Coverage Report

Created: 2023-05-31 04:38

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/Sema/SemaCUDA.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
/// This file implements semantic analysis for CUDA constructs.
10
///
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/AST/ASTContext.h"
14
#include "clang/AST/Decl.h"
15
#include "clang/AST/ExprCXX.h"
16
#include "clang/Basic/Cuda.h"
17
#include "clang/Basic/TargetInfo.h"
18
#include "clang/Lex/Preprocessor.h"
19
#include "clang/Sema/Lookup.h"
20
#include "clang/Sema/ScopeInfo.h"
21
#include "clang/Sema/Sema.h"
22
#include "clang/Sema/SemaDiagnostic.h"
23
#include "clang/Sema/SemaInternal.h"
24
#include "clang/Sema/Template.h"
25
#include "llvm/ADT/SmallVector.h"
26
#include <optional>
27
using namespace clang;
28
29
216
template <typename AttrT> static bool hasExplicitAttr(const VarDecl *D) {
30
216
  if (!D)
31
0
    return false;
32
216
  if (auto *A = D->getAttr<AttrT>())
33
216
    return !A->isImplicit();
34
0
  return false;
35
216
}
36
37
9
void Sema::PushForceCUDAHostDevice() {
38
9
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
39
9
  ForceCUDAHostDeviceDepth++;
40
9
}
41
42
7
bool Sema::PopForceCUDAHostDevice() {
43
7
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
44
7
  if (ForceCUDAHostDeviceDepth == 0)
45
0
    return false;
46
7
  ForceCUDAHostDeviceDepth--;
47
7
  return true;
48
7
}
49
50
ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
51
                                         MultiExprArg ExecConfig,
52
181
                                         SourceLocation GGGLoc) {
53
181
  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
54
181
  if (!ConfigDecl)
55
0
    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
56
0
                     << getCudaConfigureFuncName());
57
181
  QualType ConfigQTy = ConfigDecl->getType();
58
59
181
  DeclRefExpr *ConfigDR = new (Context)
60
181
      DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
61
181
  MarkFunctionReferenced(LLLLoc, ConfigDecl);
62
63
181
  return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
64
181
                       /*IsExecConfig=*/true);
65
181
}
66
67
Sema::CUDAFunctionTarget
68
36
Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
69
36
  bool HasHostAttr = false;
70
36
  bool HasDeviceAttr = false;
71
36
  bool HasGlobalAttr = false;
72
36
  bool HasInvalidTargetAttr = false;
73
37
  for (const ParsedAttr &AL : Attrs) {
74
37
    switch (AL.getKind()) {
75
15
    case ParsedAttr::AT_CUDAGlobal:
76
15
      HasGlobalAttr = true;
77
15
      break;
78
10
    case ParsedAttr::AT_CUDAHost:
79
10
      HasHostAttr = true;
80
10
      break;
81
12
    case ParsedAttr::AT_CUDADevice:
82
12
      HasDeviceAttr = true;
83
12
      break;
84
0
    case ParsedAttr::AT_CUDAInvalidTarget:
85
0
      HasInvalidTargetAttr = true;
86
0
      break;
87
0
    default:
88
0
      break;
89
37
    }
90
37
  }
91
92
36
  if (HasInvalidTargetAttr)
93
0
    return CFT_InvalidTarget;
94
95
36
  if (HasGlobalAttr)
96
15
    return CFT_Global;
97
98
21
  if (HasHostAttr && 
HasDeviceAttr10
)
99
6
    return CFT_HostDevice;
100
101
15
  if (HasDeviceAttr)
102
6
    return CFT_Device;
103
104
9
  return CFT_Host;
105
15
}
106
107
template <typename A>
108
304k
static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109
352k
  return 
D->hasAttrs()304k
&&
llvm::any_of(D->getAttrs(), [&](Attr *Attribute) 245k
{
110
352k
           return isa<A>(Attribute) &&
111
352k
                  
!(142k
IgnoreImplicitAttr142k
&&
Attribute->isImplicit()78
);
112
352k
         });
SemaCUDA.cpp:bool hasAttr<clang::CUDADeviceAttr>(clang::FunctionDecl const*, bool)::'lambda'(clang::Attr*)::operator()(clang::Attr*) const
Line
Count
Source
109
142k
  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110
142k
           return isa<A>(Attribute) &&
111
142k
                  
!(116k
IgnoreImplicitAttr116k
&&
Attribute->isImplicit()40
);
112
142k
         });
SemaCUDA.cpp:bool hasAttr<clang::CUDAHostAttr>(clang::FunctionDecl const*, bool)::'lambda'(clang::Attr*)::operator()(clang::Attr*) const
Line
Count
Source
109
210k
  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110
210k
           return isa<A>(Attribute) &&
111
210k
                  
!(26.0k
IgnoreImplicitAttr26.0k
&&
Attribute->isImplicit()38
);
112
210k
         });
113
304k
}
SemaCUDA.cpp:bool hasAttr<clang::CUDADeviceAttr>(clang::FunctionDecl const*, bool)
Line
Count
Source
108
152k
static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109
152k
  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110
122k
           return isa<A>(Attribute) &&
111
122k
                  !(IgnoreImplicitAttr && Attribute->isImplicit());
112
122k
         });
113
152k
}
SemaCUDA.cpp:bool hasAttr<clang::CUDAHostAttr>(clang::FunctionDecl const*, bool)
Line
Count
Source
108
152k
static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109
152k
  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110
122k
           return isa<A>(Attribute) &&
111
122k
                  !(IgnoreImplicitAttr && Attribute->isImplicit());
112
122k
         });
113
152k
}
114
115
/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
116
Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
117
157k
                                                  bool IgnoreImplicitHDAttr) {
118
  // Code that lives outside a function is run on the host.
119
157k
  if (D == nullptr)
120
1.35k
    return CFT_Host;
121
122
155k
  if (D->hasAttr<CUDAInvalidTargetAttr>())
123
39
    return CFT_InvalidTarget;
124
125
155k
  if (D->hasAttr<CUDAGlobalAttr>())
126
3.62k
    return CFT_Global;
127
128
152k
  if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
129
116k
    if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
130
20.9k
      return CFT_HostDevice;
131
95.3k
    return CFT_Device;
132
116k
  } else 
if (35.9k
hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)35.9k
) {
133
5.09k
    return CFT_Host;
134
30.8k
  } else if ((D->isImplicit() || 
!D->isUserProvided()29.3k
) &&
135
30.8k
             
!IgnoreImplicitHDAttr1.48k
) {
136
    // Some implicit declarations (like intrinsic functions) are not marked.
137
    // Set the most lenient target on them for maximal flexibility.
138
1.48k
    return CFT_HostDevice;
139
1.48k
  }
140
141
29.3k
  return CFT_Host;
142
152k
}
143
144
/// IdentifyTarget - Determine the CUDA compilation target for this variable.
145
1.12k
Sema::CUDAVariableTarget Sema::IdentifyCUDATarget(const VarDecl *Var) {
146
1.12k
  if (Var->hasAttr<HIPManagedAttr>())
147
68
    return CVT_Unified;
148
  // Only constexpr and const variabless with implicit constant attribute
149
  // are emitted on both sides. Such variables are promoted to device side
150
  // only if they have static constant intializers on device side.
151
1.05k
  if ((Var->isConstexpr() || 
Var->getType().isConstQualified()967
) &&
152
1.05k
      
Var->hasAttr<CUDAConstantAttr>()375
&&
153
1.05k
      
!hasExplicitAttr<CUDAConstantAttr>(Var)216
)
154
204
    return CVT_Both;
155
850
  if (Var->hasAttr<CUDADeviceAttr>() || 
Var->hasAttr<CUDAConstantAttr>()574
||
156
850
      
Var->hasAttr<CUDASharedAttr>()448
||
157
850
      
Var->getType()->isCUDADeviceBuiltinSurfaceType()304
||
158
850
      
Var->getType()->isCUDADeviceBuiltinTextureType()300
)
159
554
    return CVT_Device;
160
  // Function-scope static variable without explicit device or constant
161
  // attribute are emitted
162
  //  - on both sides in host device functions
163
  //  - on device side in device or global functions
164
296
  if (auto *FD = dyn_cast<FunctionDecl>(Var->getDeclContext())) {
165
64
    switch (IdentifyCUDATarget(FD)) {
166
22
    case CFT_HostDevice:
167
22
      return CVT_Both;
168
23
    case CFT_Device:
169
36
    case CFT_Global:
170
36
      return CVT_Device;
171
6
    default:
172
6
      return CVT_Host;
173
64
    }
174
64
  }
175
232
  return CVT_Host;
176
296
}
177
178
// * CUDA Call preference table
179
//
180
// F - from,
181
// T - to
182
// Ph - preference in host mode
183
// Pd - preference in device mode
184
// H  - handled in (x)
185
// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
186
//
187
// | F  | T  | Ph  | Pd  |  H  |
188
// |----+----+-----+-----+-----+
189
// | d  | d  | N   | N   | (c) |
190
// | d  | g  | --  | --  | (a) |
191
// | d  | h  | --  | --  | (e) |
192
// | d  | hd | HD  | HD  | (b) |
193
// | g  | d  | N   | N   | (c) |
194
// | g  | g  | --  | --  | (a) |
195
// | g  | h  | --  | --  | (e) |
196
// | g  | hd | HD  | HD  | (b) |
197
// | h  | d  | --  | --  | (e) |
198
// | h  | g  | N   | N   | (c) |
199
// | h  | h  | N   | N   | (c) |
200
// | h  | hd | HD  | HD  | (b) |
201
// | hd | d  | WS  | SS  | (d) |
202
// | hd | g  | SS  | --  |(d/a)|
203
// | hd | h  | SS  | WS  | (d) |
204
// | hd | hd | HD  | HD  | (b) |
205
206
Sema::CUDAFunctionPreference
207
Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
208
45.8k
                             const FunctionDecl *Callee) {
209
45.8k
  assert(Callee && "Callee must be valid.");
210
45.8k
  CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
211
45.8k
  CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
212
213
  // If one of the targets is invalid, the check always fails, no matter what
214
  // the other target is.
215
45.8k
  if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
216
7
    return CFP_Never;
217
218
  // (a) Can't call global from some contexts until we support CUDA's
219
  // dynamic parallelism.
220
45.8k
  if (CalleeTarget == CFT_Global &&
221
45.8k
      
(692
CallerTarget == CFT_Global692
||
CallerTarget == CFT_Device691
))
222
7
    return CFP_Never;
223
224
  // (b) Calling HostDevice is OK for everyone.
225
45.8k
  if (CalleeTarget == CFT_HostDevice)
226
12.4k
    return CFP_HostDevice;
227
228
  // (c) Best case scenarios
229
33.3k
  if (CalleeTarget == CallerTarget ||
230
33.3k
      
(4.11k
CallerTarget == CFT_Host4.11k
&&
CalleeTarget == CFT_Global818
) ||
231
33.3k
      
(3.45k
CallerTarget == CFT_Global3.45k
&&
CalleeTarget == CFT_Device648
))
232
30.5k
    return CFP_Native;
233
234
  // (d) HostDevice behavior depends on compilation mode.
235
2.81k
  if (CallerTarget == CFT_HostDevice) {
236
    // It's OK to call a compilation-mode matching function from an HD one.
237
1.36k
    if ((getLangOpts().CUDAIsDevice && 
CalleeTarget == CFT_Device639
) ||
238
1.36k
        
(1.08k
!getLangOpts().CUDAIsDevice1.08k
&&
239
1.08k
         
(727
CalleeTarget == CFT_Host727
||
CalleeTarget == CFT_Global302
)))
240
725
      return CFP_SameSide;
241
242
    // Calls from HD to non-mode-matching functions (i.e., to host functions
243
    // when compiling in device mode or to device functions when compiling in
244
    // host mode) are allowed at the sema level, but eventually rejected if
245
    // they're ever codegened.  TODO: Reject said calls earlier.
246
641
    return CFP_WrongSide;
247
1.36k
  }
248
249
  // (e) Calling across device/host boundary is not something you should do.
250
1.45k
  if ((CallerTarget == CFT_Host && 
CalleeTarget == CFT_Device154
) ||
251
1.45k
      
(1.29k
CallerTarget == CFT_Device1.29k
&&
CalleeTarget == CFT_Host1.28k
) ||
252
1.45k
      
(14
CallerTarget == CFT_Global14
&&
CalleeTarget == CFT_Host14
))
253
1.45k
    return CFP_Never;
254
255
0
  llvm_unreachable("All cases should've been handled by now.");
256
0
}
257
258
0
template <typename AttrT> static bool hasImplicitAttr(const FunctionDecl *D) {
259
0
  if (!D)
260
0
    return false;
261
0
  if (auto *A = D->getAttr<AttrT>())
262
0
    return A->isImplicit();
263
0
  return D->isImplicit();
264
0
}
Unexecuted instantiation: SemaCUDA.cpp:bool hasImplicitAttr<clang::CUDADeviceAttr>(clang::FunctionDecl const*)
Unexecuted instantiation: SemaCUDA.cpp:bool hasImplicitAttr<clang::CUDAHostAttr>(clang::FunctionDecl const*)
265
266
0
bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) {
267
0
  bool IsImplicitDevAttr = hasImplicitAttr<CUDADeviceAttr>(D);
268
0
  bool IsImplicitHostAttr = hasImplicitAttr<CUDAHostAttr>(D);
269
0
  return IsImplicitDevAttr && IsImplicitHostAttr;
270
0
}
271
272
void Sema::EraseUnwantedCUDAMatches(
273
    const FunctionDecl *Caller,
274
4
    SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
275
4
  if (Matches.size() <= 1)
276
0
    return;
277
278
4
  using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
279
280
  // Gets the CUDA function preference for a call from Caller to Match.
281
20
  auto GetCFP = [&](const Pair &Match) {
282
20
    return IdentifyCUDAPreference(Caller, Match.second);
283
20
  };
284
285
  // Find the best call preference among the functions in Matches.
286
4
  CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
287
4
      Matches.begin(), Matches.end(),
288
4
      [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
289
290
  // Erase all functions with lower priority.
291
4
  llvm::erase_if(Matches,
292
8
                 [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
293
4
}
294
295
/// When an implicitly-declared special member has to invoke more than one
296
/// base/field special member, conflicts may occur in the targets of these
297
/// members. For example, if one base's member __host__ and another's is
298
/// __device__, it's a conflict.
299
/// This function figures out if the given targets \param Target1 and
300
/// \param Target2 conflict, and if they do not it fills in
301
/// \param ResolvedTarget with a target that resolves for both calls.
302
/// \return true if there's a conflict, false otherwise.
303
static bool
304
resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
305
                                Sema::CUDAFunctionTarget Target2,
306
83
                                Sema::CUDAFunctionTarget *ResolvedTarget) {
307
  // Only free functions and static member functions may be global.
308
83
  assert(Target1 != Sema::CFT_Global);
309
83
  assert(Target2 != Sema::CFT_Global);
310
311
83
  if (Target1 == Sema::CFT_HostDevice) {
312
53
    *ResolvedTarget = Target2;
313
53
  } else 
if (30
Target2 == Sema::CFT_HostDevice30
) {
314
1
    *ResolvedTarget = Target1;
315
29
  } else if (Target1 != Target2) {
316
25
    return true;
317
25
  } else {
318
4
    *ResolvedTarget = Target1;
319
4
  }
320
321
58
  return false;
322
83
}
323
324
bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
325
                                                   CXXSpecialMember CSM,
326
                                                   CXXMethodDecl *MemberDecl,
327
                                                   bool ConstRHS,
328
3.39k
                                                   bool Diagnose) {
329
  // If the defaulted special member is defined lexically outside of its
330
  // owning class, or the special member already has explicit device or host
331
  // attributes, do not infer.
332
3.39k
  bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
333
3.39k
  bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
334
3.39k
  bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
335
3.39k
  bool HasExplicitAttr =
336
3.39k
      (HasD && 
!MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()1.65k
) ||
337
3.39k
      
(3.38k
HasH3.38k
&&
!MemberDecl->getAttr<CUDAHostAttr>()->isImplicit()1.64k
);
338
3.39k
  if (!InClass || 
HasExplicitAttr3.38k
)
339
14
    return false;
340
341
3.37k
  std::optional<CUDAFunctionTarget> InferredTarget;
342
343
  // We're going to invoke special member lookup; mark that these special
344
  // members are called from this one, and not from its caller.
345
3.37k
  ContextRAII MethodContext(*this, MemberDecl);
346
347
  // Look for special members in base classes that should be invoked from here.
348
  // Infer the target of this member base on the ones it should call.
349
  // Skip direct and indirect virtual bases for abstract classes.
350
3.37k
  llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
351
3.37k
  for (const auto &B : ClassDecl->bases()) {
352
391
    if (!B.isVirtual()) {
353
391
      Bases.push_back(&B);
354
391
    }
355
391
  }
356
357
3.37k
  if (!ClassDecl->isAbstract()) {
358
3.28k
    llvm::append_range(Bases, llvm::make_pointer_range(ClassDecl->vbases()));
359
3.28k
  }
360
361
3.37k
  for (const auto *B : Bases) {
362
391
    const RecordType *BaseType = B->getType()->getAs<RecordType>();
363
391
    if (!BaseType) {
364
0
      continue;
365
0
    }
366
367
391
    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
368
391
    Sema::SpecialMemberOverloadResult SMOR =
369
391
        LookupSpecialMember(BaseClassDecl, CSM,
370
391
                            /* ConstArg */ ConstRHS,
371
391
                            /* VolatileArg */ false,
372
391
                            /* RValueThis */ false,
373
391
                            /* ConstThis */ false,
374
391
                            /* VolatileThis */ false);
375
376
391
    if (!SMOR.getMethod())
377
5
      continue;
378
379
386
    CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
380
386
    if (!InferredTarget) {
381
356
      InferredTarget = BaseMethodTarget;
382
356
    } else {
383
30
      bool ResolutionError = resolveCalleeCUDATargetConflict(
384
30
          *InferredTarget, BaseMethodTarget, &*InferredTarget);
385
30
      if (ResolutionError) {
386
13
        if (Diagnose) {
387
3
          Diag(ClassDecl->getLocation(),
388
3
               diag::note_implicit_member_target_infer_collision)
389
3
              << (unsigned)CSM << *InferredTarget << BaseMethodTarget;
390
3
        }
391
13
        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
392
13
        return true;
393
13
      }
394
30
    }
395
386
  }
396
397
  // Same as for bases, but now for special members of fields.
398
3.36k
  for (const auto *F : ClassDecl->fields()) {
399
3.24k
    if (F->isInvalidDecl()) {
400
0
      continue;
401
0
    }
402
403
3.24k
    const RecordType *FieldType =
404
3.24k
        Context.getBaseElementType(F->getType())->getAs<RecordType>();
405
3.24k
    if (!FieldType) {
406
2.90k
      continue;
407
2.90k
    }
408
409
338
    CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
410
338
    Sema::SpecialMemberOverloadResult SMOR =
411
338
        LookupSpecialMember(FieldRecDecl, CSM,
412
338
                            /* ConstArg */ ConstRHS && 
!F->isMutable()126
,
413
338
                            /* VolatileArg */ false,
414
338
                            /* RValueThis */ false,
415
338
                            /* ConstThis */ false,
416
338
                            /* VolatileThis */ false);
417
418
338
    if (!SMOR.getMethod())
419
0
      continue;
420
421
338
    CUDAFunctionTarget FieldMethodTarget =
422
338
        IdentifyCUDATarget(SMOR.getMethod());
423
338
    if (!InferredTarget) {
424
285
      InferredTarget = FieldMethodTarget;
425
285
    } else {
426
53
      bool ResolutionError = resolveCalleeCUDATargetConflict(
427
53
          *InferredTarget, FieldMethodTarget, &*InferredTarget);
428
53
      if (ResolutionError) {
429
12
        if (Diagnose) {
430
4
          Diag(ClassDecl->getLocation(),
431
4
               diag::note_implicit_member_target_infer_collision)
432
4
              << (unsigned)CSM << *InferredTarget << FieldMethodTarget;
433
4
        }
434
12
        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
435
12
        return true;
436
12
      }
437
53
    }
438
338
  }
439
440
441
  // If no target was inferred, mark this member as __host__ __device__;
442
  // it's the least restrictive option that can be invoked from any target.
443
3.35k
  bool NeedsH = true, NeedsD = true;
444
3.35k
  if (InferredTarget) {
445
616
    if (*InferredTarget == CFT_Device)
446
58
      NeedsH = false;
447
558
    else if (*InferredTarget == CFT_Host)
448
67
      NeedsD = false;
449
616
  }
450
451
  // We either setting attributes first time, or the inferred ones must match
452
  // previously set ones.
453
3.35k
  if (NeedsD && 
!HasD3.28k
)
454
1.64k
    MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
455
3.35k
  if (NeedsH && 
!HasH3.29k
)
456
1.65k
    MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
457
458
3.35k
  return false;
459
3.36k
}
460
461
33
bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
462
33
  if (!CD->isDefined() && 
CD->isTemplateInstantiation()2
)
463
0
    InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
464
465
  // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
466
  // empty at a point in the translation unit, if it is either a
467
  // trivial constructor
468
33
  if (CD->isTrivial())
469
9
    return true;
470
471
  // ... or it satisfies all of the following conditions:
472
  // The constructor function has been defined.
473
  // The constructor function has no parameters,
474
  // and the function body is an empty compound statement.
475
24
  if (!(CD->hasTrivialBody() && 
CD->getNumParams() == 013
))
476
15
    return false;
477
478
  // Its class has no virtual functions and no virtual base classes.
479
9
  if (CD->getParent()->isDynamicClass())
480
0
    return false;
481
482
  // Union ctor does not call ctors of its data members.
483
9
  if (CD->getParent()->isUnion())
484
4
    return true;
485
486
  // The only form of initializer allowed is an empty constructor.
487
  // This will recursively check all base classes and member initializers
488
5
  if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
489
4
        if (const CXXConstructExpr *CE =
490
4
                dyn_cast<CXXConstructExpr>(CI->getInit()))
491
4
          return isEmptyCudaConstructor(Loc, CE->getConstructor());
492
0
        return false;
493
4
      }))
494
4
    return false;
495
496
1
  return true;
497
5
}
498
499
26
bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
500
  // No destructor -> no problem.
501
26
  if (!DD)
502
17
    return true;
503
504
9
  if (!DD->isDefined() && 
DD->isTemplateInstantiation()0
)
505
0
    InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
506
507
  // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
508
  // empty at a point in the translation unit, if it is either a
509
  // trivial constructor
510
9
  if (DD->isTrivial())
511
4
    return true;
512
513
  // ... or it satisfies all of the following conditions:
514
  // The destructor function has been defined.
515
  // and the function body is an empty compound statement.
516
5
  if (!DD->hasTrivialBody())
517
3
    return false;
518
519
2
  const CXXRecordDecl *ClassDecl = DD->getParent();
520
521
  // Its class has no virtual functions and no virtual base classes.
522
2
  if (ClassDecl->isDynamicClass())
523
0
    return false;
524
525
  // Union does not have base class and union dtor does not call dtors of its
526
  // data members.
527
2
  if (DD->getParent()->isUnion())
528
2
    return true;
529
530
  // Only empty destructors are allowed. This will recursively check
531
  // destructors for all base classes...
532
0
  if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
533
0
        if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
534
0
          return isEmptyCudaDestructor(Loc, RD->getDestructor());
535
0
        return true;
536
0
      }))
537
0
    return false;
538
539
  // ... and member fields.
540
0
  if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
541
0
        if (CXXRecordDecl *RD = Field->getType()
542
0
                                    ->getBaseElementTypeUnsafe()
543
0
                                    ->getAsCXXRecordDecl())
544
0
          return isEmptyCudaDestructor(Loc, RD->getDestructor());
545
0
        return true;
546
0
      }))
547
0
    return false;
548
549
0
  return true;
550
0
}
551
552
namespace {
553
enum CUDAInitializerCheckKind {
554
  CICK_DeviceOrConstant, // Check initializer for device/constant variable
555
  CICK_Shared,           // Check initializer for shared variable
556
};
557
558
1.75k
bool IsDependentVar(VarDecl *VD) {
559
1.75k
  if (VD->getType()->isDependentType())
560
31
    return true;
561
1.72k
  if (const auto *Init = VD->getInit())
562
1.57k
    return Init->isValueDependent();
563
142
  return false;
564
1.72k
}
565
566
// Check whether a variable has an allowed initializer for a CUDA device side
567
// variable with global storage. \p VD may be a host variable to be checked for
568
// potential promotion to device side variable.
569
//
570
// CUDA/HIP allows only empty constructors as initializers for global
571
// variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
572
// __shared__ variables whether they are local or not (they all are implicitly
573
// static in CUDA). One exception is that CUDA allows constant initializers
574
// for __constant__ and __device__ variables.
575
bool HasAllowedCUDADeviceStaticInitializer(Sema &S, VarDecl *VD,
576
644
                                           CUDAInitializerCheckKind CheckKind) {
577
644
  assert(!VD->isInvalidDecl() && VD->hasGlobalStorage());
578
644
  assert(!IsDependentVar(VD) && "do not check dependent var");
579
644
  const Expr *Init = VD->getInit();
580
644
  auto IsEmptyInit = [&](const Expr *Init) {
581
643
    if (!Init)
582
0
      return true;
583
643
    if (const auto *CE = dyn_cast<CXXConstructExpr>(Init)) {
584
29
      return S.isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
585
29
    }
586
614
    return false;
587
643
  };
588
644
  auto IsConstantInit = [&](const Expr *Init) {
589
628
    assert(Init);
590
628
    ASTContext::CUDAConstantEvalContextRAII EvalCtx(S.Context,
591
628
                                                    /*NoWronSidedVars=*/true);
592
628
    return Init->isConstantInitializer(S.Context,
593
628
                                       VD->getType()->isReferenceType());
594
628
  };
595
644
  auto HasEmptyDtor = [&](VarDecl *VD) {
596
611
    if (const auto *RD = VD->getType()->getAsCXXRecordDecl())
597
26
      return S.isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
598
585
    return true;
599
611
  };
600
644
  if (CheckKind == CICK_Shared)
601
5
    return IsEmptyInit(Init) && 
HasEmptyDtor(VD)4
;
602
639
  return S.LangOpts.GPUAllowDeviceInit ||
603
639
         
(638
(638
IsEmptyInit(Init)638
||
IsConstantInit(Init)628
) &&
HasEmptyDtor(VD)607
);
604
644
}
605
} // namespace
606
607
2.88k
void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
608
  // Do not check dependent variables since the ctor/dtor/initializer are not
609
  // determined. Do it after instantiation.
610
2.88k
  if (VD->isInvalidDecl() || 
!VD->hasInit()2.87k
||
!VD->hasGlobalStorage()1.96k
||
611
2.88k
      
IsDependentVar(VD)688
)
612
2.24k
    return;
613
640
  const Expr *Init = VD->getInit();
614
640
  bool IsSharedVar = VD->hasAttr<CUDASharedAttr>();
615
640
  bool IsDeviceOrConstantVar =
616
640
      !IsSharedVar &&
617
640
      
(635
VD->hasAttr<CUDADeviceAttr>()635
||
VD->hasAttr<CUDAConstantAttr>()509
);
618
640
  if (IsDeviceOrConstantVar || 
IsSharedVar201
) {
619
444
    if (HasAllowedCUDADeviceStaticInitializer(
620
444
            *this, VD, IsSharedVar ? 
CICK_Shared5
:
CICK_DeviceOrConstant439
))
621
426
      return;
622
18
    Diag(VD->getLocation(),
623
18
         IsSharedVar ? 
diag::err_shared_var_init2
:
diag::err_dynamic_var_init16
)
624
18
        << Init->getSourceRange();
625
18
    VD->setInvalidDecl();
626
196
  } else {
627
    // This is a host-side global variable.  Check that the initializer is
628
    // callable from the host side.
629
196
    const FunctionDecl *InitFn = nullptr;
630
196
    if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
631
37
      InitFn = CE->getConstructor();
632
159
    } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
633
3
      InitFn = CE->getDirectCallee();
634
3
    }
635
196
    if (InitFn) {
636
40
      CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
637
40
      if (InitFnTarget != CFT_Host && 
InitFnTarget != CFT_HostDevice26
) {
638
3
        Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
639
3
            << InitFnTarget << InitFn;
640
3
        Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
641
3
        VD->setInvalidDecl();
642
3
      }
643
40
    }
644
196
  }
645
640
}
646
647
// With -fcuda-host-device-constexpr, an unattributed constexpr function is
648
// treated as implicitly __host__ __device__, unless:
649
//  * it is a variadic function (device-side variadic functions are not
650
//    allowed), or
651
//  * a __device__ function with this signature was already declared, in which
652
//    case in which case we output an error, unless the __device__ decl is in a
653
//    system header, in which case we leave the constexpr function unattributed.
654
//
655
// In addition, all function decls are treated as __host__ __device__ when
656
// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
657
//   #pragma clang force_cuda_host_device_begin/end
658
// pair).
659
void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
660
14.9k
                                       const LookupResult &Previous) {
661
14.9k
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
662
663
14.9k
  if (ForceCUDAHostDeviceDepth > 0) {
664
127
    if (!NewD->hasAttr<CUDAHostAttr>())
665
125
      NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
666
127
    if (!NewD->hasAttr<CUDADeviceAttr>())
667
125
      NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
668
127
    return;
669
127
  }
670
671
14.8k
  if (!getLangOpts().CUDAHostDeviceConstexpr || 
!NewD->isConstexpr()14.7k
||
672
14.8k
      
NewD->isVariadic()53
||
NewD->hasAttr<CUDAHostAttr>()49
||
673
14.8k
      
NewD->hasAttr<CUDADeviceAttr>()37
||
NewD->hasAttr<CUDAGlobalAttr>()33
)
674
14.7k
    return;
675
676
  // Is D a __device__ function with the same signature as NewD, ignoring CUDA
677
  // attributes?
678
33
  auto IsMatchingDeviceFn = [&](NamedDecl *D) {
679
12
    if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
680
4
      D = Using->getTargetDecl();
681
12
    FunctionDecl *OldD = D->getAsFunction();
682
12
    return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
683
12
           !OldD->hasAttr<CUDAHostAttr>() &&
684
12
           !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
685
12
                       /* ConsiderCudaAttrs = */ false);
686
12
  };
687
33
  auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
688
33
  if (It != Previous.end()) {
689
    // We found a __device__ function with the same name and signature as NewD
690
    // (ignoring CUDA attrs).  This is an error unless that function is defined
691
    // in a system header, in which case we simply return without making NewD
692
    // host+device.
693
12
    NamedDecl *Match = *It;
694
12
    if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
695
4
      Diag(NewD->getLocation(),
696
4
           diag::err_cuda_unattributed_constexpr_cannot_overload_device)
697
4
          << NewD;
698
4
      Diag(Match->getLocation(),
699
4
           diag::note_cuda_conflicting_device_function_declared_here);
700
4
    }
701
12
    return;
702
12
  }
703
704
21
  NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
705
21
  NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
706
21
}
707
708
// TODO: `__constant__` memory may be a limited resource for certain targets.
709
// A safeguard may be needed at the end of compilation pipeline if
710
// `__constant__` memory usage goes beyond limit.
711
3.07M
void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) {
712
  // Do not promote dependent variables since the cotr/dtor/initializer are
713
  // not determined. Do it after instantiation.
714
3.07M
  if (getLangOpts().CUDAIsDevice && 
!VD->hasAttr<CUDAConstantAttr>()1.71k
&&
715
3.07M
      
!VD->hasAttr<CUDASharedAttr>()1.55k
&&
716
3.07M
      
(1.50k
VD->isFileVarDecl()1.50k
||
VD->isStaticDataMember()1.08k
) &&
717
3.07M
      
!IsDependentVar(VD)420
&&
718
3.07M
      
(395
(395
VD->isConstexpr()395
||
VD->getType().isConstQualified()340
) &&
719
395
       HasAllowedCUDADeviceStaticInitializer(*this, VD,
720
200
                                             CICK_DeviceOrConstant))) {
721
183
    VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
722
183
  }
723
3.07M
}
724
725
Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
726
108
                                                       unsigned DiagID) {
727
108
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
728
108
  FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
729
108
  SemaDiagnosticBuilder::Kind DiagKind = [&] {
730
108
    if (!CurFunContext)
731
2
      return SemaDiagnosticBuilder::K_Nop;
732
106
    switch (CurrentCUDATarget()) {
733
10
    case CFT_Global:
734
62
    case CFT_Device:
735
62
      return SemaDiagnosticBuilder::K_Immediate;
736
34
    case CFT_HostDevice:
737
      // An HD function counts as host code if we're compiling for host, and
738
      // device code if we're compiling for device.  Defer any errors in device
739
      // mode until the function is known-emitted.
740
34
      if (!getLangOpts().CUDAIsDevice)
741
6
        return SemaDiagnosticBuilder::K_Nop;
742
28
      if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
743
7
        return SemaDiagnosticBuilder::K_Immediate;
744
21
      return (getEmissionStatus(CurFunContext) ==
745
21
              FunctionEmissionStatus::Emitted)
746
21
                 ? 
SemaDiagnosticBuilder::K_ImmediateWithCallStack5
747
21
                 : 
SemaDiagnosticBuilder::K_Deferred16
;
748
10
    default:
749
10
      return SemaDiagnosticBuilder::K_Nop;
750
106
    }
751
106
  }();
752
108
  return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
753
108
}
754
755
Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
756
42
                                                     unsigned DiagID) {
757
42
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
758
42
  FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
759
42
  SemaDiagnosticBuilder::Kind DiagKind = [&] {
760
42
    if (!CurFunContext)
761
0
      return SemaDiagnosticBuilder::K_Nop;
762
42
    switch (CurrentCUDATarget()) {
763
6
    case CFT_Host:
764
6
      return SemaDiagnosticBuilder::K_Immediate;
765
1
    case CFT_HostDevice:
766
      // An HD function counts as host code if we're compiling for host, and
767
      // device code if we're compiling for device.  Defer any errors in device
768
      // mode until the function is known-emitted.
769
1
      if (getLangOpts().CUDAIsDevice)
770
0
        return SemaDiagnosticBuilder::K_Nop;
771
1
      if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
772
0
        return SemaDiagnosticBuilder::K_Immediate;
773
1
      return (getEmissionStatus(CurFunContext) ==
774
1
              FunctionEmissionStatus::Emitted)
775
1
                 ? 
SemaDiagnosticBuilder::K_ImmediateWithCallStack0
776
1
                 : SemaDiagnosticBuilder::K_Deferred;
777
35
    default:
778
35
      return SemaDiagnosticBuilder::K_Nop;
779
42
    }
780
42
  }();
781
42
  return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
782
42
}
783
784
23.2k
bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
785
23.2k
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
786
23.2k
  assert(Callee && "Callee may not be null.");
787
788
23.2k
  auto &ExprEvalCtx = ExprEvalContexts.back();
789
23.2k
  if (ExprEvalCtx.isUnevaluated() || 
ExprEvalCtx.isConstantEvaluated()23.0k
)
790
203
    return true;
791
792
  // FIXME: Is bailing out early correct here?  Should we instead assume that
793
  // the caller is a global initializer?
794
23.0k
  FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
795
23.0k
  if (!Caller)
796
311
    return true;
797
798
  // If the caller is known-emitted, mark the callee as known-emitted.
799
  // Otherwise, mark the call in our call graph so we can traverse it later.
800
22.7k
  bool CallerKnownEmitted =
801
22.7k
      getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
802
22.7k
  SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee,
803
22.7k
                                          CallerKnownEmitted] {
804
22.7k
    switch (IdentifyCUDAPreference(Caller, Callee)) {
805
32
    case CFP_Never:
806
174
    case CFP_WrongSide:
807
174
      assert(Caller && "Never/wrongSide calls require a non-null caller");
808
      // If we know the caller will be emitted, we know this wrong-side call
809
      // will be emitted, so it's an immediate error.  Otherwise, defer the
810
      // error until we know the caller is emitted.
811
174
      return CallerKnownEmitted
812
174
                 ? 
SemaDiagnosticBuilder::K_ImmediateWithCallStack62
813
174
                 : 
SemaDiagnosticBuilder::K_Deferred112
;
814
22.5k
    default:
815
22.5k
      return SemaDiagnosticBuilder::K_Nop;
816
22.7k
    }
817
22.7k
  }();
818
819
22.7k
  if (DiagKind == SemaDiagnosticBuilder::K_Nop) {
820
    // For -fgpu-rdc, keep track of external kernels used by host functions.
821
22.5k
    if (LangOpts.CUDAIsDevice && 
LangOpts.GPURelocatableDeviceCode16.8k
&&
822
22.5k
        
Callee->hasAttr<CUDAGlobalAttr>()246
&&
!Callee->isDefined()20
)
823
16
      getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Callee);
824
22.5k
    return true;
825
22.5k
  }
826
827
  // Avoid emitting this error twice for the same location.  Using a hashtable
828
  // like this is unfortunate, but because we must continue parsing as normal
829
  // after encountering a deferred error, it's otherwise very tricky for us to
830
  // ensure that we only emit this deferred error once.
831
174
  if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
832
74
    return true;
833
834
100
  SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
835
100
      << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee
836
100
      << IdentifyCUDATarget(Caller);
837
100
  if (!Callee->getBuiltinID())
838
92
    SemaDiagnosticBuilder(DiagKind, Callee->getLocation(),
839
92
                          diag::note_previous_decl, Caller, *this)
840
92
        << Callee;
841
100
  return DiagKind != SemaDiagnosticBuilder::K_Immediate &&
842
100
         DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack;
843
174
}
844
845
// Check the wrong-sided reference capture of lambda for CUDA/HIP.
846
// A lambda function may capture a stack variable by reference when it is
847
// defined and uses the capture by reference when the lambda is called. When
848
// the capture and use happen on different sides, the capture is invalid and
849
// should be diagnosed.
850
void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee,
851
98
                                  const sema::Capture &Capture) {
852
  // In host compilation we only need to check lambda functions emitted on host
853
  // side. In such lambda functions, a reference capture is invalid only
854
  // if the lambda structure is populated by a device function or kernel then
855
  // is passed to and called by a host function. However that is impossible,
856
  // since a device function or kernel can only call a device function, also a
857
  // kernel cannot pass a lambda back to a host function since we cannot
858
  // define a kernel argument type which can hold the lambda before the lambda
859
  // itself is defined.
860
98
  if (!LangOpts.CUDAIsDevice)
861
32
    return;
862
863
  // File-scope lambda can only do init captures for global variables, which
864
  // results in passing by value for these global variables.
865
66
  FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
866
66
  if (!Caller)
867
0
    return;
868
869
  // In device compilation, we only need to check lambda functions which are
870
  // emitted on device side. For such lambdas, a reference capture is invalid
871
  // only if the lambda structure is populated by a host function then passed
872
  // to and called in a device function or kernel.
873
66
  bool CalleeIsDevice = Callee->hasAttr<CUDADeviceAttr>();
874
66
  bool CallerIsHost =
875
66
      !Caller->hasAttr<CUDAGlobalAttr>() && !Caller->hasAttr<CUDADeviceAttr>();
876
66
  bool ShouldCheck = CalleeIsDevice && CallerIsHost;
877
66
  if (!ShouldCheck || 
!Capture.isReferenceCapture()56
)
878
26
    return;
879
40
  auto DiagKind = SemaDiagnosticBuilder::K_Deferred;
880
40
  if (Capture.isVariableCapture()) {
881
19
    SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
882
19
                          diag::err_capture_bad_target, Callee, *this)
883
19
        << Capture.getVariable();
884
21
  } else if (Capture.isThisCapture()) {
885
    // Capture of this pointer is allowed since this pointer may be pointing to
886
    // managed memory which is accessible on both device and host sides. It only
887
    // results in invalid memory access if this pointer points to memory not
888
    // accessible on device side.
889
21
    SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
890
21
                          diag::warn_maybe_capture_bad_target_this_ptr, Callee,
891
21
                          *this);
892
21
  }
893
40
}
894
895
241
void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
896
241
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
897
241
  if (Method->hasAttr<CUDAHostAttr>() || 
Method->hasAttr<CUDADeviceAttr>()193
)
898
104
    return;
899
137
  Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
900
137
  Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
901
137
}
902
903
void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
904
17.0k
                                   const LookupResult &Previous) {
905
17.0k
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
906
17.0k
  CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
907
17.0k
  for (NamedDecl *OldND : Previous) {
908
12.9k
    FunctionDecl *OldFD = OldND->getAsFunction();
909
12.9k
    if (!OldFD)
910
437
      continue;
911
912
12.4k
    CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
913
    // Don't allow HD and global functions to overload other functions with the
914
    // same signature.  We allow overloading based on CUDA attributes so that
915
    // functions can have different implementations on the host and device, but
916
    // HD/global functions "exist" in some sense on both the host and device, so
917
    // should have the same implementation on both sides.
918
12.4k
    if (NewTarget != OldTarget &&
919
12.4k
        
(3.44k
(NewTarget == CFT_HostDevice)3.44k
||
(OldTarget == CFT_HostDevice)3.23k
||
920
3.44k
         
(NewTarget == CFT_Global)3.21k
||
(OldTarget == CFT_Global)3.21k
) &&
921
12.4k
        !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
922
224
                    /* ConsiderCudaAttrs = */ false)) {
923
4
      Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
924
4
          << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
925
4
      Diag(OldFD->getLocation(), diag::note_previous_declaration);
926
4
      NewFD->setInvalidDecl();
927
4
      break;
928
4
    }
929
12.4k
  }
930
17.0k
}
931
932
template <typename AttrTy>
933
static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
934
33
                              const FunctionDecl &TemplateFD) {
935
33
  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
936
18
    AttrTy *Clone = Attribute->clone(S.Context);
937
18
    Clone->setInherited(true);
938
18
    FD->addAttr(Clone);
939
18
  }
940
33
}
SemaCUDA.cpp:void copyAttrIfPresent<clang::CUDAGlobalAttr>(clang::Sema&, clang::FunctionDecl*, clang::FunctionDecl const&)
Line
Count
Source
934
11
                              const FunctionDecl &TemplateFD) {
935
11
  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
936
0
    AttrTy *Clone = Attribute->clone(S.Context);
937
0
    Clone->setInherited(true);
938
0
    FD->addAttr(Clone);
939
0
  }
940
11
}
SemaCUDA.cpp:void copyAttrIfPresent<clang::CUDAHostAttr>(clang::Sema&, clang::FunctionDecl*, clang::FunctionDecl const&)
Line
Count
Source
934
11
                              const FunctionDecl &TemplateFD) {
935
11
  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
936
9
    AttrTy *Clone = Attribute->clone(S.Context);
937
9
    Clone->setInherited(true);
938
9
    FD->addAttr(Clone);
939
9
  }
940
11
}
SemaCUDA.cpp:void copyAttrIfPresent<clang::CUDADeviceAttr>(clang::Sema&, clang::FunctionDecl*, clang::FunctionDecl const&)
Line
Count
Source
934
11
                              const FunctionDecl &TemplateFD) {
935
11
  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
936
9
    AttrTy *Clone = Attribute->clone(S.Context);
937
9
    Clone->setInherited(true);
938
9
    FD->addAttr(Clone);
939
9
  }
940
11
}
941
942
void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
943
11
                                  const FunctionTemplateDecl &TD) {
944
11
  const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
945
11
  copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
946
11
  copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
947
11
  copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
948
11
}
949
950
13.6k
std::string Sema::getCudaConfigureFuncName() const {
951
13.6k
  if (getLangOpts().HIP)
952
11.9k
    return getLangOpts().HIPUseNewLaunchAPI ? 
"__hipPushCallConfiguration"28
953
11.9k
                                            : 
"hipConfigureCall"11.9k
;
954
955
  // New CUDA kernel launch sequence.
956
1.74k
  if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
957
1.74k
                         CudaFeature::CUDA_USES_NEW_LAUNCH))
958
135
    return "__cudaPushCallConfiguration";
959
960
  // Legacy CUDA kernel configuration call
961
1.60k
  return "cudaConfigureCall";
962
1.74k
}