Builtin::BI__builtin_powf: |
2392 | 14 | case Builtin::BI__builtin_powf16: |
2393 | 16 | case Builtin::BI__builtin_powl: |
2394 | 18 | case Builtin::BI__builtin_powf128: |
2395 | 18 | return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
2396 | 18 | Intrinsic::pow, |
2397 | 18 | Intrinsic::experimental_constrained_pow)); |
2398 | | |
2399 | 4 | case Builtin::BIrint: |
2400 | 8 | case Builtin::BIrintf: |
2401 | 12 | case Builtin::BIrintl: |
2402 | 19 | case Builtin::BI__builtin_rint: |
2403 | 26 | case Builtin::BI__builtin_rintf: |
2404 | 27 | case Builtin::BI__builtin_rintf16: |
2405 | 37 | case Builtin::BI__builtin_rintl: |
2406 | 43 | case Builtin::BI__builtin_rintf128: |
2407 | 43 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2408 | 43 | Intrinsic::rint, |
2409 | 43 | Intrinsic::experimental_constrained_rint)); |
2410 | | |
2411 | 4 | case Builtin::BIround: |
2412 | 8 | case Builtin::BIroundf: |
2413 | 12 | case Builtin::BIroundl: |
2414 | 19 | case Builtin::BI__builtin_round: |
2415 | 26 | case Builtin::BI__builtin_roundf: |
2416 | 27 | case Builtin::BI__builtin_roundf16: |
2417 | 37 | case Builtin::BI__builtin_roundl: |
2418 | 43 | case Builtin::BI__builtin_roundf128: |
2419 | 43 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2420 | 43 | Intrinsic::round, |
2421 | 43 | Intrinsic::experimental_constrained_round)); |
2422 | | |
2423 | 3 | case Builtin::BIsin: |
2424 | 7 | case Builtin::BIsinf: |
2425 | 8 | case Builtin::BIsinl: |
2426 | 13 | case Builtin::BI__builtin_sin: |
2427 | 15 | case Builtin::BI__builtin_sinf: |
2428 | 16 | case Builtin::BI__builtin_sinf16: |
2429 | 18 | case Builtin::BI__builtin_sinl: |
2430 | 20 | case Builtin::BI__builtin_sinf128: |
2431 | 20 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2432 | 20 | Intrinsic::sin, |
2433 | 20 | Intrinsic::experimental_constrained_sin)); |
2434 | | |
2435 | 6 | case Builtin::BIsqrt: |
2436 | 9 | case Builtin::BIsqrtf: |
2437 | 12 | case Builtin::BIsqrtl: |
2438 | 16 | case Builtin::BI__builtin_sqrt: |
2439 | 21 | case Builtin::BI__builtin_sqrtf: |
2440 | 22 | case Builtin::BI__builtin_sqrtf16: |
2441 | 26 | case Builtin::BI__builtin_sqrtl: |
2442 | 28 | case Builtin::BI__builtin_sqrtf128: |
2443 | 28 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2444 | 28 | Intrinsic::sqrt, |
2445 | 28 | Intrinsic::experimental_constrained_sqrt)); |
2446 | | |
2447 | 4 | case Builtin::BItrunc: |
2448 | 8 | case Builtin::BItruncf: |
2449 | 12 | case Builtin::BItruncl: |
2450 | 19 | case Builtin::BI__builtin_trunc: |
2451 | 26 | case Builtin::BI__builtin_truncf: |
2452 | 27 | case Builtin::BI__builtin_truncf16: |
2453 | 37 | case Builtin::BI__builtin_truncl: |
2454 | 43 | case Builtin::BI__builtin_truncf128: |
2455 | 43 | return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
2456 | 43 | Intrinsic::trunc, |
2457 | 43 | Intrinsic::experimental_constrained_trunc)); |
2458 | | |
2459 | 1 | case Builtin::BIlround: |
2460 | 2 | case Builtin::BIlroundf: |
2461 | 3 | case Builtin::BIlroundl: |
2462 | 7 | case Builtin::BI__builtin_lround: |
2463 | 11 | case Builtin::BI__builtin_lroundf: |
2464 | 15 | case Builtin::BI__builtin_lroundl: |
2465 | 17 | case Builtin::BI__builtin_lroundf128: |
2466 | 17 | return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
2467 | 17 | *this, E, Intrinsic::lround, |
2468 | 17 | Intrinsic::experimental_constrained_lround)); |
2469 | | |
2470 | 1 | case Builtin::BIllround: |
2471 | 2 | case Builtin::BIllroundf: |
2472 | 3 | case Builtin::BIllroundl: |
2473 | 5 | case Builtin::BI__builtin_llround: |
2474 | 7 | case Builtin::BI__builtin_llroundf: |
2475 | 9 | case Builtin::BI__builtin_llroundl: |
2476 | 11 | case Builtin::BI__builtin_llroundf128: |
2477 | 11 | return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
2478 | 11 | *this, E, Intrinsic::llround, |
2479 | 11 | Intrinsic::experimental_constrained_llround)); |
2480 | | |
2481 | 1 | case Builtin::BIlrint: |
2482 | 2 | case Builtin::BIlrintf: |
2483 | 3 | case Builtin::BIlrintl: |
2484 | 7 | case Builtin::BI__builtin_lrint: |
2485 | 11 | case Builtin::BI__builtin_lrintf: |
2486 | 15 | case Builtin::BI__builtin_lrintl: |
2487 | 17 | case Builtin::BI__builtin_lrintf128: |
2488 | 17 | return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
2489 | 17 | *this, E, Intrinsic::lrint, |
2490 | 17 | Intrinsic::experimental_constrained_lrint)); |
2491 | | |
2492 | 1 | case Builtin::BIllrint: |
2493 | 2 | case Builtin::BIllrintf: |
2494 | 3 | case Builtin::BIllrintl: |
2495 | 5 | case Builtin::BI__builtin_llrint: |
2496 | 7 | case Builtin::BI__builtin_llrintf: |
2497 | 9 | case Builtin::BI__builtin_llrintl: |
2498 | 11 | case Builtin::BI__builtin_llrintf128: |
2499 | 11 | return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
2500 | 11 | *this, E, Intrinsic::llrint, |
2501 | 11 | Intrinsic::experimental_constrained_llrint)); |
2502 | | |
2503 | 30.7k | default: |
2504 | 30.7k | break; |
2505 | 31.5k | } |
2506 | 31.5k | } |
2507 | | |
2508 | 94.6k | switch (BuiltinIDIfNoAsmLabel) { |
2509 | 68.6k | default: break; |
2510 | 68.6k | case Builtin::BI__builtin___CFStringMakeConstantString: |
2511 | 254 | case Builtin::BI__builtin___NSStringMakeConstantString: |
2512 | 254 | return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); |
2513 | 0 | case Builtin::BI__builtin_stdarg_start: |
2514 | 263 | case Builtin::BI__builtin_va_start: |
2515 | 263 | case Builtin::BI__va_start: |
2516 | 502 | case Builtin::BI__builtin_va_end: |
2517 | 502 | return RValue::get( |
2518 | 502 | EmitVAStartEnd(BuiltinID == Builtin::BI__va_start |
2519 | 502 | ? EmitScalarExpr(E->getArg(0))0 |
2520 | 502 | : EmitVAListRef(E->getArg(0)).getPointer(), |
2521 | 502 | BuiltinID != Builtin::BI__builtin_va_end)); |
2522 | 9 | case Builtin::BI__builtin_va_copy: { |
2523 | 9 | Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); |
2524 | 9 | Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); |
2525 | | |
2526 | 9 | llvm::Type *Type = Int8PtrTy; |
2527 | | |
2528 | 9 | DstPtr = Builder.CreateBitCast(DstPtr, Type); |
2529 | 9 | SrcPtr = Builder.CreateBitCast(SrcPtr, Type); |
2530 | 9 | return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), |
2531 | 9 | {DstPtr, SrcPtr})); |
2532 | 263 | } |
2533 | 5 | case Builtin::BI__builtin_abs: |
2534 | 6 | case Builtin::BI__builtin_labs: |
2535 | 7 | case Builtin::BI__builtin_llabs: { |
2536 | | // X < 0 ? -X : X |
2537 | | // The negation has 'nsw' because abs of INT_MIN is undefined. |
2538 | 7 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2539 | 7 | Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); |
2540 | 7 | Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); |
2541 | 7 | Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); |
2542 | 7 | Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); |
2543 | 7 | return RValue::get(Result); |
2544 | 6 | } |
2545 | 4 | case Builtin::BI__builtin_complex: { |
2546 | 4 | Value *Real = EmitScalarExpr(E->getArg(0)); |
2547 | 4 | Value *Imag = EmitScalarExpr(E->getArg(1)); |
2548 | 4 | return RValue::getComplex({Real, Imag}); |
2549 | 6 | } |
2550 | 6 | case Builtin::BI__builtin_conj: |
2551 | 12 | case Builtin::BI__builtin_conjf: |
2552 | 18 | case Builtin::BI__builtin_conjl: |
2553 | 22 | case Builtin::BIconj: |
2554 | 26 | case Builtin::BIconjf: |
2555 | 30 | case Builtin::BIconjl: { |
2556 | 30 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2557 | 30 | Value *Real = ComplexVal.first; |
2558 | 30 | Value *Imag = ComplexVal.second; |
2559 | 30 | Imag = Builder.CreateFNeg(Imag, "neg"); |
2560 | 30 | return RValue::getComplex(std::make_pair(Real, Imag)); |
2561 | 26 | } |
2562 | 4 | case Builtin::BI__builtin_creal: |
2563 | 8 | case Builtin::BI__builtin_crealf: |
2564 | 12 | case Builtin::BI__builtin_creall: |
2565 | 16 | case Builtin::BIcreal: |
2566 | 19 | case Builtin::BIcrealf: |
2567 | 22 | case Builtin::BIcreall: { |
2568 | 22 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2569 | 22 | return RValue::get(ComplexVal.first); |
2570 | 19 | } |
2571 | | |
2572 | 20 | case Builtin::BI__builtin_preserve_access_index: { |
2573 | | // Only enabled preserved access index region when debuginfo |
2574 | | // is available as debuginfo is needed to preserve user-level |
2575 | | // access pattern. |
2576 | 20 | if (!getDebugInfo()) { |
2577 | 0 | CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); |
2578 | 0 | return RValue::get(EmitScalarExpr(E->getArg(0))); |
2579 | 0 | } |
2580 | | |
2581 | | // Nested builtin_preserve_access_index() not supported |
2582 | 20 | if (IsInPreservedAIRegion) { |
2583 | 0 | CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); |
2584 | 0 | return RValue::get(EmitScalarExpr(E->getArg(0))); |
2585 | 0 | } |
2586 | | |
2587 | 20 | IsInPreservedAIRegion = true; |
2588 | 20 | Value *Res = EmitScalarExpr(E->getArg(0)); |
2589 | 20 | IsInPreservedAIRegion = false; |
2590 | 20 | return RValue::get(Res); |
2591 | 20 | } |
2592 | | |
2593 | 4 | case Builtin::BI__builtin_cimag: |
2594 | 8 | case Builtin::BI__builtin_cimagf: |
2595 | 12 | case Builtin::BI__builtin_cimagl: |
2596 | 15 | case Builtin::BIcimag: |
2597 | 18 | case Builtin::BIcimagf: |
2598 | 21 | case Builtin::BIcimagl: { |
2599 | 21 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2600 | 21 | return RValue::get(ComplexVal.second); |
2601 | 18 | } |
2602 | | |
2603 | 1 | case Builtin::BI__builtin_clrsb: |
2604 | 1 | case Builtin::BI__builtin_clrsbl: |
2605 | 2 | case Builtin::BI__builtin_clrsbll: { |
2606 | | // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or |
2607 | 2 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2608 | | |
2609 | 2 | llvm::Type *ArgType = ArgValue->getType(); |
2610 | 2 | Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
2611 | | |
2612 | 2 | llvm::Type *ResultType = ConvertType(E->getType()); |
2613 | 2 | Value *Zero = llvm::Constant::getNullValue(ArgType); |
2614 | 2 | Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); |
2615 | 2 | Value *Inverse = Builder.CreateNot(ArgValue, "not"); |
2616 | 2 | Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); |
2617 | 2 | Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); |
2618 | 2 | Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); |
2619 | 2 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2620 | 2 | "cast"); |
2621 | 2 | return RValue::get(Result); |
2622 | 1 | } |
2623 | 2 | case Builtin::BI__builtin_ctzs: |
2624 | 14 | case Builtin::BI__builtin_ctz: |
2625 | 18 | case Builtin::BI__builtin_ctzl: |
2626 | 29 | case Builtin::BI__builtin_ctzll: { |
2627 | 29 | Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); |
2628 | | |
2629 | 29 | llvm::Type *ArgType = ArgValue->getType(); |
2630 | 29 | Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
2631 | | |
2632 | 29 | llvm::Type *ResultType = ConvertType(E->getType()); |
2633 | 29 | Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
2634 | 29 | Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
2635 | 29 | if (Result->getType() != ResultType) |
2636 | 17 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2637 | 17 | "cast"); |
2638 | 29 | return RValue::get(Result); |
2639 | 18 | } |
2640 | 2 | case Builtin::BI__builtin_clzs: |
2641 | 37 | case Builtin::BI__builtin_clz: |
2642 | 55 | case Builtin::BI__builtin_clzl: |
2643 | 69 | case Builtin::BI__builtin_clzll: { |
2644 | 69 | Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); |
2645 | | |
2646 | 69 | llvm::Type *ArgType = ArgValue->getType(); |
2647 | 69 | Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
2648 | | |
2649 | 69 | llvm::Type *ResultType = ConvertType(E->getType()); |
2650 | 69 | Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
2651 | 69 | Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
2652 | 69 | if (Result->getType() != ResultType) |
2653 | 33 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2654 | 33 | "cast"); |
2655 | 69 | return RValue::get(Result); |
2656 | 55 | } |
2657 | 2 | case Builtin::BI__builtin_ffs: |
2658 | 4 | case Builtin::BI__builtin_ffsl: |
2659 | 6 | case Builtin::BI__builtin_ffsll: { |
2660 | | // ffs(x) -> x ? cttz(x) + 1 : 0 |
2661 | 6 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2662 | | |
2663 | 6 | llvm::Type *ArgType = ArgValue->getType(); |
2664 | 6 | Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
2665 | | |
2666 | 6 | llvm::Type *ResultType = ConvertType(E->getType()); |
2667 | 6 | Value *Tmp = |
2668 | 6 | Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), |
2669 | 6 | llvm::ConstantInt::get(ArgType, 1)); |
2670 | 6 | Value *Zero = llvm::Constant::getNullValue(ArgType); |
2671 | 6 | Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); |
2672 | 6 | Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); |
2673 | 6 | if (Result->getType() != ResultType) |
2674 | 4 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2675 | 4 | "cast"); |
2676 | 6 | return RValue::get(Result); |
2677 | 4 | } |
2678 | 2 | case Builtin::BI__builtin_parity: |
2679 | 4 | case Builtin::BI__builtin_parityl: |
2680 | 6 | case Builtin::BI__builtin_parityll: { |
2681 | | // parity(x) -> ctpop(x) & 1 |
2682 | 6 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2683 | | |
2684 | 6 | llvm::Type *ArgType = ArgValue->getType(); |
2685 | 6 | Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
2686 | | |
2687 | 6 | llvm::Type *ResultType = ConvertType(E->getType()); |
2688 | 6 | Value *Tmp = Builder.CreateCall(F, ArgValue); |
2689 | 6 | Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); |
2690 | 6 | if (Result->getType() != ResultType) |
2691 | 4 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2692 | 4 | "cast"); |
2693 | 6 | return RValue::get(Result); |
2694 | 4 | } |
2695 | 5 | case Builtin::BI__lzcnt16: |
2696 | 10 | case Builtin::BI__lzcnt: |
2697 | 15 | case Builtin::BI__lzcnt64: { |
2698 | 15 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2699 | | |
2700 | 15 | llvm::Type *ArgType = ArgValue->getType(); |
2701 | 15 | Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
2702 | | |
2703 | 15 | llvm::Type *ResultType = ConvertType(E->getType()); |
2704 | 15 | Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); |
2705 | 15 | if (Result->getType() != ResultType) |
2706 | 0 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2707 | 0 | "cast"); |
2708 | 15 | return RValue::get(Result); |
2709 | 10 | } |
2710 | 5 | case Builtin::BI__popcnt16: |
2711 | 10 | case Builtin::BI__popcnt: |
2712 | 15 | case Builtin::BI__popcnt64: |
2713 | 24 | case Builtin::BI__builtin_popcount: |
2714 | 26 | case Builtin::BI__builtin_popcountl: |
2715 | 35 | case Builtin::BI__builtin_popcountll: { |
2716 | 35 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2717 | | |
2718 | 35 | llvm::Type *ArgType = ArgValue->getType(); |
2719 | 35 | Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
2720 | | |
2721 | 35 | llvm::Type *ResultType = ConvertType(E->getType()); |
2722 | 35 | Value *Result = Builder.CreateCall(F, ArgValue); |
2723 | 35 | if (Result->getType() != ResultType) |
2724 | 11 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
2725 | 11 | "cast"); |
2726 | 35 | return RValue::get(Result); |
2727 | 26 | } |
2728 | 7 | case Builtin::BI__builtin_unpredictable: { |
2729 | | // Always return the argument of __builtin_unpredictable. LLVM does not |
2730 | | // handle this builtin. Metadata for this builtin should be added directly |
2731 | | // to instructions such as branches or switches that use it. |
2732 | 7 | return RValue::get(EmitScalarExpr(E->getArg(0))); |
2733 | 26 | } |
2734 | 165 | case Builtin::BI__builtin_expect: { |
2735 | 165 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2736 | 165 | llvm::Type *ArgType = ArgValue->getType(); |
2737 | | |
2738 | 165 | Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
2739 | | // Don't generate llvm.expect on -O0 as the backend won't use it for |
2740 | | // anything. |
2741 | | // Note, we still IRGen ExpectedValue because it could have side-effects. |
2742 | 165 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
2743 | 134 | return RValue::get(ArgValue); |
2744 | | |
2745 | 31 | Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); |
2746 | 31 | Value *Result = |
2747 | 31 | Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); |
2748 | 31 | return RValue::get(Result); |
2749 | 165 | } |
2750 | 12 | case Builtin::BI__builtin_expect_with_probability: { |
2751 | 12 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2752 | 12 | llvm::Type *ArgType = ArgValue->getType(); |
2753 | | |
2754 | 12 | Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
2755 | 12 | llvm::APFloat Probability(0.0); |
2756 | 12 | const Expr *ProbArg = E->getArg(2); |
2757 | 12 | bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext()); |
2758 | 12 | assert(EvalSucceed && "probability should be able to evaluate as float"); |
2759 | 0 | (void)EvalSucceed; |
2760 | 12 | bool LoseInfo = false; |
2761 | 12 | Probability.convert(llvm::APFloat::IEEEdouble(), |
2762 | 12 | llvm::RoundingMode::Dynamic, &LoseInfo); |
2763 | 12 | llvm::Type *Ty = ConvertType(ProbArg->getType()); |
2764 | 12 | Constant *Confidence = ConstantFP::get(Ty, Probability); |
2765 | | // Don't generate llvm.expect.with.probability on -O0 as the backend |
2766 | | // won't use it for anything. |
2767 | | // Note, we still IRGen ExpectedValue because it could have side-effects. |
2768 | 12 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
2769 | 6 | return RValue::get(ArgValue); |
2770 | | |
2771 | 6 | Function *FnExpect = |
2772 | 6 | CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType); |
2773 | 6 | Value *Result = Builder.CreateCall( |
2774 | 6 | FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval"); |
2775 | 6 | return RValue::get(Result); |
2776 | 12 | } |
2777 | 22 | case Builtin::BI__builtin_assume_aligned: { |
2778 | 22 | const Expr *Ptr = E->getArg(0); |
2779 | 22 | Value *PtrValue = EmitScalarExpr(Ptr); |
2780 | 22 | Value *OffsetValue = |
2781 | 22 | (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2))11 : nullptr11 ; |
2782 | | |
2783 | 22 | Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); |
2784 | 22 | ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); |
2785 | 22 | if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) |
2786 | 0 | AlignmentCI = ConstantInt::get(AlignmentCI->getType(), |
2787 | 0 | llvm::Value::MaximumAlignment); |
2788 | | |
2789 | 22 | emitAlignmentAssumption(PtrValue, Ptr, |
2790 | 22 | /*The expr loc is sufficient.*/ SourceLocation(), |
2791 | 22 | AlignmentCI, OffsetValue); |
2792 | 22 | return RValue::get(PtrValue); |
2793 | 12 | } |
2794 | 0 | case Builtin::BI__assume: |
2795 | 1.27k | case Builtin::BI__builtin_assume: { |
2796 | 1.27k | if (E->getArg(0)->HasSideEffects(getContext())) |
2797 | 507 | return RValue::get(nullptr); |
2798 | | |
2799 | 767 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2800 | 767 | Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); |
2801 | 767 | return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); |
2802 | 1.27k | } |
2803 | 17 | case Builtin::BI__arithmetic_fence: { |
2804 | | // Create the builtin call if FastMath is selected, and the target |
2805 | | // supports the builtin, otherwise just return the argument. |
2806 | 17 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
2807 | 17 | llvm::FastMathFlags FMF = Builder.getFastMathFlags(); |
2808 | 17 | bool isArithmeticFenceEnabled = |
2809 | 17 | FMF.allowReassoc() && |
2810 | 17 | getContext().getTargetInfo().checkArithmeticFenceSupported()11 ; |
2811 | 17 | QualType ArgType = E->getArg(0)->getType(); |
2812 | 17 | if (ArgType->isComplexType()) { |
2813 | 3 | if (isArithmeticFenceEnabled) { |
2814 | 2 | QualType ElementType = ArgType->castAs<ComplexType>()->getElementType(); |
2815 | 2 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2816 | 2 | Value *Real = Builder.CreateArithmeticFence(ComplexVal.first, |
2817 | 2 | ConvertType(ElementType)); |
2818 | 2 | Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second, |
2819 | 2 | ConvertType(ElementType)); |
2820 | 2 | return RValue::getComplex(std::make_pair(Real, Imag)); |
2821 | 2 | } |
2822 | 1 | ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
2823 | 1 | Value *Real = ComplexVal.first; |
2824 | 1 | Value *Imag = ComplexVal.second; |
2825 | 1 | return RValue::getComplex(std::make_pair(Real, Imag)); |
2826 | 3 | } |
2827 | 14 | Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
2828 | 14 | if (isArithmeticFenceEnabled) |
2829 | 9 | return RValue::get( |
2830 | 9 | Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType))); |
2831 | 5 | return RValue::get(ArgValue); |
2832 | 14 | } |
2833 | 11 | case Builtin::BI__builtin_bswap16: |
2834 | 27 | case Builtin::BI__builtin_bswap32: |
2835 | 41 | case Builtin::BI__builtin_bswap64: |
2836 | 42 | case Builtin::BI_byteswap_ushort: |
2837 | 43 | case Builtin::BI_byteswap_ulong: |
2838 | 44 | case Builtin::BI_byteswap_uint64: { |
2839 | 44 | return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); |
2840 | 43 | } |
2841 | 3 | case Builtin::BI__builtin_bitreverse8: |
2842 | 6 | case Builtin::BI__builtin_bitreverse16: |
2843 | 9 | case Builtin::BI__builtin_bitreverse32: |
2844 | 12 | case Builtin::BI__builtin_bitreverse64: { |
2845 | 12 | return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); |
2846 | 9 | } |
2847 | 14 | case Builtin::BI__builtin_rotateleft8: |
2848 | 28 | case Builtin::BI__builtin_rotateleft16: |
2849 | 42 | case Builtin::BI__builtin_rotateleft32: |
2850 | 50 | case Builtin::BI__builtin_rotateleft64: |
2851 | 56 | case Builtin::BI_rotl8: // Microsoft variants of rotate left |
2852 | 62 | case Builtin::BI_rotl16: |
2853 | 72 | case Builtin::BI_rotl: |
2854 | 82 | case Builtin::BI_lrotl: |
2855 | 88 | case Builtin::BI_rotl64: |
2856 | 88 | return emitRotate(E, false); |
2857 | | |
2858 | 14 | case Builtin::BI__builtin_rotateright8: |
2859 | 28 | case Builtin::BI__builtin_rotateright16: |
2860 | 42 | case Builtin::BI__builtin_rotateright32: |
2861 | 50 | case Builtin::BI__builtin_rotateright64: |
2862 | 56 | case Builtin::BI_rotr8: // Microsoft variants of rotate right |
2863 | 62 | case Builtin::BI_rotr16: |
2864 | 72 | case Builtin::BI_rotr: |
2865 | 82 | case Builtin::BI_lrotr: |
2866 | 88 | case Builtin::BI_rotr64: |
2867 | 88 | return emitRotate(E, true); |
2868 | | |
2869 | 24 | case Builtin::BI__builtin_constant_p: { |
2870 | 24 | llvm::Type *ResultType = ConvertType(E->getType()); |
2871 | | |
2872 | 24 | const Expr *Arg = E->getArg(0); |
2873 | 24 | QualType ArgType = Arg->getType(); |
2874 | | // FIXME: The allowance for Obj-C pointers and block pointers is historical |
2875 | | // and likely a mistake. |
2876 | 24 | if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType()17 && |
2877 | 24 | !ArgType->isObjCObjectPointerType()17 && !ArgType->isBlockPointerType()13 ) |
2878 | | // Per the GCC documentation, only numeric constants are recognized after |
2879 | | // inlining. |
2880 | 13 | return RValue::get(ConstantInt::get(ResultType, 0)); |
2881 | | |
2882 | 11 | if (Arg->HasSideEffects(getContext())) |
2883 | | // The argument is unevaluated, so be conservative if it might have |
2884 | | // side-effects. |
2885 | 0 | return RValue::get(ConstantInt::get(ResultType, 0)); |
2886 | | |
2887 | 11 | Value *ArgValue = EmitScalarExpr(Arg); |
2888 | 11 | if (ArgType->isObjCObjectPointerType()) { |
2889 | | // Convert Objective-C objects to id because we cannot distinguish between |
2890 | | // LLVM types for Obj-C classes as they are opaque. |
2891 | 4 | ArgType = CGM.getContext().getObjCIdType(); |
2892 | 4 | ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); |
2893 | 4 | } |
2894 | 11 | Function *F = |
2895 | 11 | CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); |
2896 | 11 | Value *Result = Builder.CreateCall(F, ArgValue); |
2897 | 11 | if (Result->getType() != ResultType) |
2898 | 11 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); |
2899 | 11 | return RValue::get(Result); |
2900 | 11 | } |
2901 | 98 | case Builtin::BI__builtin_dynamic_object_size: |
2902 | 221 | case Builtin::BI__builtin_object_size: { |
2903 | 221 | unsigned Type = |
2904 | 221 | E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
2905 | 221 | auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); |
2906 | | |
2907 | | // We pass this builtin onto the optimizer so that it can figure out the |
2908 | | // object size in more complex cases. |
2909 | 221 | bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; |
2910 | 221 | return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, |
2911 | 221 | /*EmittedE=*/nullptr, IsDynamic)); |
2912 | 98 | } |
2913 | 24 | case Builtin::BI__builtin_prefetch: { |
2914 | 24 | Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); |
2915 | | // FIXME: Technically these constants should of type 'int', yes? |
2916 | 24 | RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1))21 : |
2917 | 24 | llvm::ConstantInt::get(Int32Ty, 0)3 ; |
2918 | 24 | Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2))18 : |
2919 | 24 | llvm::ConstantInt::get(Int32Ty, 3)6 ; |
2920 | 24 | Value *Data = llvm::ConstantInt::get(Int32Ty, 1); |
2921 | 24 | Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); |
2922 | 24 | return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); |
2923 | 98 | } |
2924 | 2 | case Builtin::BI__builtin_readcyclecounter: { |
2925 | 2 | Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); |
2926 | 2 | return RValue::get(Builder.CreateCall(F)); |
2927 | 98 | } |
2928 | 1 | case Builtin::BI__builtin___clear_cache: { |
2929 | 1 | Value *Begin = EmitScalarExpr(E->getArg(0)); |
2930 | 1 | Value *End = EmitScalarExpr(E->getArg(1)); |
2931 | 1 | Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); |
2932 | 1 | return RValue::get(Builder.CreateCall(F, {Begin, End})); |
2933 | 98 | } |
2934 | 31 | case Builtin::BI__builtin_trap: |
2935 | 31 | return RValue::get(EmitTrapCall(Intrinsic::trap)); |
2936 | 0 | case Builtin::BI__debugbreak: |
2937 | 0 | return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); |
2938 | 30 | case Builtin::BI__builtin_unreachable: { |
2939 | 30 | EmitUnreachable(E->getExprLoc()); |
2940 | | |
2941 | | // We do need to preserve an insertion point. |
2942 | 30 | EmitBlock(createBasicBlock("unreachable.cont")); |
2943 | | |
2944 | 30 | return RValue::get(nullptr); |
2945 | 98 | } |
2946 | | |
2947 | 8 | case Builtin::BI__builtin_powi: |
2948 | 16 | case Builtin::BI__builtin_powif: |
2949 | 24 | case Builtin::BI__builtin_powil: { |
2950 | 24 | llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
2951 | 24 | llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
2952 | | |
2953 | 24 | if (Builder.getIsFPConstrained()) { |
2954 | 3 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
2955 | 3 | Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi, |
2956 | 3 | Src0->getType()); |
2957 | 3 | return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 })); |
2958 | 3 | } |
2959 | | |
2960 | 21 | Function *F = CGM.getIntrinsic(Intrinsic::powi, |
2961 | 21 | { Src0->getType(), Src1->getType() }); |
2962 | 21 | return RValue::get(Builder.CreateCall(F, { Src0, Src1 })); |
2963 | 24 | } |
2964 | 30 | case Builtin::BI__builtin_isgreater: |
2965 | 56 | case Builtin::BI__builtin_isgreaterequal: |
2966 | 83 | case Builtin::BI__builtin_isless: |
2967 | 109 | case Builtin::BI__builtin_islessequal: |
2968 | 135 | case Builtin::BI__builtin_islessgreater: |
2969 | 186 | case Builtin::BI__builtin_isunordered: { |
2970 | | // Ordered comparisons: we know the arguments to these are matching scalar |
2971 | | // floating point values. |
2972 | 186 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
2973 | | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
2974 | 186 | Value *LHS = EmitScalarExpr(E->getArg(0)); |
2975 | 186 | Value *RHS = EmitScalarExpr(E->getArg(1)); |
2976 | | |
2977 | 186 | switch (BuiltinID) { |
2978 | 0 | default: llvm_unreachable("Unknown ordered comparison"); |
2979 | 30 | case Builtin::BI__builtin_isgreater: |
2980 | 30 | LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); |
2981 | 30 | break; |
2982 | 26 | case Builtin::BI__builtin_isgreaterequal: |
2983 | 26 | LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); |
2984 | 26 | break; |
2985 | 27 | case Builtin::BI__builtin_isless: |
2986 | 27 | LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); |
2987 | 27 | break; |
2988 | 26 | case Builtin::BI__builtin_islessequal: |
2989 | 26 | LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); |
2990 | 26 | break; |
2991 | 26 | case Builtin::BI__builtin_islessgreater: |
2992 | 26 | LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); |
2993 | 26 | break; |
2994 | 51 | case Builtin::BI__builtin_isunordered: |
2995 | 51 | LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); |
2996 | 51 | break; |
2997 | 186 | } |
2998 | | // ZExt bool to int type. |
2999 | 186 | return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); |
3000 | 186 | } |
3001 | 5 | case Builtin::BI__builtin_isnan: { |
3002 | 5 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3003 | 5 | Value *V = EmitScalarExpr(E->getArg(0)); |
3004 | 5 | llvm::Type *Ty = V->getType(); |
3005 | 5 | const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); |
3006 | 5 | if (!Builder.getIsFPConstrained() || |
3007 | 5 | Builder.getDefaultConstrainedExcept() == fp::ebIgnore || |
3008 | 5 | !Ty->isIEEE()) { |
3009 | 0 | V = Builder.CreateFCmpUNO(V, V, "cmp"); |
3010 | 0 | return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
3011 | 0 | } |
3012 | | |
3013 | 5 | if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) |
3014 | 0 | return RValue::get(Result); |
3015 | | |
3016 | | // NaN has all exp bits set and a non zero significand. Therefore: |
3017 | | // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0) |
3018 | 5 | unsigned bitsize = Ty->getScalarSizeInBits(); |
3019 | 5 | llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); |
3020 | 5 | Value *IntV = Builder.CreateBitCast(V, IntTy); |
3021 | 5 | APInt AndMask = APInt::getSignedMaxValue(bitsize); |
3022 | 5 | Value *AbsV = |
3023 | 5 | Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask)); |
3024 | 5 | APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); |
3025 | 5 | Value *Sub = |
3026 | 5 | Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV); |
3027 | | // V = sign bit (Sub) <=> V = (Sub < 0) |
3028 | 5 | V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1)); |
3029 | 5 | if (bitsize > 32) |
3030 | 3 | V = Builder.CreateTrunc(V, ConvertType(E->getType())); |
3031 | 5 | return RValue::get(V); |
3032 | 5 | } |
3033 | | |
3034 | 48 | case Builtin::BI__builtin_elementwise_abs: { |
3035 | 48 | Value *Result; |
3036 | 48 | QualType QT = E->getArg(0)->getType(); |
3037 | | |
3038 | 48 | if (auto *VecTy = QT->getAs<VectorType>()) |
3039 | 41 | QT = VecTy->getElementType(); |
3040 | 48 | if (QT->isIntegerType()) |
3041 | 45 | Result = Builder.CreateBinaryIntrinsic( |
3042 | 45 | llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)), |
3043 | 45 | Builder.getFalse(), nullptr, "elt.abs"); |
3044 | 3 | else |
3045 | 3 | Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs"); |
3046 | | |
3047 | 48 | return RValue::get(Result); |
3048 | 5 | } |
3049 | | |
3050 | 3 | case Builtin::BI__builtin_elementwise_ceil: |
3051 | 3 | return RValue::get( |
3052 | 3 | emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil")); |
3053 | 3 | case Builtin::BI__builtin_elementwise_floor: |
3054 | 3 | return RValue::get( |
3055 | 3 | emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor")); |
3056 | 3 | case Builtin::BI__builtin_elementwise_roundeven: |
3057 | 3 | return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven, |
3058 | 3 | "elt.roundeven")); |
3059 | 3 | case Builtin::BI__builtin_elementwise_trunc: |
3060 | 3 | return RValue::get( |
3061 | 3 | emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc")); |
3062 | | |
3063 | 69 | case Builtin::BI__builtin_elementwise_add_sat: |
3064 | 138 | case Builtin::BI__builtin_elementwise_sub_sat: { |
3065 | 138 | Value *Op0 = EmitScalarExpr(E->getArg(0)); |
3066 | 138 | Value *Op1 = EmitScalarExpr(E->getArg(1)); |
3067 | 138 | Value *Result; |
3068 | 138 | assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected"); |
3069 | 0 | QualType Ty = E->getArg(0)->getType(); |
3070 | 138 | if (auto *VecTy = Ty->getAs<VectorType>()) |
3071 | 124 | Ty = VecTy->getElementType(); |
3072 | 138 | bool IsSigned = Ty->isSignedIntegerType(); |
3073 | 138 | unsigned Opc; |
3074 | 138 | if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat) |
3075 | 69 | Opc = IsSigned ? llvm::Intrinsic::sadd_sat36 : llvm::Intrinsic::uadd_sat33 ; |
3076 | 69 | else |
3077 | 69 | Opc = IsSigned ? llvm::Intrinsic::ssub_sat36 : llvm::Intrinsic::usub_sat33 ; |
3078 | 138 | Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat"); |
3079 | 138 | return RValue::get(Result); |
3080 | 69 | } |
3081 | | |
3082 | 105 | case Builtin::BI__builtin_elementwise_max: { |
3083 | 105 | Value *Op0 = EmitScalarExpr(E->getArg(0)); |
3084 | 105 | Value *Op1 = EmitScalarExpr(E->getArg(1)); |
3085 | 105 | Value *Result; |
3086 | 105 | if (Op0->getType()->isIntOrIntVectorTy()) { |
3087 | 99 | QualType Ty = E->getArg(0)->getType(); |
3088 | 99 | if (auto *VecTy = Ty->getAs<VectorType>()) |
3089 | 92 | Ty = VecTy->getElementType(); |
3090 | 99 | Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType() |
3091 | 99 | ? llvm::Intrinsic::smax51 |
3092 | 99 | : llvm::Intrinsic::umax48 , |
3093 | 99 | Op0, Op1, nullptr, "elt.max"); |
3094 | 99 | } else |
3095 | 6 | Result = Builder.CreateMaxNum(Op0, Op1, "elt.max"); |
3096 | 105 | return RValue::get(Result); |
3097 | 69 | } |
3098 | 105 | case Builtin::BI__builtin_elementwise_min: { |
3099 | 105 | Value *Op0 = EmitScalarExpr(E->getArg(0)); |
3100 | 105 | Value *Op1 = EmitScalarExpr(E->getArg(1)); |
3101 | 105 | Value *Result; |
3102 | 105 | if (Op0->getType()->isIntOrIntVectorTy()) { |
3103 | 99 | QualType Ty = E->getArg(0)->getType(); |
3104 | 99 | if (auto *VecTy = Ty->getAs<VectorType>()) |
3105 | 92 | Ty = VecTy->getElementType(); |
3106 | 99 | Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType() |
3107 | 99 | ? llvm::Intrinsic::smin51 |
3108 | 99 | : llvm::Intrinsic::umin48 , |
3109 | 99 | Op0, Op1, nullptr, "elt.min"); |
3110 | 99 | } else |
3111 | 6 | Result = Builder.CreateMinNum(Op0, Op1, "elt.min"); |
3112 | 105 | return RValue::get(Result); |
3113 | 69 | } |
3114 | | |
3115 | 13 | case Builtin::BI__builtin_reduce_max: { |
3116 | 13 | auto GetIntrinsicID = [](QualType QT) { |
3117 | 13 | if (auto *VecTy = QT->getAs<VectorType>()) |
3118 | 13 | QT = VecTy->getElementType(); |
3119 | 13 | if (QT->isSignedIntegerType()) |
3120 | 6 | return llvm::Intrinsic::vector_reduce_smax; |
3121 | 7 | if (QT->isUnsignedIntegerType()) |
3122 | 5 | return llvm::Intrinsic::vector_reduce_umax; |
3123 | 2 | assert(QT->isFloatingType() && "must have a float here"); |
3124 | 0 | return llvm::Intrinsic::vector_reduce_fmax; |
3125 | 7 | }; |
3126 | 13 | return RValue::get(emitUnaryBuiltin( |
3127 | 13 | *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min")); |
3128 | 69 | } |
3129 | | |
3130 | 13 | case Builtin::BI__builtin_reduce_min: { |
3131 | 13 | auto GetIntrinsicID = [](QualType QT) { |
3132 | 13 | if (auto *VecTy = QT->getAs<VectorType>()) |
3133 | 13 | QT = VecTy->getElementType(); |
3134 | 13 | if (QT->isSignedIntegerType()) |
3135 | 6 | return llvm::Intrinsic::vector_reduce_smin; |
3136 | 7 | if (QT->isUnsignedIntegerType()) |
3137 | 5 | return llvm::Intrinsic::vector_reduce_umin; |
3138 | 2 | assert(QT->isFloatingType() && "must have a float here"); |
3139 | 0 | return llvm::Intrinsic::vector_reduce_fmin; |
3140 | 7 | }; |
3141 | | |
3142 | 13 | return RValue::get(emitUnaryBuiltin( |
3143 | 13 | *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min")); |
3144 | 69 | } |
3145 | | |
3146 | 8 | case Builtin::BI__builtin_reduce_add: |
3147 | 8 | return RValue::get(emitUnaryBuiltin( |
3148 | 8 | *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add")); |
3149 | 8 | case Builtin::BI__builtin_reduce_mul: |
3150 | 8 | return RValue::get(emitUnaryBuiltin( |
3151 | 8 | *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul")); |
3152 | 2 | case Builtin::BI__builtin_reduce_xor: |
3153 | 2 | return RValue::get(emitUnaryBuiltin( |
3154 | 2 | *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor")); |
3155 | 6 | case Builtin::BI__builtin_reduce_or: |
3156 | 6 | return RValue::get(emitUnaryBuiltin( |
3157 | 6 | *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or")); |
3158 | 6 | case Builtin::BI__builtin_reduce_and: |
3159 | 6 | return RValue::get(emitUnaryBuiltin( |
3160 | 6 | *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and")); |
3161 | | |
3162 | 31 | case Builtin::BI__builtin_matrix_transpose: { |
3163 | 31 | auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>(); |
3164 | 31 | Value *MatValue = EmitScalarExpr(E->getArg(0)); |
3165 | 31 | MatrixBuilder MB(Builder); |
3166 | 31 | Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(), |
3167 | 31 | MatrixTy->getNumColumns()); |
3168 | 31 | return RValue::get(Result); |
3169 | 69 | } |
3170 | | |
3171 | 36 | case Builtin::BI__builtin_matrix_column_major_load: { |
3172 | 36 | MatrixBuilder MB(Builder); |
3173 | | // Emit everything that isn't dependent on the first parameter type |
3174 | 36 | Value *Stride = EmitScalarExpr(E->getArg(3)); |
3175 | 36 | const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>(); |
3176 | 36 | auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>(); |
3177 | 36 | assert(PtrTy && "arg0 must be of pointer type"); |
3178 | 0 | bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
3179 | | |
3180 | 36 | Address Src = EmitPointerWithAlignment(E->getArg(0)); |
3181 | 36 | EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(), |
3182 | 36 | E->getArg(0)->getExprLoc(), FD, 0); |
3183 | 36 | Value *Result = MB.CreateColumnMajorLoad( |
3184 | 36 | Src.getElementType(), Src.getPointer(), |
3185 | 36 | Align(Src.getAlignment().getQuantity()), Stride, IsVolatile, |
3186 | 36 | ResultTy->getNumRows(), ResultTy->getNumColumns(), |
3187 | 36 | "matrix"); |
3188 | 36 | return RValue::get(Result); |
3189 | 69 | } |
3190 | | |
3191 | 26 | case Builtin::BI__builtin_matrix_column_major_store: { |
3192 | 26 | MatrixBuilder MB(Builder); |
3193 | 26 | Value *Matrix = EmitScalarExpr(E->getArg(0)); |
3194 | 26 | Address Dst = EmitPointerWithAlignment(E->getArg(1)); |
3195 | 26 | Value *Stride = EmitScalarExpr(E->getArg(2)); |
3196 | | |
3197 | 26 | const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); |
3198 | 26 | auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>(); |
3199 | 26 | assert(PtrTy && "arg1 must be of pointer type"); |
3200 | 0 | bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
3201 | | |
3202 | 26 | EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(), |
3203 | 26 | E->getArg(1)->getExprLoc(), FD, 0); |
3204 | 26 | Value *Result = MB.CreateColumnMajorStore( |
3205 | 26 | Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()), |
3206 | 26 | Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns()); |
3207 | 26 | return RValue::get(Result); |
3208 | 69 | } |
3209 | | |
3210 | 2 | case Builtin::BIfinite: |
3211 | 2 | case Builtin::BI__finite: |
3212 | 2 | case Builtin::BIfinitef: |
3213 | 2 | case Builtin::BI__finitef: |
3214 | 2 | case Builtin::BIfinitel: |
3215 | 2 | case Builtin::BI__finitel: |
3216 | 19 | case Builtin::BI__builtin_isinf: |
3217 | 28 | case Builtin::BI__builtin_isfinite: { |
3218 | | // isinf(x) --> fabs(x) == infinity |
3219 | | // isfinite(x) --> fabs(x) != infinity |
3220 | | // x != NaN via the ordered compare in either case. |
3221 | 28 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3222 | 28 | Value *V = EmitScalarExpr(E->getArg(0)); |
3223 | 28 | llvm::Type *Ty = V->getType(); |
3224 | 28 | if (!Builder.getIsFPConstrained() || |
3225 | 28 | Builder.getDefaultConstrainedExcept() == fp::ebIgnore12 || |
3226 | 28 | !Ty->isIEEE()12 ) { |
3227 | 16 | Value *Fabs = EmitFAbs(*this, V); |
3228 | 16 | Constant *Infinity = ConstantFP::getInfinity(V->getType()); |
3229 | 16 | CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) |
3230 | 16 | ? CmpInst::FCMP_OEQ10 |
3231 | 16 | : CmpInst::FCMP_ONE6 ; |
3232 | 16 | Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); |
3233 | 16 | return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); |
3234 | 16 | } |
3235 | | |
3236 | 12 | if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) |
3237 | 0 | return RValue::get(Result); |
3238 | | |
3239 | | // Inf values have all exp bits set and a zero significand. Therefore: |
3240 | | // isinf(V) == ((V << 1) == ((exp mask) << 1)) |
3241 | | // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison |
3242 | 12 | unsigned bitsize = Ty->getScalarSizeInBits(); |
3243 | 12 | llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); |
3244 | 12 | Value *IntV = Builder.CreateBitCast(V, IntTy); |
3245 | 12 | Value *Shl1 = Builder.CreateShl(IntV, 1); |
3246 | 12 | const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); |
3247 | 12 | APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); |
3248 | 12 | Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1)); |
3249 | 12 | if (BuiltinID == Builtin::BI__builtin_isinf) |
3250 | 7 | V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1); |
3251 | 5 | else |
3252 | 5 | V = Builder.CreateICmpULT(Shl1, ExpMaskShl1); |
3253 | 12 | return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
3254 | 12 | } |
3255 | | |
3256 | 9 | case Builtin::BI__builtin_isinf_sign: { |
3257 | | // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 |
3258 | 9 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3259 | | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
3260 | 9 | Value *Arg = EmitScalarExpr(E->getArg(0)); |
3261 | 9 | Value *AbsArg = EmitFAbs(*this, Arg); |
3262 | 9 | Value *IsInf = Builder.CreateFCmpOEQ( |
3263 | 9 | AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); |
3264 | 9 | Value *IsNeg = EmitSignBit(*this, Arg); |
3265 | | |
3266 | 9 | llvm::Type *IntTy = ConvertType(E->getType()); |
3267 | 9 | Value *Zero = Constant::getNullValue(IntTy); |
3268 | 9 | Value *One = ConstantInt::get(IntTy, 1); |
3269 | 9 | Value *NegativeOne = ConstantInt::get(IntTy, -1); |
3270 | 9 | Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); |
3271 | 9 | Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); |
3272 | 9 | return RValue::get(Result); |
3273 | 12 | } |
3274 | | |
3275 | 5 | case Builtin::BI__builtin_isnormal: { |
3276 | | // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min |
3277 | 5 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3278 | | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
3279 | 5 | Value *V = EmitScalarExpr(E->getArg(0)); |
3280 | 5 | Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); |
3281 | | |
3282 | 5 | Value *Abs = EmitFAbs(*this, V); |
3283 | 5 | Value *IsLessThanInf = |
3284 | 5 | Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); |
3285 | 5 | APFloat Smallest = APFloat::getSmallestNormalized( |
3286 | 5 | getContext().getFloatTypeSemantics(E->getArg(0)->getType())); |
3287 | 5 | Value *IsNormal = |
3288 | 5 | Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), |
3289 | 5 | "isnormal"); |
3290 | 5 | V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); |
3291 | 5 | V = Builder.CreateAnd(V, IsNormal, "and"); |
3292 | 5 | return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
3293 | 12 | } |
3294 | | |
3295 | 2 | case Builtin::BI__builtin_flt_rounds: { |
3296 | 2 | Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); |
3297 | | |
3298 | 2 | llvm::Type *ResultType = ConvertType(E->getType()); |
3299 | 2 | Value *Result = Builder.CreateCall(F); |
3300 | 2 | if (Result->getType() != ResultType) |
3301 | 0 | Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
3302 | 0 | "cast"); |
3303 | 2 | return RValue::get(Result); |
3304 | 12 | } |
3305 | | |
3306 | 1 | case Builtin::BI__builtin_fpclassify: { |
3307 | 1 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
3308 | | // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
3309 | 1 | Value *V = EmitScalarExpr(E->getArg(5)); |
3310 | 1 | llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); |
3311 | | |
3312 | | // Create Result |
3313 | 1 | BasicBlock *Begin = Builder.GetInsertBlock(); |
3314 | 1 | BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); |
3315 | 1 | Builder.SetInsertPoint(End); |
3316 | 1 | PHINode *Result = |
3317 | 1 | Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, |
3318 | 1 | "fpclassify_result"); |
3319 | | |
3320 | | // if (V==0) return FP_ZERO |
3321 | 1 | Builder.SetInsertPoint(Begin); |
3322 | 1 | Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), |
3323 | 1 | "iszero"); |
3324 | 1 | Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); |
3325 | 1 | BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); |
3326 | 1 | Builder.CreateCondBr(IsZero, End, NotZero); |
3327 | 1 | Result->addIncoming(ZeroLiteral, Begin); |
3328 | | |
3329 | | // if (V != V) return FP_NAN |
3330 | 1 | Builder.SetInsertPoint(NotZero); |
3331 | 1 | Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); |
3332 | 1 | Value *NanLiteral = EmitScalarExpr(E->getArg(0)); |
3333 | 1 | BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); |
3334 | 1 | Builder.CreateCondBr(IsNan, End, NotNan); |
3335 | 1 | Result->addIncoming(NanLiteral, NotZero); |
3336 | | |
3337 | | // if (fabs(V) == infinity) return FP_INFINITY |
3338 | 1 | Builder.SetInsertPoint(NotNan); |
3339 | 1 | Value *VAbs = EmitFAbs(*this, V); |
3340 | 1 | Value *IsInf = |
3341 | 1 | Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), |
3342 | 1 | "isinf"); |
3343 | 1 | Value *InfLiteral = EmitScalarExpr(E->getArg(1)); |
3344 | 1 | BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); |
3345 | 1 | Builder.CreateCondBr(IsInf, End, NotInf); |
3346 | 1 | Result->addIncoming(InfLiteral, NotNan); |
3347 | | |
3348 | | // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL |
3349 | 1 | Builder.SetInsertPoint(NotInf); |
3350 | 1 | APFloat Smallest = APFloat::getSmallestNormalized( |
3351 | 1 | getContext().getFloatTypeSemantics(E->getArg(5)->getType())); |
3352 | 1 | Value *IsNormal = |
3353 | 1 | Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), |
3354 | 1 | "isnormal"); |
3355 | 1 | Value *NormalResult = |
3356 | 1 | Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), |
3357 | 1 | EmitScalarExpr(E->getArg(3))); |
3358 | 1 | Builder.CreateBr(End); |
3359 | 1 | Result->addIncoming(NormalResult, NotInf); |
3360 | | |
3361 | | // return Result |
3362 | 1 | Builder.SetInsertPoint(End); |
3363 | 1 | return RValue::get(Result); |
3364 | 12 | } |
3365 | | |
3366 | 5 | case Builtin::BIalloca: |
3367 | 6 | case Builtin::BI_alloca: |
3368 | 9 | case Builtin::BI__builtin_alloca_uninitialized: |
3369 | 26 | case Builtin::BI__builtin_alloca: { |
3370 | 26 | Value *Size = EmitScalarExpr(E->getArg(0)); |
3371 | 26 | const TargetInfo &TI = getContext().getTargetInfo(); |
3372 | | // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. |
3373 | 26 | const Align SuitableAlignmentInBytes = |
3374 | 26 | CGM.getContext() |
3375 | 26 | .toCharUnitsFromBits(TI.getSuitableAlign()) |
3376 | 26 | .getAsAlign(); |
3377 | 26 | AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
3378 | 26 | AI->setAlignment(SuitableAlignmentInBytes); |
3379 | 26 | if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized) |
3380 | 23 | initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); |
3381 | 26 | return RValue::get(AI); |
3382 | 9 | } |
3383 | | |
3384 | 3 | case Builtin::BI__builtin_alloca_with_align_uninitialized: |
3385 | 7 | case Builtin::BI__builtin_alloca_with_align: { |
3386 | 7 | Value *Size = EmitScalarExpr(E->getArg(0)); |
3387 | 7 | Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); |
3388 | 7 | auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); |
3389 | 7 | unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); |
3390 | 7 | const Align AlignmentInBytes = |
3391 | 7 | CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign(); |
3392 | 7 | AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
3393 | 7 | AI->setAlignment(AlignmentInBytes); |
3394 | 7 | if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized) |
3395 | 4 | initializeAlloca(*this, AI, Size, AlignmentInBytes); |
3396 | 7 | return RValue::get(AI); |
3397 | 3 | } |
3398 | | |
3399 | 1 | case Builtin::BIbzero: |
3400 | 6 | case Builtin::BI__builtin_bzero: { |
3401 | 6 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3402 | 6 | Value *SizeVal = EmitScalarExpr(E->getArg(1)); |
3403 | 6 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3404 | 6 | E->getArg(0)->getExprLoc(), FD, 0); |
3405 | 6 | Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); |
3406 | 6 | return RValue::get(nullptr); |
3407 | 1 | } |
3408 | 179 | case Builtin::BImemcpy: |
3409 | 193 | case Builtin::BI__builtin_memcpy: |
3410 | 194 | case Builtin::BImempcpy: |
3411 | 194 | case Builtin::BI__builtin_mempcpy: { |
3412 | 194 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3413 | 194 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3414 | 194 | Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
3415 | 194 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3416 | 194 | E->getArg(0)->getExprLoc(), FD, 0); |
3417 | 194 | EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
3418 | 194 | E->getArg(1)->getExprLoc(), FD, 1); |
3419 | 194 | Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
3420 | 194 | if (BuiltinID == Builtin::BImempcpy || |
3421 | 194 | BuiltinID == Builtin::BI__builtin_mempcpy193 ) |
3422 | 1 | return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(), |
3423 | 1 | Dest.getPointer(), SizeVal)); |
3424 | 193 | else |
3425 | 193 | return RValue::get(Dest.getPointer()); |
3426 | 194 | } |
3427 | | |
3428 | 4 | case Builtin::BI__builtin_memcpy_inline: { |
3429 | 4 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3430 | 4 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3431 | 4 | uint64_t Size = |
3432 | 4 | E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
3433 | 4 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3434 | 4 | E->getArg(0)->getExprLoc(), FD, 0); |
3435 | 4 | EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
3436 | 4 | E->getArg(1)->getExprLoc(), FD, 1); |
3437 | 4 | Builder.CreateMemCpyInline(Dest, Src, Size); |
3438 | 4 | return RValue::get(nullptr); |
3439 | 194 | } |
3440 | | |
3441 | 67 | case Builtin::BI__builtin_char_memchr: |
3442 | 67 | BuiltinID = Builtin::BI__builtin_memchr; |
3443 | 67 | break; |
3444 | | |
3445 | 4 | case Builtin::BI__builtin___memcpy_chk: { |
3446 | | // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. |
3447 | 4 | Expr::EvalResult SizeResult, DstSizeResult; |
3448 | 4 | if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
3449 | 4 | !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
3450 | 2 | break; |
3451 | 2 | llvm::APSInt Size = SizeResult.Val.getInt(); |
3452 | 2 | llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
3453 | 2 | if (Size.ugt(DstSize)) |
3454 | 0 | break; |
3455 | 2 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3456 | 2 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3457 | 2 | Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
3458 | 2 | Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
3459 | 2 | return RValue::get(Dest.getPointer()); |
3460 | 2 | } |
3461 | | |
3462 | 1 | case Builtin::BI__builtin_objc_memmove_collectable: { |
3463 | 1 | Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); |
3464 | 1 | Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); |
3465 | 1 | Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
3466 | 1 | CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, |
3467 | 1 | DestAddr, SrcAddr, SizeVal); |
3468 | 1 | return RValue::get(DestAddr.getPointer()); |
3469 | 2 | } |
3470 | | |
3471 | 3 | case Builtin::BI__builtin___memmove_chk: { |
3472 | | // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. |
3473 | 3 | Expr::EvalResult SizeResult, DstSizeResult; |
3474 | 3 | if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
3475 | 3 | !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
3476 | 2 | break; |
3477 | 1 | llvm::APSInt Size = SizeResult.Val.getInt(); |
3478 | 1 | llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
3479 | 1 | if (Size.ugt(DstSize)) |
3480 | 0 | break; |
3481 | 1 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3482 | 1 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3483 | 1 | Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
3484 | 1 | Builder.CreateMemMove(Dest, Src, SizeVal, false); |
3485 | 1 | return RValue::get(Dest.getPointer()); |
3486 | 1 | } |
3487 | | |
3488 | 67 | case Builtin::BImemmove: |
3489 | 127 | case Builtin::BI__builtin_memmove: { |
3490 | 127 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3491 | 127 | Address Src = EmitPointerWithAlignment(E->getArg(1)); |
3492 | 127 | Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
3493 | 127 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3494 | 127 | E->getArg(0)->getExprLoc(), FD, 0); |
3495 | 127 | EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
3496 | 127 | E->getArg(1)->getExprLoc(), FD, 1); |
3497 | 127 | Builder.CreateMemMove(Dest, Src, SizeVal, false); |
3498 | 127 | return RValue::get(Dest.getPointer()); |
3499 | 67 | } |
3500 | 42 | case Builtin::BImemset: |
3501 | 50 | case Builtin::BI__builtin_memset: { |
3502 | 50 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3503 | 50 | Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
3504 | 50 | Builder.getInt8Ty()); |
3505 | 50 | Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
3506 | 50 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3507 | 50 | E->getArg(0)->getExprLoc(), FD, 0); |
3508 | 50 | Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
3509 | 50 | return RValue::get(Dest.getPointer()); |
3510 | 42 | } |
3511 | 3 | case Builtin::BI__builtin_memset_inline: { |
3512 | 3 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3513 | 3 | Value *ByteVal = |
3514 | 3 | Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty()); |
3515 | 3 | uint64_t Size = |
3516 | 3 | E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
3517 | 3 | EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
3518 | 3 | E->getArg(0)->getExprLoc(), FD, 0); |
3519 | 3 | Builder.CreateMemSetInline(Dest, ByteVal, Size); |
3520 | 3 | return RValue::get(nullptr); |
3521 | 42 | } |
3522 | 3 | case Builtin::BI__builtin___memset_chk: { |
3523 | | // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
3524 | 3 | Expr::EvalResult SizeResult, DstSizeResult; |
3525 | 3 | if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
3526 | 3 | !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
3527 | 2 | break; |
3528 | 1 | llvm::APSInt Size = SizeResult.Val.getInt(); |
3529 | 1 | llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
3530 | 1 | if (Size.ugt(DstSize)) |
3531 | 0 | break; |
3532 | 1 | Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
3533 | 1 | Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
3534 | 1 | Builder.getInt8Ty()); |
3535 | 1 | Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
3536 | 1 | Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
3537 | 1 | return RValue::get(Dest.getPointer()); |
3538 | 1 | } |
3539 | 1 | case Builtin::BI__builtin_wmemchr: { |
3540 | | // The MSVC runtime library does not provide a definition of wmemchr, so we |
3541 | | // need an inline implementation. |
3542 | 1 | if (!getTarget().getTriple().isOSMSVCRT()) |
3543 | 0 | break; |
3544 | | |
3545 | 1 | llvm::Type *WCharTy = ConvertType(getContext().WCharTy); |
3546 | 1 | Value *Str = EmitScalarExpr(E->getArg(0)); |
3547 | 1 | Value *Chr = EmitScalarExpr(E->getArg(1)); |
3548 | 1 | Value *Size = EmitScalarExpr(E->getArg(2)); |
3549 | | |
3550 | 1 | BasicBlock *Entry = Builder.GetInsertBlock(); |
3551 | 1 | BasicBlock *CmpEq = createBasicBlock("wmemchr.eq"); |
3552 | 1 | BasicBlock *Next = createBasicBlock("wmemchr.next"); |
3553 | 1 | BasicBlock *Exit = createBasicBlock("wmemchr.exit"); |
3554 | 1 | Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); |
3555 | 1 | Builder.CreateCondBr(SizeEq0, Exit, CmpEq); |
3556 | | |
3557 | 1 | EmitBlock(CmpEq); |
3558 | 1 | PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2); |
3559 | 1 | StrPhi->addIncoming(Str, Entry); |
3560 | 1 | PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); |
3561 | 1 | SizePhi->addIncoming(Size, Entry); |
3562 | 1 | CharUnits WCharAlign = |
3563 | 1 | getContext().getTypeAlignInChars(getContext().WCharTy); |
3564 | 1 | Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign); |
3565 | 1 | Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0); |
3566 | 1 | Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr); |
3567 | 1 | Builder.CreateCondBr(StrEqChr, Exit, Next); |
3568 | | |
3569 | 1 | EmitBlock(Next); |
3570 | 1 | Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1); |
3571 | 1 | Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); |
3572 | 1 | Value *NextSizeEq0 = |
3573 | 1 | Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); |
3574 | 1 | Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq); |
3575 | 1 | StrPhi->addIncoming(NextStr, Next); |
3576 | 1 | SizePhi->addIncoming(NextSize, Next); |
3577 | | |
3578 | 1 | EmitBlock(Exit); |
3579 | 1 | PHINode *Ret = Builder.CreatePHI(Str->getType(), 3); |
3580 | 1 | Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry); |
3581 | 1 | Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next); |
3582 | 1 | Ret->addIncoming(FoundChr, CmpEq); |
3583 | 1 | return RValue::get(Ret); |
3584 | 1 | } |
3585 | 1 | case Builtin::BI__builtin_wmemcmp: { |
3586 | | // The MSVC runtime library does not provide a definition of wmemcmp, so we |
3587 | | // need an inline implementation. |
3588 | 1 | if (!getTarget().getTriple().isOSMSVCRT()) |
3589 | 0 | break; |
3590 | | |
3591 | 1 | llvm::Type *WCharTy = ConvertType(getContext().WCharTy); |
3592 | | |
3593 | 1 | Value *Dst = EmitScalarExpr(E->getArg(0)); |
3594 | 1 | Value *Src = EmitScalarExpr(E->getArg(1)); |
3595 | 1 | Value *Size = EmitScalarExpr(E->getArg(2)); |
3596 | | |
3597 | 1 | BasicBlock *Entry = Builder.GetInsertBlock(); |
3598 | 1 | BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); |
3599 | 1 | BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); |
3600 | 1 | BasicBlock *Next = createBasicBlock("wmemcmp.next"); |
3601 | 1 | BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); |
3602 | 1 | Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); |
3603 | 1 | Builder.CreateCondBr(SizeEq0, Exit, CmpGT); |
3604 | | |
3605 | 1 | EmitBlock(CmpGT); |
3606 | 1 | PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); |
3607 | 1 | DstPhi->addIncoming(Dst, Entry); |
3608 | 1 | PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); |
3609 | 1 | SrcPhi->addIncoming(Src, Entry); |
3610 | 1 | PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); |
3611 | 1 | SizePhi->addIncoming(Size, Entry); |
3612 | 1 | CharUnits WCharAlign = |
3613 | 1 | getContext().getTypeAlignInChars(getContext().WCharTy); |
3614 | 1 | Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); |
3615 | 1 | Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); |
3616 | 1 | Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); |
3617 | 1 | Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); |
3618 | | |
3619 | 1 | EmitBlock(CmpLT); |
3620 | 1 | Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); |
3621 | 1 | Builder.CreateCondBr(DstLtSrc, Exit, Next); |
3622 | | |
3623 | 1 | EmitBlock(Next); |
3624 | 1 | Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); |
3625 | 1 | Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); |
3626 | 1 | Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); |
3627 | 1 | Value *NextSizeEq0 = |
3628 | 1 | Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); |
3629 | 1 | Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); |
3630 | 1 | DstPhi->addIncoming(NextDst, Next); |
3631 | 1 | SrcPhi->addIncoming(NextSrc, Next); |
3632 | 1 | SizePhi->addIncoming(NextSize, Next); |
3633 | | |
3634 | 1 | EmitBlock(Exit); |
3635 | 1 | PHINode *Ret = Builder.CreatePHI(IntTy, 4); |
3636 | 1 | Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); |
3637 | 1 | Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); |
3638 | 1 | Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); |
3639 | 1 | Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); |
3640 | 1 | return RValue::get(Ret); |
3641 | 1 | } |
3642 | 0 | case Builtin::BI__builtin_dwarf_cfa: { |
3643 | | // The offset in bytes from the first argument to the CFA. |
3644 | | // |
3645 | | // Why on earth is this in the frontend? Is there any reason at |
3646 | | // all that the backend can't reasonably determine this while |
3647 | | // lowering llvm.eh.dwarf.cfa()? |
3648 | | // |
3649 | | // TODO: If there's a satisfactory reason, add a target hook for |
3650 | | // this instead of hard-coding 0, which is correct for most targets. |
3651 | 0 | int32_t Offset = 0; |
3652 | |
|
3653 | 0 | Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); |
3654 | 0 | return RValue::get(Builder.CreateCall(F, |
3655 | 0 | llvm::ConstantInt::get(Int32Ty, Offset))); |
3656 | 1 | } |
3657 | 1 | case Builtin::BI__builtin_return_address: { |
3658 | 1 | Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
3659 | 1 | getContext().UnsignedIntTy); |
3660 | 1 | Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
3661 | 1 | return RValue::get(Builder.CreateCall(F, Depth)); |
3662 | 1 | } |
3663 | 4 | case Builtin::BI_ReturnAddress: { |
3664 | 4 | Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
3665 | 4 | return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); |
3666 | 1 | } |
3667 | 7 | case Builtin::BI__builtin_frame_address: { |
3668 | 7 | Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
3669 | 7 | getContext().UnsignedIntTy); |
3670 | 7 | Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); |
3671 | 7 | return RValue::get(Builder.CreateCall(F, Depth)); |
3672 | 1 | } |
3673 | 2 | case Builtin::BI__builtin_extract_return_addr: { |
3674 | 2 | Value *Address = EmitScalarExpr(E->getArg(0)); |
3675 | 2 | Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); |
3676 | 2 | return RValue::get(Result); |
3677 | 1 | } |
3678 | 0 | case Builtin::BI__builtin_frob_return_addr: { |
3679 | 0 | Value *Address = EmitScalarExpr(E->getArg(0)); |
3680 | 0 | Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); |
3681 | 0 | return RValue::get(Result); |
3682 | 1 | } |
3683 | 5 | case Builtin::BI__builtin_dwarf_sp_column: { |
3684 | 5 | llvm::IntegerType *Ty |
3685 | 5 | = cast<llvm::IntegerType>(ConvertType(E->getType())); |
3686 | 5 | int Column = getTargetHooks().getDwarfEHStackPointer(CGM); |
3687 | 5 | if (Column == -1) { |
3688 | 0 | CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); |
3689 | 0 | return RValue::get(llvm::UndefValue::get(Ty)); |
3690 | 0 | } |
3691 | 5 | return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); |
3692 | 5 | } |
3693 | 5 | case Builtin::BI__builtin_init_dwarf_reg_size_table: { |
3694 | 5 | Value *Address = EmitScalarExpr(E->getArg(0)); |
3695 | 5 | if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) |
3696 | 0 | CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); |
3697 | 5 | return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); |
3698 | 5 | } |
3699 | 0 | case Builtin::BI__builtin_eh_return: { |
3700 | 0 | Value *Int = EmitScalarExpr(E->getArg(0)); |
3701 | 0 | Value *Ptr = EmitScalarExpr(E->getArg(1)); |
3702 | |
|
3703 | 0 | llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); |
3704 | 0 | assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && |
3705 | 0 | "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); |
3706 | 0 | Function *F = |
3707 | 0 | CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 |
3708 | 0 | : Intrinsic::eh_return_i64); |
3709 | 0 | Builder.CreateCall(F, {Int, Ptr}); |
3710 | 0 | Builder.CreateUnreachable(); |
3711 | | |
3712 | | // We do need to preserve an insertion point. |
3713 | 0 | EmitBlock(createBasicBlock("builtin_eh_return.cont")); |
3714 | |
|
3715 | 0 | return RValue::get(nullptr); |
3716 | 5 | } |
3717 | 1 | case Builtin::BI__builtin_unwind_init: { |
3718 | 1 | Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); |
3719 | 1 | return RValue::get(Builder.CreateCall(F)); |
3720 | 5 | } |
3721 | 0 | case Builtin::BI__builtin_extend_pointer: { |
3722 | | // Extends a pointer to the size of an _Unwind_Word, which is |
3723 | | // uint64_t on all platforms. Generally this gets poked into a |
3724 | | // register and eventually used as an address, so if the |
3725 | | // addressing registers are wider than pointers and the platform |
3726 | | // doesn't implicitly ignore high-order bits when doing |
3727 | | // addressing, we need to make sure we zext / sext based on |
3728 | | // the platform's expectations. |
3729 | | // |
3730 | | // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html |
3731 | | |
3732 | | // Cast the pointer to intptr_t. |
3733 | 0 | Value *Ptr = EmitScalarExpr(E->getArg(0)); |
3734 | 0 | Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); |
3735 | | |
3736 | | // If that's 64 bits, we're done. |
3737 | 0 | if (IntPtrTy->getBitWidth() == 64) |
3738 | 0 | return RValue::get(Result); |
3739 | | |
3740 | | // Otherwise, ask the codegen data what to do. |
3741 | 0 | if (getTargetHooks().extendPointerWithSExt()) |
3742 | 0 | return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); |
3743 | 0 | else |
3744 | 0 | return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); |
3745 | 0 | } |
3746 | 6 | case Builtin::BI__builtin_setjmp: { |
3747 | | // Buffer is a void**. |
3748 | 6 | Address Buf = EmitPointerWithAlignment(E->getArg(0)); |
3749 | | |
3750 | | // Store the frame pointer to the setjmp buffer. |
3751 | 6 | Value *FrameAddr = Builder.CreateCall( |
3752 | 6 | CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), |
3753 | 6 | ConstantInt::get(Int32Ty, 0)); |
3754 | 6 | Builder.CreateStore(FrameAddr, Buf); |
3755 | | |
3756 | | // Store the stack pointer to the setjmp buffer. |
3757 | 6 | Value *StackAddr = |
3758 | 6 | Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); |
3759 | 6 | Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); |
3760 | 6 | Builder.CreateStore(StackAddr, StackSaveSlot); |
3761 | | |
3762 | | // Call LLVM's EH setjmp, which is lightweight. |
3763 | 6 | Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); |
3764 | 6 | Buf = Builder.CreateElementBitCast(Buf, Int8Ty); |
3765 | 6 | return RValue::get(Builder.CreateCall(F, Buf.getPointer())); |
3766 | 0 | } |
3767 | 8 | case Builtin::BI__builtin_longjmp: { |
3768 | 8 | Value *Buf = EmitScalarExpr(E->getArg(0)); |
3769 | 8 | Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
3770 | | |
3771 | | // Call LLVM's EH longjmp, which is lightweight. |
3772 | 8 | Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); |
3773 | | |
3774 | | // longjmp doesn't return; mark this as unreachable. |
3775 | 8 | Builder.CreateUnreachable(); |
3776 | | |
3777 | | // We do need to preserve an insertion point. |
3778 | 8 | EmitBlock(createBasicBlock("longjmp.cont")); |
3779 | | |
3780 | 8 | return RValue::get(nullptr); |
3781 | 0 | } |
3782 | 52 | case Builtin::BI__builtin_launder: { |
3783 | 52 | const Expr *Arg = E->getArg(0); |
3784 | 52 | QualType ArgTy = Arg->getType()->getPointeeType(); |
3785 | 52 | Value *Ptr = EmitScalarExpr(Arg); |
3786 | 52 | if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) |
3787 | 11 | Ptr = Builder.CreateLaunderInvariantGroup(Ptr); |
3788 | | |
3789 | 52 | return RValue::get(Ptr); |
3790 | 0 | } |
3791 | 0 | case Builtin::BI__sync_fetch_and_add: |
3792 | 0 | case Builtin::BI__sync_fetch_and_sub: |
3793 | 0 | case Builtin::BI__sync_fetch_and_or: |
3794 | 0 | case Builtin::BI__sync_fetch_and_and: |
3795 | 0 | case Builtin::BI__sync_fetch_and_xor: |
3796 | 0 | case Builtin::BI__sync_fetch_and_nand: |
3797 | 0 | case Builtin::BI__sync_add_and_fetch: |
3798 | 0 | case Builtin::BI__sync_sub_and_fetch: |
3799 | 0 | case Builtin::BI__sync_and_and_fetch: |
3800 | 0 | case Builtin::BI__sync_or_and_fetch: |
3801 | 0 | case Builtin::BI__sync_xor_and_fetch: |
3802 | 0 | case Builtin::BI__sync_nand_and_fetch: |
3803 | 0 | case Builtin::BI__sync_val_compare_and_swap: |
3804 | 0 | case Builtin::BI__sync_bool_compare_and_swap: |
3805 | 0 | case Builtin::BI__sync_lock_test_and_set: |
3806 | 0 | case Builtin::BI__sync_lock_release: |
3807 | 0 | case Builtin::BI__sync_swap: |
3808 | 0 | llvm_unreachable("Shouldn't make it through sema"); |
3809 | 4 | case Builtin::BI__sync_fetch_and_add_1: |
3810 | 8 | case Builtin::BI__sync_fetch_and_add_2: |
3811 | 14 | case Builtin::BI__sync_fetch_and_add_4: |
3812 | 19 | case Builtin::BI__sync_fetch_and_add_8: |
3813 | 20 | case Builtin::BI__sync_fetch_and_add_16: |
3814 | 20 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); |
3815 | 5 | case Builtin::BI__sync_fetch_and_sub_1: |
3816 | 9 | case Builtin::BI__sync_fetch_and_sub_2: |
3817 | 13 | case Builtin::BI__sync_fetch_and_sub_4: |
3818 | 18 | case Builtin::BI__sync_fetch_and_sub_8: |
3819 | 18 | case Builtin::BI__sync_fetch_and_sub_16: |
3820 | 18 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); |
3821 | 4 | case Builtin::BI__sync_fetch_and_or_1: |
3822 | 8 | case Builtin::BI__sync_fetch_and_or_2: |
3823 | 13 | case Builtin::BI__sync_fetch_and_or_4: |
3824 | 17 | case Builtin::BI__sync_fetch_and_or_8: |
3825 | 17 | case Builtin::BI__sync_fetch_and_or_16: |
3826 | 17 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); |
3827 | 4 | case Builtin::BI__sync_fetch_and_and_1: |
3828 | 8 | case Builtin::BI__sync_fetch_and_and_2: |
3829 | 13 | case Builtin::BI__sync_fetch_and_and_4: |
3830 | 17 | case Builtin::BI__sync_fetch_and_and_8: |
3831 | 17 | case Builtin::BI__sync_fetch_and_and_16: |
3832 | 17 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); |
3833 | 4 | case Builtin::BI__sync_fetch_and_xor_1: |
3834 | 8 | case Builtin::BI__sync_fetch_and_xor_2: |
3835 | 13 | case Builtin::BI__sync_fetch_and_xor_4: |
3836 | 17 | case Builtin::BI__sync_fetch_and_xor_8: |
3837 | 19 | case Builtin::BI__sync_fetch_and_xor_16: |
3838 | 19 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); |
3839 | 4 | case Builtin::BI__sync_fetch_and_nand_1: |
3840 | 8 | case Builtin::BI__sync_fetch_and_nand_2: |
3841 | 13 | case Builtin::BI__sync_fetch_and_nand_4: |
3842 | 17 | case Builtin::BI__sync_fetch_and_nand_8: |
3843 | 17 | case Builtin::BI__sync_fetch_and_nand_16: |
3844 | 17 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); |
3845 | | |
3846 | | // Clang extensions: not overloaded yet. |
3847 | 1 | case Builtin::BI__sync_fetch_and_min: |
3848 | 1 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); |
3849 | 1 | case Builtin::BI__sync_fetch_and_max: |
3850 | 1 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); |
3851 | 1 | case Builtin::BI__sync_fetch_and_umin: |
3852 | 1 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); |
3853 | 1 | case Builtin::BI__sync_fetch_and_umax: |
3854 | 1 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); |
3855 | | |
3856 | 2 | case Builtin::BI__sync_add_and_fetch_1: |
3857 | 4 | case Builtin::BI__sync_add_and_fetch_2: |
3858 | 7 | case Builtin::BI__sync_add_and_fetch_4: |
3859 | 9 | case Builtin::BI__sync_add_and_fetch_8: |
3860 | 9 | case Builtin::BI__sync_add_and_fetch_16: |
3861 | 9 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, |
3862 | 9 | llvm::Instruction::Add); |
3863 | 2 | case Builtin::BI__sync_sub_and_fetch_1: |
3864 | 4 | case Builtin::BI__sync_sub_and_fetch_2: |
3865 | 7 | case Builtin::BI__sync_sub_and_fetch_4: |
3866 | 9 | case Builtin::BI__sync_sub_and_fetch_8: |
3867 | 9 | case Builtin::BI__sync_sub_and_fetch_16: |
3868 | 9 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, |
3869 | 9 | llvm::Instruction::Sub); |
3870 | 3 | case Builtin::BI__sync_and_and_fetch_1: |
3871 | 5 | case Builtin::BI__sync_and_and_fetch_2: |
3872 | 7 | case Builtin::BI__sync_and_and_fetch_4: |
3873 | 9 | case Builtin::BI__sync_and_and_fetch_8: |
3874 | 9 | case Builtin::BI__sync_and_and_fetch_16: |
3875 | 9 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, |
3876 | 9 | llvm::Instruction::And); |
3877 | 3 | case Builtin::BI__sync_or_and_fetch_1: |
3878 | 5 | case Builtin::BI__sync_or_and_fetch_2: |
3879 | 7 | case Builtin::BI__sync_or_and_fetch_4: |
3880 | 9 | case Builtin::BI__sync_or_and_fetch_8: |
3881 | 9 | case Builtin::BI__sync_or_and_fetch_16: |
3882 | 9 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, |
3883 | 9 | llvm::Instruction::Or); |
3884 | 3 | case Builtin::BI__sync_xor_and_fetch_1: |
3885 | 5 | case Builtin::BI__sync_xor_and_fetch_2: |
3886 | 8 | case Builtin::BI__sync_xor_and_fetch_4: |
3887 | 10 | case Builtin::BI__sync_xor_and_fetch_8: |
3888 | 10 | case Builtin::BI__sync_xor_and_fetch_16: |
3889 | 10 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, |
3890 | 10 | llvm::Instruction::Xor); |
3891 | 3 | case Builtin::BI__sync_nand_and_fetch_1: |
3892 | 5 | case Builtin::BI__sync_nand_and_fetch_2: |
3893 | 7 | case Builtin::BI__sync_nand_and_fetch_4: |
3894 | 9 | case Builtin::BI__sync_nand_and_fetch_8: |
3895 | 11 | case Builtin::BI__sync_nand_and_fetch_16: |
3896 | 11 | return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, |
3897 | 11 | llvm::Instruction::And, true); |
3898 | | |
3899 | 3 | case Builtin::BI__sync_val_compare_and_swap_1: |
3900 | 5 | case Builtin::BI__sync_val_compare_and_swap_2: |
3901 | 10 | case Builtin::BI__sync_val_compare_and_swap_4: |
3902 | 13 | case Builtin::BI__sync_val_compare_and_swap_8: |
3903 | 13 | case Builtin::BI__sync_val_compare_and_swap_16: |
3904 | 13 | return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); |
3905 | | |
3906 | 2 | case Builtin::BI__sync_bool_compare_and_swap_1: |
3907 | 4 | case Builtin::BI__sync_bool_compare_and_swap_2: |
3908 | 9 | case Builtin::BI__sync_bool_compare_and_swap_4: |
3909 | 12 | case Builtin::BI__sync_bool_compare_and_swap_8: |
3910 | 12 | case Builtin::BI__sync_bool_compare_and_swap_16: |
3911 | 12 | return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); |
3912 | | |
3913 | 0 | case Builtin::BI__sync_swap_1: |
3914 | 0 | case Builtin::BI__sync_swap_2: |
3915 | 1 | case Builtin::BI__sync_swap_4: |
3916 | 1 | case Builtin::BI__sync_swap_8: |
3917 | 1 | case Builtin::BI__sync_swap_16: |
3918 | 1 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
3919 | | |
3920 | 2 | case Builtin::BI__sync_lock_test_and_set_1: |
3921 | 4 | case Builtin::BI__sync_lock_test_and_set_2: |
3922 | 8 | case Builtin::BI__sync_lock_test_and_set_4: |
3923 | 12 | case Builtin::BI__sync_lock_test_and_set_8: |
3924 | 12 | case Builtin::BI__sync_lock_test_and_set_16: |
3925 | 12 | return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
3926 | | |
3927 | 2 | case Builtin::BI__sync_lock_release_1: |
3928 | 4 | case Builtin::BI__sync_lock_release_2: |
3929 | 9 | case Builtin::BI__sync_lock_release_4: |
3930 | 11 | case Builtin::BI__sync_lock_release_8: |
3931 | 11 | case Builtin::BI__sync_lock_release_16: { |
3932 | 11 | Value *Ptr = EmitScalarExpr(E->getArg(0)); |
3933 | 11 | QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
3934 | 11 | CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); |
3935 | 11 | llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), |
3936 | 11 | StoreSize.getQuantity() * 8); |
3937 | 11 | Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
3938 | 11 | llvm::StoreInst *Store = |
3939 | 11 | Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, |
3940 | 11 | StoreSize); |
3941 | 11 | Store->setAtomic(llvm::AtomicOrdering::Release); |
3942 | 11 | return RValue::get(nullptr); |
3943 | 11 | } |
3944 | | |
3945 | 2 | case Builtin::BI__sync_synchronize: { |
3946 | | // We assume this is supposed to correspond to a C++0x-style |
3947 | | // sequentially-consistent fence (i.e. this is only usable for |
3948 | | // synchronization, not device I/O or anything like that). This intrinsic |
3949 | | // is really badly designed in the sense that in theory, there isn't |
3950 | | // any way to safely use it... but in practice, it mostly works |
3951 | | // to use it with non-atomic loads and stores to get acquire/release |
3952 | | // semantics. |
3953 | 2 | Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); |
3954 | 2 | return RValue::get(nullptr); |
3955 | 11 | } |
3956 | | |
3957 | 35 | case Builtin::BI__builtin_nontemporal_load: |
3958 | 35 | return RValue::get(EmitNontemporalLoad(*this, E)); |
3959 | 84 | case Builtin::BI__builtin_nontemporal_store: |
3960 | 84 | return RValue::get(EmitNontemporalStore(*this, E)); |
3961 | 6 | case Builtin::BI__c11_atomic_is_lock_free: |
3962 | 22 | case Builtin::BI__atomic_is_lock_free: { |
3963 | | // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the |
3964 | | // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since |
3965 | | // _Atomic(T) is always properly-aligned. |
3966 | 22 | const char *LibCallName = "__atomic_is_lock_free"; |
3967 | 22 | CallArgList Args; |
3968 | 22 | Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), |
3969 | 22 | getContext().getSizeType()); |
3970 | 22 | if (BuiltinID == Builtin::BI__atomic_is_lock_free) |
3971 | 16 | Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), |
3972 | 16 | getContext().VoidPtrTy); |
3973 | 6 | else |
3974 | 6 | Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), |
3975 | 6 | getContext().VoidPtrTy); |
3976 | 22 | const CGFunctionInfo &FuncInfo = |
3977 | 22 | CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); |
3978 | 22 | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); |
3979 | 22 | llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); |
3980 | 22 | return EmitCall(FuncInfo, CGCallee::forDirect(Func), |
3981 | 22 | ReturnValueSlot(), Args); |
3982 | 6 | } |
3983 | | |
3984 | 8 | case Builtin::BI__atomic_test_and_set: { |
3985 | | // Look at the argument type to determine whether this is a volatile |
3986 | | // operation. The parameter type is always volatile. |
3987 | 8 | QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
3988 | 8 | bool Volatile = |
3989 | 8 | PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
3990 | | |
3991 | 8 | Value *Ptr = EmitScalarExpr(E->getArg(0)); |
3992 | 8 | unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); |
3993 | 8 | Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
3994 | 8 | Value *NewVal = Builder.getInt8(1); |
3995 | 8 | Value *Order = EmitScalarExpr(E->getArg(1)); |
3996 | 8 | if (isa<llvm::ConstantInt>(Order)) { |
3997 | 8 | int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
3998 | 8 | AtomicRMWInst *Result = nullptr; |
3999 | 8 | switch (ord) { |
4000 | 0 | case 0: // memory_order_relaxed |
4001 | 0 | default: // invalid order |
4002 | 0 | Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
4003 | 0 | llvm::AtomicOrdering::Monotonic); |
4004 | 0 | break; |
4005 | 0 | case 1: // memory_order_consume |
4006 | 4 | case 2: // memory_order_acquire |
4007 | 4 | Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
4008 | 4 | llvm::AtomicOrdering::Acquire); |
4009 | 4 | break; |
4010 | 0 | case 3: // memory_order_release |
4011 | 0 | Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
4012 | 0 | llvm::AtomicOrdering::Release); |
4013 | 0 | break; |
4014 | 0 | case 4: // memory_order_acq_rel |
4015 | |
|
4016 | 0 | Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
4017 | 0 | llvm::AtomicOrdering::AcquireRelease); |
4018 | 0 | break; |
4019 | 4 | case 5: // memory_order_seq_cst |
4020 | 4 | Result = Builder.CreateAtomicRMW( |
4021 | 4 | llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
4022 | 4 | llvm::AtomicOrdering::SequentiallyConsistent); |
4023 | 4 | break; |
4024 | 8 | } |
4025 | 8 | Result->setVolatile(Volatile); |
4026 | 8 | return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
4027 | 8 | } |
4028 | | |
4029 | 0 | llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
4030 | |
|
4031 | 0 | llvm::BasicBlock *BBs[5] = { |
4032 | 0 | createBasicBlock("monotonic", CurFn), |
4033 | 0 | createBasicBlock("acquire", CurFn), |
4034 | 0 | createBasicBlock("release", CurFn), |
4035 | 0 | createBasicBlock("acqrel", CurFn), |
4036 | 0 | createBasicBlock("seqcst", CurFn) |
4037 | 0 | }; |
4038 | 0 | llvm::AtomicOrdering Orders[5] = { |
4039 | 0 | llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, |
4040 | 0 | llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, |
4041 | 0 | llvm::AtomicOrdering::SequentiallyConsistent}; |
4042 | |
|
4043 | 0 | Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
4044 | 0 | llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
4045 | |
|
4046 | 0 | Builder.SetInsertPoint(ContBB); |
4047 | 0 | PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); |
4048 | |
|
4049 | 0 | for (unsigned i = 0; i < 5; ++i) { |
4050 | 0 | Builder.SetInsertPoint(BBs[i]); |
4051 | 0 | AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
4052 | 0 | Ptr, NewVal, Orders[i]); |
4053 | 0 | RMW->setVolatile(Volatile); |
4054 | 0 | Result->addIncoming(RMW, BBs[i]); |
4055 | 0 | Builder.CreateBr(ContBB); |
4056 | 0 | } |
4057 | |
|
4058 | 0 | SI->addCase(Builder.getInt32(0), BBs[0]); |
4059 | 0 | SI->addCase(Builder.getInt32(1), BBs[1]); |
4060 | 0 | SI->addCase(Builder.getInt32(2), BBs[1]); |
4061 | 0 | SI->addCase(Builder.getInt32(3), BBs[2]); |
4062 | 0 | SI->addCase(Builder.getInt32(4), BBs[3]); |
4063 | 0 | SI->addCase(Builder.getInt32(5), BBs[4]); |
4064 | |
|
4065 | 0 | Builder.SetInsertPoint(ContBB); |
4066 | 0 | return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
4067 | 8 | } |
4068 | | |
4069 | 8 | case Builtin::BI__atomic_clear: { |
4070 | 8 | QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
4071 | 8 | bool Volatile = |
4072 | 8 | PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
4073 | | |
4074 | 8 | Address Ptr = EmitPointerWithAlignment(E->getArg(0)); |
4075 | 8 | Ptr = Builder.CreateElementBitCast(Ptr, Int8Ty); |
4076 | 8 | Value *NewVal = Builder.getInt8(0); |
4077 | 8 | Value *Order = EmitScalarExpr(E->getArg(1)); |
4078 | 8 | if (isa<llvm::ConstantInt>(Order)) { |
4079 | 8 | int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
4080 | 8 | StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
4081 | 8 | switch (ord) { |
4082 | 0 | case 0: // memory_order_relaxed |
4083 | 0 | default: // invalid order |
4084 | 0 | Store->setOrdering(llvm::AtomicOrdering::Monotonic); |
4085 | 0 | break; |
4086 | 4 | case 3: // memory_order_release |
4087 | 4 | Store->setOrdering(llvm::AtomicOrdering::Release); |
4088 | 4 | break; |
4089 | 4 | case 5: // memory_order_seq_cst |
4090 | 4 | Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); |
4091 | 4 | break; |
4092 | 8 | } |
4093 | 8 | return RValue::get(nullptr); |
4094 | 8 | } |
4095 | | |
4096 | 0 | llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
4097 | |
|
4098 | 0 | llvm::BasicBlock *BBs[3] = { |
4099 | 0 | createBasicBlock("monotonic", CurFn), |
4100 | 0 | createBasicBlock("release", CurFn), |
4101 | 0 | createBasicBlock("seqcst", CurFn) |
4102 | 0 | }; |
4103 | 0 | llvm::AtomicOrdering Orders[3] = { |
4104 | 0 | llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, |
4105 | 0 | llvm::AtomicOrdering::SequentiallyConsistent}; |
4106 | |
|
4107 | 0 | Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
4108 | 0 | llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
4109 | |
|
4110 | 0 | for (unsigned i = 0; i < 3; ++i) { |
4111 | 0 | Builder.SetInsertPoint(BBs[i]); |
4112 | 0 | StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
4113 | 0 | Store->setOrdering(Orders[i]); |
4114 | 0 | Builder.CreateBr(ContBB); |
4115 | 0 | } |
4116 | |
|
4117 | 0 | SI->addCase(Builder.getInt32(0), BBs[0]); |
4118 | 0 | SI->addCase(Builder.getInt32(3), BBs[1]); |
4119 | 0 | SI->addCase(Builder.getInt32(5), BBs[2]); |
4120 | |
|
4121 | 0 | Builder.SetInsertPoint(ContBB); |
4122 | 0 | return RValue::get(nullptr); |
4123 | 8 | } |
4124 | | |
4125 | 0 | case Builtin::BI__atomic_thread_fence: |
4126 | 0 | case Builtin::BI__atomic_signal_fence: |
4127 | 0 | case Builtin::BI__c11_atomic_thread_fence: |
4128 | 0 | case Builtin::BI__c11_atomic_signal_fence: { |
4129 | 0 | llvm::SyncScope::ID SSID; |
4130 | 0 | if (BuiltinID == Builtin::BI__atomic_signal_fence || |
4131 | 0 | BuiltinID == Builtin::BI__c11_atomic_signal_fence) |
4132 | 0 | SSID = llvm::SyncScope::SingleThread; |
4133 | 0 | else |
4134 | 0 | SSID = llvm::SyncScope::System; |
4135 | 0 | Value *Order = EmitScalarExpr(E->getArg(0)); |
4136 | 0 | if (isa<llvm::ConstantInt>(Order)) { |
4137 | 0 | int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
4138 | 0 | switch (ord) { |
4139 | 0 | case 0: // memory_order_relaxed |
4140 | 0 | default: // invalid order |
4141 | 0 | break; |
4142 | 0 | case 1: // memory_order_consume |
4143 | 0 | case 2: // memory_order_acquire |
4144 | 0 | Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
4145 | 0 | break; |
4146 | 0 | case 3: // memory_order_release |
4147 | 0 | Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
4148 | 0 | break; |
4149 | 0 | case 4: // memory_order_acq_rel |
4150 | 0 | Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
4151 | 0 | break; |
4152 | 0 | case 5: // memory_order_seq_cst |
4153 | 0 | Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
4154 | 0 | break; |
4155 | 0 | } |
4156 | 0 | return RValue::get(nullptr); |
4157 | 0 | } |
4158 | | |
4159 | 0 | llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; |
4160 | 0 | AcquireBB = createBasicBlock("acquire", CurFn); |
4161 | 0 | ReleaseBB = createBasicBlock("release", CurFn); |
4162 | 0 | AcqRelBB = createBasicBlock("acqrel", CurFn); |
4163 | 0 | SeqCstBB = createBasicBlock("seqcst", CurFn); |
4164 | 0 | llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
4165 | |
|
4166 | 0 | Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
4167 | 0 | llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); |
4168 | |
|
4169 | 0 | Builder.SetInsertPoint(AcquireBB); |
4170 | 0 | Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
4171 | 0 | Builder.CreateBr(ContBB); |
4172 | 0 | SI->addCase(Builder.getInt32(1), AcquireBB); |
4173 | 0 | SI->addCase(Builder.getInt32(2), AcquireBB); |
4174 | |
|
4175 | 0 | Builder.SetInsertPoint(ReleaseBB); |
4176 | 0 | Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
4177 | 0 | Builder.CreateBr(ContBB); |
4178 | 0 | SI->addCase(Builder.getInt32(3), ReleaseBB); |
4179 | |
|
4180 | 0 | Builder.SetInsertPoint(AcqRelBB); |
4181 | 0 | Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
4182 | 0 | Builder.CreateBr(ContBB); |
4183 | 0 | SI->addCase(Builder.getInt32(4), AcqRelBB); |
4184 | |
|
4185 | 0 | Builder.SetInsertPoint(SeqCstBB); |
4186 | 0 | Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
4187 | 0 | Builder.CreateBr(ContBB); |
4188 | 0 | SI->addCase(Builder.getInt32(5), SeqCstBB); |
4189 | |
|
4190 | 0 | Builder.SetInsertPoint(ContBB); |
4191 | 0 | return RValue::get(nullptr); |
4192 | 0 | } |
4193 | | |
4194 | 8 | case Builtin::BI__builtin_signbit: |
4195 | 14 | case Builtin::BI__builtin_signbitf: |
4196 | 22 | case Builtin::BI__builtin_signbitl: { |
4197 | 22 | return RValue::get( |
4198 | 22 | Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), |
4199 | 22 | ConvertType(E->getType()))); |
4200 | 14 | } |
4201 | 2 | case Builtin::BI__warn_memset_zero_len: |
4202 | 2 | return RValue::getIgnored(); |
4203 | 10 | case Builtin::BI__annotation: { |
4204 | | // Re-encode each wide string to UTF8 and make an MDString. |
4205 | 10 | SmallVector<Metadata *, 1> Strings; |
4206 | 16 | for (const Expr *Arg : E->arguments()) { |
4207 | 16 | const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); |
4208 | 16 | assert(Str->getCharByteWidth() == 2); |
4209 | 0 | StringRef WideBytes = Str->getBytes(); |
4210 | 16 | std::string StrUtf8; |
4211 | 16 | if (!convertUTF16ToUTF8String( |
4212 | 16 | makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { |
4213 | 0 | CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); |
4214 | 0 | continue; |
4215 | 0 | } |
4216 | 16 | Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); |
4217 | 16 | } |
4218 | | |
4219 | | // Build and MDTuple of MDStrings and emit the intrinsic call. |
4220 | 10 | llvm::Function *F = |
4221 | 10 | CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); |
4222 | 10 | MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); |
4223 | 10 | Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); |
4224 | 10 | return RValue::getIgnored(); |
4225 | 14 | } |
4226 | 7 | case Builtin::BI__builtin_annotation: { |
4227 | 7 | llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); |
4228 | 7 | llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, |
4229 | 7 | AnnVal->getType()); |
4230 | | |
4231 | | // Get the annotation string, go through casts. Sema requires this to be a |
4232 | | // non-wide string literal, potentially casted, so the cast<> is safe. |
4233 | 7 | const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); |
4234 | 7 | StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); |
4235 | 7 | return RValue::get( |
4236 | 7 | EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr)); |
4237 | 14 | } |
4238 | 3 | case Builtin::BI__builtin_addcb: |
4239 | 6 | case Builtin::BI__builtin_addcs: |
4240 | 9 | case Builtin::BI__builtin_addc: |
4241 | 12 | case Builtin::BI__builtin_addcl: |
4242 | 15 | case Builtin::BI__builtin_addcll: |
4243 | 18 | case Builtin::BI__builtin_subcb: |
4244 | 21 | case Builtin::BI__builtin_subcs: |
4245 | 24 | case Builtin::BI__builtin_subc: |
4246 | 27 | case Builtin::BI__builtin_subcl: |
4247 | 30 | case Builtin::BI__builtin_subcll: { |
4248 | | |
4249 | | // We translate all of these builtins from expressions of the form: |
4250 | | // int x = ..., y = ..., carryin = ..., carryout, result; |
4251 | | // result = __builtin_addc(x, y, carryin, &carryout); |
4252 | | // |
4253 | | // to LLVM IR of the form: |
4254 | | // |
4255 | | // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) |
4256 | | // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 |
4257 | | // %carry1 = extractvalue {i32, i1} %tmp1, 1 |
4258 | | // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, |
4259 | | // i32 %carryin) |
4260 | | // %result = extractvalue {i32, i1} %tmp2, 0 |
4261 | | // %carry2 = extractvalue {i32, i1} %tmp2, 1 |
4262 | | // %tmp3 = or i1 %carry1, %carry2 |
4263 | | // %tmp4 = zext i1 %tmp3 to i32 |
4264 | | // store i32 %tmp4, i32* %carryout |
4265 | | |
4266 | | // Scalarize our inputs. |
4267 | 30 | llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
4268 | 30 | llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
4269 | 30 | llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); |
4270 | 30 | Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); |
4271 | | |
4272 | | // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. |
4273 | 30 | llvm::Intrinsic::ID IntrinsicId; |
4274 | 30 | switch (BuiltinID) { |
4275 | 0 | default: llvm_unreachable("Unknown multiprecision builtin id."); |
4276 | 3 | case Builtin::BI__builtin_addcb: |
4277 | 6 | case Builtin::BI__builtin_addcs: |
4278 | 9 | case Builtin::BI__builtin_addc: |
4279 | 12 | case Builtin::BI__builtin_addcl: |
4280 | 15 | case Builtin::BI__builtin_addcll: |
4281 | 15 | IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
4282 | 15 | break; |
4283 | 3 | case Builtin::BI__builtin_subcb: |
4284 | 6 | case Builtin::BI__builtin_subcs: |
4285 | 9 | case Builtin::BI__builtin_subc: |
4286 | 12 | case Builtin::BI__builtin_subcl: |
4287 | 15 | case Builtin::BI__builtin_subcll: |
4288 | 15 | IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
4289 | 15 | break; |
4290 | 30 | } |
4291 | | |
4292 | | // Construct our resulting LLVM IR expression. |
4293 | 30 | llvm::Value *Carry1; |
4294 | 30 | llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, |
4295 | 30 | X, Y, Carry1); |
4296 | 30 | llvm::Value *Carry2; |
4297 | 30 | llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, |
4298 | 30 | Sum1, Carryin, Carry2); |
4299 | 30 | llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), |
4300 | 30 | X->getType()); |
4301 | 30 | Builder.CreateStore(CarryOut, CarryOutPtr); |
4302 | 30 | return RValue::get(Sum2); |
4303 | 30 | } |
4304 | | |
4305 | 24 | case Builtin::BI__builtin_add_overflow: |
4306 | 33 | case Builtin::BI__builtin_sub_overflow: |
4307 | 90 | case Builtin::BI__builtin_mul_overflow: { |
4308 | 90 | const clang::Expr *LeftArg = E->getArg(0); |
4309 | 90 | const clang::Expr *RightArg = E->getArg(1); |
4310 | 90 | const clang::Expr *ResultArg = E->getArg(2); |
4311 | | |
4312 | 90 | clang::QualType ResultQTy = |
4313 | 90 | ResultArg->getType()->castAs<PointerType>()->getPointeeType(); |
4314 | | |
4315 | 90 | WidthAndSignedness LeftInfo = |
4316 | 90 | getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); |
4317 | 90 | WidthAndSignedness RightInfo = |
4318 | 90 | getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); |
4319 | 90 | WidthAndSignedness ResultInfo = |
4320 | 90 | getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); |
4321 | | |
4322 | | // Handle mixed-sign multiplication as a special case, because adding |
4323 | | // runtime or backend support for our generic irgen would be too expensive. |
4324 | 90 | if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) |
4325 | 27 | return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, |
4326 | 27 | RightInfo, ResultArg, ResultQTy, |
4327 | 27 | ResultInfo); |
4328 | | |
4329 | 63 | if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo, |
4330 | 63 | ResultInfo)) |
4331 | 9 | return EmitCheckedUnsignedMultiplySignedResult( |
4332 | 9 | *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy, |
4333 | 9 | ResultInfo); |
4334 | | |
4335 | 54 | WidthAndSignedness EncompassingInfo = |
4336 | 54 | EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); |
4337 | | |
4338 | 54 | llvm::Type *EncompassingLLVMTy = |
4339 | 54 | llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); |
4340 | | |
4341 | 54 | llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); |
4342 | | |
4343 | 54 | llvm::Intrinsic::ID IntrinsicId; |
4344 | 54 | switch (BuiltinID) { |
4345 | 0 | default: |
4346 | 0 | llvm_unreachable("Unknown overflow builtin id."); |
4347 | 24 | case Builtin::BI__builtin_add_overflow: |
4348 | 24 | IntrinsicId = EncompassingInfo.Signed |
4349 | 24 | ? llvm::Intrinsic::sadd_with_overflow12 |
4350 | 24 | : llvm::Intrinsic::uadd_with_overflow12 ; |
4351 | 24 | break; |
4352 | 9 | case Builtin::BI__builtin_sub_overflow: |
4353 | 9 | IntrinsicId = EncompassingInfo.Signed |
4354 | 9 | ? llvm::Intrinsic::ssub_with_overflow6 |
4355 | 9 | : llvm::Intrinsic::usub_with_overflow3 ; |
4356 | 9 | break; |
4357 | 21 | case Builtin::BI__builtin_mul_overflow: |
4358 | 21 | IntrinsicId = EncompassingInfo.Signed |
4359 | 21 | ? llvm::Intrinsic::smul_with_overflow18 |
4360 | 21 | : llvm::Intrinsic::umul_with_overflow3 ; |
4361 | 21 | break; |
4362 | 54 | } |
4363 | | |
4364 | 54 | llvm::Value *Left = EmitScalarExpr(LeftArg); |
4365 | 54 | llvm::Value *Right = EmitScalarExpr(RightArg); |
4366 | 54 | Address ResultPtr = EmitPointerWithAlignment(ResultArg); |
4367 | | |
4368 | | // Extend each operand to the encompassing type. |
4369 | 54 | Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); |
4370 | 54 | Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); |
4371 | | |
4372 | | // Perform the operation on the extended values. |
4373 | 54 | llvm::Value *Overflow, *Result; |
4374 | 54 | Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); |
4375 | | |
4376 | 54 | if (EncompassingInfo.Width > ResultInfo.Width) { |
4377 | | // The encompassing type is wider than the result type, so we need to |
4378 | | // truncate it. |
4379 | 9 | llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); |
4380 | | |
4381 | | // To see if the truncation caused an overflow, we will extend |
4382 | | // the result and then compare it to the original result. |
4383 | 9 | llvm::Value *ResultTruncExt = Builder.CreateIntCast( |
4384 | 9 | ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); |
4385 | 9 | llvm::Value *TruncationOverflow = |
4386 | 9 | Builder.CreateICmpNE(Result, ResultTruncExt); |
4387 | | |
4388 | 9 | Overflow = Builder.CreateOr(Overflow, TruncationOverflow); |
4389 | 9 | Result = ResultTrunc; |
4390 | 9 | } |
4391 | | |
4392 | | // Finally, store the result using the pointer. |
4393 | 54 | bool isVolatile = |
4394 | 54 | ResultArg->getType()->getPointeeType().isVolatileQualified(); |
4395 | 54 | Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); |
4396 | | |
4397 | 54 | return RValue::get(Overflow); |
4398 | 54 | } |
4399 | | |
4400 | 3 | case Builtin::BI__builtin_uadd_overflow: |
4401 | 6 | case Builtin::BI__builtin_uaddl_overflow: |
4402 | 9 | case Builtin::BI__builtin_uaddll_overflow: |
4403 | 12 | case Builtin::BI__builtin_usub_overflow: |
4404 | 15 | case Builtin::BI__builtin_usubl_overflow: |
4405 | 18 | case Builtin::BI__builtin_usubll_overflow: |
4406 | 21 | case Builtin::BI__builtin_umul_overflow: |
4407 | 24 | case Builtin::BI__builtin_umull_overflow: |
4408 | 27 | case Builtin::BI__builtin_umulll_overflow: |
4409 | 31 | case Builtin::BI__builtin_sadd_overflow: |
4410 | 34 | case Builtin::BI__builtin_saddl_overflow: |
4411 | 37 | case Builtin::BI__builtin_saddll_overflow: |
4412 | 40 | case Builtin::BI__builtin_ssub_overflow: |
4413 | 43 | case Builtin::BI__builtin_ssubl_overflow: |
4414 | 46 | case Builtin::BI__builtin_ssubll_overflow: |
4415 | 49 | case Builtin::BI__builtin_smul_overflow: |
4416 | 52 | case Builtin::BI__builtin_smull_overflow: |
4417 | 55 | case Builtin::BI__builtin_smulll_overflow: { |
4418 | | |
4419 | | // We translate all of these builtins directly to the relevant llvm IR node. |
4420 | | |
4421 | | // Scalarize our inputs. |
4422 | 55 | llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
4423 | 55 | llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
4424 | 55 | Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); |
4425 | | |
4426 | | // Decide which of the overflow intrinsics we are lowering to: |
4427 | 55 | llvm::Intrinsic::ID IntrinsicId; |
4428 | 55 | switch (BuiltinID) { |
4429 | 0 | default: llvm_unreachable("Unknown overflow builtin id."); |
4430 | 3 | case Builtin::BI__builtin_uadd_overflow: |
4431 | 6 | case Builtin::BI__builtin_uaddl_overflow: |
4432 | 9 | case Builtin::BI__builtin_uaddll_overflow: |
4433 | 9 | IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
4434 | 9 | break; |
4435 | 3 | case Builtin::BI__builtin_usub_overflow: |
4436 | 6 | case Builtin::BI__builtin_usubl_overflow: |
4437 | 9 | case Builtin::BI__builtin_usubll_overflow: |
4438 | 9 | IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
4439 | 9 | break; |
4440 | 3 | case Builtin::BI__builtin_umul_overflow: |
4441 | 6 | case Builtin::BI__builtin_umull_overflow: |
4442 | 9 | case Builtin::BI__builtin_umulll_overflow: |
4443 | 9 | IntrinsicId = llvm::Intrinsic::umul_with_overflow; |
4444 | 9 | break; |
4445 | 4 | case Builtin::BI__builtin_sadd_overflow: |
4446 | 7 | case Builtin::BI__builtin_saddl_overflow: |
4447 | 10 | case Builtin::BI__builtin_saddll_overflow: |
4448 | 10 | IntrinsicId = llvm::Intrinsic::sadd_with_overflow; |
4449 | 10 | break; |
4450 | 3 | case Builtin::BI__builtin_ssub_overflow: |
4451 | 6 | case Builtin::BI__builtin_ssubl_overflow: |
4452 | 9 | case Builtin::BI__builtin_ssubll_overflow: |
4453 | 9 | IntrinsicId = llvm::Intrinsic::ssub_with_overflow; |
4454 | 9 | break; |
4455 | 3 | case Builtin::BI__builtin_smul_overflow: |
4456 | 6 | case Builtin::BI__builtin_smull_overflow: |
4457 | 9 | case Builtin::BI__builtin_smulll_overflow: |
4458 | 9 | IntrinsicId = llvm::Intrinsic::smul_with_overflow; |
4459 | 9 | break; |
4460 | 55 | } |
4461 | | |
4462 | | |
4463 | 55 | llvm::Value *Carry; |
4464 | 55 | llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); |
4465 | 55 | Builder.CreateStore(Sum, SumOutPtr); |
4466 | | |
4467 | 55 | return RValue::get(Carry); |
4468 | 55 | } |
4469 | 860 | case Builtin::BIaddressof: |
4470 | 861 | case Builtin::BI__addressof: |
4471 | 1.03k | case Builtin::BI__builtin_addressof: |
4472 | 1.03k | return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); |
4473 | 7 | case Builtin::BI__builtin_function_start: |
4474 | 7 | return RValue::get(CGM.GetFunctionStart( |
4475 | 7 | E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()))); |
4476 | 317 | case Builtin::BI__builtin_operator_new: |
4477 | 317 | return EmitBuiltinNewDeleteCall( |
4478 | 317 | E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); |
4479 | 351 | case Builtin::BI__builtin_operator_delete: |
4480 | 351 | return EmitBuiltinNewDeleteCall( |
4481 | 351 | E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); |
4482 | | |
4483 | 5 | case Builtin::BI__builtin_is_aligned: |
4484 | 5 | return EmitBuiltinIsAligned(E); |
4485 | 7 | case Builtin::BI__builtin_align_up: |
4486 | 7 | return EmitBuiltinAlignTo(E, true); |
4487 | 6 | case Builtin::BI__builtin_align_down: |
4488 | 6 | return EmitBuiltinAlignTo(E, false); |
4489 | | |
4490 | 7 | case Builtin::BI__noop: |
4491 | | // __noop always evaluates to an integer literal zero. |
4492 | 7 | return RValue::get(ConstantInt::get(IntTy, 0)); |
4493 | 8 | case Builtin::BI__builtin_call_with_static_chain: { |
4494 | 8 | const CallExpr *Call = cast<CallExpr>(E->getArg(0)); |
4495 | 8 | const Expr *Chain = E->getArg(1); |
4496 | 8 | return EmitCall(Call->getCallee()->getType(), |
4497 | 8 | EmitCallee(Call->getCallee()), Call, ReturnValue, |
4498 | 8 | EmitScalarExpr(Chain)); |
4499 | 861 | } |
4500 | 4 | case Builtin::BI_InterlockedExchange8: |
4501 | 8 | case Builtin::BI_InterlockedExchange16: |
4502 | 17 | case Builtin::BI_InterlockedExchange: |
4503 | 21 | case Builtin::BI_InterlockedExchangePointer: |
4504 | 21 | return RValue::get( |
4505 | 21 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); |
4506 | 4 | case Builtin::BI_InterlockedCompareExchangePointer: |
4507 | 8 | case Builtin::BI_InterlockedCompareExchangePointer_nf: { |
4508 | 8 | llvm::Type *RTy; |
4509 | 8 | llvm::IntegerType *IntType = |
4510 | 8 | IntegerType::get(getLLVMContext(), |
4511 | 8 | getContext().getTypeSize(E->getType())); |
4512 | 8 | llvm::Type *IntPtrType = IntType->getPointerTo(); |
4513 | | |
4514 | 8 | llvm::Value *Destination = |
4515 | 8 | Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); |
4516 | | |
4517 | 8 | llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); |
4518 | 8 | RTy = Exchange->getType(); |
4519 | 8 | Exchange = Builder.CreatePtrToInt(Exchange, IntType); |
4520 | | |
4521 | 8 | llvm::Value *Comparand = |
4522 | 8 | Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); |
4523 | | |
4524 | 8 | auto Ordering = |
4525 | 8 | BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? |
4526 | 4 | AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; |
4527 | | |
4528 | 8 | auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, |
4529 | 8 | Ordering, Ordering); |
4530 | 8 | Result->setVolatile(true); |
4531 | | |
4532 | 8 | return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, |
4533 | 8 | 0), |
4534 | 8 | RTy)); |
4535 | 4 | } |
4536 | 4 | case Builtin::BI_InterlockedCompareExchange8: |
4537 | 8 | case Builtin::BI_InterlockedCompareExchange16: |
4538 | 17 | case Builtin::BI_InterlockedCompareExchange: |
4539 | 21 | case Builtin::BI_InterlockedCompareExchange64: |
4540 | 21 | return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); |
4541 | 4 | case Builtin::BI_InterlockedIncrement16: |
4542 | 13 | case Builtin::BI_InterlockedIncrement: |
4543 | 13 | return RValue::get( |
4544 | 13 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); |
4545 | 4 | case Builtin::BI_InterlockedDecrement16: |
4546 | 13 | case Builtin::BI_InterlockedDecrement: |
4547 | 13 | return RValue::get( |
4548 | 13 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); |
4549 | 4 | case Builtin::BI_InterlockedAnd8: |
4550 | 8 | case Builtin::BI_InterlockedAnd16: |
4551 | 17 | case Builtin::BI_InterlockedAnd: |
4552 | 17 | return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); |
4553 | 4 | case Builtin::BI_InterlockedExchangeAdd8: |
4554 | 8 | case Builtin::BI_InterlockedExchangeAdd16: |
4555 | 17 | case Builtin::BI_InterlockedExchangeAdd: |
4556 | 17 | return RValue::get( |
4557 | 17 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); |
4558 | 4 | case Builtin::BI_InterlockedExchangeSub8: |
4559 | 8 | case Builtin::BI_InterlockedExchangeSub16: |
4560 | 17 | case Builtin::BI_InterlockedExchangeSub: |
4561 | 17 | return RValue::get( |
4562 | 17 | EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); |
4563 | 4 | case Builtin::BI_InterlockedOr8: |
4564 | 8 | case Builtin::BI_InterlockedOr16: |
4565 | 17 | case Builtin::BI_InterlockedOr: |
4566 | 17 | return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); |
4567 | 4 | case Builtin::BI_InterlockedXor8: |
4568 | 8 | case Builtin::BI_InterlockedXor16: |
4569 | 17 | case Builtin::BI_InterlockedXor: |
4570 | 17 | return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); |
4571 | | |
4572 | 3 | case Builtin::BI_bittest64: |
4573 | 6 | case Builtin::BI_bittest: |
4574 | 9 | case Builtin::BI_bittestandcomplement64: |
4575 | 12 | case Builtin::BI_bittestandcomplement: |
4576 | 15 | case Builtin::BI_bittestandreset64: |
4577 | 18 | case Builtin::BI_bittestandreset: |
4578 | 21 | case Builtin::BI_bittestandset64: |
4579 | 24 | case Builtin::BI_bittestandset: |
4580 | 27 | case Builtin::BI_interlockedbittestandreset: |
4581 | 30 | case Builtin::BI_interlockedbittestandreset64: |
4582 | 33 | case Builtin::BI_interlockedbittestandset64: |
4583 | 39 | case Builtin::BI_interlockedbittestandset: |
4584 | 41 | case Builtin::BI_interlockedbittestandset_acq: |
4585 | 43 | case Builtin::BI_interlockedbittestandset_rel: |
4586 | 45 | case Builtin::BI_interlockedbittestandset_nf: |
4587 | 47 | case Builtin::BI_interlockedbittestandreset_acq: |
4588 | 49 | case Builtin::BI_interlockedbittestandreset_rel: |
4589 | 51 | case Builtin::BI_interlockedbittestandreset_nf: |
4590 | 51 | return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); |
4591 | | |
4592 | | // These builtins exist to emit regular volatile loads and stores not |
4593 | | // affected by the -fms-volatile setting. |
4594 | 4 | case Builtin::BI__iso_volatile_load8: |
4595 | 8 | case Builtin::BI__iso_volatile_load16: |
4596 | 12 | case Builtin::BI__iso_volatile_load32: |
4597 | 16 | case Builtin::BI__iso_volatile_load64: |
4598 | 16 | return RValue::get(EmitISOVolatileLoad(*this, E)); |
4599 | 4 | case Builtin::BI__iso_volatile_store8: |
4600 | 8 | case Builtin::BI__iso_volatile_store16: |
4601 | 12 | case Builtin::BI__iso_volatile_store32: |
4602 | 16 | case Builtin::BI__iso_volatile_store64: |
4603 | 16 | return RValue::get(EmitISOVolatileStore(*this, E)); |
4604 | | |
4605 | 0 | case Builtin::BI__exception_code: |
4606 | 18 | case Builtin::BI_exception_code: |
4607 | 18 | return RValue::get(EmitSEHExceptionCode()); |
4608 | 0 | case Builtin::BI__exception_info: |
4609 | 0 | case Builtin::BI_exception_info: |
4610 | 0 | return RValue::get(EmitSEHExceptionInfo()); |
4611 | 3 | case Builtin::BI__abnormal_termination: |
4612 | 3 | case Builtin::BI_abnormal_termination: |
4613 | 3 | return RValue::get(EmitSEHAbnormalTermination()); |
4614 | 6 | case Builtin::BI_setjmpex: |
4615 | 6 | if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && |
4616 | 6 | E->getArg(0)->getType()->isPointerType()) |
4617 | 6 | return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
4618 | 0 | break; |
4619 | 11 | case Builtin::BI_setjmp: |
4620 | 11 | if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 16 && |
4621 | 11 | E->getArg(0)->getType()->isPointerType()6 ) { |
4622 | 6 | if (getTarget().getTriple().getArch() == llvm::Triple::x86) |
4623 | 2 | return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); |
4624 | 4 | else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) |
4625 | 2 | return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
4626 | 2 | return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); |
4627 | 6 | } |
4628 | 5 | break; |
4629 | | |
4630 | | // C++ std:: builtins. |
4631 | 2.69k | case Builtin::BImove: |
4632 | 2.77k | case Builtin::BImove_if_noexcept: |
4633 | 13.3k | case Builtin::BIforward: |
4634 | 13.3k | case Builtin::BIas_const: |
4635 | 13.3k | return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); |
4636 | 3 | case Builtin::BI__GetExceptionInfo: { |
4637 | 3 | if (llvm::GlobalVariable *GV = |
4638 | 3 | CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) |
4639 | 3 | return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); |
4640 | 0 | break; |
4641 | 3 | } |
4642 | | |
4643 | 4 | case Builtin::BI__fastfail: |
4644 | 4 | return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); |
4645 | | |
4646 | 121 | case Builtin::BI__builtin_coro_size: { |
4647 | 121 | auto & Context = getContext(); |
4648 | 121 | auto SizeTy = Context.getSizeType(); |
4649 | 121 | auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); |
4650 | 121 | Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); |
4651 | 121 | return RValue::get(Builder.CreateCall(F)); |
4652 | 3 | } |
4653 | | |
4654 | 3 | case Builtin::BI__builtin_coro_id: |
4655 | 3 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); |
4656 | 13 | case Builtin::BI__builtin_coro_promise: |
4657 | 13 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); |
4658 | 19 | case Builtin::BI__builtin_coro_resume: |
4659 | 19 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); |
4660 | 443 | case Builtin::BI__builtin_coro_frame: |
4661 | 443 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); |
4662 | 2 | case Builtin::BI__builtin_coro_noop: |
4663 | 2 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); |
4664 | 149 | case Builtin::BI__builtin_coro_free: |
4665 | 149 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); |
4666 | 9 | case Builtin::BI__builtin_coro_destroy: |
4667 | 9 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); |
4668 | 2 | case Builtin::BI__builtin_coro_done: |
4669 | 2 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); |
4670 | 2 | case Builtin::BI__builtin_coro_alloc: |
4671 | 2 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); |
4672 | 2 | case Builtin::BI__builtin_coro_begin: |
4673 | 2 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); |
4674 | 1 | case Builtin::BI__builtin_coro_end: |
4675 | 1 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); |
4676 | 1 | case Builtin::BI__builtin_coro_suspend: |
4677 | 1 | return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); |
4678 | | |
4679 | | // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions |
4680 | 13 | case Builtin::BIread_pipe: |
4681 | 16 | case Builtin::BIwrite_pipe: { |
4682 | 16 | Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
4683 | 16 | *Arg1 = EmitScalarExpr(E->getArg(1)); |
4684 | 16 | CGOpenCLRuntime OpenCLRT(CGM); |
4685 | 16 | Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
4686 | 16 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
4687 | | |
4688 | | // Type of the generic packet parameter. |
4689 | 16 | unsigned GenericAS = |
4690 | 16 | getContext().getTargetAddressSpace(LangAS::opencl_generic); |
4691 | 16 | llvm::Type *I8PTy = llvm::PointerType::get( |
4692 | 16 | llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); |
4693 | | |
4694 | | // Testing which overloaded version we should generate the call for. |
4695 | 16 | if (2U == E->getNumArgs()) { |
4696 | 14 | const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"12 |
4697 | 14 | : "__write_pipe_2"2 ; |
4698 | | // Creating a generic function type to be able to call with any builtin or |
4699 | | // user defined type. |
4700 | 14 | llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; |
4701 | 14 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4702 | 14 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4703 | 14 | Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); |
4704 | 14 | return RValue::get( |
4705 | 14 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4706 | 14 | {Arg0, BCast, PacketSize, PacketAlign})); |
4707 | 14 | } else { |
4708 | 2 | assert(4 == E->getNumArgs() && |
4709 | 2 | "Illegal number of parameters to pipe function"); |
4710 | 2 | const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"1 |
4711 | 2 | : "__write_pipe_4"1 ; |
4712 | | |
4713 | 2 | llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, |
4714 | 2 | Int32Ty, Int32Ty}; |
4715 | 2 | Value *Arg2 = EmitScalarExpr(E->getArg(2)), |
4716 | 2 | *Arg3 = EmitScalarExpr(E->getArg(3)); |
4717 | 2 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4718 | 2 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4719 | 2 | Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); |
4720 | | // We know the third argument is an integer type, but we may need to cast |
4721 | | // it to i32. |
4722 | 2 | if (Arg2->getType() != Int32Ty) |
4723 | 0 | Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); |
4724 | 2 | return RValue::get( |
4725 | 2 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4726 | 2 | {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); |
4727 | 2 | } |
4728 | 16 | } |
4729 | | // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write |
4730 | | // functions |
4731 | 1 | case Builtin::BIreserve_read_pipe: |
4732 | 2 | case Builtin::BIreserve_write_pipe: |
4733 | 3 | case Builtin::BIwork_group_reserve_read_pipe: |
4734 | 4 | case Builtin::BIwork_group_reserve_write_pipe: |
4735 | 5 | case Builtin::BIsub_group_reserve_read_pipe: |
4736 | 6 | case Builtin::BIsub_group_reserve_write_pipe: { |
4737 | | // Composing the mangled name for the function. |
4738 | 6 | const char *Name; |
4739 | 6 | if (BuiltinID == Builtin::BIreserve_read_pipe) |
4740 | 1 | Name = "__reserve_read_pipe"; |
4741 | 5 | else if (BuiltinID == Builtin::BIreserve_write_pipe) |
4742 | 1 | Name = "__reserve_write_pipe"; |
4743 | 4 | else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) |
4744 | 1 | Name = "__work_group_reserve_read_pipe"; |
4745 | 3 | else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) |
4746 | 1 | Name = "__work_group_reserve_write_pipe"; |
4747 | 2 | else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) |
4748 | 1 | Name = "__sub_group_reserve_read_pipe"; |
4749 | 1 | else |
4750 | 1 | Name = "__sub_group_reserve_write_pipe"; |
4751 | | |
4752 | 6 | Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
4753 | 6 | *Arg1 = EmitScalarExpr(E->getArg(1)); |
4754 | 6 | llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); |
4755 | 6 | CGOpenCLRuntime OpenCLRT(CGM); |
4756 | 6 | Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
4757 | 6 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
4758 | | |
4759 | | // Building the generic function prototype. |
4760 | 6 | llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; |
4761 | 6 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4762 | 6 | ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4763 | | // We know the second argument is an integer type, but we may need to cast |
4764 | | // it to i32. |
4765 | 6 | if (Arg1->getType() != Int32Ty) |
4766 | 0 | Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); |
4767 | 6 | return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4768 | 6 | {Arg0, Arg1, PacketSize, PacketAlign})); |
4769 | 5 | } |
4770 | | // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write |
4771 | | // functions |
4772 | 1 | case Builtin::BIcommit_read_pipe: |
4773 | 2 | case Builtin::BIcommit_write_pipe: |
4774 | 3 | case Builtin::BIwork_group_commit_read_pipe: |
4775 | 4 | case Builtin::BIwork_group_commit_write_pipe: |
4776 | 5 | case Builtin::BIsub_group_commit_read_pipe: |
4777 | 6 | case Builtin::BIsub_group_commit_write_pipe: { |
4778 | 6 | const char *Name; |
4779 | 6 | if (BuiltinID == Builtin::BIcommit_read_pipe) |
4780 | 1 | Name = "__commit_read_pipe"; |
4781 | 5 | else if (BuiltinID == Builtin::BIcommit_write_pipe) |
4782 | 1 | Name = "__commit_write_pipe"; |
4783 | 4 | else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) |
4784 | 1 | Name = "__work_group_commit_read_pipe"; |
4785 | 3 | else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) |
4786 | 1 | Name = "__work_group_commit_write_pipe"; |
4787 | 2 | else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) |
4788 | 1 | Name = "__sub_group_commit_read_pipe"; |
4789 | 1 | else |
4790 | 1 | Name = "__sub_group_commit_write_pipe"; |
4791 | | |
4792 | 6 | Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
4793 | 6 | *Arg1 = EmitScalarExpr(E->getArg(1)); |
4794 | 6 | CGOpenCLRuntime OpenCLRT(CGM); |
4795 | 6 | Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
4796 | 6 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
4797 | | |
4798 | | // Building the generic function prototype. |
4799 | 6 | llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; |
4800 | 6 | llvm::FunctionType *FTy = |
4801 | 6 | llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), |
4802 | 6 | llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4803 | | |
4804 | 6 | return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4805 | 6 | {Arg0, Arg1, PacketSize, PacketAlign})); |
4806 | 5 | } |
4807 | | // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions |
4808 | 4 | case Builtin::BIget_pipe_num_packets: |
4809 | 8 | case Builtin::BIget_pipe_max_packets: { |
4810 | 8 | const char *BaseName; |
4811 | 8 | const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); |
4812 | 8 | if (BuiltinID == Builtin::BIget_pipe_num_packets) |
4813 | 4 | BaseName = "__get_pipe_num_packets"; |
4814 | 4 | else |
4815 | 4 | BaseName = "__get_pipe_max_packets"; |
4816 | 8 | std::string Name = std::string(BaseName) + |
4817 | 8 | std::string(PipeTy->isReadOnly() ? "_ro"4 : "_wo"4 ); |
4818 | | |
4819 | | // Building the generic function prototype. |
4820 | 8 | Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
4821 | 8 | CGOpenCLRuntime OpenCLRT(CGM); |
4822 | 8 | Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
4823 | 8 | Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
4824 | 8 | llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; |
4825 | 8 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4826 | 8 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4827 | | |
4828 | 8 | return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
4829 | 8 | {Arg0, PacketSize, PacketAlign})); |
4830 | 4 | } |
4831 | | |
4832 | | // OpenCL v2.0 s6.13.9 - Address space qualifier functions. |
4833 | 19 | case Builtin::BIto_global: |
4834 | 32 | case Builtin::BIto_local: |
4835 | 45 | case Builtin::BIto_private: { |
4836 | 45 | auto Arg0 = EmitScalarExpr(E->getArg(0)); |
4837 | 45 | auto NewArgT = llvm::PointerType::get(Int8Ty, |
4838 | 45 | CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
4839 | 45 | auto NewRetT = llvm::PointerType::get(Int8Ty, |
4840 | 45 | CGM.getContext().getTargetAddressSpace( |
4841 | 45 | E->getType()->getPointeeType().getAddressSpace())); |
4842 | 45 | auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); |
4843 | 45 | llvm::Value *NewArg; |
4844 | 45 | if (Arg0->getType()->getPointerAddressSpace() != |
4845 | 45 | NewArgT->getPointerAddressSpace()) |
4846 | 30 | NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); |
4847 | 15 | else |
4848 | 15 | NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); |
4849 | 45 | auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); |
4850 | 45 | auto NewCall = |
4851 | 45 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); |
4852 | 45 | return RValue::get(Builder.CreateBitOrPointerCast(NewCall, |
4853 | 45 | ConvertType(E->getType()))); |
4854 | 32 | } |
4855 | | |
4856 | | // OpenCL v2.0, s6.13.17 - Enqueue kernel function. |
4857 | | // It contains four different overload formats specified in Table 6.13.17.1. |
4858 | 81 | case Builtin::BIenqueue_kernel: { |
4859 | 81 | StringRef Name; // Generated function call name |
4860 | 81 | unsigned NumArgs = E->getNumArgs(); |
4861 | | |
4862 | 81 | llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); |
4863 | 81 | llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
4864 | 81 | getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
4865 | | |
4866 | 81 | llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); |
4867 | 81 | llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); |
4868 | 81 | LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); |
4869 | 81 | llvm::Value *Range = NDRangeL.getAddress(*this).getPointer(); |
4870 | 81 | llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType(); |
4871 | | |
4872 | 81 | if (NumArgs == 4) { |
4873 | | // The most basic form of the call with parameters: |
4874 | | // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) |
4875 | 22 | Name = "__enqueue_kernel_basic"; |
4876 | 22 | llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, |
4877 | 22 | GenericVoidPtrTy}; |
4878 | 22 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4879 | 22 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
4880 | | |
4881 | 22 | auto Info = |
4882 | 22 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
4883 | 22 | llvm::Value *Kernel = |
4884 | 22 | Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
4885 | 22 | llvm::Value *Block = |
4886 | 22 | Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
4887 | | |
4888 | 22 | AttrBuilder B(Builder.getContext()); |
4889 | 22 | B.addByValAttr(NDRangeL.getAddress(*this).getElementType()); |
4890 | 22 | llvm::AttributeList ByValAttrSet = |
4891 | 22 | llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); |
4892 | | |
4893 | 22 | auto RTCall = |
4894 | 22 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), |
4895 | 22 | {Queue, Flags, Range, Kernel, Block}); |
4896 | 22 | RTCall->setAttributes(ByValAttrSet); |
4897 | 22 | return RValue::get(RTCall); |
4898 | 22 | } |
4899 | 59 | assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); |
4900 | | |
4901 | | // Create a temporary array to hold the sizes of local pointer arguments |
4902 | | // for the block. \p First is the position of the first size argument. |
4903 | 0 | auto CreateArrayForSizeVar = [=](unsigned First) |
4904 | 59 | -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { |
4905 | 47 | llvm::APInt ArraySize(32, NumArgs - First); |
4906 | 47 | QualType SizeArrayTy = getContext().getConstantArrayType( |
4907 | 47 | getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, |
4908 | 47 | /*IndexTypeQuals=*/0); |
4909 | 47 | auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); |
4910 | 47 | llvm::Value *TmpPtr = Tmp.getPointer(); |
4911 | 47 | llvm::Value *TmpSize = EmitLifetimeStart( |
4912 | 47 | CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); |
4913 | 47 | llvm::Value *ElemPtr; |
4914 | | // Each of the following arguments specifies the size of the corresponding |
4915 | | // argument passed to the enqueued block. |
4916 | 47 | auto *Zero = llvm::ConstantInt::get(IntTy, 0); |
4917 | 106 | for (unsigned I = First; I < NumArgs; ++I59 ) { |
4918 | 59 | auto *Index = llvm::ConstantInt::get(IntTy, I - First); |
4919 | 59 | auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr, |
4920 | 59 | {Zero, Index}); |
4921 | 59 | if (I == First) |
4922 | 47 | ElemPtr = GEP; |
4923 | 59 | auto *V = |
4924 | 59 | Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); |
4925 | 59 | Builder.CreateAlignedStore( |
4926 | 59 | V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy)); |
4927 | 59 | } |
4928 | 47 | return std::tie(ElemPtr, TmpSize, TmpPtr); |
4929 | 47 | }; |
4930 | | |
4931 | | // Could have events and/or varargs. |
4932 | 59 | if (E->getArg(3)->getType()->isBlockPointerType()) { |
4933 | | // No events passed, but has variadic arguments. |
4934 | 35 | Name = "__enqueue_kernel_varargs"; |
4935 | 35 | auto Info = |
4936 | 35 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
4937 | 35 | llvm::Value *Kernel = |
4938 | 35 | Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
4939 | 35 | auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
4940 | 35 | llvm::Value *ElemPtr, *TmpSize, *TmpPtr; |
4941 | 35 | std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); |
4942 | | |
4943 | | // Create a vector of the arguments, as well as a constant value to |
4944 | | // express to the runtime the number of variadic arguments. |
4945 | 35 | llvm::Value *const Args[] = {Queue, Flags, |
4946 | 35 | Range, Kernel, |
4947 | 35 | Block, ConstantInt::get(IntTy, NumArgs - 4), |
4948 | 35 | ElemPtr}; |
4949 | 35 | llvm::Type *const ArgTys[] = { |
4950 | 35 | QueueTy, IntTy, RangeTy, GenericVoidPtrTy, |
4951 | 35 | GenericVoidPtrTy, IntTy, ElemPtr->getType()}; |
4952 | | |
4953 | 35 | llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false); |
4954 | 35 | auto Call = RValue::get( |
4955 | 35 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args)); |
4956 | 35 | if (TmpSize) |
4957 | 10 | EmitLifetimeEnd(TmpSize, TmpPtr); |
4958 | 35 | return Call; |
4959 | 35 | } |
4960 | | // Any calls now have event arguments passed. |
4961 | 24 | if (NumArgs >= 7) { |
4962 | 24 | llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); |
4963 | 24 | llvm::PointerType *EventPtrTy = EventTy->getPointerTo( |
4964 | 24 | CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
4965 | | |
4966 | 24 | llvm::Value *NumEvents = |
4967 | 24 | Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); |
4968 | | |
4969 | | // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments |
4970 | | // to be a null pointer constant (including `0` literal), we can take it |
4971 | | // into account and emit null pointer directly. |
4972 | 24 | llvm::Value *EventWaitList = nullptr; |
4973 | 24 | if (E->getArg(4)->isNullPointerConstant( |
4974 | 24 | getContext(), Expr::NPC_ValueDependentIsNotNull)) { |
4975 | 6 | EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); |
4976 | 18 | } else { |
4977 | 18 | EventWaitList = E->getArg(4)->getType()->isArrayType() |
4978 | 18 | ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()12 |
4979 | 18 | : EmitScalarExpr(E->getArg(4))6 ; |
4980 | | // Convert to generic address space. |
4981 | 18 | EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); |
4982 | 18 | } |
4983 | 24 | llvm::Value *EventRet = nullptr; |
4984 | 24 | if (E->getArg(5)->isNullPointerConstant( |
4985 | 24 | getContext(), Expr::NPC_ValueDependentIsNotNull)) { |
4986 | 6 | EventRet = llvm::ConstantPointerNull::get(EventPtrTy); |
4987 | 18 | } else { |
4988 | 18 | EventRet = |
4989 | 18 | Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); |
4990 | 18 | } |
4991 | | |
4992 | 24 | auto Info = |
4993 | 24 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); |
4994 | 24 | llvm::Value *Kernel = |
4995 | 24 | Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
4996 | 24 | llvm::Value *Block = |
4997 | 24 | Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
4998 | | |
4999 | 24 | std::vector<llvm::Type *> ArgTys = { |
5000 | 24 | QueueTy, Int32Ty, RangeTy, Int32Ty, |
5001 | 24 | EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; |
5002 | | |
5003 | 24 | std::vector<llvm::Value *> Args = {Queue, Flags, Range, |
5004 | 24 | NumEvents, EventWaitList, EventRet, |
5005 | 24 | Kernel, Block}; |
5006 | | |
5007 | 24 | if (NumArgs == 7) { |
5008 | | // Has events but no variadics. |
5009 | 12 | Name = "__enqueue_kernel_basic_events"; |
5010 | 12 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
5011 | 12 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
5012 | 12 | return RValue::get( |
5013 | 12 | EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
5014 | 12 | llvm::ArrayRef<llvm::Value *>(Args))); |
5015 | 12 | } |
5016 | | // Has event info and variadics |
5017 | | // Pass the number of variadics to the runtime function too. |
5018 | 12 | Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); |
5019 | 12 | ArgTys.push_back(Int32Ty); |
5020 | 12 | Name = "__enqueue_kernel_events_varargs"; |
5021 | | |
5022 | 12 | llvm::Value *ElemPtr, *TmpSize, *TmpPtr; |
5023 | 12 | std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); |
5024 | 12 | Args.push_back(ElemPtr); |
5025 | 12 | ArgTys.push_back(ElemPtr->getType()); |
5026 | | |
5027 | 12 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
5028 | 12 | Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
5029 | 12 | auto Call = |
5030 | 12 | RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
5031 | 12 | llvm::ArrayRef<llvm::Value *>(Args))); |
5032 | 12 | if (TmpSize) |
5033 | 4 | EmitLifetimeEnd(TmpSize, TmpPtr); |
5034 | 12 | return Call; |
5035 | 24 | } |
5036 | 24 | LLVM_FALLTHROUGH0 ; |
5037 | 0 | } |
5038 | | // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block |
5039 | | // parameter. |
5040 | 13 | case Builtin::BIget_kernel_work_group_size: { |
5041 | 13 | llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
5042 | 13 | getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
5043 | 13 | auto Info = |
5044 | 13 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
5045 | 13 | Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
5046 | 13 | Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
5047 | 13 | return RValue::get(EmitRuntimeCall( |
5048 | 13 | CGM.CreateRuntimeFunction( |
5049 | 13 | llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
5050 | 13 | false), |
5051 | 13 | "__get_kernel_work_group_size_impl"), |
5052 | 13 | {Kernel, Arg})); |
5053 | 0 | } |
5054 | 19 | case Builtin::BIget_kernel_preferred_work_group_size_multiple: { |
5055 | 19 | llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
5056 | 19 | getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
5057 | 19 | auto Info = |
5058 | 19 | CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
5059 | 19 | Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
5060 | 19 | Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
5061 | 19 | return RValue::get(EmitRuntimeCall( |
5062 | 19 | CGM.CreateRuntimeFunction( |
5063 | 19 | llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
5064 | 19 |
|