Coverage Report

Created: 2021-08-24 07:12

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/CodeGen/CodeGenFunction.h
Line
Count
Source (jump to first uncovered line)
1
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This is the internal per-function state used for llvm translation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15
16
#include "CGBuilder.h"
17
#include "CGDebugInfo.h"
18
#include "CGLoopInfo.h"
19
#include "CGValue.h"
20
#include "CodeGenModule.h"
21
#include "CodeGenPGO.h"
22
#include "EHScopeStack.h"
23
#include "VarBypassDetector.h"
24
#include "clang/AST/CharUnits.h"
25
#include "clang/AST/CurrentSourceLocExprScope.h"
26
#include "clang/AST/ExprCXX.h"
27
#include "clang/AST/ExprObjC.h"
28
#include "clang/AST/ExprOpenMP.h"
29
#include "clang/AST/StmtOpenMP.h"
30
#include "clang/AST/Type.h"
31
#include "clang/Basic/ABI.h"
32
#include "clang/Basic/CapturedStmt.h"
33
#include "clang/Basic/CodeGenOptions.h"
34
#include "clang/Basic/OpenMPKinds.h"
35
#include "clang/Basic/TargetInfo.h"
36
#include "llvm/ADT/ArrayRef.h"
37
#include "llvm/ADT/DenseMap.h"
38
#include "llvm/ADT/MapVector.h"
39
#include "llvm/ADT/SmallVector.h"
40
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41
#include "llvm/IR/ValueHandle.h"
42
#include "llvm/Support/Debug.h"
43
#include "llvm/Transforms/Utils/SanitizerStats.h"
44
45
namespace llvm {
46
class BasicBlock;
47
class LLVMContext;
48
class MDNode;
49
class Module;
50
class SwitchInst;
51
class Twine;
52
class Value;
53
class CanonicalLoopInfo;
54
}
55
56
namespace clang {
57
class ASTContext;
58
class BlockDecl;
59
class CXXDestructorDecl;
60
class CXXForRangeStmt;
61
class CXXTryStmt;
62
class Decl;
63
class LabelDecl;
64
class EnumConstantDecl;
65
class FunctionDecl;
66
class FunctionProtoType;
67
class LabelStmt;
68
class ObjCContainerDecl;
69
class ObjCInterfaceDecl;
70
class ObjCIvarDecl;
71
class ObjCMethodDecl;
72
class ObjCImplementationDecl;
73
class ObjCPropertyImplDecl;
74
class TargetInfo;
75
class VarDecl;
76
class ObjCForCollectionStmt;
77
class ObjCAtTryStmt;
78
class ObjCAtThrowStmt;
79
class ObjCAtSynchronizedStmt;
80
class ObjCAutoreleasePoolStmt;
81
class OMPUseDevicePtrClause;
82
class OMPUseDeviceAddrClause;
83
class ReturnsNonNullAttr;
84
class SVETypeFlags;
85
class OMPExecutableDirective;
86
87
namespace analyze_os_log {
88
class OSLogBufferLayout;
89
}
90
91
namespace CodeGen {
92
class CodeGenTypes;
93
class CGCallee;
94
class CGFunctionInfo;
95
class CGRecordLayout;
96
class CGBlockInfo;
97
class CGCXXABI;
98
class BlockByrefHelpers;
99
class BlockByrefInfo;
100
class BlockFlags;
101
class BlockFieldFlags;
102
class RegionCodeGenTy;
103
class TargetCodeGenInfo;
104
struct OMPTaskDataTy;
105
struct CGCoroData;
106
107
/// The kind of evaluation to perform on values of a particular
108
/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
109
/// CGExprAgg?
110
///
111
/// TODO: should vectors maybe be split out into their own thing?
112
enum TypeEvaluationKind {
113
  TEK_Scalar,
114
  TEK_Complex,
115
  TEK_Aggregate
116
};
117
118
#define LIST_SANITIZER_CHECKS                                                  \
119
  SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
120
  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
121
  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
122
  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
123
  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
124
  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
125
  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
126
  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
127
  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
128
  SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
129
  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
130
  SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
131
  SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
132
  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
133
  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
134
  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
135
  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
136
  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
137
  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
138
  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
139
  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
140
  SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
141
  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
142
  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
143
  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
144
145
enum SanitizerHandler {
146
#define SANITIZER_CHECK(Enum, Name, Version) Enum,
147
  LIST_SANITIZER_CHECKS
148
#undef SANITIZER_CHECK
149
};
150
151
/// Helper class with most of the code for saving a value for a
152
/// conditional expression cleanup.
153
struct DominatingLLVMValue {
154
  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
155
156
  /// Answer whether the given value needs extra work to be saved.
157
356
  static bool needsSaving(llvm::Value *value) {
158
    // If it's not an instruction, we don't need to save.
159
356
    if (!isa<llvm::Instruction>(value)) 
return false86
;
160
161
    // If it's an instruction in the entry block, we don't need to save.
162
270
    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
163
270
    return (block != &block->getParent()->getEntryBlock());
164
356
  }
165
166
  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
167
  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
168
};
169
170
/// A partial specialization of DominatingValue for llvm::Values that
171
/// might be llvm::Instructions.
172
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
173
  typedef T *type;
174
95
  static type restore(CodeGenFunction &CGF, saved_type value) {
175
95
    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
176
95
  }
177
};
178
179
/// A specialization of DominatingValue for Address.
180
template <> struct DominatingValue<Address> {
181
  typedef Address type;
182
183
  struct saved_type {
184
    DominatingLLVMValue::saved_type SavedValue;
185
    CharUnits Alignment;
186
  };
187
188
0
  static bool needsSaving(type value) {
189
0
    return DominatingLLVMValue::needsSaving(value.getPointer());
190
0
  }
191
236
  static saved_type save(CodeGenFunction &CGF, type value) {
192
236
    return { DominatingLLVMValue::save(CGF, value.getPointer()),
193
236
             value.getAlignment() };
194
236
  }
195
250
  static type restore(CodeGenFunction &CGF, saved_type value) {
196
250
    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
197
250
                   value.Alignment);
198
250
  }
199
};
200
201
/// A specialization of DominatingValue for RValue.
202
template <> struct DominatingValue<RValue> {
203
  typedef RValue type;
204
  class saved_type {
205
    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
206
                AggregateAddress, ComplexAddress };
207
208
    llvm::Value *Value;
209
    unsigned K : 3;
210
    unsigned Align : 29;
211
    saved_type(llvm::Value *v, Kind k, unsigned a = 0)
212
16
      : Value(v), K(k), Align(a) {}
213
214
  public:
215
    static bool needsSaving(RValue value);
216
    static saved_type save(CodeGenFunction &CGF, RValue value);
217
    RValue restore(CodeGenFunction &CGF);
218
219
    // implementations in CGCleanup.cpp
220
  };
221
222
0
  static bool needsSaving(type value) {
223
0
    return saved_type::needsSaving(value);
224
0
  }
225
16
  static saved_type save(CodeGenFunction &CGF, type value) {
226
16
    return saved_type::save(CGF, value);
227
16
  }
228
0
  static type restore(CodeGenFunction &CGF, saved_type value) {
229
0
    return value.restore(CGF);
230
0
  }
231
};
232
233
/// CodeGenFunction - This class organizes the per-function state that is used
234
/// while generating LLVM code.
235
class CodeGenFunction : public CodeGenTypeCache {
236
  CodeGenFunction(const CodeGenFunction &) = delete;
237
  void operator=(const CodeGenFunction &) = delete;
238
239
  friend class CGCXXABI;
240
public:
241
  /// A jump destination is an abstract label, branching to which may
242
  /// require a jump out through normal cleanups.
243
  struct JumpDest {
244
1.53M
    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
245
    JumpDest(llvm::BasicBlock *Block,
246
             EHScopeStack::stable_iterator Depth,
247
             unsigned Index)
248
482k
      : Block(Block), ScopeDepth(Depth), Index(Index) {}
249
250
577k
    bool isValid() const { return Block != nullptr; }
251
1.75M
    llvm::BasicBlock *getBlock() const { return Block; }
252
261k
    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
253
8.84k
    unsigned getDestIndex() const { return Index; }
254
255
    // This should be used cautiously.
256
142
    void setScopeDepth(EHScopeStack::stable_iterator depth) {
257
142
      ScopeDepth = depth;
258
142
    }
259
260
  private:
261
    llvm::BasicBlock *Block;
262
    EHScopeStack::stable_iterator ScopeDepth;
263
    unsigned Index;
264
  };
265
266
  CodeGenModule &CGM;  // Per-module state.
267
  const TargetInfo &Target;
268
269
  // For EH/SEH outlined funclets, this field points to parent's CGF
270
  CodeGenFunction *ParentCGF = nullptr;
271
272
  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
273
  LoopInfoStack LoopStack;
274
  CGBuilderTy Builder;
275
276
  // Stores variables for which we can't generate correct lifetime markers
277
  // because of jumps.
278
  VarBypassDetector Bypasses;
279
280
  /// List of recently emitted OMPCanonicalLoops.
281
  ///
282
  /// Since OMPCanonicalLoops are nested inside other statements (in particular
283
  /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
284
  /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
285
  /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
286
  /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
287
  /// this stack when done. Entering a new loop requires clearing this list; it
288
  /// either means we start parsing a new loop nest (in which case the previous
289
  /// loop nest goes out of scope) or a second loop in the same level in which
290
  /// case it would be ambiguous into which of the two (or more) loops the loop
291
  /// nest would extend.
292
  SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
293
294
  // CodeGen lambda for loops and support for ordered clause
295
  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
296
                                  JumpDest)>
297
      CodeGenLoopTy;
298
  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
299
                                  const unsigned, const bool)>
300
      CodeGenOrderedTy;
301
302
  // Codegen lambda for loop bounds in worksharing loop constructs
303
  typedef llvm::function_ref<std::pair<LValue, LValue>(
304
      CodeGenFunction &, const OMPExecutableDirective &S)>
305
      CodeGenLoopBoundsTy;
306
307
  // Codegen lambda for loop bounds in dispatch-based loop implementation
308
  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
309
      CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
310
      Address UB)>
311
      CodeGenDispatchBoundsTy;
312
313
  /// CGBuilder insert helper. This function is called after an
314
  /// instruction is created using Builder.
315
  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
316
                    llvm::BasicBlock *BB,
317
                    llvm::BasicBlock::iterator InsertPt) const;
318
319
  /// CurFuncDecl - Holds the Decl for the current outermost
320
  /// non-closure context.
321
  const Decl *CurFuncDecl;
322
  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
323
  const Decl *CurCodeDecl;
324
  const CGFunctionInfo *CurFnInfo;
325
  QualType FnRetTy;
326
  llvm::Function *CurFn = nullptr;
327
328
  /// Save Parameter Decl for coroutine.
329
  llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
330
331
  // Holds coroutine data if the current function is a coroutine. We use a
332
  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
333
  // in this header.
334
  struct CGCoroInfo {
335
    std::unique_ptr<CGCoroData> Data;
336
    CGCoroInfo();
337
    ~CGCoroInfo();
338
  };
339
  CGCoroInfo CurCoro;
340
341
296
  bool isCoroutine() const {
342
296
    return CurCoro.Data != nullptr;
343
296
  }
344
345
  /// CurGD - The GlobalDecl for the current function being compiled.
346
  GlobalDecl CurGD;
347
348
  /// PrologueCleanupDepth - The cleanup depth enclosing all the
349
  /// cleanups associated with the parameters.
350
  EHScopeStack::stable_iterator PrologueCleanupDepth;
351
352
  /// ReturnBlock - Unified return block.
353
  JumpDest ReturnBlock;
354
355
  /// ReturnValue - The temporary alloca to hold the return
356
  /// value. This is invalid iff the function has no return value.
357
  Address ReturnValue = Address::invalid();
358
359
  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
360
  /// This is invalid if sret is not in use.
361
  Address ReturnValuePointer = Address::invalid();
362
363
  /// If a return statement is being visited, this holds the return statment's
364
  /// result expression.
365
  const Expr *RetExpr = nullptr;
366
367
  /// Return true if a label was seen in the current scope.
368
35.4k
  bool hasLabelBeenSeenInCurrentScope() const {
369
35.4k
    if (CurLexicalScope)
370
10.6k
      return CurLexicalScope->hasLabels();
371
24.8k
    return !LabelMap.empty();
372
35.4k
  }
373
374
  /// AllocaInsertPoint - This is an instruction in the entry block before which
375
  /// we prefer to insert allocas.
376
  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
377
378
  /// API for captured statement code generation.
379
  class CGCapturedStmtInfo {
380
  public:
381
    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
382
43.2k
        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
383
    explicit CGCapturedStmtInfo(const CapturedStmt &S,
384
                                CapturedRegionKind K = CR_Default)
385
25.3k
      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
386
387
25.3k
      RecordDecl::field_iterator Field =
388
25.3k
        S.getCapturedRecordDecl()->field_begin();
389
25.3k
      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
390
25.3k
                                                E = S.capture_end();
391
63.4k
           I != E; 
++I, ++Field38.0k
) {
392
38.0k
        if (I->capturesThis())
393
1.87k
          CXXThisFieldDecl = *Field;
394
36.2k
        else if (I->capturesVariable())
395
14.8k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
396
21.3k
        else if (I->capturesVariableByCopy())
397
18.2k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
398
38.0k
      }
399
25.3k
    }
400
401
    virtual ~CGCapturedStmtInfo();
402
403
143k
    CapturedRegionKind getKind() const { return Kind; }
404
405
942
    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
406
    // Retrieve the value of the context parameter.
407
1.94k
    virtual llvm::Value *getContextValue() const { return ThisValue; }
408
409
    /// Lookup the captured field decl for a variable.
410
30.6k
    virtual const FieldDecl *lookup(const VarDecl *VD) const {
411
30.6k
      return CaptureFields.lookup(VD->getCanonicalDecl());
412
30.6k
    }
413
414
951
    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
415
975
    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
416
417
0
    static bool classof(const CGCapturedStmtInfo *) {
418
0
      return true;
419
0
    }
420
421
    /// Emit the captured statement body.
422
81
    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
423
81
      CGF.incrementProfileCounter(S);
424
81
      CGF.EmitStmt(S);
425
81
    }
426
427
    /// Get the name of the capture helper.
428
81
    virtual StringRef getHelperName() const { return "__captured_stmt"; }
429
430
  private:
431
    /// The kind of captured statement being generated.
432
    CapturedRegionKind Kind;
433
434
    /// Keep the map between VarDecl and FieldDecl.
435
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
436
437
    /// The base address of the captured record, passed in as the first
438
    /// argument of the parallel region function.
439
    llvm::Value *ThisValue;
440
441
    /// Captured 'this' type.
442
    FieldDecl *CXXThisFieldDecl;
443
  };
444
  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
445
446
  /// RAII for correct setting/restoring of CapturedStmtInfo.
447
  class CGCapturedStmtRAII {
448
  private:
449
    CodeGenFunction &CGF;
450
    CGCapturedStmtInfo *PrevCapturedStmtInfo;
451
  public:
452
    CGCapturedStmtRAII(CodeGenFunction &CGF,
453
                       CGCapturedStmtInfo *NewCapturedStmtInfo)
454
25.6k
        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
455
25.6k
      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
456
25.6k
    }
457
25.6k
    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
458
  };
459
460
  /// An abstract representation of regular/ObjC call/message targets.
461
  class AbstractCallee {
462
    /// The function declaration of the callee.
463
    const Decl *CalleeDecl;
464
465
  public:
466
2.66k
    AbstractCallee() : CalleeDecl(nullptr) {}
467
320k
    AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
468
11.9k
    AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
469
442k
    bool hasFunctionDecl() const {
470
442k
      return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
471
442k
    }
472
443k
    const Decl *getDecl() const { return CalleeDecl; }
473
411k
    unsigned getNumParams() const {
474
411k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
475
411k
        return FD->getNumParams();
476
8
      return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
477
411k
    }
478
324k
    const ParmVarDecl *getParamDecl(unsigned I) const {
479
324k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
480
324k
        return FD->getParamDecl(I);
481
7
      return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
482
324k
    }
483
  };
484
485
  /// Sanitizers enabled for this function.
486
  SanitizerSet SanOpts;
487
488
  /// True if CodeGen currently emits code implementing sanitizer checks.
489
  bool IsSanitizerScope = false;
490
491
  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
492
  class SanitizerScope {
493
    CodeGenFunction *CGF;
494
  public:
495
    SanitizerScope(CodeGenFunction *CGF);
496
    ~SanitizerScope();
497
  };
498
499
  /// In C++, whether we are code generating a thunk.  This controls whether we
500
  /// should emit cleanups.
501
  bool CurFuncIsThunk = false;
502
503
  /// In ARC, whether we should autorelease the return value.
504
  bool AutoreleaseResult = false;
505
506
  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
507
  /// potentially set the return value.
508
  bool SawAsmBlock = false;
509
510
  const NamedDecl *CurSEHParent = nullptr;
511
512
  /// True if the current function is an outlined SEH helper. This can be a
513
  /// finally block or filter expression.
514
  bool IsOutlinedSEHHelper = false;
515
516
  /// True if CodeGen currently emits code inside presereved access index
517
  /// region.
518
  bool IsInPreservedAIRegion = false;
519
520
  /// True if the current statement has nomerge attribute.
521
  bool InNoMergeAttributedStmt = false;
522
523
  // The CallExpr within the current statement that the musttail attribute
524
  // applies to.  nullptr if there is no 'musttail' on the current statement.
525
  const CallExpr *MustTailCall = nullptr;
526
527
  /// Returns true if a function must make progress, which means the
528
  /// mustprogress attribute can be added.
529
292k
  bool checkIfFunctionMustProgress() {
530
292k
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
531
292k
        CodeGenOptions::FiniteLoopsKind::Never)
532
115
      return false;
533
534
    // C++11 and later guarantees that a thread eventually will do one of the
535
    // following (6.9.2.3.1 in C++11):
536
    // - terminate,
537
    //  - make a call to a library I/O function,
538
    //  - perform an access through a volatile glvalue, or
539
    //  - perform a synchronization operation or an atomic operation.
540
    //
541
    // Hence each function is 'mustprogress' in C++11 or later.
542
292k
    return getLangOpts().CPlusPlus11;
543
292k
  }
544
545
  /// Returns true if a loop must make progress, which means the mustprogress
546
  /// attribute can be added. \p HasConstantCond indicates whether the branch
547
  /// condition is a known constant.
548
19.5k
  bool checkIfLoopMustProgress(bool HasConstantCond) {
549
19.5k
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
550
19.5k
        CodeGenOptions::FiniteLoopsKind::Always)
551
155
      return true;
552
19.4k
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
553
19.4k
        CodeGenOptions::FiniteLoopsKind::Never)
554
155
      return false;
555
556
    // If the containing function must make progress, loops also must make
557
    // progress (as in C++11 and later).
558
19.2k
    if (checkIfFunctionMustProgress())
559
18.2k
      return true;
560
561
    // Now apply rules for plain C (see  6.8.5.6 in C11).
562
    // Loops with constant conditions do not have to make progress in any C
563
    // version.
564
1.03k
    if (HasConstantCond)
565
281
      return false;
566
567
    // Loops with non-constant conditions must make progress in C11 and later.
568
755
    return getLangOpts().C11;
569
1.03k
  }
570
571
  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
572
  llvm::Value *BlockPointer = nullptr;
573
574
  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
575
  FieldDecl *LambdaThisCaptureField = nullptr;
576
577
  /// A mapping from NRVO variables to the flags used to indicate
578
  /// when the NRVO has been applied to this variable.
579
  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
580
581
  EHScopeStack EHStack;
582
  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
583
  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
584
585
  llvm::Instruction *CurrentFuncletPad = nullptr;
586
587
  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
588
0
    bool isRedundantBeforeReturn() override { return true; }
589
590
    llvm::Value *Addr;
591
    llvm::Value *Size;
592
593
  public:
594
    CallLifetimeEnd(Address addr, llvm::Value *size)
595
6.46k
        : Addr(addr.getPointer()), Size(size) {}
596
597
6.78k
    void Emit(CodeGenFunction &CGF, Flags flags) override {
598
6.78k
      CGF.EmitLifetimeEnd(Size, Addr);
599
6.78k
    }
600
  };
601
602
  /// Header for data within LifetimeExtendedCleanupStack.
603
  struct LifetimeExtendedCleanupHeader {
604
    /// The size of the following cleanup object.
605
    unsigned Size;
606
    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
607
    unsigned Kind : 31;
608
    /// Whether this is a conditional cleanup.
609
    unsigned IsConditional : 1;
610
611
1.09k
    size_t getSize() const { return Size; }
612
547
    CleanupKind getKind() const { return (CleanupKind)Kind; }
613
547
    bool isConditional() const { return IsConditional; }
614
  };
615
616
  /// i32s containing the indexes of the cleanup destinations.
617
  Address NormalCleanupDest = Address::invalid();
618
619
  unsigned NextCleanupDestIndex = 1;
620
621
  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
622
  llvm::BasicBlock *EHResumeBlock = nullptr;
623
624
  /// The exception slot.  All landing pads write the current exception pointer
625
  /// into this alloca.
626
  llvm::Value *ExceptionSlot = nullptr;
627
628
  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
629
  /// write the current selector value into this alloca.
630
  llvm::AllocaInst *EHSelectorSlot = nullptr;
631
632
  /// A stack of exception code slots. Entering an __except block pushes a slot
633
  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
634
  /// a value from the top of the stack.
635
  SmallVector<Address, 1> SEHCodeSlotStack;
636
637
  /// Value returned by __exception_info intrinsic.
638
  llvm::Value *SEHInfo = nullptr;
639
640
  /// Emits a landing pad for the current EH stack.
641
  llvm::BasicBlock *EmitLandingPad();
642
643
  llvm::BasicBlock *getInvokeDestImpl();
644
645
  /// Parent loop-based directive for scan directive.
646
  const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
647
  llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
648
  llvm::BasicBlock *OMPAfterScanBlock = nullptr;
649
  llvm::BasicBlock *OMPScanExitBlock = nullptr;
650
  llvm::BasicBlock *OMPScanDispatch = nullptr;
651
  bool OMPFirstScanLoop = false;
652
653
  /// Manages parent directive for scan directives.
654
  class ParentLoopDirectiveForScanRegion {
655
    CodeGenFunction &CGF;
656
    const OMPExecutableDirective *ParentLoopDirectiveForScan;
657
658
  public:
659
    ParentLoopDirectiveForScanRegion(
660
        CodeGenFunction &CGF,
661
        const OMPExecutableDirective &ParentLoopDirectiveForScan)
662
        : CGF(CGF),
663
3.63k
          ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
664
3.63k
      CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
665
3.63k
    }
666
3.63k
    ~ParentLoopDirectiveForScanRegion() {
667
3.63k
      CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
668
3.63k
    }
669
  };
670
671
  template <class T>
672
714
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
673
714
    return DominatingValue<T>::save(*this, value);
674
714
  }
clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CodeGen::Address>(clang::CodeGen::Address)
Line
Count
Source
672
236
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
673
236
    return DominatingValue<T>::save(*this, value);
674
236
  }
clang::CodeGen::DominatingValue<clang::QualType>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::QualType>(clang::QualType)
Line
Count
Source
672
130
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
673
130
    return DominatingValue<T>::save(*this, value);
674
130
  }
clang::CodeGen::DominatingValue<llvm::Value*>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<llvm::Value*>(llvm::Value*)
Line
Count
Source
672
104
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
673
104
    return DominatingValue<T>::save(*this, value);
674
104
  }
clang::CodeGen::DominatingValue<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
672
122
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
673
122
    return DominatingValue<T>::save(*this, value);
674
122
  }
clang::CodeGen::DominatingValue<bool>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<bool>(bool)
Line
Count
Source
672
122
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
673
122
    return DominatingValue<T>::save(*this, value);
674
122
  }
Unexecuted instantiation: clang::CodeGen::DominatingValue<clang::CharUnits>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CharUnits>(clang::CharUnits)
675
676
  class CGFPOptionsRAII {
677
  public:
678
    CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
679
    CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
680
    ~CGFPOptionsRAII();
681
682
  private:
683
    void ConstructorHelper(FPOptions FPFeatures);
684
    CodeGenFunction &CGF;
685
    FPOptions OldFPFeatures;
686
    llvm::fp::ExceptionBehavior OldExcept;
687
    llvm::RoundingMode OldRounding;
688
    Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
689
  };
690
  FPOptions CurFPFeatures;
691
692
public:
693
  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
694
  /// rethrows.
695
  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
696
697
  /// A class controlling the emission of a finally block.
698
  class FinallyInfo {
699
    /// Where the catchall's edge through the cleanup should go.
700
    JumpDest RethrowDest;
701
702
    /// A function to call to enter the catch.
703
    llvm::FunctionCallee BeginCatchFn;
704
705
    /// An i1 variable indicating whether or not the @finally is
706
    /// running for an exception.
707
    llvm::AllocaInst *ForEHVar;
708
709
    /// An i8* variable into which the exception pointer to rethrow
710
    /// has been saved.
711
    llvm::AllocaInst *SavedExnVar;
712
713
  public:
714
    void enter(CodeGenFunction &CGF, const Stmt *Finally,
715
               llvm::FunctionCallee beginCatchFn,
716
               llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
717
    void exit(CodeGenFunction &CGF);
718
  };
719
720
  /// Returns true inside SEH __try blocks.
721
385k
  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
722
723
  /// Returns true while emitting a cleanuppad.
724
385k
  bool isCleanupPadScope() const {
725
385k
    return CurrentFuncletPad && 
isa<llvm::CleanupPadInst>(CurrentFuncletPad)251
;
726
385k
  }
727
728
  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
729
  /// current full-expression.  Safe against the possibility that
730
  /// we're currently inside a conditionally-evaluated expression.
731
  template <class T, class... As>
732
8.36k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
733
    // If we're not in a conditional branch, or if none of the
734
    // arguments requires saving, then use the unconditional cleanup.
735
8.36k
    if (!isInConditionalBranch())
736
8.13k
      return EHStack.pushCleanup<T>(kind, A...);
737
738
    // Stash values in a tuple so we can guarantee the order of saves.
739
234
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
740
234
    SavedTuple Saved{saveValueInCond(A)...};
741
742
234
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
743
234
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
744
234
    initFullExprCleanup();
745
234
  }
CGCall.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyUnpassedArg, clang::CodeGen::Address, clang::QualType>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType)
Line
Count
Source
732
182
  void pushFullExprCleanup(CleanupKind kind, As... A) {
733
    // If we're not in a conditional branch, or if none of the
734
    // arguments requires saving, then use the unconditional cleanup.
735
182
    if (!isInConditionalBranch())
736
174
      return EHStack.pushCleanup<T>(kind, A...);
737
738
    // Stash values in a tuple so we can guarantee the order of saves.
739
8
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
740
8
    SavedTuple Saved{saveValueInCond(A)...};
741
742
8
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
743
8
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
744
8
    initFullExprCleanup();
745
8
  }
void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
732
716
  void pushFullExprCleanup(CleanupKind kind, As... A) {
733
    // If we're not in a conditional branch, or if none of the
734
    // arguments requires saving, then use the unconditional cleanup.
735
716
    if (!isInConditionalBranch())
736
638
      return EHStack.pushCleanup<T>(kind, A...);
737
738
    // Stash values in a tuple so we can guarantee the order of saves.
739
78
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
740
78
    SavedTuple Saved{saveValueInCond(A)...};
741
742
78
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
743
78
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
744
78
    initFullExprCleanup();
745
78
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
732
4.75k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
733
    // If we're not in a conditional branch, or if none of the
734
    // arguments requires saving, then use the unconditional cleanup.
735
4.75k
    if (!isInConditionalBranch())
736
4.63k
      return EHStack.pushCleanup<T>(kind, A...);
737
738
    // Stash values in a tuple so we can guarantee the order of saves.
739
122
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
740
122
    SavedTuple Saved{saveValueInCond(A)...};
741
742
122
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
743
122
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
744
122
    initFullExprCleanup();
745
122
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::IrregularPartialArrayDestroy, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
732
72
  void pushFullExprCleanup(CleanupKind kind, As... A) {
733
    // If we're not in a conditional branch, or if none of the
734
    // arguments requires saving, then use the unconditional cleanup.
735
72
    if (!isInConditionalBranch())
736
72
      return EHStack.pushCleanup<T>(kind, A...);
737
738
    // Stash values in a tuple so we can guarantee the order of saves.
739
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
740
0
    SavedTuple Saved{saveValueInCond(A)...};
741
742
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
743
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
744
0
    initFullExprCleanup();
745
0
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::RegularPartialArrayDestroy, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
732
1.88k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
733
    // If we're not in a conditional branch, or if none of the
734
    // arguments requires saving, then use the unconditional cleanup.
735
1.88k
    if (!isInConditionalBranch())
736
1.88k
      return EHStack.pushCleanup<T>(kind, A...);
737
738
    // Stash values in a tuple so we can guarantee the order of saves.
739
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
740
0
    SavedTuple Saved{saveValueInCond(A)...};
741
742
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
743
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
744
0
    initFullExprCleanup();
745
0
  }
CGException.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::FreeException, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
732
469
  void pushFullExprCleanup(CleanupKind kind, As... A) {
733
    // If we're not in a conditional branch, or if none of the
734
    // arguments requires saving, then use the unconditional cleanup.
735
469
    if (!isInConditionalBranch())
736
456
      return EHStack.pushCleanup<T>(kind, A...);
737
738
    // Stash values in a tuple so we can guarantee the order of saves.
739
13
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
740
13
    SavedTuple Saved{saveValueInCond(A)...};
741
742
13
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
743
13
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
744
13
    initFullExprCleanup();
745
13
  }
CGObjC.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::CallObjCRelease, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
732
286
  void pushFullExprCleanup(CleanupKind kind, As... A) {
733
    // If we're not in a conditional branch, or if none of the
734
    // arguments requires saving, then use the unconditional cleanup.
735
286
    if (!isInConditionalBranch())
736
273
      return EHStack.pushCleanup<T>(kind, A...);
737
738
    // Stash values in a tuple so we can guarantee the order of saves.
739
13
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
740
13
    SavedTuple Saved{saveValueInCond(A)...};
741
742
13
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
743
13
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
744
13
    initFullExprCleanup();
745
13
  }
746
747
  /// Queue a cleanup to be pushed after finishing the current full-expression,
748
  /// potentially with an active flag.
749
  template <class T, class... As>
750
27
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
751
27
    if (!isInConditionalBranch())
752
27
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
753
27
                                                       A...);
754
755
0
    Address ActiveFlag = createCleanupActiveFlag();
756
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
757
0
           "cleanup active flag should never need saving");
758
759
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
760
0
    SavedTuple Saved{saveValueInCond(A)...};
761
762
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
763
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
764
0
  }
CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
750
4
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
751
4
    if (!isInConditionalBranch())
752
4
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
753
4
                                                       A...);
754
755
0
    Address ActiveFlag = createCleanupActiveFlag();
756
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
757
0
           "cleanup active flag should never need saving");
758
759
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
760
0
    SavedTuple Saved{saveValueInCond(A)...};
761
762
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
763
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
764
0
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
750
23
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
751
23
    if (!isInConditionalBranch())
752
23
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
753
23
                                                       A...);
754
755
0
    Address ActiveFlag = createCleanupActiveFlag();
756
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
757
0
           "cleanup active flag should never need saving");
758
759
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
760
0
    SavedTuple Saved{saveValueInCond(A)...};
761
762
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
763
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
764
0
  }
765
766
  template <class T, class... As>
767
  void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
768
547
                                              Address ActiveFlag, As... A) {
769
547
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
770
547
                                            ActiveFlag.isValid()};
771
772
547
    size_t OldSize = LifetimeExtendedCleanupStack.size();
773
547
    LifetimeExtendedCleanupStack.resize(
774
547
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
775
547
        (Header.IsConditional ? 
sizeof(ActiveFlag)28
:
0519
));
776
777
547
    static_assert(sizeof(Header) % alignof(T) == 0,
778
547
                  "Cleanup will be allocated on misaligned address");
779
547
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
780
547
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
781
547
    new (Buffer + sizeof(Header)) T(A...);
782
547
    if (Header.IsConditional)
783
28
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
784
547
  }
CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
768
4
                                              Address ActiveFlag, As... A) {
769
4
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
770
4
                                            ActiveFlag.isValid()};
771
772
4
    size_t OldSize = LifetimeExtendedCleanupStack.size();
773
4
    LifetimeExtendedCleanupStack.resize(
774
4
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
775
4
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
776
777
4
    static_assert(sizeof(Header) % alignof(T) == 0,
778
4
                  "Cleanup will be allocated on misaligned address");
779
4
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
780
4
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
781
4
    new (Buffer + sizeof(Header)) T(A...);
782
4
    if (Header.IsConditional)
783
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
784
4
  }
Unexecuted instantiation: CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::CallObjCArcUse, llvm::Value*>, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
768
492
                                              Address ActiveFlag, As... A) {
769
492
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
770
492
                                            ActiveFlag.isValid()};
771
772
492
    size_t OldSize = LifetimeExtendedCleanupStack.size();
773
492
    LifetimeExtendedCleanupStack.resize(
774
492
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
775
492
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
776
777
492
    static_assert(sizeof(Header) % alignof(T) == 0,
778
492
                  "Cleanup will be allocated on misaligned address");
779
492
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
780
492
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
781
492
    new (Buffer + sizeof(Header)) T(A...);
782
492
    if (Header.IsConditional)
783
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
784
492
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
768
28
                                              Address ActiveFlag, As... A) {
769
28
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
770
28
                                            ActiveFlag.isValid()};
771
772
28
    size_t OldSize = LifetimeExtendedCleanupStack.size();
773
28
    LifetimeExtendedCleanupStack.resize(
774
28
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
775
28
        (Header.IsConditional ? sizeof(ActiveFlag) : 
00
));
776
777
28
    static_assert(sizeof(Header) % alignof(T) == 0,
778
28
                  "Cleanup will be allocated on misaligned address");
779
28
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
780
28
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
781
28
    new (Buffer + sizeof(Header)) T(A...);
782
28
    if (Header.IsConditional)
783
28
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
784
28
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
768
23
                                              Address ActiveFlag, As... A) {
769
23
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
770
23
                                            ActiveFlag.isValid()};
771
772
23
    size_t OldSize = LifetimeExtendedCleanupStack.size();
773
23
    LifetimeExtendedCleanupStack.resize(
774
23
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
775
23
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
776
777
23
    static_assert(sizeof(Header) % alignof(T) == 0,
778
23
                  "Cleanup will be allocated on misaligned address");
779
23
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
780
23
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
781
23
    new (Buffer + sizeof(Header)) T(A...);
782
23
    if (Header.IsConditional)
783
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
784
23
  }
Unexecuted instantiation: void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
785
786
  /// Set up the last cleanup that was pushed as a conditional
787
  /// full-expression cleanup.
788
240
  void initFullExprCleanup() {
789
240
    initFullExprCleanupWithFlag(createCleanupActiveFlag());
790
240
  }
791
792
  void initFullExprCleanupWithFlag(Address ActiveFlag);
793
  Address createCleanupActiveFlag();
794
795
  /// PushDestructorCleanup - Push a cleanup to call the
796
  /// complete-object destructor of an object of the given type at the
797
  /// given address.  Does nothing if T is not a C++ class type with a
798
  /// non-trivial destructor.
799
  void PushDestructorCleanup(QualType T, Address Addr);
800
801
  /// PushDestructorCleanup - Push a cleanup to call the
802
  /// complete-object variant of the given destructor on the object at
803
  /// the given address.
804
  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
805
                             Address Addr);
806
807
  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
808
  /// process all branch fixups.
809
  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
810
811
  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
812
  /// The block cannot be reactivated.  Pops it if it's the top of the
813
  /// stack.
814
  ///
815
  /// \param DominatingIP - An instruction which is known to
816
  ///   dominate the current IP (if set) and which lies along
817
  ///   all paths of execution between the current IP and the
818
  ///   the point at which the cleanup comes into scope.
819
  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
820
                              llvm::Instruction *DominatingIP);
821
822
  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
823
  /// Cannot be used to resurrect a deactivated cleanup.
824
  ///
825
  /// \param DominatingIP - An instruction which is known to
826
  ///   dominate the current IP (if set) and which lies along
827
  ///   all paths of execution between the current IP and the
828
  ///   the point at which the cleanup comes into scope.
829
  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
830
                            llvm::Instruction *DominatingIP);
831
832
  /// Enters a new scope for capturing cleanups, all of which
833
  /// will be executed once the scope is exited.
834
  class RunCleanupsScope {
835
    EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
836
    size_t LifetimeExtendedCleanupStackSize;
837
    bool OldDidCallStackSave;
838
  protected:
839
    bool PerformCleanup;
840
  private:
841
842
    RunCleanupsScope(const RunCleanupsScope &) = delete;
843
    void operator=(const RunCleanupsScope &) = delete;
844
845
  protected:
846
    CodeGenFunction& CGF;
847
848
  public:
849
    /// Enter a new cleanup scope.
850
    explicit RunCleanupsScope(CodeGenFunction &CGF)
851
      : PerformCleanup(true), CGF(CGF)
852
1.03M
    {
853
1.03M
      CleanupStackDepth = CGF.EHStack.stable_begin();
854
1.03M
      LifetimeExtendedCleanupStackSize =
855
1.03M
          CGF.LifetimeExtendedCleanupStack.size();
856
1.03M
      OldDidCallStackSave = CGF.DidCallStackSave;
857
1.03M
      CGF.DidCallStackSave = false;
858
1.03M
      OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
859
1.03M
      CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
860
1.03M
    }
861
862
    /// Exit this cleanup scope, emitting any accumulated cleanups.
863
1.03M
    ~RunCleanupsScope() {
864
1.03M
      if (PerformCleanup)
865
323k
        ForceCleanup();
866
1.03M
    }
867
868
    /// Determine whether this scope requires any cleanups.
869
33.6k
    bool requiresCleanups() const {
870
33.6k
      return CGF.EHStack.stable_begin() != CleanupStackDepth;
871
33.6k
    }
872
873
    /// Force the emission of cleanups now, instead of waiting
874
    /// until this object is destroyed.
875
    /// \param ValuesToReload - A list of values that need to be available at
876
    /// the insertion point after cleanup emission. If cleanup emission created
877
    /// a shared cleanup block, these value pointers will be rewritten.
878
    /// Otherwise, they not will be modified.
879
1.03M
    void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
880
1.03M
      assert(PerformCleanup && "Already forced cleanup");
881
0
      CGF.DidCallStackSave = OldDidCallStackSave;
882
1.03M
      CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
883
1.03M
                           ValuesToReload);
884
1.03M
      PerformCleanup = false;
885
1.03M
      CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
886
1.03M
    }
887
  };
888
889
  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
890
  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
891
      EHScopeStack::stable_end();
892
893
  class LexicalScope : public RunCleanupsScope {
894
    SourceRange Range;
895
    SmallVector<const LabelDecl*, 4> Labels;
896
    LexicalScope *ParentScope;
897
898
    LexicalScope(const LexicalScope &) = delete;
899
    void operator=(const LexicalScope &) = delete;
900
901
  public:
902
    /// Enter a new cleanup scope.
903
    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
904
303k
      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
905
303k
      CGF.CurLexicalScope = this;
906
303k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
907
208k
        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
908
303k
    }
909
910
0
    void addLabel(const LabelDecl *label) {
911
0
      assert(PerformCleanup && "adding label to dead scope?");
912
0
      Labels.push_back(label);
913
0
    }
914
915
    /// Exit this cleanup scope, emitting any accumulated
916
    /// cleanups.
917
303k
    ~LexicalScope() {
918
303k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
919
208k
        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
920
921
      // If we should perform a cleanup, force them now.  Note that
922
      // this ends the cleanup scope before rescoping any labels.
923
303k
      if (PerformCleanup) {
924
269k
        ApplyDebugLocation DL(CGF, Range.getEnd());
925
269k
        ForceCleanup();
926
269k
      }
927
303k
    }
928
929
    /// Force the emission of cleanups now, instead of waiting
930
    /// until this object is destroyed.
931
303k
    void ForceCleanup() {
932
303k
      CGF.CurLexicalScope = ParentScope;
933
303k
      RunCleanupsScope::ForceCleanup();
934
935
303k
      if (!Labels.empty())
936
0
        rescopeLabels();
937
303k
    }
938
939
10.6k
    bool hasLabels() const {
940
10.6k
      return !Labels.empty();
941
10.6k
    }
942
943
    void rescopeLabels();
944
  };
945
946
  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
947
948
  /// The class used to assign some variables some temporarily addresses.
949
  class OMPMapVars {
950
    DeclMapTy SavedLocals;
951
    DeclMapTy SavedTempAddresses;
952
    OMPMapVars(const OMPMapVars &) = delete;
953
    void operator=(const OMPMapVars &) = delete;
954
955
  public:
956
151k
    explicit OMPMapVars() = default;
957
151k
    ~OMPMapVars() {
958
151k
      assert(SavedLocals.empty() && "Did not restored original addresses.");
959
151k
    };
960
961
    /// Sets the address of the variable \p LocalVD to be \p TempAddr in
962
    /// function \p CGF.
963
    /// \return true if at least one variable was set already, false otherwise.
964
    bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
965
172k
                    Address TempAddr) {
966
172k
      LocalVD = LocalVD->getCanonicalDecl();
967
      // Only save it once.
968
172k
      if (SavedLocals.count(LocalVD)) 
return false20.5k
;
969
970
      // Copy the existing local entry to SavedLocals.
971
152k
      auto it = CGF.LocalDeclMap.find(LocalVD);
972
152k
      if (it != CGF.LocalDeclMap.end())
973
53.6k
        SavedLocals.try_emplace(LocalVD, it->second);
974
98.7k
      else
975
98.7k
        SavedLocals.try_emplace(LocalVD, Address::invalid());
976
977
      // Generate the private entry.
978
152k
      QualType VarTy = LocalVD->getType();
979
152k
      if (VarTy->isReferenceType()) {
980
4.63k
        Address Temp = CGF.CreateMemTemp(VarTy);
981
4.63k
        CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
982
4.63k
        TempAddr = Temp;
983
4.63k
      }
984
152k
      SavedTempAddresses.try_emplace(LocalVD, TempAddr);
985
986
152k
      return true;
987
172k
    }
988
989
    /// Applies new addresses to the list of the variables.
990
    /// \return true if at least one variable is using new address, false
991
    /// otherwise.
992
138k
    bool apply(CodeGenFunction &CGF) {
993
138k
      copyInto(SavedTempAddresses, CGF.LocalDeclMap);
994
138k
      SavedTempAddresses.clear();
995
138k
      return !SavedLocals.empty();
996
138k
    }
997
998
    /// Restores original addresses of the variables.
999
151k
    void restore(CodeGenFunction &CGF) {
1000
151k
      if (!SavedLocals.empty()) {
1001
83.4k
        copyInto(SavedLocals, CGF.LocalDeclMap);
1002
83.4k
        SavedLocals.clear();
1003
83.4k
      }
1004
151k
    }
1005
1006
  private:
1007
    /// Copy all the entries in the source map over the corresponding
1008
    /// entries in the destination, which must exist.
1009
221k
    static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1010
304k
      for (auto &Pair : Src) {
1011
304k
        if (!Pair.second.isValid()) {
1012
98.7k
          Dest.erase(Pair.first);
1013
98.7k
          continue;
1014
98.7k
        }
1015
1016
206k
        auto I = Dest.find(Pair.first);
1017
206k
        if (I != Dest.end())
1018
107k
          I->second = Pair.second;
1019
98.7k
        else
1020
98.7k
          Dest.insert(Pair);
1021
206k
      }
1022
221k
    }
1023
  };
1024
1025
  /// The scope used to remap some variables as private in the OpenMP loop body
1026
  /// (or other captured region emitted without outlining), and to restore old
1027
  /// vars back on exit.
1028
  class OMPPrivateScope : public RunCleanupsScope {
1029
    OMPMapVars MappedVars;
1030
    OMPPrivateScope(const OMPPrivateScope &) = delete;
1031
    void operator=(const OMPPrivateScope &) = delete;
1032
1033
  public:
1034
    /// Enter a new OpenMP private scope.
1035
132k
    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1036
1037
    /// Registers \p LocalVD variable as a private and apply \p PrivateGen
1038
    /// function for it to generate corresponding private variable. \p
1039
    /// PrivateGen returns an address of the generated private variable.
1040
    /// \return true if the variable is registered as private, false if it has
1041
    /// been privatized already.
1042
    bool addPrivate(const VarDecl *LocalVD,
1043
152k
                    const llvm::function_ref<Address()> PrivateGen) {
1044
152k
      assert(PerformCleanup && "adding private to dead scope");
1045
0
      return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
1046
152k
    }
1047
1048
    /// Privatizes local variables previously registered as private.
1049
    /// Registration is separate from the actual privatization to allow
1050
    /// initializers use values of the original variables, not the private one.
1051
    /// This is important, for example, if the private variable is a class
1052
    /// variable initialized by a constructor that references other private
1053
    /// variables. But at initialization original variables must be used, not
1054
    /// private copies.
1055
    /// \return true if at least one variable was privatized, false otherwise.
1056
118k
    bool Privatize() { return MappedVars.apply(CGF); }
1057
1058
132k
    void ForceCleanup() {
1059
132k
      RunCleanupsScope::ForceCleanup();
1060
132k
      MappedVars.restore(CGF);
1061
132k
    }
1062
1063
    /// Exit scope - all the mapped variables are restored.
1064
132k
    ~OMPPrivateScope() {
1065
132k
      if (PerformCleanup)
1066
107k
        ForceCleanup();
1067
132k
    }
1068
1069
    /// Checks if the global variable is captured in current function.
1070
7.06k
    bool isGlobalVarCaptured(const VarDecl *VD) const {
1071
7.06k
      VD = VD->getCanonicalDecl();
1072
7.06k
      return !VD->isLocalVarDeclOrParm() && 
CGF.LocalDeclMap.count(VD) > 0901
;
1073
7.06k
    }
1074
  };
1075
1076
  /// Save/restore original map of previously emitted local vars in case when we
1077
  /// need to duplicate emission of the same code several times in the same
1078
  /// function for OpenMP code.
1079
  class OMPLocalDeclMapRAII {
1080
    CodeGenFunction &CGF;
1081
    DeclMapTy SavedMap;
1082
1083
  public:
1084
    OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1085
13.7k
        : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1086
13.7k
    ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1087
  };
1088
1089
  /// Takes the old cleanup stack size and emits the cleanup blocks
1090
  /// that have been added.
1091
  void
1092
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1093
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1094
1095
  /// Takes the old cleanup stack size and emits the cleanup blocks
1096
  /// that have been added, then adds all lifetime-extended cleanups from
1097
  /// the given position to the stack.
1098
  void
1099
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1100
                   size_t OldLifetimeExtendedStackSize,
1101
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1102
1103
  void ResolveBranchFixups(llvm::BasicBlock *Target);
1104
1105
  /// The given basic block lies in the current EH scope, but may be a
1106
  /// target of a potentially scope-crossing jump; get a stable handle
1107
  /// to which we can perform this jump later.
1108
482k
  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1109
482k
    return JumpDest(Target,
1110
482k
                    EHStack.getInnermostNormalCleanup(),
1111
482k
                    NextCleanupDestIndex++);
1112
482k
  }
1113
1114
  /// The given basic block lies in the current EH scope, but may be a
1115
  /// target of a potentially scope-crossing jump; get a stable handle
1116
  /// to which we can perform this jump later.
1117
473k
  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1118
473k
    return getJumpDestInCurrentScope(createBasicBlock(Name));
1119
473k
  }
1120
1121
  /// EmitBranchThroughCleanup - Emit a branch from the current insert
1122
  /// block through the normal cleanup handling code (if any) and then
1123
  /// on to \arg Dest.
1124
  void EmitBranchThroughCleanup(JumpDest Dest);
1125
1126
  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1127
  /// specified destination obviously has no cleanups to run.  'false' is always
1128
  /// a conservatively correct answer for this method.
1129
  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1130
1131
  /// popCatchScope - Pops the catch scope at the top of the EHScope
1132
  /// stack, emitting any required code (other than the catch handlers
1133
  /// themselves).
1134
  void popCatchScope();
1135
1136
  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1137
  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1138
  llvm::BasicBlock *
1139
  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1140
1141
  /// An object to manage conditionally-evaluated expressions.
1142
  class ConditionalEvaluation {
1143
    llvm::BasicBlock *StartBB;
1144
1145
  public:
1146
    ConditionalEvaluation(CodeGenFunction &CGF)
1147
20.7k
      : StartBB(CGF.Builder.GetInsertBlock()) {}
1148
1149
29.4k
    void begin(CodeGenFunction &CGF) {
1150
29.4k
      assert(CGF.OutermostConditional != this);
1151
29.4k
      if (!CGF.OutermostConditional)
1152
29.2k
        CGF.OutermostConditional = this;
1153
29.4k
    }
1154
1155
29.4k
    void end(CodeGenFunction &CGF) {
1156
29.4k
      assert(CGF.OutermostConditional != nullptr);
1157
29.4k
      if (CGF.OutermostConditional == this)
1158
29.2k
        CGF.OutermostConditional = nullptr;
1159
29.4k
    }
1160
1161
    /// Returns a block which will be executed prior to each
1162
    /// evaluation of the conditional code.
1163
286
    llvm::BasicBlock *getStartingBlock() const {
1164
286
      return StartBB;
1165
286
    }
1166
  };
1167
1168
  /// isInConditionalBranch - Return true if we're currently emitting
1169
  /// one branch or the other of a conditional expression.
1170
10.7k
  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1171
1172
268
  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1173
268
    assert(isInConditionalBranch());
1174
0
    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1175
268
    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1176
268
    store->setAlignment(addr.getAlignment().getAsAlign());
1177
268
  }
1178
1179
  /// An RAII object to record that we're evaluating a statement
1180
  /// expression.
1181
  class StmtExprEvaluation {
1182
    CodeGenFunction &CGF;
1183
1184
    /// We have to save the outermost conditional: cleanups in a
1185
    /// statement expression aren't conditional just because the
1186
    /// StmtExpr is.
1187
    ConditionalEvaluation *SavedOutermostConditional;
1188
1189
  public:
1190
    StmtExprEvaluation(CodeGenFunction &CGF)
1191
4.30k
      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1192
4.30k
      CGF.OutermostConditional = nullptr;
1193
4.30k
    }
1194
1195
4.30k
    ~StmtExprEvaluation() {
1196
4.30k
      CGF.OutermostConditional = SavedOutermostConditional;
1197
4.30k
      CGF.EnsureInsertPoint();
1198
4.30k
    }
1199
  };
1200
1201
  /// An object which temporarily prevents a value from being
1202
  /// destroyed by aggressive peephole optimizations that assume that
1203
  /// all uses of a value have been realized in the IR.
1204
  class PeepholeProtection {
1205
    llvm::Instruction *Inst;
1206
    friend class CodeGenFunction;
1207
1208
  public:
1209
15.1k
    PeepholeProtection() : Inst(nullptr) {}
1210
  };
1211
1212
  /// A non-RAII class containing all the information about a bound
1213
  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1214
  /// this which makes individual mappings very simple; using this
1215
  /// class directly is useful when you have a variable number of
1216
  /// opaque values or don't want the RAII functionality for some
1217
  /// reason.
1218
  class OpaqueValueMappingData {
1219
    const OpaqueValueExpr *OpaqueValue;
1220
    bool BoundLValue;
1221
    CodeGenFunction::PeepholeProtection Protection;
1222
1223
    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1224
                           bool boundLValue)
1225
2.02k
      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1226
  public:
1227
11.4k
    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1228
1229
6.36k
    static bool shouldBindAsLValue(const Expr *expr) {
1230
      // gl-values should be bound as l-values for obvious reasons.
1231
      // Records should be bound as l-values because IR generation
1232
      // always keeps them in memory.  Expressions of function type
1233
      // act exactly like l-values but are formally required to be
1234
      // r-values in C.
1235
6.36k
      return expr->isGLValue() ||
1236
6.36k
             
expr->getType()->isFunctionType()4.39k
||
1237
6.36k
             
hasAggregateEvaluationKind(expr->getType())4.39k
;
1238
6.36k
    }
1239
1240
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1241
                                       const OpaqueValueExpr *ov,
1242
460
                                       const Expr *e) {
1243
460
      if (shouldBindAsLValue(ov))
1244
186
        return bind(CGF, ov, CGF.EmitLValue(e));
1245
274
      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1246
460
    }
1247
1248
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1249
                                       const OpaqueValueExpr *ov,
1250
365
                                       const LValue &lv) {
1251
365
      assert(shouldBindAsLValue(ov));
1252
0
      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1253
365
      return OpaqueValueMappingData(ov, true);
1254
365
    }
1255
1256
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1257
                                       const OpaqueValueExpr *ov,
1258
1.65k
                                       const RValue &rv) {
1259
1.65k
      assert(!shouldBindAsLValue(ov));
1260
0
      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1261
1262
1.65k
      OpaqueValueMappingData data(ov, false);
1263
1264
      // Work around an extremely aggressive peephole optimization in
1265
      // EmitScalarConversion which assumes that all other uses of a
1266
      // value are extant.
1267
1.65k
      data.Protection = CGF.protectFromPeepholes(rv);
1268
1269
1.65k
      return data;
1270
1.65k
    }
1271
1272
12.7k
    bool isValid() const { return OpaqueValue != nullptr; }
1273
6
    void clear() { OpaqueValue = nullptr; }
1274
1275
2.02k
    void unbind(CodeGenFunction &CGF) {
1276
2.02k
      assert(OpaqueValue && "no data to unbind!");
1277
1278
2.02k
      if (BoundLValue) {
1279
365
        CGF.OpaqueLValues.erase(OpaqueValue);
1280
1.65k
      } else {
1281
1.65k
        CGF.OpaqueRValues.erase(OpaqueValue);
1282
1.65k
        CGF.unprotectFromPeepholes(Protection);
1283
1.65k
      }
1284
2.02k
    }
1285
  };
1286
1287
  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1288
  class OpaqueValueMapping {
1289
    CodeGenFunction &CGF;
1290
    OpaqueValueMappingData Data;
1291
1292
  public:
1293
3.27k
    static bool shouldBindAsLValue(const Expr *expr) {
1294
3.27k
      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1295
3.27k
    }
1296
1297
    /// Build the opaque value mapping for the given conditional
1298
    /// operator if it's the GNU ?: extension.  This is a common
1299
    /// enough pattern that the convenience operator is really
1300
    /// helpful.
1301
    ///
1302
    OpaqueValueMapping(CodeGenFunction &CGF,
1303
11.1k
                       const AbstractConditionalOperator *op) : CGF(CGF) {
1304
11.1k
      if (isa<ConditionalOperator>(op))
1305
        // Leave Data empty.
1306
11.1k
        return;
1307
1308
29
      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1309
29
      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1310
29
                                          e->getCommon());
1311
29
    }
1312
1313
    /// Build the opaque value mapping for an OpaqueValueExpr whose source
1314
    /// expression is set to the expression the OVE represents.
1315
    OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1316
28
        : CGF(CGF) {
1317
28
      if (OV) {
1318
28
        assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1319
28
                                      "for OVE with no source expression");
1320
0
        Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1321
28
      }
1322
28
    }
1323
1324
    OpaqueValueMapping(CodeGenFunction &CGF,
1325
                       const OpaqueValueExpr *opaqueValue,
1326
                       LValue lvalue)
1327
169
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1328
169
    }
1329
1330
    OpaqueValueMapping(CodeGenFunction &CGF,
1331
                       const OpaqueValueExpr *opaqueValue,
1332
                       RValue rvalue)
1333
1.38k
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1334
1.38k
    }
1335
1336
6
    void pop() {
1337
6
      Data.unbind(CGF);
1338
6
      Data.clear();
1339
6
    }
1340
1341
12.7k
    ~OpaqueValueMapping() {
1342
12.7k
      if (Data.isValid()) 
Data.unbind(CGF)1.60k
;
1343
12.7k
    }
1344
  };
1345
1346
private:
1347
  CGDebugInfo *DebugInfo;
1348
  /// Used to create unique names for artificial VLA size debug info variables.
1349
  unsigned VLAExprCounter = 0;
1350
  bool DisableDebugInfo = false;
1351
1352
  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1353
  /// calling llvm.stacksave for multiple VLAs in the same scope.
1354
  bool DidCallStackSave = false;
1355
1356
  /// IndirectBranch - The first time an indirect goto is seen we create a block
1357
  /// with an indirect branch.  Every time we see the address of a label taken,
1358
  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1359
  /// codegen'd as a jump to the IndirectBranch's basic block.
1360
  llvm::IndirectBrInst *IndirectBranch = nullptr;
1361
1362
  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1363
  /// decls.
1364
  DeclMapTy LocalDeclMap;
1365
1366
  // Keep track of the cleanups for callee-destructed parameters pushed to the
1367
  // cleanup stack so that they can be deactivated later.
1368
  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1369
      CalleeDestructedParamCleanups;
1370
1371
  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1372
  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1373
  /// parameter.
1374
  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1375
      SizeArguments;
1376
1377
  /// Track escaped local variables with auto storage. Used during SEH
1378
  /// outlining to produce a call to llvm.localescape.
1379
  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1380
1381
  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1382
  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1383
1384
  // BreakContinueStack - This keeps track of where break and continue
1385
  // statements should jump to.
1386
  struct BreakContinue {
1387
    BreakContinue(JumpDest Break, JumpDest Continue)
1388
46.0k
      : BreakBlock(Break), ContinueBlock(Continue) {}
1389
1390
    JumpDest BreakBlock;
1391
    JumpDest ContinueBlock;
1392
  };
1393
  SmallVector<BreakContinue, 8> BreakContinueStack;
1394
1395
  /// Handles cancellation exit points in OpenMP-related constructs.
1396
  class OpenMPCancelExitStack {
1397
    /// Tracks cancellation exit point and join point for cancel-related exit
1398
    /// and normal exit.
1399
    struct CancelExit {
1400
376k
      CancelExit() = default;
1401
      CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1402
                 JumpDest ContBlock)
1403
4.33k
          : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1404
      OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1405
      /// true if the exit block has been emitted already by the special
1406
      /// emitExit() call, false if the default codegen is used.
1407
      bool HasBeenEmitted = false;
1408
      JumpDest ExitBlock;
1409
      JumpDest ContBlock;
1410
    };
1411
1412
    SmallVector<CancelExit, 8> Stack;
1413
1414
  public:
1415
376k
    OpenMPCancelExitStack() : Stack(1) {}
1416
376k
    ~OpenMPCancelExitStack() = default;
1417
    /// Fetches the exit block for the current OpenMP construct.
1418
8.95k
    JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1419
    /// Emits exit block with special codegen procedure specific for the related
1420
    /// OpenMP construct + emits code for normal construct cleanup.
1421
    void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1422
4.92k
                  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1423
4.92k
      if (Stack.back().Kind == Kind && 
getExitBlock().isValid()4.30k
) {
1424
93
        assert(CGF.getOMPCancelDestination(Kind).isValid());
1425
0
        assert(CGF.HaveInsertPoint());
1426
0
        assert(!Stack.back().HasBeenEmitted);
1427
0
        auto IP = CGF.Builder.saveAndClearIP();
1428
93
        CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1429
93
        CodeGen(CGF);
1430
93
        CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1431
93
        CGF.Builder.restoreIP(IP);
1432
93
        Stack.back().HasBeenEmitted = true;
1433
93
      }
1434
0
      CodeGen(CGF);
1435
4.92k
    }
1436
    /// Enter the cancel supporting \a Kind construct.
1437
    /// \param Kind OpenMP directive that supports cancel constructs.
1438
    /// \param HasCancel true, if the construct has inner cancel directive,
1439
    /// false otherwise.
1440
4.33k
    void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1441
4.33k
      Stack.push_back({Kind,
1442
4.33k
                       HasCancel ? 
CGF.getJumpDestInCurrentScope("cancel.exit")93
1443
4.33k
                                 : 
JumpDest()4.24k
,
1444
4.33k
                       HasCancel ? 
CGF.getJumpDestInCurrentScope("cancel.cont")93
1445
4.33k
                                 : 
JumpDest()4.24k
});
1446
4.33k
    }
1447
    /// Emits default exit point for the cancel construct (if the special one
1448
    /// has not be used) + join point for cancel/normal exits.
1449
4.33k
    void exit(CodeGenFunction &CGF) {
1450
4.33k
      if (getExitBlock().isValid()) {
1451
93
        assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1452
0
        bool HaveIP = CGF.HaveInsertPoint();
1453
93
        if (!Stack.back().HasBeenEmitted) {
1454
0
          if (HaveIP)
1455
0
            CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1456
0
          CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1457
0
          CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1458
0
        }
1459
93
        CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1460
93
        if (!HaveIP) {
1461
0
          CGF.Builder.CreateUnreachable();
1462
0
          CGF.Builder.ClearInsertionPoint();
1463
0
        }
1464
93
      }
1465
0
      Stack.pop_back();
1466
4.33k
    }
1467
  };
1468
  OpenMPCancelExitStack OMPCancelStack;
1469
1470
  /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1471
  llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1472
                                                    Stmt::Likelihood LH);
1473
1474
  CodeGenPGO PGO;
1475
1476
  /// Calculate branch weights appropriate for PGO data
1477
  llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1478
                                     uint64_t FalseCount) const;
1479
  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1480
  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1481
                                            uint64_t LoopCount) const;
1482
1483
public:
1484
  /// Increment the profiler's counter for the given statement by \p StepV.
1485
  /// If \p StepV is null, the default increment is 1.
1486
515k
  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1487
515k
    if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1488
515k
        
!CurFn->hasFnAttribute(llvm::Attribute::NoProfile)1.13k
)
1489
1.12k
      PGO.emitCounterIncrement(Builder, S, StepV);
1490
515k
    PGO.setCurrentStmt(S);
1491
515k
  }
1492
1493
  /// Get the profiler's count for the given statement.
1494
175k
  uint64_t getProfileCount(const Stmt *S) {
1495
175k
    Optional<uint64_t> Count = PGO.getStmtCount(S);
1496
175k
    if (!Count.hasValue())
1497
175k
      return 0;
1498
463
    return *Count;
1499
175k
  }
1500
1501
  /// Set the profiler's current count.
1502
9.30k
  void setCurrentProfileCount(uint64_t Count) {
1503
9.30k
    PGO.setCurrentRegionCount(Count);
1504
9.30k
  }
1505
1506
  /// Get the profiler's current count. This is generally the count for the most
1507
  /// recently incremented counter.
1508
157k
  uint64_t getCurrentProfileCount() {
1509
157k
    return PGO.getCurrentRegionCount();
1510
157k
  }
1511
1512
private:
1513
1514
  /// SwitchInsn - This is nearest current switch instruction. It is null if
1515
  /// current context is not in a switch.
1516
  llvm::SwitchInst *SwitchInsn = nullptr;
1517
  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1518
  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1519
1520
  /// The likelihood attributes of the SwitchCase.
1521
  SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1522
1523
  /// CaseRangeBlock - This block holds if condition check for last case
1524
  /// statement range in current switch instruction.
1525
  llvm::BasicBlock *CaseRangeBlock = nullptr;
1526
1527
  /// OpaqueLValues - Keeps track of the current set of opaque value
1528
  /// expressions.
1529
  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1530
  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1531
1532
  // VLASizeMap - This keeps track of the associated size for each VLA type.
1533
  // We track this by the size expression rather than the type itself because
1534
  // in certain situations, like a const qualifier applied to an VLA typedef,
1535
  // multiple VLA types can share the same size expression.
1536
  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1537
  // enter/leave scopes.
1538
  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1539
1540
  /// A block containing a single 'unreachable' instruction.  Created
1541
  /// lazily by getUnreachableBlock().
1542
  llvm::BasicBlock *UnreachableBlock = nullptr;
1543
1544
  /// Counts of the number return expressions in the function.
1545
  unsigned NumReturnExprs = 0;
1546
1547
  /// Count the number of simple (constant) return expressions in the function.
1548
  unsigned NumSimpleReturnExprs = 0;
1549
1550
  /// The last regular (non-return) debug location (breakpoint) in the function.
1551
  SourceLocation LastStopPoint;
1552
1553
public:
1554
  /// Source location information about the default argument or member
1555
  /// initializer expression we're evaluating, if any.
1556
  CurrentSourceLocExprScope CurSourceLocExprScope;
1557
  using SourceLocExprScopeGuard =
1558
      CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1559
1560
  /// A scope within which we are constructing the fields of an object which
1561
  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1562
  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1563
  class FieldConstructionScope {
1564
  public:
1565
    FieldConstructionScope(CodeGenFunction &CGF, Address This)
1566
25.9k
        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1567
25.9k
      CGF.CXXDefaultInitExprThis = This;
1568
25.9k
    }
1569
25.9k
    ~FieldConstructionScope() {
1570
25.9k
      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1571
25.9k
    }
1572
1573
  private:
1574
    CodeGenFunction &CGF;
1575
    Address OldCXXDefaultInitExprThis;
1576
  };
1577
1578
  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1579
  /// is overridden to be the object under construction.
1580
  class CXXDefaultInitExprScope  {
1581
  public:
1582
    CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1583
        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1584
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1585
488
          SourceLocScope(E, CGF.CurSourceLocExprScope) {
1586
488
      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1587
488
      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1588
488
    }
1589
488
    ~CXXDefaultInitExprScope() {
1590
488
      CGF.CXXThisValue = OldCXXThisValue;
1591
488
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1592
488
    }
1593
1594
  public:
1595
    CodeGenFunction &CGF;
1596
    llvm::Value *OldCXXThisValue;
1597
    CharUnits OldCXXThisAlignment;
1598
    SourceLocExprScopeGuard SourceLocScope;
1599
  };
1600
1601
  struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1602
    CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1603
4.07k
        : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1604
  };
1605
1606
  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1607
  /// current loop index is overridden.
1608
  class ArrayInitLoopExprScope {
1609
  public:
1610
    ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1611
28
      : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1612
28
      CGF.ArrayInitIndex = Index;
1613
28
    }
1614
28
    ~ArrayInitLoopExprScope() {
1615
28
      CGF.ArrayInitIndex = OldArrayInitIndex;
1616
28
    }
1617
1618
  private:
1619
    CodeGenFunction &CGF;
1620
    llvm::Value *OldArrayInitIndex;
1621
  };
1622
1623
  class InlinedInheritingConstructorScope {
1624
  public:
1625
    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1626
        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1627
          OldCurCodeDecl(CGF.CurCodeDecl),
1628
          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1629
          OldCXXABIThisValue(CGF.CXXABIThisValue),
1630
          OldCXXThisValue(CGF.CXXThisValue),
1631
          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1632
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1633
          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1634
          OldCXXInheritedCtorInitExprArgs(
1635
47
              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1636
47
      CGF.CurGD = GD;
1637
47
      CGF.CurFuncDecl = CGF.CurCodeDecl =
1638
47
          cast<CXXConstructorDecl>(GD.getDecl());
1639
47
      CGF.CXXABIThisDecl = nullptr;
1640
47
      CGF.CXXABIThisValue = nullptr;
1641
47
      CGF.CXXThisValue = nullptr;
1642
47
      CGF.CXXABIThisAlignment = CharUnits();
1643
47
      CGF.CXXThisAlignment = CharUnits();
1644
47
      CGF.ReturnValue = Address::invalid();
1645
47
      CGF.FnRetTy = QualType();
1646
47
      CGF.CXXInheritedCtorInitExprArgs.clear();
1647
47
    }
1648
47
    ~InlinedInheritingConstructorScope() {
1649
47
      CGF.CurGD = OldCurGD;
1650
47
      CGF.CurFuncDecl = OldCurFuncDecl;
1651
47
      CGF.CurCodeDecl = OldCurCodeDecl;
1652
47
      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1653
47
      CGF.CXXABIThisValue = OldCXXABIThisValue;
1654
47
      CGF.CXXThisValue = OldCXXThisValue;
1655
47
      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1656
47
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1657
47
      CGF.ReturnValue = OldReturnValue;
1658
47
      CGF.FnRetTy = OldFnRetTy;
1659
47
      CGF.CXXInheritedCtorInitExprArgs =
1660
47
          std::move(OldCXXInheritedCtorInitExprArgs);
1661
47
    }
1662
1663
  private:
1664
    CodeGenFunction &CGF;
1665
    GlobalDecl OldCurGD;
1666
    const Decl *OldCurFuncDecl;
1667
    const Decl *OldCurCodeDecl;
1668
    ImplicitParamDecl *OldCXXABIThisDecl;
1669
    llvm::Value *OldCXXABIThisValue;
1670
    llvm::Value *OldCXXThisValue;
1671
    CharUnits OldCXXABIThisAlignment;
1672
    CharUnits OldCXXThisAlignment;
1673
    Address OldReturnValue;
1674
    QualType OldFnRetTy;
1675
    CallArgList OldCXXInheritedCtorInitExprArgs;
1676
  };
1677
1678
  // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1679
  // region body, and finalization codegen callbacks. This will class will also
1680
  // contain privatization functions used by the privatization call backs
1681
  //
1682
  // TODO: this is temporary class for things that are being moved out of
1683
  // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1684
  // utility function for use with the OMPBuilder. Once that move to use the
1685
  // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1686
  // directly, or a new helper class that will contain functions used by both
1687
  // this and the OMPBuilder
1688
1689
  struct OMPBuilderCBHelpers {
1690
1691
    OMPBuilderCBHelpers() = delete;
1692
    OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1693
    OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1694
1695
    using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1696
1697
    /// Cleanup action for allocate support.
1698
    class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1699
1700
    private:
1701
      llvm::CallInst *RTLFnCI;
1702
1703
    public:
1704
0
      OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1705
0
        RLFnCI->removeFromParent();
1706
0
      }
1707
1708
0
      void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1709
0
        if (!CGF.HaveInsertPoint())
1710
0
          return;
1711
0
        CGF.Builder.Insert(RTLFnCI);
1712
0
      }
1713
    };
1714
1715
    /// Returns address of the threadprivate variable for the current
1716
    /// thread. This Also create any necessary OMP runtime calls.
1717
    ///
1718
    /// \param VD VarDecl for Threadprivate variable.
1719
    /// \param VDAddr Address of the Vardecl
1720
    /// \param Loc  The location where the barrier directive was encountered
1721
    static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1722
                                          const VarDecl *VD, Address VDAddr,
1723
                                          SourceLocation Loc);
1724
1725
    /// Gets the OpenMP-specific address of the local variable /p VD.
1726
    static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1727
                                             const VarDecl *VD);
1728
    /// Get the platform-specific name separator.
1729
    /// \param Parts different parts of the final name that needs separation
1730
    /// \param FirstSeparator First separator used between the initial two
1731
    ///        parts of the name.
1732
    /// \param Separator separator used between all of the rest consecutinve
1733
    ///        parts of the name
1734
    static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1735
                                             StringRef FirstSeparator = ".",
1736
                                             StringRef Separator = ".");
1737
    /// Emit the Finalization for an OMP region
1738
    /// \param CGF  The Codegen function this belongs to
1739
    /// \param IP Insertion point for generating the finalization code.
1740
146
    static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1741
146
      CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1742
146
      assert(IP.getBlock()->end() != IP.getPoint() &&
1743
146
             "OpenMP IR Builder should cause terminated block!");
1744
1745
0
      llvm::BasicBlock *IPBB = IP.getBlock();
1746
146
      llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1747
146
      assert(DestBB && "Finalization block should have one successor!");
1748
1749
      // erase and replace with cleanup branch.
1750
0
      IPBB->getTerminator()->eraseFromParent();
1751
146
      CGF.Builder.SetInsertPoint(IPBB);
1752
146
      CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1753
146
      CGF.EmitBranchThroughCleanup(Dest);
1754
146
    }
1755
1756
    /// Emit the body of an OMP region
1757
    /// \param CGF  The Codegen function this belongs to
1758
    /// \param RegionBodyStmt The body statement for the OpenMP region being
1759
    ///        generated
1760
    /// \param CodeGenIP  Insertion point for generating the body code.
1761
    /// \param FiniBB The finalization basic block
1762
    static void EmitOMPRegionBody(CodeGenFunction &CGF,
1763
                                  const Stmt *RegionBodyStmt,
1764
                                  InsertPointTy CodeGenIP,
1765
130
                                  llvm::BasicBlock &FiniBB) {
1766
130
      llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1767
130
      if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1768
118
        CodeGenIPBBTI->eraseFromParent();
1769
1770
130
      CGF.Builder.SetInsertPoint(CodeGenIPBB);
1771
1772
130
      CGF.EmitStmt(RegionBodyStmt);
1773
1774
130
      if (CGF.Builder.saveIP().isSet())
1775
126
        CGF.Builder.CreateBr(&FiniBB);
1776
130
    }
1777
1778
    /// RAII for preserving necessary info during Outlined region body codegen.
1779
    class OutlinedRegionBodyRAII {
1780
1781
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1782
      CodeGenFunction::JumpDest OldReturnBlock;
1783
      CGBuilderTy::InsertPoint IP;
1784
      CodeGenFunction &CGF;
1785
1786
    public:
1787
      OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1788
                             llvm::BasicBlock &RetBB)
1789
50
          : CGF(cgf) {
1790
50
        assert(AllocaIP.isSet() &&
1791
50
               "Must specify Insertion point for allocas of outlined function");
1792
0
        OldAllocaIP = CGF.AllocaInsertPt;
1793
50
        CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1794
50
        IP = CGF.Builder.saveIP();
1795
1796
50
        OldReturnBlock = CGF.ReturnBlock;
1797
50
        CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1798
50
      }
1799
1800
50
      ~OutlinedRegionBodyRAII() {
1801
50
        CGF.AllocaInsertPt = OldAllocaIP;
1802
50
        CGF.ReturnBlock = OldReturnBlock;
1803
50
        CGF.Builder.restoreIP(IP);
1804
50
      }
1805
    };
1806
1807
    /// RAII for preserving necessary info during inlined region body codegen.
1808
    class InlinedRegionBodyRAII {
1809
1810
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1811
      CodeGenFunction &CGF;
1812
1813
    public:
1814
      InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1815
                            llvm::BasicBlock &FiniBB)
1816
80
          : CGF(cgf) {
1817
        // Alloca insertion block should be in the entry block of the containing
1818
        // function so it expects an empty AllocaIP in which case will reuse the
1819
        // old alloca insertion point, or a new AllocaIP in the same block as
1820
        // the old one
1821
80
        assert((!AllocaIP.isSet() ||
1822
80
                CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1823
80
               "Insertion point should be in the entry block of containing "
1824
80
               "function!");
1825
0
        OldAllocaIP = CGF.AllocaInsertPt;
1826
80
        if (AllocaIP.isSet())
1827
0
          CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1828
1829
        // TODO: Remove the call, after making sure the counter is not used by
1830
        //       the EHStack.
1831
        // Since this is an inlined region, it should not modify the
1832
        // ReturnBlock, and should reuse the one for the enclosing outlined
1833
        // region. So, the JumpDest being return by the function is discarded
1834
80
        (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1835
80
      }
1836
1837
80
      ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1838
    };
1839
  };
1840
1841
private:
1842
  /// CXXThisDecl - When generating code for a C++ member function,
1843
  /// this will hold the implicit 'this' declaration.
1844
  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1845
  llvm::Value *CXXABIThisValue = nullptr;
1846
  llvm::Value *CXXThisValue = nullptr;
1847
  CharUnits CXXABIThisAlignment;
1848
  CharUnits CXXThisAlignment;
1849
1850
  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1851
  /// this expression.
1852
  Address CXXDefaultInitExprThis = Address::invalid();
1853
1854
  /// The current array initialization index when evaluating an
1855
  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1856
  llvm::Value *ArrayInitIndex = nullptr;
1857
1858
  /// The values of function arguments to use when evaluating
1859
  /// CXXInheritedCtorInitExprs within this context.
1860
  CallArgList CXXInheritedCtorInitExprArgs;
1861
1862
  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1863
  /// destructor, this will hold the implicit argument (e.g. VTT).
1864
  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1865
  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1866
1867
  /// OutermostConditional - Points to the outermost active
1868
  /// conditional control.  This is used so that we know if a
1869
  /// temporary should be destroyed conditionally.
1870
  ConditionalEvaluation *OutermostConditional = nullptr;
1871
1872
  /// The current lexical scope.
1873
  LexicalScope *CurLexicalScope = nullptr;
1874
1875
  /// The current source location that should be used for exception
1876
  /// handling code.
1877
  SourceLocation CurEHLocation;
1878
1879
  /// BlockByrefInfos - For each __block variable, contains
1880
  /// information about the layout of the variable.
1881
  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1882
1883
  /// Used by -fsanitize=nullability-return to determine whether the return
1884
  /// value can be checked.
1885
  llvm::Value *RetValNullabilityPrecondition = nullptr;
1886
1887
  /// Check if -fsanitize=nullability-return instrumentation is required for
1888
  /// this function.
1889
1.60M
  bool requiresReturnValueNullabilityCheck() const {
1890
1.60M
    return RetValNullabilityPrecondition;
1891
1.60M
  }
1892
1893
  /// Used to store precise source locations for return statements by the
1894
  /// runtime return value checks.
1895
  Address ReturnLocation = Address::invalid();
1896
1897
  /// Check if the return value of this function requires sanitization.
1898
  bool requiresReturnValueCheck() const;
1899
1900
  llvm::BasicBlock *TerminateLandingPad = nullptr;
1901
  llvm::BasicBlock *TerminateHandler = nullptr;
1902
  llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1903
1904
  /// Terminate funclets keyed by parent funclet pad.
1905
  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1906
1907
  /// Largest vector width used in ths function. Will be used to create a
1908
  /// function attribute.
1909
  unsigned LargestVectorWidth = 0;
1910
1911
  /// True if we need emit the life-time markers. This is initially set in
1912
  /// the constructor, but could be overwritten to true if this is a coroutine.
1913
  bool ShouldEmitLifetimeMarkers;
1914
1915
  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1916
  /// the function metadata.
1917
  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1918
                                llvm::Function *Fn);
1919
1920
public:
1921
  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1922
  ~CodeGenFunction();
1923
1924
615k
  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1925
19.0M
  ASTContext &getContext() const { return CGM.getContext(); }
1926
14.2M
  CGDebugInfo *getDebugInfo() {
1927
14.2M
    if (DisableDebugInfo)
1928
7.80k
      return nullptr;
1929
14.2M
    return DebugInfo;
1930
14.2M
  }
1931
2.83k
  void disableDebugInfo() { DisableDebugInfo = true; }
1932
2.83k
  void enableDebugInfo() { DisableDebugInfo = false; }
1933
1934
219
  bool shouldUseFusedARCCalls() {
1935
219
    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1936
219
  }
1937
1938
13.7M
  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1939
1940
  /// Returns a pointer to the function's exception object and selector slot,
1941
  /// which is assigned in every landing pad.
1942
  Address getExceptionSlot();
1943
  Address getEHSelectorSlot();
1944
1945
  /// Returns the contents of the function's exception object and selector
1946
  /// slots.
1947
  llvm::Value *getExceptionFromSlot();
1948
  llvm::Value *getSelectorFromSlot();
1949
1950
  Address getNormalCleanupDestSlot();
1951
1952
379
  llvm::BasicBlock *getUnreachableBlock() {
1953
379
    if (!UnreachableBlock) {
1954
337
      UnreachableBlock = createBasicBlock("unreachable");
1955
337
      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1956
337
    }
1957
379
    return UnreachableBlock;
1958
379
  }
1959
1960
244k
  llvm::BasicBlock *getInvokeDest() {
1961
244k
    if (!EHStack.requiresLandingPad()) 
return nullptr206k
;
1962
37.4k
    return getInvokeDestImpl();
1963
244k
  }
1964
1965
385k
  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1966
1967
839k
  const TargetInfo &getTarget() const { return Target; }
1968
3.92M
  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1969
28.8k
  const TargetCodeGenInfo &getTargetHooks() const {
1970
28.8k
    return CGM.getTargetCodeGenInfo();
1971
28.8k
  }
1972
1973
  //===--------------------------------------------------------------------===//
1974
  //                                  Cleanups
1975
  //===--------------------------------------------------------------------===//
1976
1977
  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1978
1979
  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1980
                                        Address arrayEndPointer,
1981
                                        QualType elementType,
1982
                                        CharUnits elementAlignment,
1983
                                        Destroyer *destroyer);
1984
  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1985
                                      llvm::Value *arrayEnd,
1986
                                      QualType elementType,
1987
                                      CharUnits elementAlignment,
1988
                                      Destroyer *destroyer);
1989
1990
  void pushDestroy(QualType::DestructionKind dtorKind,
1991
                   Address addr, QualType type);
1992
  void pushEHDestroy(QualType::DestructionKind dtorKind,
1993
                     Address addr, QualType type);
1994
  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1995
                   Destroyer *destroyer, bool useEHCleanupForArray);
1996
  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1997
                                   QualType type, Destroyer *destroyer,
1998
                                   bool useEHCleanupForArray);
1999
  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2000
                                   llvm::Value *CompletePtr,
2001
                                   QualType ElementType);
2002
  void pushStackRestore(CleanupKind kind, Address SPMem);
2003
  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2004
                   bool useEHCleanupForArray);
2005
  llvm::Function *generateDestroyHelper(Address addr, QualType type,
2006
                                        Destroyer *destroyer,
2007
                                        bool useEHCleanupForArray,
2008
                                        const VarDecl *VD);
2009
  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2010
                        QualType elementType, CharUnits elementAlign,
2011
                        Destroyer *destroyer,
2012
                        bool checkZeroLength, bool useEHCleanup);
2013
2014
  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2015
2016
  /// Determines whether an EH cleanup is required to destroy a type
2017
  /// with the given destruction kind.
2018
23.5k
  bool needsEHCleanup(QualType::DestructionKind kind) {
2019
23.5k
    switch (kind) {
2020
17.2k
    case QualType::DK_none:
2021
17.2k
      return false;
2022
5.20k
    case QualType::DK_cxx_destructor:
2023
5.69k
    case QualType::DK_objc_weak_lifetime:
2024
5.78k
    case QualType::DK_nontrivial_c_struct:
2025
5.78k
      return getLangOpts().Exceptions;
2026
517
    case QualType::DK_objc_strong_lifetime:
2027
517
      return getLangOpts().Exceptions &&
2028
517
             
CGM.getCodeGenOpts().ObjCAutoRefCountExceptions67
;
2029
23.5k
    }
2030
0
    llvm_unreachable("bad destruction kind");
2031
0
  }
2032
2033
1.84k
  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2034
1.84k
    return (needsEHCleanup(kind) ? 
NormalAndEHCleanup890
:
NormalCleanup958
);
2035
1.84k
  }
2036
2037
  //===--------------------------------------------------------------------===//
2038
  //                                  Objective-C
2039
  //===--------------------------------------------------------------------===//
2040
2041
  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2042
2043
  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2044
2045
  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2046
  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2047
                          const ObjCPropertyImplDecl *PID);
2048
  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2049
                              const ObjCPropertyImplDecl *propImpl,
2050
                              const ObjCMethodDecl *GetterMothodDecl,
2051
                              llvm::Constant *AtomicHelperFn);
2052
2053
  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2054
                                  ObjCMethodDecl *MD, bool ctor);
2055
2056
  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2057
  /// for the given property.
2058
  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2059
                          const ObjCPropertyImplDecl *PID);
2060
  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2061
                              const ObjCPropertyImplDecl *propImpl,
2062
                              llvm::Constant *AtomicHelperFn);
2063
2064
  //===--------------------------------------------------------------------===//
2065
  //                                  Block Bits
2066
  //===--------------------------------------------------------------------===//
2067
2068
  /// Emit block literal.
2069
  /// \return an LLVM value which is a pointer to a struct which contains
2070
  /// information about the block, including the block invoke function, the
2071
  /// captured variables, etc.
2072
  llvm::Value *EmitBlockLiteral(const BlockExpr *);
2073
2074
  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2075
                                        const CGBlockInfo &Info,
2076
                                        const DeclMapTy &ldm,
2077
                                        bool IsLambdaConversionToBlock,
2078
                                        bool BuildGlobalBlock);
2079
2080
  /// Check if \p T is a C++ class that has a destructor that can throw.
2081
  static bool cxxDestructorCanThrow(QualType T);
2082
2083
  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2084
  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2085
  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2086
                                             const ObjCPropertyImplDecl *PID);
2087
  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2088
                                             const ObjCPropertyImplDecl *PID);
2089
  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2090
2091
  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2092
                         bool CanThrow);
2093
2094
  class AutoVarEmission;
2095
2096
  void emitByrefStructureInit(const AutoVarEmission &emission);
2097
2098
  /// Enter a cleanup to destroy a __block variable.  Note that this
2099
  /// cleanup should be a no-op if the variable hasn't left the stack
2100
  /// yet; if a cleanup is required for the variable itself, that needs
2101
  /// to be done externally.
2102
  ///
2103
  /// \param Kind Cleanup kind.
2104
  ///
2105
  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2106
  /// structure that will be passed to _Block_object_dispose. When
2107
  /// \p LoadBlockVarAddr is true, the address of the field of the block
2108
  /// structure that holds the address of the __block structure.
2109
  ///
2110
  /// \param Flags The flag that will be passed to _Block_object_dispose.
2111
  ///
2112
  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2113
  /// \p Addr to get the address of the __block structure.
2114
  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2115
                         bool LoadBlockVarAddr, bool CanThrow);
2116
2117
  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2118
                                llvm::Value *ptr);
2119
2120
  Address LoadBlockStruct();
2121
  Address GetAddrOfBlockDecl(const VarDecl *var);
2122
2123
  /// BuildBlockByrefAddress - Computes the location of the
2124
  /// data in a variable which is declared as __block.
2125
  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2126
                                bool followForward = true);
2127
  Address emitBlockByrefAddress(Address baseAddr,
2128
                                const BlockByrefInfo &info,
2129
                                bool followForward,
2130
                                const llvm::Twine &name);
2131
2132
  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2133
2134
  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2135
2136
  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2137
                    const CGFunctionInfo &FnInfo);
2138
2139
  /// Annotate the function with an attribute that disables TSan checking at
2140
  /// runtime.
2141
  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2142
2143
  /// Emit code for the start of a function.
2144
  /// \param Loc       The location to be associated with the function.
2145
  /// \param StartLoc  The location of the function body.
2146
  void StartFunction(GlobalDecl GD,
2147
                     QualType RetTy,
2148
                     llvm::Function *Fn,
2149
                     const CGFunctionInfo &FnInfo,
2150
                     const FunctionArgList &Args,
2151
                     SourceLocation Loc = SourceLocation(),
2152
                     SourceLocation StartLoc = SourceLocation());
2153
2154
  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2155
2156
  void EmitConstructorBody(FunctionArgList &Args);
2157
  void EmitDestructorBody(FunctionArgList &Args);
2158
  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2159
  void EmitFunctionBody(const Stmt *Body);
2160
  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2161
2162
  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2163
                                  CallArgList &CallArgs);
2164
  void EmitLambdaBlockInvokeBody();
2165
  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2166
  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2167
71
  void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2168
71
    EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2169
71
  }
2170
  void EmitAsanPrologueOrEpilogue(bool Prologue);
2171
2172
  /// Emit the unified return block, trying to avoid its emission when
2173
  /// possible.
2174
  /// \return The debug location of the user written return statement if the
2175
  /// return block is is avoided.
2176
  llvm::DebugLoc EmitReturnBlock();
2177
2178
  /// FinishFunction - Complete IR generation of the current function. It is
2179
  /// legal to call this function even if there is no current insertion point.
2180
  void FinishFunction(SourceLocation EndLoc=SourceLocation());
2181
2182
  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2183
                  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2184
2185
  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2186
                                 const ThunkInfo *Thunk, bool IsUnprototyped);
2187
2188
  void FinishThunk();
2189
2190
  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2191
  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2192
                         llvm::FunctionCallee Callee);
2193
2194
  /// Generate a thunk for the given method.
2195
  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2196
                     GlobalDecl GD, const ThunkInfo &Thunk,
2197
                     bool IsUnprototyped);
2198
2199
  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2200
                                       const CGFunctionInfo &FnInfo,
2201
                                       GlobalDecl GD, const ThunkInfo &Thunk);
2202
2203
  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2204
                        FunctionArgList &Args);
2205
2206
  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2207
2208
  /// Struct with all information about dynamic [sub]class needed to set vptr.
2209
  struct VPtr {
2210
    BaseSubobject Base;
2211
    const CXXRecordDecl *NearestVBase;
2212
    CharUnits OffsetFromNearestVBase;
2213
    const CXXRecordDecl *VTableClass;
2214
  };
2215
2216
  /// Initialize the vtable pointer of the given subobject.
2217
  void InitializeVTablePointer(const VPtr &vptr);
2218
2219
  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2220
2221
  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2222
  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2223
2224
  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2225
                         CharUnits OffsetFromNearestVBase,
2226
                         bool BaseIsNonVirtualPrimaryBase,
2227
                         const CXXRecordDecl *VTableClass,
2228
                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2229
2230
  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2231
2232
  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2233
  /// to by This.
2234
  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2235
                            const CXXRecordDecl *VTableClass);
2236
2237
  enum CFITypeCheckKind {
2238
    CFITCK_VCall,
2239
    CFITCK_NVCall,
2240
    CFITCK_DerivedCast,
2241
    CFITCK_UnrelatedCast,
2242
    CFITCK_ICall,
2243
    CFITCK_NVMFCall,
2244
    CFITCK_VMFCall,
2245
  };
2246
2247
  /// Derived is the presumed address of an object of type T after a
2248
  /// cast. If T is a polymorphic class type, emit a check that the virtual
2249
  /// table for Derived belongs to a class derived from T.
2250
  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2251
                                 bool MayBeNull, CFITypeCheckKind TCK,
2252
                                 SourceLocation Loc);
2253
2254
  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2255
  /// If vptr CFI is enabled, emit a check that VTable is valid.
2256
  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2257
                                 CFITypeCheckKind TCK, SourceLocation Loc);
2258
2259
  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2260
  /// RD using llvm.type.test.
2261
  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2262
                          CFITypeCheckKind TCK, SourceLocation Loc);
2263
2264
  /// If whole-program virtual table optimization is enabled, emit an assumption
2265
  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2266
  /// enabled, emit a check that VTable is a member of RD's type identifier.
2267
  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2268
                                    llvm::Value *VTable, SourceLocation Loc);
2269
2270
  /// Returns whether we should perform a type checked load when loading a
2271
  /// virtual function for virtual calls to members of RD. This is generally
2272
  /// true when both vcall CFI and whole-program-vtables are enabled.
2273
  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2274
2275
  /// Emit a type checked load from the given vtable.
2276
  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2277
                                         uint64_t VTableByteOffset);
2278
2279
  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2280
  /// given phase of destruction for a destructor.  The end result
2281
  /// should call destructors on members and base classes in reverse
2282
  /// order of their construction.
2283
  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2284
2285
  /// ShouldInstrumentFunction - Return true if the current function should be
2286
  /// instrumented with __cyg_profile_func_* calls
2287
  bool ShouldInstrumentFunction();
2288
2289
  /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2290
  /// should not be instrumented with sanitizers.
2291
  bool ShouldSkipSanitizerInstrumentation();
2292
2293
  /// ShouldXRayInstrument - Return true if the current function should be
2294
  /// instrumented with XRay nop sleds.
2295
  bool ShouldXRayInstrumentFunction() const;
2296
2297
  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2298
  /// XRay custom event handling calls.
2299
  bool AlwaysEmitXRayCustomEvents() const;
2300
2301
  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2302
  /// XRay typed event handling calls.
2303
  bool AlwaysEmitXRayTypedEvents() const;
2304
2305
  /// Encode an address into a form suitable for use in a function prologue.
2306
  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2307
                                             llvm::Constant *Addr);
2308
2309
  /// Decode an address used in a function prologue, encoded by \c
2310
  /// EncodeAddrForUseInPrologue.
2311
  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2312
                                        llvm::Value *EncodedAddr);
2313
2314
  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2315
  /// arguments for the given function. This is also responsible for naming the
2316
  /// LLVM function arguments.
2317
  void EmitFunctionProlog(const CGFunctionInfo &FI,
2318
                          llvm::Function *Fn,
2319
                          const FunctionArgList &Args);
2320
2321
  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2322
  /// given temporary.
2323
  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2324
                          SourceLocation EndLoc);
2325
2326
  /// Emit a test that checks if the return value \p RV is nonnull.
2327
  void EmitReturnValueCheck(llvm::Value *RV);
2328
2329
  /// EmitStartEHSpec - Emit the start of the exception spec.
2330
  void EmitStartEHSpec(const Decl *D);
2331
2332
  /// EmitEndEHSpec - Emit the end of the exception spec.
2333
  void EmitEndEHSpec(const Decl *D);
2334
2335
  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2336
  llvm::BasicBlock *getTerminateLandingPad();
2337
2338
  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2339
  /// terminate.
2340
  llvm::BasicBlock *getTerminateFunclet();
2341
2342
  /// getTerminateHandler - Return a handler (not a landing pad, just
2343
  /// a catch handler) that just calls terminate.  This is used when
2344
  /// a terminate scope encloses a try.
2345
  llvm::BasicBlock *getTerminateHandler();
2346
2347
  llvm::Type *ConvertTypeForMem(QualType T);
2348
  llvm::Type *ConvertType(QualType T);
2349
25.0k
  llvm::Type *ConvertType(const TypeDecl *T) {
2350
25.0k
    return ConvertType(getContext().getTypeDeclType(T));
2351
25.0k
  }
2352
2353
  /// LoadObjCSelf - Load the value of self. This function is only valid while
2354
  /// generating code for an Objective-C method.
2355
  llvm::Value *LoadObjCSelf();
2356
2357
  /// TypeOfSelfObject - Return type of object that this self represents.
2358
  QualType TypeOfSelfObject();
2359
2360
  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2361
  static TypeEvaluationKind getEvaluationKind(QualType T);
2362
2363
5.50M
  static bool hasScalarEvaluationKind(QualType T) {
2364
5.50M
    return getEvaluationKind(T) == TEK_Scalar;
2365
5.50M
  }
2366
2367
847k
  static bool hasAggregateEvaluationKind(QualType T) {
2368
847k
    return getEvaluationKind(T) == TEK_Aggregate;
2369
847k
  }
2370
2371
  /// createBasicBlock - Create an LLVM basic block.
2372
  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2373
                                     llvm::Function *parent = nullptr,
2374
1.34M
                                     llvm::BasicBlock *before = nullptr) {
2375
1.34M
    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2376
1.34M
  }
2377
2378
  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2379
  /// label maps to.
2380
  JumpDest getJumpDestForLabel(const LabelDecl *S);
2381
2382
  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2383
  /// another basic block, simplify it. This assumes that no other code could
2384
  /// potentially reference the basic block.
2385
  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2386
2387
  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2388
  /// adding a fall-through branch from the current insert block if
2389
  /// necessary. It is legal to call this function even if there is no current
2390
  /// insertion point.
2391
  ///
2392
  /// IsFinished - If true, indicates that the caller has finished emitting
2393
  /// branches to the given block and does not expect to emit code into it. This
2394
  /// means the block can be ignored if it is unreachable.
2395
  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2396
2397
  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2398
  /// near its uses, and leave the insertion point in it.
2399
  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2400
2401
  /// EmitBranch - Emit a branch to the specified basic block from the current
2402
  /// insert block, taking care to avoid creation of branches from dummy
2403
  /// blocks. It is legal to call this function even if there is no current
2404
  /// insertion point.
2405
  ///
2406
  /// This function clears the current insertion point. The caller should follow
2407
  /// calls to this function with calls to Emit*Block prior to generation new
2408
  /// code.
2409
  void EmitBranch(llvm::BasicBlock *Block);
2410
2411
  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2412
  /// indicates that the current code being emitted is unreachable.
2413
2.49M
  bool HaveInsertPoint() const {
2414
2.49M
    return Builder.GetInsertBlock() != nullptr;
2415
2.49M
  }
2416
2417
  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2418
  /// emitted IR has a place to go. Note that by definition, if this function
2419
  /// creates a block then that block is unreachable; callers may do better to
2420
  /// detect when no insertion point is defined and simply skip IR generation.
2421
22.0k
  void EnsureInsertPoint() {
2422
22.0k
    if (!HaveInsertPoint())
2423
2.34k
      EmitBlock(createBasicBlock());
2424
22.0k
  }
2425
2426
  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2427
  /// specified stmt yet.
2428
  void ErrorUnsupported(const Stmt *S, const char *Type);
2429
2430
  //===--------------------------------------------------------------------===//
2431
  //                                  Helpers
2432
  //===--------------------------------------------------------------------===//
2433
2434
  LValue MakeAddrLValue(Address Addr, QualType T,
2435
2.90M
                        AlignmentSource Source = AlignmentSource::Type) {
2436
2.90M
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2437
2.90M
                            CGM.getTBAAAccessInfo(T));
2438
2.90M
  }
2439
2440
  LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2441
722k
                        TBAAAccessInfo TBAAInfo) {
2442
722k
    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2443
722k
  }
2444
2445
  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2446
3.45k
                        AlignmentSource Source = AlignmentSource::Type) {
2447
3.45k
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2448
3.45k
                            LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2449
3.45k
  }
2450
2451
  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2452
0
                        LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2453
0
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2454
0
                            BaseInfo, TBAAInfo);
2455
0
  }
2456
2457
  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2458
  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2459
2460
  Address EmitLoadOfReference(LValue RefLVal,
2461
                              LValueBaseInfo *PointeeBaseInfo = nullptr,
2462
                              TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2463
  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2464
  LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2465
                                   AlignmentSource Source =
2466
65.0k
                                       AlignmentSource::Type) {
2467
65.0k
    LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2468
65.0k
                                    CGM.getTBAAAccessInfo(RefTy));
2469
65.0k
    return EmitLoadOfReferenceLValue(RefLVal);
2470
65.0k
  }
2471
2472
  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2473
                            LValueBaseInfo *BaseInfo = nullptr,
2474
                            TBAAAccessInfo *TBAAInfo = nullptr);
2475
  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2476
2477
  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2478
  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2479
  /// insertion point of the builder. The caller is responsible for setting an
2480
  /// appropriate alignment on
2481
  /// the alloca.
2482
  ///
2483
  /// \p ArraySize is the number of array elements to be allocated if it
2484
  ///    is not nullptr.
2485
  ///
2486
  /// LangAS::Default is the address space of pointers to local variables and
2487
  /// temporaries, as exposed in the source language. In certain
2488
  /// configurations, this is not the same as the alloca address space, and a
2489
  /// cast is needed to lift the pointer from the alloca AS into
2490
  /// LangAS::Default. This can happen when the target uses a restricted
2491
  /// address space for the stack but the source language requires
2492
  /// LangAS::Default to be a generic address space. The latter condition is
2493
  /// common for most programming languages; OpenCL is an exception in that
2494
  /// LangAS::Default is the private address space, which naturally maps
2495
  /// to the stack.
2496
  ///
2497
  /// Because the address of a temporary is often exposed to the program in
2498
  /// various ways, this function will perform the cast. The original alloca
2499
  /// instruction is returned through \p Alloca if it is not nullptr.
2500
  ///
2501
  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2502
  /// more efficient if the caller knows that the address will not be exposed.
2503
  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2504
                                     llvm::Value *ArraySize = nullptr);
2505
  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2506
                           const Twine &Name = "tmp",
2507
                           llvm::Value *ArraySize = nullptr,
2508
                           Address *Alloca = nullptr);
2509
  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2510
                                      const Twine &Name = "tmp",
2511
                                      llvm::Value *ArraySize = nullptr);
2512
2513
  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2514
  /// default ABI alignment of the given LLVM type.
2515
  ///
2516
  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2517
  /// any given AST type that happens to have been lowered to the
2518
  /// given IR type.  This should only ever be used for function-local,
2519
  /// IR-driven manipulations like saving and restoring a value.  Do
2520
  /// not hand this address off to arbitrary IRGen routines, and especially
2521
  /// do not pass it as an argument to a function that might expect a
2522
  /// properly ABI-aligned value.
2523
  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2524
                                       const Twine &Name = "tmp");
2525
2526
  /// InitTempAlloca - Provide an initial value for the given alloca which
2527
  /// will be observable at all locations in the function.
2528
  ///
2529
  /// The address should be something that was returned from one of
2530
  /// the CreateTempAlloca or CreateMemTemp routines, and the
2531
  /// initializer must be valid in the entry block (i.e. it must
2532
  /// either be a constant or an argument value).
2533
  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2534
2535
  /// CreateIRTemp - Create a temporary IR object of the given type, with
2536
  /// appropriate alignment. This routine should only be used when an temporary
2537
  /// value needs to be stored into an alloca (for example, to avoid explicit
2538
  /// PHI construction), but the type is the IR type, not the type appropriate
2539
  /// for storing in memory.
2540
  ///
2541
  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2542
  /// ConvertType instead of ConvertTypeForMem.
2543
  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2544
2545
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2546
  /// appropriate alignmen and cast it to the default address space. Returns
2547
  /// the original alloca instruction by \p Alloca if it is not nullptr.
2548
  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2549
                        Address *Alloca = nullptr);
2550
  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2551
                        Address *Alloca = nullptr);
2552
2553
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2554
  /// appropriate alignmen without casting it to the default address space.
2555
  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2556
  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2557
                                   const Twine &Name = "tmp");
2558
2559
  /// CreateAggTemp - Create a temporary memory object for the given
2560
  /// aggregate type.
2561
  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2562
10.1k
                             Address *Alloca = nullptr) {
2563
10.1k
    return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2564
10.1k
                                 T.getQualifiers(),
2565
10.1k
                                 AggValueSlot::IsNotDestructed,
2566
10.1k
                                 AggValueSlot::DoesNotNeedGCBarriers,
2567
10.1k
                                 AggValueSlot::IsNotAliased,
2568
10.1k
                                 AggValueSlot::DoesNotOverlap);
2569
10.1k
  }
2570
2571
  /// Emit a cast to void* in the appropriate address space.
2572
  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2573
2574
  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2575
  /// expression and compare the result against zero, returning an Int1Ty value.
2576
  llvm::Value *EvaluateExprAsBool(const Expr *E);
2577
2578
  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2579
  void EmitIgnoredExpr(const Expr *E);
2580
2581
  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2582
  /// any type.  The result is returned as an RValue struct.  If this is an
2583
  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2584
  /// the result should be returned.
2585
  ///
2586
  /// \param ignoreResult True if the resulting value isn't used.
2587
  RValue EmitAnyExpr(const Expr *E,
2588
                     AggValueSlot aggSlot = AggValueSlot::ignored(),
2589
                     bool ignoreResult = false);
2590
2591
  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2592
  // or the value of the expression, depending on how va_list is defined.
2593
  Address EmitVAListRef(const Expr *E);
2594
2595
  /// Emit a "reference" to a __builtin_ms_va_list; this is
2596
  /// always the value of the expression, because a __builtin_ms_va_list is a
2597
  /// pointer to a char.
2598
  Address EmitMSVAListRef(const Expr *E);
2599
2600
  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2601
  /// always be accessible even if no aggregate location is provided.
2602
  RValue EmitAnyExprToTemp(const Expr *E);
2603
2604
  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2605
  /// arbitrary expression into the given memory location.
2606
  void EmitAnyExprToMem(const Expr *E, Address Location,
2607
                        Qualifiers Quals, bool IsInitializer);
2608
2609
  void EmitAnyExprToExn(const Expr *E, Address Addr);
2610
2611
  /// EmitExprAsInit - Emits the code necessary to initialize a
2612
  /// location in memory with the given initializer.
2613
  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2614
                      bool capturedByInit);
2615
2616
  /// hasVolatileMember - returns true if aggregate type has a volatile
2617
  /// member.
2618
4.57k
  bool hasVolatileMember(QualType T) {
2619
4.57k
    if (const RecordType *RT = T->getAs<RecordType>()) {
2620
3.10k
      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2621
3.10k
      return RD->hasVolatileMember();
2622
3.10k
    }
2623
1.47k
    return false;
2624
4.57k
  }
2625
2626
  /// Determine whether a return value slot may overlap some other object.
2627
6.11k
  AggValueSlot::Overlap_t getOverlapForReturnValue() {
2628
    // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2629
    // class subobjects. These cases may need to be revisited depending on the
2630
    // resolution of the relevant core issue.
2631
6.11k
    return AggValueSlot::DoesNotOverlap;
2632
6.11k
  }
2633
2634
  /// Determine whether a field initialization may overlap some other object.
2635
  AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2636
2637
  /// Determine whether a base class initialization may overlap some other
2638
  /// object.
2639
  AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2640
                                                const CXXRecordDecl *BaseRD,
2641
                                                bool IsVirtual);
2642
2643
  /// Emit an aggregate assignment.
2644
4.10k
  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2645
4.10k
    bool IsVolatile = hasVolatileMember(EltTy);
2646
4.10k
    EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2647
4.10k
  }
2648
2649
  void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2650
5.75k
                             AggValueSlot::Overlap_t MayOverlap) {
2651
5.75k
    EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2652
5.75k
  }
2653
2654
  /// EmitAggregateCopy - Emit an aggregate copy.
2655
  ///
2656
  /// \param isVolatile \c true iff either the source or the destination is
2657
  ///        volatile.
2658
  /// \param MayOverlap Whether the tail padding of the destination might be
2659
  ///        occupied by some other object. More efficient code can often be
2660
  ///        generated if not.
2661
  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2662
                         AggValueSlot::Overlap_t MayOverlap,
2663
                         bool isVolatile = false);
2664
2665
  /// GetAddrOfLocalVar - Return the address of a local variable.
2666
198k
  Address GetAddrOfLocalVar(const VarDecl *VD) {
2667
198k
    auto it = LocalDeclMap.find(VD);
2668
198k
    assert(it != LocalDeclMap.end() &&
2669
198k
           "Invalid argument to GetAddrOfLocalVar(), no decl!");
2670
0
    return it->second;
2671
198k
  }
2672
2673
  /// Given an opaque value expression, return its LValue mapping if it exists,
2674
  /// otherwise create one.
2675
  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2676
2677
  /// Given an opaque value expression, return its RValue mapping if it exists,
2678
  /// otherwise create one.
2679
  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2680
2681
  /// Get the index of the current ArrayInitLoopExpr, if any.
2682
56
  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2683
2684
  /// getAccessedFieldNo - Given an encoded value and a result number, return
2685
  /// the input field number being accessed.
2686
  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2687
2688
  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2689
  llvm::BasicBlock *GetIndirectGotoBlock();
2690
2691
  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2692
  static bool IsWrappedCXXThis(const Expr *E);
2693
2694
  /// EmitNullInitialization - Generate code to set a value of the given type to
2695
  /// null, If the type contains data member pointers, they will be initialized
2696
  /// to -1 in accordance with the Itanium C++ ABI.
2697
  void EmitNullInitialization(Address DestPtr, QualType Ty);
2698
2699
  /// Emits a call to an LLVM variable-argument intrinsic, either
2700
  /// \c llvm.va_start or \c llvm.va_end.
2701
  /// \param ArgValue A reference to the \c va_list as emitted by either
2702
  /// \c EmitVAListRef or \c EmitMSVAListRef.
2703
  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2704
  /// calls \c llvm.va_end.
2705
  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2706
2707
  /// Generate code to get an argument from the passed in pointer
2708
  /// and update it accordingly.
2709
  /// \param VE The \c VAArgExpr for which to generate code.
2710
  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2711
  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2712
  /// \returns A pointer to the argument.
2713
  // FIXME: We should be able to get rid of this method and use the va_arg
2714
  // instruction in LLVM instead once it works well enough.
2715
  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2716
2717
  /// emitArrayLength - Compute the length of an array, even if it's a
2718
  /// VLA, and drill down to the base element type.
2719
  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2720
                               QualType &baseType,
2721
                               Address &addr);
2722
2723
  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2724
  /// the given variably-modified type and store them in the VLASizeMap.
2725
  ///
2726
  /// This function can be called with a null (unreachable) insert point.
2727
  void EmitVariablyModifiedType(QualType Ty);
2728
2729
  struct VlaSizePair {
2730
    llvm::Value *NumElts;
2731
    QualType Type;
2732
2733
12.1k
    VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2734
  };
2735
2736
  /// Return the number of elements for a single dimension
2737
  /// for the given array type.
2738
  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2739
  VlaSizePair getVLAElements1D(QualType vla);
2740
2741
  /// Returns an LLVM value that corresponds to the size,
2742
  /// in non-variably-sized elements, of a variable length array type,
2743
  /// plus that largest non-variably-sized element type.  Assumes that
2744
  /// the type has already been emitted with EmitVariablyModifiedType.
2745
  VlaSizePair getVLASize(const VariableArrayType *vla);
2746
  VlaSizePair getVLASize(QualType vla);
2747
2748
  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2749
  /// generating code for an C++ member function.
2750
162k
  llvm::Value *LoadCXXThis() {
2751
162k
    assert(CXXThisValue && "no 'this' value for this function");
2752
0
    return CXXThisValue;
2753
162k
  }
2754
  Address LoadCXXThisAddress();
2755
2756
  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2757
  /// virtual bases.
2758
  // FIXME: Every place that calls LoadCXXVTT is something
2759
  // that needs to be abstracted properly.
2760
332
  llvm::Value *LoadCXXVTT() {
2761
332
    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2762
0
    return CXXStructorImplicitParamValue;
2763
332
  }
2764
2765
  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2766
  /// complete class to the given direct base.
2767
  Address
2768
  GetAddressOfDirectBaseInCompleteClass(Address Value,
2769
                                        const CXXRecordDecl *Derived,
2770
                                        const CXXRecordDecl *Base,
2771
                                        bool BaseIsVirtual);
2772
2773
  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2774
2775
  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2776
  /// load of 'this' and returns address of the base class.
2777
  Address GetAddressOfBaseClass(Address Value,
2778
                                const CXXRecordDecl *Derived,
2779
                                CastExpr::path_const_iterator PathBegin,
2780
                                CastExpr::path_const_iterator PathEnd,
2781
                                bool NullCheckValue, SourceLocation Loc);
2782
2783
  Address GetAddressOfDerivedClass(Address Value,
2784
                                   const CXXRecordDecl *Derived,
2785
                                   CastExpr::path_const_iterator PathBegin,
2786
                                   CastExpr::path_const_iterator PathEnd,
2787
                                   bool NullCheckValue);
2788
2789
  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2790
  /// base constructor/destructor with virtual bases.
2791
  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2792
  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2793
  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2794
                               bool Delegating);
2795
2796
  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2797
                                      CXXCtorType CtorType,
2798
                                      const FunctionArgList &Args,
2799
                                      SourceLocation Loc);
2800
  // It's important not to confuse this and the previous function. Delegating
2801
  // constructors are the C++0x feature. The constructor delegate optimization
2802
  // is used to reduce duplication in the base and complete consturctors where
2803
  // they are substantially the same.
2804
  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2805
                                        const FunctionArgList &Args);
2806
2807
  /// Emit a call to an inheriting constructor (that is, one that invokes a
2808
  /// constructor inherited from a base class) by inlining its definition. This
2809
  /// is necessary if the ABI does not support forwarding the arguments to the
2810
  /// base class constructor (because they're variadic or similar).
2811
  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2812
                                               CXXCtorType CtorType,
2813
                                               bool ForVirtualBase,
2814
                                               bool Delegating,
2815
                                               CallArgList &Args);
2816
2817
  /// Emit a call to a constructor inherited from a base class, passing the
2818
  /// current constructor's arguments along unmodified (without even making
2819
  /// a copy).
2820
  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2821
                                       bool ForVirtualBase, Address This,
2822
                                       bool InheritedFromVBase,
2823
                                       const CXXInheritedCtorInitExpr *E);
2824
2825
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2826
                              bool ForVirtualBase, bool Delegating,
2827
                              AggValueSlot ThisAVS, const CXXConstructExpr *E);
2828
2829
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2830
                              bool ForVirtualBase, bool Delegating,
2831
                              Address This, CallArgList &Args,
2832
                              AggValueSlot::Overlap_t Overlap,
2833
                              SourceLocation Loc, bool NewPointerIsChecked);
2834
2835
  /// Emit assumption load for all bases. Requires to be be called only on
2836
  /// most-derived class and not under construction of the object.
2837
  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2838
2839
  /// Emit assumption that vptr load == global vtable.
2840
  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2841
2842
  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2843
                                      Address This, Address Src,
2844
                                      const CXXConstructExpr *E);
2845
2846
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2847
                                  const ArrayType *ArrayTy,
2848
                                  Address ArrayPtr,
2849
                                  const CXXConstructExpr *E,
2850
                                  bool NewPointerIsChecked,
2851
                                  bool ZeroInitialization = false);
2852
2853
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2854
                                  llvm::Value *NumElements,
2855
                                  Address ArrayPtr,
2856
                                  const CXXConstructExpr *E,
2857
                                  bool NewPointerIsChecked,
2858
                                  bool ZeroInitialization = false);
2859
2860
  static Destroyer destroyCXXObject;
2861
2862
  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2863
                             bool ForVirtualBase, bool Delegating, Address This,
2864
                             QualType ThisTy);
2865
2866
  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2867
                               llvm::Type *ElementTy, Address NewPtr,
2868
                               llvm::Value *NumElements,
2869
                               llvm::Value *AllocSizeWithoutCookie);
2870
2871
  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2872
                        Address Ptr);
2873
2874
  void EmitSehCppScopeBegin();
2875
  void EmitSehCppScopeEnd();
2876
  void EmitSehTryScopeBegin();
2877
  void EmitSehTryScopeEnd();
2878
2879
  llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2880
  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2881
2882
  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2883
  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2884
2885
  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2886
                      QualType DeleteTy, llvm::Value *NumElements = nullptr,
2887
                      CharUnits CookieSize = CharUnits());
2888
2889
  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2890
                                  const CallExpr *TheCallExpr, bool IsDelete);
2891
2892
  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2893
  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2894
  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2895
2896
  /// Situations in which we might emit a check for the suitability of a
2897
  /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2898
  /// compiler-rt.
2899
  enum TypeCheckKind {
2900
    /// Checking the operand of a load. Must be suitably sized and aligned.
2901
    TCK_Load,
2902
    /// Checking the destination of a store. Must be suitably sized and aligned.
2903
    TCK_Store,
2904
    /// Checking the bound value in a reference binding. Must be suitably sized
2905
    /// and aligned, but is not required to refer to an object (until the
2906
    /// reference is used), per core issue 453.
2907
    TCK_ReferenceBinding,
2908
    /// Checking the object expression in a non-static data member access. Must
2909
    /// be an object within its lifetime.
2910
    TCK_MemberAccess,
2911
    /// Checking the 'this' pointer for a call to a non-static member function.
2912
    /// Must be an object within its lifetime.
2913
    TCK_MemberCall,
2914
    /// Checking the 'this' pointer for a constructor call.
2915
    TCK_ConstructorCall,
2916
    /// Checking the operand of a static_cast to a derived pointer type. Must be
2917
    /// null or an object within its lifetime.
2918
    TCK_DowncastPointer,
2919
    /// Checking the operand of a static_cast to a derived reference type. Must
2920
    /// be an object within its lifetime.
2921
    TCK_DowncastReference,
2922
    /// Checking the operand of a cast to a base object. Must be suitably sized
2923
    /// and aligned.
2924
    TCK_Upcast,
2925
    /// Checking the operand of a cast to a virtual base object. Must be an
2926
    /// object within its lifetime.
2927
    TCK_UpcastToVirtualBase,
2928
    /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2929
    TCK_NonnullAssign,
2930
    /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2931
    /// null or an object within its lifetime.
2932
    TCK_DynamicOperation
2933
  };
2934
2935
  /// Determine whether the pointer type check \p TCK permits null pointers.
2936
  static bool isNullPointerAllowed(TypeCheckKind TCK);
2937
2938
  /// Determine whether the pointer type check \p TCK requires a vptr check.
2939
  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2940
2941
  /// Whether any type-checking sanitizers are enabled. If \c false,
2942
  /// calls to EmitTypeCheck can be skipped.
2943
  bool sanitizePerformTypeCheck() const;
2944
2945
  /// Emit a check that \p V is the address of storage of the
2946
  /// appropriate size and alignment for an object of type \p Type
2947
  /// (or if ArraySize is provided, for an array of that bound).
2948
  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2949
                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
2950
                     SanitizerSet SkippedChecks = SanitizerSet(),
2951
                     llvm::Value *ArraySize = nullptr);
2952
2953
  /// Emit a check that \p Base points into an array object, which
2954
  /// we can access at index \p Index. \p Accessed should be \c false if we
2955
  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2956
  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2957
                       QualType IndexType, bool Accessed);
2958
2959
  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2960
                                       bool isInc, bool isPre);
2961
  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2962
                                         bool isInc, bool isPre);
2963
2964
  /// Converts Location to a DebugLoc, if debug information is enabled.
2965
  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2966
2967
  /// Get the record field index as represented in debug info.
2968
  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2969
2970
2971
  //===--------------------------------------------------------------------===//
2972
  //                            Declaration Emission
2973
  //===--------------------------------------------------------------------===//
2974
2975
  /// EmitDecl - Emit a declaration.
2976
  ///
2977
  /// This function can be called with a null (unreachable) insert point.
2978
  void EmitDecl(const Decl &D);
2979
2980
  /// EmitVarDecl - Emit a local variable declaration.
2981
  ///
2982
  /// This function can be called with a null (unreachable) insert point.
2983
  void EmitVarDecl(const VarDecl &D);
2984
2985
  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2986
                      bool capturedByInit);
2987
2988
  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2989
                             llvm::Value *Address);
2990
2991
  /// Determine whether the given initializer is trivial in the sense
2992
  /// that it requires no code to be generated.
2993
  bool isTrivialInitializer(const Expr *Init);
2994
2995
  /// EmitAutoVarDecl - Emit an auto variable declaration.
2996
  ///
2997
  /// This function can be called with a null (unreachable) insert point.
2998
  void EmitAutoVarDecl(const VarDecl &D);
2999
3000
  class AutoVarEmission {
3001
    friend class CodeGenFunction;
3002
3003
    const VarDecl *Variable;
3004
3005
    /// The address of the alloca for languages with explicit address space
3006
    /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3007
    /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3008
    /// as a global constant.
3009
    Address Addr;
3010
3011
    llvm::Value *NRVOFlag;
3012
3013
    /// True if the variable is a __block variable that is captured by an
3014
    /// escaping block.
3015
    bool IsEscapingByRef;
3016
3017
    /// True if the variable is of aggregate type and has a constant
3018
    /// initializer.
3019
    bool IsConstantAggregate;
3020
3021
    /// Non-null if we should use lifetime annotations.
3022
    llvm::Value *SizeForLifetimeMarkers;
3023
3024
    /// Address with original alloca instruction. Invalid if the variable was
3025
    /// emitted as a global constant.
3026
    Address AllocaAddr;
3027
3028
    struct Invalid {};
3029
    AutoVarEmission(Invalid)
3030
        : Variable(nullptr), Addr(Address::invalid()),
3031
125
          AllocaAddr(Address::invalid()) {}
3032
3033
    AutoVarEmission(const VarDecl &variable)
3034
        : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3035
          IsEscapingByRef(false), IsConstantAggregate(false),
3036
257k
          SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3037
3038
497k
    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3039
3040
  public:
3041
125
    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3042
3043
263k
    bool useLifetimeMarkers() const {
3044
263k
      return SizeForLifetimeMarkers != nullptr;
3045
263k
    }
3046
5.72k
    llvm::Value *getSizeForLifetimeMarkers() const {
3047
5.72k
      assert(useLifetimeMarkers());
3048
0
      return SizeForLifetimeMarkers;
3049
5.72k
    }
3050
3051
    /// Returns the raw, allocated address, which is not necessarily
3052
    /// the address of the object itself. It is casted to default
3053
    /// address space for address space agnostic languages.
3054
35.7k
    Address getAllocatedAddress() const {
3055
35.7k
      return Addr;
3056
35.7k
    }
3057
3058
    /// Returns the address for the original alloca instruction.
3059
5.72k
    Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3060
3061
    /// Returns the address of the object within this declaration.
3062
    /// Note that this does not chase the forwarding pointer for
3063
    /// __block decls.
3064
249k
    Address getObjectAddress(CodeGenFunction &CGF) const {
3065
249k
      if (!IsEscapingByRef) 
return Addr249k
;
3066
3067
249
      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3068
249k
    }
3069
  };
3070
  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3071
  void EmitAutoVarInit(const AutoVarEmission &emission);
3072
  void EmitAutoVarCleanups(const AutoVarEmission &emission);
3073
  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3074
                              QualType::DestructionKind dtorKind);
3075
3076
  /// Emits the alloca and debug information for the size expressions for each
3077
  /// dimension of an array. It registers the association of its (1-dimensional)
3078
  /// QualTypes and size expression's debug node, so that CGDebugInfo can
3079
  /// reference this node when creating the DISubrange object to describe the
3080
  /// array types.
3081
  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3082
                                              const VarDecl &D,
3083
                                              bool EmitDebugInfo);
3084
3085
  void EmitStaticVarDecl(const VarDecl &D,
3086
                         llvm::GlobalValue::LinkageTypes Linkage);
3087
3088
  class ParamValue {
3089
    llvm::Value *Value;
3090
    unsigned Alignment;
3091
826k
    ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
3092
  public:
3093
811k
    static ParamValue forDirect(llvm::Value *value) {
3094
811k
      return ParamValue(value, 0);
3095
811k
    }
3096
14.6k
    static ParamValue forIndirect(Address addr) {
3097
14.6k
      assert(!addr.getAlignment().isZero());
3098
0
      return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3099
14.6k
    }
3100
3101
1.65M
    bool isIndirect() const { return Alignment != 0; }
3102
826k
    llvm::Value *getAnyValue() const { return Value; }
3103
3104
811k
    llvm::Value *getDirectValue() const {
3105
811k
      assert(!isIndirect());
3106
0
      return Value;
3107
811k
    }
3108
3109
14.6k
    Address getIndirectAddress() const {
3110
14.6k
      assert(isIndirect());
3111
0
      return Address(Value, CharUnits::fromQuantity(Alignment));
3112
14.6k
    }
3113
  };
3114
3115
  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3116
  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3117
3118
  /// protectFromPeepholes - Protect a value that we're intending to
3119
  /// store to the side, but which will probably be used later, from
3120
  /// aggressive peepholing optimizations that might delete it.
3121
  ///
3122
  /// Pass the result to unprotectFromPeepholes to declare that
3123
  /// protection is no longer required.
3124
  ///
3125
  /// There's no particular reason why this shouldn't apply to
3126
  /// l-values, it's just that no existing peepholes work on pointers.
3127
  PeepholeProtection protectFromPeepholes(RValue rvalue);
3128
  void unprotectFromPeepholes(PeepholeProtection protection);
3129
3130
  void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3131
                                    SourceLocation Loc,
3132
                                    SourceLocation AssumptionLoc,
3133
                                    llvm::Value *Alignment,
3134
                                    llvm::Value *OffsetValue,
3135
                                    llvm::Value *TheCheck,
3136
                                    llvm::Instruction *Assumption);
3137
3138
  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3139
                               SourceLocation Loc, SourceLocation AssumptionLoc,
3140
                               llvm::Value *Alignment,
3141
                               llvm::Value *OffsetValue = nullptr);
3142
3143
  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3144
                               SourceLocation AssumptionLoc,
3145
                               llvm::Value *Alignment,
3146
                               llvm::Value *OffsetValue = nullptr);
3147
3148
  //===--------------------------------------------------------------------===//
3149
  //                             Statement Emission
3150
  //===--------------------------------------------------------------------===//
3151
3152
  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3153
  void EmitStopPoint(const Stmt *S);
3154
3155
  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3156
  /// this function even if there is no current insertion point.
3157
  ///
3158
  /// This function may clear the current insertion point; callers should use
3159
  /// EnsureInsertPoint if they wish to subsequently generate code without first
3160
  /// calling EmitBlock, EmitBranch, or EmitStmt.
3161
  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3162
3163
  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3164
  /// necessarily require an insertion point or debug information; typically
3165
  /// because the statement amounts to a jump or a container of other
3166
  /// statements.
3167
  ///
3168
  /// \return True if the statement was handled.
3169
  bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3170
3171
  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3172
                           AggValueSlot AVS = AggValueSlot::ignored());
3173
  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3174
                                       bool GetLast = false,
3175
                                       AggValueSlot AVS =
3176
                                                AggValueSlot::ignored());
3177
3178
  /// EmitLabel - Emit the block for the given label. It is legal to call this
3179
  /// function even if there is no current insertion point.
3180
  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3181
3182
  void EmitLabelStmt(const LabelStmt &S);
3183
  void EmitAttributedStmt(const AttributedStmt &S);
3184
  void EmitGotoStmt(const GotoStmt &S);
3185
  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3186
  void EmitIfStmt(const IfStmt &S);
3187
3188
  void EmitWhileStmt(const WhileStmt &S,
3189
                     ArrayRef<const Attr *> Attrs = None);
3190
  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3191
  void EmitForStmt(const ForStmt &S,
3192
                   ArrayRef<const Attr *> Attrs = None);
3193
  void EmitReturnStmt(const ReturnStmt &S);
3194
  void EmitDeclStmt(const DeclStmt &S);
3195
  void EmitBreakStmt(const BreakStmt &S);
3196
  void EmitContinueStmt(const ContinueStmt &S);
3197
  void EmitSwitchStmt(const SwitchStmt &S);
3198
  void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3199
  void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3200
  void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3201
  void EmitAsmStmt(const AsmStmt &S);
3202
3203
  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3204
  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3205
  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3206
  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3207
  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3208
3209
  void EmitCoroutineBody(const CoroutineBodyStmt &S);
3210
  void EmitCoreturnStmt(const CoreturnStmt &S);
3211
  RValue EmitCoawaitExpr(const CoawaitExpr &E,
3212
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3213
                         bool ignoreResult = false);
3214
  LValue EmitCoawaitLValue(const CoawaitExpr *E);
3215
  RValue EmitCoyieldExpr(const CoyieldExpr &E,
3216
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3217
                         bool ignoreResult = false);
3218
  LValue EmitCoyieldLValue(const CoyieldExpr *E);
3219
  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3220
3221
  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3222
  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3223
3224
  void EmitCXXTryStmt(const CXXTryStmt &S);
3225
  void EmitSEHTryStmt(const SEHTryStmt &S);
3226
  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3227
  void EnterSEHTryStmt(const SEHTryStmt &S);
3228
  void ExitSEHTryStmt(const SEHTryStmt &S);
3229
  void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3230
                           llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3231
3232
  void pushSEHCleanup(CleanupKind kind,
3233
                      llvm::Function *FinallyFunc);
3234
  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3235
                              const Stmt *OutlinedStmt);
3236
3237
  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3238
                                            const SEHExceptStmt &Except);
3239
3240
  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3241
                                             const SEHFinallyStmt &Finally);
3242
3243
  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3244
                                llvm::Value *ParentFP,
3245
                                llvm::Value *EntryEBP);
3246
  llvm::Value *EmitSEHExceptionCode();
3247
  llvm::Value *EmitSEHExceptionInfo();
3248
  llvm::Value *EmitSEHAbnormalTermination();
3249
3250
  /// Emit simple code for OpenMP directives in Simd-only mode.
3251
  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3252
3253
  /// Scan the outlined statement for captures from the parent function. For
3254
  /// each capture, mark the capture as escaped and emit a call to
3255
  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3256
  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3257
                          bool IsFilter);
3258
3259
  /// Recovers the address of a local in a parent function. ParentVar is the
3260
  /// address of the variable used in the immediate parent function. It can
3261
  /// either be an alloca or a call to llvm.localrecover if there are nested
3262
  /// outlined functions. ParentFP is the frame pointer of the outermost parent
3263
  /// frame.
3264
  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3265
                                    Address ParentVar,
3266
                                    llvm::Value *ParentFP);
3267
3268
  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3269
                           ArrayRef<const Attr *> Attrs = None);
3270
3271
  /// Controls insertion of cancellation exit blocks in worksharing constructs.
3272
  class OMPCancelStackRAII {
3273
    CodeGenFunction &CGF;
3274
3275
  public:
3276
    OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3277
                       bool HasCancel)
3278
4.33k
        : CGF(CGF) {
3279
4.33k
      CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3280
4.33k
    }
3281
4.33k
    ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3282
  };
3283
3284
  /// Returns calculated size of the specified type.
3285
  llvm::Value *getTypeSize(QualType Ty);
3286
  LValue InitCapturedStruct(const CapturedStmt &S);
3287
  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3288
  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3289
  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3290
  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3291
                                                     SourceLocation Loc);
3292
  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3293
                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
3294
  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3295
                          SourceLocation Loc);
3296
  /// Perform element by element copying of arrays with type \a
3297
  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3298
  /// generated by \a CopyGen.
3299
  ///
3300
  /// \param DestAddr Address of the destination array.
3301
  /// \param SrcAddr Address of the source array.
3302
  /// \param OriginalType Type of destination and source arrays.
3303
  /// \param CopyGen Copying procedure that copies value of single array element
3304
  /// to another single array element.
3305
  void EmitOMPAggregateAssign(
3306
      Address DestAddr, Address SrcAddr, QualType OriginalType,
3307
      const llvm::function_ref<void(Address, Address)> CopyGen);
3308
  /// Emit proper copying of data from one variable to another.
3309
  ///
3310
  /// \param OriginalType Original type of the copied variables.
3311
  /// \param DestAddr Destination address.
3312
  /// \param SrcAddr Source address.
3313
  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3314
  /// type of the base array element).
3315
  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3316
  /// the base array element).
3317
  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3318
  /// DestVD.
3319
  void EmitOMPCopy(QualType OriginalType,
3320
                   Address DestAddr, Address SrcAddr,
3321
                   const VarDecl *DestVD, const VarDecl *SrcVD,
3322
                   const Expr *Copy);
3323
  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3324
  /// \a X = \a E \a BO \a E.
3325
  ///
3326
  /// \param X Value to be updated.
3327
  /// \param E Update value.
3328
  /// \param BO Binary operation for update operation.
3329
  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3330
  /// expression, false otherwise.
3331
  /// \param AO Atomic ordering of the generated atomic instructions.
3332
  /// \param CommonGen Code generator for complex expressions that cannot be
3333
  /// expressed through atomicrmw instruction.
3334
  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3335
  /// generated, <false, RValue::get(nullptr)> otherwise.
3336
  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3337
      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3338
      llvm::AtomicOrdering AO, SourceLocation Loc,
3339
      const llvm::function_ref<RValue(RValue)> CommonGen);
3340
  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3341
                                 OMPPrivateScope &PrivateScope);
3342
  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3343
                            OMPPrivateScope &PrivateScope);
3344
  void EmitOMPUseDevicePtrClause(
3345
      const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3346
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3347
  void EmitOMPUseDeviceAddrClause(
3348
      const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3349
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3350
  /// Emit code for copyin clause in \a D directive. The next code is
3351
  /// generated at the start of outlined functions for directives:
3352
  /// \code
3353
  /// threadprivate_var1 = master_threadprivate_var1;
3354
  /// operator=(threadprivate_var2, master_threadprivate_var2);
3355
  /// ...
3356
  /// __kmpc_barrier(&loc, global_tid);
3357
  /// \endcode
3358
  ///
3359
  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3360
  /// \returns true if at least one copyin variable is found, false otherwise.
3361
  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3362
  /// Emit initial code for lastprivate variables. If some variable is
3363
  /// not also firstprivate, then the default initialization is used. Otherwise
3364
  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3365
  /// method.
3366
  ///
3367
  /// \param D Directive that may have 'lastprivate' directives.
3368
  /// \param PrivateScope Private scope for capturing lastprivate variables for
3369
  /// proper codegen in internal captured statement.
3370
  ///
3371
  /// \returns true if there is at least one lastprivate variable, false
3372
  /// otherwise.
3373
  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3374
                                    OMPPrivateScope &PrivateScope);
3375
  /// Emit final copying of lastprivate values to original variables at
3376
  /// the end of the worksharing or simd directive.
3377
  ///
3378
  /// \param D Directive that has at least one 'lastprivate' directives.
3379
  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3380
  /// it is the last iteration of the loop code in associated directive, or to
3381
  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3382
  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3383
                                     bool NoFinals,
3384
                                     llvm::Value *IsLastIterCond = nullptr);
3385
  /// Emit initial code for linear clauses.
3386
  void EmitOMPLinearClause(const OMPLoopDirective &D,
3387
                           CodeGenFunction::OMPPrivateScope &PrivateScope);
3388
  /// Emit final code for linear clauses.
3389
  /// \param CondGen Optional conditional code for final part of codegen for
3390
  /// linear clause.
3391
  void EmitOMPLinearClauseFinal(
3392
      const OMPLoopDirective &D,
3393
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3394
  /// Emit initial code for reduction variables. Creates reduction copies
3395
  /// and initializes them with the values according to OpenMP standard.
3396
  ///
3397
  /// \param D Directive (possibly) with the 'reduction' clause.
3398
  /// \param PrivateScope Private scope for capturing reduction variables for
3399
  /// proper codegen in internal captured statement.
3400
  ///
3401
  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3402
                                  OMPPrivateScope &PrivateScope,
3403
                                  bool ForInscan = false);
3404
  /// Emit final update of reduction values to original variables at
3405
  /// the end of the directive.
3406
  ///
3407
  /// \param D Directive that has at least one 'reduction' directives.
3408
  /// \param ReductionKind The kind of reduction to perform.
3409
  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3410
                                   const OpenMPDirectiveKind ReductionKind);
3411
  /// Emit initial code for linear variables. Creates private copies
3412
  /// and initializes them with the values according to OpenMP standard.
3413
  ///
3414
  /// \param D Directive (possibly) with the 'linear' clause.
3415
  /// \return true if at least one linear variable is found that should be
3416
  /// initialized with the value of the original variable, false otherwise.
3417
  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3418
3419
  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3420
                                        llvm::Function * /*OutlinedFn*/,
3421
                                        const OMPTaskDataTy & /*Data*/)>
3422
      TaskGenTy;
3423
  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3424
                                 const OpenMPDirectiveKind CapturedRegion,
3425
                                 const RegionCodeGenTy &BodyGen,
3426
                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3427
  struct OMPTargetDataInfo {
3428
    Address BasePointersArray = Address::invalid();
3429
    Address PointersArray = Address::invalid();
3430
    Address SizesArray = Address::invalid();
3431
    Address MappersArray = Address::invalid();
3432
    unsigned NumberOfTargetItems = 0;
3433
9.78k
    explicit OMPTargetDataInfo() = default;
3434
    OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3435
                      Address SizesArray, Address MappersArray,
3436
                      unsigned NumberOfTargetItems)
3437
        : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3438
          SizesArray(SizesArray), MappersArray(MappersArray),
3439
0
          NumberOfTargetItems(NumberOfTargetItems) {}
3440
  };
3441
  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3442
                                       const RegionCodeGenTy &BodyGen,
3443
                                       OMPTargetDataInfo &InputInfo);
3444
3445
  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3446
  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3447
  void EmitOMPTileDirective(const OMPTileDirective &S);
3448
  void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3449
  void EmitOMPForDirective(const OMPForDirective &S);
3450
  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3451
  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3452
  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3453
  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3454
  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3455
  void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3456
  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3457
  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3458
  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3459
  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3460
  void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3461
  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3462
  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3463
  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3464
  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3465
  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3466
  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3467
  void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3468
  void EmitOMPScanDirective(const OMPScanDirective &S);
3469
  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3470
  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3471
  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3472
  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3473
  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3474
  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3475
  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3476
  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3477
  void
3478
  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3479
  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3480
  void
3481
  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3482
  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3483
  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3484
  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3485
  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3486
  void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3487
  void
3488
  EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3489
  void EmitOMPParallelMasterTaskLoopDirective(
3490
      const OMPParallelMasterTaskLoopDirective &S);
3491
  void EmitOMPParallelMasterTaskLoopSimdDirective(
3492
      const OMPParallelMasterTaskLoopSimdDirective &S);
3493
  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3494
  void EmitOMPDistributeParallelForDirective(
3495
      const OMPDistributeParallelForDirective &S);
3496
  void EmitOMPDistributeParallelForSimdDirective(
3497
      const OMPDistributeParallelForSimdDirective &S);
3498
  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3499
  void EmitOMPTargetParallelForSimdDirective(
3500
      const OMPTargetParallelForSimdDirective &S);
3501
  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3502
  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3503
  void
3504
  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3505
  void EmitOMPTeamsDistributeParallelForSimdDirective(
3506
      const OMPTeamsDistributeParallelForSimdDirective &S);
3507
  void EmitOMPTeamsDistributeParallelForDirective(
3508
      const OMPTeamsDistributeParallelForDirective &S);
3509
  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3510
  void EmitOMPTargetTeamsDistributeDirective(
3511
      const OMPTargetTeamsDistributeDirective &S);
3512
  void EmitOMPTargetTeamsDistributeParallelForDirective(
3513
      const OMPTargetTeamsDistributeParallelForDirective &S);
3514
  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3515
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3516
  void EmitOMPTargetTeamsDistributeSimdDirective(
3517
      const OMPTargetTeamsDistributeSimdDirective &S);
3518
3519
  /// Emit device code for the target directive.
3520
  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3521
                                          StringRef ParentName,
3522
                                          const OMPTargetDirective &S);
3523
  static void
3524
  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3525
                                      const OMPTargetParallelDirective &S);
3526
  /// Emit device code for the target parallel for directive.
3527
  static void EmitOMPTargetParallelForDeviceFunction(
3528
      CodeGenModule &CGM, StringRef ParentName,
3529
      const OMPTargetParallelForDirective &S);
3530
  /// Emit device code for the target parallel for simd directive.
3531
  static void EmitOMPTargetParallelForSimdDeviceFunction(
3532
      CodeGenModule &CGM, StringRef ParentName,
3533
      const OMPTargetParallelForSimdDirective &S);
3534
  /// Emit device code for the target teams directive.
3535
  static void
3536
  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3537
                                   const OMPTargetTeamsDirective &S);
3538
  /// Emit device code for the target teams distribute directive.
3539
  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3540
      CodeGenModule &CGM, StringRef ParentName,
3541
      const OMPTargetTeamsDistributeDirective &S);
3542
  /// Emit device code for the target teams distribute simd directive.
3543
  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3544
      CodeGenModule &CGM, StringRef ParentName,
3545
      const OMPTargetTeamsDistributeSimdDirective &S);
3546
  /// Emit device code for the target simd directive.
3547
  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3548
                                              StringRef ParentName,
3549
                                              const OMPTargetSimdDirective &S);
3550
  /// Emit device code for the target teams distribute parallel for simd
3551
  /// directive.
3552
  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3553
      CodeGenModule &CGM, StringRef ParentName,
3554
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3555
3556
  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3557
      CodeGenModule &CGM, StringRef ParentName,
3558
      const OMPTargetTeamsDistributeParallelForDirective &S);
3559
3560
  /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3561
  /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3562
  /// future it is meant to be the number of loops expected in the loop nests
3563
  /// (usually specified by the "collapse" clause) that are collapsed to a
3564
  /// single loop by this function.
3565
  llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3566
                                                             int Depth);
3567
3568
  /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3569
  void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3570
3571
  /// Emit inner loop of the worksharing/simd construct.
3572
  ///
3573
  /// \param S Directive, for which the inner loop must be emitted.
3574
  /// \param RequiresCleanup true, if directive has some associated private
3575
  /// variables.
3576
  /// \param LoopCond Bollean condition for loop continuation.
3577
  /// \param IncExpr Increment expression for loop control variable.
3578
  /// \param BodyGen Generator for the inner body of the inner loop.
3579
  /// \param PostIncGen Genrator for post-increment code (required for ordered
3580
  /// loop directvies).
3581
  void EmitOMPInnerLoop(
3582
      const OMPExecutableDirective &S, bool RequiresCleanup,
3583
      const Expr *LoopCond, const Expr *IncExpr,
3584
      const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3585
      const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3586
3587
  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3588
  /// Emit initial code for loop counters of loop-based directives.
3589
  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3590
                                  OMPPrivateScope &LoopScope);
3591
3592
  /// Helper for the OpenMP loop directives.
3593
  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3594
3595
  /// Emit code for the worksharing loop-based directive.
3596
  /// \return true, if this construct has any lastprivate clause, false -
3597
  /// otherwise.
3598
  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3599
                              const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3600
                              const CodeGenDispatchBoundsTy &CGDispatchBounds);
3601
3602
  /// Emit code for the distribute loop-based directive.
3603
  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3604
                             const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3605
3606
  /// Helpers for the OpenMP loop directives.
3607
  void EmitOMPSimdInit(const OMPLoopDirective &D);
3608
  void EmitOMPSimdFinal(
3609
      const OMPLoopDirective &D,
3610
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3611
3612
  /// Emits the lvalue for the expression with possibly captured variable.
3613
  LValue EmitOMPSharedLValue(const Expr *E);
3614
3615
private:
3616
  /// Helpers for blocks.
3617
  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3618
3619
  /// struct with the values to be passed to the OpenMP loop-related functions
3620
  struct OMPLoopArguments {
3621
    /// loop lower bound
3622
    Address LB = Address::invalid();
3623
    /// loop upper bound
3624
    Address UB = Address::invalid();
3625
    /// loop stride
3626
    Address ST = Address::invalid();
3627
    /// isLastIteration argument for runtime functions
3628
    Address IL = Address::invalid();
3629
    /// Chunk value generated by sema
3630
    llvm::Value *Chunk = nullptr;
3631
    /// EnsureUpperBound
3632
    Expr *EUB = nullptr;
3633
    /// IncrementExpression
3634
    Expr *IncExpr = nullptr;
3635
    /// Loop initialization
3636
    Expr *Init = nullptr;
3637
    /// Loop exit condition
3638
    Expr *Cond = nullptr;
3639
    /// Update of LB after a whole chunk has been executed
3640
    Expr *NextLB = nullptr;
3641
    /// Update of UB after a whole chunk has been executed
3642
    Expr *NextUB = nullptr;
3643
164
    OMPLoopArguments() = default;
3644
    OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3645
                     llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3646
                     Expr *IncExpr = nullptr, Expr *Init = nullptr,
3647
                     Expr *Cond = nullptr, Expr *NextLB = nullptr,
3648
                     Expr *NextUB = nullptr)
3649
        : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3650
          IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3651
2.21k
          NextUB(NextUB) {}
3652
  };
3653
  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3654
                        const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3655
                        const OMPLoopArguments &LoopArgs,
3656
                        const CodeGenLoopTy &CodeGenLoop,
3657
                        const CodeGenOrderedTy &CodeGenOrdered);
3658
  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3659
                           bool IsMonotonic, const OMPLoopDirective &S,
3660
                           OMPPrivateScope &LoopScope, bool Ordered,
3661
                           const OMPLoopArguments &LoopArgs,
3662
                           const CodeGenDispatchBoundsTy &CGDispatchBounds);
3663
  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3664
                                  const OMPLoopDirective &S,
3665
                                  OMPPrivateScope &LoopScope,
3666
                                  const OMPLoopArguments &LoopArgs,
3667
                                  const CodeGenLoopTy &CodeGenLoopContent);
3668
  /// Emit code for sections directive.
3669
  void EmitSections(const OMPExecutableDirective &S);
3670
3671
public:
3672
3673
  //===--------------------------------------------------------------------===//
3674
  //                         LValue Expression Emission
3675
  //===--------------------------------------------------------------------===//
3676
3677
  /// Create a check that a scalar RValue is non-null.
3678
  llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3679
3680
  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3681
  RValue GetUndefRValue(QualType Ty);
3682
3683
  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3684
  /// and issue an ErrorUnsupported style diagnostic (using the
3685
  /// provided Name).
3686
  RValue EmitUnsupportedRValue(const Expr *E,
3687
                               const char *Name);
3688
3689
  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3690
  /// an ErrorUnsupported style diagnostic (using the provided Name).
3691
  LValue EmitUnsupportedLValue(const Expr *E,
3692
                               const char *Name);
3693
3694
  /// EmitLValue - Emit code to compute a designator that specifies the location
3695
  /// of the expression.
3696
  ///
3697
  /// This can return one of two things: a simple address or a bitfield
3698
  /// reference.  In either case, the LLVM Value* in the LValue structure is
3699
  /// guaranteed to be an LLVM pointer type.
3700
  ///
3701
  /// If this returns a bitfield reference, nothing about the pointee type of
3702
  /// the LLVM value is known: For example, it may not be a pointer to an
3703
  /// integer.
3704
  ///
3705
  /// If this returns a normal address, and if the lvalue's C type is fixed
3706
  /// size, this method guarantees that the returned pointer type will point to
3707
  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3708
  /// variable length type, this is not possible.
3709
  ///
3710
  LValue EmitLValue(const Expr *E);
3711
3712
  /// Same as EmitLValue but additionally we generate checking code to
3713
  /// guard against undefined behavior.  This is only suitable when we know
3714
  /// that the address will be used to access the object.
3715
  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3716
3717
  RValue convertTempToRValue(Address addr, QualType type,
3718
                             SourceLocation Loc);
3719
3720
  void EmitAtomicInit(Expr *E, LValue lvalue);
3721
3722
  bool LValueIsSuitableForInlineAtomic(LValue Src);
3723
3724
  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3725
                        AggValueSlot Slot = AggValueSlot::ignored());
3726
3727
  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3728
                        llvm::AtomicOrdering AO, bool IsVolatile = false,
3729
                        AggValueSlot slot = AggValueSlot::ignored());
3730
3731
  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3732
3733
  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3734
                       bool IsVolatile, bool isInit);
3735
3736
  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3737
      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3738
      llvm::AtomicOrdering Success =
3739
          llvm::AtomicOrdering::SequentiallyConsistent,
3740
      llvm::AtomicOrdering Failure =
3741
          llvm::AtomicOrdering::SequentiallyConsistent,
3742
      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3743
3744
  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3745
                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
3746
                        bool IsVolatile);
3747
3748
  /// EmitToMemory - Change a scalar value from its value
3749
  /// representation to its in-memory representation.
3750
  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3751
3752
  /// EmitFromMemory - Change a scalar value from its memory
3753
  /// representation to its value representation.
3754
  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3755
3756
  /// Check if the scalar \p Value is within the valid range for the given
3757
  /// type \p Ty.
3758
  ///
3759
  /// Returns true if a check is needed (even if the range is unknown).
3760
  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3761
                            SourceLocation Loc);
3762
3763
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3764
  /// care to appropriately convert from the memory representation to
3765
  /// the LLVM value representation.
3766
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3767
                                SourceLocation Loc,
3768
                                AlignmentSource Source = AlignmentSource::Type,
3769
4.70k
                                bool isNontemporal = false) {
3770
4.70k
    return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3771
4.70k
                            CGM.getTBAAAccessInfo(Ty), isNontemporal);
3772
4.70k
  }
3773
3774
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3775
                                SourceLocation Loc, LValueBaseInfo BaseInfo,
3776
                                TBAAAccessInfo TBAAInfo,
3777
                                bool isNontemporal = false);
3778
3779
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3780
  /// care to appropriately convert from the memory representation to
3781
  /// the LLVM value representation.  The l-value must be a simple
3782
  /// l-value.
3783
  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3784
3785
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3786
  /// care to appropriately convert from the memory representation to
3787
  /// the LLVM value representation.
3788
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3789
                         bool Volatile, QualType Ty,
3790
                         AlignmentSource Source = AlignmentSource::Type,
3791
1.22k
                         bool isInit = false, bool isNontemporal = false) {
3792
1.22k
    EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3793
1.22k
                      CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3794
1.22k
  }
3795
3796
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3797
                         bool Volatile, QualType Ty,
3798
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3799
                         bool isInit = false, bool isNontemporal = false);
3800
3801
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3802
  /// care to appropriately convert from the memory representation to
3803
  /// the LLVM value representation.  The l-value must be a simple
3804
  /// l-value.  The isInit flag indicates whether this is an initialization.
3805
  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3806
  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3807
3808
  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3809
  /// this method emits the address of the lvalue, then loads the result as an
3810
  /// rvalue, returning the rvalue.
3811
  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3812
  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3813
  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3814
  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3815
3816
  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3817
  /// lvalue, where both are guaranteed to the have the same type, and that type
3818
  /// is 'Ty'.
3819
  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3820
  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3821
  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3822
3823
  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3824
  /// as EmitStoreThroughLValue.
3825
  ///
3826
  /// \param Result [out] - If non-null, this will be set to a Value* for the
3827
  /// bit-field contents after the store, appropriate for use as the result of
3828
  /// an assignment to the bit-field.
3829
  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3830
                                      llvm::Value **Result=nullptr);
3831
3832
  /// Emit an l-value for an assignment (simple or compound) of complex type.
3833
  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3834
  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3835
  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3836
                                             llvm::Value *&Result);
3837
3838
  // Note: only available for agg return types
3839
  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3840
  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3841
  // Note: only available for agg return types
3842
  LValue EmitCallExprLValue(const CallExpr *E);
3843
  // Note: only available for agg return types
3844
  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3845
  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3846
  LValue EmitStringLiteralLValue(const StringLiteral *E);
3847
  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3848
  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3849
  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3850
  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3851
                                bool Accessed = false);
3852
  LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3853
  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3854
                                 bool IsLowerBound = true);
3855
  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3856
  LValue EmitMemberExpr(const MemberExpr *E);
3857
  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3858
  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3859
  LValue EmitInitListLValue(const InitListExpr *E);
3860
  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3861
  LValue EmitCastLValue(const CastExpr *E);
3862
  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3863
  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3864
3865
  Address EmitExtVectorElementLValue(LValue V);
3866
3867
  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3868
3869
  Address EmitArrayToPointerDecay(const Expr *Array,
3870
                                  LValueBaseInfo *BaseInfo = nullptr,
3871
                                  TBAAAccessInfo *TBAAInfo = nullptr);
3872
3873
  class ConstantEmission {
3874
    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3875
    ConstantEmission(llvm::Constant *C, bool isReference)
3876
6.49k
      : ValueAndIsReference(C, isReference) {}
3877
  public:
3878
1.34M
    ConstantEmission() {}
3879
60
    static ConstantEmission forReference(llvm::Constant *C) {
3880
60
      return ConstantEmission(C, true);
3881
60
    }
3882
6.43k
    static ConstantEmission forValue(llvm::Constant *C) {
3883
6.43k
      return ConstantEmission(C, false);
3884
6.43k
    }
3885
3886
1.35M
    explicit operator bool() const {
3887
1.35M
      return ValueAndIsReference.getOpaqueValue() != nullptr;
3888
1.35M
    }
3889
3890
12.9k
    bool isReference() const { return ValueAndIsReference.getInt(); }
3891
60
    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3892
60
      assert(isReference());
3893
0
      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3894
60
                                            refExpr->getType());
3895
60
    }
3896
3897
6.43k
    llvm::Constant *getValue() const {
3898
6.43k
      assert(!isReference());
3899
0
      return ValueAndIsReference.getPointer();
3900
6.43k
    }
3901
  };
3902
3903
  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3904
  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3905
  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3906
3907
  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3908
                                AggValueSlot slot = AggValueSlot::ignored());
3909
  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3910
3911
  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3912
                              const ObjCIvarDecl *Ivar);
3913
  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3914
  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3915
3916
  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3917
  /// if the Field is a reference, this will return the address of the reference
3918
  /// and not the address of the value stored in the reference.
3919
  LValue EmitLValueForFieldInitialization(LValue Base,
3920
                                          const FieldDecl* Field);
3921
3922
  LValue EmitLValueForIvar(QualType ObjectTy,
3923
                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
3924
                           unsigned CVRQualifiers);
3925
3926
  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3927
  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3928
  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3929
  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3930
3931
  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3932
  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3933
  LValue EmitStmtExprLValue(const StmtExpr *E);
3934
  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3935
  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3936
  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3937
3938
  //===--------------------------------------------------------------------===//
3939
  //                         Scalar Expression Emission
3940
  //===--------------------------------------------------------------------===//
3941
3942
  /// EmitCall - Generate a call of the given function, expecting the given
3943
  /// result type, and using the given argument list which specifies both the
3944
  /// LLVM arguments and the types they were derived from.
3945
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3946
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
3947
                  llvm::CallBase **callOrInvoke, bool IsMustTail,
3948
                  SourceLocation Loc);
3949
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3950
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
3951
                  llvm::CallBase **callOrInvoke = nullptr,
3952
18.6k
                  bool IsMustTail = false) {
3953
18.6k
    return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3954
18.6k
                    IsMustTail, SourceLocation());
3955
18.6k
  }
3956
  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3957
                  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3958
  RValue EmitCallExpr(const CallExpr *E,
3959
                      ReturnValueSlot ReturnValue = ReturnValueSlot());
3960
  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3961
  CGCallee EmitCallee(const Expr *E);
3962
3963
  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3964
  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3965
3966
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3967
                                  const Twine &name = "");
3968
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3969
                                  ArrayRef<llvm::Value *> args,
3970
                                  const Twine &name = "");
3971
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3972
                                          const Twine &name = "");
3973
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3974
                                          ArrayRef<llvm::Value *> args,
3975
                                          const Twine &name = "");
3976
3977
  SmallVector<llvm::OperandBundleDef, 1>
3978
  getBundlesForFunclet(llvm::Value *Callee);
3979
3980
  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3981
                                   ArrayRef<llvm::Value *> Args,
3982
                                   const Twine &Name = "");
3983
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3984
                                          ArrayRef<llvm::Value *> args,
3985
                                          const Twine &name = "");
3986
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3987
                                          const Twine &name = "");
3988
  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3989
                                       ArrayRef<llvm::Value *> args);
3990
3991
  CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3992
                                     NestedNameSpecifier *Qual,
3993
                                     llvm::Type *Ty);
3994
3995
  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3996
                                               CXXDtorType Type,
3997
                                               const CXXRecordDecl *RD);
3998
3999
  // Return the copy constructor name with the prefix "__copy_constructor_"
4000
  // removed.
4001
  static std::string getNonTrivialCopyConstructorStr(QualType QT,
4002
                                                     CharUnits Alignment,
4003
                                                     bool IsVolatile,
4004
                                                     ASTContext &Ctx);
4005
4006
  // Return the destructor name with the prefix "__destructor_" removed.
4007
  static std::string getNonTrivialDestructorStr(QualType QT,
4008
                                                CharUnits Alignment,
4009
                                                bool IsVolatile,
4010
                                                ASTContext &Ctx);
4011
4012
  // These functions emit calls to the special functions of non-trivial C
4013
  // structs.
4014
  void defaultInitNonTrivialCStructVar(LValue Dst);
4015
  void callCStructDefaultConstructor(LValue Dst);
4016
  void callCStructDestructor(LValue Dst);
4017
  void callCStructCopyConstructor(LValue Dst, LValue Src);
4018
  void callCStructMoveConstructor(LValue Dst, LValue Src);
4019
  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4020
  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4021
4022
  RValue
4023
  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4024
                              const CGCallee &Callee,
4025
                              ReturnValueSlot ReturnValue, llvm::Value *This,
4026
                              llvm::Value *ImplicitParam,
4027
                              QualType ImplicitParamTy, const CallExpr *E,
4028
                              CallArgList *RtlArgs);
4029
  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4030
                               llvm::Value *This, QualType ThisTy,
4031
                               llvm::Value *ImplicitParam,
4032
                               QualType ImplicitParamTy, const CallExpr *E);
4033
  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4034
                               ReturnValueSlot ReturnValue);
4035
  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4036
                                               const CXXMethodDecl *MD,
4037
                                               ReturnValueSlot ReturnValue,
4038
                                               bool HasQualifier,
4039
                                               NestedNameSpecifier *Qualifier,
4040
                                               bool IsArrow, const Expr *Base);
4041
  // Compute the object pointer.
4042
  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4043
                                          llvm::Value *memberPtr,
4044
                                          const MemberPointerType *memberPtrType,
4045
                                          LValueBaseInfo *BaseInfo = nullptr,
4046
                                          TBAAAccessInfo *TBAAInfo = nullptr);
4047
  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4048
                                      ReturnValueSlot ReturnValue);
4049
4050
  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4051
                                       const CXXMethodDecl *MD,
4052
                                       ReturnValueSlot ReturnValue);
4053
  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4054
4055
  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4056
                                ReturnValueSlot ReturnValue);
4057
4058
  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
4059
                                       ReturnValueSlot ReturnValue);
4060
  RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
4061
                                        ReturnValueSlot ReturnValue);
4062
4063
  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4064
                         const CallExpr *E, ReturnValueSlot ReturnValue);
4065
4066
  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4067
4068
  /// Emit IR for __builtin_os_log_format.
4069
  RValue emitBuiltinOSLogFormat(const CallExpr &E);
4070
4071
  /// Emit IR for __builtin_is_aligned.
4072
  RValue EmitBuiltinIsAligned(const CallExpr *E);
4073
  /// Emit IR for __builtin_align_up/__builtin_align_down.
4074
  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4075
4076
  llvm::Function *generateBuiltinOSLogHelperFunction(
4077
      const analyze_os_log::OSLogBufferLayout &Layout,
4078
      CharUnits BufferAlignment);
4079
4080
  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4081
4082
  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4083
  /// is unhandled by the current target.
4084
  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4085
                                     ReturnValueSlot ReturnValue);
4086
4087
  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4088
                                             const llvm::CmpInst::Predicate Fp,
4089
                                             const llvm::CmpInst::Predicate Ip,
4090
                                             const llvm::Twine &Name = "");
4091
  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4092
                                  ReturnValueSlot ReturnValue,
4093
                                  llvm::Triple::ArchType Arch);
4094
  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4095
                                     ReturnValueSlot ReturnValue,
4096
                                     llvm::Triple::ArchType Arch);
4097
  llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4098
                                     ReturnValueSlot ReturnValue,
4099
                                     llvm::Triple::ArchType Arch);
4100
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4101
                                   QualType RTy);
4102
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4103
                                   QualType RTy);
4104
4105
  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4106
                                         unsigned LLVMIntrinsic,
4107
                                         unsigned AltLLVMIntrinsic,
4108
                                         const char *NameHint,
4109
                                         unsigned Modifier,
4110
                                         const CallExpr *E,
4111
                                         SmallVectorImpl<llvm::Value *> &Ops,
4112
                                         Address PtrOp0, Address PtrOp1,
4113
                                         llvm::Triple::ArchType Arch);
4114
4115
  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4116
                                          unsigned Modifier, llvm::Type *ArgTy,
4117
                                          const CallExpr *E);
4118
  llvm::Value *EmitNeonCall(llvm::Function *F,
4119
                            SmallVectorImpl<llvm::Value*> &O,
4120
                            const char *name,
4121
                            unsigned shift = 0, bool rightshift = false);
4122
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4123
                             const llvm::ElementCount &Count);
4124
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4125
  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4126
                                   bool negateForRightShift);
4127
  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4128
                                 llvm::Type *Ty, bool usgn, const char *name);
4129
  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4130
  /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4131
  /// access builtin.  Only required if it can't be inferred from the base
4132
  /// pointer operand.
4133
  llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4134
4135
  SmallVector<llvm::Type *, 2>
4136
  getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4137
                      ArrayRef<llvm::Value *> Ops);
4138
  llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4139
  llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4140
  llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4141
  llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4142
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4143
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4144
  llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4145
  llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4146
                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4147
                            unsigned BuiltinID);
4148
  llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4149
                           llvm::ArrayRef<llvm::Value *> Ops,
4150
                           unsigned BuiltinID);
4151
  llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4152
                                    llvm::ScalableVectorType *VTy);
4153
  llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4154
                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4155
                                 unsigned IntID);
4156
  llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4157
                                   llvm::SmallVectorImpl<llvm::Value *> &Ops,
4158
                                   unsigned IntID);
4159
  llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4160
                                 SmallVectorImpl<llvm::Value *> &Ops,
4161
                                 unsigned BuiltinID, bool IsZExtReturn);
4162
  llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4163
                                  SmallVectorImpl<llvm::Value *> &Ops,
4164
                                  unsigned BuiltinID);
4165
  llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4166
                                   SmallVectorImpl<llvm::Value *> &Ops,
4167
                                   unsigned BuiltinID);
4168
  llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4169
                                     SmallVectorImpl<llvm::Value *> &Ops,
4170
                                     unsigned IntID);
4171
  llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4172
                                 SmallVectorImpl<llvm::Value *> &Ops,
4173
                                 unsigned IntID);
4174
  llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4175
                                  SmallVectorImpl<llvm::Value *> &Ops,
4176
                                  unsigned IntID);
4177
  llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4178
4179
  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4180
                                      llvm::Triple::ArchType Arch);
4181
  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4182
4183
  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4184
  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4185
  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4186
  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4187
  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4188
  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4189
  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4190
                                          const CallExpr *E);
4191
  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4192
  llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4193
                                    ReturnValueSlot ReturnValue);
4194
  bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4195
                               llvm::AtomicOrdering &AO,
4196
                               llvm::SyncScope::ID &SSID);
4197
4198
  enum class MSVCIntrin;
4199
  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4200
4201
  llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4202
4203
  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4204
  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4205
  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4206
  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4207
  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4208
  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4209
                                const ObjCMethodDecl *MethodWithObjects);
4210
  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4211
  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4212
                             ReturnValueSlot Return = ReturnValueSlot());
4213
4214
  /// Retrieves the default cleanup kind for an ARC cleanup.
4215
  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4216
1.06k
  CleanupKind getARCCleanupKind() {
4217
1.06k
    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4218
1.06k
             ? 
NormalAndEHCleanup60
:
NormalCleanup1.00k
;
4219
1.06k
  }
4220
4221
  // ARC primitives.
4222
  void EmitARCInitWeak(Address addr, llvm::Value *value);
4223
  void EmitARCDestroyWeak(Address addr);
4224
  llvm::Value *EmitARCLoadWeak(Address addr);
4225
  llvm::Value *EmitARCLoadWeakRetained(Address addr);
4226
  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4227
  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4228
  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4229
  void EmitARCCopyWeak(Address dst, Address src);
4230
  void EmitARCMoveWeak(Address dst, Address src);
4231
  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4232
  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4233
  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4234
                                  bool resultIgnored);
4235
  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4236
                                      bool resultIgnored);
4237
  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4238
  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4239
  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4240
  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4241
  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4242
  llvm::Value *EmitARCAutorelease(llvm::Value *value);
4243
  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4244
  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4245
  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4246
  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4247
4248
  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4249
  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4250
                                      llvm::Type *returnType);
4251
  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4252
4253
  std::pair<LValue,llvm::Value*>
4254
  EmitARCStoreAutoreleasing(const BinaryOperator *e);
4255
  std::pair<LValue,llvm::Value*>
4256
  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4257
  std::pair<LValue,llvm::Value*>
4258
  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4259
4260
  llvm::Value *EmitObjCAlloc(llvm::Value *value,
4261
                             llvm::Type *returnType);
4262
  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4263
                                     llvm::Type *returnType);
4264
  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4265
4266
  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4267
  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4268
  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4269
4270
  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4271
  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4272
                                            bool allowUnsafeClaim);
4273
  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4274
  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4275
  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4276
4277
  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4278
4279
  void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4280
4281
  static Destroyer destroyARCStrongImprecise;
4282
  static Destroyer destroyARCStrongPrecise;
4283
  static Destroyer destroyARCWeak;
4284
  static Destroyer emitARCIntrinsicUse;
4285
  static Destroyer destroyNonTrivialCStruct;
4286
4287
  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4288
  llvm::Value *EmitObjCAutoreleasePoolPush();
4289
  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4290
  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4291
  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4292
4293
  /// Emits a reference binding to the passed in expression.
4294
  RValue EmitReferenceBindingToExpr(const Expr *E);
4295
4296
  //===--------------------------------------------------------------------===//
4297
  //                           Expression Emission
4298
  //===--------------------------------------------------------------------===//
4299
4300
  // Expressions are broken into three classes: scalar, complex, aggregate.
4301
4302
  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4303
  /// scalar type, returning the result.
4304
  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4305
4306
  /// Emit a conversion from the specified type to the specified destination
4307
  /// type, both of which are LLVM scalar types.
4308
  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4309
                                    QualType DstTy, SourceLocation Loc);
4310
4311
  /// Emit a conversion from the specified complex type to the specified
4312
  /// destination type, where the destination type is an LLVM scalar type.
4313
  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4314
                                             QualType DstTy,
4315
                                             SourceLocation Loc);
4316
4317
  /// EmitAggExpr - Emit the computation of the specified expression
4318
  /// of aggregate type.  The result is computed into the given slot,
4319
  /// which may be null to indicate that the value is not needed.
4320
  void EmitAggExpr(const Expr *E, AggValueSlot AS);
4321
4322
  /// EmitAggExprToLValue - Emit the computation of the specified expression of
4323
  /// aggregate type into a temporary LValue.
4324
  LValue EmitAggExprToLValue(const Expr *E);
4325
4326
  /// Build all the stores needed to initialize an aggregate at Dest with the
4327
  /// value Val.
4328
  void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4329
4330
  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4331
  /// make sure it survives garbage collection until this point.
4332
  void EmitExtendGCLifetime(llvm::Value *object);
4333
4334
  /// EmitComplexExpr - Emit the computation of the specified expression of
4335
  /// complex type, returning the result.
4336
  ComplexPairTy EmitComplexExpr(const Expr *E,
4337
                                bool IgnoreReal = false,
4338
                                bool IgnoreImag = false);
4339
4340
  /// EmitComplexExprIntoLValue - Emit the given expression of complex
4341
  /// type and place its result into the specified l-value.
4342
  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4343
4344
  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4345
  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4346
4347
  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4348
  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4349
4350
  Address emitAddrOfRealComponent(Address complex, QualType complexType);
4351
  Address emitAddrOfImagComponent(Address complex, QualType complexType);
4352
4353
  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4354
  /// global variable that has already been created for it.  If the initializer
4355
  /// has a different type than GV does, this may free GV and return a different
4356
  /// one.  Otherwise it just returns GV.
4357
  llvm::GlobalVariable *
4358
  AddInitializerToStaticVarDecl(const VarDecl &D,
4359
                                llvm::GlobalVariable *GV);
4360
4361
  // Emit an @llvm.invariant.start call for the given memory region.
4362
  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4363
4364
  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4365
  /// variable with global storage.
4366
  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4367
                                bool PerformInit);
4368
4369
  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4370
                                   llvm::Constant *Addr);
4371
4372
  llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4373
                                      llvm::FunctionCallee Dtor,
4374
                                      llvm::Constant *Addr,
4375
                                      llvm::FunctionCallee &AtExit);
4376
4377
  /// Call atexit() with a function that passes the given argument to
4378
  /// the given function.
4379
  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4380
                                    llvm::Constant *addr);
4381
4382
  /// Call atexit() with function dtorStub.
4383
  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4384
4385
  /// Call unatexit() with function dtorStub.
4386
  llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4387
4388
  /// Emit code in this function to perform a guarded variable
4389
  /// initialization.  Guarded initializations are used when it's not
4390
  /// possible to prove that an initialization will be done exactly
4391
  /// once, e.g. with a static local variable or a static data member
4392
  /// of a class template.
4393
  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4394
                          bool PerformInit);
4395
4396
  enum class GuardKind { VariableGuard, TlsGuard };
4397
4398
  /// Emit a branch to select whether or not to perform guarded initialization.
4399
  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4400
                                llvm::BasicBlock *InitBlock,
4401
                                llvm::BasicBlock *NoInitBlock,
4402
                                GuardKind Kind, const VarDecl *D);
4403
4404
  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4405
  /// variables.
4406
  void
4407
  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4408
                            ArrayRef<llvm::Function *> CXXThreadLocals,
4409
                            ConstantAddress Guard = ConstantAddress::invalid());
4410
4411
  /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4412
  /// variables.
4413
  void GenerateCXXGlobalCleanUpFunc(
4414
      llvm::Function *Fn,
4415
      ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4416
                          llvm::Constant *>>
4417
          DtorsOrStermFinalizers);
4418
4419
  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4420
                                        const VarDecl *D,
4421
                                        llvm::GlobalVariable *Addr,
4422
                                        bool PerformInit);
4423
4424
  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4425
4426
  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4427
4428
  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4429
4430
  RValue EmitAtomicExpr(AtomicExpr *E);
4431
4432
  //===--------------------------------------------------------------------===//
4433
  //                         Annotations Emission
4434
  //===--------------------------------------------------------------------===//
4435
4436
  /// Emit an annotation call (intrinsic).
4437
  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4438
                                  llvm::Value *AnnotatedVal,
4439
                                  StringRef AnnotationStr,
4440
                                  SourceLocation Location,
4441
                                  const AnnotateAttr *Attr);
4442
4443
  /// Emit local annotations for the local variable V, declared by D.
4444
  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4445
4446
  /// Emit field annotations for the given field & value. Returns the
4447
  /// annotation result.
4448
  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4449
4450
  //===--------------------------------------------------------------------===//
4451
  //                             Internal Helpers
4452
  //===--------------------------------------------------------------------===//
4453
4454
  /// ContainsLabel - Return true if the statement contains a label in it.  If
4455
  /// this statement is not executed normally, it not containing a label means
4456
  /// that we can just remove the code.
4457
  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4458
4459
  /// containsBreak - Return true if the statement contains a break out of it.
4460
  /// If the statement (recursively) contains a switch or loop with a break
4461
  /// inside of it, this is fine.
4462
  static bool containsBreak(const Stmt *S);
4463
4464
  /// Determine if the given statement might introduce a declaration into the
4465
  /// current scope, by being a (possibly-labelled) DeclStmt.
4466
  static bool mightAddDeclToScope(const Stmt *S);
4467
4468
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4469
  /// to a constant, or if it does but contains a label, return false.  If it
4470
  /// constant folds return true and set the boolean result in Result.
4471
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4472
                                    bool AllowLabels = false);
4473
4474
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4475
  /// to a constant, or if it does but contains a label, return false.  If it
4476
  /// constant folds return true and set the folded value.
4477
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4478
                                    bool AllowLabels = false);
4479
4480
  /// isInstrumentedCondition - Determine whether the given condition is an
4481
  /// instrumentable condition (i.e. no "&&" or "||").
4482
  static bool isInstrumentedCondition(const Expr *C);
4483
4484
  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4485
  /// increments a profile counter based on the semantics of the given logical
4486
  /// operator opcode.  This is used to instrument branch condition coverage
4487
  /// for logical operators.
4488
  void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4489
                                llvm::BasicBlock *TrueBlock,
4490
                                llvm::BasicBlock *FalseBlock,
4491
                                uint64_t TrueCount = 0,
4492
                                Stmt::Likelihood LH = Stmt::LH_None,
4493
                                const Expr *CntrIdx = nullptr);
4494
4495
  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4496
  /// if statement) to the specified blocks.  Based on the condition, this might
4497
  /// try to simplify the codegen of the conditional based on the branch.
4498
  /// TrueCount should be the number of times we expect the condition to
4499
  /// evaluate to true based on PGO data.
4500
  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4501
                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4502
                            Stmt::Likelihood LH = Stmt::LH_None);
4503
4504
  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4505
  /// nonnull, if \p LHS is marked _Nonnull.
4506
  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4507
4508
  /// An enumeration which makes it easier to specify whether or not an
4509
  /// operation is a subtraction.
4510
  enum { NotSubtraction = false, IsSubtraction = true };
4511
4512
  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4513
  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4514
  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4515
  /// \p IsSubtraction indicates whether the expression used to form the GEP
4516
  /// is a subtraction.
4517
  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4518
                                      ArrayRef<llvm::Value *> IdxList,
4519
                                      bool SignedIndices,
4520
                                      bool IsSubtraction,
4521
                                      SourceLocation Loc,
4522
                                      const Twine &Name = "");
4523
4524
  /// Specifies which type of sanitizer check to apply when handling a
4525
  /// particular builtin.
4526
  enum BuiltinCheckKind {
4527
    BCK_CTZPassedZero,
4528
    BCK_CLZPassedZero,
4529
  };
4530
4531
  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4532
  /// enabled, a runtime check specified by \p Kind is also emitted.
4533
  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4534
4535
  /// Emit a description of a type in a format suitable for passing to
4536
  /// a runtime sanitizer handler.
4537
  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4538
4539
  /// Convert a value into a format suitable for passing to a runtime
4540
  /// sanitizer handler.
4541
  llvm::Value *EmitCheckValue(llvm::Value *V);
4542
4543
  /// Emit a description of a source location in a format suitable for
4544
  /// passing to a runtime sanitizer handler.
4545
  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4546
4547
  /// Create a basic block that will either trap or call a handler function in
4548
  /// the UBSan runtime with the provided arguments, and create a conditional
4549
  /// branch to it.
4550
  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4551
                 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4552
                 ArrayRef<llvm::Value *> DynamicArgs);
4553
4554
  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4555
  /// if Cond if false.
4556
  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4557
                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4558
                            ArrayRef<llvm::Constant *> StaticArgs);
4559
4560
  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4561
  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4562
  void EmitUnreachable(SourceLocation Loc);
4563
4564
  /// Create a basic block that will call the trap intrinsic, and emit a
4565
  /// conditional branch to it, for the -ftrapv checks.
4566
  void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4567
4568
  /// Emit a call to trap or debugtrap and attach function attribute
4569
  /// "trap-func-name" if specified.
4570
  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4571
4572
  /// Emit a stub for the cross-DSO CFI check function.
4573
  void EmitCfiCheckStub();
4574
4575
  /// Emit a cross-DSO CFI failure handling function.
4576
  void EmitCfiCheckFail();
4577
4578
  /// Create a check for a function parameter that may potentially be
4579
  /// declared as non-null.
4580
  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4581
                           AbstractCallee AC, unsigned ParmNum);
4582
4583
  /// EmitCallArg - Emit a single call argument.
4584
  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4585
4586
  /// EmitDelegateCallArg - We are performing a delegate call; that
4587
  /// is, the current function is delegating to another one.  Produce
4588
  /// a r-value suitable for passing the given parameter.
4589
  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4590
                           SourceLocation loc);
4591
4592
  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4593
  /// point operation, expressed as the maximum relative error in ulp.
4594
  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4595
4596
  /// Set the codegen fast-math flags.
4597
  void SetFastMathFlags(FPOptions FPFeatures);
4598
4599
private:
4600
  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4601
  void EmitReturnOfRValue(RValue RV, QualType Ty);
4602
4603
  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4604
4605
  llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4606
      DeferredReplacements;
4607
4608
  /// Set the address of a local variable.
4609
1.09M
  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4610
1.09M
    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4611
0
    LocalDeclMap.insert({VD, Addr});
4612
1.09M
  }
4613
4614
  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4615
  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4616
  ///
4617
  /// \param AI - The first function argument of the expansion.
4618
  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4619
                          llvm::Function::arg_iterator &AI);
4620
4621
  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4622
  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4623
  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4624
  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4625
                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
4626
                        unsigned &IRCallArgPos);
4627
4628
  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4629
                            const Expr *InputExpr, std::string &ConstraintStr);
4630
4631
  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4632
                                  LValue InputValue, QualType InputType,
4633
                                  std::string &ConstraintStr,
4634
                                  SourceLocation Loc);
4635
4636
  /// Attempts to statically evaluate the object size of E. If that
4637
  /// fails, emits code to figure the size of E out for us. This is
4638
  /// pass_object_size aware.
4639
  ///
4640
  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4641
  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4642
                                               llvm::IntegerType *ResType,
4643
                                               llvm::Value *EmittedE,
4644
                                               bool IsDynamic);
4645
4646
  /// Emits the size of E, as required by __builtin_object_size. This
4647
  /// function is aware of pass_object_size parameters, and will act accordingly
4648
  /// if E is a parameter with the pass_object_size attribute.
4649
  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4650
                                     llvm::IntegerType *ResType,
4651
                                     llvm::Value *EmittedE,
4652
                                     bool IsDynamic);
4653
4654
  void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4655
                                       Address Loc);
4656
4657
public:
4658
  enum class EvaluationOrder {
4659
    ///! No language constraints on evaluation order.
4660
    Default,
4661
    ///! Language semantics require left-to-right evaluation.
4662
    ForceLeftToRight,
4663
    ///! Language semantics require right-to-left evaluation.
4664
    ForceRightToLeft
4665
  };
4666
4667
  // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4668
  // an ObjCMethodDecl.
4669
  struct PrototypeWrapper {
4670
    llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4671
4672
323k
    PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4673
11.9k
    PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4674
  };
4675
4676
  void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4677
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4678
                    AbstractCallee AC = AbstractCallee(),
4679
                    unsigned ParamsToSkip = 0,
4680
                    EvaluationOrder Order = EvaluationOrder::Default);
4681
4682
  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4683
  /// emit the value and compute our best estimate of the alignment of the
4684
  /// pointee.
4685
  ///
4686
  /// \param BaseInfo - If non-null, this will be initialized with
4687
  /// information about the source of the alignment and the may-alias
4688
  /// attribute.  Note that this function will conservatively fall back on
4689
  /// the type when it doesn't recognize the expression and may-alias will
4690
  /// be set to false.
4691
  ///
4692
  /// One reasonable way to use this information is when there's a language
4693
  /// guarantee that the pointer must be aligned to some stricter value, and
4694
  /// we're simply trying to ensure that sufficiently obvious uses of under-
4695
  /// aligned objects don't get miscompiled; for example, a placement new
4696
  /// into the address of a local variable.  In such a case, it's quite
4697
  /// reasonable to just ignore the returned alignment when it isn't from an
4698
  /// explicit source.
4699
  Address EmitPointerWithAlignment(const Expr *Addr,
4700
                                   LValueBaseInfo *BaseInfo = nullptr,
4701
                                   TBAAAccessInfo *TBAAInfo = nullptr);
4702
4703
  /// If \p E references a parameter with pass_object_size info or a constant
4704
  /// array size modifier, emit the object size divided by the size of \p EltTy.
4705
  /// Otherwise return null.
4706
  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4707
4708
  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4709
4710
  struct MultiVersionResolverOption {
4711
    llvm::Function *Function;
4712
    struct Conds {
4713
      StringRef Architecture;
4714
      llvm::SmallVector<StringRef, 8> Features;
4715
4716
      Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4717
258
          : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4718
    } Conditions;
4719
4720
    MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4721
                               ArrayRef<StringRef> Feats)
4722
258
        : Function(F), Conditions(Arch, Feats) {}
4723
  };
4724
4725
  // Emits the body of a multiversion function's resolver. Assumes that the
4726
  // options are already sorted in the proper order, with the 'default' option
4727
  // last (if it exists).
4728
  void EmitMultiVersionResolver(llvm::Function *Resolver,
4729
                                ArrayRef<MultiVersionResolverOption> Options);
4730
4731
  static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4732
4733
private:
4734
  QualType getVarArgType(const Expr *Arg);
4735
4736
  void EmitDeclMetadata();
4737
4738
  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4739
                                  const AutoVarEmission &emission);
4740
4741
  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4742
4743
  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4744
  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4745
  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4746
  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4747
  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4748
  llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4749
  llvm::Value *EmitX86CpuInit();
4750
  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4751
};
4752
4753
/// TargetFeatures - This class is used to check whether the builtin function
4754
/// has the required tagert specific features. It is able to support the
4755
/// combination of ','(and), '|'(or), and '()'. By default, the priority of
4756
/// ',' is higher than that of '|' .
4757
/// E.g:
4758
/// A,B|C means the builtin function requires both A and B, or C.
4759
/// If we want the builtin function requires both A and B, or both A and C,
4760
/// there are two ways: A,B|A,C or A,(B|C).
4761
/// The FeaturesList should not contain spaces, and brackets must appear in
4762
/// pairs.
4763
class TargetFeatures {
4764
  struct FeatureListStatus {
4765
    bool HasFeatures;
4766
    StringRef CurFeaturesList;
4767
  };
4768
4769
  const llvm::StringMap<bool> &CallerFeatureMap;
4770
4771
78.8k
  FeatureListStatus getAndFeatures(StringRef FeatureList) {
4772
78.8k
    int InParentheses = 0;
4773
78.8k
    bool HasFeatures = true;
4774
78.8k
    size_t SubexpressionStart = 0;
4775
997k
    for (size_t i = 0, e = FeatureList.size(); i < e; 
++i918k
) {
4776
933k
      char CurrentToken = FeatureList[i];
4777
933k
      switch (CurrentToken) {
4778
901k
      default:
4779
901k
        break;
4780
901k
      case '(':
4781
2.27k
        if (InParentheses == 0)
4782
2.27k
          SubexpressionStart = i + 1;
4783
2.27k
        ++InParentheses;
4784
2.27k
        break;
4785
2.27k
      case ')':
4786
2.27k
        --InParentheses;
4787
2.27k
        assert(InParentheses >= 0 && "Parentheses are not in pair");
4788
2.27k
        LLVM_FALLTHROUGH;
4789
27.2k
      case '|':
4790
30.1k
      case ',':
4791
30.1k
        if (InParentheses == 0) {
4792
20.2k
          if (HasFeatures && 
i != SubexpressionStart19.5k
) {
4793
18.7k
            StringRef F = FeatureList.slice(SubexpressionStart, i);
4794
18.7k
            HasFeatures = CurrentToken == ')' ? 
hasRequiredFeatures(F)1.94k
4795
18.7k
                                              : 
CallerFeatureMap.lookup(F)16.7k
;
4796
18.7k
          }
4797
20.2k
          SubexpressionStart = i + 1;
4798
20.2k
          if (CurrentToken == '|') {
4799
14.9k
            return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4800
14.9k
          }
4801
20.2k
        }
4802
15.1k
        break;
4803
933k
      }
4804
933k
    }
4805
63.8k
    assert(InParentheses == 0 && "Parentheses are not in pair");
4806
63.8k
    if (HasFeatures && 
SubexpressionStart != FeatureList.size()63.4k
)
4807
62.7k
      HasFeatures =
4808
62.7k
          CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4809
63.8k
    return {HasFeatures, StringRef()};
4810
78.8k
  }
4811
4812
public:
4813
67.4k
  bool hasRequiredFeatures(StringRef FeatureList) {
4814
67.4k
    FeatureListStatus FS = {false, FeatureList};
4815
146k
    while (!FS.HasFeatures && 
!FS.CurFeaturesList.empty()79.8k
)
4816
78.8k
      FS = getAndFeatures(FS.CurFeaturesList);
4817
67.4k
    return FS.HasFeatures;
4818
67.4k
  }
4819
4820
  TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4821
65.5k
      : CallerFeatureMap(CallerFeatureMap) {}
4822
};
4823
4824
inline DominatingLLVMValue::saved_type
4825
340
DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4826
340
  if (!needsSaving(value)) 
return saved_type(value, false)302
;
4827
4828
  // Otherwise, we need an alloca.
4829
38
  auto align = CharUnits::fromQuantity(
4830
38
            CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4831
38
  Address alloca =
4832
38
    CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4833
38
  CGF.Builder.CreateStore(value, alloca);
4834
4835
38
  return saved_type(alloca.getPointer(), true);
4836
340
}
4837
4838
inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4839
345
                                                 saved_type value) {
4840
  // If the value says it wasn't saved, trust that it's still dominating.
4841
345
  if (!value.getInt()) 
return value.getPointer()321
;
4842
4843
  // Otherwise, it should be an alloca instruction, as set up in save().
4844
24
  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4845
24
  return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4846
24
                                       alloca->getAlign());
4847
345
}
4848
4849
}  // end namespace CodeGen
4850
4851
// Map the LangOption for floating point exception behavior into
4852
// the corresponding enum in the IR.
4853
llvm::fp::ExceptionBehavior
4854
ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4855
}  // end namespace clang
4856
4857
#endif