Coverage Report

Created: 2021-01-19 06:58

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/CodeGen/CodeGenFunction.h
Line
Count
Source (jump to first uncovered line)
1
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This is the internal per-function state used for llvm translation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15
16
#include "CGBuilder.h"
17
#include "CGDebugInfo.h"
18
#include "CGLoopInfo.h"
19
#include "CGValue.h"
20
#include "CodeGenModule.h"
21
#include "CodeGenPGO.h"
22
#include "EHScopeStack.h"
23
#include "VarBypassDetector.h"
24
#include "clang/AST/CharUnits.h"
25
#include "clang/AST/CurrentSourceLocExprScope.h"
26
#include "clang/AST/ExprCXX.h"
27
#include "clang/AST/ExprObjC.h"
28
#include "clang/AST/ExprOpenMP.h"
29
#include "clang/AST/StmtOpenMP.h"
30
#include "clang/AST/Type.h"
31
#include "clang/Basic/ABI.h"
32
#include "clang/Basic/CapturedStmt.h"
33
#include "clang/Basic/CodeGenOptions.h"
34
#include "clang/Basic/OpenMPKinds.h"
35
#include "clang/Basic/TargetInfo.h"
36
#include "llvm/ADT/ArrayRef.h"
37
#include "llvm/ADT/DenseMap.h"
38
#include "llvm/ADT/MapVector.h"
39
#include "llvm/ADT/SmallVector.h"
40
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41
#include "llvm/IR/ValueHandle.h"
42
#include "llvm/Support/Debug.h"
43
#include "llvm/Transforms/Utils/SanitizerStats.h"
44
45
namespace llvm {
46
class BasicBlock;
47
class LLVMContext;
48
class MDNode;
49
class Module;
50
class SwitchInst;
51
class Twine;
52
class Value;
53
}
54
55
namespace clang {
56
class ASTContext;
57
class BlockDecl;
58
class CXXDestructorDecl;
59
class CXXForRangeStmt;
60
class CXXTryStmt;
61
class Decl;
62
class LabelDecl;
63
class EnumConstantDecl;
64
class FunctionDecl;
65
class FunctionProtoType;
66
class LabelStmt;
67
class ObjCContainerDecl;
68
class ObjCInterfaceDecl;
69
class ObjCIvarDecl;
70
class ObjCMethodDecl;
71
class ObjCImplementationDecl;
72
class ObjCPropertyImplDecl;
73
class TargetInfo;
74
class VarDecl;
75
class ObjCForCollectionStmt;
76
class ObjCAtTryStmt;
77
class ObjCAtThrowStmt;
78
class ObjCAtSynchronizedStmt;
79
class ObjCAutoreleasePoolStmt;
80
class OMPUseDevicePtrClause;
81
class OMPUseDeviceAddrClause;
82
class ReturnsNonNullAttr;
83
class SVETypeFlags;
84
class OMPExecutableDirective;
85
86
namespace analyze_os_log {
87
class OSLogBufferLayout;
88
}
89
90
namespace CodeGen {
91
class CodeGenTypes;
92
class CGCallee;
93
class CGFunctionInfo;
94
class CGRecordLayout;
95
class CGBlockInfo;
96
class CGCXXABI;
97
class BlockByrefHelpers;
98
class BlockByrefInfo;
99
class BlockFlags;
100
class BlockFieldFlags;
101
class RegionCodeGenTy;
102
class TargetCodeGenInfo;
103
struct OMPTaskDataTy;
104
struct CGCoroData;
105
106
/// The kind of evaluation to perform on values of a particular
107
/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
108
/// CGExprAgg?
109
///
110
/// TODO: should vectors maybe be split out into their own thing?
111
enum TypeEvaluationKind {
112
  TEK_Scalar,
113
  TEK_Complex,
114
  TEK_Aggregate
115
};
116
117
#define LIST_SANITIZER_CHECKS                                                  \
118
  SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
119
  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
120
  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
121
  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
122
  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
123
  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
124
  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
125
  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
126
  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
127
  SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
128
  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
129
  SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
130
  SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
131
  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
132
  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
133
  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
134
  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
135
  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
136
  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
137
  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
138
  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
139
  SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
140
  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
141
  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
142
  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
143
144
enum SanitizerHandler {
145
#define SANITIZER_CHECK(Enum, Name, Version) Enum,
146
  LIST_SANITIZER_CHECKS
147
#undef SANITIZER_CHECK
148
};
149
150
/// Helper class with most of the code for saving a value for a
151
/// conditional expression cleanup.
152
struct DominatingLLVMValue {
153
  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
154
155
  /// Answer whether the given value needs extra work to be saved.
156
354
  static bool needsSaving(llvm::Value *value) {
157
    // If it's not an instruction, we don't need to save.
158
354
    if (!isa<llvm::Instruction>(value)) 
return false86
;
159
160
    // If it's an instruction in the entry block, we don't need to save.
161
268
    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
162
268
    return (block != &block->getParent()->getEntryBlock());
163
268
  }
164
165
  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
166
  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
167
};
168
169
/// A partial specialization of DominatingValue for llvm::Values that
170
/// might be llvm::Instructions.
171
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
172
  typedef T *type;
173
95
  static type restore(CodeGenFunction &CGF, saved_type value) {
174
95
    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
175
95
  }
176
};
177
178
/// A specialization of DominatingValue for Address.
179
template <> struct DominatingValue<Address> {
180
  typedef Address type;
181
182
  struct saved_type {
183
    DominatingLLVMValue::saved_type SavedValue;
184
    CharUnits Alignment;
185
  };
186
187
0
  static bool needsSaving(type value) {
188
0
    return DominatingLLVMValue::needsSaving(value.getPointer());
189
0
  }
190
234
  static saved_type save(CodeGenFunction &CGF, type value) {
191
234
    return { DominatingLLVMValue::save(CGF, value.getPointer()),
192
234
             value.getAlignment() };
193
234
  }
194
246
  static type restore(CodeGenFunction &CGF, saved_type value) {
195
246
    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
196
246
                   value.Alignment);
197
246
  }
198
};
199
200
/// A specialization of DominatingValue for RValue.
201
template <> struct DominatingValue<RValue> {
202
  typedef RValue type;
203
  class saved_type {
204
    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
205
                AggregateAddress, ComplexAddress };
206
207
    llvm::Value *Value;
208
    unsigned K : 3;
209
    unsigned Align : 29;
210
    saved_type(llvm::Value *v, Kind k, unsigned a = 0)
211
16
      : Value(v), K(k), Align(a) {}
212
213
  public:
214
    static bool needsSaving(RValue value);
215
    static saved_type save(CodeGenFunction &CGF, RValue value);
216
    RValue restore(CodeGenFunction &CGF);
217
218
    // implementations in CGCleanup.cpp
219
  };
220
221
0
  static bool needsSaving(type value) {
222
0
    return saved_type::needsSaving(value);
223
0
  }
224
16
  static saved_type save(CodeGenFunction &CGF, type value) {
225
16
    return saved_type::save(CGF, value);
226
16
  }
227
0
  static type restore(CodeGenFunction &CGF, saved_type value) {
228
0
    return value.restore(CGF);
229
0
  }
230
};
231
232
/// CodeGenFunction - This class organizes the per-function state that is used
233
/// while generating LLVM code.
234
class CodeGenFunction : public CodeGenTypeCache {
235
  CodeGenFunction(const CodeGenFunction &) = delete;
236
  void operator=(const CodeGenFunction &) = delete;
237
238
  friend class CGCXXABI;
239
public:
240
  /// A jump destination is an abstract label, branching to which may
241
  /// require a jump out through normal cleanups.
242
  struct JumpDest {
243
1.19M
    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
244
    JumpDest(llvm::BasicBlock *Block,
245
             EHScopeStack::stable_iterator Depth,
246
             unsigned Index)
247
379k
      : Block(Block), ScopeDepth(Depth), Index(Index) {}
248
249
448k
    bool isValid() const { return Block != nullptr; }
250
1.32M
    llvm::BasicBlock *getBlock() const { return Block; }
251
182k
    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
252
8.55k
    unsigned getDestIndex() const { return Index; }
253
254
    // This should be used cautiously.
255
140
    void setScopeDepth(EHScopeStack::stable_iterator depth) {
256
140
      ScopeDepth = depth;
257
140
    }
258
259
  private:
260
    llvm::BasicBlock *Block;
261
    EHScopeStack::stable_iterator ScopeDepth;
262
    unsigned Index;
263
  };
264
265
  CodeGenModule &CGM;  // Per-module state.
266
  const TargetInfo &Target;
267
268
  // For EH/SEH outlined funclets, this field points to parent's CGF
269
  CodeGenFunction *ParentCGF = nullptr;
270
271
  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
272
  LoopInfoStack LoopStack;
273
  CGBuilderTy Builder;
274
275
  // Stores variables for which we can't generate correct lifetime markers
276
  // because of jumps.
277
  VarBypassDetector Bypasses;
278
279
  // CodeGen lambda for loops and support for ordered clause
280
  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
281
                                  JumpDest)>
282
      CodeGenLoopTy;
283
  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
284
                                  const unsigned, const bool)>
285
      CodeGenOrderedTy;
286
287
  // Codegen lambda for loop bounds in worksharing loop constructs
288
  typedef llvm::function_ref<std::pair<LValue, LValue>(
289
      CodeGenFunction &, const OMPExecutableDirective &S)>
290
      CodeGenLoopBoundsTy;
291
292
  // Codegen lambda for loop bounds in dispatch-based loop implementation
293
  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
294
      CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
295
      Address UB)>
296
      CodeGenDispatchBoundsTy;
297
298
  /// CGBuilder insert helper. This function is called after an
299
  /// instruction is created using Builder.
300
  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
301
                    llvm::BasicBlock *BB,
302
                    llvm::BasicBlock::iterator InsertPt) const;
303
304
  /// CurFuncDecl - Holds the Decl for the current outermost
305
  /// non-closure context.
306
  const Decl *CurFuncDecl;
307
  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
308
  const Decl *CurCodeDecl;
309
  const CGFunctionInfo *CurFnInfo;
310
  QualType FnRetTy;
311
  llvm::Function *CurFn = nullptr;
312
313
  // Holds coroutine data if the current function is a coroutine. We use a
314
  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
315
  // in this header.
316
  struct CGCoroInfo {
317
    std::unique_ptr<CGCoroData> Data;
318
    CGCoroInfo();
319
    ~CGCoroInfo();
320
  };
321
  CGCoroInfo CurCoro;
322
323
288
  bool isCoroutine() const {
324
288
    return CurCoro.Data != nullptr;
325
288
  }
326
327
  /// CurGD - The GlobalDecl for the current function being compiled.
328
  GlobalDecl CurGD;
329
330
  /// PrologueCleanupDepth - The cleanup depth enclosing all the
331
  /// cleanups associated with the parameters.
332
  EHScopeStack::stable_iterator PrologueCleanupDepth;
333
334
  /// ReturnBlock - Unified return block.
335
  JumpDest ReturnBlock;
336
337
  /// ReturnValue - The temporary alloca to hold the return
338
  /// value. This is invalid iff the function has no return value.
339
  Address ReturnValue = Address::invalid();
340
341
  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
342
  /// This is invalid if sret is not in use.
343
  Address ReturnValuePointer = Address::invalid();
344
345
  /// If a return statement is being visited, this holds the return statment's
346
  /// result expression.
347
  const Expr *RetExpr = nullptr;
348
349
  /// Return true if a label was seen in the current scope.
350
34.8k
  bool hasLabelBeenSeenInCurrentScope() const {
351
34.8k
    if (CurLexicalScope)
352
10.5k
      return CurLexicalScope->hasLabels();
353
24.3k
    return !LabelMap.empty();
354
24.3k
  }
355
356
  /// AllocaInsertPoint - This is an instruction in the entry block before which
357
  /// we prefer to insert allocas.
358
  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
359
360
  /// API for captured statement code generation.
361
  class CGCapturedStmtInfo {
362
  public:
363
    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
364
42.0k
        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
365
    explicit CGCapturedStmtInfo(const CapturedStmt &S,
366
                                CapturedRegionKind K = CR_Default)
367
24.8k
      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
368
369
24.8k
      RecordDecl::field_iterator Field =
370
24.8k
        S.getCapturedRecordDecl()->field_begin();
371
24.8k
      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
372
24.8k
                                                E = S.capture_end();
373
63.5k
           I != E; 
++I, ++Field38.7k
) {
374
38.7k
        if (I->capturesThis())
375
1.87k
          CXXThisFieldDecl = *Field;
376
36.8k
        else if (I->capturesVariable())
377
15.1k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
378
21.7k
        else if (I->capturesVariableByCopy())
379
18.6k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
380
38.7k
      }
381
24.8k
    }
382
383
    virtual ~CGCapturedStmtInfo();
384
385
142k
    CapturedRegionKind getKind() const { return Kind; }
386
387
882
    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
388
    // Retrieve the value of the context parameter.
389
1.83k
    virtual llvm::Value *getContextValue() const { return ThisValue; }
390
391
    /// Lookup the captured field decl for a variable.
392
31.1k
    virtual const FieldDecl *lookup(const VarDecl *VD) const {
393
31.1k
      return CaptureFields.lookup(VD->getCanonicalDecl());
394
31.1k
    }
395
396
891
    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
397
915
    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
398
399
0
    static bool classof(const CGCapturedStmtInfo *) {
400
0
      return true;
401
0
    }
402
403
    /// Emit the captured statement body.
404
35
    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
405
35
      CGF.incrementProfileCounter(S);
406
35
      CGF.EmitStmt(S);
407
35
    }
408
409
    /// Get the name of the capture helper.
410
35
    virtual StringRef getHelperName() const { return "__captured_stmt"; }
411
412
  private:
413
    /// The kind of captured statement being generated.
414
    CapturedRegionKind Kind;
415
416
    /// Keep the map between VarDecl and FieldDecl.
417
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
418
419
    /// The base address of the captured record, passed in as the first
420
    /// argument of the parallel region function.
421
    llvm::Value *ThisValue;
422
423
    /// Captured 'this' type.
424
    FieldDecl *CXXThisFieldDecl;
425
  };
426
  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
427
428
  /// RAII for correct setting/restoring of CapturedStmtInfo.
429
  class CGCapturedStmtRAII {
430
  private:
431
    CodeGenFunction &CGF;
432
    CGCapturedStmtInfo *PrevCapturedStmtInfo;
433
  public:
434
    CGCapturedStmtRAII(CodeGenFunction &CGF,
435
                       CGCapturedStmtInfo *NewCapturedStmtInfo)
436
25.1k
        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
437
25.1k
      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
438
25.1k
    }
439
25.1k
    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
440
  };
441
442
  /// An abstract representation of regular/ObjC call/message targets.
443
  class AbstractCallee {
444
    /// The function declaration of the callee.
445
    const Decl *CalleeDecl;
446
447
  public:
448
2.58k
    AbstractCallee() : CalleeDecl(nullptr) {}
449
265k
    AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
450
12.5k
    AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
451
347k
    bool hasFunctionDecl() const {
452
347k
      return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
453
347k
    }
454
347k
    const Decl *getDecl() const { return CalleeDecl; }
455
324k
    unsigned getNumParams() const {
456
324k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
457
324k
        return FD->getNumParams();
458
8
      return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
459
8
    }
460
273k
    const ParmVarDecl *getParamDecl(unsigned I) const {
461
273k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
462
273k
        return FD->getParamDecl(I);
463
7
      return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
464
7
    }
465
  };
466
467
  /// Sanitizers enabled for this function.
468
  SanitizerSet SanOpts;
469
470
  /// True if CodeGen currently emits code implementing sanitizer checks.
471
  bool IsSanitizerScope = false;
472
473
  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
474
  class SanitizerScope {
475
    CodeGenFunction *CGF;
476
  public:
477
    SanitizerScope(CodeGenFunction *CGF);
478
    ~SanitizerScope();
479
  };
480
481
  /// In C++, whether we are code generating a thunk.  This controls whether we
482
  /// should emit cleanups.
483
  bool CurFuncIsThunk = false;
484
485
  /// In ARC, whether we should autorelease the return value.
486
  bool AutoreleaseResult = false;
487
488
  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
489
  /// potentially set the return value.
490
  bool SawAsmBlock = false;
491
492
  const NamedDecl *CurSEHParent = nullptr;
493
494
  /// True if the current function is an outlined SEH helper. This can be a
495
  /// finally block or filter expression.
496
  bool IsOutlinedSEHHelper = false;
497
498
  /// True if CodeGen currently emits code inside presereved access index
499
  /// region.
500
  bool IsInPreservedAIRegion = false;
501
502
  /// True if the current statement has nomerge attribute.
503
  bool InNoMergeAttributedStmt = false;
504
505
  /// True if the current function should be marked mustprogress.
506
  bool FnIsMustProgress = false;
507
508
  /// True if the C++ Standard Requires Progress.
509
207k
  bool CPlusPlusWithProgress() {
510
207k
    return getLangOpts().CPlusPlus11 || 
getLangOpts().CPlusPlus1494.1k
||
511
94.1k
           getLangOpts().CPlusPlus17 || getLangOpts().CPlusPlus20;
512
207k
  }
513
514
  /// True if the C Standard Requires Progress.
515
11.1k
  bool CWithProgress() {
516
11.1k
    return getLangOpts().C11 || 
getLangOpts().C1710.4k
||
getLangOpts().C2x10.4k
;
517
11.1k
  }
518
519
  /// True if the language standard requires progress in functions or
520
  /// in infinite loops with non-constant conditionals.
521
11.1k
  bool LanguageRequiresProgress() {
522
11.1k
    return CWithProgress() || 
CPlusPlusWithProgress()10.4k
;
523
11.1k
  }
524
525
  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
526
  llvm::Value *BlockPointer = nullptr;
527
528
  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
529
  FieldDecl *LambdaThisCaptureField = nullptr;
530
531
  /// A mapping from NRVO variables to the flags used to indicate
532
  /// when the NRVO has been applied to this variable.
533
  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
534
535
  EHScopeStack EHStack;
536
  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
537
  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
538
539
  llvm::Instruction *CurrentFuncletPad = nullptr;
540
541
  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
542
    llvm::Value *Addr;
543
    llvm::Value *Size;
544
545
  public:
546
    CallLifetimeEnd(Address addr, llvm::Value *size)
547
5.85k
        : Addr(addr.getPointer()), Size(size) {}
548
549
6.13k
    void Emit(CodeGenFunction &CGF, Flags flags) override {
550
6.13k
      CGF.EmitLifetimeEnd(Size, Addr);
551
6.13k
    }
552
  };
553
554
  /// Header for data within LifetimeExtendedCleanupStack.
555
  struct LifetimeExtendedCleanupHeader {
556
    /// The size of the following cleanup object.
557
    unsigned Size;
558
    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
559
    unsigned Kind : 31;
560
    /// Whether this is a conditional cleanup.
561
    unsigned IsConditional : 1;
562
563
1.08k
    size_t getSize() const { return Size; }
564
543
    CleanupKind getKind() const { return (CleanupKind)Kind; }
565
543
    bool isConditional() const { return IsConditional; }
566
  };
567
568
  /// i32s containing the indexes of the cleanup destinations.
569
  Address NormalCleanupDest = Address::invalid();
570
571
  unsigned NextCleanupDestIndex = 1;
572
573
  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
574
  llvm::BasicBlock *EHResumeBlock = nullptr;
575
576
  /// The exception slot.  All landing pads write the current exception pointer
577
  /// into this alloca.
578
  llvm::Value *ExceptionSlot = nullptr;
579
580
  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
581
  /// write the current selector value into this alloca.
582
  llvm::AllocaInst *EHSelectorSlot = nullptr;
583
584
  /// A stack of exception code slots. Entering an __except block pushes a slot
585
  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
586
  /// a value from the top of the stack.
587
  SmallVector<Address, 1> SEHCodeSlotStack;
588
589
  /// Value returned by __exception_info intrinsic.
590
  llvm::Value *SEHInfo = nullptr;
591
592
  /// Emits a landing pad for the current EH stack.
593
  llvm::BasicBlock *EmitLandingPad();
594
595
  llvm::BasicBlock *getInvokeDestImpl();
596
597
  /// Parent loop-based directive for scan directive.
598
  const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
599
  llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
600
  llvm::BasicBlock *OMPAfterScanBlock = nullptr;
601
  llvm::BasicBlock *OMPScanExitBlock = nullptr;
602
  llvm::BasicBlock *OMPScanDispatch = nullptr;
603
  bool OMPFirstScanLoop = false;
604
605
  /// Manages parent directive for scan directives.
606
  class ParentLoopDirectiveForScanRegion {
607
    CodeGenFunction &CGF;
608
    const OMPExecutableDirective *ParentLoopDirectiveForScan;
609
610
  public:
611
    ParentLoopDirectiveForScanRegion(
612
        CodeGenFunction &CGF,
613
        const OMPExecutableDirective &ParentLoopDirectiveForScan)
614
        : CGF(CGF),
615
3.62k
          ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
616
3.62k
      CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
617
3.62k
    }
618
3.62k
    ~ParentLoopDirectiveForScanRegion() {
619
3.62k
      CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
620
3.62k
    }
621
  };
622
623
  template <class T>
624
706
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
625
706
    return DominatingValue<T>::save(*this, value);
626
706
  }
clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CodeGen::Address>(clang::CodeGen::Address)
Line
Count
Source
624
234
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
625
234
    return DominatingValue<T>::save(*this, value);
626
234
  }
clang::CodeGen::DominatingValue<clang::QualType>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::QualType>(clang::QualType)
Line
Count
Source
624
128
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
625
128
    return DominatingValue<T>::save(*this, value);
626
128
  }
clang::CodeGen::DominatingValue<llvm::Value*>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<llvm::Value*>(llvm::Value*)
Line
Count
Source
624
104
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
625
104
    return DominatingValue<T>::save(*this, value);
626
104
  }
clang::CodeGen::DominatingValue<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
624
120
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
625
120
    return DominatingValue<T>::save(*this, value);
626
120
  }
clang::CodeGen::DominatingValue<bool>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<bool>(bool)
Line
Count
Source
624
120
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
625
120
    return DominatingValue<T>::save(*this, value);
626
120
  }
Unexecuted instantiation: clang::CodeGen::DominatingValue<clang::CharUnits>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CharUnits>(clang::CharUnits)
627
628
  class CGFPOptionsRAII {
629
  public:
630
    CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
631
    CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
632
    ~CGFPOptionsRAII();
633
634
  private:
635
    void ConstructorHelper(FPOptions FPFeatures);
636
    CodeGenFunction &CGF;
637
    FPOptions OldFPFeatures;
638
    llvm::fp::ExceptionBehavior OldExcept;
639
    llvm::RoundingMode OldRounding;
640
    Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
641
  };
642
  FPOptions CurFPFeatures;
643
644
public:
645
  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
646
  /// rethrows.
647
  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
648
649
  /// A class controlling the emission of a finally block.
650
  class FinallyInfo {
651
    /// Where the catchall's edge through the cleanup should go.
652
    JumpDest RethrowDest;
653
654
    /// A function to call to enter the catch.
655
    llvm::FunctionCallee BeginCatchFn;
656
657
    /// An i1 variable indicating whether or not the @finally is
658
    /// running for an exception.
659
    llvm::AllocaInst *ForEHVar;
660
661
    /// An i8* variable into which the exception pointer to rethrow
662
    /// has been saved.
663
    llvm::AllocaInst *SavedExnVar;
664
665
  public:
666
    void enter(CodeGenFunction &CGF, const Stmt *Finally,
667
               llvm::FunctionCallee beginCatchFn,
668
               llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
669
    void exit(CodeGenFunction &CGF);
670
  };
671
672
  /// Returns true inside SEH __try blocks.
673
327k
  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
674
675
  /// Returns true while emitting a cleanuppad.
676
326k
  bool isCleanupPadScope() const {
677
326k
    return CurrentFuncletPad && 
isa<llvm::CleanupPadInst>(CurrentFuncletPad)211
;
678
326k
  }
679
680
  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
681
  /// current full-expression.  Safe against the possibility that
682
  /// we're currently inside a conditionally-evaluated expression.
683
  template <class T, class... As>
684
7.09k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
685
    // If we're not in a conditional branch, or if none of the
686
    // arguments requires saving, then use the unconditional cleanup.
687
7.09k
    if (!isInConditionalBranch())
688
6.86k
      return EHStack.pushCleanup<T>(kind, A...);
689
690
    // Stash values in a tuple so we can guarantee the order of saves.
691
232
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
692
232
    SavedTuple Saved{saveValueInCond(A)...};
693
694
232
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
695
232
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
696
232
    initFullExprCleanup();
697
232
  }
CGCall.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyUnpassedArg, clang::CodeGen::Address, clang::QualType>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType)
Line
Count
Source
684
176
  void pushFullExprCleanup(CleanupKind kind, As... A) {
685
    // If we're not in a conditional branch, or if none of the
686
    // arguments requires saving, then use the unconditional cleanup.
687
176
    if (!isInConditionalBranch())
688
168
      return EHStack.pushCleanup<T>(kind, A...);
689
690
    // Stash values in a tuple so we can guarantee the order of saves.
691
8
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
692
8
    SavedTuple Saved{saveValueInCond(A)...};
693
694
8
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
695
8
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
696
8
    initFullExprCleanup();
697
8
  }
void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
684
546
  void pushFullExprCleanup(CleanupKind kind, As... A) {
685
    // If we're not in a conditional branch, or if none of the
686
    // arguments requires saving, then use the unconditional cleanup.
687
546
    if (!isInConditionalBranch())
688
468
      return EHStack.pushCleanup<T>(kind, A...);
689
690
    // Stash values in a tuple so we can guarantee the order of saves.
691
78
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
692
78
    SavedTuple Saved{saveValueInCond(A)...};
693
694
78
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
695
78
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
696
78
    initFullExprCleanup();
697
78
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
684
3.67k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
685
    // If we're not in a conditional branch, or if none of the
686
    // arguments requires saving, then use the unconditional cleanup.
687
3.67k
    if (!isInConditionalBranch())
688
3.55k
      return EHStack.pushCleanup<T>(kind, A...);
689
690
    // Stash values in a tuple so we can guarantee the order of saves.
691
120
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
692
120
    SavedTuple Saved{saveValueInCond(A)...};
693
694
120
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
695
120
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
696
120
    initFullExprCleanup();
697
120
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::IrregularPartialArrayDestroy, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
684
72
  void pushFullExprCleanup(CleanupKind kind, As... A) {
685
    // If we're not in a conditional branch, or if none of the
686
    // arguments requires saving, then use the unconditional cleanup.
687
72
    if (!isInConditionalBranch())
688
72
      return EHStack.pushCleanup<T>(kind, A...);
689
690
    // Stash values in a tuple so we can guarantee the order of saves.
691
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
692
0
    SavedTuple Saved{saveValueInCond(A)...};
693
694
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
695
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
696
0
    initFullExprCleanup();
697
0
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::RegularPartialArrayDestroy, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
684
1.88k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
685
    // If we're not in a conditional branch, or if none of the
686
    // arguments requires saving, then use the unconditional cleanup.
687
1.88k
    if (!isInConditionalBranch())
688
1.88k
      return EHStack.pushCleanup<T>(kind, A...);
689
690
    // Stash values in a tuple so we can guarantee the order of saves.
691
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
692
0
    SavedTuple Saved{saveValueInCond(A)...};
693
694
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
695
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
696
0
    initFullExprCleanup();
697
0
  }
CGException.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::FreeException, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
684
450
  void pushFullExprCleanup(CleanupKind kind, As... A) {
685
    // If we're not in a conditional branch, or if none of the
686
    // arguments requires saving, then use the unconditional cleanup.
687
450
    if (!isInConditionalBranch())
688
437
      return EHStack.pushCleanup<T>(kind, A...);
689
690
    // Stash values in a tuple so we can guarantee the order of saves.
691
13
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
692
13
    SavedTuple Saved{saveValueInCond(A)...};
693
694
13
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
695
13
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
696
13
    initFullExprCleanup();
697
13
  }
CGObjC.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::CallObjCRelease, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
684
284
  void pushFullExprCleanup(CleanupKind kind, As... A) {
685
    // If we're not in a conditional branch, or if none of the
686
    // arguments requires saving, then use the unconditional cleanup.
687
284
    if (!isInConditionalBranch())
688
271
      return EHStack.pushCleanup<T>(kind, A...);
689
690
    // Stash values in a tuple so we can guarantee the order of saves.
691
13
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
692
13
    SavedTuple Saved{saveValueInCond(A)...};
693
694
13
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
695
13
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
696
13
    initFullExprCleanup();
697
13
  }
698
699
  /// Queue a cleanup to be pushed after finishing the current full-expression,
700
  /// potentially with an active flag.
701
  template <class T, class... As>
702
26
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
703
26
    if (!isInConditionalBranch())
704
26
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
705
26
                                                       A...);
706
707
0
    Address ActiveFlag = createCleanupActiveFlag();
708
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
709
0
           "cleanup active flag should never need saving");
710
711
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
712
0
    SavedTuple Saved{saveValueInCond(A)...};
713
714
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
715
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
716
0
  }
CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
702
4
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
703
4
    if (!isInConditionalBranch())
704
4
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
705
4
                                                       A...);
706
707
0
    Address ActiveFlag = createCleanupActiveFlag();
708
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
709
0
           "cleanup active flag should never need saving");
710
711
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
712
0
    SavedTuple Saved{saveValueInCond(A)...};
713
714
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
715
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
716
0
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
702
22
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
703
22
    if (!isInConditionalBranch())
704
22
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
705
22
                                                       A...);
706
707
0
    Address ActiveFlag = createCleanupActiveFlag();
708
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
709
0
           "cleanup active flag should never need saving");
710
711
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
712
0
    SavedTuple Saved{saveValueInCond(A)...};
713
714
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
715
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
716
0
  }
717
718
  template <class T, class... As>
719
  void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
720
543
                                              Address ActiveFlag, As... A) {
721
543
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
722
543
                                            ActiveFlag.isValid()};
723
724
543
    size_t OldSize = LifetimeExtendedCleanupStack.size();
725
543
    LifetimeExtendedCleanupStack.resize(
726
543
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
727
515
        (Header.IsConditional ? 
sizeof(ActiveFlag)28
: 0));
728
729
543
    static_assert(sizeof(Header) % alignof(T) == 0,
730
543
                  "Cleanup will be allocated on misaligned address");
731
543
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
732
543
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
733
543
    new (Buffer + sizeof(Header)) T(A...);
734
543
    if (Header.IsConditional)
735
28
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
736
543
  }
CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
720
4
                                              Address ActiveFlag, As... A) {
721
4
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
722
4
                                            ActiveFlag.isValid()};
723
724
4
    size_t OldSize = LifetimeExtendedCleanupStack.size();
725
4
    LifetimeExtendedCleanupStack.resize(
726
4
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
727
4
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
728
729
4
    static_assert(sizeof(Header) % alignof(T) == 0,
730
4
                  "Cleanup will be allocated on misaligned address");
731
4
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
732
4
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
733
4
    new (Buffer + sizeof(Header)) T(A...);
734
4
    if (Header.IsConditional)
735
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
736
4
  }
Unexecuted instantiation: CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::CallObjCArcUse, llvm::Value*>, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
720
489
                                              Address ActiveFlag, As... A) {
721
489
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
722
489
                                            ActiveFlag.isValid()};
723
724
489
    size_t OldSize = LifetimeExtendedCleanupStack.size();
725
489
    LifetimeExtendedCleanupStack.resize(
726
489
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
727
489
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
728
729
489
    static_assert(sizeof(Header) % alignof(T) == 0,
730
489
                  "Cleanup will be allocated on misaligned address");
731
489
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
732
489
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
733
489
    new (Buffer + sizeof(Header)) T(A...);
734
489
    if (Header.IsConditional)
735
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
736
489
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
720
28
                                              Address ActiveFlag, As... A) {
721
28
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
722
28
                                            ActiveFlag.isValid()};
723
724
28
    size_t OldSize = LifetimeExtendedCleanupStack.size();
725
28
    LifetimeExtendedCleanupStack.resize(
726
28
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
727
28
        (Header.IsConditional ? sizeof(ActiveFlag) : 
00
));
728
729
28
    static_assert(sizeof(Header) % alignof(T) == 0,
730
28
                  "Cleanup will be allocated on misaligned address");
731
28
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
732
28
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
733
28
    new (Buffer + sizeof(Header)) T(A...);
734
28
    if (Header.IsConditional)
735
28
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
736
28
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
720
22
                                              Address ActiveFlag, As... A) {
721
22
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
722
22
                                            ActiveFlag.isValid()};
723
724
22
    size_t OldSize = LifetimeExtendedCleanupStack.size();
725
22
    LifetimeExtendedCleanupStack.resize(
726
22
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
727
22
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
728
729
22
    static_assert(sizeof(Header) % alignof(T) == 0,
730
22
                  "Cleanup will be allocated on misaligned address");
731
22
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
732
22
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
733
22
    new (Buffer + sizeof(Header)) T(A...);
734
22
    if (Header.IsConditional)
735
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
736
22
  }
Unexecuted instantiation: void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
737
738
  /// Set up the last cleanup that was pushed as a conditional
739
  /// full-expression cleanup.
740
238
  void initFullExprCleanup() {
741
238
    initFullExprCleanupWithFlag(createCleanupActiveFlag());
742
238
  }
743
744
  void initFullExprCleanupWithFlag(Address ActiveFlag);
745
  Address createCleanupActiveFlag();
746
747
  /// PushDestructorCleanup - Push a cleanup to call the
748
  /// complete-object destructor of an object of the given type at the
749
  /// given address.  Does nothing if T is not a C++ class type with a
750
  /// non-trivial destructor.
751
  void PushDestructorCleanup(QualType T, Address Addr);
752
753
  /// PushDestructorCleanup - Push a cleanup to call the
754
  /// complete-object variant of the given destructor on the object at
755
  /// the given address.
756
  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
757
                             Address Addr);
758
759
  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
760
  /// process all branch fixups.
761
  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
762
763
  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
764
  /// The block cannot be reactivated.  Pops it if it's the top of the
765
  /// stack.
766
  ///
767
  /// \param DominatingIP - An instruction which is known to
768
  ///   dominate the current IP (if set) and which lies along
769
  ///   all paths of execution between the current IP and the
770
  ///   the point at which the cleanup comes into scope.
771
  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
772
                              llvm::Instruction *DominatingIP);
773
774
  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
775
  /// Cannot be used to resurrect a deactivated cleanup.
776
  ///
777
  /// \param DominatingIP - An instruction which is known to
778
  ///   dominate the current IP (if set) and which lies along
779
  ///   all paths of execution between the current IP and the
780
  ///   the point at which the cleanup comes into scope.
781
  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
782
                            llvm::Instruction *DominatingIP);
783
784
  /// Enters a new scope for capturing cleanups, all of which
785
  /// will be executed once the scope is exited.
786
  class RunCleanupsScope {
787
    EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
788
    size_t LifetimeExtendedCleanupStackSize;
789
    bool OldDidCallStackSave;
790
  protected:
791
    bool PerformCleanup;
792
  private:
793
794
    RunCleanupsScope(const RunCleanupsScope &) = delete;
795
    void operator=(const RunCleanupsScope &) = delete;
796
797
  protected:
798
    CodeGenFunction& CGF;
799
800
  public:
801
    /// Enter a new cleanup scope.
802
    explicit RunCleanupsScope(CodeGenFunction &CGF)
803
      : PerformCleanup(true), CGF(CGF)
804
804k
    {
805
804k
      CleanupStackDepth = CGF.EHStack.stable_begin();
806
804k
      LifetimeExtendedCleanupStackSize =
807
804k
          CGF.LifetimeExtendedCleanupStack.size();
808
804k
      OldDidCallStackSave = CGF.DidCallStackSave;
809
804k
      CGF.DidCallStackSave = false;
810
804k
      OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
811
804k
      CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
812
804k
    }
813
814
    /// Exit this cleanup scope, emitting any accumulated cleanups.
815
804k
    ~RunCleanupsScope() {
816
804k
      if (PerformCleanup)
817
258k
        ForceCleanup();
818
804k
    }
819
820
    /// Determine whether this scope requires any cleanups.
821
26.2k
    bool requiresCleanups() const {
822
26.2k
      return CGF.EHStack.stable_begin() != CleanupStackDepth;
823
26.2k
    }
824
825
    /// Force the emission of cleanups now, instead of waiting
826
    /// until this object is destroyed.
827
    /// \param ValuesToReload - A list of values that need to be available at
828
    /// the insertion point after cleanup emission. If cleanup emission created
829
    /// a shared cleanup block, these value pointers will be rewritten.
830
    /// Otherwise, they not will be modified.
831
804k
    void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
832
804k
      assert(PerformCleanup && "Already forced cleanup");
833
804k
      CGF.DidCallStackSave = OldDidCallStackSave;
834
804k
      CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
835
804k
                           ValuesToReload);
836
804k
      PerformCleanup = false;
837
804k
      CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
838
804k
    }
839
  };
840
841
  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
842
  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
843
      EHScopeStack::stable_end();
844
845
  class LexicalScope : public RunCleanupsScope {
846
    SourceRange Range;
847
    SmallVector<const LabelDecl*, 4> Labels;
848
    LexicalScope *ParentScope;
849
850
    LexicalScope(const LexicalScope &) = delete;
851
    void operator=(const LexicalScope &) = delete;
852
853
  public:
854
    /// Enter a new cleanup scope.
855
    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
856
214k
      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
857
214k
      CGF.CurLexicalScope = this;
858
214k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
859
121k
        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
860
214k
    }
861
862
0
    void addLabel(const LabelDecl *label) {
863
0
      assert(PerformCleanup && "adding label to dead scope?");
864
0
      Labels.push_back(label);
865
0
    }
866
867
    /// Exit this cleanup scope, emitting any accumulated
868
    /// cleanups.
869
214k
    ~LexicalScope() {
870
214k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
871
121k
        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
872
873
      // If we should perform a cleanup, force them now.  Note that
874
      // this ends the cleanup scope before rescoping any labels.
875
214k
      if (PerformCleanup) {
876
194k
        ApplyDebugLocation DL(CGF, Range.getEnd());
877
194k
        ForceCleanup();
878
194k
      }
879
214k
    }
880
881
    /// Force the emission of cleanups now, instead of waiting
882
    /// until this object is destroyed.
883
214k
    void ForceCleanup() {
884
214k
      CGF.CurLexicalScope = ParentScope;
885
214k
      RunCleanupsScope::ForceCleanup();
886
887
214k
      if (!Labels.empty())
888
0
        rescopeLabels();
889
214k
    }
890
891
10.5k
    bool hasLabels() const {
892
10.5k
      return !Labels.empty();
893
10.5k
    }
894
895
    void rescopeLabels();
896
  };
897
898
  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
899
900
  /// The class used to assign some variables some temporarily addresses.
901
  class OMPMapVars {
902
    DeclMapTy SavedLocals;
903
    DeclMapTy SavedTempAddresses;
904
    OMPMapVars(const OMPMapVars &) = delete;
905
    void operator=(const OMPMapVars &) = delete;
906
907
  public:
908
149k
    explicit OMPMapVars() = default;
909
149k
    ~OMPMapVars() {
910
149k
      assert(SavedLocals.empty() && "Did not restored original addresses.");
911
149k
    };
912
913
    /// Sets the address of the variable \p LocalVD to be \p TempAddr in
914
    /// function \p CGF.
915
    /// \return true if at least one variable was set already, false otherwise.
916
    bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
917
173k
                    Address TempAddr) {
918
173k
      LocalVD = LocalVD->getCanonicalDecl();
919
      // Only save it once.
920
173k
      if (SavedLocals.count(LocalVD)) 
return false20.5k
;
921
922
      // Copy the existing local entry to SavedLocals.
923
153k
      auto it = CGF.LocalDeclMap.find(LocalVD);
924
153k
      if (it != CGF.LocalDeclMap.end())
925
53.6k
        SavedLocals.try_emplace(LocalVD, it->second);
926
99.6k
      else
927
99.6k
        SavedLocals.try_emplace(LocalVD, Address::invalid());
928
929
      // Generate the private entry.
930
153k
      QualType VarTy = LocalVD->getType();
931
153k
      if (VarTy->isReferenceType()) {
932
4.63k
        Address Temp = CGF.CreateMemTemp(VarTy);
933
4.63k
        CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
934
4.63k
        TempAddr = Temp;
935
4.63k
      }
936
153k
      SavedTempAddresses.try_emplace(LocalVD, TempAddr);
937
938
153k
      return true;
939
153k
    }
940
941
    /// Applies new addresses to the list of the variables.
942
    /// \return true if at least one variable is using new address, false
943
    /// otherwise.
944
136k
    bool apply(CodeGenFunction &CGF) {
945
136k
      copyInto(SavedTempAddresses, CGF.LocalDeclMap);
946
136k
      SavedTempAddresses.clear();
947
136k
      return !SavedLocals.empty();
948
136k
    }
949
950
    /// Restores original addresses of the variables.
951
149k
    void restore(CodeGenFunction &CGF) {
952
149k
      if (!SavedLocals.empty()) {
953
83.5k
        copyInto(SavedLocals, CGF.LocalDeclMap);
954
83.5k
        SavedLocals.clear();
955
83.5k
      }
956
149k
    }
957
958
  private:
959
    /// Copy all the entries in the source map over the corresponding
960
    /// entries in the destination, which must exist.
961
220k
    static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
962
306k
      for (auto &Pair : Src) {
963
306k
        if (!Pair.second.isValid()) {
964
99.6k
          Dest.erase(Pair.first);
965
99.6k
          continue;
966
99.6k
        }
967
968
206k
        auto I = Dest.find(Pair.first);
969
206k
        if (I != Dest.end())
970
107k
          I->second = Pair.second;
971
99.6k
        else
972
99.6k
          Dest.insert(Pair);
973
206k
      }
974
220k
    }
975
  };
976
977
  /// The scope used to remap some variables as private in the OpenMP loop body
978
  /// (or other captured region emitted without outlining), and to restore old
979
  /// vars back on exit.
980
  class OMPPrivateScope : public RunCleanupsScope {
981
    OMPMapVars MappedVars;
982
    OMPPrivateScope(const OMPPrivateScope &) = delete;
983
    void operator=(const OMPPrivateScope &) = delete;
984
985
  public:
986
    /// Enter a new OpenMP private scope.
987
130k
    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
988
989
    /// Registers \p LocalVD variable as a private and apply \p PrivateGen
990
    /// function for it to generate corresponding private variable. \p
991
    /// PrivateGen returns an address of the generated private variable.
992
    /// \return true if the variable is registered as private, false if it has
993
    /// been privatized already.
994
    bool addPrivate(const VarDecl *LocalVD,
995
153k
                    const llvm::function_ref<Address()> PrivateGen) {
996
153k
      assert(PerformCleanup && "adding private to dead scope");
997
153k
      return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
998
153k
    }
999
1000
    /// Privatizes local variables previously registered as private.
1001
    /// Registration is separate from the actual privatization to allow
1002
    /// initializers use values of the original variables, not the private one.
1003
    /// This is important, for example, if the private variable is a class
1004
    /// variable initialized by a constructor that references other private
1005
    /// variables. But at initialization original variables must be used, not
1006
    /// private copies.
1007
    /// \return true if at least one variable was privatized, false otherwise.
1008
117k
    bool Privatize() { return MappedVars.apply(CGF); }
1009
1010
130k
    void ForceCleanup() {
1011
130k
      RunCleanupsScope::ForceCleanup();
1012
130k
      MappedVars.restore(CGF);
1013
130k
    }
1014
1015
    /// Exit scope - all the mapped variables are restored.
1016
130k
    ~OMPPrivateScope() {
1017
130k
      if (PerformCleanup)
1018
105k
        ForceCleanup();
1019
130k
    }
1020
1021
    /// Checks if the global variable is captured in current function.
1022
7.06k
    bool isGlobalVarCaptured(const VarDecl *VD) const {
1023
7.06k
      VD = VD->getCanonicalDecl();
1024
7.06k
      return !VD->isLocalVarDeclOrParm() && 
CGF.LocalDeclMap.count(VD) > 0901
;
1025
7.06k
    }
1026
  };
1027
1028
  /// Save/restore original map of previously emitted local vars in case when we
1029
  /// need to duplicate emission of the same code several times in the same
1030
  /// function for OpenMP code.
1031
  class OMPLocalDeclMapRAII {
1032
    CodeGenFunction &CGF;
1033
    DeclMapTy SavedMap;
1034
1035
  public:
1036
    OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1037
13.6k
        : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1038
13.6k
    ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1039
  };
1040
1041
  /// Takes the old cleanup stack size and emits the cleanup blocks
1042
  /// that have been added.
1043
  void
1044
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1045
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1046
1047
  /// Takes the old cleanup stack size and emits the cleanup blocks
1048
  /// that have been added, then adds all lifetime-extended cleanups from
1049
  /// the given position to the stack.
1050
  void
1051
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1052
                   size_t OldLifetimeExtendedStackSize,
1053
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1054
1055
  void ResolveBranchFixups(llvm::BasicBlock *Target);
1056
1057
  /// The given basic block lies in the current EH scope, but may be a
1058
  /// target of a potentially scope-crossing jump; get a stable handle
1059
  /// to which we can perform this jump later.
1060
379k
  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1061
379k
    return JumpDest(Target,
1062
379k
                    EHStack.getInnermostNormalCleanup(),
1063
379k
                    NextCleanupDestIndex++);
1064
379k
  }
1065
1066
  /// The given basic block lies in the current EH scope, but may be a
1067
  /// target of a potentially scope-crossing jump; get a stable handle
1068
  /// to which we can perform this jump later.
1069
371k
  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1070
371k
    return getJumpDestInCurrentScope(createBasicBlock(Name));
1071
371k
  }
1072
1073
  /// EmitBranchThroughCleanup - Emit a branch from the current insert
1074
  /// block through the normal cleanup handling code (if any) and then
1075
  /// on to \arg Dest.
1076
  void EmitBranchThroughCleanup(JumpDest Dest);
1077
1078
  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1079
  /// specified destination obviously has no cleanups to run.  'false' is always
1080
  /// a conservatively correct answer for this method.
1081
  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1082
1083
  /// popCatchScope - Pops the catch scope at the top of the EHScope
1084
  /// stack, emitting any required code (other than the catch handlers
1085
  /// themselves).
1086
  void popCatchScope();
1087
1088
  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1089
  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1090
  llvm::BasicBlock *
1091
  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1092
1093
  /// An object to manage conditionally-evaluated expressions.
1094
  class ConditionalEvaluation {
1095
    llvm::BasicBlock *StartBB;
1096
1097
  public:
1098
    ConditionalEvaluation(CodeGenFunction &CGF)
1099
19.9k
      : StartBB(CGF.Builder.GetInsertBlock()) {}
1100
1101
28.4k
    void begin(CodeGenFunction &CGF) {
1102
28.4k
      assert(CGF.OutermostConditional != this);
1103
28.4k
      if (!CGF.OutermostConditional)
1104
28.2k
        CGF.OutermostConditional = this;
1105
28.4k
    }
1106
1107
28.4k
    void end(CodeGenFunction &CGF) {
1108
28.4k
      assert(CGF.OutermostConditional != nullptr);
1109
28.4k
      if (CGF.OutermostConditional == this)
1110
28.2k
        CGF.OutermostConditional = nullptr;
1111
28.4k
    }
1112
1113
    /// Returns a block which will be executed prior to each
1114
    /// evaluation of the conditional code.
1115
284
    llvm::BasicBlock *getStartingBlock() const {
1116
284
      return StartBB;
1117
284
    }
1118
  };
1119
1120
  /// isInConditionalBranch - Return true if we're currently emitting
1121
  /// one branch or the other of a conditional expression.
1122
9.27k
  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1123
1124
266
  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1125
266
    assert(isInConditionalBranch());
1126
266
    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1127
266
    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1128
266
    store->setAlignment(addr.getAlignment().getAsAlign());
1129
266
  }
1130
1131
  /// An RAII object to record that we're evaluating a statement
1132
  /// expression.
1133
  class StmtExprEvaluation {
1134
    CodeGenFunction &CGF;
1135
1136
    /// We have to save the outermost conditional: cleanups in a
1137
    /// statement expression aren't conditional just because the
1138
    /// StmtExpr is.
1139
    ConditionalEvaluation *SavedOutermostConditional;
1140
1141
  public:
1142
    StmtExprEvaluation(CodeGenFunction &CGF)
1143
4.29k
      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1144
4.29k
      CGF.OutermostConditional = nullptr;
1145
4.29k
    }
1146
1147
4.29k
    ~StmtExprEvaluation() {
1148
4.29k
      CGF.OutermostConditional = SavedOutermostConditional;
1149
4.29k
      CGF.EnsureInsertPoint();
1150
4.29k
    }
1151
  };
1152
1153
  /// An object which temporarily prevents a value from being
1154
  /// destroyed by aggressive peephole optimizations that assume that
1155
  /// all uses of a value have been realized in the IR.
1156
  class PeepholeProtection {
1157
    llvm::Instruction *Inst;
1158
    friend class CodeGenFunction;
1159
1160
  public:
1161
14.3k
    PeepholeProtection() : Inst(nullptr) {}
1162
  };
1163
1164
  /// A non-RAII class containing all the information about a bound
1165
  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1166
  /// this which makes individual mappings very simple; using this
1167
  /// class directly is useful when you have a variable number of
1168
  /// opaque values or don't want the RAII functionality for some
1169
  /// reason.
1170
  class OpaqueValueMappingData {
1171
    const OpaqueValueExpr *OpaqueValue;
1172
    bool BoundLValue;
1173
    CodeGenFunction::PeepholeProtection Protection;
1174
1175
    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1176
                           bool boundLValue)
1177
1.82k
      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1178
  public:
1179
11.1k
    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1180
1181
5.91k
    static bool shouldBindAsLValue(const Expr *expr) {
1182
      // gl-values should be bound as l-values for obvious reasons.
1183
      // Records should be bound as l-values because IR generation
1184
      // always keeps them in memory.  Expressions of function type
1185
      // act exactly like l-values but are formally required to be
1186
      // r-values in C.
1187
5.91k
      return expr->isGLValue() ||
1188
3.96k
             expr->getType()->isFunctionType() ||
1189
3.96k
             hasAggregateEvaluationKind(expr->getType());
1190
5.91k
    }
1191
1192
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1193
                                       const OpaqueValueExpr *ov,
1194
456
                                       const Expr *e) {
1195
456
      if (shouldBindAsLValue(ov))
1196
182
        return bind(CGF, ov, CGF.EmitLValue(e));
1197
274
      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1198
274
    }
1199
1200
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1201
                                       const OpaqueValueExpr *ov,
1202
374
                                       const LValue &lv) {
1203
374
      assert(shouldBindAsLValue(ov));
1204
374
      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1205
374
      return OpaqueValueMappingData(ov, true);
1206
374
    }
1207
1208
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1209
                                       const OpaqueValueExpr *ov,
1210
1.44k
                                       const RValue &rv) {
1211
1.44k
      assert(!shouldBindAsLValue(ov));
1212
1.44k
      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1213
1214
1.44k
      OpaqueValueMappingData data(ov, false);
1215
1216
      // Work around an extremely aggressive peephole optimization in
1217
      // EmitScalarConversion which assumes that all other uses of a
1218
      // value are extant.
1219
1.44k
      data.Protection = CGF.protectFromPeepholes(rv);
1220
1221
1.44k
      return data;
1222
1.44k
    }
1223
1224
12.1k
    bool isValid() const { return OpaqueValue != nullptr; }
1225
6
    void clear() { OpaqueValue = nullptr; }
1226
1227
1.82k
    void unbind(CodeGenFunction &CGF) {
1228
1.82k
      assert(OpaqueValue && "no data to unbind!");
1229
1230
1.82k
      if (BoundLValue) {
1231
374
        CGF.OpaqueLValues.erase(OpaqueValue);
1232
1.44k
      } else {
1233
1.44k
        CGF.OpaqueRValues.erase(OpaqueValue);
1234
1.44k
        CGF.unprotectFromPeepholes(Protection);
1235
1.44k
      }
1236
1.82k
    }
1237
  };
1238
1239
  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1240
  class OpaqueValueMapping {
1241
    CodeGenFunction &CGF;
1242
    OpaqueValueMappingData Data;
1243
1244
  public:
1245
3.04k
    static bool shouldBindAsLValue(const Expr *expr) {
1246
3.04k
      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1247
3.04k
    }
1248
1249
    /// Build the opaque value mapping for the given conditional
1250
    /// operator if it's the GNU ?: extension.  This is a common
1251
    /// enough pattern that the convenience operator is really
1252
    /// helpful.
1253
    ///
1254
    OpaqueValueMapping(CodeGenFunction &CGF,
1255
10.8k
                       const AbstractConditionalOperator *op) : CGF(CGF) {
1256
10.8k
      if (isa<ConditionalOperator>(op))
1257
        // Leave Data empty.
1258
10.7k
        return;
1259
1260
29
      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1261
29
      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1262
29
                                          e->getCommon());
1263
29
    }
1264
1265
    /// Build the opaque value mapping for an OpaqueValueExpr whose source
1266
    /// expression is set to the expression the OVE represents.
1267
    OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1268
28
        : CGF(CGF) {
1269
28
      if (OV) {
1270
28
        assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1271
28
                                      "for OVE with no source expression");
1272
28
        Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1273
28
      }
1274
28
    }
1275
1276
    OpaqueValueMapping(CodeGenFunction &CGF,
1277
                       const OpaqueValueExpr *opaqueValue,
1278
                       LValue lvalue)
1279
182
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1280
182
    }
1281
1282
    OpaqueValueMapping(CodeGenFunction &CGF,
1283
                       const OpaqueValueExpr *opaqueValue,
1284
                       RValue rvalue)
1285
1.17k
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1286
1.17k
    }
1287
1288
6
    void pop() {
1289
6
      Data.unbind(CGF);
1290
6
      Data.clear();
1291
6
    }
1292
1293
12.1k
    ~OpaqueValueMapping() {
1294
12.1k
      if (Data.isValid()) 
Data.unbind(CGF)1.40k
;
1295
12.1k
    }
1296
  };
1297
1298
private:
1299
  CGDebugInfo *DebugInfo;
1300
  /// Used to create unique names for artificial VLA size debug info variables.
1301
  unsigned VLAExprCounter = 0;
1302
  bool DisableDebugInfo = false;
1303
1304
  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1305
  /// calling llvm.stacksave for multiple VLAs in the same scope.
1306
  bool DidCallStackSave = false;
1307
1308
  /// IndirectBranch - The first time an indirect goto is seen we create a block
1309
  /// with an indirect branch.  Every time we see the address of a label taken,
1310
  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1311
  /// codegen'd as a jump to the IndirectBranch's basic block.
1312
  llvm::IndirectBrInst *IndirectBranch = nullptr;
1313
1314
  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1315
  /// decls.
1316
  DeclMapTy LocalDeclMap;
1317
1318
  // Keep track of the cleanups for callee-destructed parameters pushed to the
1319
  // cleanup stack so that they can be deactivated later.
1320
  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1321
      CalleeDestructedParamCleanups;
1322
1323
  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1324
  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1325
  /// parameter.
1326
  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1327
      SizeArguments;
1328
1329
  /// Track escaped local variables with auto storage. Used during SEH
1330
  /// outlining to produce a call to llvm.localescape.
1331
  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1332
1333
  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1334
  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1335
1336
  // BreakContinueStack - This keeps track of where break and continue
1337
  // statements should jump to.
1338
  struct BreakContinue {
1339
    BreakContinue(JumpDest Break, JumpDest Continue)
1340
38.3k
      : BreakBlock(Break), ContinueBlock(Continue) {}
1341
1342
    JumpDest BreakBlock;
1343
    JumpDest ContinueBlock;
1344
  };
1345
  SmallVector<BreakContinue, 8> BreakContinueStack;
1346
1347
  /// Handles cancellation exit points in OpenMP-related constructs.
1348
  class OpenMPCancelExitStack {
1349
    /// Tracks cancellation exit point and join point for cancel-related exit
1350
    /// and normal exit.
1351
    struct CancelExit {
1352
296k
      CancelExit() = default;
1353
      CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1354
                 JumpDest ContBlock)
1355
4.32k
          : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1356
      OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1357
      /// true if the exit block has been emitted already by the special
1358
      /// emitExit() call, false if the default codegen is used.
1359
      bool HasBeenEmitted = false;
1360
      JumpDest ExitBlock;
1361
      JumpDest ContBlock;
1362
    };
1363
1364
    SmallVector<CancelExit, 8> Stack;
1365
1366
  public:
1367
296k
    OpenMPCancelExitStack() : Stack(1) {}
1368
296k
    ~OpenMPCancelExitStack() = default;
1369
    /// Fetches the exit block for the current OpenMP construct.
1370
8.97k
    JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1371
    /// Emits exit block with special codegen procedure specific for the related
1372
    /// OpenMP construct + emits code for normal construct cleanup.
1373
    void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1374
4.91k
                  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1375
4.91k
      if (Stack.back().Kind == Kind && 
getExitBlock().isValid()4.29k
) {
1376
101
        assert(CGF.getOMPCancelDestination(Kind).isValid());
1377
101
        assert(CGF.HaveInsertPoint());
1378
101
        assert(!Stack.back().HasBeenEmitted);
1379
101
        auto IP = CGF.Builder.saveAndClearIP();
1380
101
        CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1381
101
        CodeGen(CGF);
1382
101
        CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1383
101
        CGF.Builder.restoreIP(IP);
1384
101
        Stack.back().HasBeenEmitted = true;
1385
101
      }
1386
4.91k
      CodeGen(CGF);
1387
4.91k
    }
1388
    /// Enter the cancel supporting \a Kind construct.
1389
    /// \param Kind OpenMP directive that supports cancel constructs.
1390
    /// \param HasCancel true, if the construct has inner cancel directive,
1391
    /// false otherwise.
1392
4.32k
    void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1393
4.32k
      Stack.push_back({Kind,
1394
101
                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1395
4.22k
                                 : JumpDest(),
1396
101
                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1397
4.22k
                                 : JumpDest()});
1398
4.32k
    }
1399
    /// Emits default exit point for the cancel construct (if the special one
1400
    /// has not be used) + join point for cancel/normal exits.
1401
4.32k
    void exit(CodeGenFunction &CGF) {
1402
4.32k
      if (getExitBlock().isValid()) {
1403
101
        assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1404
101
        bool HaveIP = CGF.HaveInsertPoint();
1405
101
        if (!Stack.back().HasBeenEmitted) {
1406
0
          if (HaveIP)
1407
0
            CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1408
0
          CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1409
0
          CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1410
0
        }
1411
101
        CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1412
101
        if (!HaveIP) {
1413
0
          CGF.Builder.CreateUnreachable();
1414
0
          CGF.Builder.ClearInsertionPoint();
1415
0
        }
1416
101
      }
1417
4.32k
      Stack.pop_back();
1418
4.32k
    }
1419
  };
1420
  OpenMPCancelExitStack OMPCancelStack;
1421
1422
  /// Calculate branch weights for the likelihood attribute
1423
  llvm::MDNode *createBranchWeights(Stmt::Likelihood LH) const;
1424
1425
  CodeGenPGO PGO;
1426
1427
  /// Calculate branch weights appropriate for PGO data
1428
  llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1429
                                     uint64_t FalseCount) const;
1430
  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1431
  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1432
                                            uint64_t LoopCount) const;
1433
1434
  /// Calculate the branch weight for PGO data or the likelihood attribute.
1435
  /// The function tries to get the weight of \ref createProfileWeightsForLoop.
1436
  /// If that fails it gets the weight of \ref createBranchWeights.
1437
  llvm::MDNode *createProfileOrBranchWeightsForLoop(const Stmt *Cond,
1438
                                                    uint64_t LoopCount,
1439
                                                    const Stmt *Body) const;
1440
1441
public:
1442
  /// Increment the profiler's counter for the given statement by \p StepV.
1443
  /// If \p StepV is null, the default increment is 1.
1444
354k
  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1445
354k
    if (CGM.getCodeGenOpts().hasProfileClangInstr())
1446
1.06k
      PGO.emitCounterIncrement(Builder, S, StepV);
1447
354k
    PGO.setCurrentStmt(S);
1448
354k
  }
1449
1450
  /// Get the profiler's count for the given statement.
1451
118k
  uint64_t getProfileCount(const Stmt *S) {
1452
118k
    Optional<uint64_t> Count = PGO.getStmtCount(S);
1453
118k
    if (!Count.hasValue())
1454
117k
      return 0;
1455
459
    return *Count;
1456
459
  }
1457
1458
  /// Set the profiler's current count.
1459
8.74k
  void setCurrentProfileCount(uint64_t Count) {
1460
8.74k
    PGO.setCurrentRegionCount(Count);
1461
8.74k
  }
1462
1463
  /// Get the profiler's current count. This is generally the count for the most
1464
  /// recently incremented counter.
1465
110k
  uint64_t getCurrentProfileCount() {
1466
110k
    return PGO.getCurrentRegionCount();
1467
110k
  }
1468
1469
private:
1470
1471
  /// SwitchInsn - This is nearest current switch instruction. It is null if
1472
  /// current context is not in a switch.
1473
  llvm::SwitchInst *SwitchInsn = nullptr;
1474
  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1475
  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1476
1477
  /// The likelihood attributes of the SwitchCase.
1478
  SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1479
1480
  /// CaseRangeBlock - This block holds if condition check for last case
1481
  /// statement range in current switch instruction.
1482
  llvm::BasicBlock *CaseRangeBlock = nullptr;
1483
1484
  /// OpaqueLValues - Keeps track of the current set of opaque value
1485
  /// expressions.
1486
  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1487
  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1488
1489
  // VLASizeMap - This keeps track of the associated size for each VLA type.
1490
  // We track this by the size expression rather than the type itself because
1491
  // in certain situations, like a const qualifier applied to an VLA typedef,
1492
  // multiple VLA types can share the same size expression.
1493
  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1494
  // enter/leave scopes.
1495
  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1496
1497
  /// A block containing a single 'unreachable' instruction.  Created
1498
  /// lazily by getUnreachableBlock().
1499
  llvm::BasicBlock *UnreachableBlock = nullptr;
1500
1501
  /// Counts of the number return expressions in the function.
1502
  unsigned NumReturnExprs = 0;
1503
1504
  /// Count the number of simple (constant) return expressions in the function.
1505
  unsigned NumSimpleReturnExprs = 0;
1506
1507
  /// The last regular (non-return) debug location (breakpoint) in the function.
1508
  SourceLocation LastStopPoint;
1509
1510
public:
1511
  /// Source location information about the default argument or member
1512
  /// initializer expression we're evaluating, if any.
1513
  CurrentSourceLocExprScope CurSourceLocExprScope;
1514
  using SourceLocExprScopeGuard =
1515
      CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1516
1517
  /// A scope within which we are constructing the fields of an object which
1518
  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1519
  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1520
  class FieldConstructionScope {
1521
  public:
1522
    FieldConstructionScope(CodeGenFunction &CGF, Address This)
1523
24.1k
        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1524
24.1k
      CGF.CXXDefaultInitExprThis = This;
1525
24.1k
    }
1526
24.1k
    ~FieldConstructionScope() {
1527
24.1k
      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1528
24.1k
    }
1529
1530
  private:
1531
    CodeGenFunction &CGF;
1532
    Address OldCXXDefaultInitExprThis;
1533
  };
1534
1535
  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1536
  /// is overridden to be the object under construction.
1537
  class CXXDefaultInitExprScope  {
1538
  public:
1539
    CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1540
        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1541
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1542
446
          SourceLocScope(E, CGF.CurSourceLocExprScope) {
1543
446
      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1544
446
      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1545
446
    }
1546
446
    ~CXXDefaultInitExprScope() {
1547
446
      CGF.CXXThisValue = OldCXXThisValue;
1548
446
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1549
446
    }
1550
1551
  public:
1552
    CodeGenFunction &CGF;
1553
    llvm::Value *OldCXXThisValue;
1554
    CharUnits OldCXXThisAlignment;
1555
    SourceLocExprScopeGuard SourceLocScope;
1556
  };
1557
1558
  struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1559
    CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1560
3.72k
        : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1561
  };
1562
1563
  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1564
  /// current loop index is overridden.
1565
  class ArrayInitLoopExprScope {
1566
  public:
1567
    ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1568
28
      : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1569
28
      CGF.ArrayInitIndex = Index;
1570
28
    }
1571
28
    ~ArrayInitLoopExprScope() {
1572
28
      CGF.ArrayInitIndex = OldArrayInitIndex;
1573
28
    }
1574
1575
  private:
1576
    CodeGenFunction &CGF;
1577
    llvm::Value *OldArrayInitIndex;
1578
  };
1579
1580
  class InlinedInheritingConstructorScope {
1581
  public:
1582
    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1583
        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1584
          OldCurCodeDecl(CGF.CurCodeDecl),
1585
          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1586
          OldCXXABIThisValue(CGF.CXXABIThisValue),
1587
          OldCXXThisValue(CGF.CXXThisValue),
1588
          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1589
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1590
          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1591
          OldCXXInheritedCtorInitExprArgs(
1592
47
              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1593
47
      CGF.CurGD = GD;
1594
47
      CGF.CurFuncDecl = CGF.CurCodeDecl =
1595
47
          cast<CXXConstructorDecl>(GD.getDecl());
1596
47
      CGF.CXXABIThisDecl = nullptr;
1597
47
      CGF.CXXABIThisValue = nullptr;
1598
47
      CGF.CXXThisValue = nullptr;
1599
47
      CGF.CXXABIThisAlignment = CharUnits();
1600
47
      CGF.CXXThisAlignment = CharUnits();
1601
47
      CGF.ReturnValue = Address::invalid();
1602
47
      CGF.FnRetTy = QualType();
1603
47
      CGF.CXXInheritedCtorInitExprArgs.clear();
1604
47
    }
1605
47
    ~InlinedInheritingConstructorScope() {
1606
47
      CGF.CurGD = OldCurGD;
1607
47
      CGF.CurFuncDecl = OldCurFuncDecl;
1608
47
      CGF.CurCodeDecl = OldCurCodeDecl;
1609
47
      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1610
47
      CGF.CXXABIThisValue = OldCXXABIThisValue;
1611
47
      CGF.CXXThisValue = OldCXXThisValue;
1612
47
      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1613
47
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1614
47
      CGF.ReturnValue = OldReturnValue;
1615
47
      CGF.FnRetTy = OldFnRetTy;
1616
47
      CGF.CXXInheritedCtorInitExprArgs =
1617
47
          std::move(OldCXXInheritedCtorInitExprArgs);
1618
47
    }
1619
1620
  private:
1621
    CodeGenFunction &CGF;
1622
    GlobalDecl OldCurGD;
1623
    const Decl *OldCurFuncDecl;
1624
    const Decl *OldCurCodeDecl;
1625
    ImplicitParamDecl *OldCXXABIThisDecl;
1626
    llvm::Value *OldCXXABIThisValue;
1627
    llvm::Value *OldCXXThisValue;
1628
    CharUnits OldCXXABIThisAlignment;
1629
    CharUnits OldCXXThisAlignment;
1630
    Address OldReturnValue;
1631
    QualType OldFnRetTy;
1632
    CallArgList OldCXXInheritedCtorInitExprArgs;
1633
  };
1634
1635
  // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1636
  // region body, and finalization codegen callbacks. This will class will also
1637
  // contain privatization functions used by the privatization call backs
1638
  //
1639
  // TODO: this is temporary class for things that are being moved out of
1640
  // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1641
  // utility function for use with the OMPBuilder. Once that move to use the
1642
  // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1643
  // directly, or a new helper class that will contain functions used by both
1644
  // this and the OMPBuilder
1645
1646
  struct OMPBuilderCBHelpers {
1647
1648
    OMPBuilderCBHelpers() = delete;
1649
    OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1650
    OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1651
1652
    using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1653
1654
    /// Cleanup action for allocate support.
1655
    class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1656
1657
    private:
1658
      llvm::CallInst *RTLFnCI;
1659
1660
    public:
1661
0
      OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1662
0
        RLFnCI->removeFromParent();
1663
0
      }
1664
1665
0
      void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1666
0
        if (!CGF.HaveInsertPoint())
1667
0
          return;
1668
0
        CGF.Builder.Insert(RTLFnCI);
1669
0
      }
1670
    };
1671
1672
    /// Returns address of the threadprivate variable for the current
1673
    /// thread. This Also create any necessary OMP runtime calls.
1674
    ///
1675
    /// \param VD VarDecl for Threadprivate variable.
1676
    /// \param VDAddr Address of the Vardecl
1677
    /// \param Loc  The location where the barrier directive was encountered
1678
    static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1679
                                          const VarDecl *VD, Address VDAddr,
1680
                                          SourceLocation Loc);
1681
1682
    /// Gets the OpenMP-specific address of the local variable /p VD.
1683
    static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1684
                                             const VarDecl *VD);
1685
    /// Get the platform-specific name separator.
1686
    /// \param Parts different parts of the final name that needs separation
1687
    /// \param FirstSeparator First separator used between the initial two
1688
    ///        parts of the name.
1689
    /// \param Separator separator used between all of the rest consecutinve
1690
    ///        parts of the name
1691
    static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1692
                                             StringRef FirstSeparator = ".",
1693
                                             StringRef Separator = ".");
1694
    /// Emit the Finalization for an OMP region
1695
    /// \param CGF  The Codegen function this belongs to
1696
    /// \param IP Insertion point for generating the finalization code.
1697
60
    static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1698
60
      CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1699
60
      assert(IP.getBlock()->end() != IP.getPoint() &&
1700
60
             "OpenMP IR Builder should cause terminated block!");
1701
1702
60
      llvm::BasicBlock *IPBB = IP.getBlock();
1703
60
      llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1704
60
      assert(DestBB && "Finalization block should have one successor!");
1705
1706
      // erase and replace with cleanup branch.
1707
60
      IPBB->getTerminator()->eraseFromParent();
1708
60
      CGF.Builder.SetInsertPoint(IPBB);
1709
60
      CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1710
60
      CGF.EmitBranchThroughCleanup(Dest);
1711
60
    }
1712
1713
    /// Emit the body of an OMP region
1714
    /// \param CGF  The Codegen function this belongs to
1715
    /// \param RegionBodyStmt The body statement for the OpenMP region being
1716
    ///        generated
1717
    /// \param CodeGenIP  Insertion point for generating the body code.
1718
    /// \param FiniBB The finalization basic block
1719
    static void EmitOMPRegionBody(CodeGenFunction &CGF,
1720
                                  const Stmt *RegionBodyStmt,
1721
                                  InsertPointTy CodeGenIP,
1722
54
                                  llvm::BasicBlock &FiniBB) {
1723
54
      llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1724
54
      if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1725
54
        CodeGenIPBBTI->eraseFromParent();
1726
1727
54
      CGF.Builder.SetInsertPoint(CodeGenIPBB);
1728
1729
54
      CGF.EmitStmt(RegionBodyStmt);
1730
1731
54
      if (CGF.Builder.saveIP().isSet())
1732
52
        CGF.Builder.CreateBr(&FiniBB);
1733
54
    }
1734
1735
    /// RAII for preserving necessary info during Outlined region body codegen.
1736
    class OutlinedRegionBodyRAII {
1737
1738
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1739
      CodeGenFunction::JumpDest OldReturnBlock;
1740
      CGBuilderTy::InsertPoint IP;
1741
      CodeGenFunction &CGF;
1742
1743
    public:
1744
      OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1745
                             llvm::BasicBlock &RetBB)
1746
34
          : CGF(cgf) {
1747
34
        assert(AllocaIP.isSet() &&
1748
34
               "Must specify Insertion point for allocas of outlined function");
1749
34
        OldAllocaIP = CGF.AllocaInsertPt;
1750
34
        CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1751
34
        IP = CGF.Builder.saveIP();
1752
1753
34
        OldReturnBlock = CGF.ReturnBlock;
1754
34
        CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1755
34
      }
1756
1757
34
      ~OutlinedRegionBodyRAII() {
1758
34
        CGF.AllocaInsertPt = OldAllocaIP;
1759
34
        CGF.ReturnBlock = OldReturnBlock;
1760
34
        CGF.Builder.restoreIP(IP);
1761
34
      }
1762
    };
1763
1764
    /// RAII for preserving necessary info during inlined region body codegen.
1765
    class InlinedRegionBodyRAII {
1766
1767
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1768
      CodeGenFunction &CGF;
1769
1770
    public:
1771
      InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1772
                            llvm::BasicBlock &FiniBB)
1773
20
          : CGF(cgf) {
1774
        // Alloca insertion block should be in the entry block of the containing
1775
        // function so it expects an empty AllocaIP in which case will reuse the
1776
        // old alloca insertion point, or a new AllocaIP in the same block as
1777
        // the old one
1778
20
        assert((!AllocaIP.isSet() ||
1779
20
                CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1780
20
               "Insertion point should be in the entry block of containing "
1781
20
               "function!");
1782
20
        OldAllocaIP = CGF.AllocaInsertPt;
1783
20
        if (AllocaIP.isSet())
1784
0
          CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1785
1786
        // TODO: Remove the call, after making sure the counter is not used by
1787
        //       the EHStack.
1788
        // Since this is an inlined region, it should not modify the
1789
        // ReturnBlock, and should reuse the one for the enclosing outlined
1790
        // region. So, the JumpDest being return by the function is discarded
1791
20
        (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1792
20
      }
1793
1794
20
      ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1795
    };
1796
  };
1797
1798
private:
1799
  /// CXXThisDecl - When generating code for a C++ member function,
1800
  /// this will hold the implicit 'this' declaration.
1801
  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1802
  llvm::Value *CXXABIThisValue = nullptr;
1803
  llvm::Value *CXXThisValue = nullptr;
1804
  CharUnits CXXABIThisAlignment;
1805
  CharUnits CXXThisAlignment;
1806
1807
  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1808
  /// this expression.
1809
  Address CXXDefaultInitExprThis = Address::invalid();
1810
1811
  /// The current array initialization index when evaluating an
1812
  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1813
  llvm::Value *ArrayInitIndex = nullptr;
1814
1815
  /// The values of function arguments to use when evaluating
1816
  /// CXXInheritedCtorInitExprs within this context.
1817
  CallArgList CXXInheritedCtorInitExprArgs;
1818
1819
  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1820
  /// destructor, this will hold the implicit argument (e.g. VTT).
1821
  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1822
  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1823
1824
  /// OutermostConditional - Points to the outermost active
1825
  /// conditional control.  This is used so that we know if a
1826
  /// temporary should be destroyed conditionally.
1827
  ConditionalEvaluation *OutermostConditional = nullptr;
1828
1829
  /// The current lexical scope.
1830
  LexicalScope *CurLexicalScope = nullptr;
1831
1832
  /// The current source location that should be used for exception
1833
  /// handling code.
1834
  SourceLocation CurEHLocation;
1835
1836
  /// BlockByrefInfos - For each __block variable, contains
1837
  /// information about the layout of the variable.
1838
  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1839
1840
  /// Used by -fsanitize=nullability-return to determine whether the return
1841
  /// value can be checked.
1842
  llvm::Value *RetValNullabilityPrecondition = nullptr;
1843
1844
  /// Check if -fsanitize=nullability-return instrumentation is required for
1845
  /// this function.
1846
1.06M
  bool requiresReturnValueNullabilityCheck() const {
1847
1.06M
    return RetValNullabilityPrecondition;
1848
1.06M
  }
1849
1850
  /// Used to store precise source locations for return statements by the
1851
  /// runtime return value checks.
1852
  Address ReturnLocation = Address::invalid();
1853
1854
  /// Check if the return value of this function requires sanitization.
1855
  bool requiresReturnValueCheck() const;
1856
1857
  llvm::BasicBlock *TerminateLandingPad = nullptr;
1858
  llvm::BasicBlock *TerminateHandler = nullptr;
1859
  llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1860
1861
  /// Terminate funclets keyed by parent funclet pad.
1862
  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1863
1864
  /// Largest vector width used in ths function. Will be used to create a
1865
  /// function attribute.
1866
  unsigned LargestVectorWidth = 0;
1867
1868
  /// True if we need emit the life-time markers.
1869
  const bool ShouldEmitLifetimeMarkers;
1870
1871
  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1872
  /// the function metadata.
1873
  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1874
                                llvm::Function *Fn);
1875
1876
public:
1877
  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1878
  ~CodeGenFunction();
1879
1880
540k
  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1881
13.0M
  ASTContext &getContext() const { return CGM.getContext(); }
1882
10.1M
  CGDebugInfo *getDebugInfo() {
1883
10.1M
    if (DisableDebugInfo)
1884
7.06k
      return nullptr;
1885
10.1M
    return DebugInfo;
1886
10.1M
  }
1887
2.59k
  void disableDebugInfo() { DisableDebugInfo = true; }
1888
2.59k
  void enableDebugInfo() { DisableDebugInfo = false; }
1889
1890
216
  bool shouldUseFusedARCCalls() {
1891
216
    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1892
216
  }
1893
1894
10.3M
  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1895
1896
  /// Returns a pointer to the function's exception object and selector slot,
1897
  /// which is assigned in every landing pad.
1898
  Address getExceptionSlot();
1899
  Address getEHSelectorSlot();
1900
1901
  /// Returns the contents of the function's exception object and selector
1902
  /// slots.
1903
  llvm::Value *getExceptionFromSlot();
1904
  llvm::Value *getSelectorFromSlot();
1905
1906
  Address getNormalCleanupDestSlot();
1907
1908
368
  llvm::BasicBlock *getUnreachableBlock() {
1909
368
    if (!UnreachableBlock) {
1910
327
      UnreachableBlock = createBasicBlock("unreachable");
1911
327
      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1912
327
    }
1913
368
    return UnreachableBlock;
1914
368
  }
1915
1916
199k
  llvm::BasicBlock *getInvokeDest() {
1917
199k
    if (!EHStack.requiresLandingPad()) 
return nullptr162k
;
1918
37.0k
    return getInvokeDestImpl();
1919
37.0k
  }
1920
1921
327k
  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1922
1923
531k
  const TargetInfo &getTarget() const { return Target; }
1924
2.72M
  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1925
23.4k
  const TargetCodeGenInfo &getTargetHooks() const {
1926
23.4k
    return CGM.getTargetCodeGenInfo();
1927
23.4k
  }
1928
1929
  //===--------------------------------------------------------------------===//
1930
  //                                  Cleanups
1931
  //===--------------------------------------------------------------------===//
1932
1933
  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1934
1935
  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1936
                                        Address arrayEndPointer,
1937
                                        QualType elementType,
1938
                                        CharUnits elementAlignment,
1939
                                        Destroyer *destroyer);
1940
  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1941
                                      llvm::Value *arrayEnd,
1942
                                      QualType elementType,
1943
                                      CharUnits elementAlignment,
1944
                                      Destroyer *destroyer);
1945
1946
  void pushDestroy(QualType::DestructionKind dtorKind,
1947
                   Address addr, QualType type);
1948
  void pushEHDestroy(QualType::DestructionKind dtorKind,
1949
                     Address addr, QualType type);
1950
  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1951
                   Destroyer *destroyer, bool useEHCleanupForArray);
1952
  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1953
                                   QualType type, Destroyer *destroyer,
1954
                                   bool useEHCleanupForArray);
1955
  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1956
                                   llvm::Value *CompletePtr,
1957
                                   QualType ElementType);
1958
  void pushStackRestore(CleanupKind kind, Address SPMem);
1959
  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1960
                   bool useEHCleanupForArray);
1961
  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1962
                                        Destroyer *destroyer,
1963
                                        bool useEHCleanupForArray,
1964
                                        const VarDecl *VD);
1965
  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1966
                        QualType elementType, CharUnits elementAlign,
1967
                        Destroyer *destroyer,
1968
                        bool checkZeroLength, bool useEHCleanup);
1969
1970
  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1971
1972
  /// Determines whether an EH cleanup is required to destroy a type
1973
  /// with the given destruction kind.
1974
22.7k
  bool needsEHCleanup(QualType::DestructionKind kind) {
1975
22.7k
    switch (kind) {
1976
16.5k
    case QualType::DK_none:
1977
16.5k
      return false;
1978
5.09k
    case QualType::DK_cxx_destructor:
1979
5.58k
    case QualType::DK_objc_weak_lifetime:
1980
5.67k
    case QualType::DK_nontrivial_c_struct:
1981
5.67k
      return getLangOpts().Exceptions;
1982
514
    case QualType::DK_objc_strong_lifetime:
1983
514
      return getLangOpts().Exceptions &&
1984
65
             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1985
0
    }
1986
0
    llvm_unreachable("bad destruction kind");
1987
0
  }
1988
1989
1.80k
  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1990
951
    return (needsEHCleanup(kind) ? 
NormalAndEHCleanup856
: NormalCleanup);
1991
1.80k
  }
1992
1993
  //===--------------------------------------------------------------------===//
1994
  //                                  Objective-C
1995
  //===--------------------------------------------------------------------===//
1996
1997
  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1998
1999
  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2000
2001
  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2002
  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2003
                          const ObjCPropertyImplDecl *PID);
2004
  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2005
                              const ObjCPropertyImplDecl *propImpl,
2006
                              const ObjCMethodDecl *GetterMothodDecl,
2007
                              llvm::Constant *AtomicHelperFn);
2008
2009
  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2010
                                  ObjCMethodDecl *MD, bool ctor);
2011
2012
  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2013
  /// for the given property.
2014
  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2015
                          const ObjCPropertyImplDecl *PID);
2016
  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2017
                              const ObjCPropertyImplDecl *propImpl,
2018
                              llvm::Constant *AtomicHelperFn);
2019
2020
  //===--------------------------------------------------------------------===//
2021
  //                                  Block Bits
2022
  //===--------------------------------------------------------------------===//
2023
2024
  /// Emit block literal.
2025
  /// \return an LLVM value which is a pointer to a struct which contains
2026
  /// information about the block, including the block invoke function, the
2027
  /// captured variables, etc.
2028
  llvm::Value *EmitBlockLiteral(const BlockExpr *);
2029
2030
  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2031
                                        const CGBlockInfo &Info,
2032
                                        const DeclMapTy &ldm,
2033
                                        bool IsLambdaConversionToBlock,
2034
                                        bool BuildGlobalBlock);
2035
2036
  /// Check if \p T is a C++ class that has a destructor that can throw.
2037
  static bool cxxDestructorCanThrow(QualType T);
2038
2039
  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2040
  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2041
  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2042
                                             const ObjCPropertyImplDecl *PID);
2043
  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2044
                                             const ObjCPropertyImplDecl *PID);
2045
  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2046
2047
  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2048
                         bool CanThrow);
2049
2050
  class AutoVarEmission;
2051
2052
  void emitByrefStructureInit(const AutoVarEmission &emission);
2053
2054
  /// Enter a cleanup to destroy a __block variable.  Note that this
2055
  /// cleanup should be a no-op if the variable hasn't left the stack
2056
  /// yet; if a cleanup is required for the variable itself, that needs
2057
  /// to be done externally.
2058
  ///
2059
  /// \param Kind Cleanup kind.
2060
  ///
2061
  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2062
  /// structure that will be passed to _Block_object_dispose. When
2063
  /// \p LoadBlockVarAddr is true, the address of the field of the block
2064
  /// structure that holds the address of the __block structure.
2065
  ///
2066
  /// \param Flags The flag that will be passed to _Block_object_dispose.
2067
  ///
2068
  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2069
  /// \p Addr to get the address of the __block structure.
2070
  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2071
                         bool LoadBlockVarAddr, bool CanThrow);
2072
2073
  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2074
                                llvm::Value *ptr);
2075
2076
  Address LoadBlockStruct();
2077
  Address GetAddrOfBlockDecl(const VarDecl *var);
2078
2079
  /// BuildBlockByrefAddress - Computes the location of the
2080
  /// data in a variable which is declared as __block.
2081
  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2082
                                bool followForward = true);
2083
  Address emitBlockByrefAddress(Address baseAddr,
2084
                                const BlockByrefInfo &info,
2085
                                bool followForward,
2086
                                const llvm::Twine &name);
2087
2088
  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2089
2090
  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2091
2092
  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2093
                    const CGFunctionInfo &FnInfo);
2094
2095
  /// Annotate the function with an attribute that disables TSan checking at
2096
  /// runtime.
2097
  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2098
2099
  /// Emit code for the start of a function.
2100
  /// \param Loc       The location to be associated with the function.
2101
  /// \param StartLoc  The location of the function body.
2102
  void StartFunction(GlobalDecl GD,
2103
                     QualType RetTy,
2104
                     llvm::Function *Fn,
2105
                     const CGFunctionInfo &FnInfo,
2106
                     const FunctionArgList &Args,
2107
                     SourceLocation Loc = SourceLocation(),
2108
                     SourceLocation StartLoc = SourceLocation());
2109
2110
  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2111
2112
  void EmitConstructorBody(FunctionArgList &Args);
2113
  void EmitDestructorBody(FunctionArgList &Args);
2114
  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2115
  void EmitFunctionBody(const Stmt *Body);
2116
  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2117
2118
  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2119
                                  CallArgList &CallArgs);
2120
  void EmitLambdaBlockInvokeBody();
2121
  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2122
  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2123
71
  void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2124
71
    EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2125
71
  }
2126
  void EmitAsanPrologueOrEpilogue(bool Prologue);
2127
2128
  /// Emit the unified return block, trying to avoid its emission when
2129
  /// possible.
2130
  /// \return The debug location of the user written return statement if the
2131
  /// return block is is avoided.
2132
  llvm::DebugLoc EmitReturnBlock();
2133
2134
  /// FinishFunction - Complete IR generation of the current function. It is
2135
  /// legal to call this function even if there is no current insertion point.
2136
  void FinishFunction(SourceLocation EndLoc=SourceLocation());
2137
2138
  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2139
                  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2140
2141
  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2142
                                 const ThunkInfo *Thunk, bool IsUnprototyped);
2143
2144
  void FinishThunk();
2145
2146
  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2147
  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2148
                         llvm::FunctionCallee Callee);
2149
2150
  /// Generate a thunk for the given method.
2151
  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2152
                     GlobalDecl GD, const ThunkInfo &Thunk,
2153
                     bool IsUnprototyped);
2154
2155
  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2156
                                       const CGFunctionInfo &FnInfo,
2157
                                       GlobalDecl GD, const ThunkInfo &Thunk);
2158
2159
  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2160
                        FunctionArgList &Args);
2161
2162
  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2163
2164
  /// Struct with all information about dynamic [sub]class needed to set vptr.
2165
  struct VPtr {
2166
    BaseSubobject Base;
2167
    const CXXRecordDecl *NearestVBase;
2168
    CharUnits OffsetFromNearestVBase;
2169
    const CXXRecordDecl *VTableClass;
2170
  };
2171
2172
  /// Initialize the vtable pointer of the given subobject.
2173
  void InitializeVTablePointer(const VPtr &vptr);
2174
2175
  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2176
2177
  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2178
  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2179
2180
  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2181
                         CharUnits OffsetFromNearestVBase,
2182
                         bool BaseIsNonVirtualPrimaryBase,
2183
                         const CXXRecordDecl *VTableClass,
2184
                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2185
2186
  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2187
2188
  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2189
  /// to by This.
2190
  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2191
                            const CXXRecordDecl *VTableClass);
2192
2193
  enum CFITypeCheckKind {
2194
    CFITCK_VCall,
2195
    CFITCK_NVCall,
2196
    CFITCK_DerivedCast,
2197
    CFITCK_UnrelatedCast,
2198
    CFITCK_ICall,
2199
    CFITCK_NVMFCall,
2200
    CFITCK_VMFCall,
2201
  };
2202
2203
  /// Derived is the presumed address of an object of type T after a
2204
  /// cast. If T is a polymorphic class type, emit a check that the virtual
2205
  /// table for Derived belongs to a class derived from T.
2206
  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2207
                                 bool MayBeNull, CFITypeCheckKind TCK,
2208
                                 SourceLocation Loc);
2209
2210
  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2211
  /// If vptr CFI is enabled, emit a check that VTable is valid.
2212
  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2213
                                 CFITypeCheckKind TCK, SourceLocation Loc);
2214
2215
  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2216
  /// RD using llvm.type.test.
2217
  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2218
                          CFITypeCheckKind TCK, SourceLocation Loc);
2219
2220
  /// If whole-program virtual table optimization is enabled, emit an assumption
2221
  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2222
  /// enabled, emit a check that VTable is a member of RD's type identifier.
2223
  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2224
                                    llvm::Value *VTable, SourceLocation Loc);
2225
2226
  /// Returns whether we should perform a type checked load when loading a
2227
  /// virtual function for virtual calls to members of RD. This is generally
2228
  /// true when both vcall CFI and whole-program-vtables are enabled.
2229
  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2230
2231
  /// Emit a type checked load from the given vtable.
2232
  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2233
                                         uint64_t VTableByteOffset);
2234
2235
  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2236
  /// given phase of destruction for a destructor.  The end result
2237
  /// should call destructors on members and base classes in reverse
2238
  /// order of their construction.
2239
  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2240
2241
  /// ShouldInstrumentFunction - Return true if the current function should be
2242
  /// instrumented with __cyg_profile_func_* calls
2243
  bool ShouldInstrumentFunction();
2244
2245
  /// ShouldXRayInstrument - Return true if the current function should be
2246
  /// instrumented with XRay nop sleds.
2247
  bool ShouldXRayInstrumentFunction() const;
2248
2249
  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2250
  /// XRay custom event handling calls.
2251
  bool AlwaysEmitXRayCustomEvents() const;
2252
2253
  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2254
  /// XRay typed event handling calls.
2255
  bool AlwaysEmitXRayTypedEvents() const;
2256
2257
  /// Encode an address into a form suitable for use in a function prologue.
2258
  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2259
                                             llvm::Constant *Addr);
2260
2261
  /// Decode an address used in a function prologue, encoded by \c
2262
  /// EncodeAddrForUseInPrologue.
2263
  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2264
                                        llvm::Value *EncodedAddr);
2265
2266
  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2267
  /// arguments for the given function. This is also responsible for naming the
2268
  /// LLVM function arguments.
2269
  void EmitFunctionProlog(const CGFunctionInfo &FI,
2270
                          llvm::Function *Fn,
2271
                          const FunctionArgList &Args);
2272
2273
  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2274
  /// given temporary.
2275
  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2276
                          SourceLocation EndLoc);
2277
2278
  /// Emit a test that checks if the return value \p RV is nonnull.
2279
  void EmitReturnValueCheck(llvm::Value *RV);
2280
2281
  /// EmitStartEHSpec - Emit the start of the exception spec.
2282
  void EmitStartEHSpec(const Decl *D);
2283
2284
  /// EmitEndEHSpec - Emit the end of the exception spec.
2285
  void EmitEndEHSpec(const Decl *D);
2286
2287
  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2288
  llvm::BasicBlock *getTerminateLandingPad();
2289
2290
  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2291
  /// terminate.
2292
  llvm::BasicBlock *getTerminateFunclet();
2293
2294
  /// getTerminateHandler - Return a handler (not a landing pad, just
2295
  /// a catch handler) that just calls terminate.  This is used when
2296
  /// a terminate scope encloses a try.
2297
  llvm::BasicBlock *getTerminateHandler();
2298
2299
  llvm::Type *ConvertTypeForMem(QualType T);
2300
  llvm::Type *ConvertType(QualType T);
2301
22.7k
  llvm::Type *ConvertType(const TypeDecl *T) {
2302
22.7k
    return ConvertType(getContext().getTypeDeclType(T));
2303
22.7k
  }
2304
2305
  /// LoadObjCSelf - Load the value of self. This function is only valid while
2306
  /// generating code for an Objective-C method.
2307
  llvm::Value *LoadObjCSelf();
2308
2309
  /// TypeOfSelfObject - Return type of object that this self represents.
2310
  QualType TypeOfSelfObject();
2311
2312
  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2313
  static TypeEvaluationKind getEvaluationKind(QualType T);
2314
2315
3.30M
  static bool hasScalarEvaluationKind(QualType T) {
2316
3.30M
    return getEvaluationKind(T) == TEK_Scalar;
2317
3.30M
  }
2318
2319
693k
  static bool hasAggregateEvaluationKind(QualType T) {
2320
693k
    return getEvaluationKind(T) == TEK_Aggregate;
2321
693k
  }
2322
2323
  /// createBasicBlock - Create an LLVM basic block.
2324
  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2325
                                     llvm::Function *parent = nullptr,
2326
1.04M
                                     llvm::BasicBlock *before = nullptr) {
2327
1.04M
    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2328
1.04M
  }
2329
2330
  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2331
  /// label maps to.
2332
  JumpDest getJumpDestForLabel(const LabelDecl *S);
2333
2334
  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2335
  /// another basic block, simplify it. This assumes that no other code could
2336
  /// potentially reference the basic block.
2337
  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2338
2339
  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2340
  /// adding a fall-through branch from the current insert block if
2341
  /// necessary. It is legal to call this function even if there is no current
2342
  /// insertion point.
2343
  ///
2344
  /// IsFinished - If true, indicates that the caller has finished emitting
2345
  /// branches to the given block and does not expect to emit code into it. This
2346
  /// means the block can be ignored if it is unreachable.
2347
  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2348
2349
  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2350
  /// near its uses, and leave the insertion point in it.
2351
  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2352
2353
  /// EmitBranch - Emit a branch to the specified basic block from the current
2354
  /// insert block, taking care to avoid creation of branches from dummy
2355
  /// blocks. It is legal to call this function even if there is no current
2356
  /// insertion point.
2357
  ///
2358
  /// This function clears the current insertion point. The caller should follow
2359
  /// calls to this function with calls to Emit*Block prior to generation new
2360
  /// code.
2361
  void EmitBranch(llvm::BasicBlock *Block);
2362
2363
  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2364
  /// indicates that the current code being emitted is unreachable.
2365
1.97M
  bool HaveInsertPoint() const {
2366
1.97M
    return Builder.GetInsertBlock() != nullptr;
2367
1.97M
  }
2368
2369
  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2370
  /// emitted IR has a place to go. Note that by definition, if this function
2371
  /// creates a block then that block is unreachable; callers may do better to
2372
  /// detect when no insertion point is defined and simply skip IR generation.
2373
15.8k
  void EnsureInsertPoint() {
2374
15.8k
    if (!HaveInsertPoint())
2375
1.85k
      EmitBlock(createBasicBlock());
2376
15.8k
  }
2377
2378
  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2379
  /// specified stmt yet.
2380
  void ErrorUnsupported(const Stmt *S, const char *Type);
2381
2382
  //===--------------------------------------------------------------------===//
2383
  //                                  Helpers
2384
  //===--------------------------------------------------------------------===//
2385
2386
  LValue MakeAddrLValue(Address Addr, QualType T,
2387
1.93M
                        AlignmentSource Source = AlignmentSource::Type) {
2388
1.93M
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2389
1.93M
                            CGM.getTBAAAccessInfo(T));
2390
1.93M
  }
2391
2392
  LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2393
586k
                        TBAAAccessInfo TBAAInfo) {
2394
586k
    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2395
586k
  }
2396
2397
  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2398
3.34k
                        AlignmentSource Source = AlignmentSource::Type) {
2399
3.34k
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2400
3.34k
                            LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2401
3.34k
  }
2402
2403
  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2404
0
                        LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2405
0
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2406
0
                            BaseInfo, TBAAInfo);
2407
0
  }
2408
2409
  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2410
  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2411
2412
  Address EmitLoadOfReference(LValue RefLVal,
2413
                              LValueBaseInfo *PointeeBaseInfo = nullptr,
2414
                              TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2415
  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2416
  LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2417
                                   AlignmentSource Source =
2418
59.6k
                                       AlignmentSource::Type) {
2419
59.6k
    LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2420
59.6k
                                    CGM.getTBAAAccessInfo(RefTy));
2421
59.6k
    return EmitLoadOfReferenceLValue(RefLVal);
2422
59.6k
  }
2423
2424
  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2425
                            LValueBaseInfo *BaseInfo = nullptr,
2426
                            TBAAAccessInfo *TBAAInfo = nullptr);
2427
  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2428
2429
  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2430
  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2431
  /// insertion point of the builder. The caller is responsible for setting an
2432
  /// appropriate alignment on
2433
  /// the alloca.
2434
  ///
2435
  /// \p ArraySize is the number of array elements to be allocated if it
2436
  ///    is not nullptr.
2437
  ///
2438
  /// LangAS::Default is the address space of pointers to local variables and
2439
  /// temporaries, as exposed in the source language. In certain
2440
  /// configurations, this is not the same as the alloca address space, and a
2441
  /// cast is needed to lift the pointer from the alloca AS into
2442
  /// LangAS::Default. This can happen when the target uses a restricted
2443
  /// address space for the stack but the source language requires
2444
  /// LangAS::Default to be a generic address space. The latter condition is
2445
  /// common for most programming languages; OpenCL is an exception in that
2446
  /// LangAS::Default is the private address space, which naturally maps
2447
  /// to the stack.
2448
  ///
2449
  /// Because the address of a temporary is often exposed to the program in
2450
  /// various ways, this function will perform the cast. The original alloca
2451
  /// instruction is returned through \p Alloca if it is not nullptr.
2452
  ///
2453
  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2454
  /// more efficient if the caller knows that the address will not be exposed.
2455
  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2456
                                     llvm::Value *ArraySize = nullptr);
2457
  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2458
                           const Twine &Name = "tmp",
2459
                           llvm::Value *ArraySize = nullptr,
2460
                           Address *Alloca = nullptr);
2461
  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2462
                                      const Twine &Name = "tmp",
2463
                                      llvm::Value *ArraySize = nullptr);
2464
2465
  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2466
  /// default ABI alignment of the given LLVM type.
2467
  ///
2468
  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2469
  /// any given AST type that happens to have been lowered to the
2470
  /// given IR type.  This should only ever be used for function-local,
2471
  /// IR-driven manipulations like saving and restoring a value.  Do
2472
  /// not hand this address off to arbitrary IRGen routines, and especially
2473
  /// do not pass it as an argument to a function that might expect a
2474
  /// properly ABI-aligned value.
2475
  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2476
                                       const Twine &Name = "tmp");
2477
2478
  /// InitTempAlloca - Provide an initial value for the given alloca which
2479
  /// will be observable at all locations in the function.
2480
  ///
2481
  /// The address should be something that was returned from one of
2482
  /// the CreateTempAlloca or CreateMemTemp routines, and the
2483
  /// initializer must be valid in the entry block (i.e. it must
2484
  /// either be a constant or an argument value).
2485
  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2486
2487
  /// CreateIRTemp - Create a temporary IR object of the given type, with
2488
  /// appropriate alignment. This routine should only be used when an temporary
2489
  /// value needs to be stored into an alloca (for example, to avoid explicit
2490
  /// PHI construction), but the type is the IR type, not the type appropriate
2491
  /// for storing in memory.
2492
  ///
2493
  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2494
  /// ConvertType instead of ConvertTypeForMem.
2495
  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2496
2497
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2498
  /// appropriate alignmen and cast it to the default address space. Returns
2499
  /// the original alloca instruction by \p Alloca if it is not nullptr.
2500
  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2501
                        Address *Alloca = nullptr);
2502
  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2503
                        Address *Alloca = nullptr);
2504
2505
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2506
  /// appropriate alignmen without casting it to the default address space.
2507
  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2508
  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2509
                                   const Twine &Name = "tmp");
2510
2511
  /// CreateAggTemp - Create a temporary memory object for the given
2512
  /// aggregate type.
2513
  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2514
9.47k
                             Address *Alloca = nullptr) {
2515
9.47k
    return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2516
9.47k
                                 T.getQualifiers(),
2517
9.47k
                                 AggValueSlot::IsNotDestructed,
2518
9.47k
                                 AggValueSlot::DoesNotNeedGCBarriers,
2519
9.47k
                                 AggValueSlot::IsNotAliased,
2520
9.47k
                                 AggValueSlot::DoesNotOverlap);
2521
9.47k
  }
2522
2523
  /// Emit a cast to void* in the appropriate address space.
2524
  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2525
2526
  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2527
  /// expression and compare the result against zero, returning an Int1Ty value.
2528
  llvm::Value *EvaluateExprAsBool(const Expr *E);
2529
2530
  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2531
  void EmitIgnoredExpr(const Expr *E);
2532
2533
  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2534
  /// any type.  The result is returned as an RValue struct.  If this is an
2535
  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2536
  /// the result should be returned.
2537
  ///
2538
  /// \param ignoreResult True if the resulting value isn't used.
2539
  RValue EmitAnyExpr(const Expr *E,
2540
                     AggValueSlot aggSlot = AggValueSlot::ignored(),
2541
                     bool ignoreResult = false);
2542
2543
  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2544
  // or the value of the expression, depending on how va_list is defined.
2545
  Address EmitVAListRef(const Expr *E);
2546
2547
  /// Emit a "reference" to a __builtin_ms_va_list; this is
2548
  /// always the value of the expression, because a __builtin_ms_va_list is a
2549
  /// pointer to a char.
2550
  Address EmitMSVAListRef(const Expr *E);
2551
2552
  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2553
  /// always be accessible even if no aggregate location is provided.
2554
  RValue EmitAnyExprToTemp(const Expr *E);
2555
2556
  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2557
  /// arbitrary expression into the given memory location.
2558
  void EmitAnyExprToMem(const Expr *E, Address Location,
2559
                        Qualifiers Quals, bool IsInitializer);
2560
2561
  void EmitAnyExprToExn(const Expr *E, Address Addr);
2562
2563
  /// EmitExprAsInit - Emits the code necessary to initialize a
2564
  /// location in memory with the given initializer.
2565
  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2566
                      bool capturedByInit);
2567
2568
  /// hasVolatileMember - returns true if aggregate type has a volatile
2569
  /// member.
2570
4.44k
  bool hasVolatileMember(QualType T) {
2571
4.44k
    if (const RecordType *RT = T->getAs<RecordType>()) {
2572
2.96k
      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2573
2.96k
      return RD->hasVolatileMember();
2574
2.96k
    }
2575
1.47k
    return false;
2576
1.47k
  }
2577
2578
  /// Determine whether a return value slot may overlap some other object.
2579
5.74k
  AggValueSlot::Overlap_t getOverlapForReturnValue() {
2580
    // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2581
    // class subobjects. These cases may need to be revisited depending on the
2582
    // resolution of the relevant core issue.
2583
5.74k
    return AggValueSlot::DoesNotOverlap;
2584
5.74k
  }
2585
2586
  /// Determine whether a field initialization may overlap some other object.
2587
  AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2588
2589
  /// Determine whether a base class initialization may overlap some other
2590
  /// object.
2591
  AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2592
                                                const CXXRecordDecl *BaseRD,
2593
                                                bool IsVirtual);
2594
2595
  /// Emit an aggregate assignment.
2596
3.97k
  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2597
3.97k
    bool IsVolatile = hasVolatileMember(EltTy);
2598
3.97k
    EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2599
3.97k
  }
2600
2601
  void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2602
5.40k
                             AggValueSlot::Overlap_t MayOverlap) {
2603
5.40k
    EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2604
5.40k
  }
2605
2606
  /// EmitAggregateCopy - Emit an aggregate copy.
2607
  ///
2608
  /// \param isVolatile \c true iff either the source or the destination is
2609
  ///        volatile.
2610
  /// \param MayOverlap Whether the tail padding of the destination might be
2611
  ///        occupied by some other object. More efficient code can often be
2612
  ///        generated if not.
2613
  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2614
                         AggValueSlot::Overlap_t MayOverlap,
2615
                         bool isVolatile = false);
2616
2617
  /// GetAddrOfLocalVar - Return the address of a local variable.
2618
191k
  Address GetAddrOfLocalVar(const VarDecl *VD) {
2619
191k
    auto it = LocalDeclMap.find(VD);
2620
191k
    assert(it != LocalDeclMap.end() &&
2621
191k
           "Invalid argument to GetAddrOfLocalVar(), no decl!");
2622
191k
    return it->second;
2623
191k
  }
2624
2625
  /// Given an opaque value expression, return its LValue mapping if it exists,
2626
  /// otherwise create one.
2627
  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2628
2629
  /// Given an opaque value expression, return its RValue mapping if it exists,
2630
  /// otherwise create one.
2631
  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2632
2633
  /// Get the index of the current ArrayInitLoopExpr, if any.
2634
56
  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2635
2636
  /// getAccessedFieldNo - Given an encoded value and a result number, return
2637
  /// the input field number being accessed.
2638
  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2639
2640
  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2641
  llvm::BasicBlock *GetIndirectGotoBlock();
2642
2643
  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2644
  static bool IsWrappedCXXThis(const Expr *E);
2645
2646
  /// EmitNullInitialization - Generate code to set a value of the given type to
2647
  /// null, If the type contains data member pointers, they will be initialized
2648
  /// to -1 in accordance with the Itanium C++ ABI.
2649
  void EmitNullInitialization(Address DestPtr, QualType Ty);
2650
2651
  /// Emits a call to an LLVM variable-argument intrinsic, either
2652
  /// \c llvm.va_start or \c llvm.va_end.
2653
  /// \param ArgValue A reference to the \c va_list as emitted by either
2654
  /// \c EmitVAListRef or \c EmitMSVAListRef.
2655
  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2656
  /// calls \c llvm.va_end.
2657
  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2658
2659
  /// Generate code to get an argument from the passed in pointer
2660
  /// and update it accordingly.
2661
  /// \param VE The \c VAArgExpr for which to generate code.
2662
  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2663
  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2664
  /// \returns A pointer to the argument.
2665
  // FIXME: We should be able to get rid of this method and use the va_arg
2666
  // instruction in LLVM instead once it works well enough.
2667
  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2668
2669
  /// emitArrayLength - Compute the length of an array, even if it's a
2670
  /// VLA, and drill down to the base element type.
2671
  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2672
                               QualType &baseType,
2673
                               Address &addr);
2674
2675
  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2676
  /// the given variably-modified type and store them in the VLASizeMap.
2677
  ///
2678
  /// This function can be called with a null (unreachable) insert point.
2679
  void EmitVariablyModifiedType(QualType Ty);
2680
2681
  struct VlaSizePair {
2682
    llvm::Value *NumElts;
2683
    QualType Type;
2684
2685
12.1k
    VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2686
  };
2687
2688
  /// Return the number of elements for a single dimension
2689
  /// for the given array type.
2690
  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2691
  VlaSizePair getVLAElements1D(QualType vla);
2692
2693
  /// Returns an LLVM value that corresponds to the size,
2694
  /// in non-variably-sized elements, of a variable length array type,
2695
  /// plus that largest non-variably-sized element type.  Assumes that
2696
  /// the type has already been emitted with EmitVariablyModifiedType.
2697
  VlaSizePair getVLASize(const VariableArrayType *vla);
2698
  VlaSizePair getVLASize(QualType vla);
2699
2700
  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2701
  /// generating code for an C++ member function.
2702
151k
  llvm::Value *LoadCXXThis() {
2703
151k
    assert(CXXThisValue && "no 'this' value for this function");
2704
151k
    return CXXThisValue;
2705
151k
  }
2706
  Address LoadCXXThisAddress();
2707
2708
  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2709
  /// virtual bases.
2710
  // FIXME: Every place that calls LoadCXXVTT is something
2711
  // that needs to be abstracted properly.
2712
323
  llvm::Value *LoadCXXVTT() {
2713
323
    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2714
323
    return CXXStructorImplicitParamValue;
2715
323
  }
2716
2717
  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2718
  /// complete class to the given direct base.
2719
  Address
2720
  GetAddressOfDirectBaseInCompleteClass(Address Value,
2721
                                        const CXXRecordDecl *Derived,
2722
                                        const CXXRecordDecl *Base,
2723
                                        bool BaseIsVirtual);
2724
2725
  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2726
2727
  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2728
  /// load of 'this' and returns address of the base class.
2729
  Address GetAddressOfBaseClass(Address Value,
2730
                                const CXXRecordDecl *Derived,
2731
                                CastExpr::path_const_iterator PathBegin,
2732
                                CastExpr::path_const_iterator PathEnd,
2733
                                bool NullCheckValue, SourceLocation Loc);
2734
2735
  Address GetAddressOfDerivedClass(Address Value,
2736
                                   const CXXRecordDecl *Derived,
2737
                                   CastExpr::path_const_iterator PathBegin,
2738
                                   CastExpr::path_const_iterator PathEnd,
2739
                                   bool NullCheckValue);
2740
2741
  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2742
  /// base constructor/destructor with virtual bases.
2743
  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2744
  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2745
  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2746
                               bool Delegating);
2747
2748
  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2749
                                      CXXCtorType CtorType,
2750
                                      const FunctionArgList &Args,
2751
                                      SourceLocation Loc);
2752
  // It's important not to confuse this and the previous function. Delegating
2753
  // constructors are the C++0x feature. The constructor delegate optimization
2754
  // is used to reduce duplication in the base and complete consturctors where
2755
  // they are substantially the same.
2756
  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2757
                                        const FunctionArgList &Args);
2758
2759
  /// Emit a call to an inheriting constructor (that is, one that invokes a
2760
  /// constructor inherited from a base class) by inlining its definition. This
2761
  /// is necessary if the ABI does not support forwarding the arguments to the
2762
  /// base class constructor (because they're variadic or similar).
2763
  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2764
                                               CXXCtorType CtorType,
2765
                                               bool ForVirtualBase,
2766
                                               bool Delegating,
2767
                                               CallArgList &Args);
2768
2769
  /// Emit a call to a constructor inherited from a base class, passing the
2770
  /// current constructor's arguments along unmodified (without even making
2771
  /// a copy).
2772
  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2773
                                       bool ForVirtualBase, Address This,
2774
                                       bool InheritedFromVBase,
2775
                                       const CXXInheritedCtorInitExpr *E);
2776
2777
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2778
                              bool ForVirtualBase, bool Delegating,
2779
                              AggValueSlot ThisAVS, const CXXConstructExpr *E);
2780
2781
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2782
                              bool ForVirtualBase, bool Delegating,
2783
                              Address This, CallArgList &Args,
2784
                              AggValueSlot::Overlap_t Overlap,
2785
                              SourceLocation Loc, bool NewPointerIsChecked);
2786
2787
  /// Emit assumption load for all bases. Requires to be be called only on
2788
  /// most-derived class and not under construction of the object.
2789
  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2790
2791
  /// Emit assumption that vptr load == global vtable.
2792
  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2793
2794
  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2795
                                      Address This, Address Src,
2796
                                      const CXXConstructExpr *E);
2797
2798
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2799
                                  const ArrayType *ArrayTy,
2800
                                  Address ArrayPtr,
2801
                                  const CXXConstructExpr *E,
2802
                                  bool NewPointerIsChecked,
2803
                                  bool ZeroInitialization = false);
2804
2805
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2806
                                  llvm::Value *NumElements,
2807
                                  Address ArrayPtr,
2808
                                  const CXXConstructExpr *E,
2809
                                  bool NewPointerIsChecked,
2810
                                  bool ZeroInitialization = false);
2811
2812
  static Destroyer destroyCXXObject;
2813
2814
  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2815
                             bool ForVirtualBase, bool Delegating, Address This,
2816
                             QualType ThisTy);
2817
2818
  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2819
                               llvm::Type *ElementTy, Address NewPtr,
2820
                               llvm::Value *NumElements,
2821
                               llvm::Value *AllocSizeWithoutCookie);
2822
2823
  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2824
                        Address Ptr);
2825
2826
  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2827
  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2828
2829
  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2830
  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2831
2832
  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2833
                      QualType DeleteTy, llvm::Value *NumElements = nullptr,
2834
                      CharUnits CookieSize = CharUnits());
2835
2836
  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2837
                                  const CallExpr *TheCallExpr, bool IsDelete);
2838
2839
  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2840
  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2841
  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2842
2843
  /// Situations in which we might emit a check for the suitability of a
2844
  /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2845
  /// compiler-rt.
2846
  enum TypeCheckKind {
2847
    /// Checking the operand of a load. Must be suitably sized and aligned.
2848
    TCK_Load,
2849
    /// Checking the destination of a store. Must be suitably sized and aligned.
2850
    TCK_Store,
2851
    /// Checking the bound value in a reference binding. Must be suitably sized
2852
    /// and aligned, but is not required to refer to an object (until the
2853
    /// reference is used), per core issue 453.
2854
    TCK_ReferenceBinding,
2855
    /// Checking the object expression in a non-static data member access. Must
2856
    /// be an object within its lifetime.
2857
    TCK_MemberAccess,
2858
    /// Checking the 'this' pointer for a call to a non-static member function.
2859
    /// Must be an object within its lifetime.
2860
    TCK_MemberCall,
2861
    /// Checking the 'this' pointer for a constructor call.
2862
    TCK_ConstructorCall,
2863
    /// Checking the operand of a static_cast to a derived pointer type. Must be
2864
    /// null or an object within its lifetime.
2865
    TCK_DowncastPointer,
2866
    /// Checking the operand of a static_cast to a derived reference type. Must
2867
    /// be an object within its lifetime.
2868
    TCK_DowncastReference,
2869
    /// Checking the operand of a cast to a base object. Must be suitably sized
2870
    /// and aligned.
2871
    TCK_Upcast,
2872
    /// Checking the operand of a cast to a virtual base object. Must be an
2873
    /// object within its lifetime.
2874
    TCK_UpcastToVirtualBase,
2875
    /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2876
    TCK_NonnullAssign,
2877
    /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2878
    /// null or an object within its lifetime.
2879
    TCK_DynamicOperation
2880
  };
2881
2882
  /// Determine whether the pointer type check \p TCK permits null pointers.
2883
  static bool isNullPointerAllowed(TypeCheckKind TCK);
2884
2885
  /// Determine whether the pointer type check \p TCK requires a vptr check.
2886
  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2887
2888
  /// Whether any type-checking sanitizers are enabled. If \c false,
2889
  /// calls to EmitTypeCheck can be skipped.
2890
  bool sanitizePerformTypeCheck() const;
2891
2892
  /// Emit a check that \p V is the address of storage of the
2893
  /// appropriate size and alignment for an object of type \p Type
2894
  /// (or if ArraySize is provided, for an array of that bound).
2895
  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2896
                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
2897
                     SanitizerSet SkippedChecks = SanitizerSet(),
2898
                     llvm::Value *ArraySize = nullptr);
2899
2900
  /// Emit a check that \p Base points into an array object, which
2901
  /// we can access at index \p Index. \p Accessed should be \c false if we
2902
  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2903
  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2904
                       QualType IndexType, bool Accessed);
2905
2906
  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2907
                                       bool isInc, bool isPre);
2908
  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2909
                                         bool isInc, bool isPre);
2910
2911
  /// Converts Location to a DebugLoc, if debug information is enabled.
2912
  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2913
2914
  /// Get the record field index as represented in debug info.
2915
  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2916
2917
2918
  //===--------------------------------------------------------------------===//
2919
  //                            Declaration Emission
2920
  //===--------------------------------------------------------------------===//
2921
2922
  /// EmitDecl - Emit a declaration.
2923
  ///
2924
  /// This function can be called with a null (unreachable) insert point.
2925
  void EmitDecl(const Decl &D);
2926
2927
  /// EmitVarDecl - Emit a local variable declaration.
2928
  ///
2929
  /// This function can be called with a null (unreachable) insert point.
2930
  void EmitVarDecl(const VarDecl &D);
2931
2932
  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2933
                      bool capturedByInit);
2934
2935
  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2936
                             llvm::Value *Address);
2937
2938
  /// Determine whether the given initializer is trivial in the sense
2939
  /// that it requires no code to be generated.
2940
  bool isTrivialInitializer(const Expr *Init);
2941
2942
  /// EmitAutoVarDecl - Emit an auto variable declaration.
2943
  ///
2944
  /// This function can be called with a null (unreachable) insert point.
2945
  void EmitAutoVarDecl(const VarDecl &D);
2946
2947
  class AutoVarEmission {
2948
    friend class CodeGenFunction;
2949
2950
    const VarDecl *Variable;
2951
2952
    /// The address of the alloca for languages with explicit address space
2953
    /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2954
    /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2955
    /// as a global constant.
2956
    Address Addr;
2957
2958
    llvm::Value *NRVOFlag;
2959
2960
    /// True if the variable is a __block variable that is captured by an
2961
    /// escaping block.
2962
    bool IsEscapingByRef;
2963
2964
    /// True if the variable is of aggregate type and has a constant
2965
    /// initializer.
2966
    bool IsConstantAggregate;
2967
2968
    /// Non-null if we should use lifetime annotations.
2969
    llvm::Value *SizeForLifetimeMarkers;
2970
2971
    /// Address with original alloca instruction. Invalid if the variable was
2972
    /// emitted as a global constant.
2973
    Address AllocaAddr;
2974
2975
    struct Invalid {};
2976
    AutoVarEmission(Invalid)
2977
        : Variable(nullptr), Addr(Address::invalid()),
2978
126
          AllocaAddr(Address::invalid()) {}
2979
2980
    AutoVarEmission(const VarDecl &variable)
2981
        : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2982
          IsEscapingByRef(false), IsConstantAggregate(false),
2983
216k
          SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2984
2985
414k
    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2986
2987
  public:
2988
126
    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2989
2990
221k
    bool useLifetimeMarkers() const {
2991
221k
      return SizeForLifetimeMarkers != nullptr;
2992
221k
    }
2993
5.28k
    llvm::Value *getSizeForLifetimeMarkers() const {
2994
5.28k
      assert(useLifetimeMarkers());
2995
5.28k
      return SizeForLifetimeMarkers;
2996
5.28k
    }
2997
2998
    /// Returns the raw, allocated address, which is not necessarily
2999
    /// the address of the object itself. It is casted to default
3000
    /// address space for address space agnostic languages.
3001
36.0k
    Address getAllocatedAddress() const {
3002
36.0k
      return Addr;
3003
36.0k
    }
3004
3005
    /// Returns the address for the original alloca instruction.
3006
5.28k
    Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3007
3008
    /// Returns the address of the object within this declaration.
3009
    /// Note that this does not chase the forwarding pointer for
3010
    /// __block decls.
3011
207k
    Address getObjectAddress(CodeGenFunction &CGF) const {
3012
207k
      if (!IsEscapingByRef) 
return Addr207k
;
3013
3014
245
      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3015
245
    }
3016
  };
3017
  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3018
  void EmitAutoVarInit(const AutoVarEmission &emission);
3019
  void EmitAutoVarCleanups(const AutoVarEmission &emission);
3020
  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3021
                              QualType::DestructionKind dtorKind);
3022
3023
  /// Emits the alloca and debug information for the size expressions for each
3024
  /// dimension of an array. It registers the association of its (1-dimensional)
3025
  /// QualTypes and size expression's debug node, so that CGDebugInfo can
3026
  /// reference this node when creating the DISubrange object to describe the
3027
  /// array types.
3028
  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3029
                                              const VarDecl &D,
3030
                                              bool EmitDebugInfo);
3031
3032
  void EmitStaticVarDecl(const VarDecl &D,
3033
                         llvm::GlobalValue::LinkageTypes Linkage);
3034
3035
  class ParamValue {
3036
    llvm::Value *Value;
3037
    unsigned Alignment;
3038
485k
    ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
3039
  public:
3040
472k
    static ParamValue forDirect(llvm::Value *value) {
3041
472k
      return ParamValue(value, 0);
3042
472k
    }
3043
13.7k
    static ParamValue forIndirect(Address addr) {
3044
13.7k
      assert(!addr.getAlignment().isZero());
3045
13.7k
      return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3046
13.7k
    }
3047
3048
972k
    bool isIndirect() const { return Alignment != 0; }
3049
485k
    llvm::Value *getAnyValue() const { return Value; }
3050
3051
472k
    llvm::Value *getDirectValue() const {
3052
472k
      assert(!isIndirect());
3053
472k
      return Value;
3054
472k
    }
3055
3056
13.7k
    Address getIndirectAddress() const {
3057
13.7k
      assert(isIndirect());
3058
13.7k
      return Address(Value, CharUnits::fromQuantity(Alignment));
3059
13.7k
    }
3060
  };
3061
3062
  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3063
  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3064
3065
  /// protectFromPeepholes - Protect a value that we're intending to
3066
  /// store to the side, but which will probably be used later, from
3067
  /// aggressive peepholing optimizations that might delete it.
3068
  ///
3069
  /// Pass the result to unprotectFromPeepholes to declare that
3070
  /// protection is no longer required.
3071
  ///
3072
  /// There's no particular reason why this shouldn't apply to
3073
  /// l-values, it's just that no existing peepholes work on pointers.
3074
  PeepholeProtection protectFromPeepholes(RValue rvalue);
3075
  void unprotectFromPeepholes(PeepholeProtection protection);
3076
3077
  void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3078
                                    SourceLocation Loc,
3079
                                    SourceLocation AssumptionLoc,
3080
                                    llvm::Value *Alignment,
3081
                                    llvm::Value *OffsetValue,
3082
                                    llvm::Value *TheCheck,
3083
                                    llvm::Instruction *Assumption);
3084
3085
  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3086
                               SourceLocation Loc, SourceLocation AssumptionLoc,
3087
                               llvm::Value *Alignment,
3088
                               llvm::Value *OffsetValue = nullptr);
3089
3090
  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3091
                               SourceLocation AssumptionLoc,
3092
                               llvm::Value *Alignment,
3093
                               llvm::Value *OffsetValue = nullptr);
3094
3095
  //===--------------------------------------------------------------------===//
3096
  //                             Statement Emission
3097
  //===--------------------------------------------------------------------===//
3098
3099
  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3100
  void EmitStopPoint(const Stmt *S);
3101
3102
  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3103
  /// this function even if there is no current insertion point.
3104
  ///
3105
  /// This function may clear the current insertion point; callers should use
3106
  /// EnsureInsertPoint if they wish to subsequently generate code without first
3107
  /// calling EmitBlock, EmitBranch, or EmitStmt.
3108
  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3109
3110
  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3111
  /// necessarily require an insertion point or debug information; typically
3112
  /// because the statement amounts to a jump or a container of other
3113
  /// statements.
3114
  ///
3115
  /// \return True if the statement was handled.
3116
  bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3117
3118
  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3119
                           AggValueSlot AVS = AggValueSlot::ignored());
3120
  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3121
                                       bool GetLast = false,
3122
                                       AggValueSlot AVS =
3123
                                                AggValueSlot::ignored());
3124
3125
  /// EmitLabel - Emit the block for the given label. It is legal to call this
3126
  /// function even if there is no current insertion point.
3127
  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3128
3129
  void EmitLabelStmt(const LabelStmt &S);
3130
  void EmitAttributedStmt(const AttributedStmt &S);
3131
  void EmitGotoStmt(const GotoStmt &S);
3132
  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3133
  void EmitIfStmt(const IfStmt &S);
3134
3135
  void EmitWhileStmt(const WhileStmt &S,
3136
                     ArrayRef<const Attr *> Attrs = None);
3137
  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3138
  void EmitForStmt(const ForStmt &S,
3139
                   ArrayRef<const Attr *> Attrs = None);
3140
  void EmitReturnStmt(const ReturnStmt &S);
3141
  void EmitDeclStmt(const DeclStmt &S);
3142
  void EmitBreakStmt(const BreakStmt &S);
3143
  void EmitContinueStmt(const ContinueStmt &S);
3144
  void EmitSwitchStmt(const SwitchStmt &S);
3145
  void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3146
  void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3147
  void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3148
  void EmitAsmStmt(const AsmStmt &S);
3149
3150
  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3151
  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3152
  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3153
  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3154
  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3155
3156
  void EmitCoroutineBody(const CoroutineBodyStmt &S);
3157
  void EmitCoreturnStmt(const CoreturnStmt &S);
3158
  RValue EmitCoawaitExpr(const CoawaitExpr &E,
3159
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3160
                         bool ignoreResult = false);
3161
  LValue EmitCoawaitLValue(const CoawaitExpr *E);
3162
  RValue EmitCoyieldExpr(const CoyieldExpr &E,
3163
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3164
                         bool ignoreResult = false);
3165
  LValue EmitCoyieldLValue(const CoyieldExpr *E);
3166
  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3167
3168
  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3169
  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3170
3171
  void EmitCXXTryStmt(const CXXTryStmt &S);
3172
  void EmitSEHTryStmt(const SEHTryStmt &S);
3173
  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3174
  void EnterSEHTryStmt(const SEHTryStmt &S);
3175
  void ExitSEHTryStmt(const SEHTryStmt &S);
3176
3177
  void pushSEHCleanup(CleanupKind kind,
3178
                      llvm::Function *FinallyFunc);
3179
  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3180
                              const Stmt *OutlinedStmt);
3181
3182
  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3183
                                            const SEHExceptStmt &Except);
3184
3185
  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3186
                                             const SEHFinallyStmt &Finally);
3187
3188
  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3189
                                llvm::Value *ParentFP,
3190
                                llvm::Value *EntryEBP);
3191
  llvm::Value *EmitSEHExceptionCode();
3192
  llvm::Value *EmitSEHExceptionInfo();
3193
  llvm::Value *EmitSEHAbnormalTermination();
3194
3195
  /// Emit simple code for OpenMP directives in Simd-only mode.
3196
  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3197
3198
  /// Scan the outlined statement for captures from the parent function. For
3199
  /// each capture, mark the capture as escaped and emit a call to
3200
  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3201
  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3202
                          bool IsFilter);
3203
3204
  /// Recovers the address of a local in a parent function. ParentVar is the
3205
  /// address of the variable used in the immediate parent function. It can
3206
  /// either be an alloca or a call to llvm.localrecover if there are nested
3207
  /// outlined functions. ParentFP is the frame pointer of the outermost parent
3208
  /// frame.
3209
  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3210
                                    Address ParentVar,
3211
                                    llvm::Value *ParentFP);
3212
3213
  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3214
                           ArrayRef<const Attr *> Attrs = None);
3215
3216
  /// Controls insertion of cancellation exit blocks in worksharing constructs.
3217
  class OMPCancelStackRAII {
3218
    CodeGenFunction &CGF;
3219
3220
  public:
3221
    OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3222
                       bool HasCancel)
3223
4.32k
        : CGF(CGF) {
3224
4.32k
      CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3225
4.32k
    }
3226
4.32k
    ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3227
  };
3228
3229
  /// Returns calculated size of the specified type.
3230
  llvm::Value *getTypeSize(QualType Ty);
3231
  LValue InitCapturedStruct(const CapturedStmt &S);
3232
  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3233
  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3234
  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3235
  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3236
                                                     SourceLocation Loc);
3237
  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3238
                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
3239
  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3240
                          SourceLocation Loc);
3241
  /// Perform element by element copying of arrays with type \a
3242
  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3243
  /// generated by \a CopyGen.
3244
  ///
3245
  /// \param DestAddr Address of the destination array.
3246
  /// \param SrcAddr Address of the source array.
3247
  /// \param OriginalType Type of destination and source arrays.
3248
  /// \param CopyGen Copying procedure that copies value of single array element
3249
  /// to another single array element.
3250
  void EmitOMPAggregateAssign(
3251
      Address DestAddr, Address SrcAddr, QualType OriginalType,
3252
      const llvm::function_ref<void(Address, Address)> CopyGen);
3253
  /// Emit proper copying of data from one variable to another.
3254
  ///
3255
  /// \param OriginalType Original type of the copied variables.
3256
  /// \param DestAddr Destination address.
3257
  /// \param SrcAddr Source address.
3258
  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3259
  /// type of the base array element).
3260
  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3261
  /// the base array element).
3262
  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3263
  /// DestVD.
3264
  void EmitOMPCopy(QualType OriginalType,
3265
                   Address DestAddr, Address SrcAddr,
3266
                   const VarDecl *DestVD, const VarDecl *SrcVD,
3267
                   const Expr *Copy);
3268
  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3269
  /// \a X = \a E \a BO \a E.
3270
  ///
3271
  /// \param X Value to be updated.
3272
  /// \param E Update value.
3273
  /// \param BO Binary operation for update operation.
3274
  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3275
  /// expression, false otherwise.
3276
  /// \param AO Atomic ordering of the generated atomic instructions.
3277
  /// \param CommonGen Code generator for complex expressions that cannot be
3278
  /// expressed through atomicrmw instruction.
3279
  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3280
  /// generated, <false, RValue::get(nullptr)> otherwise.
3281
  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3282
      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3283
      llvm::AtomicOrdering AO, SourceLocation Loc,
3284
      const llvm::function_ref<RValue(RValue)> CommonGen);
3285
  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3286
                                 OMPPrivateScope &PrivateScope);
3287
  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3288
                            OMPPrivateScope &PrivateScope);
3289
  void EmitOMPUseDevicePtrClause(
3290
      const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3291
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3292
  void EmitOMPUseDeviceAddrClause(
3293
      const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3294
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3295
  /// Emit code for copyin clause in \a D directive. The next code is
3296
  /// generated at the start of outlined functions for directives:
3297
  /// \code
3298
  /// threadprivate_var1 = master_threadprivate_var1;
3299
  /// operator=(threadprivate_var2, master_threadprivate_var2);
3300
  /// ...
3301
  /// __kmpc_barrier(&loc, global_tid);
3302
  /// \endcode
3303
  ///
3304
  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3305
  /// \returns true if at least one copyin variable is found, false otherwise.
3306
  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3307
  /// Emit initial code for lastprivate variables. If some variable is
3308
  /// not also firstprivate, then the default initialization is used. Otherwise
3309
  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3310
  /// method.
3311
  ///
3312
  /// \param D Directive that may have 'lastprivate' directives.
3313
  /// \param PrivateScope Private scope for capturing lastprivate variables for
3314
  /// proper codegen in internal captured statement.
3315
  ///
3316
  /// \returns true if there is at least one lastprivate variable, false
3317
  /// otherwise.
3318
  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3319
                                    OMPPrivateScope &PrivateScope);
3320
  /// Emit final copying of lastprivate values to original variables at
3321
  /// the end of the worksharing or simd directive.
3322
  ///
3323
  /// \param D Directive that has at least one 'lastprivate' directives.
3324
  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3325
  /// it is the last iteration of the loop code in associated directive, or to
3326
  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3327
  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3328
                                     bool NoFinals,
3329
                                     llvm::Value *IsLastIterCond = nullptr);
3330
  /// Emit initial code for linear clauses.
3331
  void EmitOMPLinearClause(const OMPLoopDirective &D,
3332
                           CodeGenFunction::OMPPrivateScope &PrivateScope);
3333
  /// Emit final code for linear clauses.
3334
  /// \param CondGen Optional conditional code for final part of codegen for
3335
  /// linear clause.
3336
  void EmitOMPLinearClauseFinal(
3337
      const OMPLoopDirective &D,
3338
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3339
  /// Emit initial code for reduction variables. Creates reduction copies
3340
  /// and initializes them with the values according to OpenMP standard.
3341
  ///
3342
  /// \param D Directive (possibly) with the 'reduction' clause.
3343
  /// \param PrivateScope Private scope for capturing reduction variables for
3344
  /// proper codegen in internal captured statement.
3345
  ///
3346
  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3347
                                  OMPPrivateScope &PrivateScope,
3348
                                  bool ForInscan = false);
3349
  /// Emit final update of reduction values to original variables at
3350
  /// the end of the directive.
3351
  ///
3352
  /// \param D Directive that has at least one 'reduction' directives.
3353
  /// \param ReductionKind The kind of reduction to perform.
3354
  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3355
                                   const OpenMPDirectiveKind ReductionKind);
3356
  /// Emit initial code for linear variables. Creates private copies
3357
  /// and initializes them with the values according to OpenMP standard.
3358
  ///
3359
  /// \param D Directive (possibly) with the 'linear' clause.
3360
  /// \return true if at least one linear variable is found that should be
3361
  /// initialized with the value of the original variable, false otherwise.
3362
  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3363
3364
  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3365
                                        llvm::Function * /*OutlinedFn*/,
3366
                                        const OMPTaskDataTy & /*Data*/)>
3367
      TaskGenTy;
3368
  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3369
                                 const OpenMPDirectiveKind CapturedRegion,
3370
                                 const RegionCodeGenTy &BodyGen,
3371
                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3372
  struct OMPTargetDataInfo {
3373
    Address BasePointersArray = Address::invalid();
3374
    Address PointersArray = Address::invalid();
3375
    Address SizesArray = Address::invalid();
3376
    Address MappersArray = Address::invalid();
3377
    unsigned NumberOfTargetItems = 0;
3378
9.34k
    explicit OMPTargetDataInfo() = default;
3379
    OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3380
                      Address SizesArray, Address MappersArray,
3381
                      unsigned NumberOfTargetItems)
3382
        : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3383
          SizesArray(SizesArray), MappersArray(MappersArray),
3384
0
          NumberOfTargetItems(NumberOfTargetItems) {}
3385
  };
3386
  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3387
                                       const RegionCodeGenTy &BodyGen,
3388
                                       OMPTargetDataInfo &InputInfo);
3389
3390
  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3391
  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3392
  void EmitOMPForDirective(const OMPForDirective &S);
3393
  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3394
  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3395
  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3396
  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3397
  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3398
  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3399
  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3400
  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3401
  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3402
  void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3403
  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3404
  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3405
  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3406
  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3407
  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3408
  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3409
  void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3410
  void EmitOMPScanDirective(const OMPScanDirective &S);
3411
  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3412
  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3413
  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3414
  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3415
  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3416
  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3417
  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3418
  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3419
  void
3420
  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3421
  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3422
  void
3423
  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3424
  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3425
  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3426
  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3427
  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3428
  void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3429
  void
3430
  EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3431
  void EmitOMPParallelMasterTaskLoopDirective(
3432
      const OMPParallelMasterTaskLoopDirective &S);
3433
  void EmitOMPParallelMasterTaskLoopSimdDirective(
3434
      const OMPParallelMasterTaskLoopSimdDirective &S);
3435
  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3436
  void EmitOMPDistributeParallelForDirective(
3437
      const OMPDistributeParallelForDirective &S);
3438
  void EmitOMPDistributeParallelForSimdDirective(
3439
      const OMPDistributeParallelForSimdDirective &S);
3440
  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3441
  void EmitOMPTargetParallelForSimdDirective(
3442
      const OMPTargetParallelForSimdDirective &S);
3443
  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3444
  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3445
  void
3446
  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3447
  void EmitOMPTeamsDistributeParallelForSimdDirective(
3448
      const OMPTeamsDistributeParallelForSimdDirective &S);
3449
  void EmitOMPTeamsDistributeParallelForDirective(
3450
      const OMPTeamsDistributeParallelForDirective &S);
3451
  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3452
  void EmitOMPTargetTeamsDistributeDirective(
3453
      const OMPTargetTeamsDistributeDirective &S);
3454
  void EmitOMPTargetTeamsDistributeParallelForDirective(
3455
      const OMPTargetTeamsDistributeParallelForDirective &S);
3456
  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3457
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3458
  void EmitOMPTargetTeamsDistributeSimdDirective(
3459
      const OMPTargetTeamsDistributeSimdDirective &S);
3460
3461
  /// Emit device code for the target directive.
3462
  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3463
                                          StringRef ParentName,
3464
                                          const OMPTargetDirective &S);
3465
  static void
3466
  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3467
                                      const OMPTargetParallelDirective &S);
3468
  /// Emit device code for the target parallel for directive.
3469
  static void EmitOMPTargetParallelForDeviceFunction(
3470
      CodeGenModule &CGM, StringRef ParentName,
3471
      const OMPTargetParallelForDirective &S);
3472
  /// Emit device code for the target parallel for simd directive.
3473
  static void EmitOMPTargetParallelForSimdDeviceFunction(
3474
      CodeGenModule &CGM, StringRef ParentName,
3475
      const OMPTargetParallelForSimdDirective &S);
3476
  /// Emit device code for the target teams directive.
3477
  static void
3478
  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3479
                                   const OMPTargetTeamsDirective &S);
3480
  /// Emit device code for the target teams distribute directive.
3481
  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3482
      CodeGenModule &CGM, StringRef ParentName,
3483
      const OMPTargetTeamsDistributeDirective &S);
3484
  /// Emit device code for the target teams distribute simd directive.
3485
  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3486
      CodeGenModule &CGM, StringRef ParentName,
3487
      const OMPTargetTeamsDistributeSimdDirective &S);
3488
  /// Emit device code for the target simd directive.
3489
  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3490
                                              StringRef ParentName,
3491
                                              const OMPTargetSimdDirective &S);
3492
  /// Emit device code for the target teams distribute parallel for simd
3493
  /// directive.
3494
  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3495
      CodeGenModule &CGM, StringRef ParentName,
3496
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3497
3498
  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3499
      CodeGenModule &CGM, StringRef ParentName,
3500
      const OMPTargetTeamsDistributeParallelForDirective &S);
3501
  /// Emit inner loop of the worksharing/simd construct.
3502
  ///
3503
  /// \param S Directive, for which the inner loop must be emitted.
3504
  /// \param RequiresCleanup true, if directive has some associated private
3505
  /// variables.
3506
  /// \param LoopCond Bollean condition for loop continuation.
3507
  /// \param IncExpr Increment expression for loop control variable.
3508
  /// \param BodyGen Generator for the inner body of the inner loop.
3509
  /// \param PostIncGen Genrator for post-increment code (required for ordered
3510
  /// loop directvies).
3511
  void EmitOMPInnerLoop(
3512
      const OMPExecutableDirective &S, bool RequiresCleanup,
3513
      const Expr *LoopCond, const Expr *IncExpr,
3514
      const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3515
      const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3516
3517
  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3518
  /// Emit initial code for loop counters of loop-based directives.
3519
  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3520
                                  OMPPrivateScope &LoopScope);
3521
3522
  /// Helper for the OpenMP loop directives.
3523
  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3524
3525
  /// Emit code for the worksharing loop-based directive.
3526
  /// \return true, if this construct has any lastprivate clause, false -
3527
  /// otherwise.
3528
  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3529
                              const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3530
                              const CodeGenDispatchBoundsTy &CGDispatchBounds);
3531
3532
  /// Emit code for the distribute loop-based directive.
3533
  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3534
                             const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3535
3536
  /// Helpers for the OpenMP loop directives.
3537
  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3538
  void EmitOMPSimdFinal(
3539
      const OMPLoopDirective &D,
3540
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3541
3542
  /// Emits the lvalue for the expression with possibly captured variable.
3543
  LValue EmitOMPSharedLValue(const Expr *E);
3544
3545
private:
3546
  /// Helpers for blocks.
3547
  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3548
3549
  /// struct with the values to be passed to the OpenMP loop-related functions
3550
  struct OMPLoopArguments {
3551
    /// loop lower bound
3552
    Address LB = Address::invalid();
3553
    /// loop upper bound
3554
    Address UB = Address::invalid();
3555
    /// loop stride
3556
    Address ST = Address::invalid();
3557
    /// isLastIteration argument for runtime functions
3558
    Address IL = Address::invalid();
3559
    /// Chunk value generated by sema
3560
    llvm::Value *Chunk = nullptr;
3561
    /// EnsureUpperBound
3562
    Expr *EUB = nullptr;
3563
    /// IncrementExpression
3564
    Expr *IncExpr = nullptr;
3565
    /// Loop initialization
3566
    Expr *Init = nullptr;
3567
    /// Loop exit condition
3568
    Expr *Cond = nullptr;
3569
    /// Update of LB after a whole chunk has been executed
3570
    Expr *NextLB = nullptr;
3571
    /// Update of UB after a whole chunk has been executed
3572
    Expr *NextUB = nullptr;
3573
164
    OMPLoopArguments() = default;
3574
    OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3575
                     llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3576
                     Expr *IncExpr = nullptr, Expr *Init = nullptr,
3577
                     Expr *Cond = nullptr, Expr *NextLB = nullptr,
3578
                     Expr *NextUB = nullptr)
3579
        : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3580
          IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3581
2.26k
          NextUB(NextUB) {}
3582
  };
3583
  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3584
                        const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3585
                        const OMPLoopArguments &LoopArgs,
3586
                        const CodeGenLoopTy &CodeGenLoop,
3587
                        const CodeGenOrderedTy &CodeGenOrdered);
3588
  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3589
                           bool IsMonotonic, const OMPLoopDirective &S,
3590
                           OMPPrivateScope &LoopScope, bool Ordered,
3591
                           const OMPLoopArguments &LoopArgs,
3592
                           const CodeGenDispatchBoundsTy &CGDispatchBounds);
3593
  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3594
                                  const OMPLoopDirective &S,
3595
                                  OMPPrivateScope &LoopScope,
3596
                                  const OMPLoopArguments &LoopArgs,
3597
                                  const CodeGenLoopTy &CodeGenLoopContent);
3598
  /// Emit code for sections directive.
3599
  void EmitSections(const OMPExecutableDirective &S);
3600
3601
public:
3602
3603
  //===--------------------------------------------------------------------===//
3604
  //                         LValue Expression Emission
3605
  //===--------------------------------------------------------------------===//
3606
3607
  /// Create a check that a scalar RValue is non-null.
3608
  llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3609
3610
  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3611
  RValue GetUndefRValue(QualType Ty);
3612
3613
  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3614
  /// and issue an ErrorUnsupported style diagnostic (using the
3615
  /// provided Name).
3616
  RValue EmitUnsupportedRValue(const Expr *E,
3617
                               const char *Name);
3618
3619
  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3620
  /// an ErrorUnsupported style diagnostic (using the provided Name).
3621
  LValue EmitUnsupportedLValue(const Expr *E,
3622
                               const char *Name);
3623
3624
  /// EmitLValue - Emit code to compute a designator that specifies the location
3625
  /// of the expression.
3626
  ///
3627
  /// This can return one of two things: a simple address or a bitfield
3628
  /// reference.  In either case, the LLVM Value* in the LValue structure is
3629
  /// guaranteed to be an LLVM pointer type.
3630
  ///
3631
  /// If this returns a bitfield reference, nothing about the pointee type of
3632
  /// the LLVM value is known: For example, it may not be a pointer to an
3633
  /// integer.
3634
  ///
3635
  /// If this returns a normal address, and if the lvalue's C type is fixed
3636
  /// size, this method guarantees that the returned pointer type will point to
3637
  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3638
  /// variable length type, this is not possible.
3639
  ///
3640
  LValue EmitLValue(const Expr *E);
3641
3642
  /// Same as EmitLValue but additionally we generate checking code to
3643
  /// guard against undefined behavior.  This is only suitable when we know
3644
  /// that the address will be used to access the object.
3645
  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3646
3647
  RValue convertTempToRValue(Address addr, QualType type,
3648
                             SourceLocation Loc);
3649
3650
  void EmitAtomicInit(Expr *E, LValue lvalue);
3651
3652
  bool LValueIsSuitableForInlineAtomic(LValue Src);
3653
3654
  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3655
                        AggValueSlot Slot = AggValueSlot::ignored());
3656
3657
  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3658
                        llvm::AtomicOrdering AO, bool IsVolatile = false,
3659
                        AggValueSlot slot = AggValueSlot::ignored());
3660
3661
  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3662
3663
  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3664
                       bool IsVolatile, bool isInit);
3665
3666
  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3667
      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3668
      llvm::AtomicOrdering Success =
3669
          llvm::AtomicOrdering::SequentiallyConsistent,
3670
      llvm::AtomicOrdering Failure =
3671
          llvm::AtomicOrdering::SequentiallyConsistent,
3672
      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3673
3674
  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3675
                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
3676
                        bool IsVolatile);
3677
3678
  /// EmitToMemory - Change a scalar value from its value
3679
  /// representation to its in-memory representation.
3680
  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3681
3682
  /// EmitFromMemory - Change a scalar value from its memory
3683
  /// representation to its value representation.
3684
  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3685
3686
  /// Check if the scalar \p Value is within the valid range for the given
3687
  /// type \p Ty.
3688
  ///
3689
  /// Returns true if a check is needed (even if the range is unknown).
3690
  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3691
                            SourceLocation Loc);
3692
3693
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3694
  /// care to appropriately convert from the memory representation to
3695
  /// the LLVM value representation.
3696
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3697
                                SourceLocation Loc,
3698
                                AlignmentSource Source = AlignmentSource::Type,
3699
5.05k
                                bool isNontemporal = false) {
3700
5.05k
    return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3701
5.05k
                            CGM.getTBAAAccessInfo(Ty), isNontemporal);
3702
5.05k
  }
3703
3704
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3705
                                SourceLocation Loc, LValueBaseInfo BaseInfo,
3706
                                TBAAAccessInfo TBAAInfo,
3707
                                bool isNontemporal = false);
3708
3709
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3710
  /// care to appropriately convert from the memory representation to
3711
  /// the LLVM value representation.  The l-value must be a simple
3712
  /// l-value.
3713
  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3714
3715
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3716
  /// care to appropriately convert from the memory representation to
3717
  /// the LLVM value representation.
3718
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3719
                         bool Volatile, QualType Ty,
3720
                         AlignmentSource Source = AlignmentSource::Type,
3721
491
                         bool isInit = false, bool isNontemporal = false) {
3722
491
    EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3723
491
                      CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3724
491
  }
3725
3726
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3727
                         bool Volatile, QualType Ty,
3728
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3729
                         bool isInit = false, bool isNontemporal = false);
3730
3731
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3732
  /// care to appropriately convert from the memory representation to
3733
  /// the LLVM value representation.  The l-value must be a simple
3734
  /// l-value.  The isInit flag indicates whether this is an initialization.
3735
  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3736
  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3737
3738
  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3739
  /// this method emits the address of the lvalue, then loads the result as an
3740
  /// rvalue, returning the rvalue.
3741
  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3742
  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3743
  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3744
  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3745
3746
  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3747
  /// lvalue, where both are guaranteed to the have the same type, and that type
3748
  /// is 'Ty'.
3749
  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3750
  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3751
  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3752
3753
  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3754
  /// as EmitStoreThroughLValue.
3755
  ///
3756
  /// \param Result [out] - If non-null, this will be set to a Value* for the
3757
  /// bit-field contents after the store, appropriate for use as the result of
3758
  /// an assignment to the bit-field.
3759
  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3760
                                      llvm::Value **Result=nullptr);
3761
3762
  /// Emit an l-value for an assignment (simple or compound) of complex type.
3763
  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3764
  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3765
  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3766
                                             llvm::Value *&Result);
3767
3768
  // Note: only available for agg return types
3769
  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3770
  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3771
  // Note: only available for agg return types
3772
  LValue EmitCallExprLValue(const CallExpr *E);
3773
  // Note: only available for agg return types
3774
  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3775
  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3776
  LValue EmitStringLiteralLValue(const StringLiteral *E);
3777
  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3778
  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3779
  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3780
  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3781
                                bool Accessed = false);
3782
  LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3783
  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3784
                                 bool IsLowerBound = true);
3785
  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3786
  LValue EmitMemberExpr(const MemberExpr *E);
3787
  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3788
  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3789
  LValue EmitInitListLValue(const InitListExpr *E);
3790
  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3791
  LValue EmitCastLValue(const CastExpr *E);
3792
  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3793
  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3794
3795
  Address EmitExtVectorElementLValue(LValue V);
3796
3797
  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3798
3799
  Address EmitArrayToPointerDecay(const Expr *Array,
3800
                                  LValueBaseInfo *BaseInfo = nullptr,
3801
                                  TBAAAccessInfo *TBAAInfo = nullptr);
3802
3803
  class ConstantEmission {
3804
    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3805
    ConstantEmission(llvm::Constant *C, bool isReference)
3806
7.73k
      : ValueAndIsReference(C, isReference) {}
3807
  public:
3808
781k
    ConstantEmission() {}
3809
60
    static ConstantEmission forReference(llvm::Constant *C) {
3810
60
      return ConstantEmission(C, true);
3811
60
    }
3812
7.67k
    static ConstantEmission forValue(llvm::Constant *C) {
3813
7.67k
      return ConstantEmission(C, false);
3814
7.67k
    }
3815
3816
797k
    explicit operator bool() const {
3817
797k
      return ValueAndIsReference.getOpaqueValue() != nullptr;
3818
797k
    }
3819
3820
15.4k
    bool isReference() const { return ValueAndIsReference.getInt(); }
3821
60
    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3822
60
      assert(isReference());
3823
60
      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3824
60
                                            refExpr->getType());
3825
60
    }
3826
3827
7.67k
    llvm::Constant *getValue() const {
3828
7.67k
      assert(!isReference());
3829
7.67k
      return ValueAndIsReference.getPointer();
3830
7.67k
    }
3831
  };
3832
3833
  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3834
  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3835
  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3836
3837
  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3838
                                AggValueSlot slot = AggValueSlot::ignored());
3839
  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3840
3841
  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3842
                              const ObjCIvarDecl *Ivar);
3843
  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3844
  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3845
3846
  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3847
  /// if the Field is a reference, this will return the address of the reference
3848
  /// and not the address of the value stored in the reference.
3849
  LValue EmitLValueForFieldInitialization(LValue Base,
3850
                                          const FieldDecl* Field);
3851
3852
  LValue EmitLValueForIvar(QualType ObjectTy,
3853
                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
3854
                           unsigned CVRQualifiers);
3855
3856
  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3857
  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3858
  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3859
  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3860
3861
  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3862
  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3863
  LValue EmitStmtExprLValue(const StmtExpr *E);
3864
  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3865
  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3866
  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3867
3868
  //===--------------------------------------------------------------------===//
3869
  //                         Scalar Expression Emission
3870
  //===--------------------------------------------------------------------===//
3871
3872
  /// EmitCall - Generate a call of the given function, expecting the given
3873
  /// result type, and using the given argument list which specifies both the
3874
  /// LLVM arguments and the types they were derived from.
3875
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3876
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
3877
                  llvm::CallBase **callOrInvoke, SourceLocation Loc);
3878
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3879
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
3880
18.8k
                  llvm::CallBase **callOrInvoke = nullptr) {
3881
18.8k
    return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3882
18.8k
                    SourceLocation());
3883
18.8k
  }
3884
  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3885
                  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3886
  RValue EmitCallExpr(const CallExpr *E,
3887
                      ReturnValueSlot ReturnValue = ReturnValueSlot());
3888
  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3889
  CGCallee EmitCallee(const Expr *E);
3890
3891
  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3892
  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3893
3894
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3895
                                  const Twine &name = "");
3896
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3897
                                  ArrayRef<llvm::Value *> args,
3898
                                  const Twine &name = "");
3899
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3900
                                          const Twine &name = "");
3901
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3902
                                          ArrayRef<llvm::Value *> args,
3903
                                          const Twine &name = "");
3904
3905
  SmallVector<llvm::OperandBundleDef, 1>
3906
  getBundlesForFunclet(llvm::Value *Callee);
3907
3908
  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3909
                                   ArrayRef<llvm::Value *> Args,
3910
                                   const Twine &Name = "");
3911
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3912
                                          ArrayRef<llvm::Value *> args,
3913
                                          const Twine &name = "");
3914
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3915
                                          const Twine &name = "");
3916
  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3917
                                       ArrayRef<llvm::Value *> args);
3918
3919
  CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3920
                                     NestedNameSpecifier *Qual,
3921
                                     llvm::Type *Ty);
3922
3923
  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3924
                                               CXXDtorType Type,
3925
                                               const CXXRecordDecl *RD);
3926
3927
  // Return the copy constructor name with the prefix "__copy_constructor_"
3928
  // removed.
3929
  static std::string getNonTrivialCopyConstructorStr(QualType QT,
3930
                                                     CharUnits Alignment,
3931
                                                     bool IsVolatile,
3932
                                                     ASTContext &Ctx);
3933
3934
  // Return the destructor name with the prefix "__destructor_" removed.
3935
  static std::string getNonTrivialDestructorStr(QualType QT,
3936
                                                CharUnits Alignment,
3937
                                                bool IsVolatile,
3938
                                                ASTContext &Ctx);
3939
3940
  // These functions emit calls to the special functions of non-trivial C
3941
  // structs.
3942
  void defaultInitNonTrivialCStructVar(LValue Dst);
3943
  void callCStructDefaultConstructor(LValue Dst);
3944
  void callCStructDestructor(LValue Dst);
3945
  void callCStructCopyConstructor(LValue Dst, LValue Src);
3946
  void callCStructMoveConstructor(LValue Dst, LValue Src);
3947
  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3948
  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3949
3950
  RValue
3951
  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3952
                              const CGCallee &Callee,
3953
                              ReturnValueSlot ReturnValue, llvm::Value *This,
3954
                              llvm::Value *ImplicitParam,
3955
                              QualType ImplicitParamTy, const CallExpr *E,
3956
                              CallArgList *RtlArgs);
3957
  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3958
                               llvm::Value *This, QualType ThisTy,
3959
                               llvm::Value *ImplicitParam,
3960
                               QualType ImplicitParamTy, const CallExpr *E);
3961
  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3962
                               ReturnValueSlot ReturnValue);
3963
  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3964
                                               const CXXMethodDecl *MD,
3965
                                               ReturnValueSlot ReturnValue,
3966
                                               bool HasQualifier,
3967
                                               NestedNameSpecifier *Qualifier,
3968
                                               bool IsArrow, const Expr *Base);
3969
  // Compute the object pointer.
3970
  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3971
                                          llvm::Value *memberPtr,
3972
                                          const MemberPointerType *memberPtrType,
3973
                                          LValueBaseInfo *BaseInfo = nullptr,
3974
                                          TBAAAccessInfo *TBAAInfo = nullptr);
3975
  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3976
                                      ReturnValueSlot ReturnValue);
3977
3978
  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3979
                                       const CXXMethodDecl *MD,
3980
                                       ReturnValueSlot ReturnValue);
3981
  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3982
3983
  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3984
                                ReturnValueSlot ReturnValue);
3985
3986
  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3987
                                       ReturnValueSlot ReturnValue);
3988
  RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
3989
                                        ReturnValueSlot ReturnValue);
3990
3991
  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3992
                         const CallExpr *E, ReturnValueSlot ReturnValue);
3993
3994
  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3995
3996
  /// Emit IR for __builtin_os_log_format.
3997
  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3998
3999
  /// Emit IR for __builtin_is_aligned.
4000
  RValue EmitBuiltinIsAligned(const CallExpr *E);
4001
  /// Emit IR for __builtin_align_up/__builtin_align_down.
4002
  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4003
4004
  llvm::Function *generateBuiltinOSLogHelperFunction(
4005
      const analyze_os_log::OSLogBufferLayout &Layout,
4006
      CharUnits BufferAlignment);
4007
4008
  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4009
4010
  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4011
  /// is unhandled by the current target.
4012
  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4013
                                     ReturnValueSlot ReturnValue);
4014
4015
  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4016
                                             const llvm::CmpInst::Predicate Fp,
4017
                                             const llvm::CmpInst::Predicate Ip,
4018
                                             const llvm::Twine &Name = "");
4019
  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4020
                                  ReturnValueSlot ReturnValue,
4021
                                  llvm::Triple::ArchType Arch);
4022
  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4023
                                     ReturnValueSlot ReturnValue,
4024
                                     llvm::Triple::ArchType Arch);
4025
  llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4026
                                     ReturnValueSlot ReturnValue,
4027
                                     llvm::Triple::ArchType Arch);
4028
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4029
                                   QualType RTy);
4030
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4031
                                   QualType RTy);
4032
4033
  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4034
                                         unsigned LLVMIntrinsic,
4035
                                         unsigned AltLLVMIntrinsic,
4036
                                         const char *NameHint,
4037
                                         unsigned Modifier,
4038
                                         const CallExpr *E,
4039
                                         SmallVectorImpl<llvm::Value *> &Ops,
4040
                                         Address PtrOp0, Address PtrOp1,
4041
                                         llvm::Triple::ArchType Arch);
4042
4043
  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4044
                                          unsigned Modifier, llvm::Type *ArgTy,
4045
                                          const CallExpr *E);
4046
  llvm::Value *EmitNeonCall(llvm::Function *F,
4047
                            SmallVectorImpl<llvm::Value*> &O,
4048
                            const char *name,
4049
                            unsigned shift = 0, bool rightshift = false);
4050
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4051
                             const llvm::ElementCount &Count);
4052
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4053
  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4054
                                   bool negateForRightShift);
4055
  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4056
                                 llvm::Type *Ty, bool usgn, const char *name);
4057
  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4058
  /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4059
  /// access builtin.  Only required if it can't be inferred from the base
4060
  /// pointer operand.
4061
  llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
4062
4063
  SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
4064
                                                   llvm::Type *ReturnType,
4065
                                                   ArrayRef<llvm::Value *> Ops);
4066
  llvm::Type *getEltType(SVETypeFlags TypeFlags);
4067
  llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4068
  llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
4069
  llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
4070
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4071
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4072
  llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4073
  llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
4074
                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4075
                            unsigned BuiltinID);
4076
  llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
4077
                           llvm::ArrayRef<llvm::Value *> Ops,
4078
                           unsigned BuiltinID);
4079
  llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4080
                                    llvm::ScalableVectorType *VTy);
4081
  llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
4082
                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4083
                                 unsigned IntID);
4084
  llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
4085
                                   llvm::SmallVectorImpl<llvm::Value *> &Ops,
4086
                                   unsigned IntID);
4087
  llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4088
                                 SmallVectorImpl<llvm::Value *> &Ops,
4089
                                 unsigned BuiltinID, bool IsZExtReturn);
4090
  llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4091
                                  SmallVectorImpl<llvm::Value *> &Ops,
4092
                                  unsigned BuiltinID);
4093
  llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
4094
                                   SmallVectorImpl<llvm::Value *> &Ops,
4095
                                   unsigned BuiltinID);
4096
  llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
4097
                                     SmallVectorImpl<llvm::Value *> &Ops,
4098
                                     unsigned IntID);
4099
  llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags,
4100
                                 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID);
4101
  llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags,
4102
                                  SmallVectorImpl<llvm::Value *> &Ops,
4103
                                  unsigned IntID);
4104
  llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4105
4106
  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4107
                                      llvm::Triple::ArchType Arch);
4108
  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4109
4110
  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4111
  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4112
  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4113
  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4114
  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4115
  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4116
  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4117
                                          const CallExpr *E);
4118
  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4119
  bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4120
                               llvm::AtomicOrdering &AO,
4121
                               llvm::SyncScope::ID &SSID);
4122
4123
  enum class MSVCIntrin;
4124
  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4125
4126
  llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4127
4128
  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4129
  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4130
  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4131
  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4132
  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4133
  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4134
                                const ObjCMethodDecl *MethodWithObjects);
4135
  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4136
  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4137
                             ReturnValueSlot Return = ReturnValueSlot());
4138
4139
  /// Retrieves the default cleanup kind for an ARC cleanup.
4140
  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4141
1.05k
  CleanupKind getARCCleanupKind() {
4142
1.05k
    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4143
996
             ? 
NormalAndEHCleanup58
: NormalCleanup;
4144
1.05k
  }
4145
4146
  // ARC primitives.
4147
  void EmitARCInitWeak(Address addr, llvm::Value *value);
4148
  void EmitARCDestroyWeak(Address addr);
4149
  llvm::Value *EmitARCLoadWeak(Address addr);
4150
  llvm::Value *EmitARCLoadWeakRetained(Address addr);
4151
  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4152
  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4153
  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4154
  void EmitARCCopyWeak(Address dst, Address src);
4155
  void EmitARCMoveWeak(Address dst, Address src);
4156
  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4157
  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4158
  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4159
                                  bool resultIgnored);
4160
  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4161
                                      bool resultIgnored);
4162
  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4163
  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4164
  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4165
  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4166
  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4167
  llvm::Value *EmitARCAutorelease(llvm::Value *value);
4168
  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4169
  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4170
  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4171
  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4172
4173
  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4174
  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4175
                                      llvm::Type *returnType);
4176
  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4177
4178
  std::pair<LValue,llvm::Value*>
4179
  EmitARCStoreAutoreleasing(const BinaryOperator *e);
4180
  std::pair<LValue,llvm::Value*>
4181
  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4182
  std::pair<LValue,llvm::Value*>
4183
  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4184
4185
  llvm::Value *EmitObjCAlloc(llvm::Value *value,
4186
                             llvm::Type *returnType);
4187
  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4188
                                     llvm::Type *returnType);
4189
  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4190
4191
  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4192
  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4193
  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4194
4195
  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4196
  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4197
                                            bool allowUnsafeClaim);
4198
  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4199
  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4200
  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4201
4202
  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4203
4204
  static Destroyer destroyARCStrongImprecise;
4205
  static Destroyer destroyARCStrongPrecise;
4206
  static Destroyer destroyARCWeak;
4207
  static Destroyer emitARCIntrinsicUse;
4208
  static Destroyer destroyNonTrivialCStruct;
4209
4210
  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4211
  llvm::Value *EmitObjCAutoreleasePoolPush();
4212
  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4213
  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4214
  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4215
4216
  /// Emits a reference binding to the passed in expression.
4217
  RValue EmitReferenceBindingToExpr(const Expr *E);
4218
4219
  //===--------------------------------------------------------------------===//
4220
  //                           Expression Emission
4221
  //===--------------------------------------------------------------------===//
4222
4223
  // Expressions are broken into three classes: scalar, complex, aggregate.
4224
4225
  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4226
  /// scalar type, returning the result.
4227
  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4228
4229
  /// Emit a conversion from the specified type to the specified destination
4230
  /// type, both of which are LLVM scalar types.
4231
  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4232
                                    QualType DstTy, SourceLocation Loc);
4233
4234
  /// Emit a conversion from the specified complex type to the specified
4235
  /// destination type, where the destination type is an LLVM scalar type.
4236
  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4237
                                             QualType DstTy,
4238
                                             SourceLocation Loc);
4239
4240
  /// EmitAggExpr - Emit the computation of the specified expression
4241
  /// of aggregate type.  The result is computed into the given slot,
4242
  /// which may be null to indicate that the value is not needed.
4243
  void EmitAggExpr(const Expr *E, AggValueSlot AS);
4244
4245
  /// EmitAggExprToLValue - Emit the computation of the specified expression of
4246
  /// aggregate type into a temporary LValue.
4247
  LValue EmitAggExprToLValue(const Expr *E);
4248
4249
  /// Build all the stores needed to initialize an aggregate at Dest with the
4250
  /// value Val.
4251
  void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4252
4253
  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4254
  /// make sure it survives garbage collection until this point.
4255
  void EmitExtendGCLifetime(llvm::Value *object);
4256
4257
  /// EmitComplexExpr - Emit the computation of the specified expression of
4258
  /// complex type, returning the result.
4259
  ComplexPairTy EmitComplexExpr(const Expr *E,
4260
                                bool IgnoreReal = false,
4261
                                bool IgnoreImag = false);
4262
4263
  /// EmitComplexExprIntoLValue - Emit the given expression of complex
4264
  /// type and place its result into the specified l-value.
4265
  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4266
4267
  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4268
  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4269
4270
  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4271
  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4272
4273
  Address emitAddrOfRealComponent(Address complex, QualType complexType);
4274
  Address emitAddrOfImagComponent(Address complex, QualType complexType);
4275
4276
  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4277
  /// global variable that has already been created for it.  If the initializer
4278
  /// has a different type than GV does, this may free GV and return a different
4279
  /// one.  Otherwise it just returns GV.
4280
  llvm::GlobalVariable *
4281
  AddInitializerToStaticVarDecl(const VarDecl &D,
4282
                                llvm::GlobalVariable *GV);
4283
4284
  // Emit an @llvm.invariant.start call for the given memory region.
4285
  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4286
4287
  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4288
  /// variable with global storage.
4289
  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4290
                                bool PerformInit);
4291
4292
  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4293
                                   llvm::Constant *Addr);
4294
4295
  /// Call atexit() with a function that passes the given argument to
4296
  /// the given function.
4297
  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4298
                                    llvm::Constant *addr);
4299
4300
  /// Call atexit() with function dtorStub.
4301
  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4302
4303
  /// Call unatexit() with function dtorStub.
4304
  llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4305
4306
  /// Emit code in this function to perform a guarded variable
4307
  /// initialization.  Guarded initializations are used when it's not
4308
  /// possible to prove that an initialization will be done exactly
4309
  /// once, e.g. with a static local variable or a static data member
4310
  /// of a class template.
4311
  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4312
                          bool PerformInit);
4313
4314
  enum class GuardKind { VariableGuard, TlsGuard };
4315
4316
  /// Emit a branch to select whether or not to perform guarded initialization.
4317
  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4318
                                llvm::BasicBlock *InitBlock,
4319
                                llvm::BasicBlock *NoInitBlock,
4320
                                GuardKind Kind, const VarDecl *D);
4321
4322
  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4323
  /// variables.
4324
  void
4325
  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4326
                            ArrayRef<llvm::Function *> CXXThreadLocals,
4327
                            ConstantAddress Guard = ConstantAddress::invalid());
4328
4329
  /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4330
  /// variables.
4331
  void GenerateCXXGlobalCleanUpFunc(
4332
      llvm::Function *Fn,
4333
      const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4334
                                   llvm::Constant *>> &DtorsOrStermFinalizers);
4335
4336
  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4337
                                        const VarDecl *D,
4338
                                        llvm::GlobalVariable *Addr,
4339
                                        bool PerformInit);
4340
4341
  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4342
4343
  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4344
4345
  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4346
4347
  RValue EmitAtomicExpr(AtomicExpr *E);
4348
4349
  //===--------------------------------------------------------------------===//
4350
  //                         Annotations Emission
4351
  //===--------------------------------------------------------------------===//
4352
4353
  /// Emit an annotation call (intrinsic).
4354
  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4355
                                  llvm::Value *AnnotatedVal,
4356
                                  StringRef AnnotationStr,
4357
                                  SourceLocation Location,
4358
                                  const AnnotateAttr *Attr);
4359
4360
  /// Emit local annotations for the local variable V, declared by D.
4361
  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4362
4363
  /// Emit field annotations for the given field & value. Returns the
4364
  /// annotation result.
4365
  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4366
4367
  //===--------------------------------------------------------------------===//
4368
  //                             Internal Helpers
4369
  //===--------------------------------------------------------------------===//
4370
4371
  /// ContainsLabel - Return true if the statement contains a label in it.  If
4372
  /// this statement is not executed normally, it not containing a label means
4373
  /// that we can just remove the code.
4374
  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4375
4376
  /// containsBreak - Return true if the statement contains a break out of it.
4377
  /// If the statement (recursively) contains a switch or loop with a break
4378
  /// inside of it, this is fine.
4379
  static bool containsBreak(const Stmt *S);
4380
4381
  /// Determine if the given statement might introduce a declaration into the
4382
  /// current scope, by being a (possibly-labelled) DeclStmt.
4383
  static bool mightAddDeclToScope(const Stmt *S);
4384
4385
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4386
  /// to a constant, or if it does but contains a label, return false.  If it
4387
  /// constant folds return true and set the boolean result in Result.
4388
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4389
                                    bool AllowLabels = false);
4390
4391
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4392
  /// to a constant, or if it does but contains a label, return false.  If it
4393
  /// constant folds return true and set the folded value.
4394
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4395
                                    bool AllowLabels = false);
4396
4397
  /// isInstrumentedCondition - Determine whether the given condition is an
4398
  /// instrumentable condition (i.e. no "&&" or "||").
4399
  static bool isInstrumentedCondition(const Expr *C);
4400
4401
  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4402
  /// increments a profile counter based on the semantics of the given logical
4403
  /// operator opcode.  This is used to instrument branch condition coverage
4404
  /// for logical operators.
4405
  void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4406
                                llvm::BasicBlock *TrueBlock,
4407
                                llvm::BasicBlock *FalseBlock,
4408
                                uint64_t TrueCount = 0,
4409
                                Stmt::Likelihood LH = Stmt::LH_None,
4410
                                const Expr *CntrIdx = nullptr);
4411
4412
  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4413
  /// if statement) to the specified blocks.  Based on the condition, this might
4414
  /// try to simplify the codegen of the conditional based on the branch.
4415
  /// TrueCount should be the number of times we expect the condition to
4416
  /// evaluate to true based on PGO data.
4417
  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4418
                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4419
                            Stmt::Likelihood LH = Stmt::LH_None);
4420
4421
  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4422
  /// nonnull, if \p LHS is marked _Nonnull.
4423
  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4424
4425
  /// An enumeration which makes it easier to specify whether or not an
4426
  /// operation is a subtraction.
4427
  enum { NotSubtraction = false, IsSubtraction = true };
4428
4429
  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4430
  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4431
  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4432
  /// \p IsSubtraction indicates whether the expression used to form the GEP
4433
  /// is a subtraction.
4434
  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4435
                                      ArrayRef<llvm::Value *> IdxList,
4436
                                      bool SignedIndices,
4437
                                      bool IsSubtraction,
4438
                                      SourceLocation Loc,
4439
                                      const Twine &Name = "");
4440
4441
  /// Specifies which type of sanitizer check to apply when handling a
4442
  /// particular builtin.
4443
  enum BuiltinCheckKind {
4444
    BCK_CTZPassedZero,
4445
    BCK_CLZPassedZero,
4446
  };
4447
4448
  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4449
  /// enabled, a runtime check specified by \p Kind is also emitted.
4450
  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4451
4452
  /// Emit a description of a type in a format suitable for passing to
4453
  /// a runtime sanitizer handler.
4454
  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4455
4456
  /// Convert a value into a format suitable for passing to a runtime
4457
  /// sanitizer handler.
4458
  llvm::Value *EmitCheckValue(llvm::Value *V);
4459
4460
  /// Emit a description of a source location in a format suitable for
4461
  /// passing to a runtime sanitizer handler.
4462
  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4463
4464
  /// Create a basic block that will either trap or call a handler function in
4465
  /// the UBSan runtime with the provided arguments, and create a conditional
4466
  /// branch to it.
4467
  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4468
                 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4469
                 ArrayRef<llvm::Value *> DynamicArgs);
4470
4471
  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4472
  /// if Cond if false.
4473
  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4474
                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4475
                            ArrayRef<llvm::Constant *> StaticArgs);
4476
4477
  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4478
  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4479
  void EmitUnreachable(SourceLocation Loc);
4480
4481
  /// Create a basic block that will call the trap intrinsic, and emit a
4482
  /// conditional branch to it, for the -ftrapv checks.
4483
  void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4484
4485
  /// Emit a call to trap or debugtrap and attach function attribute
4486
  /// "trap-func-name" if specified.
4487
  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4488
4489
  /// Emit a stub for the cross-DSO CFI check function.
4490
  void EmitCfiCheckStub();
4491
4492
  /// Emit a cross-DSO CFI failure handling function.
4493
  void EmitCfiCheckFail();
4494
4495
  /// Create a check for a function parameter that may potentially be
4496
  /// declared as non-null.
4497
  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4498
                           AbstractCallee AC, unsigned ParmNum);
4499
4500
  /// EmitCallArg - Emit a single call argument.
4501
  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4502
4503
  /// EmitDelegateCallArg - We are performing a delegate call; that
4504
  /// is, the current function is delegating to another one.  Produce
4505
  /// a r-value suitable for passing the given parameter.
4506
  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4507
                           SourceLocation loc);
4508
4509
  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4510
  /// point operation, expressed as the maximum relative error in ulp.
4511
  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4512
4513
  /// SetFPModel - Control floating point behavior via fp-model settings.
4514
  void SetFPModel();
4515
4516
  /// Set the codegen fast-math flags.
4517
  void SetFastMathFlags(FPOptions FPFeatures);
4518
4519
private:
4520
  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4521
  void EmitReturnOfRValue(RValue RV, QualType Ty);
4522
4523
  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4524
4525
  llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4526
  DeferredReplacements;
4527
4528
  /// Set the address of a local variable.
4529
713k
  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4530
713k
    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4531
713k
    LocalDeclMap.insert({VD, Addr});
4532
713k
  }
4533
4534
  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4535
  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4536
  ///
4537
  /// \param AI - The first function argument of the expansion.
4538
  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4539
                          llvm::Function::arg_iterator &AI);
4540
4541
  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4542
  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4543
  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4544
  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4545
                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
4546
                        unsigned &IRCallArgPos);
4547
4548
  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4549
                            const Expr *InputExpr, std::string &ConstraintStr);
4550
4551
  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4552
                                  LValue InputValue, QualType InputType,
4553
                                  std::string &ConstraintStr,
4554
                                  SourceLocation Loc);
4555
4556
  /// Attempts to statically evaluate the object size of E. If that
4557
  /// fails, emits code to figure the size of E out for us. This is
4558
  /// pass_object_size aware.
4559
  ///
4560
  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4561
  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4562
                                               llvm::IntegerType *ResType,
4563
                                               llvm::Value *EmittedE,
4564
                                               bool IsDynamic);
4565
4566
  /// Emits the size of E, as required by __builtin_object_size. This
4567
  /// function is aware of pass_object_size parameters, and will act accordingly
4568
  /// if E is a parameter with the pass_object_size attribute.
4569
  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4570
                                     llvm::IntegerType *ResType,
4571
                                     llvm::Value *EmittedE,
4572
                                     bool IsDynamic);
4573
4574
  void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4575
                                       Address Loc);
4576
4577
public:
4578
  enum class EvaluationOrder {
4579
    ///! No language constraints on evaluation order.
4580
    Default,
4581
    ///! Language semantics require left-to-right evaluation.
4582
    ForceLeftToRight,
4583
    ///! Language semantics require right-to-left evaluation.
4584
    ForceRightToLeft
4585
  };
4586
4587
  // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4588
  // an ObjCMethodDecl.
4589
  struct PrototypeWrapper {
4590
    llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4591
4592
267k
    PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4593
12.5k
    PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4594
  };
4595
4596
  void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4597
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4598
                    AbstractCallee AC = AbstractCallee(),
4599
                    unsigned ParamsToSkip = 0,
4600
                    EvaluationOrder Order = EvaluationOrder::Default);
4601
4602
  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4603
  /// emit the value and compute our best estimate of the alignment of the
4604
  /// pointee.
4605
  ///
4606
  /// \param BaseInfo - If non-null, this will be initialized with
4607
  /// information about the source of the alignment and the may-alias
4608
  /// attribute.  Note that this function will conservatively fall back on
4609
  /// the type when it doesn't recognize the expression and may-alias will
4610
  /// be set to false.
4611
  ///
4612
  /// One reasonable way to use this information is when there's a language
4613
  /// guarantee that the pointer must be aligned to some stricter value, and
4614
  /// we're simply trying to ensure that sufficiently obvious uses of under-
4615
  /// aligned objects don't get miscompiled; for example, a placement new
4616
  /// into the address of a local variable.  In such a case, it's quite
4617
  /// reasonable to just ignore the returned alignment when it isn't from an
4618
  /// explicit source.
4619
  Address EmitPointerWithAlignment(const Expr *Addr,
4620
                                   LValueBaseInfo *BaseInfo = nullptr,
4621
                                   TBAAAccessInfo *TBAAInfo = nullptr);
4622
4623
  /// If \p E references a parameter with pass_object_size info or a constant
4624
  /// array size modifier, emit the object size divided by the size of \p EltTy.
4625
  /// Otherwise return null.
4626
  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4627
4628
  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4629
4630
  struct MultiVersionResolverOption {
4631
    llvm::Function *Function;
4632
    FunctionDecl *FD;
4633
    struct Conds {
4634
      StringRef Architecture;
4635
      llvm::SmallVector<StringRef, 8> Features;
4636
4637
      Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4638
242
          : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4639
    } Conditions;
4640
4641
    MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4642
                               ArrayRef<StringRef> Feats)
4643
242
        : Function(F), Conditions(Arch, Feats) {}
4644
  };
4645
4646
  // Emits the body of a multiversion function's resolver. Assumes that the
4647
  // options are already sorted in the proper order, with the 'default' option
4648
  // last (if it exists).
4649
  void EmitMultiVersionResolver(llvm::Function *Resolver,
4650
                                ArrayRef<MultiVersionResolverOption> Options);
4651
4652
  static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4653
4654
private:
4655
  QualType getVarArgType(const Expr *Arg);
4656
4657
  void EmitDeclMetadata();
4658
4659
  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4660
                                  const AutoVarEmission &emission);
4661
4662
  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4663
4664
  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4665
  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4666
  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4667
  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4668
  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4669
  llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4670
  llvm::Value *EmitX86CpuInit();
4671
  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4672
};
4673
4674
/// TargetFeatures - This class is used to check whether the builtin function
4675
/// has the required tagert specific features. It is able to support the
4676
/// combination of ','(and), '|'(or), and '()'. By default, the priority of
4677
/// ',' is higher than that of '|' .
4678
/// E.g:
4679
/// A,B|C means the builtin function requires both A and B, or C.
4680
/// If we want the builtin function requires both A and B, or both A and C,
4681
/// there are two ways: A,B|A,C or A,(B|C).
4682
/// The FeaturesList should not contain spaces, and brackets must appear in
4683
/// pairs.
4684
class TargetFeatures {
4685
  struct FeatureListStatus {
4686
    bool HasFeatures;
4687
    StringRef CurFeaturesList;
4688
  };
4689
4690
  const llvm::StringMap<bool> &CallerFeatureMap;
4691
4692
26.8k
  FeatureListStatus getAndFeatures(StringRef FeatureList) {
4693
26.8k
    int InParentheses = 0;
4694
26.8k
    bool HasFeatures = true;
4695
26.8k
    size_t SubexpressionStart = 0;
4696
234k
    for (size_t i = 0, e = FeatureList.size(); i < e; 
++i207k
) {
4697
218k
      char CurrentToken = FeatureList[i];
4698
218k
      switch (CurrentToken) {
4699
196k
      default:
4700
196k
        break;
4701
1.65k
      case '(':
4702
1.65k
        if (InParentheses == 0)
4703
1.65k
          SubexpressionStart = i + 1;
4704
1.65k
        ++InParentheses;
4705
1.65k
        break;
4706
1.65k
      case ')':
4707
1.65k
        --InParentheses;
4708
1.65k
        assert(InParentheses >= 0 && "Parentheses are not in pair");
4709
1.65k
        LLVM_FALLTHROUGH;
4710
17.7k
      case '|':
4711
19.9k
      case ',':
4712
19.9k
        if (InParentheses == 0) {
4713
14.3k
          if (HasFeatures && 
i != SubexpressionStart13.8k
) {
4714
13.2k
            StringRef F = FeatureList.slice(SubexpressionStart, i);
4715
1.37k
            HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F)
4716
11.8k
                                              : CallerFeatureMap.lookup(F);
4717
13.2k
          }
4718
14.3k
          SubexpressionStart = i + 1;
4719
14.3k
          if (CurrentToken == '|') {
4720
10.5k
            return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4721
10.5k
          }
4722
9.45k
        }
4723
9.45k
        break;
4724
218k
      }
4725
218k
    }
4726
16.3k
    assert(InParentheses == 0 && "Parentheses are not in pair");
4727
16.3k
    if (HasFeatures && 
SubexpressionStart != FeatureList.size()15.9k
)
4728
15.4k
      HasFeatures =
4729
15.4k
          CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4730
16.3k
    return {HasFeatures, StringRef()};
4731
26.8k
  }
4732
4733
public:
4734
19.5k
  bool hasRequiredFeatures(StringRef FeatureList) {
4735
19.5k
    FeatureListStatus FS = {false, FeatureList};
4736
46.3k
    while (!FS.HasFeatures && 
!FS.CurFeaturesList.empty()27.7k
)
4737
26.8k
      FS = getAndFeatures(FS.CurFeaturesList);
4738
19.5k
    return FS.HasFeatures;
4739
19.5k
  }
4740
4741
  TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4742
18.1k
      : CallerFeatureMap(CallerFeatureMap) {}
4743
};
4744
4745
inline DominatingLLVMValue::saved_type
4746
338
DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4747
338
  if (!needsSaving(value)) 
return saved_type(value, false)300
;
4748
4749
  // Otherwise, we need an alloca.
4750
38
  auto align = CharUnits::fromQuantity(
4751
38
            CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4752
38
  Address alloca =
4753
38
    CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4754
38
  CGF.Builder.CreateStore(value, alloca);
4755
4756
38
  return saved_type(alloca.getPointer(), true);
4757
38
}
4758
4759
inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4760
341
                                                 saved_type value) {
4761
  // If the value says it wasn't saved, trust that it's still dominating.
4762
341
  if (!value.getInt()) 
return value.getPointer()317
;
4763
4764
  // Otherwise, it should be an alloca instruction, as set up in save().
4765
24
  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4766
24
  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign());
4767
24
}
4768
4769
}  // end namespace CodeGen
4770
4771
// Map the LangOption for floating point exception behavior into
4772
// the corresponding enum in the IR.
4773
llvm::fp::ExceptionBehavior
4774
ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4775
}  // end namespace clang
4776
4777
#endif