Coverage Report

Created: 2020-02-15 09:57

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/CodeGen/CodeGenFunction.h
Line
Count
Source (jump to first uncovered line)
1
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This is the internal per-function state used for llvm translation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15
16
#include "CGBuilder.h"
17
#include "CGDebugInfo.h"
18
#include "CGLoopInfo.h"
19
#include "CGValue.h"
20
#include "CodeGenModule.h"
21
#include "CodeGenPGO.h"
22
#include "EHScopeStack.h"
23
#include "VarBypassDetector.h"
24
#include "clang/AST/CharUnits.h"
25
#include "clang/AST/CurrentSourceLocExprScope.h"
26
#include "clang/AST/ExprCXX.h"
27
#include "clang/AST/ExprObjC.h"
28
#include "clang/AST/ExprOpenMP.h"
29
#include "clang/AST/Type.h"
30
#include "clang/Basic/ABI.h"
31
#include "clang/Basic/CapturedStmt.h"
32
#include "clang/Basic/CodeGenOptions.h"
33
#include "clang/Basic/OpenMPKinds.h"
34
#include "clang/Basic/TargetInfo.h"
35
#include "llvm/ADT/ArrayRef.h"
36
#include "llvm/ADT/DenseMap.h"
37
#include "llvm/ADT/MapVector.h"
38
#include "llvm/ADT/SmallVector.h"
39
#include "llvm/IR/ValueHandle.h"
40
#include "llvm/Support/Debug.h"
41
#include "llvm/Transforms/Utils/SanitizerStats.h"
42
43
namespace llvm {
44
class BasicBlock;
45
class LLVMContext;
46
class MDNode;
47
class Module;
48
class SwitchInst;
49
class Twine;
50
class Value;
51
}
52
53
namespace clang {
54
class ASTContext;
55
class BlockDecl;
56
class CXXDestructorDecl;
57
class CXXForRangeStmt;
58
class CXXTryStmt;
59
class Decl;
60
class LabelDecl;
61
class EnumConstantDecl;
62
class FunctionDecl;
63
class FunctionProtoType;
64
class LabelStmt;
65
class ObjCContainerDecl;
66
class ObjCInterfaceDecl;
67
class ObjCIvarDecl;
68
class ObjCMethodDecl;
69
class ObjCImplementationDecl;
70
class ObjCPropertyImplDecl;
71
class TargetInfo;
72
class VarDecl;
73
class ObjCForCollectionStmt;
74
class ObjCAtTryStmt;
75
class ObjCAtThrowStmt;
76
class ObjCAtSynchronizedStmt;
77
class ObjCAutoreleasePoolStmt;
78
class ReturnsNonNullAttr;
79
80
namespace analyze_os_log {
81
class OSLogBufferLayout;
82
}
83
84
namespace CodeGen {
85
class CodeGenTypes;
86
class CGCallee;
87
class CGFunctionInfo;
88
class CGRecordLayout;
89
class CGBlockInfo;
90
class CGCXXABI;
91
class BlockByrefHelpers;
92
class BlockByrefInfo;
93
class BlockFlags;
94
class BlockFieldFlags;
95
class RegionCodeGenTy;
96
class TargetCodeGenInfo;
97
struct OMPTaskDataTy;
98
struct CGCoroData;
99
100
/// The kind of evaluation to perform on values of a particular
101
/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
102
/// CGExprAgg?
103
///
104
/// TODO: should vectors maybe be split out into their own thing?
105
enum TypeEvaluationKind {
106
  TEK_Scalar,
107
  TEK_Complex,
108
  TEK_Aggregate
109
};
110
111
#define LIST_SANITIZER_CHECKS                                                  \
112
  SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
113
  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
114
  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
115
  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
116
  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
117
  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
118
  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
119
  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
120
  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
121
  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
122
  SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
123
  SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
124
  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
125
  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
126
  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
127
  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
128
  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
129
  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
130
  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
131
  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
132
  SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
133
  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
134
  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
135
  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
136
137
enum SanitizerHandler {
138
#define SANITIZER_CHECK(Enum, Name, Version) Enum,
139
  LIST_SANITIZER_CHECKS
140
#undef SANITIZER_CHECK
141
};
142
143
/// Helper class with most of the code for saving a value for a
144
/// conditional expression cleanup.
145
struct DominatingLLVMValue {
146
  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
147
148
  /// Answer whether the given value needs extra work to be saved.
149
324
  static bool needsSaving(llvm::Value *value) {
150
324
    // If it's not an instruction, we don't need to save.
151
324
    if (!isa<llvm::Instruction>(value)) 
return false86
;
152
238
153
238
    // If it's an instruction in the entry block, we don't need to save.
154
238
    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
155
238
    return (block != &block->getParent()->getEntryBlock());
156
238
  }
157
158
  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
159
  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
160
};
161
162
/// A partial specialization of DominatingValue for llvm::Values that
163
/// might be llvm::Instructions.
164
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
165
  typedef T *type;
166
91
  static type restore(CodeGenFunction &CGF, saved_type value) {
167
91
    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
168
91
  }
169
};
170
171
/// A specialization of DominatingValue for Address.
172
template <> struct DominatingValue<Address> {
173
  typedef Address type;
174
175
  struct saved_type {
176
    DominatingLLVMValue::saved_type SavedValue;
177
    CharUnits Alignment;
178
  };
179
180
10
  static bool needsSaving(type value) {
181
10
    return DominatingLLVMValue::needsSaving(value.getPointer());
182
10
  }
183
198
  static saved_type save(CodeGenFunction &CGF, type value) {
184
198
    return { DominatingLLVMValue::save(CGF, value.getPointer()),
185
198
             value.getAlignment() };
186
198
  }
187
206
  static type restore(CodeGenFunction &CGF, saved_type value) {
188
206
    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
189
206
                   value.Alignment);
190
206
  }
191
};
192
193
/// A specialization of DominatingValue for RValue.
194
template <> struct DominatingValue<RValue> {
195
  typedef RValue type;
196
  class saved_type {
197
    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
198
                AggregateAddress, ComplexAddress };
199
200
    llvm::Value *Value;
201
    unsigned K : 3;
202
    unsigned Align : 29;
203
    saved_type(llvm::Value *v, Kind k, unsigned a = 0)
204
16
      : Value(v), K(k), Align(a) {}
205
206
  public:
207
    static bool needsSaving(RValue value);
208
    static saved_type save(CodeGenFunction &CGF, RValue value);
209
    RValue restore(CodeGenFunction &CGF);
210
211
    // implementations in CGCleanup.cpp
212
  };
213
214
0
  static bool needsSaving(type value) {
215
0
    return saved_type::needsSaving(value);
216
0
  }
217
16
  static saved_type save(CodeGenFunction &CGF, type value) {
218
16
    return saved_type::save(CGF, value);
219
16
  }
220
0
  static type restore(CodeGenFunction &CGF, saved_type value) {
221
0
    return value.restore(CGF);
222
0
  }
223
};
224
225
/// CodeGenFunction - This class organizes the per-function state that is used
226
/// while generating LLVM code.
227
class CodeGenFunction : public CodeGenTypeCache {
228
  CodeGenFunction(const CodeGenFunction &) = delete;
229
  void operator=(const CodeGenFunction &) = delete;
230
231
  friend class CGCXXABI;
232
public:
233
  /// A jump destination is an abstract label, branching to which may
234
  /// require a jump out through normal cleanups.
235
  struct JumpDest {
236
980k
    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
237
    JumpDest(llvm::BasicBlock *Block,
238
             EHScopeStack::stable_iterator Depth,
239
             unsigned Index)
240
308k
      : Block(Block), ScopeDepth(Depth), Index(Index) {}
241
242
364k
    bool isValid() const { return Block != nullptr; }
243
1.08M
    llvm::BasicBlock *getBlock() const { return Block; }
244
151k
    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
245
8.09k
    unsigned getDestIndex() const { return Index; }
246
247
    // This should be used cautiously.
248
114
    void setScopeDepth(EHScopeStack::stable_iterator depth) {
249
114
      ScopeDepth = depth;
250
114
    }
251
252
  private:
253
    llvm::BasicBlock *Block;
254
    EHScopeStack::stable_iterator ScopeDepth;
255
    unsigned Index;
256
  };
257
258
  CodeGenModule &CGM;  // Per-module state.
259
  const TargetInfo &Target;
260
261
  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
262
  LoopInfoStack LoopStack;
263
  CGBuilderTy Builder;
264
265
  // Stores variables for which we can't generate correct lifetime markers
266
  // because of jumps.
267
  VarBypassDetector Bypasses;
268
269
  // CodeGen lambda for loops and support for ordered clause
270
  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
271
                                  JumpDest)>
272
      CodeGenLoopTy;
273
  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
274
                                  const unsigned, const bool)>
275
      CodeGenOrderedTy;
276
277
  // Codegen lambda for loop bounds in worksharing loop constructs
278
  typedef llvm::function_ref<std::pair<LValue, LValue>(
279
      CodeGenFunction &, const OMPExecutableDirective &S)>
280
      CodeGenLoopBoundsTy;
281
282
  // Codegen lambda for loop bounds in dispatch-based loop implementation
283
  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
284
      CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
285
      Address UB)>
286
      CodeGenDispatchBoundsTy;
287
288
  /// CGBuilder insert helper. This function is called after an
289
  /// instruction is created using Builder.
290
  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
291
                    llvm::BasicBlock *BB,
292
                    llvm::BasicBlock::iterator InsertPt) const;
293
294
  /// CurFuncDecl - Holds the Decl for the current outermost
295
  /// non-closure context.
296
  const Decl *CurFuncDecl;
297
  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
298
  const Decl *CurCodeDecl;
299
  const CGFunctionInfo *CurFnInfo;
300
  QualType FnRetTy;
301
  llvm::Function *CurFn = nullptr;
302
303
  // Holds coroutine data if the current function is a coroutine. We use a
304
  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
305
  // in this header.
306
  struct CGCoroInfo {
307
    std::unique_ptr<CGCoroData> Data;
308
    CGCoroInfo();
309
    ~CGCoroInfo();
310
  };
311
  CGCoroInfo CurCoro;
312
313
272
  bool isCoroutine() const {
314
272
    return CurCoro.Data != nullptr;
315
272
  }
316
317
  /// CurGD - The GlobalDecl for the current function being compiled.
318
  GlobalDecl CurGD;
319
320
  /// PrologueCleanupDepth - The cleanup depth enclosing all the
321
  /// cleanups associated with the parameters.
322
  EHScopeStack::stable_iterator PrologueCleanupDepth;
323
324
  /// ReturnBlock - Unified return block.
325
  JumpDest ReturnBlock;
326
327
  /// ReturnValue - The temporary alloca to hold the return
328
  /// value. This is invalid iff the function has no return value.
329
  Address ReturnValue = Address::invalid();
330
331
  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
332
  /// This is invalid if sret is not in use.
333
  Address ReturnValuePointer = Address::invalid();
334
335
  /// Return true if a label was seen in the current scope.
336
30.6k
  bool hasLabelBeenSeenInCurrentScope() const {
337
30.6k
    if (CurLexicalScope)
338
7.93k
      return CurLexicalScope->hasLabels();
339
22.6k
    return !LabelMap.empty();
340
22.6k
  }
341
342
  /// AllocaInsertPoint - This is an instruction in the entry block before which
343
  /// we prefer to insert allocas.
344
  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
345
346
  /// API for captured statement code generation.
347
  class CGCapturedStmtInfo {
348
  public:
349
    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
350
29.0k
        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
351
    explicit CGCapturedStmtInfo(const CapturedStmt &S,
352
                                CapturedRegionKind K = CR_Default)
353
16.1k
      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
354
16.1k
355
16.1k
      RecordDecl::field_iterator Field =
356
16.1k
        S.getCapturedRecordDecl()->field_begin();
357
16.1k
      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
358
16.1k
                                                E = S.capture_end();
359
44.2k
           I != E; 
++I, ++Field28.1k
) {
360
28.1k
        if (I->capturesThis())
361
1.24k
          CXXThisFieldDecl = *Field;
362
26.8k
        else if (I->capturesVariable())
363
11.9k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
364
14.8k
        else if (I->capturesVariableByCopy())
365
12.7k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
366
28.1k
      }
367
16.1k
    }
368
369
    virtual ~CGCapturedStmtInfo();
370
371
101k
    CapturedRegionKind getKind() const { return Kind; }
372
373
662
    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
374
    // Retrieve the value of the context parameter.
375
1.39k
    virtual llvm::Value *getContextValue() const { return ThisValue; }
376
377
    /// Lookup the captured field decl for a variable.
378
23.5k
    virtual const FieldDecl *lookup(const VarDecl *VD) const {
379
23.5k
      return CaptureFields.lookup(VD->getCanonicalDecl());
380
23.5k
    }
381
382
671
    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
383
695
    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
384
385
0
    static bool classof(const CGCapturedStmtInfo *) {
386
0
      return true;
387
0
    }
388
389
    /// Emit the captured statement body.
390
31
    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
391
31
      CGF.incrementProfileCounter(S);
392
31
      CGF.EmitStmt(S);
393
31
    }
394
395
    /// Get the name of the capture helper.
396
31
    virtual StringRef getHelperName() const { return "__captured_stmt"; }
397
398
  private:
399
    /// The kind of captured statement being generated.
400
    CapturedRegionKind Kind;
401
402
    /// Keep the map between VarDecl and FieldDecl.
403
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
404
405
    /// The base address of the captured record, passed in as the first
406
    /// argument of the parallel region function.
407
    llvm::Value *ThisValue;
408
409
    /// Captured 'this' type.
410
    FieldDecl *CXXThisFieldDecl;
411
  };
412
  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
413
414
  /// RAII for correct setting/restoring of CapturedStmtInfo.
415
  class CGCapturedStmtRAII {
416
  private:
417
    CodeGenFunction &CGF;
418
    CGCapturedStmtInfo *PrevCapturedStmtInfo;
419
  public:
420
    CGCapturedStmtRAII(CodeGenFunction &CGF,
421
                       CGCapturedStmtInfo *NewCapturedStmtInfo)
422
16.3k
        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
423
16.3k
      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
424
16.3k
    }
425
16.3k
    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
426
  };
427
428
  /// An abstract representation of regular/ObjC call/message targets.
429
  class AbstractCallee {
430
    /// The function declaration of the callee.
431
    const Decl *CalleeDecl;
432
433
  public:
434
2.53k
    AbstractCallee() : CalleeDecl(nullptr) {}
435
246k
    AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
436
12.9k
    AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
437
330k
    bool hasFunctionDecl() const {
438
330k
      return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
439
330k
    }
440
330k
    const Decl *getDecl() const { return CalleeDecl; }
441
308k
    unsigned getNumParams() const {
442
308k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
443
308k
        return FD->getNumParams();
444
8
      return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
445
8
    }
446
260k
    const ParmVarDecl *getParamDecl(unsigned I) const {
447
260k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
448
260k
        return FD->getParamDecl(I);
449
7
      return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
450
7
    }
451
  };
452
453
  /// Sanitizers enabled for this function.
454
  SanitizerSet SanOpts;
455
456
  /// True if CodeGen currently emits code implementing sanitizer checks.
457
  bool IsSanitizerScope = false;
458
459
  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
460
  class SanitizerScope {
461
    CodeGenFunction *CGF;
462
  public:
463
    SanitizerScope(CodeGenFunction *CGF);
464
    ~SanitizerScope();
465
  };
466
467
  /// In C++, whether we are code generating a thunk.  This controls whether we
468
  /// should emit cleanups.
469
  bool CurFuncIsThunk = false;
470
471
  /// In ARC, whether we should autorelease the return value.
472
  bool AutoreleaseResult = false;
473
474
  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
475
  /// potentially set the return value.
476
  bool SawAsmBlock = false;
477
478
  const NamedDecl *CurSEHParent = nullptr;
479
480
  /// True if the current function is an outlined SEH helper. This can be a
481
  /// finally block or filter expression.
482
  bool IsOutlinedSEHHelper = false;
483
484
  /// True if CodeGen currently emits code inside presereved access index
485
  /// region.
486
  bool IsInPreservedAIRegion = false;
487
488
  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
489
  llvm::Value *BlockPointer = nullptr;
490
491
  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
492
  FieldDecl *LambdaThisCaptureField = nullptr;
493
494
  /// A mapping from NRVO variables to the flags used to indicate
495
  /// when the NRVO has been applied to this variable.
496
  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
497
498
  EHScopeStack EHStack;
499
  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
500
  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
501
502
  llvm::Instruction *CurrentFuncletPad = nullptr;
503
504
  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
505
    llvm::Value *Addr;
506
    llvm::Value *Size;
507
508
  public:
509
    CallLifetimeEnd(Address addr, llvm::Value *size)
510
4.63k
        : Addr(addr.getPointer()), Size(size) {}
511
512
4.87k
    void Emit(CodeGenFunction &CGF, Flags flags) override {
513
4.87k
      CGF.EmitLifetimeEnd(Size, Addr);
514
4.87k
    }
515
  };
516
517
  /// Header for data within LifetimeExtendedCleanupStack.
518
  struct LifetimeExtendedCleanupHeader {
519
    /// The size of the following cleanup object.
520
    unsigned Size;
521
    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
522
    unsigned Kind : 31;
523
    /// Whether this is a conditional cleanup.
524
    unsigned IsConditional : 1;
525
526
260
    size_t getSize() const { return Size; }
527
130
    CleanupKind getKind() const { return (CleanupKind)Kind; }
528
130
    bool isConditional() const { return IsConditional; }
529
  };
530
531
  /// i32s containing the indexes of the cleanup destinations.
532
  Address NormalCleanupDest = Address::invalid();
533
534
  unsigned NextCleanupDestIndex = 1;
535
536
  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
537
  CGBlockInfo *FirstBlockInfo = nullptr;
538
539
  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
540
  llvm::BasicBlock *EHResumeBlock = nullptr;
541
542
  /// The exception slot.  All landing pads write the current exception pointer
543
  /// into this alloca.
544
  llvm::Value *ExceptionSlot = nullptr;
545
546
  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
547
  /// write the current selector value into this alloca.
548
  llvm::AllocaInst *EHSelectorSlot = nullptr;
549
550
  /// A stack of exception code slots. Entering an __except block pushes a slot
551
  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
552
  /// a value from the top of the stack.
553
  SmallVector<Address, 1> SEHCodeSlotStack;
554
555
  /// Value returned by __exception_info intrinsic.
556
  llvm::Value *SEHInfo = nullptr;
557
558
  /// Emits a landing pad for the current EH stack.
559
  llvm::BasicBlock *EmitLandingPad();
560
561
  llvm::BasicBlock *getInvokeDestImpl();
562
563
  template <class T>
564
642
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
565
642
    return DominatingValue<T>::save(*this, value);
566
642
  }
clang::CodeGen::DominatingValue<llvm::Value*>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<llvm::Value*>(llvm::Value*)
Line
Count
Source
564
100
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
565
100
    return DominatingValue<T>::save(*this, value);
566
100
  }
clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CodeGen::Address>(clang::CodeGen::Address)
Line
Count
Source
564
198
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
565
198
    return DominatingValue<T>::save(*this, value);
566
198
  }
clang::CodeGen::DominatingValue<clang::QualType>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::QualType>(clang::QualType)
Line
Count
Source
564
120
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
565
120
    return DominatingValue<T>::save(*this, value);
566
120
  }
clang::CodeGen::DominatingValue<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
564
112
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
565
112
    return DominatingValue<T>::save(*this, value);
566
112
  }
clang::CodeGen::DominatingValue<bool>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<bool>(bool)
Line
Count
Source
564
112
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
565
112
    return DominatingValue<T>::save(*this, value);
566
112
  }
Unexecuted instantiation: clang::CodeGen::DominatingValue<clang::CharUnits>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CharUnits>(clang::CharUnits)
567
568
public:
569
  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
570
  /// rethrows.
571
  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
572
573
  /// A class controlling the emission of a finally block.
574
  class FinallyInfo {
575
    /// Where the catchall's edge through the cleanup should go.
576
    JumpDest RethrowDest;
577
578
    /// A function to call to enter the catch.
579
    llvm::FunctionCallee BeginCatchFn;
580
581
    /// An i1 variable indicating whether or not the @finally is
582
    /// running for an exception.
583
    llvm::AllocaInst *ForEHVar;
584
585
    /// An i8* variable into which the exception pointer to rethrow
586
    /// has been saved.
587
    llvm::AllocaInst *SavedExnVar;
588
589
  public:
590
    void enter(CodeGenFunction &CGF, const Stmt *Finally,
591
               llvm::FunctionCallee beginCatchFn,
592
               llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
593
    void exit(CodeGenFunction &CGF);
594
  };
595
596
  /// Returns true inside SEH __try blocks.
597
305k
  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
598
599
  /// Returns true while emitting a cleanuppad.
600
305k
  bool isCleanupPadScope() const {
601
305k
    return CurrentFuncletPad && 
isa<llvm::CleanupPadInst>(CurrentFuncletPad)156
;
602
305k
  }
603
604
  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
605
  /// current full-expression.  Safe against the possibility that
606
  /// we're currently inside a conditionally-evaluated expression.
607
  template <class T, class... As>
608
7.06k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
609
7.06k
    // If we're not in a conditional branch, or if none of the
610
7.06k
    // arguments requires saving, then use the unconditional cleanup.
611
7.06k
    if (!isInConditionalBranch())
612
6.85k
      return EHStack.pushCleanup<T>(kind, A...);
613
210
614
210
    // Stash values in a tuple so we can guarantee the order of saves.
615
210
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
616
210
    SavedTuple Saved{saveValueInCond(A)...};
617
210
618
210
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
619
210
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
620
210
    initFullExprCleanup();
621
210
  }
CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
608
2
  void pushFullExprCleanup(CleanupKind kind, As... A) {
609
2
    // If we're not in a conditional branch, or if none of the
610
2
    // arguments requires saving, then use the unconditional cleanup.
611
2
    if (!isInConditionalBranch())
612
2
      return EHStack.pushCleanup<T>(kind, A...);
613
0
614
0
    // Stash values in a tuple so we can guarantee the order of saves.
615
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
616
0
    SavedTuple Saved{saveValueInCond(A)...};
617
0
618
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
619
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
620
0
    initFullExprCleanup();
621
0
  }
CGCall.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyUnpassedArg, clang::CodeGen::Address, clang::QualType>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType)
Line
Count
Source
608
167
  void pushFullExprCleanup(CleanupKind kind, As... A) {
609
167
    // If we're not in a conditional branch, or if none of the
610
167
    // arguments requires saving, then use the unconditional cleanup.
611
167
    if (!isInConditionalBranch())
612
159
      return EHStack.pushCleanup<T>(kind, A...);
613
8
614
8
    // Stash values in a tuple so we can guarantee the order of saves.
615
8
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
616
8
    SavedTuple Saved{saveValueInCond(A)...};
617
8
618
8
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
619
8
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
620
8
    initFullExprCleanup();
621
8
  }
void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
608
438
  void pushFullExprCleanup(CleanupKind kind, As... A) {
609
438
    // If we're not in a conditional branch, or if none of the
610
438
    // arguments requires saving, then use the unconditional cleanup.
611
438
    if (!isInConditionalBranch())
612
360
      return EHStack.pushCleanup<T>(kind, A...);
613
78
614
78
    // Stash values in a tuple so we can guarantee the order of saves.
615
78
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
616
78
    SavedTuple Saved{saveValueInCond(A)...};
617
78
618
78
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
619
78
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
620
78
    initFullExprCleanup();
621
78
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
608
3.87k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
609
3.87k
    // If we're not in a conditional branch, or if none of the
610
3.87k
    // arguments requires saving, then use the unconditional cleanup.
611
3.87k
    if (!isInConditionalBranch())
612
3.77k
      return EHStack.pushCleanup<T>(kind, A...);
613
102
614
102
    // Stash values in a tuple so we can guarantee the order of saves.
615
102
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
616
102
    SavedTuple Saved{saveValueInCond(A)...};
617
102
618
102
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
619
102
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
620
102
    initFullExprCleanup();
621
102
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::IrregularPartialArrayDestroy, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
608
54
  void pushFullExprCleanup(CleanupKind kind, As... A) {
609
54
    // If we're not in a conditional branch, or if none of the
610
54
    // arguments requires saving, then use the unconditional cleanup.
611
54
    if (!isInConditionalBranch())
612
54
      return EHStack.pushCleanup<T>(kind, A...);
613
0
614
0
    // Stash values in a tuple so we can guarantee the order of saves.
615
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
616
0
    SavedTuple Saved{saveValueInCond(A)...};
617
0
618
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
619
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
620
0
    initFullExprCleanup();
621
0
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::RegularPartialArrayDestroy, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
608
1.84k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
609
1.84k
    // If we're not in a conditional branch, or if none of the
610
1.84k
    // arguments requires saving, then use the unconditional cleanup.
611
1.84k
    if (!isInConditionalBranch())
612
1.84k
      return EHStack.pushCleanup<T>(kind, A...);
613
0
614
0
    // Stash values in a tuple so we can guarantee the order of saves.
615
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
616
0
    SavedTuple Saved{saveValueInCond(A)...};
617
0
618
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
619
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
620
0
    initFullExprCleanup();
621
0
  }
CGException.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::FreeException, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
608
417
  void pushFullExprCleanup(CleanupKind kind, As... A) {
609
417
    // If we're not in a conditional branch, or if none of the
610
417
    // arguments requires saving, then use the unconditional cleanup.
611
417
    if (!isInConditionalBranch())
612
404
      return EHStack.pushCleanup<T>(kind, A...);
613
13
614
13
    // Stash values in a tuple so we can guarantee the order of saves.
615
13
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
616
13
    SavedTuple Saved{saveValueInCond(A)...};
617
13
618
13
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
619
13
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
620
13
    initFullExprCleanup();
621
13
  }
CGObjC.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::CallObjCRelease, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
608
270
  void pushFullExprCleanup(CleanupKind kind, As... A) {
609
270
    // If we're not in a conditional branch, or if none of the
610
270
    // arguments requires saving, then use the unconditional cleanup.
611
270
    if (!isInConditionalBranch())
612
261
      return EHStack.pushCleanup<T>(kind, A...);
613
9
614
9
    // Stash values in a tuple so we can guarantee the order of saves.
615
9
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
616
9
    SavedTuple Saved{saveValueInCond(A)...};
617
9
618
9
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
619
9
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
620
9
    initFullExprCleanup();
621
9
  }
622
623
  /// Queue a cleanup to be pushed after finishing the current
624
  /// full-expression.
625
  template <class T, class... As>
626
130
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
627
130
    if (!isInConditionalBranch())
628
120
      return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
629
10
630
10
    Address ActiveFlag = createCleanupActiveFlag();
631
10
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
632
10
           "cleanup active flag should never need saving");
633
10
634
10
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
635
10
    SavedTuple Saved{saveValueInCond(A)...};
636
10
637
10
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
638
10
    pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
639
10
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
626
108
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
627
108
    if (!isInConditionalBranch())
628
98
      return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
629
10
630
10
    Address ActiveFlag = createCleanupActiveFlag();
631
10
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
632
10
           "cleanup active flag should never need saving");
633
10
634
10
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
635
10
    SavedTuple Saved{saveValueInCond(A)...};
636
10
637
10
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
638
10
    pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
639
10
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
626
22
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
627
22
    if (!isInConditionalBranch())
628
22
      return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
629
0
630
0
    Address ActiveFlag = createCleanupActiveFlag();
631
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
632
0
           "cleanup active flag should never need saving");
633
0
634
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
635
0
    SavedTuple Saved{saveValueInCond(A)...};
636
0
637
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
638
0
    pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
639
0
  }
640
641
  template <class T, class... As>
642
  void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
643
130
                                    As... A) {
644
130
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
645
130
                                            ActiveFlag.isValid()};
646
130
647
130
    size_t OldSize = LifetimeExtendedCleanupStack.size();
648
130
    LifetimeExtendedCleanupStack.resize(
649
130
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
650
130
        (Header.IsConditional ? 
sizeof(ActiveFlag)10
:
0120
));
651
130
652
130
    static_assert(sizeof(Header) % alignof(T) == 0,
653
130
                  "Cleanup will be allocated on misaligned address");
654
130
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
655
130
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
656
130
    new (Buffer + sizeof(Header)) T(A...);
657
130
    if (Header.IsConditional)
658
10
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
659
130
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprImpl<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
643
98
                                    As... A) {
644
98
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
645
98
                                            ActiveFlag.isValid()};
646
98
647
98
    size_t OldSize = LifetimeExtendedCleanupStack.size();
648
98
    LifetimeExtendedCleanupStack.resize(
649
98
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
650
98
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
651
98
652
98
    static_assert(sizeof(Header) % alignof(T) == 0,
653
98
                  "Cleanup will be allocated on misaligned address");
654
98
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
655
98
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
656
98
    new (Buffer + sizeof(Header)) T(A...);
657
98
    if (Header.IsConditional)
658
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
659
98
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprImpl<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool> >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>)
Line
Count
Source
643
10
                                    As... A) {
644
10
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
645
10
                                            ActiveFlag.isValid()};
646
10
647
10
    size_t OldSize = LifetimeExtendedCleanupStack.size();
648
10
    LifetimeExtendedCleanupStack.resize(
649
10
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
650
10
        (Header.IsConditional ? sizeof(ActiveFlag) : 
00
));
651
10
652
10
    static_assert(sizeof(Header) % alignof(T) == 0,
653
10
                  "Cleanup will be allocated on misaligned address");
654
10
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
655
10
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
656
10
    new (Buffer + sizeof(Header)) T(A...);
657
10
    if (Header.IsConditional)
658
10
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
659
10
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprImpl<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
643
22
                                    As... A) {
644
22
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
645
22
                                            ActiveFlag.isValid()};
646
22
647
22
    size_t OldSize = LifetimeExtendedCleanupStack.size();
648
22
    LifetimeExtendedCleanupStack.resize(
649
22
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
650
22
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
651
22
652
22
    static_assert(sizeof(Header) % alignof(T) == 0,
653
22
                  "Cleanup will be allocated on misaligned address");
654
22
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
655
22
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
656
22
    new (Buffer + sizeof(Header)) T(A...);
657
22
    if (Header.IsConditional)
658
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
659
22
  }
Unexecuted instantiation: void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprImpl<clang::CodeGen::EHScopeStack::ConditionalCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
660
661
  /// Set up the last cleanup that was pushed as a conditional
662
  /// full-expression cleanup.
663
216
  void initFullExprCleanup() {
664
216
    initFullExprCleanupWithFlag(createCleanupActiveFlag());
665
216
  }
666
667
  void initFullExprCleanupWithFlag(Address ActiveFlag);
668
  Address createCleanupActiveFlag();
669
670
  /// PushDestructorCleanup - Push a cleanup to call the
671
  /// complete-object destructor of an object of the given type at the
672
  /// given address.  Does nothing if T is not a C++ class type with a
673
  /// non-trivial destructor.
674
  void PushDestructorCleanup(QualType T, Address Addr);
675
676
  /// PushDestructorCleanup - Push a cleanup to call the
677
  /// complete-object variant of the given destructor on the object at
678
  /// the given address.
679
  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
680
                             Address Addr);
681
682
  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
683
  /// process all branch fixups.
684
  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
685
686
  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
687
  /// The block cannot be reactivated.  Pops it if it's the top of the
688
  /// stack.
689
  ///
690
  /// \param DominatingIP - An instruction which is known to
691
  ///   dominate the current IP (if set) and which lies along
692
  ///   all paths of execution between the current IP and the
693
  ///   the point at which the cleanup comes into scope.
694
  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
695
                              llvm::Instruction *DominatingIP);
696
697
  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
698
  /// Cannot be used to resurrect a deactivated cleanup.
699
  ///
700
  /// \param DominatingIP - An instruction which is known to
701
  ///   dominate the current IP (if set) and which lies along
702
  ///   all paths of execution between the current IP and the
703
  ///   the point at which the cleanup comes into scope.
704
  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
705
                            llvm::Instruction *DominatingIP);
706
707
  /// Enters a new scope for capturing cleanups, all of which
708
  /// will be executed once the scope is exited.
709
  class RunCleanupsScope {
710
    EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
711
    size_t LifetimeExtendedCleanupStackSize;
712
    bool OldDidCallStackSave;
713
  protected:
714
    bool PerformCleanup;
715
  private:
716
717
    RunCleanupsScope(const RunCleanupsScope &) = delete;
718
    void operator=(const RunCleanupsScope &) = delete;
719
720
  protected:
721
    CodeGenFunction& CGF;
722
723
  public:
724
    /// Enter a new cleanup scope.
725
    explicit RunCleanupsScope(CodeGenFunction &CGF)
726
      : PerformCleanup(true), CGF(CGF)
727
633k
    {
728
633k
      CleanupStackDepth = CGF.EHStack.stable_begin();
729
633k
      LifetimeExtendedCleanupStackSize =
730
633k
          CGF.LifetimeExtendedCleanupStack.size();
731
633k
      OldDidCallStackSave = CGF.DidCallStackSave;
732
633k
      CGF.DidCallStackSave = false;
733
633k
      OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
734
633k
      CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
735
633k
    }
736
737
    /// Exit this cleanup scope, emitting any accumulated cleanups.
738
633k
    ~RunCleanupsScope() {
739
633k
      if (PerformCleanup)
740
202k
        ForceCleanup();
741
633k
    }
742
743
    /// Determine whether this scope requires any cleanups.
744
20.9k
    bool requiresCleanups() const {
745
20.9k
      return CGF.EHStack.stable_begin() != CleanupStackDepth;
746
20.9k
    }
747
748
    /// Force the emission of cleanups now, instead of waiting
749
    /// until this object is destroyed.
750
    /// \param ValuesToReload - A list of values that need to be available at
751
    /// the insertion point after cleanup emission. If cleanup emission created
752
    /// a shared cleanup block, these value pointers will be rewritten.
753
    /// Otherwise, they not will be modified.
754
633k
    void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
755
633k
      assert(PerformCleanup && "Already forced cleanup");
756
633k
      CGF.DidCallStackSave = OldDidCallStackSave;
757
633k
      CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
758
633k
                           ValuesToReload);
759
633k
      PerformCleanup = false;
760
633k
      CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
761
633k
    }
762
  };
763
764
  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
765
  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
766
      EHScopeStack::stable_end();
767
768
  class LexicalScope : public RunCleanupsScope {
769
    SourceRange Range;
770
    SmallVector<const LabelDecl*, 4> Labels;
771
    LexicalScope *ParentScope;
772
773
    LexicalScope(const LexicalScope &) = delete;
774
    void operator=(const LexicalScope &) = delete;
775
776
  public:
777
    /// Enter a new cleanup scope.
778
    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
779
181k
      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
780
181k
      CGF.CurLexicalScope = this;
781
181k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
782
112k
        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
783
181k
    }
784
785
0
    void addLabel(const LabelDecl *label) {
786
0
      assert(PerformCleanup && "adding label to dead scope?");
787
0
      Labels.push_back(label);
788
0
    }
789
790
    /// Exit this cleanup scope, emitting any accumulated
791
    /// cleanups.
792
181k
    ~LexicalScope() {
793
181k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
794
112k
        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
795
181k
796
181k
      // If we should perform a cleanup, force them now.  Note that
797
181k
      // this ends the cleanup scope before rescoping any labels.
798
181k
      if (PerformCleanup) {
799
164k
        ApplyDebugLocation DL(CGF, Range.getEnd());
800
164k
        ForceCleanup();
801
164k
      }
802
181k
    }
803
804
    /// Force the emission of cleanups now, instead of waiting
805
    /// until this object is destroyed.
806
181k
    void ForceCleanup() {
807
181k
      CGF.CurLexicalScope = ParentScope;
808
181k
      RunCleanupsScope::ForceCleanup();
809
181k
810
181k
      if (!Labels.empty())
811
0
        rescopeLabels();
812
181k
    }
813
814
7.93k
    bool hasLabels() const {
815
7.93k
      return !Labels.empty();
816
7.93k
    }
817
818
    void rescopeLabels();
819
  };
820
821
  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
822
823
  /// The class used to assign some variables some temporarily addresses.
824
  class OMPMapVars {
825
    DeclMapTy SavedLocals;
826
    DeclMapTy SavedTempAddresses;
827
    OMPMapVars(const OMPMapVars &) = delete;
828
    void operator=(const OMPMapVars &) = delete;
829
830
  public:
831
96.8k
    explicit OMPMapVars() = default;
832
96.8k
    ~OMPMapVars() {
833
96.8k
      assert(SavedLocals.empty() && "Did not restored original addresses.");
834
96.8k
    };
835
836
    /// Sets the address of the variable \p LocalVD to be \p TempAddr in
837
    /// function \p CGF.
838
    /// \return true if at least one variable was set already, false otherwise.
839
    bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
840
135k
                    Address TempAddr) {
841
135k
      LocalVD = LocalVD->getCanonicalDecl();
842
135k
      // Only save it once.
843
135k
      if (SavedLocals.count(LocalVD)) 
return false15.8k
;
844
119k
845
119k
      // Copy the existing local entry to SavedLocals.
846
119k
      auto it = CGF.LocalDeclMap.find(LocalVD);
847
119k
      if (it != CGF.LocalDeclMap.end())
848
44.4k
        SavedLocals.try_emplace(LocalVD, it->second);
849
75.1k
      else
850
75.1k
        SavedLocals.try_emplace(LocalVD, Address::invalid());
851
119k
852
119k
      // Generate the private entry.
853
119k
      QualType VarTy = LocalVD->getType();
854
119k
      if (VarTy->isReferenceType()) {
855
4.30k
        Address Temp = CGF.CreateMemTemp(VarTy);
856
4.30k
        CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
857
4.30k
        TempAddr = Temp;
858
4.30k
      }
859
119k
      SavedTempAddresses.try_emplace(LocalVD, TempAddr);
860
119k
861
119k
      return true;
862
119k
    }
863
864
    /// Applies new addresses to the list of the variables.
865
    /// \return true if at least one variable is using new address, false
866
    /// otherwise.
867
88.2k
    bool apply(CodeGenFunction &CGF) {
868
88.2k
      copyInto(SavedTempAddresses, CGF.LocalDeclMap);
869
88.2k
      SavedTempAddresses.clear();
870
88.2k
      return !SavedLocals.empty();
871
88.2k
    }
872
873
    /// Restores original addresses of the variables.
874
96.8k
    void restore(CodeGenFunction &CGF) {
875
96.8k
      if (!SavedLocals.empty()) {
876
61.0k
        copyInto(SavedLocals, CGF.LocalDeclMap);
877
61.0k
        SavedLocals.clear();
878
61.0k
      }
879
96.8k
    }
880
881
  private:
882
    /// Copy all the entries in the source map over the corresponding
883
    /// entries in the destination, which must exist.
884
149k
    static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
885
239k
      for (auto &Pair : Src) {
886
239k
        if (!Pair.second.isValid()) {
887
75.1k
          Dest.erase(Pair.first);
888
75.1k
          continue;
889
75.1k
        }
890
164k
891
164k
        auto I = Dest.find(Pair.first);
892
164k
        if (I != Dest.end())
893
88.8k
          I->second = Pair.second;
894
75.1k
        else
895
75.1k
          Dest.insert(Pair);
896
164k
      }
897
149k
    }
898
  };
899
900
  /// The scope used to remap some variables as private in the OpenMP loop body
901
  /// (or other captured region emitted without outlining), and to restore old
902
  /// vars back on exit.
903
  class OMPPrivateScope : public RunCleanupsScope {
904
    OMPMapVars MappedVars;
905
    OMPPrivateScope(const OMPPrivateScope &) = delete;
906
    void operator=(const OMPPrivateScope &) = delete;
907
908
  public:
909
    /// Enter a new OpenMP private scope.
910
82.3k
    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
911
912
    /// Registers \p LocalVD variable as a private and apply \p PrivateGen
913
    /// function for it to generate corresponding private variable. \p
914
    /// PrivateGen returns an address of the generated private variable.
915
    /// \return true if the variable is registered as private, false if it has
916
    /// been privatized already.
917
    bool addPrivate(const VarDecl *LocalVD,
918
119k
                    const llvm::function_ref<Address()> PrivateGen) {
919
119k
      assert(PerformCleanup && "adding private to dead scope");
920
119k
      return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
921
119k
    }
922
923
    /// Privatizes local variables previously registered as private.
924
    /// Registration is separate from the actual privatization to allow
925
    /// initializers use values of the original variables, not the private one.
926
    /// This is important, for example, if the private variable is a class
927
    /// variable initialized by a constructor that references other private
928
    /// variables. But at initialization original variables must be used, not
929
    /// private copies.
930
    /// \return true if at least one variable was privatized, false otherwise.
931
73.7k
    bool Privatize() { return MappedVars.apply(CGF); }
932
933
82.3k
    void ForceCleanup() {
934
82.3k
      RunCleanupsScope::ForceCleanup();
935
82.3k
      MappedVars.restore(CGF);
936
82.3k
    }
937
938
    /// Exit scope - all the mapped variables are restored.
939
82.3k
    ~OMPPrivateScope() {
940
82.3k
      if (PerformCleanup)
941
66.3k
        ForceCleanup();
942
82.3k
    }
943
944
    /// Checks if the global variable is captured in current function.
945
6.69k
    bool isGlobalVarCaptured(const VarDecl *VD) const {
946
6.69k
      VD = VD->getCanonicalDecl();
947
6.69k
      return !VD->isLocalVarDeclOrParm() && 
CGF.LocalDeclMap.count(VD) > 0821
;
948
6.69k
    }
949
  };
950
951
  /// Save/restore original map of previously emitted local vars in case when we
952
  /// need to duplicate emission of the same code several times in the same
953
  /// function for OpenMP code.
954
  class OMPLocalDeclMapRAII {
955
    CodeGenFunction &CGF;
956
    DeclMapTy SavedMap;
957
958
  public:
959
    OMPLocalDeclMapRAII(CodeGenFunction &CGF)
960
9.96k
        : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
961
9.96k
    ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
962
  };
963
964
  /// Takes the old cleanup stack size and emits the cleanup blocks
965
  /// that have been added.
966
  void
967
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
968
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
969
970
  /// Takes the old cleanup stack size and emits the cleanup blocks
971
  /// that have been added, then adds all lifetime-extended cleanups from
972
  /// the given position to the stack.
973
  void
974
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
975
                   size_t OldLifetimeExtendedStackSize,
976
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
977
978
  void ResolveBranchFixups(llvm::BasicBlock *Target);
979
980
  /// The given basic block lies in the current EH scope, but may be a
981
  /// target of a potentially scope-crossing jump; get a stable handle
982
  /// to which we can perform this jump later.
983
308k
  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
984
308k
    return JumpDest(Target,
985
308k
                    EHStack.getInnermostNormalCleanup(),
986
308k
                    NextCleanupDestIndex++);
987
308k
  }
988
989
  /// The given basic block lies in the current EH scope, but may be a
990
  /// target of a potentially scope-crossing jump; get a stable handle
991
  /// to which we can perform this jump later.
992
303k
  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
993
303k
    return getJumpDestInCurrentScope(createBasicBlock(Name));
994
303k
  }
995
996
  /// EmitBranchThroughCleanup - Emit a branch from the current insert
997
  /// block through the normal cleanup handling code (if any) and then
998
  /// on to \arg Dest.
999
  void EmitBranchThroughCleanup(JumpDest Dest);
1000
1001
  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1002
  /// specified destination obviously has no cleanups to run.  'false' is always
1003
  /// a conservatively correct answer for this method.
1004
  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1005
1006
  /// popCatchScope - Pops the catch scope at the top of the EHScope
1007
  /// stack, emitting any required code (other than the catch handlers
1008
  /// themselves).
1009
  void popCatchScope();
1010
1011
  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1012
  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1013
  llvm::BasicBlock *
1014
  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1015
1016
  /// An object to manage conditionally-evaluated expressions.
1017
  class ConditionalEvaluation {
1018
    llvm::BasicBlock *StartBB;
1019
1020
  public:
1021
    ConditionalEvaluation(CodeGenFunction &CGF)
1022
16.2k
      : StartBB(CGF.Builder.GetInsertBlock()) {}
1023
1024
22.0k
    void begin(CodeGenFunction &CGF) {
1025
22.0k
      assert(CGF.OutermostConditional != this);
1026
22.0k
      if (!CGF.OutermostConditional)
1027
21.9k
        CGF.OutermostConditional = this;
1028
22.0k
    }
1029
1030
22.0k
    void end(CodeGenFunction &CGF) {
1031
22.0k
      assert(CGF.OutermostConditional != nullptr);
1032
22.0k
      if (CGF.OutermostConditional == this)
1033
21.9k
        CGF.OutermostConditional = nullptr;
1034
22.0k
    }
1035
1036
    /// Returns a block which will be executed prior to each
1037
    /// evaluation of the conditional code.
1038
247
    llvm::BasicBlock *getStartingBlock() const {
1039
247
      return StartBB;
1040
247
    }
1041
  };
1042
1043
  /// isInConditionalBranch - Return true if we're currently emitting
1044
  /// one branch or the other of a conditional expression.
1045
9.04k
  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1046
1047
229
  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1048
229
    assert(isInConditionalBranch());
1049
229
    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1050
229
    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1051
229
    store->setAlignment(addr.getAlignment().getAsAlign());
1052
229
  }
1053
1054
  /// An RAII object to record that we're evaluating a statement
1055
  /// expression.
1056
  class StmtExprEvaluation {
1057
    CodeGenFunction &CGF;
1058
1059
    /// We have to save the outermost conditional: cleanups in a
1060
    /// statement expression aren't conditional just because the
1061
    /// StmtExpr is.
1062
    ConditionalEvaluation *SavedOutermostConditional;
1063
1064
  public:
1065
    StmtExprEvaluation(CodeGenFunction &CGF)
1066
3.24k
      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1067
3.24k
      CGF.OutermostConditional = nullptr;
1068
3.24k
    }
1069
1070
3.24k
    ~StmtExprEvaluation() {
1071
3.24k
      CGF.OutermostConditional = SavedOutermostConditional;
1072
3.24k
      CGF.EnsureInsertPoint();
1073
3.24k
    }
1074
  };
1075
1076
  /// An object which temporarily prevents a value from being
1077
  /// destroyed by aggressive peephole optimizations that assume that
1078
  /// all uses of a value have been realized in the IR.
1079
  class PeepholeProtection {
1080
    llvm::Instruction *Inst;
1081
    friend class CodeGenFunction;
1082
1083
  public:
1084
10.6k
    PeepholeProtection() : Inst(nullptr) {}
1085
  };
1086
1087
  /// A non-RAII class containing all the information about a bound
1088
  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1089
  /// this which makes individual mappings very simple; using this
1090
  /// class directly is useful when you have a variable number of
1091
  /// opaque values or don't want the RAII functionality for some
1092
  /// reason.
1093
  class OpaqueValueMappingData {
1094
    const OpaqueValueExpr *OpaqueValue;
1095
    bool BoundLValue;
1096
    CodeGenFunction::PeepholeProtection Protection;
1097
1098
    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1099
                           bool boundLValue)
1100
1.34k
      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1101
  public:
1102
8.25k
    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1103
1104
4.81k
    static bool shouldBindAsLValue(const Expr *expr) {
1105
4.81k
      // gl-values should be bound as l-values for obvious reasons.
1106
4.81k
      // Records should be bound as l-values because IR generation
1107
4.81k
      // always keeps them in memory.  Expressions of function type
1108
4.81k
      // act exactly like l-values but are formally required to be
1109
4.81k
      // r-values in C.
1110
4.81k
      return expr->isGLValue() ||
1111
4.81k
             
expr->getType()->isFunctionType()3.18k
||
1112
4.81k
             
hasAggregateEvaluationKind(expr->getType())3.18k
;
1113
4.81k
    }
1114
1115
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1116
                                       const OpaqueValueExpr *ov,
1117
429
                                       const Expr *e) {
1118
429
      if (shouldBindAsLValue(ov))
1119
157
        return bind(CGF, ov, CGF.EmitLValue(e));
1120
272
      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1121
272
    }
1122
1123
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1124
                                       const OpaqueValueExpr *ov,
1125
309
                                       const LValue &lv) {
1126
309
      assert(shouldBindAsLValue(ov));
1127
309
      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1128
309
      return OpaqueValueMappingData(ov, true);
1129
309
    }
1130
1131
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1132
                                       const OpaqueValueExpr *ov,
1133
1.03k
                                       const RValue &rv) {
1134
1.03k
      assert(!shouldBindAsLValue(ov));
1135
1.03k
      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1136
1.03k
1137
1.03k
      OpaqueValueMappingData data(ov, false);
1138
1.03k
1139
1.03k
      // Work around an extremely aggressive peephole optimization in
1140
1.03k
      // EmitScalarConversion which assumes that all other uses of a
1141
1.03k
      // value are extant.
1142
1.03k
      data.Protection = CGF.protectFromPeepholes(rv);
1143
1.03k
1144
1.03k
      return data;
1145
1.03k
    }
1146
1147
8.88k
    bool isValid() const { return OpaqueValue != nullptr; }
1148
6
    void clear() { OpaqueValue = nullptr; }
1149
1150
1.34k
    void unbind(CodeGenFunction &CGF) {
1151
1.34k
      assert(OpaqueValue && "no data to unbind!");
1152
1.34k
1153
1.34k
      if (BoundLValue) {
1154
309
        CGF.OpaqueLValues.erase(OpaqueValue);
1155
1.03k
      } else {
1156
1.03k
        CGF.OpaqueRValues.erase(OpaqueValue);
1157
1.03k
        CGF.unprotectFromPeepholes(Protection);
1158
1.03k
      }
1159
1.34k
    }
1160
  };
1161
1162
  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1163
  class OpaqueValueMapping {
1164
    CodeGenFunction &CGF;
1165
    OpaqueValueMappingData Data;
1166
1167
  public:
1168
2.54k
    static bool shouldBindAsLValue(const Expr *expr) {
1169
2.54k
      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1170
2.54k
    }
1171
1172
    /// Build the opaque value mapping for the given conditional
1173
    /// operator if it's the GNU ?: extension.  This is a common
1174
    /// enough pattern that the convenience operator is really
1175
    /// helpful.
1176
    ///
1177
    OpaqueValueMapping(CodeGenFunction &CGF,
1178
7.94k
                       const AbstractConditionalOperator *op) : CGF(CGF) {
1179
7.94k
      if (isa<ConditionalOperator>(op))
1180
7.91k
        // Leave Data empty.
1181
7.91k
        return;
1182
28
1183
28
      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1184
28
      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1185
28
                                          e->getCommon());
1186
28
    }
1187
1188
    /// Build the opaque value mapping for an OpaqueValueExpr whose source
1189
    /// expression is set to the expression the OVE represents.
1190
    OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1191
28
        : CGF(CGF) {
1192
28
      if (OV) {
1193
28
        assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1194
28
                                      "for OVE with no source expression");
1195
28
        Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1196
28
      }
1197
28
    }
1198
1199
    OpaqueValueMapping(CodeGenFunction &CGF,
1200
                       const OpaqueValueExpr *opaqueValue,
1201
                       LValue lvalue)
1202
142
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1203
142
    }
1204
1205
    OpaqueValueMapping(CodeGenFunction &CGF,
1206
                       const OpaqueValueExpr *opaqueValue,
1207
                       RValue rvalue)
1208
765
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1209
765
    }
1210
1211
6
    void pop() {
1212
6
      Data.unbind(CGF);
1213
6
      Data.clear();
1214
6
    }
1215
1216
8.88k
    ~OpaqueValueMapping() {
1217
8.88k
      if (Data.isValid()) 
Data.unbind(CGF)957
;
1218
8.88k
    }
1219
  };
1220
1221
private:
1222
  CGDebugInfo *DebugInfo;
1223
  /// Used to create unique names for artificial VLA size debug info variables.
1224
  unsigned VLAExprCounter = 0;
1225
  bool DisableDebugInfo = false;
1226
1227
  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1228
  /// calling llvm.stacksave for multiple VLAs in the same scope.
1229
  bool DidCallStackSave = false;
1230
1231
  /// IndirectBranch - The first time an indirect goto is seen we create a block
1232
  /// with an indirect branch.  Every time we see the address of a label taken,
1233
  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1234
  /// codegen'd as a jump to the IndirectBranch's basic block.
1235
  llvm::IndirectBrInst *IndirectBranch = nullptr;
1236
1237
  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1238
  /// decls.
1239
  DeclMapTy LocalDeclMap;
1240
1241
  // Keep track of the cleanups for callee-destructed parameters pushed to the
1242
  // cleanup stack so that they can be deactivated later.
1243
  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1244
      CalleeDestructedParamCleanups;
1245
1246
  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1247
  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1248
  /// parameter.
1249
  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1250
      SizeArguments;
1251
1252
  /// Track escaped local variables with auto storage. Used during SEH
1253
  /// outlining to produce a call to llvm.localescape.
1254
  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1255
1256
  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1257
  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1258
1259
  // BreakContinueStack - This keeps track of where break and continue
1260
  // statements should jump to.
1261
  struct BreakContinue {
1262
    BreakContinue(JumpDest Break, JumpDest Continue)
1263
30.1k
      : BreakBlock(Break), ContinueBlock(Continue) {}
1264
1265
    JumpDest BreakBlock;
1266
    JumpDest ContinueBlock;
1267
  };
1268
  SmallVector<BreakContinue, 8> BreakContinueStack;
1269
1270
  /// Handles cancellation exit points in OpenMP-related constructs.
1271
  class OpenMPCancelExitStack {
1272
    /// Tracks cancellation exit point and join point for cancel-related exit
1273
    /// and normal exit.
1274
    struct CancelExit {
1275
243k
      CancelExit() = default;
1276
      CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1277
                 JumpDest ContBlock)
1278
2.70k
          : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1279
      OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1280
      /// true if the exit block has been emitted already by the special
1281
      /// emitExit() call, false if the default codegen is used.
1282
      bool HasBeenEmitted = false;
1283
      JumpDest ExitBlock;
1284
      JumpDest ContBlock;
1285
    };
1286
1287
    SmallVector<CancelExit, 8> Stack;
1288
1289
  public:
1290
243k
    OpenMPCancelExitStack() : Stack(1) {}
1291
243k
    ~OpenMPCancelExitStack() = default;
1292
    /// Fetches the exit block for the current OpenMP construct.
1293
5.63k
    JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1294
    /// Emits exit block with special codegen procedure specific for the related
1295
    /// OpenMP construct + emits code for normal construct cleanup.
1296
    void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1297
3.46k
                  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1298
3.46k
      if (Stack.back().Kind == Kind && 
getExitBlock().isValid()2.69k
) {
1299
66
        assert(CGF.getOMPCancelDestination(Kind).isValid());
1300
66
        assert(CGF.HaveInsertPoint());
1301
66
        assert(!Stack.back().HasBeenEmitted);
1302
66
        auto IP = CGF.Builder.saveAndClearIP();
1303
66
        CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1304
66
        CodeGen(CGF);
1305
66
        CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1306
66
        CGF.Builder.restoreIP(IP);
1307
66
        Stack.back().HasBeenEmitted = true;
1308
66
      }
1309
3.46k
      CodeGen(CGF);
1310
3.46k
    }
1311
    /// Enter the cancel supporting \a Kind construct.
1312
    /// \param Kind OpenMP directive that supports cancel constructs.
1313
    /// \param HasCancel true, if the construct has inner cancel directive,
1314
    /// false otherwise.
1315
2.70k
    void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1316
2.70k
      Stack.push_back({Kind,
1317
2.70k
                       HasCancel ? 
CGF.getJumpDestInCurrentScope("cancel.exit")66
1318
2.70k
                                 : 
JumpDest()2.64k
,
1319
2.70k
                       HasCancel ? 
CGF.getJumpDestInCurrentScope("cancel.cont")66
1320
2.70k
                                 : 
JumpDest()2.64k
});
1321
2.70k
    }
1322
    /// Emits default exit point for the cancel construct (if the special one
1323
    /// has not be used) + join point for cancel/normal exits.
1324
2.70k
    void exit(CodeGenFunction &CGF) {
1325
2.70k
      if (getExitBlock().isValid()) {
1326
66
        assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1327
66
        bool HaveIP = CGF.HaveInsertPoint();
1328
66
        if (!Stack.back().HasBeenEmitted) {
1329
0
          if (HaveIP)
1330
0
            CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1331
0
          CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1332
0
          CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1333
0
        }
1334
66
        CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1335
66
        if (!HaveIP) {
1336
0
          CGF.Builder.CreateUnreachable();
1337
0
          CGF.Builder.ClearInsertionPoint();
1338
0
        }
1339
66
      }
1340
2.70k
      Stack.pop_back();
1341
2.70k
    }
1342
  };
1343
  OpenMPCancelExitStack OMPCancelStack;
1344
1345
  CodeGenPGO PGO;
1346
1347
  /// Calculate branch weights appropriate for PGO data
1348
  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1349
  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1350
  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1351
                                            uint64_t LoopCount);
1352
1353
public:
1354
  /// Increment the profiler's counter for the given statement by \p StepV.
1355
  /// If \p StepV is null, the default increment is 1.
1356
300k
  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1357
300k
    if (CGM.getCodeGenOpts().hasProfileClangInstr())
1358
775
      PGO.emitCounterIncrement(Builder, S, StepV);
1359
300k
    PGO.setCurrentStmt(S);
1360
300k
  }
1361
1362
  /// Get the profiler's count for the given statement.
1363
103k
  uint64_t getProfileCount(const Stmt *S) {
1364
103k
    Optional<uint64_t> Count = PGO.getStmtCount(S);
1365
103k
    if (!Count.hasValue())
1366
103k
      return 0;
1367
407
    return *Count;
1368
407
  }
1369
1370
  /// Set the profiler's current count.
1371
7.83k
  void setCurrentProfileCount(uint64_t Count) {
1372
7.83k
    PGO.setCurrentRegionCount(Count);
1373
7.83k
  }
1374
1375
  /// Get the profiler's current count. This is generally the count for the most
1376
  /// recently incremented counter.
1377
96.8k
  uint64_t getCurrentProfileCount() {
1378
96.8k
    return PGO.getCurrentRegionCount();
1379
96.8k
  }
1380
1381
private:
1382
1383
  /// SwitchInsn - This is nearest current switch instruction. It is null if
1384
  /// current context is not in a switch.
1385
  llvm::SwitchInst *SwitchInsn = nullptr;
1386
  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1387
  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1388
1389
  /// CaseRangeBlock - This block holds if condition check for last case
1390
  /// statement range in current switch instruction.
1391
  llvm::BasicBlock *CaseRangeBlock = nullptr;
1392
1393
  /// OpaqueLValues - Keeps track of the current set of opaque value
1394
  /// expressions.
1395
  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1396
  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1397
1398
  // VLASizeMap - This keeps track of the associated size for each VLA type.
1399
  // We track this by the size expression rather than the type itself because
1400
  // in certain situations, like a const qualifier applied to an VLA typedef,
1401
  // multiple VLA types can share the same size expression.
1402
  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1403
  // enter/leave scopes.
1404
  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1405
1406
  /// A block containing a single 'unreachable' instruction.  Created
1407
  /// lazily by getUnreachableBlock().
1408
  llvm::BasicBlock *UnreachableBlock = nullptr;
1409
1410
  /// Counts of the number return expressions in the function.
1411
  unsigned NumReturnExprs = 0;
1412
1413
  /// Count the number of simple (constant) return expressions in the function.
1414
  unsigned NumSimpleReturnExprs = 0;
1415
1416
  /// The last regular (non-return) debug location (breakpoint) in the function.
1417
  SourceLocation LastStopPoint;
1418
1419
public:
1420
  /// Source location information about the default argument or member
1421
  /// initializer expression we're evaluating, if any.
1422
  CurrentSourceLocExprScope CurSourceLocExprScope;
1423
  using SourceLocExprScopeGuard =
1424
      CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1425
1426
  /// A scope within which we are constructing the fields of an object which
1427
  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1428
  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1429
  class FieldConstructionScope {
1430
  public:
1431
    FieldConstructionScope(CodeGenFunction &CGF, Address This)
1432
22.1k
        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1433
22.1k
      CGF.CXXDefaultInitExprThis = This;
1434
22.1k
    }
1435
22.1k
    ~FieldConstructionScope() {
1436
22.1k
      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1437
22.1k
    }
1438
1439
  private:
1440
    CodeGenFunction &CGF;
1441
    Address OldCXXDefaultInitExprThis;
1442
  };
1443
1444
  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1445
  /// is overridden to be the object under construction.
1446
  class CXXDefaultInitExprScope  {
1447
  public:
1448
    CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1449
        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1450
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1451
399
          SourceLocScope(E, CGF.CurSourceLocExprScope) {
1452
399
      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1453
399
      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1454
399
    }
1455
399
    ~CXXDefaultInitExprScope() {
1456
399
      CGF.CXXThisValue = OldCXXThisValue;
1457
399
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1458
399
    }
1459
1460
  public:
1461
    CodeGenFunction &CGF;
1462
    llvm::Value *OldCXXThisValue;
1463
    CharUnits OldCXXThisAlignment;
1464
    SourceLocExprScopeGuard SourceLocScope;
1465
  };
1466
1467
  struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1468
    CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1469
4.05k
        : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1470
  };
1471
1472
  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1473
  /// current loop index is overridden.
1474
  class ArrayInitLoopExprScope {
1475
  public:
1476
    ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1477
28
      : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1478
28
      CGF.ArrayInitIndex = Index;
1479
28
    }
1480
28
    ~ArrayInitLoopExprScope() {
1481
28
      CGF.ArrayInitIndex = OldArrayInitIndex;
1482
28
    }
1483
1484
  private:
1485
    CodeGenFunction &CGF;
1486
    llvm::Value *OldArrayInitIndex;
1487
  };
1488
1489
  class InlinedInheritingConstructorScope {
1490
  public:
1491
    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1492
        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1493
          OldCurCodeDecl(CGF.CurCodeDecl),
1494
          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1495
          OldCXXABIThisValue(CGF.CXXABIThisValue),
1496
          OldCXXThisValue(CGF.CXXThisValue),
1497
          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1498
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1499
          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1500
          OldCXXInheritedCtorInitExprArgs(
1501
47
              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1502
47
      CGF.CurGD = GD;
1503
47
      CGF.CurFuncDecl = CGF.CurCodeDecl =
1504
47
          cast<CXXConstructorDecl>(GD.getDecl());
1505
47
      CGF.CXXABIThisDecl = nullptr;
1506
47
      CGF.CXXABIThisValue = nullptr;
1507
47
      CGF.CXXThisValue = nullptr;
1508
47
      CGF.CXXABIThisAlignment = CharUnits();
1509
47
      CGF.CXXThisAlignment = CharUnits();
1510
47
      CGF.ReturnValue = Address::invalid();
1511
47
      CGF.FnRetTy = QualType();
1512
47
      CGF.CXXInheritedCtorInitExprArgs.clear();
1513
47
    }
1514
47
    ~InlinedInheritingConstructorScope() {
1515
47
      CGF.CurGD = OldCurGD;
1516
47
      CGF.CurFuncDecl = OldCurFuncDecl;
1517
47
      CGF.CurCodeDecl = OldCurCodeDecl;
1518
47
      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1519
47
      CGF.CXXABIThisValue = OldCXXABIThisValue;
1520
47
      CGF.CXXThisValue = OldCXXThisValue;
1521
47
      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1522
47
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1523
47
      CGF.ReturnValue = OldReturnValue;
1524
47
      CGF.FnRetTy = OldFnRetTy;
1525
47
      CGF.CXXInheritedCtorInitExprArgs =
1526
47
          std::move(OldCXXInheritedCtorInitExprArgs);
1527
47
    }
1528
1529
  private:
1530
    CodeGenFunction &CGF;
1531
    GlobalDecl OldCurGD;
1532
    const Decl *OldCurFuncDecl;
1533
    const Decl *OldCurCodeDecl;
1534
    ImplicitParamDecl *OldCXXABIThisDecl;
1535
    llvm::Value *OldCXXABIThisValue;
1536
    llvm::Value *OldCXXThisValue;
1537
    CharUnits OldCXXABIThisAlignment;
1538
    CharUnits OldCXXThisAlignment;
1539
    Address OldReturnValue;
1540
    QualType OldFnRetTy;
1541
    CallArgList OldCXXInheritedCtorInitExprArgs;
1542
  };
1543
1544
private:
1545
  /// CXXThisDecl - When generating code for a C++ member function,
1546
  /// this will hold the implicit 'this' declaration.
1547
  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1548
  llvm::Value *CXXABIThisValue = nullptr;
1549
  llvm::Value *CXXThisValue = nullptr;
1550
  CharUnits CXXABIThisAlignment;
1551
  CharUnits CXXThisAlignment;
1552
1553
  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1554
  /// this expression.
1555
  Address CXXDefaultInitExprThis = Address::invalid();
1556
1557
  /// The current array initialization index when evaluating an
1558
  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1559
  llvm::Value *ArrayInitIndex = nullptr;
1560
1561
  /// The values of function arguments to use when evaluating
1562
  /// CXXInheritedCtorInitExprs within this context.
1563
  CallArgList CXXInheritedCtorInitExprArgs;
1564
1565
  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1566
  /// destructor, this will hold the implicit argument (e.g. VTT).
1567
  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1568
  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1569
1570
  /// OutermostConditional - Points to the outermost active
1571
  /// conditional control.  This is used so that we know if a
1572
  /// temporary should be destroyed conditionally.
1573
  ConditionalEvaluation *OutermostConditional = nullptr;
1574
1575
  /// The current lexical scope.
1576
  LexicalScope *CurLexicalScope = nullptr;
1577
1578
  /// The current source location that should be used for exception
1579
  /// handling code.
1580
  SourceLocation CurEHLocation;
1581
1582
  /// BlockByrefInfos - For each __block variable, contains
1583
  /// information about the layout of the variable.
1584
  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1585
1586
  /// Used by -fsanitize=nullability-return to determine whether the return
1587
  /// value can be checked.
1588
  llvm::Value *RetValNullabilityPrecondition = nullptr;
1589
1590
  /// Check if -fsanitize=nullability-return instrumentation is required for
1591
  /// this function.
1592
862k
  bool requiresReturnValueNullabilityCheck() const {
1593
862k
    return RetValNullabilityPrecondition;
1594
862k
  }
1595
1596
  /// Used to store precise source locations for return statements by the
1597
  /// runtime return value checks.
1598
  Address ReturnLocation = Address::invalid();
1599
1600
  /// Check if the return value of this function requires sanitization.
1601
  bool requiresReturnValueCheck() const;
1602
1603
  llvm::BasicBlock *TerminateLandingPad = nullptr;
1604
  llvm::BasicBlock *TerminateHandler = nullptr;
1605
  llvm::BasicBlock *TrapBB = nullptr;
1606
1607
  /// Terminate funclets keyed by parent funclet pad.
1608
  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1609
1610
  /// Largest vector width used in ths function. Will be used to create a
1611
  /// function attribute.
1612
  unsigned LargestVectorWidth = 0;
1613
1614
  /// True if we need emit the life-time markers.
1615
  const bool ShouldEmitLifetimeMarkers;
1616
1617
  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1618
  /// the function metadata.
1619
  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1620
                                llvm::Function *Fn);
1621
1622
public:
1623
  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1624
  ~CodeGenFunction();
1625
1626
486k
  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1627
11.4M
  ASTContext &getContext() const { return CGM.getContext(); }
1628
8.46M
  CGDebugInfo *getDebugInfo() {
1629
8.46M
    if (DisableDebugInfo)
1630
6.75k
      return nullptr;
1631
8.45M
    return DebugInfo;
1632
8.45M
  }
1633
2.99k
  void disableDebugInfo() { DisableDebugInfo = true; }
1634
2.99k
  void enableDebugInfo() { DisableDebugInfo = false; }
1635
1636
189
  bool shouldUseFusedARCCalls() {
1637
189
    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1638
189
  }
1639
1640
7.31M
  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1641
1642
  /// Returns a pointer to the function's exception object and selector slot,
1643
  /// which is assigned in every landing pad.
1644
  Address getExceptionSlot();
1645
  Address getEHSelectorSlot();
1646
1647
  /// Returns the contents of the function's exception object and selector
1648
  /// slots.
1649
  llvm::Value *getExceptionFromSlot();
1650
  llvm::Value *getSelectorFromSlot();
1651
1652
  Address getNormalCleanupDestSlot();
1653
1654
328
  llvm::BasicBlock *getUnreachableBlock() {
1655
328
    if (!UnreachableBlock) {
1656
297
      UnreachableBlock = createBasicBlock("unreachable");
1657
297
      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1658
297
    }
1659
328
    return UnreachableBlock;
1660
328
  }
1661
1662
203k
  llvm::BasicBlock *getInvokeDest() {
1663
203k
    if (!EHStack.requiresLandingPad()) 
return nullptr165k
;
1664
37.8k
    return getInvokeDestImpl();
1665
37.8k
  }
1666
1667
305k
  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1668
1669
362k
  const TargetInfo &getTarget() const { return Target; }
1670
2.27M
  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1671
20.0k
  const TargetCodeGenInfo &getTargetHooks() const {
1672
20.0k
    return CGM.getTargetCodeGenInfo();
1673
20.0k
  }
1674
1675
  //===--------------------------------------------------------------------===//
1676
  //                                  Cleanups
1677
  //===--------------------------------------------------------------------===//
1678
1679
  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1680
1681
  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1682
                                        Address arrayEndPointer,
1683
                                        QualType elementType,
1684
                                        CharUnits elementAlignment,
1685
                                        Destroyer *destroyer);
1686
  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1687
                                      llvm::Value *arrayEnd,
1688
                                      QualType elementType,
1689
                                      CharUnits elementAlignment,
1690
                                      Destroyer *destroyer);
1691
1692
  void pushDestroy(QualType::DestructionKind dtorKind,
1693
                   Address addr, QualType type);
1694
  void pushEHDestroy(QualType::DestructionKind dtorKind,
1695
                     Address addr, QualType type);
1696
  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1697
                   Destroyer *destroyer, bool useEHCleanupForArray);
1698
  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1699
                                   QualType type, Destroyer *destroyer,
1700
                                   bool useEHCleanupForArray);
1701
  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1702
                                   llvm::Value *CompletePtr,
1703
                                   QualType ElementType);
1704
  void pushStackRestore(CleanupKind kind, Address SPMem);
1705
  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1706
                   bool useEHCleanupForArray);
1707
  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1708
                                        Destroyer *destroyer,
1709
                                        bool useEHCleanupForArray,
1710
                                        const VarDecl *VD);
1711
  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1712
                        QualType elementType, CharUnits elementAlign,
1713
                        Destroyer *destroyer,
1714
                        bool checkZeroLength, bool useEHCleanup);
1715
1716
  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1717
1718
  /// Determines whether an EH cleanup is required to destroy a type
1719
  /// with the given destruction kind.
1720
21.5k
  bool needsEHCleanup(QualType::DestructionKind kind) {
1721
21.5k
    switch (kind) {
1722
15.6k
    case QualType::DK_none:
1723
15.6k
      return false;
1724
5.40k
    case QualType::DK_cxx_destructor:
1725
5.40k
    case QualType::DK_objc_weak_lifetime:
1726
5.40k
    case QualType::DK_nontrivial_c_struct:
1727
5.40k
      return getLangOpts().Exceptions;
1728
5.40k
    case QualType::DK_objc_strong_lifetime:
1729
476
      return getLangOpts().Exceptions &&
1730
476
             
CGM.getCodeGenOpts().ObjCAutoRefCountExceptions64
;
1731
0
    }
1732
0
    llvm_unreachable("bad destruction kind");
1733
0
  }
1734
1735
1.67k
  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1736
1.67k
    return (needsEHCleanup(kind) ? 
NormalAndEHCleanup819
:
NormalCleanup852
);
1737
1.67k
  }
1738
1739
  //===--------------------------------------------------------------------===//
1740
  //                                  Objective-C
1741
  //===--------------------------------------------------------------------===//
1742
1743
  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1744
1745
  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1746
1747
  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1748
  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1749
                          const ObjCPropertyImplDecl *PID);
1750
  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1751
                              const ObjCPropertyImplDecl *propImpl,
1752
                              const ObjCMethodDecl *GetterMothodDecl,
1753
                              llvm::Constant *AtomicHelperFn);
1754
1755
  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1756
                                  ObjCMethodDecl *MD, bool ctor);
1757
1758
  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1759
  /// for the given property.
1760
  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1761
                          const ObjCPropertyImplDecl *PID);
1762
  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1763
                              const ObjCPropertyImplDecl *propImpl,
1764
                              llvm::Constant *AtomicHelperFn);
1765
1766
  //===--------------------------------------------------------------------===//
1767
  //                                  Block Bits
1768
  //===--------------------------------------------------------------------===//
1769
1770
  /// Emit block literal.
1771
  /// \return an LLVM value which is a pointer to a struct which contains
1772
  /// information about the block, including the block invoke function, the
1773
  /// captured variables, etc.
1774
  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1775
  static void destroyBlockInfos(CGBlockInfo *info);
1776
1777
  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1778
                                        const CGBlockInfo &Info,
1779
                                        const DeclMapTy &ldm,
1780
                                        bool IsLambdaConversionToBlock,
1781
                                        bool BuildGlobalBlock);
1782
1783
  /// Check if \p T is a C++ class that has a destructor that can throw.
1784
  static bool cxxDestructorCanThrow(QualType T);
1785
1786
  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1787
  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1788
  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1789
                                             const ObjCPropertyImplDecl *PID);
1790
  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1791
                                             const ObjCPropertyImplDecl *PID);
1792
  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1793
1794
  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
1795
                         bool CanThrow);
1796
1797
  class AutoVarEmission;
1798
1799
  void emitByrefStructureInit(const AutoVarEmission &emission);
1800
1801
  /// Enter a cleanup to destroy a __block variable.  Note that this
1802
  /// cleanup should be a no-op if the variable hasn't left the stack
1803
  /// yet; if a cleanup is required for the variable itself, that needs
1804
  /// to be done externally.
1805
  ///
1806
  /// \param Kind Cleanup kind.
1807
  ///
1808
  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1809
  /// structure that will be passed to _Block_object_dispose. When
1810
  /// \p LoadBlockVarAddr is true, the address of the field of the block
1811
  /// structure that holds the address of the __block structure.
1812
  ///
1813
  /// \param Flags The flag that will be passed to _Block_object_dispose.
1814
  ///
1815
  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1816
  /// \p Addr to get the address of the __block structure.
1817
  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1818
                         bool LoadBlockVarAddr, bool CanThrow);
1819
1820
  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1821
                                llvm::Value *ptr);
1822
1823
  Address LoadBlockStruct();
1824
  Address GetAddrOfBlockDecl(const VarDecl *var);
1825
1826
  /// BuildBlockByrefAddress - Computes the location of the
1827
  /// data in a variable which is declared as __block.
1828
  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1829
                                bool followForward = true);
1830
  Address emitBlockByrefAddress(Address baseAddr,
1831
                                const BlockByrefInfo &info,
1832
                                bool followForward,
1833
                                const llvm::Twine &name);
1834
1835
  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1836
1837
  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1838
1839
  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1840
                    const CGFunctionInfo &FnInfo);
1841
1842
  /// Annotate the function with an attribute that disables TSan checking at
1843
  /// runtime.
1844
  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
1845
1846
  /// Emit code for the start of a function.
1847
  /// \param Loc       The location to be associated with the function.
1848
  /// \param StartLoc  The location of the function body.
1849
  void StartFunction(GlobalDecl GD,
1850
                     QualType RetTy,
1851
                     llvm::Function *Fn,
1852
                     const CGFunctionInfo &FnInfo,
1853
                     const FunctionArgList &Args,
1854
                     SourceLocation Loc = SourceLocation(),
1855
                     SourceLocation StartLoc = SourceLocation());
1856
1857
  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1858
1859
  void EmitConstructorBody(FunctionArgList &Args);
1860
  void EmitDestructorBody(FunctionArgList &Args);
1861
  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1862
  void EmitFunctionBody(const Stmt *Body);
1863
  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1864
1865
  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1866
                                  CallArgList &CallArgs);
1867
  void EmitLambdaBlockInvokeBody();
1868
  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1869
  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1870
24
  void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
1871
24
    EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1872
24
  }
1873
  void EmitAsanPrologueOrEpilogue(bool Prologue);
1874
1875
  /// Emit the unified return block, trying to avoid its emission when
1876
  /// possible.
1877
  /// \return The debug location of the user written return statement if the
1878
  /// return block is is avoided.
1879
  llvm::DebugLoc EmitReturnBlock();
1880
1881
  /// FinishFunction - Complete IR generation of the current function. It is
1882
  /// legal to call this function even if there is no current insertion point.
1883
  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1884
1885
  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1886
                  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1887
1888
  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
1889
                                 const ThunkInfo *Thunk, bool IsUnprototyped);
1890
1891
  void FinishThunk();
1892
1893
  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1894
  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
1895
                         llvm::FunctionCallee Callee);
1896
1897
  /// Generate a thunk for the given method.
1898
  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1899
                     GlobalDecl GD, const ThunkInfo &Thunk,
1900
                     bool IsUnprototyped);
1901
1902
  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1903
                                       const CGFunctionInfo &FnInfo,
1904
                                       GlobalDecl GD, const ThunkInfo &Thunk);
1905
1906
  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1907
                        FunctionArgList &Args);
1908
1909
  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1910
1911
  /// Struct with all information about dynamic [sub]class needed to set vptr.
1912
  struct VPtr {
1913
    BaseSubobject Base;
1914
    const CXXRecordDecl *NearestVBase;
1915
    CharUnits OffsetFromNearestVBase;
1916
    const CXXRecordDecl *VTableClass;
1917
  };
1918
1919
  /// Initialize the vtable pointer of the given subobject.
1920
  void InitializeVTablePointer(const VPtr &vptr);
1921
1922
  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1923
1924
  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1925
  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1926
1927
  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1928
                         CharUnits OffsetFromNearestVBase,
1929
                         bool BaseIsNonVirtualPrimaryBase,
1930
                         const CXXRecordDecl *VTableClass,
1931
                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1932
1933
  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1934
1935
  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1936
  /// to by This.
1937
  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1938
                            const CXXRecordDecl *VTableClass);
1939
1940
  enum CFITypeCheckKind {
1941
    CFITCK_VCall,
1942
    CFITCK_NVCall,
1943
    CFITCK_DerivedCast,
1944
    CFITCK_UnrelatedCast,
1945
    CFITCK_ICall,
1946
    CFITCK_NVMFCall,
1947
    CFITCK_VMFCall,
1948
  };
1949
1950
  /// Derived is the presumed address of an object of type T after a
1951
  /// cast. If T is a polymorphic class type, emit a check that the virtual
1952
  /// table for Derived belongs to a class derived from T.
1953
  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1954
                                 bool MayBeNull, CFITypeCheckKind TCK,
1955
                                 SourceLocation Loc);
1956
1957
  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1958
  /// If vptr CFI is enabled, emit a check that VTable is valid.
1959
  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1960
                                 CFITypeCheckKind TCK, SourceLocation Loc);
1961
1962
  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1963
  /// RD using llvm.type.test.
1964
  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1965
                          CFITypeCheckKind TCK, SourceLocation Loc);
1966
1967
  /// If whole-program virtual table optimization is enabled, emit an assumption
1968
  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1969
  /// enabled, emit a check that VTable is a member of RD's type identifier.
1970
  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1971
                                    llvm::Value *VTable, SourceLocation Loc);
1972
1973
  /// Returns whether we should perform a type checked load when loading a
1974
  /// virtual function for virtual calls to members of RD. This is generally
1975
  /// true when both vcall CFI and whole-program-vtables are enabled.
1976
  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1977
1978
  /// Emit a type checked load from the given vtable.
1979
  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1980
                                         uint64_t VTableByteOffset);
1981
1982
  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1983
  /// given phase of destruction for a destructor.  The end result
1984
  /// should call destructors on members and base classes in reverse
1985
  /// order of their construction.
1986
  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1987
1988
  /// ShouldInstrumentFunction - Return true if the current function should be
1989
  /// instrumented with __cyg_profile_func_* calls
1990
  bool ShouldInstrumentFunction();
1991
1992
  /// ShouldXRayInstrument - Return true if the current function should be
1993
  /// instrumented with XRay nop sleds.
1994
  bool ShouldXRayInstrumentFunction() const;
1995
1996
  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1997
  /// XRay custom event handling calls.
1998
  bool AlwaysEmitXRayCustomEvents() const;
1999
2000
  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2001
  /// XRay typed event handling calls.
2002
  bool AlwaysEmitXRayTypedEvents() const;
2003
2004
  /// Encode an address into a form suitable for use in a function prologue.
2005
  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2006
                                             llvm::Constant *Addr);
2007
2008
  /// Decode an address used in a function prologue, encoded by \c
2009
  /// EncodeAddrForUseInPrologue.
2010
  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2011
                                        llvm::Value *EncodedAddr);
2012
2013
  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2014
  /// arguments for the given function. This is also responsible for naming the
2015
  /// LLVM function arguments.
2016
  void EmitFunctionProlog(const CGFunctionInfo &FI,
2017
                          llvm::Function *Fn,
2018
                          const FunctionArgList &Args);
2019
2020
  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2021
  /// given temporary.
2022
  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2023
                          SourceLocation EndLoc);
2024
2025
  /// Emit a test that checks if the return value \p RV is nonnull.
2026
  void EmitReturnValueCheck(llvm::Value *RV);
2027
2028
  /// EmitStartEHSpec - Emit the start of the exception spec.
2029
  void EmitStartEHSpec(const Decl *D);
2030
2031
  /// EmitEndEHSpec - Emit the end of the exception spec.
2032
  void EmitEndEHSpec(const Decl *D);
2033
2034
  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2035
  llvm::BasicBlock *getTerminateLandingPad();
2036
2037
  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2038
  /// terminate.
2039
  llvm::BasicBlock *getTerminateFunclet();
2040
2041
  /// getTerminateHandler - Return a handler (not a landing pad, just
2042
  /// a catch handler) that just calls terminate.  This is used when
2043
  /// a terminate scope encloses a try.
2044
  llvm::BasicBlock *getTerminateHandler();
2045
2046
  llvm::Type *ConvertTypeForMem(QualType T);
2047
  llvm::Type *ConvertType(QualType T);
2048
22.1k
  llvm::Type *ConvertType(const TypeDecl *T) {
2049
22.1k
    return ConvertType(getContext().getTypeDeclType(T));
2050
22.1k
  }
2051
2052
  /// LoadObjCSelf - Load the value of self. This function is only valid while
2053
  /// generating code for an Objective-C method.
2054
  llvm::Value *LoadObjCSelf();
2055
2056
  /// TypeOfSelfObject - Return type of object that this self represents.
2057
  QualType TypeOfSelfObject();
2058
2059
  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2060
  static TypeEvaluationKind getEvaluationKind(QualType T);
2061
2062
2.69M
  static bool hasScalarEvaluationKind(QualType T) {
2063
2.69M
    return getEvaluationKind(T) == TEK_Scalar;
2064
2.69M
  }
2065
2066
655k
  static bool hasAggregateEvaluationKind(QualType T) {
2067
655k
    return getEvaluationKind(T) == TEK_Aggregate;
2068
655k
  }
2069
2070
  /// createBasicBlock - Create an LLVM basic block.
2071
  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2072
                                     llvm::Function *parent = nullptr,
2073
874k
                                     llvm::BasicBlock *before = nullptr) {
2074
874k
    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2075
874k
  }
2076
2077
  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2078
  /// label maps to.
2079
  JumpDest getJumpDestForLabel(const LabelDecl *S);
2080
2081
  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2082
  /// another basic block, simplify it. This assumes that no other code could
2083
  /// potentially reference the basic block.
2084
  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2085
2086
  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2087
  /// adding a fall-through branch from the current insert block if
2088
  /// necessary. It is legal to call this function even if there is no current
2089
  /// insertion point.
2090
  ///
2091
  /// IsFinished - If true, indicates that the caller has finished emitting
2092
  /// branches to the given block and does not expect to emit code into it. This
2093
  /// means the block can be ignored if it is unreachable.
2094
  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2095
2096
  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2097
  /// near its uses, and leave the insertion point in it.
2098
  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2099
2100
  /// EmitBranch - Emit a branch to the specified basic block from the current
2101
  /// insert block, taking care to avoid creation of branches from dummy
2102
  /// blocks. It is legal to call this function even if there is no current
2103
  /// insertion point.
2104
  ///
2105
  /// This function clears the current insertion point. The caller should follow
2106
  /// calls to this function with calls to Emit*Block prior to generation new
2107
  /// code.
2108
  void EmitBranch(llvm::BasicBlock *Block);
2109
2110
  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2111
  /// indicates that the current code being emitted is unreachable.
2112
1.57M
  bool HaveInsertPoint() const {
2113
1.57M
    return Builder.GetInsertBlock() != nullptr;
2114
1.57M
  }
2115
2116
  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2117
  /// emitted IR has a place to go. Note that by definition, if this function
2118
  /// creates a block then that block is unreachable; callers may do better to
2119
  /// detect when no insertion point is defined and simply skip IR generation.
2120
12.3k
  void EnsureInsertPoint() {
2121
12.3k
    if (!HaveInsertPoint())
2122
1.76k
      EmitBlock(createBasicBlock());
2123
12.3k
  }
2124
2125
  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2126
  /// specified stmt yet.
2127
  void ErrorUnsupported(const Stmt *S, const char *Type);
2128
2129
  //===--------------------------------------------------------------------===//
2130
  //                                  Helpers
2131
  //===--------------------------------------------------------------------===//
2132
2133
  LValue MakeAddrLValue(Address Addr, QualType T,
2134
1.57M
                        AlignmentSource Source = AlignmentSource::Type) {
2135
1.57M
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2136
1.57M
                            CGM.getTBAAAccessInfo(T));
2137
1.57M
  }
2138
2139
  LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2140
540k
                        TBAAAccessInfo TBAAInfo) {
2141
540k
    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2142
540k
  }
2143
2144
  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2145
3.25k
                        AlignmentSource Source = AlignmentSource::Type) {
2146
3.25k
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2147
3.25k
                            LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2148
3.25k
  }
2149
2150
  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2151
0
                        LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2152
0
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2153
0
                            BaseInfo, TBAAInfo);
2154
0
  }
2155
2156
  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2157
  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2158
  CharUnits getNaturalTypeAlignment(QualType T,
2159
                                    LValueBaseInfo *BaseInfo = nullptr,
2160
                                    TBAAAccessInfo *TBAAInfo = nullptr,
2161
                                    bool forPointeeType = false);
2162
  CharUnits getNaturalPointeeTypeAlignment(QualType T,
2163
                                           LValueBaseInfo *BaseInfo = nullptr,
2164
                                           TBAAAccessInfo *TBAAInfo = nullptr);
2165
2166
  Address EmitLoadOfReference(LValue RefLVal,
2167
                              LValueBaseInfo *PointeeBaseInfo = nullptr,
2168
                              TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2169
  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2170
  LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2171
                                   AlignmentSource Source =
2172
58.1k
                                       AlignmentSource::Type) {
2173
58.1k
    LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2174
58.1k
                                    CGM.getTBAAAccessInfo(RefTy));
2175
58.1k
    return EmitLoadOfReferenceLValue(RefLVal);
2176
58.1k
  }
2177
2178
  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2179
                            LValueBaseInfo *BaseInfo = nullptr,
2180
                            TBAAAccessInfo *TBAAInfo = nullptr);
2181
  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2182
2183
  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2184
  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2185
  /// insertion point of the builder. The caller is responsible for setting an
2186
  /// appropriate alignment on
2187
  /// the alloca.
2188
  ///
2189
  /// \p ArraySize is the number of array elements to be allocated if it
2190
  ///    is not nullptr.
2191
  ///
2192
  /// LangAS::Default is the address space of pointers to local variables and
2193
  /// temporaries, as exposed in the source language. In certain
2194
  /// configurations, this is not the same as the alloca address space, and a
2195
  /// cast is needed to lift the pointer from the alloca AS into
2196
  /// LangAS::Default. This can happen when the target uses a restricted
2197
  /// address space for the stack but the source language requires
2198
  /// LangAS::Default to be a generic address space. The latter condition is
2199
  /// common for most programming languages; OpenCL is an exception in that
2200
  /// LangAS::Default is the private address space, which naturally maps
2201
  /// to the stack.
2202
  ///
2203
  /// Because the address of a temporary is often exposed to the program in
2204
  /// various ways, this function will perform the cast. The original alloca
2205
  /// instruction is returned through \p Alloca if it is not nullptr.
2206
  ///
2207
  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2208
  /// more efficient if the caller knows that the address will not be exposed.
2209
  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2210
                                     llvm::Value *ArraySize = nullptr);
2211
  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2212
                           const Twine &Name = "tmp",
2213
                           llvm::Value *ArraySize = nullptr,
2214
                           Address *Alloca = nullptr);
2215
  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2216
                                      const Twine &Name = "tmp",
2217
                                      llvm::Value *ArraySize = nullptr);
2218
2219
  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2220
  /// default ABI alignment of the given LLVM type.
2221
  ///
2222
  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2223
  /// any given AST type that happens to have been lowered to the
2224
  /// given IR type.  This should only ever be used for function-local,
2225
  /// IR-driven manipulations like saving and restoring a value.  Do
2226
  /// not hand this address off to arbitrary IRGen routines, and especially
2227
  /// do not pass it as an argument to a function that might expect a
2228
  /// properly ABI-aligned value.
2229
  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2230
                                       const Twine &Name = "tmp");
2231
2232
  /// InitTempAlloca - Provide an initial value for the given alloca which
2233
  /// will be observable at all locations in the function.
2234
  ///
2235
  /// The address should be something that was returned from one of
2236
  /// the CreateTempAlloca or CreateMemTemp routines, and the
2237
  /// initializer must be valid in the entry block (i.e. it must
2238
  /// either be a constant or an argument value).
2239
  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2240
2241
  /// CreateIRTemp - Create a temporary IR object of the given type, with
2242
  /// appropriate alignment. This routine should only be used when an temporary
2243
  /// value needs to be stored into an alloca (for example, to avoid explicit
2244
  /// PHI construction), but the type is the IR type, not the type appropriate
2245
  /// for storing in memory.
2246
  ///
2247
  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2248
  /// ConvertType instead of ConvertTypeForMem.
2249
  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2250
2251
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2252
  /// appropriate alignmen and cast it to the default address space. Returns
2253
  /// the original alloca instruction by \p Alloca if it is not nullptr.
2254
  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2255
                        Address *Alloca = nullptr);
2256
  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2257
                        Address *Alloca = nullptr);
2258
2259
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2260
  /// appropriate alignmen without casting it to the default address space.
2261
  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2262
  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2263
                                   const Twine &Name = "tmp");
2264
2265
  /// CreateAggTemp - Create a temporary memory object for the given
2266
  /// aggregate type.
2267
  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2268
10.2k
                             Address *Alloca = nullptr) {
2269
10.2k
    return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2270
10.2k
                                 T.getQualifiers(),
2271
10.2k
                                 AggValueSlot::IsNotDestructed,
2272
10.2k
                                 AggValueSlot::DoesNotNeedGCBarriers,
2273
10.2k
                                 AggValueSlot::IsNotAliased,
2274
10.2k
                                 AggValueSlot::DoesNotOverlap);
2275
10.2k
  }
2276
2277
  /// Emit a cast to void* in the appropriate address space.
2278
  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2279
2280
  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2281
  /// expression and compare the result against zero, returning an Int1Ty value.
2282
  llvm::Value *EvaluateExprAsBool(const Expr *E);
2283
2284
  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2285
  void EmitIgnoredExpr(const Expr *E);
2286
2287
  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2288
  /// any type.  The result is returned as an RValue struct.  If this is an
2289
  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2290
  /// the result should be returned.
2291
  ///
2292
  /// \param ignoreResult True if the resulting value isn't used.
2293
  RValue EmitAnyExpr(const Expr *E,
2294
                     AggValueSlot aggSlot = AggValueSlot::ignored(),
2295
                     bool ignoreResult = false);
2296
2297
  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2298
  // or the value of the expression, depending on how va_list is defined.
2299
  Address EmitVAListRef(const Expr *E);
2300
2301
  /// Emit a "reference" to a __builtin_ms_va_list; this is
2302
  /// always the value of the expression, because a __builtin_ms_va_list is a
2303
  /// pointer to a char.
2304
  Address EmitMSVAListRef(const Expr *E);
2305
2306
  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2307
  /// always be accessible even if no aggregate location is provided.
2308
  RValue EmitAnyExprToTemp(const Expr *E);
2309
2310
  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2311
  /// arbitrary expression into the given memory location.
2312
  void EmitAnyExprToMem(const Expr *E, Address Location,
2313
                        Qualifiers Quals, bool IsInitializer);
2314
2315
  void EmitAnyExprToExn(const Expr *E, Address Addr);
2316
2317
  /// EmitExprAsInit - Emits the code necessary to initialize a
2318
  /// location in memory with the given initializer.
2319
  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2320
                      bool capturedByInit);
2321
2322
  /// hasVolatileMember - returns true if aggregate type has a volatile
2323
  /// member.
2324
3.85k
  bool hasVolatileMember(QualType T) {
2325
3.85k
    if (const RecordType *RT = T->getAs<RecordType>()) {
2326
2.83k
      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2327
2.83k
      return RD->hasVolatileMember();
2328
2.83k
    }
2329
1.02k
    return false;
2330
1.02k
  }
2331
2332
  /// Determine whether a return value slot may overlap some other object.
2333
5.23k
  AggValueSlot::Overlap_t getOverlapForReturnValue() {
2334
5.23k
    // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2335
5.23k
    // class subobjects. These cases may need to be revisited depending on the
2336
5.23k
    // resolution of the relevant core issue.
2337
5.23k
    return AggValueSlot::DoesNotOverlap;
2338
5.23k
  }
2339
2340
  /// Determine whether a field initialization may overlap some other object.
2341
  AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2342
2343
  /// Determine whether a base class initialization may overlap some other
2344
  /// object.
2345
  AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2346
                                                const CXXRecordDecl *BaseRD,
2347
                                                bool IsVirtual);
2348
2349
  /// Emit an aggregate assignment.
2350
3.41k
  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2351
3.41k
    bool IsVolatile = hasVolatileMember(EltTy);
2352
3.41k
    EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2353
3.41k
  }
2354
2355
  void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2356
6.35k
                             AggValueSlot::Overlap_t MayOverlap) {
2357
6.35k
    EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2358
6.35k
  }
2359
2360
  /// EmitAggregateCopy - Emit an aggregate copy.
2361
  ///
2362
  /// \param isVolatile \c true iff either the source or the destination is
2363
  ///        volatile.
2364
  /// \param MayOverlap Whether the tail padding of the destination might be
2365
  ///        occupied by some other object. More efficient code can often be
2366
  ///        generated if not.
2367
  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2368
                         AggValueSlot::Overlap_t MayOverlap,
2369
                         bool isVolatile = false);
2370
2371
  /// GetAddrOfLocalVar - Return the address of a local variable.
2372
163k
  Address GetAddrOfLocalVar(const VarDecl *VD) {
2373
163k
    auto it = LocalDeclMap.find(VD);
2374
163k
    assert(it != LocalDeclMap.end() &&
2375
163k
           "Invalid argument to GetAddrOfLocalVar(), no decl!");
2376
163k
    return it->second;
2377
163k
  }
2378
2379
  /// Given an opaque value expression, return its LValue mapping if it exists,
2380
  /// otherwise create one.
2381
  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2382
2383
  /// Given an opaque value expression, return its RValue mapping if it exists,
2384
  /// otherwise create one.
2385
  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2386
2387
  /// Get the index of the current ArrayInitLoopExpr, if any.
2388
56
  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2389
2390
  /// getAccessedFieldNo - Given an encoded value and a result number, return
2391
  /// the input field number being accessed.
2392
  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2393
2394
  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2395
  llvm::BasicBlock *GetIndirectGotoBlock();
2396
2397
  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2398
  static bool IsWrappedCXXThis(const Expr *E);
2399
2400
  /// EmitNullInitialization - Generate code to set a value of the given type to
2401
  /// null, If the type contains data member pointers, they will be initialized
2402
  /// to -1 in accordance with the Itanium C++ ABI.
2403
  void EmitNullInitialization(Address DestPtr, QualType Ty);
2404
2405
  /// Emits a call to an LLVM variable-argument intrinsic, either
2406
  /// \c llvm.va_start or \c llvm.va_end.
2407
  /// \param ArgValue A reference to the \c va_list as emitted by either
2408
  /// \c EmitVAListRef or \c EmitMSVAListRef.
2409
  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2410
  /// calls \c llvm.va_end.
2411
  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2412
2413
  /// Generate code to get an argument from the passed in pointer
2414
  /// and update it accordingly.
2415
  /// \param VE The \c VAArgExpr for which to generate code.
2416
  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2417
  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2418
  /// \returns A pointer to the argument.
2419
  // FIXME: We should be able to get rid of this method and use the va_arg
2420
  // instruction in LLVM instead once it works well enough.
2421
  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2422
2423
  /// emitArrayLength - Compute the length of an array, even if it's a
2424
  /// VLA, and drill down to the base element type.
2425
  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2426
                               QualType &baseType,
2427
                               Address &addr);
2428
2429
  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2430
  /// the given variably-modified type and store them in the VLASizeMap.
2431
  ///
2432
  /// This function can be called with a null (unreachable) insert point.
2433
  void EmitVariablyModifiedType(QualType Ty);
2434
2435
  struct VlaSizePair {
2436
    llvm::Value *NumElts;
2437
    QualType Type;
2438
2439
8.99k
    VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2440
  };
2441
2442
  /// Return the number of elements for a single dimension
2443
  /// for the given array type.
2444
  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2445
  VlaSizePair getVLAElements1D(QualType vla);
2446
2447
  /// Returns an LLVM value that corresponds to the size,
2448
  /// in non-variably-sized elements, of a variable length array type,
2449
  /// plus that largest non-variably-sized element type.  Assumes that
2450
  /// the type has already been emitted with EmitVariablyModifiedType.
2451
  VlaSizePair getVLASize(const VariableArrayType *vla);
2452
  VlaSizePair getVLASize(QualType vla);
2453
2454
  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2455
  /// generating code for an C++ member function.
2456
140k
  llvm::Value *LoadCXXThis() {
2457
140k
    assert(CXXThisValue && "no 'this' value for this function");
2458
140k
    return CXXThisValue;
2459
140k
  }
2460
  Address LoadCXXThisAddress();
2461
2462
  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2463
  /// virtual bases.
2464
  // FIXME: Every place that calls LoadCXXVTT is something
2465
  // that needs to be abstracted properly.
2466
314
  llvm::Value *LoadCXXVTT() {
2467
314
    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2468
314
    return CXXStructorImplicitParamValue;
2469
314
  }
2470
2471
  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2472
  /// complete class to the given direct base.
2473
  Address
2474
  GetAddressOfDirectBaseInCompleteClass(Address Value,
2475
                                        const CXXRecordDecl *Derived,
2476
                                        const CXXRecordDecl *Base,
2477
                                        bool BaseIsVirtual);
2478
2479
  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2480
2481
  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2482
  /// load of 'this' and returns address of the base class.
2483
  Address GetAddressOfBaseClass(Address Value,
2484
                                const CXXRecordDecl *Derived,
2485
                                CastExpr::path_const_iterator PathBegin,
2486
                                CastExpr::path_const_iterator PathEnd,
2487
                                bool NullCheckValue, SourceLocation Loc);
2488
2489
  Address GetAddressOfDerivedClass(Address Value,
2490
                                   const CXXRecordDecl *Derived,
2491
                                   CastExpr::path_const_iterator PathBegin,
2492
                                   CastExpr::path_const_iterator PathEnd,
2493
                                   bool NullCheckValue);
2494
2495
  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2496
  /// base constructor/destructor with virtual bases.
2497
  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2498
  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2499
  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2500
                               bool Delegating);
2501
2502
  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2503
                                      CXXCtorType CtorType,
2504
                                      const FunctionArgList &Args,
2505
                                      SourceLocation Loc);
2506
  // It's important not to confuse this and the previous function. Delegating
2507
  // constructors are the C++0x feature. The constructor delegate optimization
2508
  // is used to reduce duplication in the base and complete consturctors where
2509
  // they are substantially the same.
2510
  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2511
                                        const FunctionArgList &Args);
2512
2513
  /// Emit a call to an inheriting constructor (that is, one that invokes a
2514
  /// constructor inherited from a base class) by inlining its definition. This
2515
  /// is necessary if the ABI does not support forwarding the arguments to the
2516
  /// base class constructor (because they're variadic or similar).
2517
  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2518
                                               CXXCtorType CtorType,
2519
                                               bool ForVirtualBase,
2520
                                               bool Delegating,
2521
                                               CallArgList &Args);
2522
2523
  /// Emit a call to a constructor inherited from a base class, passing the
2524
  /// current constructor's arguments along unmodified (without even making
2525
  /// a copy).
2526
  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2527
                                       bool ForVirtualBase, Address This,
2528
                                       bool InheritedFromVBase,
2529
                                       const CXXInheritedCtorInitExpr *E);
2530
2531
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2532
                              bool ForVirtualBase, bool Delegating,
2533
                              AggValueSlot ThisAVS, const CXXConstructExpr *E);
2534
2535
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2536
                              bool ForVirtualBase, bool Delegating,
2537
                              Address This, CallArgList &Args,
2538
                              AggValueSlot::Overlap_t Overlap,
2539
                              SourceLocation Loc, bool NewPointerIsChecked);
2540
2541
  /// Emit assumption load for all bases. Requires to be be called only on
2542
  /// most-derived class and not under construction of the object.
2543
  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2544
2545
  /// Emit assumption that vptr load == global vtable.
2546
  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2547
2548
  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2549
                                      Address This, Address Src,
2550
                                      const CXXConstructExpr *E);
2551
2552
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2553
                                  const ArrayType *ArrayTy,
2554
                                  Address ArrayPtr,
2555
                                  const CXXConstructExpr *E,
2556
                                  bool NewPointerIsChecked,
2557
                                  bool ZeroInitialization = false);
2558
2559
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2560
                                  llvm::Value *NumElements,
2561
                                  Address ArrayPtr,
2562
                                  const CXXConstructExpr *E,
2563
                                  bool NewPointerIsChecked,
2564
                                  bool ZeroInitialization = false);
2565
2566
  static Destroyer destroyCXXObject;
2567
2568
  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2569
                             bool ForVirtualBase, bool Delegating, Address This,
2570
                             QualType ThisTy);
2571
2572
  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2573
                               llvm::Type *ElementTy, Address NewPtr,
2574
                               llvm::Value *NumElements,
2575
                               llvm::Value *AllocSizeWithoutCookie);
2576
2577
  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2578
                        Address Ptr);
2579
2580
  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2581
  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2582
2583
  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2584
  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2585
2586
  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2587
                      QualType DeleteTy, llvm::Value *NumElements = nullptr,
2588
                      CharUnits CookieSize = CharUnits());
2589
2590
  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2591
                                  const CallExpr *TheCallExpr, bool IsDelete);
2592
2593
  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2594
  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2595
  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2596
2597
  /// Situations in which we might emit a check for the suitability of a
2598
  ///        pointer or glvalue.
2599
  enum TypeCheckKind {
2600
    /// Checking the operand of a load. Must be suitably sized and aligned.
2601
    TCK_Load,
2602
    /// Checking the destination of a store. Must be suitably sized and aligned.
2603
    TCK_Store,
2604
    /// Checking the bound value in a reference binding. Must be suitably sized
2605
    /// and aligned, but is not required to refer to an object (until the
2606
    /// reference is used), per core issue 453.
2607
    TCK_ReferenceBinding,
2608
    /// Checking the object expression in a non-static data member access. Must
2609
    /// be an object within its lifetime.
2610
    TCK_MemberAccess,
2611
    /// Checking the 'this' pointer for a call to a non-static member function.
2612
    /// Must be an object within its lifetime.
2613
    TCK_MemberCall,
2614
    /// Checking the 'this' pointer for a constructor call.
2615
    TCK_ConstructorCall,
2616
    /// Checking the operand of a static_cast to a derived pointer type. Must be
2617
    /// null or an object within its lifetime.
2618
    TCK_DowncastPointer,
2619
    /// Checking the operand of a static_cast to a derived reference type. Must
2620
    /// be an object within its lifetime.
2621
    TCK_DowncastReference,
2622
    /// Checking the operand of a cast to a base object. Must be suitably sized
2623
    /// and aligned.
2624
    TCK_Upcast,
2625
    /// Checking the operand of a cast to a virtual base object. Must be an
2626
    /// object within its lifetime.
2627
    TCK_UpcastToVirtualBase,
2628
    /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2629
    TCK_NonnullAssign,
2630
    /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2631
    /// null or an object within its lifetime.
2632
    TCK_DynamicOperation
2633
  };
2634
2635
  /// Determine whether the pointer type check \p TCK permits null pointers.
2636
  static bool isNullPointerAllowed(TypeCheckKind TCK);
2637
2638
  /// Determine whether the pointer type check \p TCK requires a vptr check.
2639
  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2640
2641
  /// Whether any type-checking sanitizers are enabled. If \c false,
2642
  /// calls to EmitTypeCheck can be skipped.
2643
  bool sanitizePerformTypeCheck() const;
2644
2645
  /// Emit a check that \p V is the address of storage of the
2646
  /// appropriate size and alignment for an object of type \p Type
2647
  /// (or if ArraySize is provided, for an array of that bound).
2648
  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2649
                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
2650
                     SanitizerSet SkippedChecks = SanitizerSet(),
2651
                     llvm::Value *ArraySize = nullptr);
2652
2653
  /// Emit a check that \p Base points into an array object, which
2654
  /// we can access at index \p Index. \p Accessed should be \c false if we
2655
  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2656
  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2657
                       QualType IndexType, bool Accessed);
2658
2659
  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2660
                                       bool isInc, bool isPre);
2661
  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2662
                                         bool isInc, bool isPre);
2663
2664
  /// Converts Location to a DebugLoc, if debug information is enabled.
2665
  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2666
2667
  /// Get the record field index as represented in debug info.
2668
  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2669
2670
2671
  //===--------------------------------------------------------------------===//
2672
  //                            Declaration Emission
2673
  //===--------------------------------------------------------------------===//
2674
2675
  /// EmitDecl - Emit a declaration.
2676
  ///
2677
  /// This function can be called with a null (unreachable) insert point.
2678
  void EmitDecl(const Decl &D);
2679
2680
  /// EmitVarDecl - Emit a local variable declaration.
2681
  ///
2682
  /// This function can be called with a null (unreachable) insert point.
2683
  void EmitVarDecl(const VarDecl &D);
2684
2685
  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2686
                      bool capturedByInit);
2687
2688
  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2689
                             llvm::Value *Address);
2690
2691
  /// Determine whether the given initializer is trivial in the sense
2692
  /// that it requires no code to be generated.
2693
  bool isTrivialInitializer(const Expr *Init);
2694
2695
  /// EmitAutoVarDecl - Emit an auto variable declaration.
2696
  ///
2697
  /// This function can be called with a null (unreachable) insert point.
2698
  void EmitAutoVarDecl(const VarDecl &D);
2699
2700
  class AutoVarEmission {
2701
    friend class CodeGenFunction;
2702
2703
    const VarDecl *Variable;
2704
2705
    /// The address of the alloca for languages with explicit address space
2706
    /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2707
    /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2708
    /// as a global constant.
2709
    Address Addr;
2710
2711
    llvm::Value *NRVOFlag;
2712
2713
    /// True if the variable is a __block variable that is captured by an
2714
    /// escaping block.
2715
    bool IsEscapingByRef;
2716
2717
    /// True if the variable is of aggregate type and has a constant
2718
    /// initializer.
2719
    bool IsConstantAggregate;
2720
2721
    /// Non-null if we should use lifetime annotations.
2722
    llvm::Value *SizeForLifetimeMarkers;
2723
2724
    /// Address with original alloca instruction. Invalid if the variable was
2725
    /// emitted as a global constant.
2726
    Address AllocaAddr;
2727
2728
    struct Invalid {};
2729
    AutoVarEmission(Invalid)
2730
        : Variable(nullptr), Addr(Address::invalid()),
2731
115
          AllocaAddr(Address::invalid()) {}
2732
2733
    AutoVarEmission(const VarDecl &variable)
2734
        : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2735
          IsEscapingByRef(false), IsConstantAggregate(false),
2736
177k
          SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2737
2738
341k
    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2739
2740
  public:
2741
115
    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2742
2743
181k
    bool useLifetimeMarkers() const {
2744
181k
      return SizeForLifetimeMarkers != nullptr;
2745
181k
    }
2746
4.17k
    llvm::Value *getSizeForLifetimeMarkers() const {
2747
4.17k
      assert(useLifetimeMarkers());
2748
4.17k
      return SizeForLifetimeMarkers;
2749
4.17k
    }
2750
2751
    /// Returns the raw, allocated address, which is not necessarily
2752
    /// the address of the object itself. It is casted to default
2753
    /// address space for address space agnostic languages.
2754
27.1k
    Address getAllocatedAddress() const {
2755
27.1k
      return Addr;
2756
27.1k
    }
2757
2758
    /// Returns the address for the original alloca instruction.
2759
4.17k
    Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2760
2761
    /// Returns the address of the object within this declaration.
2762
    /// Note that this does not chase the forwarding pointer for
2763
    /// __block decls.
2764
173k
    Address getObjectAddress(CodeGenFunction &CGF) const {
2765
173k
      if (!IsEscapingByRef) 
return Addr172k
;
2766
242
2767
242
      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2768
242
    }
2769
  };
2770
  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2771
  void EmitAutoVarInit(const AutoVarEmission &emission);
2772
  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2773
  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2774
                              QualType::DestructionKind dtorKind);
2775
2776
  /// Emits the alloca and debug information for the size expressions for each
2777
  /// dimension of an array. It registers the association of its (1-dimensional)
2778
  /// QualTypes and size expression's debug node, so that CGDebugInfo can
2779
  /// reference this node when creating the DISubrange object to describe the
2780
  /// array types.
2781
  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2782
                                              const VarDecl &D,
2783
                                              bool EmitDebugInfo);
2784
2785
  void EmitStaticVarDecl(const VarDecl &D,
2786
                         llvm::GlobalValue::LinkageTypes Linkage);
2787
2788
  class ParamValue {
2789
    llvm::Value *Value;
2790
    unsigned Alignment;
2791
392k
    ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2792
  public:
2793
378k
    static ParamValue forDirect(llvm::Value *value) {
2794
378k
      return ParamValue(value, 0);
2795
378k
    }
2796
14.1k
    static ParamValue forIndirect(Address addr) {
2797
14.1k
      assert(!addr.getAlignment().isZero());
2798
14.1k
      return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2799
14.1k
    }
2800
2801
785k
    bool isIndirect() const { return Alignment != 0; }
2802
392k
    llvm::Value *getAnyValue() const { return Value; }
2803
2804
378k
    llvm::Value *getDirectValue() const {
2805
378k
      assert(!isIndirect());
2806
378k
      return Value;
2807
378k
    }
2808
2809
14.1k
    Address getIndirectAddress() const {
2810
14.1k
      assert(isIndirect());
2811
14.1k
      return Address(Value, CharUnits::fromQuantity(Alignment));
2812
14.1k
    }
2813
  };
2814
2815
  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2816
  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2817
2818
  /// protectFromPeepholes - Protect a value that we're intending to
2819
  /// store to the side, but which will probably be used later, from
2820
  /// aggressive peepholing optimizations that might delete it.
2821
  ///
2822
  /// Pass the result to unprotectFromPeepholes to declare that
2823
  /// protection is no longer required.
2824
  ///
2825
  /// There's no particular reason why this shouldn't apply to
2826
  /// l-values, it's just that no existing peepholes work on pointers.
2827
  PeepholeProtection protectFromPeepholes(RValue rvalue);
2828
  void unprotectFromPeepholes(PeepholeProtection protection);
2829
2830
  void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
2831
                                    SourceLocation Loc,
2832
                                    SourceLocation AssumptionLoc,
2833
                                    llvm::Value *Alignment,
2834
                                    llvm::Value *OffsetValue,
2835
                                    llvm::Value *TheCheck,
2836
                                    llvm::Instruction *Assumption);
2837
2838
  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2839
                               SourceLocation Loc, SourceLocation AssumptionLoc,
2840
                               llvm::Value *Alignment,
2841
                               llvm::Value *OffsetValue = nullptr);
2842
2843
  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
2844
                               SourceLocation AssumptionLoc,
2845
                               llvm::Value *Alignment,
2846
                               llvm::Value *OffsetValue = nullptr);
2847
2848
  //===--------------------------------------------------------------------===//
2849
  //                             Statement Emission
2850
  //===--------------------------------------------------------------------===//
2851
2852
  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2853
  void EmitStopPoint(const Stmt *S);
2854
2855
  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2856
  /// this function even if there is no current insertion point.
2857
  ///
2858
  /// This function may clear the current insertion point; callers should use
2859
  /// EnsureInsertPoint if they wish to subsequently generate code without first
2860
  /// calling EmitBlock, EmitBranch, or EmitStmt.
2861
  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2862
2863
  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2864
  /// necessarily require an insertion point or debug information; typically
2865
  /// because the statement amounts to a jump or a container of other
2866
  /// statements.
2867
  ///
2868
  /// \return True if the statement was handled.
2869
  bool EmitSimpleStmt(const Stmt *S);
2870
2871
  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2872
                           AggValueSlot AVS = AggValueSlot::ignored());
2873
  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2874
                                       bool GetLast = false,
2875
                                       AggValueSlot AVS =
2876
                                                AggValueSlot::ignored());
2877
2878
  /// EmitLabel - Emit the block for the given label. It is legal to call this
2879
  /// function even if there is no current insertion point.
2880
  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2881
2882
  void EmitLabelStmt(const LabelStmt &S);
2883
  void EmitAttributedStmt(const AttributedStmt &S);
2884
  void EmitGotoStmt(const GotoStmt &S);
2885
  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2886
  void EmitIfStmt(const IfStmt &S);
2887
2888
  void EmitWhileStmt(const WhileStmt &S,
2889
                     ArrayRef<const Attr *> Attrs = None);
2890
  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2891
  void EmitForStmt(const ForStmt &S,
2892
                   ArrayRef<const Attr *> Attrs = None);
2893
  void EmitReturnStmt(const ReturnStmt &S);
2894
  void EmitDeclStmt(const DeclStmt &S);
2895
  void EmitBreakStmt(const BreakStmt &S);
2896
  void EmitContinueStmt(const ContinueStmt &S);
2897
  void EmitSwitchStmt(const SwitchStmt &S);
2898
  void EmitDefaultStmt(const DefaultStmt &S);
2899
  void EmitCaseStmt(const CaseStmt &S);
2900
  void EmitCaseStmtRange(const CaseStmt &S);
2901
  void EmitAsmStmt(const AsmStmt &S);
2902
2903
  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2904
  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2905
  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2906
  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2907
  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2908
2909
  void EmitCoroutineBody(const CoroutineBodyStmt &S);
2910
  void EmitCoreturnStmt(const CoreturnStmt &S);
2911
  RValue EmitCoawaitExpr(const CoawaitExpr &E,
2912
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
2913
                         bool ignoreResult = false);
2914
  LValue EmitCoawaitLValue(const CoawaitExpr *E);
2915
  RValue EmitCoyieldExpr(const CoyieldExpr &E,
2916
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
2917
                         bool ignoreResult = false);
2918
  LValue EmitCoyieldLValue(const CoyieldExpr *E);
2919
  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2920
2921
  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2922
  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2923
2924
  void EmitCXXTryStmt(const CXXTryStmt &S);
2925
  void EmitSEHTryStmt(const SEHTryStmt &S);
2926
  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2927
  void EnterSEHTryStmt(const SEHTryStmt &S);
2928
  void ExitSEHTryStmt(const SEHTryStmt &S);
2929
2930
  void pushSEHCleanup(CleanupKind kind,
2931
                      llvm::Function *FinallyFunc);
2932
  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2933
                              const Stmt *OutlinedStmt);
2934
2935
  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2936
                                            const SEHExceptStmt &Except);
2937
2938
  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2939
                                             const SEHFinallyStmt &Finally);
2940
2941
  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2942
                                llvm::Value *ParentFP,
2943
                                llvm::Value *EntryEBP);
2944
  llvm::Value *EmitSEHExceptionCode();
2945
  llvm::Value *EmitSEHExceptionInfo();
2946
  llvm::Value *EmitSEHAbnormalTermination();
2947
2948
  /// Emit simple code for OpenMP directives in Simd-only mode.
2949
  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2950
2951
  /// Scan the outlined statement for captures from the parent function. For
2952
  /// each capture, mark the capture as escaped and emit a call to
2953
  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2954
  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2955
                          bool IsFilter);
2956
2957
  /// Recovers the address of a local in a parent function. ParentVar is the
2958
  /// address of the variable used in the immediate parent function. It can
2959
  /// either be an alloca or a call to llvm.localrecover if there are nested
2960
  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2961
  /// frame.
2962
  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2963
                                    Address ParentVar,
2964
                                    llvm::Value *ParentFP);
2965
2966
  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2967
                           ArrayRef<const Attr *> Attrs = None);
2968
2969
  /// Controls insertion of cancellation exit blocks in worksharing constructs.
2970
  class OMPCancelStackRAII {
2971
    CodeGenFunction &CGF;
2972
2973
  public:
2974
    OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2975
                       bool HasCancel)
2976
2.70k
        : CGF(CGF) {
2977
2.70k
      CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2978
2.70k
    }
2979
2.70k
    ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2980
  };
2981
2982
  /// Returns calculated size of the specified type.
2983
  llvm::Value *getTypeSize(QualType Ty);
2984
  LValue InitCapturedStruct(const CapturedStmt &S);
2985
  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2986
  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2987
  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2988
  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
2989
                                                     SourceLocation Loc);
2990
  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2991
                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
2992
  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2993
                          SourceLocation Loc);
2994
  /// Perform element by element copying of arrays with type \a
2995
  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2996
  /// generated by \a CopyGen.
2997
  ///
2998
  /// \param DestAddr Address of the destination array.
2999
  /// \param SrcAddr Address of the source array.
3000
  /// \param OriginalType Type of destination and source arrays.
3001
  /// \param CopyGen Copying procedure that copies value of single array element
3002
  /// to another single array element.
3003
  void EmitOMPAggregateAssign(
3004
      Address DestAddr, Address SrcAddr, QualType OriginalType,
3005
      const llvm::function_ref<void(Address, Address)> CopyGen);
3006
  /// Emit proper copying of data from one variable to another.
3007
  ///
3008
  /// \param OriginalType Original type of the copied variables.
3009
  /// \param DestAddr Destination address.
3010
  /// \param SrcAddr Source address.
3011
  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3012
  /// type of the base array element).
3013
  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3014
  /// the base array element).
3015
  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3016
  /// DestVD.
3017
  void EmitOMPCopy(QualType OriginalType,
3018
                   Address DestAddr, Address SrcAddr,
3019
                   const VarDecl *DestVD, const VarDecl *SrcVD,
3020
                   const Expr *Copy);
3021
  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3022
  /// \a X = \a E \a BO \a E.
3023
  ///
3024
  /// \param X Value to be updated.
3025
  /// \param E Update value.
3026
  /// \param BO Binary operation for update operation.
3027
  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3028
  /// expression, false otherwise.
3029
  /// \param AO Atomic ordering of the generated atomic instructions.
3030
  /// \param CommonGen Code generator for complex expressions that cannot be
3031
  /// expressed through atomicrmw instruction.
3032
  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3033
  /// generated, <false, RValue::get(nullptr)> otherwise.
3034
  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3035
      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3036
      llvm::AtomicOrdering AO, SourceLocation Loc,
3037
      const llvm::function_ref<RValue(RValue)> CommonGen);
3038
  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3039
                                 OMPPrivateScope &PrivateScope);
3040
  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3041
                            OMPPrivateScope &PrivateScope);
3042
  void EmitOMPUseDevicePtrClause(
3043
      const OMPClause &C, OMPPrivateScope &PrivateScope,
3044
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3045
  /// Emit code for copyin clause in \a D directive. The next code is
3046
  /// generated at the start of outlined functions for directives:
3047
  /// \code
3048
  /// threadprivate_var1 = master_threadprivate_var1;
3049
  /// operator=(threadprivate_var2, master_threadprivate_var2);
3050
  /// ...
3051
  /// __kmpc_barrier(&loc, global_tid);
3052
  /// \endcode
3053
  ///
3054
  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3055
  /// \returns true if at least one copyin variable is found, false otherwise.
3056
  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3057
  /// Emit initial code for lastprivate variables. If some variable is
3058
  /// not also firstprivate, then the default initialization is used. Otherwise
3059
  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3060
  /// method.
3061
  ///
3062
  /// \param D Directive that may have 'lastprivate' directives.
3063
  /// \param PrivateScope Private scope for capturing lastprivate variables for
3064
  /// proper codegen in internal captured statement.
3065
  ///
3066
  /// \returns true if there is at least one lastprivate variable, false
3067
  /// otherwise.
3068
  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3069
                                    OMPPrivateScope &PrivateScope);
3070
  /// Emit final copying of lastprivate values to original variables at
3071
  /// the end of the worksharing or simd directive.
3072
  ///
3073
  /// \param D Directive that has at least one 'lastprivate' directives.
3074
  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3075
  /// it is the last iteration of the loop code in associated directive, or to
3076
  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3077
  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3078
                                     bool NoFinals,
3079
                                     llvm::Value *IsLastIterCond = nullptr);
3080
  /// Emit initial code for linear clauses.
3081
  void EmitOMPLinearClause(const OMPLoopDirective &D,
3082
                           CodeGenFunction::OMPPrivateScope &PrivateScope);
3083
  /// Emit final code for linear clauses.
3084
  /// \param CondGen Optional conditional code for final part of codegen for
3085
  /// linear clause.
3086
  void EmitOMPLinearClauseFinal(
3087
      const OMPLoopDirective &D,
3088
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3089
  /// Emit initial code for reduction variables. Creates reduction copies
3090
  /// and initializes them with the values according to OpenMP standard.
3091
  ///
3092
  /// \param D Directive (possibly) with the 'reduction' clause.
3093
  /// \param PrivateScope Private scope for capturing reduction variables for
3094
  /// proper codegen in internal captured statement.
3095
  ///
3096
  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3097
                                  OMPPrivateScope &PrivateScope);
3098
  /// Emit final update of reduction values to original variables at
3099
  /// the end of the directive.
3100
  ///
3101
  /// \param D Directive that has at least one 'reduction' directives.
3102
  /// \param ReductionKind The kind of reduction to perform.
3103
  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3104
                                   const OpenMPDirectiveKind ReductionKind);
3105
  /// Emit initial code for linear variables. Creates private copies
3106
  /// and initializes them with the values according to OpenMP standard.
3107
  ///
3108
  /// \param D Directive (possibly) with the 'linear' clause.
3109
  /// \return true if at least one linear variable is found that should be
3110
  /// initialized with the value of the original variable, false otherwise.
3111
  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3112
3113
  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3114
                                        llvm::Function * /*OutlinedFn*/,
3115
                                        const OMPTaskDataTy & /*Data*/)>
3116
      TaskGenTy;
3117
  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3118
                                 const OpenMPDirectiveKind CapturedRegion,
3119
                                 const RegionCodeGenTy &BodyGen,
3120
                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3121
  struct OMPTargetDataInfo {
3122
    Address BasePointersArray = Address::invalid();
3123
    Address PointersArray = Address::invalid();
3124
    Address SizesArray = Address::invalid();
3125
    unsigned NumberOfTargetItems = 0;
3126
5.37k
    explicit OMPTargetDataInfo() = default;
3127
    OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3128
                      Address SizesArray, unsigned NumberOfTargetItems)
3129
        : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3130
0
          SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3131
  };
3132
  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3133
                                       const RegionCodeGenTy &BodyGen,
3134
                                       OMPTargetDataInfo &InputInfo);
3135
3136
  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3137
  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3138
  void EmitOMPForDirective(const OMPForDirective &S);
3139
  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3140
  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3141
  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3142
  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3143
  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3144
  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3145
  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3146
  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3147
  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3148
  void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3149
  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3150
  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3151
  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3152
  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3153
  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3154
  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3155
  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3156
  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3157
  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3158
  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3159
  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3160
  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3161
  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3162
  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3163
  void
3164
  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3165
  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3166
  void
3167
  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3168
  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3169
  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3170
  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3171
  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3172
  void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3173
  void
3174
  EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3175
  void EmitOMPParallelMasterTaskLoopDirective(
3176
      const OMPParallelMasterTaskLoopDirective &S);
3177
  void EmitOMPParallelMasterTaskLoopSimdDirective(
3178
      const OMPParallelMasterTaskLoopSimdDirective &S);
3179
  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3180
  void EmitOMPDistributeParallelForDirective(
3181
      const OMPDistributeParallelForDirective &S);
3182
  void EmitOMPDistributeParallelForSimdDirective(
3183
      const OMPDistributeParallelForSimdDirective &S);
3184
  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3185
  void EmitOMPTargetParallelForSimdDirective(
3186
      const OMPTargetParallelForSimdDirective &S);
3187
  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3188
  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3189
  void
3190
  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3191
  void EmitOMPTeamsDistributeParallelForSimdDirective(
3192
      const OMPTeamsDistributeParallelForSimdDirective &S);
3193
  void EmitOMPTeamsDistributeParallelForDirective(
3194
      const OMPTeamsDistributeParallelForDirective &S);
3195
  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3196
  void EmitOMPTargetTeamsDistributeDirective(
3197
      const OMPTargetTeamsDistributeDirective &S);
3198
  void EmitOMPTargetTeamsDistributeParallelForDirective(
3199
      const OMPTargetTeamsDistributeParallelForDirective &S);
3200
  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3201
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3202
  void EmitOMPTargetTeamsDistributeSimdDirective(
3203
      const OMPTargetTeamsDistributeSimdDirective &S);
3204
3205
  /// Emit device code for the target directive.
3206
  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3207
                                          StringRef ParentName,
3208
                                          const OMPTargetDirective &S);
3209
  static void
3210
  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3211
                                      const OMPTargetParallelDirective &S);
3212
  /// Emit device code for the target parallel for directive.
3213
  static void EmitOMPTargetParallelForDeviceFunction(
3214
      CodeGenModule &CGM, StringRef ParentName,
3215
      const OMPTargetParallelForDirective &S);
3216
  /// Emit device code for the target parallel for simd directive.
3217
  static void EmitOMPTargetParallelForSimdDeviceFunction(
3218
      CodeGenModule &CGM, StringRef ParentName,
3219
      const OMPTargetParallelForSimdDirective &S);
3220
  /// Emit device code for the target teams directive.
3221
  static void
3222
  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3223
                                   const OMPTargetTeamsDirective &S);
3224
  /// Emit device code for the target teams distribute directive.
3225
  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3226
      CodeGenModule &CGM, StringRef ParentName,
3227
      const OMPTargetTeamsDistributeDirective &S);
3228
  /// Emit device code for the target teams distribute simd directive.
3229
  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3230
      CodeGenModule &CGM, StringRef ParentName,
3231
      const OMPTargetTeamsDistributeSimdDirective &S);
3232
  /// Emit device code for the target simd directive.
3233
  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3234
                                              StringRef ParentName,
3235
                                              const OMPTargetSimdDirective &S);
3236
  /// Emit device code for the target teams distribute parallel for simd
3237
  /// directive.
3238
  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3239
      CodeGenModule &CGM, StringRef ParentName,
3240
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3241
3242
  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3243
      CodeGenModule &CGM, StringRef ParentName,
3244
      const OMPTargetTeamsDistributeParallelForDirective &S);
3245
  /// Emit inner loop of the worksharing/simd construct.
3246
  ///
3247
  /// \param S Directive, for which the inner loop must be emitted.
3248
  /// \param RequiresCleanup true, if directive has some associated private
3249
  /// variables.
3250
  /// \param LoopCond Bollean condition for loop continuation.
3251
  /// \param IncExpr Increment expression for loop control variable.
3252
  /// \param BodyGen Generator for the inner body of the inner loop.
3253
  /// \param PostIncGen Genrator for post-increment code (required for ordered
3254
  /// loop directvies).
3255
  void EmitOMPInnerLoop(
3256
      const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3257
      const Expr *IncExpr,
3258
      const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3259
      const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3260
3261
  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3262
  /// Emit initial code for loop counters of loop-based directives.
3263
  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3264
                                  OMPPrivateScope &LoopScope);
3265
3266
  /// Helper for the OpenMP loop directives.
3267
  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3268
3269
  /// Emit code for the worksharing loop-based directive.
3270
  /// \return true, if this construct has any lastprivate clause, false -
3271
  /// otherwise.
3272
  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3273
                              const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3274
                              const CodeGenDispatchBoundsTy &CGDispatchBounds);
3275
3276
  /// Emit code for the distribute loop-based directive.
3277
  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3278
                             const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3279
3280
  /// Helpers for the OpenMP loop directives.
3281
  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3282
  void EmitOMPSimdFinal(
3283
      const OMPLoopDirective &D,
3284
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3285
3286
  /// Emits the lvalue for the expression with possibly captured variable.
3287
  LValue EmitOMPSharedLValue(const Expr *E);
3288
3289
private:
3290
  /// Helpers for blocks.
3291
  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3292
3293
  /// struct with the values to be passed to the OpenMP loop-related functions
3294
  struct OMPLoopArguments {
3295
    /// loop lower bound
3296
    Address LB = Address::invalid();
3297
    /// loop upper bound
3298
    Address UB = Address::invalid();
3299
    /// loop stride
3300
    Address ST = Address::invalid();
3301
    /// isLastIteration argument for runtime functions
3302
    Address IL = Address::invalid();
3303
    /// Chunk value generated by sema
3304
    llvm::Value *Chunk = nullptr;
3305
    /// EnsureUpperBound
3306
    Expr *EUB = nullptr;
3307
    /// IncrementExpression
3308
    Expr *IncExpr = nullptr;
3309
    /// Loop initialization
3310
    Expr *Init = nullptr;
3311
    /// Loop exit condition
3312
    Expr *Cond = nullptr;
3313
    /// Update of LB after a whole chunk has been executed
3314
    Expr *NextLB = nullptr;
3315
    /// Update of UB after a whole chunk has been executed
3316
    Expr *NextUB = nullptr;
3317
140
    OMPLoopArguments() = default;
3318
    OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3319
                     llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3320
                     Expr *IncExpr = nullptr, Expr *Init = nullptr,
3321
                     Expr *Cond = nullptr, Expr *NextLB = nullptr,
3322
                     Expr *NextUB = nullptr)
3323
        : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3324
          IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3325
1.80k
          NextUB(NextUB) {}
3326
  };
3327
  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3328
                        const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3329
                        const OMPLoopArguments &LoopArgs,
3330
                        const CodeGenLoopTy &CodeGenLoop,
3331
                        const CodeGenOrderedTy &CodeGenOrdered);
3332
  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3333
                           bool IsMonotonic, const OMPLoopDirective &S,
3334
                           OMPPrivateScope &LoopScope, bool Ordered,
3335
                           const OMPLoopArguments &LoopArgs,
3336
                           const CodeGenDispatchBoundsTy &CGDispatchBounds);
3337
  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3338
                                  const OMPLoopDirective &S,
3339
                                  OMPPrivateScope &LoopScope,
3340
                                  const OMPLoopArguments &LoopArgs,
3341
                                  const CodeGenLoopTy &CodeGenLoopContent);
3342
  /// Emit code for sections directive.
3343
  void EmitSections(const OMPExecutableDirective &S);
3344
3345
public:
3346
3347
  //===--------------------------------------------------------------------===//
3348
  //                         LValue Expression Emission
3349
  //===--------------------------------------------------------------------===//
3350
3351
  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3352
  RValue GetUndefRValue(QualType Ty);
3353
3354
  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3355
  /// and issue an ErrorUnsupported style diagnostic (using the
3356
  /// provided Name).
3357
  RValue EmitUnsupportedRValue(const Expr *E,
3358
                               const char *Name);
3359
3360
  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3361
  /// an ErrorUnsupported style diagnostic (using the provided Name).
3362
  LValue EmitUnsupportedLValue(const Expr *E,
3363
                               const char *Name);
3364
3365
  /// EmitLValue - Emit code to compute a designator that specifies the location
3366
  /// of the expression.
3367
  ///
3368
  /// This can return one of two things: a simple address or a bitfield
3369
  /// reference.  In either case, the LLVM Value* in the LValue structure is
3370
  /// guaranteed to be an LLVM pointer type.
3371
  ///
3372
  /// If this returns a bitfield reference, nothing about the pointee type of
3373
  /// the LLVM value is known: For example, it may not be a pointer to an
3374
  /// integer.
3375
  ///
3376
  /// If this returns a normal address, and if the lvalue's C type is fixed
3377
  /// size, this method guarantees that the returned pointer type will point to
3378
  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3379
  /// variable length type, this is not possible.
3380
  ///
3381
  LValue EmitLValue(const Expr *E);
3382
3383
  /// Same as EmitLValue but additionally we generate checking code to
3384
  /// guard against undefined behavior.  This is only suitable when we know
3385
  /// that the address will be used to access the object.
3386
  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3387
3388
  RValue convertTempToRValue(Address addr, QualType type,
3389
                             SourceLocation Loc);
3390
3391
  void EmitAtomicInit(Expr *E, LValue lvalue);
3392
3393
  bool LValueIsSuitableForInlineAtomic(LValue Src);
3394
3395
  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3396
                        AggValueSlot Slot = AggValueSlot::ignored());
3397
3398
  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3399
                        llvm::AtomicOrdering AO, bool IsVolatile = false,
3400
                        AggValueSlot slot = AggValueSlot::ignored());
3401
3402
  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3403
3404
  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3405
                       bool IsVolatile, bool isInit);
3406
3407
  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3408
      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3409
      llvm::AtomicOrdering Success =
3410
          llvm::AtomicOrdering::SequentiallyConsistent,
3411
      llvm::AtomicOrdering Failure =
3412
          llvm::AtomicOrdering::SequentiallyConsistent,
3413
      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3414
3415
  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3416
                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
3417
                        bool IsVolatile);
3418
3419
  /// EmitToMemory - Change a scalar value from its value
3420
  /// representation to its in-memory representation.
3421
  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3422
3423
  /// EmitFromMemory - Change a scalar value from its memory
3424
  /// representation to its value representation.
3425
  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3426
3427
  /// Check if the scalar \p Value is within the valid range for the given
3428
  /// type \p Ty.
3429
  ///
3430
  /// Returns true if a check is needed (even if the range is unknown).
3431
  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3432
                            SourceLocation Loc);
3433
3434
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3435
  /// care to appropriately convert from the memory representation to
3436
  /// the LLVM value representation.
3437
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3438
                                SourceLocation Loc,
3439
                                AlignmentSource Source = AlignmentSource::Type,
3440
3.99k
                                bool isNontemporal = false) {
3441
3.99k
    return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3442
3.99k
                            CGM.getTBAAAccessInfo(Ty), isNontemporal);
3443
3.99k
  }
3444
3445
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3446
                                SourceLocation Loc, LValueBaseInfo BaseInfo,
3447
                                TBAAAccessInfo TBAAInfo,
3448
                                bool isNontemporal = false);
3449
3450
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3451
  /// care to appropriately convert from the memory representation to
3452
  /// the LLVM value representation.  The l-value must be a simple
3453
  /// l-value.
3454
  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3455
3456
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3457
  /// care to appropriately convert from the memory representation to
3458
  /// the LLVM value representation.
3459
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3460
                         bool Volatile, QualType Ty,
3461
                         AlignmentSource Source = AlignmentSource::Type,
3462
442
                         bool isInit = false, bool isNontemporal = false) {
3463
442
    EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3464
442
                      CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3465
442
  }
3466
3467
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3468
                         bool Volatile, QualType Ty,
3469
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3470
                         bool isInit = false, bool isNontemporal = false);
3471
3472
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3473
  /// care to appropriately convert from the memory representation to
3474
  /// the LLVM value representation.  The l-value must be a simple
3475
  /// l-value.  The isInit flag indicates whether this is an initialization.
3476
  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3477
  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3478
3479
  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3480
  /// this method emits the address of the lvalue, then loads the result as an
3481
  /// rvalue, returning the rvalue.
3482
  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3483
  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3484
  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3485
  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3486
3487
  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3488
  /// lvalue, where both are guaranteed to the have the same type, and that type
3489
  /// is 'Ty'.
3490
  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3491
  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3492
  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3493
3494
  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3495
  /// as EmitStoreThroughLValue.
3496
  ///
3497
  /// \param Result [out] - If non-null, this will be set to a Value* for the
3498
  /// bit-field contents after the store, appropriate for use as the result of
3499
  /// an assignment to the bit-field.
3500
  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3501
                                      llvm::Value **Result=nullptr);
3502
3503
  /// Emit an l-value for an assignment (simple or compound) of complex type.
3504
  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3505
  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3506
  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3507
                                             llvm::Value *&Result);
3508
3509
  // Note: only available for agg return types
3510
  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3511
  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3512
  // Note: only available for agg return types
3513
  LValue EmitCallExprLValue(const CallExpr *E);
3514
  // Note: only available for agg return types
3515
  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3516
  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3517
  LValue EmitStringLiteralLValue(const StringLiteral *E);
3518
  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3519
  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3520
  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3521
  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3522
                                bool Accessed = false);
3523
  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3524
                                 bool IsLowerBound = true);
3525
  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3526
  LValue EmitMemberExpr(const MemberExpr *E);
3527
  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3528
  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3529
  LValue EmitInitListLValue(const InitListExpr *E);
3530
  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3531
  LValue EmitCastLValue(const CastExpr *E);
3532
  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3533
  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3534
3535
  Address EmitExtVectorElementLValue(LValue V);
3536
3537
  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3538
3539
  Address EmitArrayToPointerDecay(const Expr *Array,
3540
                                  LValueBaseInfo *BaseInfo = nullptr,
3541
                                  TBAAAccessInfo *TBAAInfo = nullptr);
3542
3543
  class ConstantEmission {
3544
    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3545
    ConstantEmission(llvm::Constant *C, bool isReference)
3546
7.49k
      : ValueAndIsReference(C, isReference) {}
3547
  public:
3548
642k
    ConstantEmission() {}
3549
49
    static ConstantEmission forReference(llvm::Constant *C) {
3550
49
      return ConstantEmission(C, true);
3551
49
    }
3552
7.44k
    static ConstantEmission forValue(llvm::Constant *C) {
3553
7.44k
      return ConstantEmission(C, false);
3554
7.44k
    }
3555
3556
657k
    explicit operator bool() const {
3557
657k
      return ValueAndIsReference.getOpaqueValue() != nullptr;
3558
657k
    }
3559
3560
14.9k
    bool isReference() const { return ValueAndIsReference.getInt(); }
3561
49
    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3562
49
      assert(isReference());
3563
49
      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3564
49
                                            refExpr->getType());
3565
49
    }
3566
3567
7.44k
    llvm::Constant *getValue() const {
3568
7.44k
      assert(!isReference());
3569
7.44k
      return ValueAndIsReference.getPointer();
3570
7.44k
    }
3571
  };
3572
3573
  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3574
  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3575
  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3576
3577
  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3578
                                AggValueSlot slot = AggValueSlot::ignored());
3579
  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3580
3581
  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3582
                              const ObjCIvarDecl *Ivar);
3583
  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3584
  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3585
3586
  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3587
  /// if the Field is a reference, this will return the address of the reference
3588
  /// and not the address of the value stored in the reference.
3589
  LValue EmitLValueForFieldInitialization(LValue Base,
3590
                                          const FieldDecl* Field);
3591
3592
  LValue EmitLValueForIvar(QualType ObjectTy,
3593
                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
3594
                           unsigned CVRQualifiers);
3595
3596
  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3597
  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3598
  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3599
  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3600
3601
  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3602
  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3603
  LValue EmitStmtExprLValue(const StmtExpr *E);
3604
  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3605
  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3606
  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3607
3608
  //===--------------------------------------------------------------------===//
3609
  //                         Scalar Expression Emission
3610
  //===--------------------------------------------------------------------===//
3611
3612
  /// EmitCall - Generate a call of the given function, expecting the given
3613
  /// result type, and using the given argument list which specifies both the
3614
  /// LLVM arguments and the types they were derived from.
3615
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3616
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
3617
                  llvm::CallBase **callOrInvoke, SourceLocation Loc);
3618
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3619
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
3620
91.0k
                  llvm::CallBase **callOrInvoke = nullptr) {
3621
91.0k
    return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3622
91.0k
                    SourceLocation());
3623
91.0k
  }
3624
  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3625
                  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3626
  RValue EmitCallExpr(const CallExpr *E,
3627
                      ReturnValueSlot ReturnValue = ReturnValueSlot());
3628
  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3629
  CGCallee EmitCallee(const Expr *E);
3630
3631
  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3632
  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3633
3634
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3635
                                  const Twine &name = "");
3636
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3637
                                  ArrayRef<llvm::Value *> args,
3638
                                  const Twine &name = "");
3639
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3640
                                          const Twine &name = "");
3641
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3642
                                          ArrayRef<llvm::Value *> args,
3643
                                          const Twine &name = "");
3644
3645
  SmallVector<llvm::OperandBundleDef, 1>
3646
  getBundlesForFunclet(llvm::Value *Callee);
3647
3648
  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3649
                                   ArrayRef<llvm::Value *> Args,
3650
                                   const Twine &Name = "");
3651
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3652
                                          ArrayRef<llvm::Value *> args,
3653
                                          const Twine &name = "");
3654
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3655
                                          const Twine &name = "");
3656
  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3657
                                       ArrayRef<llvm::Value *> args);
3658
3659
  CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3660
                                     NestedNameSpecifier *Qual,
3661
                                     llvm::Type *Ty);
3662
3663
  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3664
                                               CXXDtorType Type,
3665
                                               const CXXRecordDecl *RD);
3666
3667
  // Return the copy constructor name with the prefix "__copy_constructor_"
3668
  // removed.
3669
  static std::string getNonTrivialCopyConstructorStr(QualType QT,
3670
                                                     CharUnits Alignment,
3671
                                                     bool IsVolatile,
3672
                                                     ASTContext &Ctx);
3673
3674
  // Return the destructor name with the prefix "__destructor_" removed.
3675
  static std::string getNonTrivialDestructorStr(QualType QT,
3676
                                                CharUnits Alignment,
3677
                                                bool IsVolatile,
3678
                                                ASTContext &Ctx);
3679
3680
  // These functions emit calls to the special functions of non-trivial C
3681
  // structs.
3682
  void defaultInitNonTrivialCStructVar(LValue Dst);
3683
  void callCStructDefaultConstructor(LValue Dst);
3684
  void callCStructDestructor(LValue Dst);
3685
  void callCStructCopyConstructor(LValue Dst, LValue Src);
3686
  void callCStructMoveConstructor(LValue Dst, LValue Src);
3687
  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3688
  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3689
3690
  RValue
3691
  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3692
                              const CGCallee &Callee,
3693
                              ReturnValueSlot ReturnValue, llvm::Value *This,
3694
                              llvm::Value *ImplicitParam,
3695
                              QualType ImplicitParamTy, const CallExpr *E,
3696
                              CallArgList *RtlArgs);
3697
  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3698
                               llvm::Value *This, QualType ThisTy,
3699
                               llvm::Value *ImplicitParam,
3700
                               QualType ImplicitParamTy, const CallExpr *E);
3701
  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3702
                               ReturnValueSlot ReturnValue);
3703
  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3704
                                               const CXXMethodDecl *MD,
3705
                                               ReturnValueSlot ReturnValue,
3706
                                               bool HasQualifier,
3707
                                               NestedNameSpecifier *Qualifier,
3708
                                               bool IsArrow, const Expr *Base);
3709
  // Compute the object pointer.
3710
  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3711
                                          llvm::Value *memberPtr,
3712
                                          const MemberPointerType *memberPtrType,
3713
                                          LValueBaseInfo *BaseInfo = nullptr,
3714
                                          TBAAAccessInfo *TBAAInfo = nullptr);
3715
  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3716
                                      ReturnValueSlot ReturnValue);
3717
3718
  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3719
                                       const CXXMethodDecl *MD,
3720
                                       ReturnValueSlot ReturnValue);
3721
  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3722
3723
  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3724
                                ReturnValueSlot ReturnValue);
3725
3726
  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3727
                                       ReturnValueSlot ReturnValue);
3728
  RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
3729
                                        ReturnValueSlot ReturnValue);
3730
3731
  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3732
                         const CallExpr *E, ReturnValueSlot ReturnValue);
3733
3734
  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3735
3736
  /// Emit IR for __builtin_os_log_format.
3737
  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3738
3739
  /// Emit IR for __builtin_is_aligned.
3740
  RValue EmitBuiltinIsAligned(const CallExpr *E);
3741
  /// Emit IR for __builtin_align_up/__builtin_align_down.
3742
  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
3743
3744
  llvm::Function *generateBuiltinOSLogHelperFunction(
3745
      const analyze_os_log::OSLogBufferLayout &Layout,
3746
      CharUnits BufferAlignment);
3747
3748
  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3749
3750
  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3751
  /// is unhandled by the current target.
3752
  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3753
                                     ReturnValueSlot ReturnValue);
3754
3755
  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3756
                                             const llvm::CmpInst::Predicate Fp,
3757
                                             const llvm::CmpInst::Predicate Ip,
3758
                                             const llvm::Twine &Name = "");
3759
  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3760
                                  ReturnValueSlot ReturnValue,
3761
                                  llvm::Triple::ArchType Arch);
3762
  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3763
                                     ReturnValueSlot ReturnValue,
3764
                                     llvm::Triple::ArchType Arch);
3765
3766
  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3767
                                         unsigned LLVMIntrinsic,
3768
                                         unsigned AltLLVMIntrinsic,
3769
                                         const char *NameHint,
3770
                                         unsigned Modifier,
3771
                                         const CallExpr *E,
3772
                                         SmallVectorImpl<llvm::Value *> &Ops,
3773
                                         Address PtrOp0, Address PtrOp1,
3774
                                         llvm::Triple::ArchType Arch);
3775
3776
  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3777
                                          unsigned Modifier, llvm::Type *ArgTy,
3778
                                          const CallExpr *E);
3779
  llvm::Value *EmitNeonCall(llvm::Function *F,
3780
                            SmallVectorImpl<llvm::Value*> &O,
3781
                            const char *name,
3782
                            unsigned shift = 0, bool rightshift = false);
3783
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3784
  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3785
                                   bool negateForRightShift);
3786
  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3787
                                 llvm::Type *Ty, bool usgn, const char *name);
3788
  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3789
  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3790
                                      llvm::Triple::ArchType Arch);
3791
  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3792
3793
  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3794
  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3795
  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3796
  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3797
  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3798
  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3799
  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3800
                                          const CallExpr *E);
3801
  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3802
3803
private:
3804
  enum class MSVCIntrin;
3805
3806
public:
3807
  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3808
3809
  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3810
3811
  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3812
  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3813
  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3814
  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3815
  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3816
  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3817
                                const ObjCMethodDecl *MethodWithObjects);
3818
  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3819
  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3820
                             ReturnValueSlot Return = ReturnValueSlot());
3821
3822
  /// Retrieves the default cleanup kind for an ARC cleanup.
3823
  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3824
985
  CleanupKind getARCCleanupKind() {
3825
985
    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3826
985
             ? 
NormalAndEHCleanup58
:
NormalCleanup927
;
3827
985
  }
3828
3829
  // ARC primitives.
3830
  void EmitARCInitWeak(Address addr, llvm::Value *value);
3831
  void EmitARCDestroyWeak(Address addr);
3832
  llvm::Value *EmitARCLoadWeak(Address addr);
3833
  llvm::Value *EmitARCLoadWeakRetained(Address addr);
3834
  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3835
  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3836
  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3837
  void EmitARCCopyWeak(Address dst, Address src);
3838
  void EmitARCMoveWeak(Address dst, Address src);
3839
  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3840
  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3841
  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3842
                                  bool resultIgnored);
3843
  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3844
                                      bool resultIgnored);
3845
  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3846
  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3847
  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3848
  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3849
  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3850
  llvm::Value *EmitARCAutorelease(llvm::Value *value);
3851
  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3852
  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3853
  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3854
  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3855
3856
  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
3857
  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
3858
                                      llvm::Type *returnType);
3859
  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3860
3861
  std::pair<LValue,llvm::Value*>
3862
  EmitARCStoreAutoreleasing(const BinaryOperator *e);
3863
  std::pair<LValue,llvm::Value*>
3864
  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3865
  std::pair<LValue,llvm::Value*>
3866
  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3867
3868
  llvm::Value *EmitObjCAlloc(llvm::Value *value,
3869
                             llvm::Type *returnType);
3870
  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
3871
                                     llvm::Type *returnType);
3872
  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
3873
3874
  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3875
  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3876
  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3877
3878
  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3879
  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3880
                                            bool allowUnsafeClaim);
3881
  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3882
  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3883
  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3884
3885
  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3886
3887
  static Destroyer destroyARCStrongImprecise;
3888
  static Destroyer destroyARCStrongPrecise;
3889
  static Destroyer destroyARCWeak;
3890
  static Destroyer emitARCIntrinsicUse;
3891
  static Destroyer destroyNonTrivialCStruct;
3892
3893
  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3894
  llvm::Value *EmitObjCAutoreleasePoolPush();
3895
  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3896
  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3897
  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3898
3899
  /// Emits a reference binding to the passed in expression.
3900
  RValue EmitReferenceBindingToExpr(const Expr *E);
3901
3902
  //===--------------------------------------------------------------------===//
3903
  //                           Expression Emission
3904
  //===--------------------------------------------------------------------===//
3905
3906
  // Expressions are broken into three classes: scalar, complex, aggregate.
3907
3908
  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3909
  /// scalar type, returning the result.
3910
  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3911
3912
  /// Emit a conversion from the specified type to the specified destination
3913
  /// type, both of which are LLVM scalar types.
3914
  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3915
                                    QualType DstTy, SourceLocation Loc);
3916
3917
  /// Emit a conversion from the specified complex type to the specified
3918
  /// destination type, where the destination type is an LLVM scalar type.
3919
  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3920
                                             QualType DstTy,
3921
                                             SourceLocation Loc);
3922
3923
  /// EmitAggExpr - Emit the computation of the specified expression
3924
  /// of aggregate type.  The result is computed into the given slot,
3925
  /// which may be null to indicate that the value is not needed.
3926
  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3927
3928
  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3929
  /// aggregate type into a temporary LValue.
3930
  LValue EmitAggExprToLValue(const Expr *E);
3931
3932
  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3933
  /// make sure it survives garbage collection until this point.
3934
  void EmitExtendGCLifetime(llvm::Value *object);
3935
3936
  /// EmitComplexExpr - Emit the computation of the specified expression of
3937
  /// complex type, returning the result.
3938
  ComplexPairTy EmitComplexExpr(const Expr *E,
3939
                                bool IgnoreReal = false,
3940
                                bool IgnoreImag = false);
3941
3942
  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3943
  /// type and place its result into the specified l-value.
3944
  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3945
3946
  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3947
  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3948
3949
  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3950
  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3951
3952
  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3953
  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3954
3955
  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3956
  /// global variable that has already been created for it.  If the initializer
3957
  /// has a different type than GV does, this may free GV and return a different
3958
  /// one.  Otherwise it just returns GV.
3959
  llvm::GlobalVariable *
3960
  AddInitializerToStaticVarDecl(const VarDecl &D,
3961
                                llvm::GlobalVariable *GV);
3962
3963
  // Emit an @llvm.invariant.start call for the given memory region.
3964
  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
3965
3966
  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3967
  /// variable with global storage.
3968
  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3969
                                bool PerformInit);
3970
3971
  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
3972
                                   llvm::Constant *Addr);
3973
3974
  /// Call atexit() with a function that passes the given argument to
3975
  /// the given function.
3976
  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
3977
                                    llvm::Constant *addr);
3978
3979
  /// Call atexit() with function dtorStub.
3980
  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3981
3982
  /// Emit code in this function to perform a guarded variable
3983
  /// initialization.  Guarded initializations are used when it's not
3984
  /// possible to prove that an initialization will be done exactly
3985
  /// once, e.g. with a static local variable or a static data member
3986
  /// of a class template.
3987
  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3988
                          bool PerformInit);
3989
3990
  enum class GuardKind { VariableGuard, TlsGuard };
3991
3992
  /// Emit a branch to select whether or not to perform guarded initialization.
3993
  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3994
                                llvm::BasicBlock *InitBlock,
3995
                                llvm::BasicBlock *NoInitBlock,
3996
                                GuardKind Kind, const VarDecl *D);
3997
3998
  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3999
  /// variables.
4000
  void
4001
  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4002
                            ArrayRef<llvm::Function *> CXXThreadLocals,
4003
                            ConstantAddress Guard = ConstantAddress::invalid());
4004
4005
  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
4006
  /// variables.
4007
  void GenerateCXXGlobalDtorsFunc(
4008
      llvm::Function *Fn,
4009
      const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4010
                                   llvm::Constant *>> &DtorsAndObjects);
4011
4012
  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4013
                                        const VarDecl *D,
4014
                                        llvm::GlobalVariable *Addr,
4015
                                        bool PerformInit);
4016
4017
  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4018
4019
  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4020
4021
19.9k
  void enterFullExpression(const FullExpr *E) {
4022
19.9k
    if (const auto *EWC = dyn_cast<ExprWithCleanups>(E))
4023
19.9k
      if (EWC->getNumObjects() == 0)
4024
19.2k
        return;
4025
703
    enterNonTrivialFullExpression(E);
4026
703
  }
4027
  void enterNonTrivialFullExpression(const FullExpr *E);
4028
4029
  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4030
4031
  RValue EmitAtomicExpr(AtomicExpr *E);
4032
4033
  //===--------------------------------------------------------------------===//
4034
  //                         Annotations Emission
4035
  //===--------------------------------------------------------------------===//
4036
4037
  /// Emit an annotation call (intrinsic).
4038
  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4039
                                  llvm::Value *AnnotatedVal,
4040
                                  StringRef AnnotationStr,
4041
                                  SourceLocation Location);
4042
4043
  /// Emit local annotations for the local variable V, declared by D.
4044
  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4045
4046
  /// Emit field annotations for the given field & value. Returns the
4047
  /// annotation result.
4048
  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4049
4050
  //===--------------------------------------------------------------------===//
4051
  //                             Internal Helpers
4052
  //===--------------------------------------------------------------------===//
4053
4054
  /// ContainsLabel - Return true if the statement contains a label in it.  If
4055
  /// this statement is not executed normally, it not containing a label means
4056
  /// that we can just remove the code.
4057
  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4058
4059
  /// containsBreak - Return true if the statement contains a break out of it.
4060
  /// If the statement (recursively) contains a switch or loop with a break
4061
  /// inside of it, this is fine.
4062
  static bool containsBreak(const Stmt *S);
4063
4064
  /// Determine if the given statement might introduce a declaration into the
4065
  /// current scope, by being a (possibly-labelled) DeclStmt.
4066
  static bool mightAddDeclToScope(const Stmt *S);
4067
4068
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4069
  /// to a constant, or if it does but contains a label, return false.  If it
4070
  /// constant folds return true and set the boolean result in Result.
4071
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4072
                                    bool AllowLabels = false);
4073
4074
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4075
  /// to a constant, or if it does but contains a label, return false.  If it
4076
  /// constant folds return true and set the folded value.
4077
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4078
                                    bool AllowLabels = false);
4079
4080
  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4081
  /// if statement) to the specified blocks.  Based on the condition, this might
4082
  /// try to simplify the codegen of the conditional based on the branch.
4083
  /// TrueCount should be the number of times we expect the condition to
4084
  /// evaluate to true based on PGO data.
4085
  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4086
                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4087
4088
  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4089
  /// nonnull, if \p LHS is marked _Nonnull.
4090
  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4091
4092
  /// An enumeration which makes it easier to specify whether or not an
4093
  /// operation is a subtraction.
4094
  enum { NotSubtraction = false, IsSubtraction = true };
4095
4096
  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4097
  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4098
  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4099
  /// \p IsSubtraction indicates whether the expression used to form the GEP
4100
  /// is a subtraction.
4101
  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4102
                                      ArrayRef<llvm::Value *> IdxList,
4103
                                      bool SignedIndices,
4104
                                      bool IsSubtraction,
4105
                                      SourceLocation Loc,
4106
                                      const Twine &Name = "");
4107
4108
  /// Specifies which type of sanitizer check to apply when handling a
4109
  /// particular builtin.
4110
  enum BuiltinCheckKind {
4111
    BCK_CTZPassedZero,
4112
    BCK_CLZPassedZero,
4113
  };
4114
4115
  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4116
  /// enabled, a runtime check specified by \p Kind is also emitted.
4117
  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4118
4119
  /// Emit a description of a type in a format suitable for passing to
4120
  /// a runtime sanitizer handler.
4121
  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4122
4123
  /// Convert a value into a format suitable for passing to a runtime
4124
  /// sanitizer handler.
4125
  llvm::Value *EmitCheckValue(llvm::Value *V);
4126
4127
  /// Emit a description of a source location in a format suitable for
4128
  /// passing to a runtime sanitizer handler.
4129
  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4130
4131
  /// Create a basic block that will either trap or call a handler function in
4132
  /// the UBSan runtime with the provided arguments, and create a conditional
4133
  /// branch to it.
4134
  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4135
                 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4136
                 ArrayRef<llvm::Value *> DynamicArgs);
4137
4138
  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4139
  /// if Cond if false.
4140
  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4141
                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4142
                            ArrayRef<llvm::Constant *> StaticArgs);
4143
4144
  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4145
  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4146
  void EmitUnreachable(SourceLocation Loc);
4147
4148
  /// Create a basic block that will call the trap intrinsic, and emit a
4149
  /// conditional branch to it, for the -ftrapv checks.
4150
  void EmitTrapCheck(llvm::Value *Checked);
4151
4152
  /// Emit a call to trap or debugtrap and attach function attribute
4153
  /// "trap-func-name" if specified.
4154
  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4155
4156
  /// Emit a stub for the cross-DSO CFI check function.
4157
  void EmitCfiCheckStub();
4158
4159
  /// Emit a cross-DSO CFI failure handling function.
4160
  void EmitCfiCheckFail();
4161
4162
  /// Create a check for a function parameter that may potentially be
4163
  /// declared as non-null.
4164
  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4165
                           AbstractCallee AC, unsigned ParmNum);
4166
4167
  /// EmitCallArg - Emit a single call argument.
4168
  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4169
4170
  /// EmitDelegateCallArg - We are performing a delegate call; that
4171
  /// is, the current function is delegating to another one.  Produce
4172
  /// a r-value suitable for passing the given parameter.
4173
  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4174
                           SourceLocation loc);
4175
4176
  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4177
  /// point operation, expressed as the maximum relative error in ulp.
4178
  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4179
4180
  /// SetFPModel - Control floating point behavior via fp-model settings.
4181
  void SetFPModel();
4182
4183
private:
4184
  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4185
  void EmitReturnOfRValue(RValue RV, QualType Ty);
4186
4187
  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4188
4189
  llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4190
  DeferredReplacements;
4191
4192
  /// Set the address of a local variable.
4193
580k
  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4194
580k
    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4195
580k
    LocalDeclMap.insert({VD, Addr});
4196
580k
  }
4197
4198
  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4199
  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4200
  ///
4201
  /// \param AI - The first function argument of the expansion.
4202
  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4203
                          SmallVectorImpl<llvm::Value *>::iterator &AI);
4204
4205
  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4206
  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4207
  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4208
  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4209
                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
4210
                        unsigned &IRCallArgPos);
4211
4212
  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4213
                            const Expr *InputExpr, std::string &ConstraintStr);
4214
4215
  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4216
                                  LValue InputValue, QualType InputType,
4217
                                  std::string &ConstraintStr,
4218
                                  SourceLocation Loc);
4219
4220
  /// Attempts to statically evaluate the object size of E. If that
4221
  /// fails, emits code to figure the size of E out for us. This is
4222
  /// pass_object_size aware.
4223
  ///
4224
  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4225
  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4226
                                               llvm::IntegerType *ResType,
4227
                                               llvm::Value *EmittedE,
4228
                                               bool IsDynamic);
4229
4230
  /// Emits the size of E, as required by __builtin_object_size. This
4231
  /// function is aware of pass_object_size parameters, and will act accordingly
4232
  /// if E is a parameter with the pass_object_size attribute.
4233
  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4234
                                     llvm::IntegerType *ResType,
4235
                                     llvm::Value *EmittedE,
4236
                                     bool IsDynamic);
4237
4238
  void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4239
                                       Address Loc);
4240
4241
public:
4242
#ifndef NDEBUG
4243
  // Determine whether the given argument is an Objective-C method
4244
  // that may have type parameters in its signature.
4245
12.4k
  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4246
12.4k
    const DeclContext *dc = method->getDeclContext();
4247
12.4k
    if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4248
8.33k
      return classDecl->getTypeParamListAsWritten();
4249
8.33k
    }
4250
4.08k
4251
4.08k
    if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4252
3.35k
      return catDecl->getTypeParamList();
4253
3.35k
    }
4254
729
4255
729
    return false;
4256
729
  }
4257
4258
  template<typename T>
4259
247k
  static bool isObjCMethodWithTypeParams(const T *) { return false; }
4260
#endif
4261
4262
  enum class EvaluationOrder {
4263
    ///! No language constraints on evaluation order.
4264
    Default,
4265
    ///! Language semantics require left-to-right evaluation.
4266
    ForceLeftToRight,
4267
    ///! Language semantics require right-to-left evaluation.
4268
    ForceRightToLeft
4269
  };
4270
4271
  /// EmitCallArgs - Emit call arguments for a function.
4272
  template <typename T>
4273
  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4274
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4275
                    AbstractCallee AC = AbstractCallee(),
4276
                    unsigned ParamsToSkip = 0,
4277
261k
                    EvaluationOrder Order = EvaluationOrder::Default) {
4278
261k
    SmallVector<QualType, 16> ArgTypes;
4279
261k
    CallExpr::const_arg_iterator Arg = ArgRange.begin();
4280
261k
4281
261k
    assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4282
261k
           "Can't skip parameters if type info is not provided");
4283
261k
    if (CallArgTypeInfo) {
4284
260k
#ifndef NDEBUG
4285
260k
      bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4286
260k
#endif
4287
260k
4288
260k
      // First, use the argument types that the type info knows about
4289
260k
      for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4290
260k
                E = CallArgTypeInfo->param_type_end();
4291
539k
           I != E; 
++I, ++Arg279k
) {
4292
279k
        assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4293
279k
        assert((isGenericMethod ||
4294
279k
                ((*I)->isVariablyModifiedType() ||
4295
279k
                 (*I).getNonReferenceType()->isObjCRetainableType() ||
4296
279k
                 getContext()
4297
279k
                         .getCanonicalType((*I).getNonReferenceType())
4298
279k
                         .getTypePtr() ==
4299
279k
                     getContext()
4300
279k
                         .getCanonicalType((*Arg)->getType())
4301
279k
                         .getTypePtr())) &&
4302
279k
               "type mismatch in call argument!");
4303
279k
        ArgTypes.push_back(*I);
4304
279k
      }
4305
260k
    }
4306
261k
4307
261k
    // Either we've emitted all the call args, or we have a call to variadic
4308
261k
    // function.
4309
261k
    assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4310
261k
            CallArgTypeInfo->isVariadic()) &&
4311
261k
           "Extra arguments in non-variadic function!");
4312
261k
4313
261k
    // If we still have any arguments, emit them using the type of the argument.
4314
261k
    for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4315
50.9k
      ArgTypes.push_back(CallArgTypeInfo ? 
getVarArgType(A)50.2k
:
A->getType()614
);
4316
261k
4317
261k
    EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4318
261k
  }
void clang::CodeGen::CodeGenFunction::EmitCallArgs<clang::FunctionProtoType>(clang::CodeGen::CallArgList&, clang::FunctionProtoType const*, llvm::iterator_range<clang::Stmt::CastIterator<clang::Expr, clang::Expr const* const, clang::Stmt const* const> >, clang::CodeGen::CodeGenFunction::AbstractCallee, unsigned int, clang::CodeGen::CodeGenFunction::EvaluationOrder)
Line
Count
Source
4277
248k
                    EvaluationOrder Order = EvaluationOrder::Default) {
4278
248k
    SmallVector<QualType, 16> ArgTypes;
4279
248k
    CallExpr::const_arg_iterator Arg = ArgRange.begin();
4280
248k
4281
248k
    assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4282
248k
           "Can't skip parameters if type info is not provided");
4283
248k
    if (CallArgTypeInfo) {
4284
247k
#ifndef NDEBUG
4285
247k
      bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4286
247k
#endif
4287
247k
4288
247k
      // First, use the argument types that the type info knows about
4289
247k
      for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4290
247k
                E = CallArgTypeInfo->param_type_end();
4291
517k
           I != E; 
++I, ++Arg269k
) {
4292
269k
        assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4293
269k
        assert((isGenericMethod ||
4294
269k
                ((*I)->isVariablyModifiedType() ||
4295
269k
                 (*I).getNonReferenceType()->isObjCRetainableType() ||
4296
269k
                 getContext()
4297
269k
                         .getCanonicalType((*I).getNonReferenceType())
4298
269k
                         .getTypePtr() ==
4299
269k
                     getContext()
4300
269k
                         .getCanonicalType((*Arg)->getType())
4301
269k
                         .getTypePtr())) &&
4302
269k
               "type mismatch in call argument!");
4303
269k
        ArgTypes.push_back(*I);
4304
269k
      }
4305
247k
    }
4306
248k
4307
248k
    // Either we've emitted all the call args, or we have a call to variadic
4308
248k
    // function.
4309
248k
    assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4310
248k
            CallArgTypeInfo->isVariadic()) &&
4311
248k
           "Extra arguments in non-variadic function!");
4312
248k
4313
248k
    // If we still have any arguments, emit them using the type of the argument.
4314
248k
    for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4315
48.4k
      ArgTypes.push_back(CallArgTypeInfo ? 
getVarArgType(A)48.3k
:
A->getType()110
);
4316
248k
4317
248k
    EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4318
248k
  }
void clang::CodeGen::CodeGenFunction::EmitCallArgs<clang::ObjCMethodDecl>(clang::CodeGen::CallArgList&, clang::ObjCMethodDecl const*, llvm::iterator_range<clang::Stmt::CastIterator<clang::Expr, clang::Expr const* const, clang::Stmt const* const> >, clang::CodeGen::CodeGenFunction::AbstractCallee, unsigned int, clang::CodeGen::CodeGenFunction::EvaluationOrder)
Line
Count
Source
4277
12.9k
                    EvaluationOrder Order = EvaluationOrder::Default) {
4278
12.9k
    SmallVector<QualType, 16> ArgTypes;
4279
12.9k
    CallExpr::const_arg_iterator Arg = ArgRange.begin();
4280
12.9k
4281
12.9k
    assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4282
12.9k
           "Can't skip parameters if type info is not provided");
4283
12.9k
    if (CallArgTypeInfo) {
4284
12.4k
#ifndef NDEBUG
4285
12.4k
      bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4286
12.4k
#endif
4287
12.4k
4288
12.4k
      // First, use the argument types that the type info knows about
4289
12.4k
      for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4290
12.4k
                E = CallArgTypeInfo->param_type_end();
4291
22.4k
           I != E; 
++I, ++Arg10.0k
) {
4292
10.0k
        assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4293
10.0k
        assert((isGenericMethod ||
4294
10.0k
                ((*I)->isVariablyModifiedType() ||
4295
10.0k
                 (*I).getNonReferenceType()->isObjCRetainableType() ||
4296
10.0k
                 getContext()
4297
10.0k
                         .getCanonicalType((*I).getNonReferenceType())
4298
10.0k
                         .getTypePtr() ==
4299
10.0k
                     getContext()
4300
10.0k
                         .getCanonicalType((*Arg)->getType())
4301
10.0k
                         .getTypePtr())) &&
4302
10.0k
               "type mismatch in call argument!");
4303
10.0k
        ArgTypes.push_back(*I);
4304
10.0k
      }
4305
12.4k
    }
4306
12.9k
4307
12.9k
    // Either we've emitted all the call args, or we have a call to variadic
4308
12.9k
    // function.
4309
12.9k
    assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4310
12.9k
            CallArgTypeInfo->isVariadic()) &&
4311
12.9k
           "Extra arguments in non-variadic function!");
4312
12.9k
4313
12.9k
    // If we still have any arguments, emit them using the type of the argument.
4314
12.9k
    for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4315
2.48k
      ArgTypes.push_back(CallArgTypeInfo ? 
getVarArgType(A)1.98k
:
A->getType()504
);
4316
12.9k
4317
12.9k
    EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4318
12.9k
  }
4319
4320
  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4321
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4322
                    AbstractCallee AC = AbstractCallee(),
4323
                    unsigned ParamsToSkip = 0,
4324
                    EvaluationOrder Order = EvaluationOrder::Default);
4325
4326
  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4327
  /// emit the value and compute our best estimate of the alignment of the
4328
  /// pointee.
4329
  ///
4330
  /// \param BaseInfo - If non-null, this will be initialized with
4331
  /// information about the source of the alignment and the may-alias
4332
  /// attribute.  Note that this function will conservatively fall back on
4333
  /// the type when it doesn't recognize the expression and may-alias will
4334
  /// be set to false.
4335
  ///
4336
  /// One reasonable way to use this information is when there's a language
4337
  /// guarantee that the pointer must be aligned to some stricter value, and
4338
  /// we're simply trying to ensure that sufficiently obvious uses of under-
4339
  /// aligned objects don't get miscompiled; for example, a placement new
4340
  /// into the address of a local variable.  In such a case, it's quite
4341
  /// reasonable to just ignore the returned alignment when it isn't from an
4342
  /// explicit source.
4343
  Address EmitPointerWithAlignment(const Expr *Addr,
4344
                                   LValueBaseInfo *BaseInfo = nullptr,
4345
                                   TBAAAccessInfo *TBAAInfo = nullptr);
4346
4347
  /// If \p E references a parameter with pass_object_size info or a constant
4348
  /// array size modifier, emit the object size divided by the size of \p EltTy.
4349
  /// Otherwise return null.
4350
  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4351
4352
  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4353
4354
  struct MultiVersionResolverOption {
4355
    llvm::Function *Function;
4356
    FunctionDecl *FD;
4357
    struct Conds {
4358
      StringRef Architecture;
4359
      llvm::SmallVector<StringRef, 8> Features;
4360
4361
      Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4362
214
          : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4363
    } Conditions;
4364
4365
    MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4366
                               ArrayRef<StringRef> Feats)
4367
214
        : Function(F), Conditions(Arch, Feats) {}
4368
  };
4369
4370
  // Emits the body of a multiversion function's resolver. Assumes that the
4371
  // options are already sorted in the proper order, with the 'default' option
4372
  // last (if it exists).
4373
  void EmitMultiVersionResolver(llvm::Function *Resolver,
4374
                                ArrayRef<MultiVersionResolverOption> Options);
4375
4376
  static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4377
4378
private:
4379
  QualType getVarArgType(const Expr *Arg);
4380
4381
  void EmitDeclMetadata();
4382
4383
  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4384
                                  const AutoVarEmission &emission);
4385
4386
  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4387
4388
  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4389
  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4390
  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4391
  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4392
  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4393
  llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4394
  llvm::Value *EmitX86CpuInit();
4395
  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4396
};
4397
4398
inline DominatingLLVMValue::saved_type
4399
298
DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4400
298
  if (!needsSaving(value)) 
return saved_type(value, false)268
;
4401
30
4402
30
  // Otherwise, we need an alloca.
4403
30
  auto align = CharUnits::fromQuantity(
4404
30
            CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4405
30
  Address alloca =
4406
30
    CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4407
30
  CGF.Builder.CreateStore(value, alloca);
4408
30
4409
30
  return saved_type(alloca.getPointer(), true);
4410
30
}
4411
4412
inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4413
297
                                                 saved_type value) {
4414
297
  // If the value says it wasn't saved, trust that it's still dominating.
4415
297
  if (!value.getInt()) 
return value.getPointer()282
;
4416
15
4417
15
  // Otherwise, it should be an alloca instruction, as set up in save().
4418
15
  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4419
15
  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign());
4420
15
}
4421
4422
}  // end namespace CodeGen
4423
}  // end namespace clang
4424
4425
#endif