Coverage Report

Created: 2021-01-19 06:58

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/Sema/SemaOverload.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file provides Sema routines for C++ overloading.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/AST/ASTContext.h"
14
#include "clang/AST/CXXInheritance.h"
15
#include "clang/AST/DeclObjC.h"
16
#include "clang/AST/DependenceFlags.h"
17
#include "clang/AST/Expr.h"
18
#include "clang/AST/ExprCXX.h"
19
#include "clang/AST/ExprObjC.h"
20
#include "clang/AST/TypeOrdering.h"
21
#include "clang/Basic/Diagnostic.h"
22
#include "clang/Basic/DiagnosticOptions.h"
23
#include "clang/Basic/PartialDiagnostic.h"
24
#include "clang/Basic/SourceManager.h"
25
#include "clang/Basic/TargetInfo.h"
26
#include "clang/Sema/Initialization.h"
27
#include "clang/Sema/Lookup.h"
28
#include "clang/Sema/Overload.h"
29
#include "clang/Sema/SemaInternal.h"
30
#include "clang/Sema/Template.h"
31
#include "clang/Sema/TemplateDeduction.h"
32
#include "llvm/ADT/DenseSet.h"
33
#include "llvm/ADT/Optional.h"
34
#include "llvm/ADT/STLExtras.h"
35
#include "llvm/ADT/SmallPtrSet.h"
36
#include "llvm/ADT/SmallString.h"
37
#include <algorithm>
38
#include <cstdlib>
39
40
using namespace clang;
41
using namespace sema;
42
43
using AllowedExplicit = Sema::AllowedExplicit;
44
45
1.24M
static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46
2.42M
  return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47
2.42M
    return P->hasAttr<PassObjectSizeAttr>();
48
2.42M
  });
49
1.24M
}
50
51
/// A convenience routine for creating a decayed reference to a function.
52
static ExprResult
53
CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
54
                      const Expr *Base, bool HadMultipleCandidates,
55
                      SourceLocation Loc = SourceLocation(),
56
99.7k
                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
57
99.7k
  if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
58
6
    return ExprError();
59
  // If FoundDecl is different from Fn (such as if one is a template
60
  // and the other a specialization), make sure DiagnoseUseOfDecl is
61
  // called on both.
62
  // FIXME: This would be more comprehensively addressed by modifying
63
  // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
64
  // being used.
65
99.7k
  if (FoundDecl != Fn && 
S.DiagnoseUseOfDecl(Fn, Loc)10.4k
)
66
6
    return ExprError();
67
99.7k
  DeclRefExpr *DRE = new (S.Context)
68
99.7k
      DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
69
99.7k
  if (HadMultipleCandidates)
70
49.9k
    DRE->setHadMultipleCandidates(true);
71
72
99.7k
  S.MarkDeclRefReferenced(DRE, Base);
73
99.7k
  if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
74
99.7k
    if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
75
5.92k
      S.ResolveExceptionSpec(Loc, FPT);
76
5.92k
      DRE->setType(Fn->getType());
77
5.92k
    }
78
99.7k
  }
79
99.7k
  return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
80
99.7k
                             CK_FunctionToPointerDecay);
81
99.7k
}
82
83
static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
84
                                 bool InOverloadResolution,
85
                                 StandardConversionSequence &SCS,
86
                                 bool CStyle,
87
                                 bool AllowObjCWritebackConversion);
88
89
static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
90
                                                 QualType &ToType,
91
                                                 bool InOverloadResolution,
92
                                                 StandardConversionSequence &SCS,
93
                                                 bool CStyle);
94
static OverloadingResult
95
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
96
                        UserDefinedConversionSequence& User,
97
                        OverloadCandidateSet& Conversions,
98
                        AllowedExplicit AllowExplicit,
99
                        bool AllowObjCConversionOnExplicit);
100
101
static ImplicitConversionSequence::CompareKind
102
CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
103
                                   const StandardConversionSequence& SCS1,
104
                                   const StandardConversionSequence& SCS2);
105
106
static ImplicitConversionSequence::CompareKind
107
CompareQualificationConversions(Sema &S,
108
                                const StandardConversionSequence& SCS1,
109
                                const StandardConversionSequence& SCS2);
110
111
static ImplicitConversionSequence::CompareKind
112
CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
113
                                const StandardConversionSequence& SCS1,
114
                                const StandardConversionSequence& SCS2);
115
116
/// GetConversionRank - Retrieve the implicit conversion rank
117
/// corresponding to the given implicit conversion kind.
118
37.3M
ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
119
37.3M
  static const ImplicitConversionRank
120
37.3M
    Rank[(int)ICK_Num_Conversion_Kinds] = {
121
37.3M
    ICR_Exact_Match,
122
37.3M
    ICR_Exact_Match,
123
37.3M
    ICR_Exact_Match,
124
37.3M
    ICR_Exact_Match,
125
37.3M
    ICR_Exact_Match,
126
37.3M
    ICR_Exact_Match,
127
37.3M
    ICR_Promotion,
128
37.3M
    ICR_Promotion,
129
37.3M
    ICR_Promotion,
130
37.3M
    ICR_Conversion,
131
37.3M
    ICR_Conversion,
132
37.3M
    ICR_Conversion,
133
37.3M
    ICR_Conversion,
134
37.3M
    ICR_Conversion,
135
37.3M
    ICR_Conversion,
136
37.3M
    ICR_Conversion,
137
37.3M
    ICR_Conversion,
138
37.3M
    ICR_Conversion,
139
37.3M
    ICR_Conversion,
140
37.3M
    ICR_Conversion,
141
37.3M
    ICR_OCL_Scalar_Widening,
142
37.3M
    ICR_Complex_Real_Conversion,
143
37.3M
    ICR_Conversion,
144
37.3M
    ICR_Conversion,
145
37.3M
    ICR_Writeback_Conversion,
146
37.3M
    ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
147
                     // it was omitted by the patch that added
148
                     // ICK_Zero_Event_Conversion
149
37.3M
    ICR_C_Conversion,
150
37.3M
    ICR_C_Conversion_Extension
151
37.3M
  };
152
37.3M
  return Rank[(int)Kind];
153
37.3M
}
154
155
/// GetImplicitConversionName - Return the name of this kind of
156
/// implicit conversion.
157
0
static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158
0
  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159
0
    "No conversion",
160
0
    "Lvalue-to-rvalue",
161
0
    "Array-to-pointer",
162
0
    "Function-to-pointer",
163
0
    "Function pointer conversion",
164
0
    "Qualification",
165
0
    "Integral promotion",
166
0
    "Floating point promotion",
167
0
    "Complex promotion",
168
0
    "Integral conversion",
169
0
    "Floating conversion",
170
0
    "Complex conversion",
171
0
    "Floating-integral conversion",
172
0
    "Pointer conversion",
173
0
    "Pointer-to-member conversion",
174
0
    "Boolean conversion",
175
0
    "Compatible-types conversion",
176
0
    "Derived-to-base conversion",
177
0
    "Vector conversion",
178
0
    "SVE Vector conversion",
179
0
    "Vector splat",
180
0
    "Complex-real conversion",
181
0
    "Block Pointer conversion",
182
0
    "Transparent Union Conversion",
183
0
    "Writeback conversion",
184
0
    "OpenCL Zero Event Conversion",
185
0
    "C specific type conversion",
186
0
    "Incompatible pointer conversion"
187
0
  };
188
0
  return Name[Kind];
189
0
}
190
191
/// StandardConversionSequence - Set the standard conversion
192
/// sequence to the identity conversion.
193
78.7M
void StandardConversionSequence::setAsIdentityConversion() {
194
78.7M
  First = ICK_Identity;
195
78.7M
  Second = ICK_Identity;
196
78.7M
  Third = ICK_Identity;
197
78.7M
  DeprecatedStringLiteralToCharPtr = false;
198
78.7M
  QualificationIncludesObjCLifetime = false;
199
78.7M
  ReferenceBinding = false;
200
78.7M
  DirectBinding = false;
201
78.7M
  IsLvalueReference = true;
202
78.7M
  BindsToFunctionLvalue = false;
203
78.7M
  BindsToRvalue = false;
204
78.7M
  BindsImplicitObjectArgumentWithoutRefQualifier = false;
205
78.7M
  ObjCLifetimeConversionBinding = false;
206
78.7M
  CopyConstructor = nullptr;
207
78.7M
}
208
209
/// getRank - Retrieve the rank of this standard conversion sequence
210
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
211
/// implicit conversions.
212
10.0M
ImplicitConversionRank StandardConversionSequence::getRank() const {
213
10.0M
  ImplicitConversionRank Rank = ICR_Exact_Match;
214
10.0M
  if  (GetConversionRank(First) > Rank)
215
0
    Rank = GetConversionRank(First);
216
10.0M
  if  (GetConversionRank(Second) > Rank)
217
7.30M
    Rank = GetConversionRank(Second);
218
10.0M
  if  (GetConversionRank(Third) > Rank)
219
0
    Rank = GetConversionRank(Third);
220
10.0M
  return Rank;
221
10.0M
}
222
223
/// isPointerConversionToBool - Determines whether this conversion is
224
/// a conversion of a pointer or pointer-to-member to bool. This is
225
/// used as part of the ranking of standard conversion sequences
226
/// (C++ 13.3.3.2p4).
227
5.41M
bool StandardConversionSequence::isPointerConversionToBool() const {
228
  // Note that FromType has not necessarily been transformed by the
229
  // array-to-pointer or function-to-pointer implicit conversions, so
230
  // check for their presence as well as checking whether FromType is
231
  // a pointer.
232
5.41M
  if (getToType(1)->isBooleanType() &&
233
5.62k
      (getFromType()->isPointerType() ||
234
5.59k
       getFromType()->isMemberPointerType() ||
235
5.57k
       getFromType()->isObjCObjectPointerType() ||
236
5.56k
       getFromType()->isBlockPointerType() ||
237
5.56k
       First == ICK_Array_To_Pointer || 
First == ICK_Function_To_Pointer5.39k
))
238
231
    return true;
239
240
5.41M
  return false;
241
5.41M
}
242
243
/// isPointerConversionToVoidPointer - Determines whether this
244
/// conversion is a conversion of a pointer to a void pointer. This is
245
/// used as part of the ranking of standard conversion sequences (C++
246
/// 13.3.3.2p4).
247
bool
248
StandardConversionSequence::
249
5.41M
isPointerConversionToVoidPointer(ASTContext& Context) const {
250
5.41M
  QualType FromType = getFromType();
251
5.41M
  QualType ToType = getToType(1);
252
253
  // Note that FromType has not necessarily been transformed by the
254
  // array-to-pointer implicit conversion, so check for its presence
255
  // and redo the conversion to get a pointer.
256
5.41M
  if (First == ICK_Array_To_Pointer)
257
5.45k
    FromType = Context.getArrayDecayedType(FromType);
258
259
5.41M
  if (Second == ICK_Pointer_Conversion && 
FromType->isAnyPointerType()3.57k
)
260
1.50k
    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
261
1.43k
      return ToPtrType->getPointeeType()->isVoidType();
262
263
5.41M
  return false;
264
5.41M
}
265
266
/// Skip any implicit casts which could be either part of a narrowing conversion
267
/// or after one in an implicit conversion.
268
static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
269
201k
                                             const Expr *Converted) {
270
  // We can have cleanups wrapping the converted expression; these need to be
271
  // preserved so that destructors run if necessary.
272
201k
  if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
273
7
    Expr *Inner =
274
7
        const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
275
7
    return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
276
7
                                    EWC->getObjects());
277
7
  }
278
279
403k
  
while (auto *201k
ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280
202k
    switch (ICE->getCastKind()) {
281
0
    case CK_NoOp:
282
197k
    case CK_IntegralCast:
283
198k
    case CK_IntegralToBoolean:
284
200k
    case CK_IntegralToFloating:
285
200k
    case CK_BooleanToSignedIntegral:
286
200k
    case CK_FloatingToIntegral:
287
200k
    case CK_FloatingToBoolean:
288
201k
    case CK_FloatingCast:
289
201k
      Converted = ICE->getSubExpr();
290
201k
      continue;
291
292
220
    default:
293
220
      return Converted;
294
202k
    }
295
202k
  }
296
297
201k
  return Converted;
298
201k
}
299
300
/// Check if this standard conversion sequence represents a narrowing
301
/// conversion, according to C++11 [dcl.init.list]p7.
302
///
303
/// \param Ctx  The AST context.
304
/// \param Converted  The result of applying this standard conversion sequence.
305
/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
306
///        value of the expression prior to the narrowing conversion.
307
/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
308
///        type of the expression prior to the narrowing conversion.
309
/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
310
///        from floating point types to integral types should be ignored.
311
NarrowingKind StandardConversionSequence::getNarrowingKind(
312
    ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
313
2.45M
    QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
314
2.45M
  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
315
316
  // C++11 [dcl.init.list]p7:
317
  //   A narrowing conversion is an implicit conversion ...
318
2.45M
  QualType FromType = getToType(0);
319
2.45M
  QualType ToType = getToType(1);
320
321
  // A conversion to an enumeration type is narrowing if the conversion to
322
  // the underlying type is narrowing. This only arises for expressions of
323
  // the form 'Enum{init}'.
324
2.45M
  if (auto *ET = ToType->getAs<EnumType>())
325
2.88k
    ToType = ET->getDecl()->getIntegerType();
326
327
2.45M
  switch (Second) {
328
  // 'bool' is an integral type; dispatch to the right place to handle it.
329
192
  case ICK_Boolean_Conversion:
330
192
    if (FromType->isRealFloatingType())
331
2
      goto FloatingIntegralConversion;
332
190
    if (FromType->isIntegralOrUnscopedEnumerationType())
333
185
      goto IntegralConversion;
334
    // -- from a pointer type or pointer-to-member type to bool, or
335
5
    return NK_Type_Narrowing;
336
337
  // -- from a floating-point type to an integer type, or
338
  //
339
  // -- from an integer type or unscoped enumeration type to a floating-point
340
  //    type, except where the source is a constant expression and the actual
341
  //    value after conversion will fit into the target type and will produce
342
  //    the original value when converted back to the original type, or
343
2.17k
  case ICK_Floating_Integral:
344
2.17k
  FloatingIntegralConversion:
345
2.17k
    if (FromType->isRealFloatingType() && 
ToType->isIntegralType(Ctx)95
) {
346
95
      return NK_Type_Narrowing;
347
2.07k
    } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
348
2.07k
               ToType->isRealFloatingType()) {
349
2.07k
      if (IgnoreFloatToIntegralConversion)
350
12
        return NK_Not_Narrowing;
351
2.06k
      const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
352
2.06k
      assert(Initializer && "Unknown conversion expression");
353
354
      // If it's value-dependent, we can't tell whether it's narrowing.
355
2.06k
      if (Initializer->isValueDependent())
356
0
        return NK_Dependent_Narrowing;
357
358
2.06k
      if (Optional<llvm::APSInt> IntConstantValue =
359
2.00k
              Initializer->getIntegerConstantExpr(Ctx)) {
360
        // Convert the integer to the floating type.
361
2.00k
        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
362
2.00k
        Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
363
2.00k
                                llvm::APFloat::rmNearestTiesToEven);
364
        // And back.
365
2.00k
        llvm::APSInt ConvertedValue = *IntConstantValue;
366
2.00k
        bool ignored;
367
2.00k
        Result.convertToInteger(ConvertedValue,
368
2.00k
                                llvm::APFloat::rmTowardZero, &ignored);
369
        // If the resulting value is different, this was a narrowing conversion.
370
2.00k
        if (*IntConstantValue != ConvertedValue) {
371
7
          ConstantValue = APValue(*IntConstantValue);
372
7
          ConstantType = Initializer->getType();
373
7
          return NK_Constant_Narrowing;
374
7
        }
375
63
      } else {
376
        // Variables are always narrowings.
377
63
        return NK_Variable_Narrowing;
378
63
      }
379
1.99k
    }
380
1.99k
    return NK_Not_Narrowing;
381
382
  // -- from long double to double or float, or from double to float, except
383
  //    where the source is a constant expression and the actual value after
384
  //    conversion is within the range of values that can be represented (even
385
  //    if it cannot be represented exactly), or
386
1.70k
  case ICK_Floating_Conversion:
387
1.70k
    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
388
1.70k
        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
389
      // FromType is larger than ToType.
390
1.69k
      const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
391
392
      // If it's value-dependent, we can't tell whether it's narrowing.
393
1.69k
      if (Initializer->isValueDependent())
394
0
        return NK_Dependent_Narrowing;
395
396
1.69k
      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
397
        // Constant!
398
1.65k
        assert(ConstantValue.isFloat());
399
1.65k
        llvm::APFloat FloatVal = ConstantValue.getFloat();
400
        // Convert the source value into the target type.
401
1.65k
        bool ignored;
402
1.65k
        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
403
1.65k
          Ctx.getFloatTypeSemantics(ToType),
404
1.65k
          llvm::APFloat::rmNearestTiesToEven, &ignored);
405
        // If there was no overflow, the source value is within the range of
406
        // values that can be represented.
407
1.65k
        if (ConvertStatus & llvm::APFloat::opOverflow) {
408
13
          ConstantType = Initializer->getType();
409
13
          return NK_Constant_Narrowing;
410
13
        }
411
32
      } else {
412
32
        return NK_Variable_Narrowing;
413
32
      }
414
1.65k
    }
415
1.65k
    return NK_Not_Narrowing;
416
417
  // -- from an integer type or unscoped enumeration type to an integer type
418
  //    that cannot represent all the values of the original type, except where
419
  //    the source is a constant expression and the actual value after
420
  //    conversion will fit into the target type and will produce the original
421
  //    value when converted back to the original type.
422
248k
  case ICK_Integral_Conversion:
423
248k
  IntegralConversion: {
424
248k
    assert(FromType->isIntegralOrUnscopedEnumerationType());
425
248k
    assert(ToType->isIntegralOrUnscopedEnumerationType());
426
248k
    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
427
248k
    const unsigned FromWidth = Ctx.getIntWidth(FromType);
428
248k
    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
429
248k
    const unsigned ToWidth = Ctx.getIntWidth(ToType);
430
431
248k
    if (FromWidth > ToWidth ||
432
219k
        (FromWidth == ToWidth && 
FromSigned != ToSigned96.7k
) ||
433
198k
        
(138k
FromSigned138k
&&
!ToSigned136k
)) {
434
      // Not all values of FromType can be represented in ToType.
435
198k
      const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
436
437
      // If it's value-dependent, we can't tell whether it's narrowing.
438
198k
      if (Initializer->isValueDependent())
439
295
        return NK_Dependent_Narrowing;
440
441
197k
      Optional<llvm::APSInt> OptInitializerValue;
442
197k
      if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
443
        // Such conversions on variables are always narrowing.
444
3.20k
        return NK_Variable_Narrowing;
445
3.20k
      }
446
194k
      llvm::APSInt &InitializerValue = *OptInitializerValue;
447
194k
      bool Narrowing = false;
448
194k
      if (FromWidth < ToWidth) {
449
        // Negative -> unsigned is narrowing. Otherwise, more bits is never
450
        // narrowing.
451
88.2k
        if (InitializerValue.isSigned() && InitializerValue.isNegative())
452
9
          Narrowing = true;
453
106k
      } else {
454
        // Add a bit to the InitializerValue so we don't have to worry about
455
        // signed vs. unsigned comparisons.
456
106k
        InitializerValue = InitializerValue.extend(
457
106k
          InitializerValue.getBitWidth() + 1);
458
        // Convert the initializer to and from the target width and signed-ness.
459
106k
        llvm::APSInt ConvertedValue = InitializerValue;
460
106k
        ConvertedValue = ConvertedValue.trunc(ToWidth);
461
106k
        ConvertedValue.setIsSigned(ToSigned);
462
106k
        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
463
106k
        ConvertedValue.setIsSigned(InitializerValue.isSigned());
464
        // If the result is different, this was a narrowing conversion.
465
106k
        if (ConvertedValue != InitializerValue)
466
104
          Narrowing = true;
467
106k
      }
468
194k
      if (Narrowing) {
469
113
        ConstantType = Initializer->getType();
470
113
        ConstantValue = APValue(InitializerValue);
471
113
        return NK_Constant_Narrowing;
472
113
      }
473
244k
    }
474
244k
    return NK_Not_Narrowing;
475
244k
  }
476
477
2.20M
  default:
478
    // Other kinds of conversions are not narrowings.
479
2.20M
    return NK_Not_Narrowing;
480
2.45M
  }
481
2.45M
}
482
483
/// dump - Print this standard conversion sequence to standard
484
/// error. Useful for debugging overloading issues.
485
0
LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
486
0
  raw_ostream &OS = llvm::errs();
487
0
  bool PrintedSomething = false;
488
0
  if (First != ICK_Identity) {
489
0
    OS << GetImplicitConversionName(First);
490
0
    PrintedSomething = true;
491
0
  }
492
493
0
  if (Second != ICK_Identity) {
494
0
    if (PrintedSomething) {
495
0
      OS << " -> ";
496
0
    }
497
0
    OS << GetImplicitConversionName(Second);
498
499
0
    if (CopyConstructor) {
500
0
      OS << " (by copy constructor)";
501
0
    } else if (DirectBinding) {
502
0
      OS << " (direct reference binding)";
503
0
    } else if (ReferenceBinding) {
504
0
      OS << " (reference binding)";
505
0
    }
506
0
    PrintedSomething = true;
507
0
  }
508
509
0
  if (Third != ICK_Identity) {
510
0
    if (PrintedSomething) {
511
0
      OS << " -> ";
512
0
    }
513
0
    OS << GetImplicitConversionName(Third);
514
0
    PrintedSomething = true;
515
0
  }
516
517
0
  if (!PrintedSomething) {
518
0
    OS << "No conversions required";
519
0
  }
520
0
}
521
522
/// dump - Print this user-defined conversion sequence to standard
523
/// error. Useful for debugging overloading issues.
524
0
void UserDefinedConversionSequence::dump() const {
525
0
  raw_ostream &OS = llvm::errs();
526
0
  if (Before.First || Before.Second || Before.Third) {
527
0
    Before.dump();
528
0
    OS << " -> ";
529
0
  }
530
0
  if (ConversionFunction)
531
0
    OS << '\'' << *ConversionFunction << '\'';
532
0
  else
533
0
    OS << "aggregate initialization";
534
0
  if (After.First || After.Second || After.Third) {
535
0
    OS << " -> ";
536
0
    After.dump();
537
0
  }
538
0
}
539
540
/// dump - Print this implicit conversion sequence to standard
541
/// error. Useful for debugging overloading issues.
542
0
void ImplicitConversionSequence::dump() const {
543
0
  raw_ostream &OS = llvm::errs();
544
0
  if (isStdInitializerListElement())
545
0
    OS << "Worst std::initializer_list element conversion: ";
546
0
  switch (ConversionKind) {
547
0
  case StandardConversion:
548
0
    OS << "Standard conversion: ";
549
0
    Standard.dump();
550
0
    break;
551
0
  case UserDefinedConversion:
552
0
    OS << "User-defined conversion: ";
553
0
    UserDefined.dump();
554
0
    break;
555
0
  case EllipsisConversion:
556
0
    OS << "Ellipsis conversion";
557
0
    break;
558
0
  case AmbiguousConversion:
559
0
    OS << "Ambiguous conversion";
560
0
    break;
561
0
  case BadConversion:
562
0
    OS << "Bad conversion";
563
0
    break;
564
0
  }
565
566
0
  OS << "\n";
567
0
}
568
569
7.98k
void AmbiguousConversionSequence::construct() {
570
7.98k
  new (&conversions()) ConversionSet();
571
7.98k
}
572
573
16.0k
void AmbiguousConversionSequence::destruct() {
574
16.0k
  conversions().~ConversionSet();
575
16.0k
}
576
577
void
578
8.01k
AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
579
8.01k
  FromTypePtr = O.FromTypePtr;
580
8.01k
  ToTypePtr = O.ToTypePtr;
581
8.01k
  new (&conversions()) ConversionSet(O.conversions());
582
8.01k
}
583
584
namespace {
585
  // Structure used by DeductionFailureInfo to store
586
  // template argument information.
587
  struct DFIArguments {
588
    TemplateArgument FirstArg;
589
    TemplateArgument SecondArg;
590
  };
591
  // Structure used by DeductionFailureInfo to store
592
  // template parameter and template argument information.
593
  struct DFIParamWithArguments : DFIArguments {
594
    TemplateParameter Param;
595
  };
596
  // Structure used by DeductionFailureInfo to store template argument
597
  // information and the index of the problematic call argument.
598
  struct DFIDeducedMismatchArgs : DFIArguments {
599
    TemplateArgumentList *TemplateArgs;
600
    unsigned CallArgIndex;
601
  };
602
  // Structure used by DeductionFailureInfo to store information about
603
  // unsatisfied constraints.
604
  struct CNSInfo {
605
    TemplateArgumentList *TemplateArgs;
606
    ConstraintSatisfaction Satisfaction;
607
  };
608
}
609
610
/// Convert from Sema's representation of template deduction information
611
/// to the form used in overload-candidate information.
612
DeductionFailureInfo
613
clang::MakeDeductionFailureInfo(ASTContext &Context,
614
                                Sema::TemplateDeductionResult TDK,
615
1.26M
                                TemplateDeductionInfo &Info) {
616
1.26M
  DeductionFailureInfo Result;
617
1.26M
  Result.Result = static_cast<unsigned>(TDK);
618
1.26M
  Result.HasDiagnostic = false;
619
1.26M
  switch (TDK) {
620
16
  case Sema::TDK_Invalid:
621
2.07k
  case Sema::TDK_InstantiationDepth:
622
32.6k
  case Sema::TDK_TooManyArguments:
623
171k
  case Sema::TDK_TooFewArguments:
624
182k
  case Sema::TDK_MiscellaneousDeductionFailure:
625
182k
  case Sema::TDK_CUDATargetMismatch:
626
182k
    Result.Data = nullptr;
627
182k
    break;
628
629
16.2k
  case Sema::TDK_Incomplete:
630
17.9k
  case Sema::TDK_InvalidExplicitArguments:
631
17.9k
    Result.Data = Info.Param.getOpaqueValue();
632
17.9k
    break;
633
634
1.13k
  case Sema::TDK_DeducedMismatch:
635
1.13k
  case Sema::TDK_DeducedMismatchNested: {
636
    // FIXME: Should allocate from normal heap so that we can free this later.
637
1.13k
    auto *Saved = new (Context) DFIDeducedMismatchArgs;
638
1.13k
    Saved->FirstArg = Info.FirstArg;
639
1.13k
    Saved->SecondArg = Info.SecondArg;
640
1.13k
    Saved->TemplateArgs = Info.take();
641
1.13k
    Saved->CallArgIndex = Info.CallArgIndex;
642
1.13k
    Result.Data = Saved;
643
1.13k
    break;
644
1.13k
  }
645
646
891k
  case Sema::TDK_NonDeducedMismatch: {
647
    // FIXME: Should allocate from normal heap so that we can free this later.
648
891k
    DFIArguments *Saved = new (Context) DFIArguments;
649
891k
    Saved->FirstArg = Info.FirstArg;
650
891k
    Saved->SecondArg = Info.SecondArg;
651
891k
    Result.Data = Saved;
652
891k
    break;
653
1.13k
  }
654
655
9
  case Sema::TDK_IncompletePack:
656
    // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
657
20.4k
  case Sema::TDK_Inconsistent:
658
82.1k
  case Sema::TDK_Underqualified: {
659
    // FIXME: Should allocate from normal heap so that we can free this later.
660
82.1k
    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
661
82.1k
    Saved->Param = Info.Param;
662
82.1k
    Saved->FirstArg = Info.FirstArg;
663
82.1k
    Saved->SecondArg = Info.SecondArg;
664
82.1k
    Result.Data = Saved;
665
82.1k
    break;
666
20.4k
  }
667
668
86.5k
  case Sema::TDK_SubstitutionFailure:
669
86.5k
    Result.Data = Info.take();
670
86.5k
    if (Info.hasSFINAEDiagnostic()) {
671
86.5k
      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
672
86.5k
          SourceLocation(), PartialDiagnostic::NullDiagnostic());
673
86.5k
      Info.takeSFINAEDiagnostic(*Diag);
674
86.5k
      Result.HasDiagnostic = true;
675
86.5k
    }
676
86.5k
    break;
677
678
113
  case Sema::TDK_ConstraintsNotSatisfied: {
679
113
    CNSInfo *Saved = new (Context) CNSInfo;
680
113
    Saved->TemplateArgs = Info.take();
681
113
    Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
682
113
    Result.Data = Saved;
683
113
    break;
684
20.4k
  }
685
686
0
  case Sema::TDK_Success:
687
0
  case Sema::TDK_NonDependentConversionFailure:
688
0
    llvm_unreachable("not a deduction failure");
689
1.26M
  }
690
691
1.26M
  return Result;
692
1.26M
}
693
694
1.26M
void DeductionFailureInfo::Destroy() {
695
1.26M
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
696
0
  case Sema::TDK_Success:
697
16
  case Sema::TDK_Invalid:
698
2.07k
  case Sema::TDK_InstantiationDepth:
699
18.3k
  case Sema::TDK_Incomplete:
700
48.9k
  case Sema::TDK_TooManyArguments:
701
187k
  case Sema::TDK_TooFewArguments:
702
188k
  case Sema::TDK_InvalidExplicitArguments:
703
188k
  case Sema::TDK_CUDATargetMismatch:
704
188k
  case Sema::TDK_NonDependentConversionFailure:
705
188k
    break;
706
707
9
  case Sema::TDK_IncompletePack:
708
20.4k
  case Sema::TDK_Inconsistent:
709
82.1k
  case Sema::TDK_Underqualified:
710
83.3k
  case Sema::TDK_DeducedMismatch:
711
83.3k
  case Sema::TDK_DeducedMismatchNested:
712
975k
  case Sema::TDK_NonDeducedMismatch:
713
    // FIXME: Destroy the data?
714
975k
    Data = nullptr;
715
975k
    break;
716
717
86.5k
  case Sema::TDK_SubstitutionFailure:
718
    // FIXME: Destroy the template argument list?
719
86.5k
    Data = nullptr;
720
86.5k
    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
721
86.5k
      Diag->~PartialDiagnosticAt();
722
86.5k
      HasDiagnostic = false;
723
86.5k
    }
724
86.5k
    break;
725
726
113
  case Sema::TDK_ConstraintsNotSatisfied:
727
    // FIXME: Destroy the template argument list?
728
113
    Data = nullptr;
729
113
    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
730
0
      Diag->~PartialDiagnosticAt();
731
0
      HasDiagnostic = false;
732
0
    }
733
113
    break;
734
735
  // Unhandled
736
11.0k
  case Sema::TDK_MiscellaneousDeductionFailure:
737
11.0k
    break;
738
1.26M
  }
739
1.26M
}
740
741
89.0k
PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
742
89.0k
  if (HasDiagnostic)
743
88.8k
    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
744
189
  return nullptr;
745
189
}
746
747
3.15k
TemplateParameter DeductionFailureInfo::getTemplateParameter() {
748
3.15k
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
749
0
  case Sema::TDK_Success:
750
11
  case Sema::TDK_Invalid:
751
14
  case Sema::TDK_InstantiationDepth:
752
62
  case Sema::TDK_TooManyArguments:
753
96
  case Sema::TDK_TooFewArguments:
754
2.46k
  case Sema::TDK_SubstitutionFailure:
755
2.47k
  case Sema::TDK_DeducedMismatch:
756
2.48k
  case Sema::TDK_DeducedMismatchNested:
757
2.66k
  case Sema::TDK_NonDeducedMismatch:
758
2.67k
  case Sema::TDK_CUDATargetMismatch:
759
2.67k
  case Sema::TDK_NonDependentConversionFailure:
760
2.73k
  case Sema::TDK_ConstraintsNotSatisfied:
761
2.73k
    return TemplateParameter();
762
763
232
  case Sema::TDK_Incomplete:
764
297
  case Sema::TDK_InvalidExplicitArguments:
765
297
    return TemplateParameter::getFromOpaqueValue(Data);
766
767
9
  case Sema::TDK_IncompletePack:
768
109
  case Sema::TDK_Inconsistent:
769
116
  case Sema::TDK_Underqualified:
770
116
    return static_cast<DFIParamWithArguments*>(Data)->Param;
771
772
  // Unhandled
773
12
  case Sema::TDK_MiscellaneousDeductionFailure:
774
12
    break;
775
12
  }
776
777
12
  return TemplateParameter();
778
12
}
779
780
2.44k
TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
781
2.44k
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782
0
  case Sema::TDK_Success:
783
0
  case Sema::TDK_Invalid:
784
0
  case Sema::TDK_InstantiationDepth:
785
0
  case Sema::TDK_TooManyArguments:
786
0
  case Sema::TDK_TooFewArguments:
787
0
  case Sema::TDK_Incomplete:
788
0
  case Sema::TDK_IncompletePack:
789
0
  case Sema::TDK_InvalidExplicitArguments:
790
0
  case Sema::TDK_Inconsistent:
791
0
  case Sema::TDK_Underqualified:
792
0
  case Sema::TDK_NonDeducedMismatch:
793
0
  case Sema::TDK_CUDATargetMismatch:
794
0
  case Sema::TDK_NonDependentConversionFailure:
795
0
    return nullptr;
796
797
10
  case Sema::TDK_DeducedMismatch:
798
11
  case Sema::TDK_DeducedMismatchNested:
799
11
    return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
800
801
2.37k
  case Sema::TDK_SubstitutionFailure:
802
2.37k
    return static_cast<TemplateArgumentList*>(Data);
803
804
58
  case Sema::TDK_ConstraintsNotSatisfied:
805
58
    return static_cast<CNSInfo*>(Data)->TemplateArgs;
806
807
  // Unhandled
808
0
  case Sema::TDK_MiscellaneousDeductionFailure:
809
0
    break;
810
0
  }
811
812
0
  return nullptr;
813
0
}
814
815
475
const TemplateArgument *DeductionFailureInfo::getFirstArg() {
816
475
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
817
0
  case Sema::TDK_Success:
818
0
  case Sema::TDK_Invalid:
819
0
  case Sema::TDK_InstantiationDepth:
820
0
  case Sema::TDK_Incomplete:
821
0
  case Sema::TDK_TooManyArguments:
822
0
  case Sema::TDK_TooFewArguments:
823
0
  case Sema::TDK_InvalidExplicitArguments:
824
0
  case Sema::TDK_SubstitutionFailure:
825
0
  case Sema::TDK_CUDATargetMismatch:
826
0
  case Sema::TDK_NonDependentConversionFailure:
827
0
  case Sema::TDK_ConstraintsNotSatisfied:
828
0
    return nullptr;
829
830
18
  case Sema::TDK_IncompletePack:
831
276
  case Sema::TDK_Inconsistent:
832
283
  case Sema::TDK_Underqualified:
833
293
  case Sema::TDK_DeducedMismatch:
834
294
  case Sema::TDK_DeducedMismatchNested:
835
475
  case Sema::TDK_NonDeducedMismatch:
836
475
    return &static_cast<DFIArguments*>(Data)->FirstArg;
837
838
  // Unhandled
839
0
  case Sema::TDK_MiscellaneousDeductionFailure:
840
0
    break;
841
0
  }
842
843
0
  return nullptr;
844
0
}
845
846
430
const TemplateArgument *DeductionFailureInfo::getSecondArg() {
847
430
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
848
0
  case Sema::TDK_Success:
849
0
  case Sema::TDK_Invalid:
850
0
  case Sema::TDK_InstantiationDepth:
851
0
  case Sema::TDK_Incomplete:
852
0
  case Sema::TDK_IncompletePack:
853
0
  case Sema::TDK_TooManyArguments:
854
0
  case Sema::TDK_TooFewArguments:
855
0
  case Sema::TDK_InvalidExplicitArguments:
856
0
  case Sema::TDK_SubstitutionFailure:
857
0
  case Sema::TDK_CUDATargetMismatch:
858
0
  case Sema::TDK_NonDependentConversionFailure:
859
0
  case Sema::TDK_ConstraintsNotSatisfied:
860
0
    return nullptr;
861
862
231
  case Sema::TDK_Inconsistent:
863
238
  case Sema::TDK_Underqualified:
864
248
  case Sema::TDK_DeducedMismatch:
865
249
  case Sema::TDK_DeducedMismatchNested:
866
430
  case Sema::TDK_NonDeducedMismatch:
867
430
    return &static_cast<DFIArguments*>(Data)->SecondArg;
868
869
  // Unhandled
870
0
  case Sema::TDK_MiscellaneousDeductionFailure:
871
0
    break;
872
0
  }
873
874
0
  return nullptr;
875
0
}
876
877
11
llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
878
11
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
879
10
  case Sema::TDK_DeducedMismatch:
880
11
  case Sema::TDK_DeducedMismatchNested:
881
11
    return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
882
883
0
  default:
884
0
    return llvm::None;
885
11
  }
886
11
}
887
888
bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
889
993k
    OverloadedOperatorKind Op) {
890
993k
  if (!AllowRewrittenCandidates)
891
988k
    return false;
892
5.07k
  return Op == OO_EqualEqual || 
Op == OO_Spaceship3.91k
;
893
5.07k
}
894
895
bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
896
881k
    ASTContext &Ctx, const FunctionDecl *FD) {
897
881k
  if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
898
880k
    return false;
899
  // Don't bother adding a reversed candidate that can never be a better
900
  // match than the non-reversed version.
901
1.19k
  return FD->getNumParams() != 2 ||
902
1.19k
         !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
903
1.19k
                                     FD->getParamDecl(1)->getType()) ||
904
557
         FD->hasAttr<EnableIfAttr>();
905
1.19k
}
906
907
17.6M
void OverloadCandidateSet::destroyCandidates() {
908
31.6M
  for (iterator i = begin(), e = end(); i != e; 
++i13.9M
) {
909
13.9M
    for (auto &C : i->Conversions)
910
23.4M
      C.~ImplicitConversionSequence();
911
13.9M
    if (!i->Viable && 
i->FailureKind == ovl_fail_bad_deduction6.85M
)
912
803k
      i->DeductionFailure.Destroy();
913
13.9M
  }
914
17.6M
}
915
916
1.42M
void OverloadCandidateSet::clear(CandidateSetKind CSK) {
917
1.42M
  destroyCandidates();
918
1.42M
  SlabAllocator.Reset();
919
1.42M
  NumInlineBytesUsed = 0;
920
1.42M
  Candidates.clear();
921
1.42M
  Functions.clear();
922
1.42M
  Kind = CSK;
923
1.42M
}
924
925
namespace {
926
  class UnbridgedCastsSet {
927
    struct Entry {
928
      Expr **Addr;
929
      Expr *Saved;
930
    };
931
    SmallVector<Entry, 2> Entries;
932
933
  public:
934
7
    void save(Sema &S, Expr *&E) {
935
7
      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
936
7
      Entry entry = { &E, E };
937
7
      Entries.push_back(entry);
938
7
      E = S.stripARCUnbridgedCast(E);
939
7
    }
940
941
811k
    void restore() {
942
811k
      for (SmallVectorImpl<Entry>::iterator
943
811k
             i = Entries.begin(), e = Entries.end(); i != e; 
++i7
)
944
7
        *i->Addr = i->Saved;
945
811k
    }
946
  };
947
}
948
949
/// checkPlaceholderForOverload - Do any interesting placeholder-like
950
/// preprocessing on the given expression.
951
///
952
/// \param unbridgedCasts a collection to which to add unbridged casts;
953
///   without this, they will be immediately diagnosed as errors
954
///
955
/// Return true on unrecoverable error.
956
static bool
957
checkPlaceholderForOverload(Sema &S, Expr *&E,
958
8.49M
                            UnbridgedCastsSet *unbridgedCasts = nullptr) {
959
8.49M
  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
960
    // We can't handle overloaded expressions here because overload
961
    // resolution might reasonably tweak them.
962
801
    if (placeholder->getKind() == BuiltinType::Overload) 
return false792
;
963
964
    // If the context potentially accepts unbridged ARC casts, strip
965
    // the unbridged cast and add it to the collection for later restoration.
966
9
    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
967
7
        unbridgedCasts) {
968
7
      unbridgedCasts->save(S, E);
969
7
      return false;
970
7
    }
971
972
    // Go ahead and check everything else.
973
2
    ExprResult result = S.CheckPlaceholderExpr(E);
974
2
    if (result.isInvalid())
975
0
      return true;
976
977
2
    E = result.get();
978
2
    return false;
979
2
  }
980
981
  // Nothing to do.
982
8.49M
  return false;
983
8.49M
}
984
985
/// checkArgPlaceholdersForOverload - Check a set of call operands for
986
/// placeholders.
987
static bool checkArgPlaceholdersForOverload(Sema &S,
988
                                            MultiExprArg Args,
989
812k
                                            UnbridgedCastsSet &unbridged) {
990
1.71M
  for (unsigned i = 0, e = Args.size(); i != e; 
++i902k
)
991
902k
    if (checkPlaceholderForOverload(S, Args[i], &unbridged))
992
0
      return true;
993
994
812k
  return false;
995
812k
}
996
997
/// Determine whether the given New declaration is an overload of the
998
/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
999
/// New and Old cannot be overloaded, e.g., if New has the same signature as
1000
/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1001
/// functions (or function templates) at all. When it does return Ovl_Match or
1002
/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1003
/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1004
/// declaration.
1005
///
1006
/// Example: Given the following input:
1007
///
1008
///   void f(int, float); // #1
1009
///   void f(int, int); // #2
1010
///   int f(int, int); // #3
1011
///
1012
/// When we process #1, there is no previous declaration of "f", so IsOverload
1013
/// will not be used.
1014
///
1015
/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1016
/// the parameter types, we see that #1 and #2 are overloaded (since they have
1017
/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1018
/// unchanged.
1019
///
1020
/// When we process #3, Old is an overload set containing #1 and #2. We compare
1021
/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1022
/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1023
/// functions are not part of the signature), IsOverload returns Ovl_Match and
1024
/// MatchedDecl will be set to point to the FunctionDecl for #2.
1025
///
1026
/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1027
/// by a using declaration. The rules for whether to hide shadow declarations
1028
/// ignore some properties which otherwise figure into a function template's
1029
/// signature.
1030
Sema::OverloadKind
1031
Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1032
7.80M
                    NamedDecl *&Match, bool NewIsUsingDecl) {
1033
7.80M
  for (LookupResult::iterator I = Old.begin(), E = Old.end();
1034
56.8M
         I != E; 
++I49.0M
) {
1035
49.2M
    NamedDecl *OldD = *I;
1036
1037
49.2M
    bool OldIsUsingDecl = false;
1038
49.2M
    if (isa<UsingShadowDecl>(OldD)) {
1039
11.3k
      OldIsUsingDecl = true;
1040
1041
      // We can always introduce two using declarations into the same
1042
      // context, even if they have identical signatures.
1043
11.3k
      if (NewIsUsingDecl) 
continue379
;
1044
1045
10.9k
      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1046
10.9k
    }
1047
1048
    // A using-declaration does not conflict with another declaration
1049
    // if one of them is hidden.
1050
49.2M
    if ((OldIsUsingDecl || 
NewIsUsingDecl49.2M
) &&
!isVisible(*I)11.4k
)
1051
0
      continue;
1052
1053
    // If either declaration was introduced by a using declaration,
1054
    // we'll need to use slightly different rules for matching.
1055
    // Essentially, these rules are the normal rules, except that
1056
    // function templates hide function templates with different
1057
    // return types or template parameter lists.
1058
49.2M
    bool UseMemberUsingDeclRules =
1059
49.2M
      (OldIsUsingDecl || 
NewIsUsingDecl49.2M
) &&
CurContext->isRecord()11.4k
&&
1060
7.32k
      !New->getFriendObjectKind();
1061
1062
49.2M
    if (FunctionDecl *OldF = OldD->getAsFunction()) {
1063
49.2M
      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1064
224k
        if (UseMemberUsingDeclRules && 
OldIsUsingDecl293
) {
1065
270
          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1066
270
          continue;
1067
270
        }
1068
1069
223k
        if (!isa<FunctionTemplateDecl>(OldD) &&
1070
163k
            !shouldLinkPossiblyHiddenDecl(*I, New))
1071
0
          continue;
1072
1073
223k
        Match = *I;
1074
223k
        return Ovl_Match;
1075
223k
      }
1076
1077
      // Builtins that have custom typechecking or have a reference should
1078
      // not be overloadable or redeclarable.
1079
49.0M
      if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1080
3
        Match = *I;
1081
3
        return Ovl_NonFunction;
1082
3
      }
1083
286
    } else if (isa<UsingDecl>(OldD) || 
isa<UsingPackDecl>(OldD)162
) {
1084
      // We can overload with these, which can show up when doing
1085
      // redeclaration checks for UsingDecls.
1086
124
      assert(Old.getLookupKind() == LookupUsingDeclName);
1087
162
    } else if (isa<TagDecl>(OldD)) {
1088
      // We can always overload with tags by hiding them.
1089
160
    } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1090
      // Optimistically assume that an unresolved using decl will
1091
      // overload; if it doesn't, we'll have to diagnose during
1092
      // template instantiation.
1093
      //
1094
      // Exception: if the scope is dependent and this is not a class
1095
      // member, the using declaration can only introduce an enumerator.
1096
139
      if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1097
5
        Match = *I;
1098
5
        return Ovl_NonFunction;
1099
5
      }
1100
21
    } else {
1101
      // (C++ 13p1):
1102
      //   Only function declarations can be overloaded; object and type
1103
      //   declarations cannot be overloaded.
1104
21
      Match = *I;
1105
21
      return Ovl_NonFunction;
1106
21
    }
1107
49.2M
  }
1108
1109
  // C++ [temp.friend]p1:
1110
  //   For a friend function declaration that is not a template declaration:
1111
  //    -- if the name of the friend is a qualified or unqualified template-id,
1112
  //       [...], otherwise
1113
  //    -- if the name of the friend is a qualified-id and a matching
1114
  //       non-template function is found in the specified class or namespace,
1115
  //       the friend declaration refers to that function, otherwise,
1116
  //    -- if the name of the friend is a qualified-id and a matching function
1117
  //       template is found in the specified class or namespace, the friend
1118
  //       declaration refers to the deduced specialization of that function
1119
  //       template, otherwise
1120
  //    -- the name shall be an unqualified-id [...]
1121
  // If we get here for a qualified friend declaration, we've just reached the
1122
  // third bullet. If the type of the friend is dependent, skip this lookup
1123
  // until instantiation.
1124
7.58M
  if (New->getFriendObjectKind() && 
New->getQualifier()28.9k
&&
1125
60
      !New->getDescribedFunctionTemplate() &&
1126
48
      !New->getDependentSpecializationInfo() &&
1127
42
      !New->getType()->isDependentType()) {
1128
37
    LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1129
37
    TemplateSpecResult.addAllDecls(Old);
1130
37
    if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1131
21
                                            /*QualifiedFriend*/true)) {
1132
21
      New->setInvalidDecl();
1133
21
      return Ovl_Overload;
1134
21
    }
1135
1136
16
    Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1137
16
    return Ovl_Match;
1138
16
  }
1139
1140
7.58M
  return Ovl_Overload;
1141
7.58M
}
1142
1143
bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1144
                      bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1145
49.2M
                      bool ConsiderRequiresClauses) {
1146
  // C++ [basic.start.main]p2: This function shall not be overloaded.
1147
49.2M
  if (New->isMain())
1148
17
    return false;
1149
1150
  // MSVCRT user defined entry points cannot be overloaded.
1151
49.2M
  if (New->isMSVCRTEntryPoint())
1152
1
    return false;
1153
1154
49.2M
  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1155
49.2M
  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1156
1157
  // C++ [temp.fct]p2:
1158
  //   A function template can be overloaded with other function templates
1159
  //   and with normal (non-template) functions.
1160
49.2M
  if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1161
1.30M
    return true;
1162
1163
  // Is the function New an overload of the function Old?
1164
47.9M
  QualType OldQType = Context.getCanonicalType(Old->getType());
1165
47.9M
  QualType NewQType = Context.getCanonicalType(New->getType());
1166
1167
  // Compare the signatures (C++ 1.3.10) of the two functions to
1168
  // determine whether they are overloads. If we find any mismatch
1169
  // in the signature, they are overloads.
1170
1171
  // If either of these functions is a K&R-style function (no
1172
  // prototype), then we consider them to have matching signatures.
1173
47.9M
  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1174
47.9M
      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1175
0
    return false;
1176
1177
47.9M
  const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1178
47.9M
  const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1179
1180
  // The signature of a function includes the types of its
1181
  // parameters (C++ 1.3.10), which includes the presence or absence
1182
  // of the ellipsis; see C++ DR 357).
1183
47.9M
  if (OldQType != NewQType &&
1184
47.6M
      (OldType->getNumParams() != NewType->getNumParams() ||
1185
46.4M
       OldType->isVariadic() != NewType->isVariadic() ||
1186
46.4M
       !FunctionParamTypesAreEqual(OldType, NewType)))
1187
47.5M
    return true;
1188
1189
  // C++ [temp.over.link]p4:
1190
  //   The signature of a function template consists of its function
1191
  //   signature, its return type and its template parameter list. The names
1192
  //   of the template parameters are significant only for establishing the
1193
  //   relationship between the template parameters and the rest of the
1194
  //   signature.
1195
  //
1196
  // We check the return type and template parameter lists for function
1197
  // templates first; the remaining checks follow.
1198
  //
1199
  // However, we don't consider either of these when deciding whether
1200
  // a member introduced by a shadow declaration is hidden.
1201
390k
  if (!UseMemberUsingDeclRules && 
NewTemplate390k
&&
1202
106k
      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1203
106k
                                       OldTemplate->getTemplateParameters(),
1204
106k
                                       false, TPL_TemplateMatch) ||
1205
78.6k
       !Context.hasSameType(Old->getDeclaredReturnType(),
1206
78.6k
                            New->getDeclaredReturnType())))
1207
46.7k
    return true;
1208
1209
  // If the function is a class member, its signature includes the
1210
  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1211
  //
1212
  // As part of this, also check whether one of the member functions
1213
  // is static, in which case they are not overloads (C++
1214
  // 13.1p2). While not part of the definition of the signature,
1215
  // this check is important to determine whether these functions
1216
  // can be overloaded.
1217
343k
  CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1218
343k
  CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1219
343k
  if (OldMethod && 
NewMethod272k
&&
1220
272k
      !OldMethod->isStatic() && 
!NewMethod->isStatic()262k
) {
1221
262k
    if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1222
298
      if (!UseMemberUsingDeclRules &&
1223
298
          (OldMethod->getRefQualifier() == RQ_None ||
1224
297
           NewMethod->getRefQualifier() == RQ_None)) {
1225
        // C++0x [over.load]p2:
1226
        //   - Member function declarations with the same name and the same
1227
        //     parameter-type-list as well as member function template
1228
        //     declarations with the same name, the same parameter-type-list, and
1229
        //     the same template parameter lists cannot be overloaded if any of
1230
        //     them, but not all, have a ref-qualifier (8.3.5).
1231
11
        Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1232
11
          << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1233
11
        Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1234
11
      }
1235
298
      return true;
1236
298
    }
1237
1238
    // We may not have applied the implicit const for a constexpr member
1239
    // function yet (because we haven't yet resolved whether this is a static
1240
    // or non-static member function). Add it now, on the assumption that this
1241
    // is a redeclaration of OldMethod.
1242
262k
    auto OldQuals = OldMethod->getMethodQualifiers();
1243
262k
    auto NewQuals = NewMethod->getMethodQualifiers();
1244
262k
    if (!getLangOpts().CPlusPlus14 && 
NewMethod->isConstexpr()241k
&&
1245
2.06k
        !isa<CXXConstructorDecl>(NewMethod))
1246
283
      NewQuals.addConst();
1247
    // We do not allow overloading based off of '__restrict'.
1248
262k
    OldQuals.removeRestrict();
1249
262k
    NewQuals.removeRestrict();
1250
262k
    if (OldQuals != NewQuals)
1251
83.0k
      return true;
1252
260k
  }
1253
1254
  // Though pass_object_size is placed on parameters and takes an argument, we
1255
  // consider it to be a function-level modifier for the sake of function
1256
  // identity. Either the function has one or more parameters with
1257
  // pass_object_size or it doesn't.
1258
260k
  if (functionHasPassObjectSizeParams(New) !=
1259
260k
      functionHasPassObjectSizeParams(Old))
1260
16
    return true;
1261
1262
  // enable_if attributes are an order-sensitive part of the signature.
1263
260k
  for (specific_attr_iterator<EnableIfAttr>
1264
260k
         NewI = New->specific_attr_begin<EnableIfAttr>(),
1265
260k
         NewE = New->specific_attr_end<EnableIfAttr>(),
1266
260k
         OldI = Old->specific_attr_begin<EnableIfAttr>(),
1267
260k
         OldE = Old->specific_attr_end<EnableIfAttr>();
1268
260k
       NewI != NewE || 
OldI != OldE255k
;
++NewI, ++OldI12
) {
1269
4.53k
    if (NewI == NewE || 
OldI == OldE4.51k
)
1270
4.47k
      return true;
1271
62
    llvm::FoldingSetNodeID NewID, OldID;
1272
62
    NewI->getCond()->Profile(NewID, Context, true);
1273
62
    OldI->getCond()->Profile(OldID, Context, true);
1274
62
    if (NewID != OldID)
1275
50
      return true;
1276
62
  }
1277
1278
255k
  if (getLangOpts().CUDA && 
ConsiderCudaAttrs529
) {
1279
    // Don't allow overloading of destructors.  (In theory we could, but it
1280
    // would be a giant change to clang.)
1281
469
    if (!isa<CXXDestructorDecl>(New)) {
1282
455
      CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1283
455
                         OldTarget = IdentifyCUDATarget(Old);
1284
455
      if (NewTarget != CFT_InvalidTarget) {
1285
455
        assert((OldTarget != CFT_InvalidTarget) &&
1286
455
               "Unexpected invalid target.");
1287
1288
        // Allow overloading of functions with same signature and different CUDA
1289
        // target attributes.
1290
455
        if (NewTarget != OldTarget)
1291
385
          return true;
1292
255k
      }
1293
455
    }
1294
469
  }
1295
1296
255k
  if (ConsiderRequiresClauses) {
1297
224k
    Expr *NewRC = New->getTrailingRequiresClause(),
1298
224k
         *OldRC = Old->getTrailingRequiresClause();
1299
224k
    if ((NewRC != nullptr) != (OldRC != nullptr))
1300
      // RC are most certainly different - these are overloads.
1301
5
      return true;
1302
1303
224k
    if (NewRC) {
1304
35
      llvm::FoldingSetNodeID NewID, OldID;
1305
35
      NewRC->Profile(NewID, Context, /*Canonical=*/true);
1306
35
      OldRC->Profile(OldID, Context, /*Canonical=*/true);
1307
35
      if (NewID != OldID)
1308
        // RCs are not equivalent - these are overloads.
1309
35
        return true;
1310
255k
    }
1311
224k
  }
1312
1313
  // The signatures match; this is not an overload.
1314
255k
  return false;
1315
255k
}
1316
1317
/// Tries a user-defined conversion from From to ToType.
1318
///
1319
/// Produces an implicit conversion sequence for when a standard conversion
1320
/// is not an option. See TryImplicitConversion for more information.
1321
static ImplicitConversionSequence
1322
TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1323
                         bool SuppressUserConversions,
1324
                         AllowedExplicit AllowExplicit,
1325
                         bool InOverloadResolution,
1326
                         bool CStyle,
1327
                         bool AllowObjCWritebackConversion,
1328
1.25M
                         bool AllowObjCConversionOnExplicit) {
1329
1.25M
  ImplicitConversionSequence ICS;
1330
1331
1.25M
  if (SuppressUserConversions) {
1332
    // We're not in the case above, so there is no conversion that
1333
    // we can perform.
1334
186k
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1335
186k
    return ICS;
1336
186k
  }
1337
1338
  // Attempt user-defined conversion.
1339
1.07M
  OverloadCandidateSet Conversions(From->getExprLoc(),
1340
1.07M
                                   OverloadCandidateSet::CSK_Normal);
1341
1.07M
  switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1342
1.07M
                                  Conversions, AllowExplicit,
1343
1.07M
                                  AllowObjCConversionOnExplicit)) {
1344
406k
  case OR_Success:
1345
406k
  case OR_Deleted:
1346
406k
    ICS.setUserDefined();
1347
    // C++ [over.ics.user]p4:
1348
    //   A conversion of an expression of class type to the same class
1349
    //   type is given Exact Match rank, and a conversion of an
1350
    //   expression of class type to a base class of that type is
1351
    //   given Conversion rank, in spite of the fact that a copy
1352
    //   constructor (i.e., a user-defined conversion function) is
1353
    //   called for those cases.
1354
406k
    if (CXXConstructorDecl *Constructor
1355
26.0k
          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1356
26.0k
      QualType FromCanon
1357
26.0k
        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1358
26.0k
      QualType ToCanon
1359
26.0k
        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1360
26.0k
      if (Constructor->isCopyConstructor() &&
1361
0
          (FromCanon == ToCanon ||
1362
0
           S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1363
        // Turn this into a "standard" conversion sequence, so that it
1364
        // gets ranked with standard conversion sequences.
1365
0
        DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1366
0
        ICS.setStandard();
1367
0
        ICS.Standard.setAsIdentityConversion();
1368
0
        ICS.Standard.setFromType(From->getType());
1369
0
        ICS.Standard.setAllToTypes(ToType);
1370
0
        ICS.Standard.CopyConstructor = Constructor;
1371
0
        ICS.Standard.FoundCopyConstructor = Found;
1372
0
        if (ToCanon != FromCanon)
1373
0
          ICS.Standard.Second = ICK_Derived_To_Base;
1374
0
      }
1375
26.0k
    }
1376
406k
    break;
1377
1378
7.98k
  case OR_Ambiguous:
1379
7.98k
    ICS.setAmbiguous();
1380
7.98k
    ICS.Ambiguous.setFromType(From->getType());
1381
7.98k
    ICS.Ambiguous.setToType(ToType);
1382
7.98k
    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1383
24.2k
         Cand != Conversions.end(); 
++Cand16.2k
)
1384
16.2k
      if (Cand->Best)
1385
15.9k
        ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1386
7.98k
    break;
1387
1388
    // Fall through.
1389
657k
  case OR_No_Viable_Function:
1390
657k
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1391
657k
    break;
1392
1.07M
  }
1393
1394
1.07M
  return ICS;
1395
1.07M
}
1396
1397
/// TryImplicitConversion - Attempt to perform an implicit conversion
1398
/// from the given expression (Expr) to the given type (ToType). This
1399
/// function returns an implicit conversion sequence that can be used
1400
/// to perform the initialization. Given
1401
///
1402
///   void f(float f);
1403
///   void g(int i) { f(i); }
1404
///
1405
/// this routine would produce an implicit conversion sequence to
1406
/// describe the initialization of f from i, which will be a standard
1407
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1408
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1409
//
1410
/// Note that this routine only determines how the conversion can be
1411
/// performed; it does not actually perform the conversion. As such,
1412
/// it will not produce any diagnostics if no conversion is available,
1413
/// but will instead return an implicit conversion sequence of kind
1414
/// "BadConversion".
1415
///
1416
/// If @p SuppressUserConversions, then user-defined conversions are
1417
/// not permitted.
1418
/// If @p AllowExplicit, then explicit user-defined conversions are
1419
/// permitted.
1420
///
1421
/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1422
/// writeback conversion, which allows __autoreleasing id* parameters to
1423
/// be initialized with __strong id* or __weak id* arguments.
1424
static ImplicitConversionSequence
1425
TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1426
                      bool SuppressUserConversions,
1427
                      AllowedExplicit AllowExplicit,
1428
                      bool InOverloadResolution,
1429
                      bool CStyle,
1430
                      bool AllowObjCWritebackConversion,
1431
23.2M
                      bool AllowObjCConversionOnExplicit) {
1432
23.2M
  ImplicitConversionSequence ICS;
1433
23.2M
  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1434
21.6M
                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1435
21.6M
    ICS.setStandard();
1436
21.6M
    return ICS;
1437
21.6M
  }
1438
1439
1.59M
  if (!S.getLangOpts().CPlusPlus) {
1440
290k
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1441
290k
    return ICS;
1442
290k
  }
1443
1444
  // C++ [over.ics.user]p4:
1445
  //   A conversion of an expression of class type to the same class
1446
  //   type is given Exact Match rank, and a conversion of an
1447
  //   expression of class type to a base class of that type is
1448
  //   given Conversion rank, in spite of the fact that a copy/move
1449
  //   constructor (i.e., a user-defined conversion function) is
1450
  //   called for those cases.
1451
1.30M
  QualType FromType = From->getType();
1452
1.30M
  if (ToType->getAs<RecordType>() && 
FromType->getAs<RecordType>()257k
&&
1453
153k
      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1454
108k
       S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1455
45.7k
    ICS.setStandard();
1456
45.7k
    ICS.Standard.setAsIdentityConversion();
1457
45.7k
    ICS.Standard.setFromType(FromType);
1458
45.7k
    ICS.Standard.setAllToTypes(ToType);
1459
1460
    // We don't actually check at this point whether there is a valid
1461
    // copy/move constructor, since overloading just assumes that it
1462
    // exists. When we actually perform initialization, we'll find the
1463
    // appropriate constructor to copy the returned object, if needed.
1464
45.7k
    ICS.Standard.CopyConstructor = nullptr;
1465
1466
    // Determine whether this is considered a derived-to-base conversion.
1467
45.7k
    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1468
617
      ICS.Standard.Second = ICK_Derived_To_Base;
1469
1470
45.7k
    return ICS;
1471
45.7k
  }
1472
1473
1.25M
  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1474
1.25M
                                  AllowExplicit, InOverloadResolution, CStyle,
1475
1.25M
                                  AllowObjCWritebackConversion,
1476
1.25M
                                  AllowObjCConversionOnExplicit);
1477
1.25M
}
1478
1479
ImplicitConversionSequence
1480
Sema::TryImplicitConversion(Expr *From, QualType ToType,
1481
                            bool SuppressUserConversions,
1482
                            AllowedExplicit AllowExplicit,
1483
                            bool InOverloadResolution,
1484
                            bool CStyle,
1485
3.72M
                            bool AllowObjCWritebackConversion) {
1486
3.72M
  return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1487
3.72M
                                 AllowExplicit, InOverloadResolution, CStyle,
1488
3.72M
                                 AllowObjCWritebackConversion,
1489
3.72M
                                 /*AllowObjCConversionOnExplicit=*/false);
1490
3.72M
}
1491
1492
/// PerformImplicitConversion - Perform an implicit conversion of the
1493
/// expression From to the type ToType. Returns the
1494
/// converted expression. Flavor is the kind of conversion we're
1495
/// performing, used in the error message. If @p AllowExplicit,
1496
/// explicit user-defined conversions are permitted.
1497
ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1498
                                           AssignmentAction Action,
1499
2.94M
                                           bool AllowExplicit) {
1500
2.94M
  if (checkPlaceholderForOverload(*this, From))
1501
0
    return ExprError();
1502
1503
  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1504
2.94M
  bool AllowObjCWritebackConversion
1505
2.94M
    = getLangOpts().ObjCAutoRefCount &&
1506
843
      (Action == AA_Passing || Action == AA_Sending);
1507
2.94M
  if (getLangOpts().ObjC)
1508
28.9k
    CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1509
28.9k
                                      From->getType(), From);
1510
2.94M
  ImplicitConversionSequence ICS = ::TryImplicitConversion(
1511
2.94M
      *this, From, ToType,
1512
2.94M
      /*SuppressUserConversions=*/false,
1513
1.78M
      AllowExplicit ? AllowedExplicit::All : 
AllowedExplicit::None1.15M
,
1514
2.94M
      /*InOverloadResolution=*/false,
1515
2.94M
      /*CStyle=*/false, AllowObjCWritebackConversion,
1516
2.94M
      /*AllowObjCConversionOnExplicit=*/false);
1517
2.94M
  return PerformImplicitConversion(From, ToType, ICS, Action);
1518
2.94M
}
1519
1520
/// Determine whether the conversion from FromType to ToType is a valid
1521
/// conversion that strips "noexcept" or "noreturn" off the nested function
1522
/// type.
1523
bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1524
22.2M
                                QualType &ResultTy) {
1525
22.2M
  if (Context.hasSameUnqualifiedType(FromType, ToType))
1526
21.3M
    return false;
1527
1528
  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1529
  //                    or F(t noexcept) -> F(t)
1530
  // where F adds one of the following at most once:
1531
  //   - a pointer
1532
  //   - a member pointer
1533
  //   - a block pointer
1534
  // Changes here need matching changes in FindCompositePointerType.
1535
926k
  CanQualType CanTo = Context.getCanonicalType(ToType);
1536
926k
  CanQualType CanFrom = Context.getCanonicalType(FromType);
1537
926k
  Type::TypeClass TyClass = CanTo->getTypeClass();
1538
926k
  if (TyClass != CanFrom->getTypeClass()) 
return false174k
;
1539
751k
  if (TyClass != Type::FunctionProto && 
TyClass != Type::FunctionNoProto743k
) {
1540
743k
    if (TyClass == Type::Pointer) {
1541
444k
      CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1542
444k
      CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1543
299k
    } else if (TyClass == Type::BlockPointer) {
1544
12
      CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1545
12
      CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1546
298k
    } else if (TyClass == Type::MemberPointer) {
1547
615
      auto ToMPT = CanTo.castAs<MemberPointerType>();
1548
615
      auto FromMPT = CanFrom.castAs<MemberPointerType>();
1549
      // A function pointer conversion cannot change the class of the function.
1550
615
      if (ToMPT->getClass() != FromMPT->getClass())
1551
139
        return false;
1552
476
      CanTo = ToMPT->getPointeeType();
1553
476
      CanFrom = FromMPT->getPointeeType();
1554
298k
    } else {
1555
298k
      return false;
1556
298k
    }
1557
1558
444k
    TyClass = CanTo->getTypeClass();
1559
444k
    if (TyClass != CanFrom->getTypeClass()) 
return false166k
;
1560
278k
    if (TyClass != Type::FunctionProto && 
TyClass != Type::FunctionNoProto277k
)
1561
277k
      return false;
1562
9.71k
  }
1563
1564
9.71k
  const auto *FromFn = cast<FunctionType>(CanFrom);
1565
9.71k
  FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1566
1567
9.71k
  const auto *ToFn = cast<FunctionType>(CanTo);
1568
9.71k
  FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1569
1570
9.71k
  bool Changed = false;
1571
1572
  // Drop 'noreturn' if not present in target type.
1573
9.71k
  if (FromEInfo.getNoReturn() && 
!ToEInfo.getNoReturn()119
) {
1574
110
    FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1575
110
    Changed = true;
1576
110
  }
1577
1578
  // Drop 'noexcept' if not present in target type.
1579
9.71k
  if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1580
9.71k
    const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1581
9.71k
    if (FromFPT->isNothrow() && 
!ToFPT->isNothrow()848
) {
1582
846
      FromFn = cast<FunctionType>(
1583
846
          Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1584
846
                                                   EST_None)
1585
846
                 .getTypePtr());
1586
846
      Changed = true;
1587
846
    }
1588
1589
    // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1590
    // only if the ExtParameterInfo lists of the two function prototypes can be
1591
    // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1592
9.71k
    SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1593
9.71k
    bool CanUseToFPT, CanUseFromFPT;
1594
9.71k
    if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1595
9.71k
                                      CanUseFromFPT, NewParamInfos) &&
1596
9.67k
        CanUseToFPT && 
!CanUseFromFPT9.67k
) {
1597
6
      FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1598
6
      ExtInfo.ExtParameterInfos =
1599
6
          NewParamInfos.empty() ? nullptr : 
NewParamInfos.data()0
;
1600
6
      QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1601
6
                                            FromFPT->getParamTypes(), ExtInfo);
1602
6
      FromFn = QT->getAs<FunctionType>();
1603
6
      Changed = true;
1604
6
    }
1605
9.71k
  }
1606
1607
9.71k
  if (!Changed)
1608
8.75k
    return false;
1609
1610
962
  assert(QualType(FromFn, 0).isCanonical());
1611
962
  if (QualType(FromFn, 0) != CanTo) 
return false100
;
1612
1613
862
  ResultTy = ToType;
1614
862
  return true;
1615
862
}
1616
1617
/// Determine whether the conversion from FromType to ToType is a valid
1618
/// vector conversion.
1619
///
1620
/// \param ICK Will be set to the vector conversion kind, if this is a vector
1621
/// conversion.
1622
static bool IsVectorConversion(Sema &S, QualType FromType,
1623
1.97M
                               QualType ToType, ImplicitConversionKind &ICK) {
1624
  // We need at least one of these types to be a vector type to have a vector
1625
  // conversion.
1626
1.97M
  if (!ToType->isVectorType() && 
!FromType->isVectorType()661k
)
1627
636k
    return false;
1628
1629
  // Identical types require no conversions.
1630
1.33M
  if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1631
0
    return false;
1632
1633
  // There are no conversions between extended vector types, only identity.
1634
1.33M
  if (ToType->isExtVectorType()) {
1635
    // There are no conversions between extended vector types other than the
1636
    // identity conversion.
1637
5.86k
    if (FromType->isExtVectorType())
1638
4.00k
      return false;
1639
1640
    // Vector splat from any arithmetic type to a vector.
1641
1.85k
    if (FromType->isArithmeticType()) {
1642
1.76k
      ICK = ICK_Vector_Splat;
1643
1.76k
      return true;
1644
1.76k
    }
1645
1.32M
  }
1646
1647
1.32M
  if (ToType->isSizelessBuiltinType() || 
FromType->isSizelessBuiltinType()1.32M
)
1648
485
    if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1649
363
        S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1650
295
      ICK = ICK_SVE_Vector_Conversion;
1651
295
      return true;
1652
295
    }
1653
1654
  // We can perform the conversion between vector types in the following cases:
1655
  // 1)vector types are equivalent AltiVec and GCC vector types
1656
  // 2)lax vector conversions are permitted and the vector types are of the
1657
  //   same size
1658
  // 3)the destination type does not have the ARM MVE strict-polymorphism
1659
  //   attribute, which inhibits lax vector conversion for overload resolution
1660
  //   only
1661
1.32M
  if (ToType->isVectorType() && 
FromType->isVectorType()1.30M
) {
1662
1.30M
    if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1663
1.24M
        (S.isLaxVectorConversion(FromType, ToType) &&
1664
1.05M
         
!ToType->hasAttr(attr::ArmMveStrictPolymorphism)1.00M
)) {
1665
1.05M
      ICK = ICK_Vector_Conversion;
1666
1.05M
      return true;
1667
1.05M
    }
1668
276k
  }
1669
1670
276k
  return false;
1671
276k
}
1672
1673
static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1674
                                bool InOverloadResolution,
1675
                                StandardConversionSequence &SCS,
1676
                                bool CStyle);
1677
1678
/// IsStandardConversion - Determines whether there is a standard
1679
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1680
/// expression From to the type ToType. Standard conversion sequences
1681
/// only consider non-class types; for conversions that involve class
1682
/// types, use TryImplicitConversion. If a conversion exists, SCS will
1683
/// contain the standard conversion sequence required to perform this
1684
/// conversion and this routine will return true. Otherwise, this
1685
/// routine will return false and the value of SCS is unspecified.
1686
static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1687
                                 bool InOverloadResolution,
1688
                                 StandardConversionSequence &SCS,
1689
                                 bool CStyle,
1690
23.2M
                                 bool AllowObjCWritebackConversion) {
1691
23.2M
  QualType FromType = From->getType();
1692
1693
  // Standard conversions (C++ [conv])
1694
23.2M
  SCS.setAsIdentityConversion();
1695
23.2M
  SCS.IncompatibleObjC = false;
1696
23.2M
  SCS.setFromType(FromType);
1697
23.2M
  SCS.CopyConstructor = nullptr;
1698
1699
  // There are no standard conversions for class types in C++, so
1700
  // abort early. When overloading in C, however, we do permit them.
1701
23.2M
  if (S.getLangOpts().CPlusPlus &&
1702
20.9M
      (FromType->isRecordType() || 
ToType->isRecordType()20.0M
))
1703
1.02M
    return false;
1704
1705
  // The first conversion can be an lvalue-to-rvalue conversion,
1706
  // array-to-pointer conversion, or function-to-pointer conversion
1707
  // (C++ 4p1).
1708
1709
22.1M
  if (FromType == S.Context.OverloadTy) {
1710
3.36k
    DeclAccessPair AccessPair;
1711
3.36k
    if (FunctionDecl *Fn
1712
1.62k
          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1713
1.62k
                                                 AccessPair)) {
1714
      // We were able to resolve the address of the overloaded function,
1715
      // so we can convert to the type of that function.
1716
1.62k
      FromType = Fn->getType();
1717
1.62k
      SCS.setFromType(FromType);
1718
1719
      // we can sometimes resolve &foo<int> regardless of ToType, so check
1720
      // if the type matches (identity) or we are converting to bool
1721
1.62k
      if (!S.Context.hasSameUnqualifiedType(
1722
115
                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1723
115
        QualType resultTy;
1724
        // if the function type matches except for [[noreturn]], it's ok
1725
115
        if (!S.IsFunctionConversion(FromType,
1726
115
              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1727
          // otherwise, only a boolean conversion is standard
1728
42
          if (!ToType->isBooleanType())
1729
18
            return false;
1730
1.60k
      }
1731
1732
      // Check if the "from" expression is taking the address of an overloaded
1733
      // function and recompute the FromType accordingly. Take advantage of the
1734
      // fact that non-static member functions *must* have such an address-of
1735
      // expression.
1736
1.60k
      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1737
1.60k
      if (Method && 
!Method->isStatic()304
) {
1738
176
        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1739
176
               "Non-unary operator on non-static member address");
1740
176
        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1741
176
               == UO_AddrOf &&
1742
176
               "Non-address-of operator on non-static member address");
1743
176
        const Type *ClassType
1744
176
          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1745
176
        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1746
1.43k
      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1747
502
        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1748
502
               UO_AddrOf &&
1749
502
               "Non-address-of operator for overloaded function expression");
1750
502
        FromType = S.Context.getPointerType(FromType);
1751
502
      }
1752
1753
      // Check that we've computed the proper type after overload resolution.
1754
      // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1755
      // be calling it from within an NDEBUG block.
1756
1.60k
      assert(S.Context.hasSameType(
1757
1.60k
        FromType,
1758
1.60k
        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1759
1.74k
    } else {
1760
1.74k
      return false;
1761
1.74k
    }
1762
22.1M
  }
1763
  // Lvalue-to-rvalue conversion (C++11 4.1):
1764
  //   A glvalue (3.10) of a non-function, non-array type T can
1765
  //   be converted to a prvalue.
1766
22.1M
  bool argIsLValue = From->isGLValue();
1767
22.1M
  if (argIsLValue &&
1768
7.00M
      !FromType->isFunctionType() && 
!FromType->isArrayType()6.99M
&&
1769
6.84M
      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1770
6.84M
    SCS.First = ICK_Lvalue_To_Rvalue;
1771
1772
    // C11 6.3.2.1p2:
1773
    //   ... if the lvalue has atomic type, the value has the non-atomic version
1774
    //   of the type of the lvalue ...
1775
6.84M
    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1776
80
      FromType = Atomic->getValueType();
1777
1778
    // If T is a non-class type, the type of the rvalue is the
1779
    // cv-unqualified version of T. Otherwise, the type of the rvalue
1780
    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1781
    // just strip the qualifiers because they don't matter.
1782
6.84M
    FromType = FromType.getUnqualifiedType();
1783
15.3M
  } else if (FromType->isArrayType()) {
1784
    // Array-to-pointer conversion (C++ 4.2)
1785
151k
    SCS.First = ICK_Array_To_Pointer;
1786
1787
    // An lvalue or rvalue of type "array of N T" or "array of unknown
1788
    // bound of T" can be converted to an rvalue of type "pointer to
1789
    // T" (C++ 4.2p1).
1790
151k
    FromType = S.Context.getArrayDecayedType(FromType);
1791
1792
151k
    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1793
      // This conversion is deprecated in C++03 (D.4)
1794
842
      SCS.DeprecatedStringLiteralToCharPtr = true;
1795
1796
      // For the purpose of ranking in overload resolution
1797
      // (13.3.3.1.1), this conversion is considered an
1798
      // array-to-pointer conversion followed by a qualification
1799
      // conversion (4.4). (C++ 4.2p2)
1800
842
      SCS.Second = ICK_Identity;
1801
842
      SCS.Third = ICK_Qualification;
1802
842
      SCS.QualificationIncludesObjCLifetime = false;
1803
842
      SCS.setAllToTypes(FromType);
1804
842
      return true;
1805
842
    }
1806
15.1M
  } else if (FromType->isFunctionType() && 
argIsLValue7.38k
) {
1807
    // Function-to-pointer conversion (C++ 4.3).
1808
7.38k
    SCS.First = ICK_Function_To_Pointer;
1809
1810
7.38k
    if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1811
6.09k
      if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1812
6.08k
        if (!S.checkAddressOfFunctionIsAvailable(FD))
1813
10
          return false;
1814
1815
    // An lvalue of function type T can be converted to an rvalue of
1816
    // type "pointer to T." The result is a pointer to the
1817
    // function. (C++ 4.3p1).
1818
7.37k
    FromType = S.Context.getPointerType(FromType);
1819
15.1M
  } else {
1820
    // We don't require any conversions for the first step.
1821
15.1M
    SCS.First = ICK_Identity;
1822
15.1M
  }
1823
22.1M
  SCS.setToType(0, FromType);
1824
1825
  // The second conversion can be an integral promotion, floating
1826
  // point promotion, integral conversion, floating point conversion,
1827
  // floating-integral conversion, pointer conversion,
1828
  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1829
  // For overloading in C, this can also be a "compatible-type"
1830
  // conversion.
1831
22.1M
  bool IncompatibleObjC = false;
1832
22.1M
  ImplicitConversionKind SecondICK = ICK_Identity;
1833
22.1M
  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1834
    // The unqualified versions of the types are the same: there's no
1835
    // conversion to do.
1836
10.3M
    SCS.Second = ICK_Identity;
1837
11.8M
  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1838
    // Integral promotion (C++ 4.5).
1839
707k
    SCS.Second = ICK_Integral_Promotion;
1840
707k
    FromType = ToType.getUnqualifiedType();
1841
11.0M
  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1842
    // Floating point promotion (C++ 4.6).
1843
2.26k
    SCS.Second = ICK_Floating_Promotion;
1844
2.26k
    FromType = ToType.getUnqualifiedType();
1845
11.0M
  } else if (S.IsComplexPromotion(FromType, ToType)) {
1846
    // Complex promotion (Clang extension)
1847
30
    SCS.Second = ICK_Complex_Promotion;
1848
30
    FromType = ToType.getUnqualifiedType();
1849
11.0M
  } else if (ToType->isBooleanType() &&
1850
102k
             (FromType->isArithmeticType() ||
1851
18.6k
              FromType->isAnyPointerType() ||
1852
227
              FromType->isBlockPointerType() ||
1853
101k
              
FromType->isMemberPointerType()215
)) {
1854
    // Boolean conversions (C++ 4.12).
1855
101k
    SCS.Second = ICK_Boolean_Conversion;
1856
101k
    FromType = S.Context.BoolTy;
1857
10.9M
  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1858
8.86M
             ToType->isIntegralType(S.Context)) {
1859
    // Integral conversions (C++ 4.7).
1860
6.64M
    SCS.Second = ICK_Integral_Conversion;
1861
6.64M
    FromType = ToType.getUnqualifiedType();
1862
4.35M
  } else if (FromType->isAnyComplexType() && 
ToType->isAnyComplexType()694
) {
1863
    // Complex conversions (C99 6.3.1.6)
1864
87
    SCS.Second = ICK_Complex_Conversion;
1865
87
    FromType = ToType.getUnqualifiedType();
1866
4.35M
  } else if ((FromType->isAnyComplexType() && 
ToType->isArithmeticType()607
) ||
1867
4.35M
             (ToType->isAnyComplexType() && 
FromType->isArithmeticType()445
)) {
1868
    // Complex-real conversions (C99 6.3.1.7)
1869
1.03k
    SCS.Second = ICK_Complex_Real;
1870
1.03k
    FromType = ToType.getUnqualifiedType();
1871
4.34M
  } else if (FromType->isRealFloatingType() && 
ToType->isRealFloatingType()50.6k
) {
1872
    // FIXME: disable conversions between long double and __float128 if
1873
    // their representation is different until there is back end support
1874
    // We of course allow this conversion if long double is really double.
1875
1876
    // Conversions between bfloat and other floats are not permitted.
1877
15.8k
    if (FromType == S.Context.BFloat16Ty || 
ToType == S.Context.BFloat16Ty15.8k
)
1878
10
      return false;
1879
15.8k
    if (&S.Context.getFloatTypeSemantics(FromType) !=
1880
15.8k
        &S.Context.getFloatTypeSemantics(ToType)) {
1881
15.8k
      bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1882
4
                                    ToType == S.Context.LongDoubleTy) ||
1883
15.8k
                                   (FromType == S.Context.LongDoubleTy &&
1884
224
                                    ToType == S.Context.Float128Ty));
1885
15.8k
      if (Float128AndLongDouble &&
1886
8
          (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1887
8
           &llvm::APFloat::PPCDoubleDouble()))
1888
6
        return false;
1889
15.8k
    }
1890
    // Floating point conversions (C++ 4.8).
1891
15.8k
    SCS.Second = ICK_Floating_Conversion;
1892
15.8k
    FromType = ToType.getUnqualifiedType();
1893
4.33M
  } else if ((FromType->isRealFloatingType() &&
1894
34.7k
              ToType->isIntegralType(S.Context)) ||
1895
4.29M
             (FromType->isIntegralOrUnscopedEnumerationType() &&
1896
2.22M
              ToType->isRealFloatingType())) {
1897
    // Conversions between bfloat and int are not permitted.
1898
2.21M
    if (FromType->isBFloat16Type() || 
ToType->isBFloat16Type()2.21M
)
1899
22
      return false;
1900
1901
    // Floating-integral conversions (C++ 4.9).
1902
2.21M
    SCS.Second = ICK_Floating_Integral;
1903
2.21M
    FromType = ToType.getUnqualifiedType();
1904
2.11M
  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1905
8
    SCS.Second = ICK_Block_Pointer_Conversion;
1906
2.11M
  } else if (AllowObjCWritebackConversion &&
1907
410
             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1908
19
    SCS.Second = ICK_Writeback_Conversion;
1909
2.11M
  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1910
143k
                                   FromType, IncompatibleObjC)) {
1911
    // Pointer conversions (C++ 4.10).
1912
143k
    SCS.Second = ICK_Pointer_Conversion;
1913
143k
    SCS.IncompatibleObjC = IncompatibleObjC;
1914
143k
    FromType = FromType.getUnqualifiedType();
1915
1.97M
  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1916
1.22k
                                         InOverloadResolution, FromType)) {
1917
    // Pointer to member conversions (4.11).
1918
1.22k
    SCS.Second = ICK_Pointer_Member;
1919
1.97M
  } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1920
1.05M
    SCS.Second = SecondICK;
1921
1.05M
    FromType = ToType.getUnqualifiedType();
1922
916k
  } else if (!S.getLangOpts().CPlusPlus &&
1923
594k
             S.Context.typesAreCompatible(ToType, FromType)) {
1924
    // Compatible conversions (Clang extension for C function overloading)
1925
22.8k
    SCS.Second = ICK_Compatible_Conversion;
1926
22.8k
    FromType = ToType.getUnqualifiedType();
1927
894k
  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1928
894k
                                             InOverloadResolution,
1929
1
                                             SCS, CStyle)) {
1930
1
    SCS.Second = ICK_TransparentUnionConversion;
1931
1
    FromType = ToType;
1932
894k
  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1933
562
                                 CStyle)) {
1934
    // tryAtomicConversion has updated the standard conversion sequence
1935
    // appropriately.
1936
562
    return true;
1937
893k
  } else if (ToType->isEventT() &&
1938
2
             From->isIntegerConstantExpr(S.getASTContext()) &&
1939
2
             From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1940
2
    SCS.Second = ICK_Zero_Event_Conversion;
1941
2
    FromType = ToType;
1942
893k
  } else if (ToType->isQueueT() &&
1943
4
             From->isIntegerConstantExpr(S.getASTContext()) &&
1944
4
             (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1945
2
    SCS.Second = ICK_Zero_Queue_Conversion;
1946
2
    FromType = ToType;
1947
893k
  } else if (ToType->isSamplerT() &&
1948
1
             From->isIntegerConstantExpr(S.getASTContext())) {
1949
1
    SCS.Second = ICK_Compatible_Conversion;
1950
1
    FromType = ToType;
1951
893k
  } else {
1952
    // No second conversion required.
1953
893k
    SCS.Second = ICK_Identity;
1954
893k
  }
1955
22.1M
  SCS.setToType(1, FromType);
1956
1957
  // The third conversion can be a function pointer conversion or a
1958
  // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1959
22.1M
  bool ObjCLifetimeConversion;
1960
22.1M
  if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1961
    // Function pointer conversions (removing 'noexcept') including removal of
1962
    // 'noreturn' (Clang extension).
1963
150
    SCS.Third = ICK_Function_Conversion;
1964
22.1M
  } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1965
69.2k
                                         ObjCLifetimeConversion)) {
1966
69.2k
    SCS.Third = ICK_Qualification;
1967
69.2k
    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1968
69.2k
    FromType = ToType;
1969
22.1M
  } else {
1970
    // No conversion required
1971
22.1M
    SCS.Third = ICK_Identity;
1972
22.1M
  }
1973
1974
  // C++ [over.best.ics]p6:
1975
  //   [...] Any difference in top-level cv-qualification is
1976
  //   subsumed by the initialization itself and does not constitute
1977
  //   a conversion. [...]
1978
22.1M
  QualType CanonFrom = S.Context.getCanonicalType(FromType);
1979
22.1M
  QualType CanonTo = S.Context.getCanonicalType(ToType);
1980
22.1M
  if (CanonFrom.getLocalUnqualifiedType()
1981
22.1M
                                     == CanonTo.getLocalUnqualifiedType() &&
1982
21.3M
      CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1983
413k
    FromType = ToType;
1984
413k
    CanonFrom = CanonTo;
1985
413k
  }
1986
1987
22.1M
  SCS.setToType(2, FromType);
1988
1989
22.1M
  if (CanonFrom == CanonTo)
1990
21.3M
    return true;
1991
1992
  // If we have not converted the argument type to the parameter type,
1993
  // this is a bad conversion sequence, unless we're resolving an overload in C.
1994
836k
  if (S.getLangOpts().CPlusPlus || 
!InOverloadResolution561k
)
1995
274k
    return false;
1996
1997
561k
  ExprResult ER = ExprResult{From};
1998
561k
  Sema::AssignConvertType Conv =
1999
561k
      S.CheckSingleAssignmentConstraints(ToType, ER,
2000
561k
                                         /*Diagnose=*/false,
2001
561k
                                         /*DiagnoseCFAudited=*/false,
2002
561k
                                         /*ConvertRHS=*/false);
2003
561k
  ImplicitConversionKind SecondConv;
2004
561k
  switch (Conv) {
2005
2.46k
  case Sema::Compatible:
2006
2.46k
    SecondConv = ICK_C_Only_Conversion;
2007
2.46k
    break;
2008
  // For our purposes, discarding qualifiers is just as bad as using an
2009
  // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2010
  // qualifiers, as well.
2011
2
  case Sema::CompatiblePointerDiscardsQualifiers:
2012
250k
  case Sema::IncompatiblePointer:
2013
268k
  case Sema::IncompatiblePointerSign:
2014
268k
    SecondConv = ICK_Incompatible_Pointer_Conversion;
2015
268k
    break;
2016
290k
  default:
2017
290k
    return false;
2018
271k
  }
2019
2020
  // First can only be an lvalue conversion, so we pretend that this was the
2021
  // second conversion. First should already be valid from earlier in the
2022
  // function.
2023
271k
  SCS.Second = SecondConv;
2024
271k
  SCS.setToType(1, ToType);
2025
2026
  // Third is Identity, because Second should rank us worse than any other
2027
  // conversion. This could also be ICK_Qualification, but it's simpler to just
2028
  // lump everything in with the second conversion, and we don't gain anything
2029
  // from making this ICK_Qualification.
2030
271k
  SCS.Third = ICK_Identity;
2031
271k
  SCS.setToType(2, ToType);
2032
271k
  return true;
2033
271k
}
2034
2035
static bool
2036
IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2037
                                     QualType &ToType,
2038
                                     bool InOverloadResolution,
2039
                                     StandardConversionSequence &SCS,
2040
894k
                                     bool CStyle) {
2041
2042
894k
  const RecordType *UT = ToType->getAsUnionType();
2043
894k
  if (!UT || 
!UT->getDecl()->hasAttr<TransparentUnionAttr>()1
)
2044
894k
    return false;
2045
  // The field to initialize within the transparent union.
2046
1
  RecordDecl *UD = UT->getDecl();
2047
  // It's compatible if the expression matches any of the fields.
2048
1
  for (const auto *it : UD->fields()) {
2049
1
    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2050
1
                             CStyle, /*AllowObjCWritebackConversion=*/false)) {
2051
1
      ToType = it->getType();
2052
1
      return true;
2053
1
    }
2054
1
  }
2055
0
  return false;
2056
1
}
2057
2058
/// IsIntegralPromotion - Determines whether the conversion from the
2059
/// expression From (whose potentially-adjusted type is FromType) to
2060
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
2061
/// sets PromotedType to the promoted type.
2062
11.9M
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2063
11.9M
  const BuiltinType *To = ToType->getAs<BuiltinType>();
2064
  // All integers are built-in.
2065
11.9M
  if (!To) {
2066
1.90M
    return false;
2067
1.90M
  }
2068
2069
  // An rvalue of type char, signed char, unsigned char, short int, or
2070
  // unsigned short int can be converted to an rvalue of type int if
2071
  // int can represent all the values of the source type; otherwise,
2072
  // the source rvalue can be converted to an rvalue of type unsigned
2073
  // int (C++ 4.5p1).
2074
10.0M
  if (FromType->isPromotableIntegerType() && 
!FromType->isBooleanType()7.45M
&&
2075
7.42M
      !FromType->isEnumeralType()) {
2076
117k
    if (// We can promote any signed, promotable integer type to an int
2077
117k
        (FromType->isSignedIntegerType() ||
2078
         // We can promote any unsigned integer type whose size is
2079
         // less than int to an int.
2080
112k
         
Context.getTypeSize(FromType) < Context.getTypeSize(ToType)67.8k
)) {
2081
112k
      return To->getKind() == BuiltinType::Int;
2082
112k
    }
2083
2084
4.80k
    return To->getKind() == BuiltinType::UInt;
2085
4.80k
  }
2086
2087
  // C++11 [conv.prom]p3:
2088
  //   A prvalue of an unscoped enumeration type whose underlying type is not
2089
  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2090
  //   following types that can represent all the values of the enumeration
2091
  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
2092
  //   unsigned int, long int, unsigned long int, long long int, or unsigned
2093
  //   long long int. If none of the types in that list can represent all the
2094
  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2095
  //   type can be converted to an rvalue a prvalue of the extended integer type
2096
  //   with lowest integer conversion rank (4.13) greater than the rank of long
2097
  //   long in which all the values of the enumeration can be represented. If
2098
  //   there are two such extended types, the signed one is chosen.
2099
  // C++11 [conv.prom]p4:
2100
  //   A prvalue of an unscoped enumeration type whose underlying type is fixed
2101
  //   can be converted to a prvalue of its underlying type. Moreover, if
2102
  //   integral promotion can be applied to its underlying type, a prvalue of an
2103
  //   unscoped enumeration type whose underlying type is fixed can also be
2104
  //   converted to a prvalue of the promoted underlying type.
2105
9.93M
  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2106
    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2107
    // provided for a scoped enumeration.
2108
7.41M
    if (FromEnumType->getDecl()->isScoped())
2109
103k
      return false;
2110
2111
    // We can perform an integral promotion to the underlying type of the enum,
2112
    // even if that's not the promoted type. Note that the check for promoting
2113
    // the underlying type is based on the type alone, and does not consider
2114
    // the bitfield-ness of the actual source expression.
2115
7.31M
    if (FromEnumType->getDecl()->isFixed()) {
2116
167k
      QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2117
167k
      return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2118
152k
             IsIntegralPromotion(nullptr, Underlying, ToType);
2119
167k
    }
2120
2121
    // We have already pre-calculated the promotion type, so this is trivial.
2122
7.14M
    if (ToType->isIntegerType() &&
2123
5.32M
        isCompleteType(From->getBeginLoc(), FromType))
2124
5.32M
      return Context.hasSameUnqualifiedType(
2125
5.32M
          ToType, FromEnumType->getDecl()->getPromotionType());
2126
2127
    // C++ [conv.prom]p5:
2128
    //   If the bit-field has an enumerated type, it is treated as any other
2129
    //   value of that type for promotion purposes.
2130
    //
2131
    // ... so do not fall through into the bit-field checks below in C++.
2132
1.82M
    if (getLangOpts().CPlusPlus)
2133
1.82M
      return false;
2134
2.52M
  }
2135
2136
  // C++0x [conv.prom]p2:
2137
  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2138
  //   to an rvalue a prvalue of the first of the following types that can
2139
  //   represent all the values of its underlying type: int, unsigned int,
2140
  //   long int, unsigned long int, long long int, or unsigned long long int.
2141
  //   If none of the types in that list can represent all the values of its
2142
  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
2143
  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
2144
  //   type.
2145
2.52M
  if (FromType->isAnyCharacterType() && 
!FromType->isCharType()0
&&
2146
0
      ToType->isIntegerType()) {
2147
    // Determine whether the type we're converting from is signed or
2148
    // unsigned.
2149
0
    bool FromIsSigned = FromType->isSignedIntegerType();
2150
0
    uint64_t FromSize = Context.getTypeSize(FromType);
2151
2152
    // The types we'll try to promote to, in the appropriate
2153
    // order. Try each of these types.
2154
0
    QualType PromoteTypes[6] = {
2155
0
      Context.IntTy, Context.UnsignedIntTy,
2156
0
      Context.LongTy, Context.UnsignedLongTy ,
2157
0
      Context.LongLongTy, Context.UnsignedLongLongTy
2158
0
    };
2159
0
    for (int Idx = 0; Idx < 6; ++Idx) {
2160
0
      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2161
0
      if (FromSize < ToSize ||
2162
0
          (FromSize == ToSize &&
2163
0
           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2164
        // We found the type that we can promote to. If this is the
2165
        // type we wanted, we have a promotion. Otherwise, no
2166
        // promotion.
2167
0
        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2168
0
      }
2169
0
    }
2170
0
  }
2171
2172
  // An rvalue for an integral bit-field (9.6) can be converted to an
2173
  // rvalue of type int if int can represent all the values of the
2174
  // bit-field; otherwise, it can be converted to unsigned int if
2175
  // unsigned int can represent all the values of the bit-field. If
2176
  // the bit-field is larger yet, no integral promotion applies to
2177
  // it. If the bit-field has an enumerated type, it is treated as any
2178
  // other value of that type for promotion purposes (C++ 4.5p3).
2179
  // FIXME: We should delay checking of bit-fields until we actually perform the
2180
  // conversion.
2181
  //
2182
  // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2183
  // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2184
  // bit-fields and those whose underlying type is larger than int) for GCC
2185
  // compatibility.
2186
2.52M
  if (From) {
2187
2.40M
    if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2188
66
      Optional<llvm::APSInt> BitWidth;
2189
66
      if (FromType->isIntegralType(Context) &&
2190
66
          (BitWidth =
2191
66
               MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2192
66
        llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2193
66
        ToSize = Context.getTypeSize(ToType);
2194
2195
        // Are we promoting to an int from a bitfield that fits in an int?
2196
66
        if (*BitWidth < ToSize ||
2197
64
            
(2
FromType->isSignedIntegerType()2
&&
*BitWidth <= ToSize0
)) {
2198
64
          return To->getKind() == BuiltinType::Int;
2199
64
        }
2200
2201
        // Are we promoting to an unsigned int from an unsigned bitfield
2202
        // that fits into an unsigned int?
2203
2
        if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2204
2
          return To->getKind() == BuiltinType::UInt;
2205
2
        }
2206
2207
0
        return false;
2208
0
      }
2209
66
    }
2210
2.40M
  }
2211
2212
  // An rvalue of type bool can be converted to an rvalue of type int,
2213
  // with false becoming zero and true becoming one (C++ 4.5p4).
2214
2.52M
  if (FromType->isBooleanType() && 
To->getKind() == BuiltinType::Int22.1k
) {
2215
7.51k
    return true;
2216
7.51k
  }
2217
2218
2.51M
  return false;
2219
2.51M
}
2220
2221
/// IsFloatingPointPromotion - Determines whether the conversion from
2222
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2223
/// returns true and sets PromotedType to the promoted type.
2224
11.0M
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2225
11.0M
  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2226
2.46M
    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2227
      /// An rvalue of type float can be converted to an rvalue of type
2228
      /// double. (C++ 4.6p1).
2229
2.39M
      if (FromBuiltin->getKind() == BuiltinType::Float &&
2230
28.0k
          ToBuiltin->getKind() == BuiltinType::Double)
2231
2.17k
        return true;
2232
2233
      // C99 6.3.1.5p1:
2234
      //   When a float is promoted to double or long double, or a
2235
      //   double is promoted to long double [...].
2236
2.39M
      if (!getLangOpts().CPlusPlus &&
2237
117k
          (FromBuiltin->getKind() == BuiltinType::Float ||
2238
116k
           FromBuiltin->getKind() == BuiltinType::Double) &&
2239
5.37k
          (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2240
5.28k
           ToBuiltin->getKind() == BuiltinType::Float128))
2241
94
        return true;
2242
2243
      // Half can be promoted to float.
2244
2.39M
      if (!getLangOpts().NativeHalfType &&
2245
2.39M
           FromBuiltin->getKind() == BuiltinType::Half &&
2246
139
          ToBuiltin->getKind() == BuiltinType::Float)
2247
14
        return true;
2248
11.0M
    }
2249
2250
11.0M
  return false;
2251
11.0M
}
2252
2253
/// Determine if a conversion is a complex promotion.
2254
///
2255
/// A complex promotion is defined as a complex -> complex conversion
2256
/// where the conversion between the underlying real types is a
2257
/// floating-point or integral promotion.
2258
11.0M
bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2259
11.0M
  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2260
11.0M
  if (!FromComplex)
2261
11.0M
    return false;
2262
2263
739
  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2264
739
  if (!ToComplex)
2265
622
    return false;
2266
2267
117
  return IsFloatingPointPromotion(FromComplex->getElementType(),
2268
117
                                  ToComplex->getElementType()) ||
2269
90
    IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2270
90
                        ToComplex->getElementType());
2271
117
}
2272
2273
/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2274
/// the pointer type FromPtr to a pointer to type ToPointee, with the
2275
/// same type qualifiers as FromPtr has on its pointee type. ToType,
2276
/// if non-empty, will be a pointer to ToType that may or may not have
2277
/// the right set of qualifiers on its pointee.
2278
///
2279
static QualType
2280
BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2281
                                   QualType ToPointee, QualType ToType,
2282
                                   ASTContext &Context,
2283
88.6k
                                   bool StripObjCLifetime = false) {
2284
88.6k
  assert((FromPtr->getTypeClass() == Type::Pointer ||
2285
88.6k
          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2286
88.6k
         "Invalid similarly-qualified pointer type");
2287
2288
  /// Conversions to 'id' subsume cv-qualifier conversions.
2289
88.6k
  if (ToType->isObjCIdType() || 
ToType->isObjCQualifiedIdType()85.3k
)
2290
4.07k
    return ToType.getUnqualifiedType();
2291
2292
84.5k
  QualType CanonFromPointee
2293
84.5k
    = Context.getCanonicalType(FromPtr->getPointeeType());
2294
84.5k
  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2295
84.5k
  Qualifiers Quals = CanonFromPointee.getQualifiers();
2296
2297
84.5k
  if (StripObjCLifetime)
2298
64.3k
    Quals.removeObjCLifetime();
2299
2300
  // Exact qualifier match -> return the pointer type we're converting to.
2301
84.5k
  if (CanonToPointee.getLocalQualifiers() == Quals) {
2302
    // ToType is exactly what we need. Return it.
2303
72.4k
    if (!ToType.isNull())
2304
72.4k
      return ToType.getUnqualifiedType();
2305
2306
    // Build a pointer to ToPointee. It has the right qualifiers
2307
    // already.
2308
0
    if (isa<ObjCObjectPointerType>(ToType))
2309
0
      return Context.getObjCObjectPointerType(ToPointee);
2310
0
    return Context.getPointerType(ToPointee);
2311
0
  }
2312
2313
  // Just build a canonical type that has the right qualifiers.
2314
12.0k
  QualType QualifiedCanonToPointee
2315
12.0k
    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2316
2317
12.0k
  if (isa<ObjCObjectPointerType>(ToType))
2318
19
    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2319
12.0k
  return Context.getPointerType(QualifiedCanonToPointee);
2320
12.0k
}
2321
2322
static bool isNullPointerConstantForConversion(Expr *Expr,
2323
                                               bool InOverloadResolution,
2324
577k
                                               ASTContext &Context) {
2325
  // Handle value-dependent integral null pointer constants correctly.
2326
  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2327
577k
  if (Expr->isValueDependent() && 
!Expr->isTypeDependent()2.68k
&&
2328
2.68k
      Expr->getType()->isIntegerType() && 
!Expr->getType()->isEnumeralType()23
)
2329
23
    return !InOverloadResolution;
2330
2331
577k
  return Expr->isNullPointerConstant(Context,
2332
397k
                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2333
179k
                                        : Expr::NPC_ValueDependentIsNull);
2334
577k
}
2335
2336
/// IsPointerConversion - Determines whether the conversion of the
2337
/// expression From, which has the (possibly adjusted) type FromType,
2338
/// can be converted to the type ToType via a pointer conversion (C++
2339
/// 4.10). If so, returns true and places the converted type (that
2340
/// might differ from ToType in its cv-qualifiers at some level) into
2341
/// ConvertedType.
2342
///
2343
/// This routine also supports conversions to and from block pointers
2344
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2345
/// pointers to interfaces. FIXME: Once we've determined the
2346
/// appropriate overloading rules for Objective-C, we may want to
2347
/// split the Objective-C checks into a different routine; however,
2348
/// GCC seems to consider all of these conversions to be pointer
2349
/// conversions, so for now they live here. IncompatibleObjC will be
2350
/// set if the conversion is an allowed Objective-C conversion that
2351
/// should result in a warning.
2352
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2353
                               bool InOverloadResolution,
2354
                               QualType& ConvertedType,
2355
2.11M
                               bool &IncompatibleObjC) {
2356
2.11M
  IncompatibleObjC = false;
2357
2.11M
  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2358
2.11M
                              IncompatibleObjC))
2359
4.44k
    return true;
2360
2361
  // Conversion from a null pointer constant to any Objective-C pointer type.
2362
2.11M
  if (ToType->isObjCObjectPointerType() &&
2363
3.85k
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2364
629
    ConvertedType = ToType;
2365
629
    return true;
2366
629
  }
2367
2368
  // Blocks: Block pointers can be converted to void*.
2369
2.11M
  if (FromType->isBlockPointerType() && 
ToType->isPointerType()56
&&
2370
43
      ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2371
12
    ConvertedType = ToType;
2372
12
    return true;
2373
12
  }
2374
  // Blocks: A null pointer constant can be converted to a block
2375
  // pointer type.
2376
2.11M
  if (ToType->isBlockPointerType() &&
2377
61
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2378
12
    ConvertedType = ToType;
2379
12
    return true;
2380
12
  }
2381
2382
  // If the left-hand-side is nullptr_t, the right side can be a null
2383
  // pointer constant.
2384
2.11M
  if (ToType->isNullPtrType() &&
2385
2.52k
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2386
20
    ConvertedType = ToType;
2387
20
    return true;
2388
20
  }
2389
2390
2.11M
  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2391
2.11M
  if (!ToTypePtr)
2392
1.54M
    return false;
2393
2394
  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2395
571k
  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2396
54.3k
    ConvertedType = ToType;
2397
54.3k
    return true;
2398
54.3k
  }
2399
2400
  // Beyond this point, both types need to be pointers
2401
  // , including objective-c pointers.
2402
517k
  QualType ToPointeeType = ToTypePtr->getPointeeType();
2403
517k
  if (FromType->isObjCObjectPointerType() && 
ToPointeeType->isVoidType()2.60k
&&
2404
2.45k
      !getLangOpts().ObjCAutoRefCount) {
2405
2.44k
    ConvertedType = BuildSimilarlyQualifiedPointerType(
2406
2.44k
                                      FromType->getAs<ObjCObjectPointerType>(),
2407
2.44k
                                                       ToPointeeType,
2408
2.44k
                                                       ToType, Context);
2409
2.44k
    return true;
2410
2.44k
  }
2411
514k
  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2412
514k
  if (!FromTypePtr)
2413
7.75k
    return false;
2414
2415
506k
  QualType FromPointeeType = FromTypePtr->getPointeeType();
2416
2417
  // If the unqualified pointee types are the same, this can't be a
2418
  // pointer conversion, so don't do all of the work below.
2419
506k
  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2420
58.6k
    return false;
2421
2422
  // An rvalue of type "pointer to cv T," where T is an object type,
2423
  // can be converted to an rvalue of type "pointer to cv void" (C++
2424
  // 4.10p2).
2425
448k
  if (FromPointeeType->isIncompleteOrObjectType() &&
2426
446k
      ToPointeeType->isVoidType()) {
2427
64.3k
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2428
64.3k
                                                       ToPointeeType,
2429
64.3k
                                                       ToType, Context,
2430
64.3k
                                                   /*StripObjCLifetime=*/true);
2431
64.3k
    return true;
2432
64.3k
  }
2433
2434
  // MSVC allows implicit function to void* type conversion.
2435
383k
  if (getLangOpts().MSVCCompat && 
FromPointeeType->isFunctionType()968
&&
2436
67
      ToPointeeType->isVoidType()) {
2437
6
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2438
6
                                                       ToPointeeType,
2439
6
                                                       ToType, Context);
2440
6
    return true;
2441
6
  }
2442
2443
  // When we're overloading in C, we allow a special kind of pointer
2444
  // conversion for compatible-but-not-identical pointee types.
2445
383k
  if (!getLangOpts().CPlusPlus &&
2446
276k
      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2447
4.60k
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2448
4.60k
                                                       ToPointeeType,
2449
4.60k
                                                       ToType, Context);
2450
4.60k
    return true;
2451
4.60k
  }
2452
2453
  // C++ [conv.ptr]p3:
2454
  //
2455
  //   An rvalue of type "pointer to cv D," where D is a class type,
2456
  //   can be converted to an rvalue of type "pointer to cv B," where
2457
  //   B is a base class (clause 10) of D. If B is an inaccessible
2458
  //   (clause 11) or ambiguous (10.2) base class of D, a program that
2459
  //   necessitates this conversion is ill-formed. The result of the
2460
  //   conversion is a pointer to the base class sub-object of the
2461
  //   derived class object. The null pointer value is converted to
2462
  //   the null pointer value of the destination type.
2463
  //
2464
  // Note that we do not check for ambiguity or inaccessibility
2465
  // here. That is handled by CheckPointerConversion.
2466
379k
  if (getLangOpts().CPlusPlus && 
FromPointeeType->isRecordType()107k
&&
2467
23.8k
      ToPointeeType->isRecordType() &&
2468
17.8k
      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2469
17.8k
      IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2470
12.7k
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2471
12.7k
                                                       ToPointeeType,
2472
12.7k
                                                       ToType, Context);
2473
12.7k
    return true;
2474
12.7k
  }
2475
2476
366k
  if (FromPointeeType->isVectorType() && 
ToPointeeType->isVectorType()163k
&&
2477
81.0k
      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2478
28
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2479
28
                                                       ToPointeeType,
2480
28
                                                       ToType, Context);
2481
28
    return true;
2482
28
  }
2483
2484
366k
  return false;
2485
366k
}
2486
2487
/// Adopt the given qualifiers for the given type.
2488
4.50k
static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2489
4.50k
  Qualifiers TQs = T.getQualifiers();
2490
2491
  // Check whether qualifiers already match.
2492
4.50k
  if (TQs == Qs)
2493
4.48k
    return T;
2494
2495
21
  if (Qs.compatiblyIncludes(TQs))
2496
4
    return Context.getQualifiedType(T, Qs);
2497
2498
17
  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2499
17
}
2500
2501
/// isObjCPointerConversion - Determines whether this is an
2502
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2503
/// with the same arguments and return values.
2504
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2505
                                   QualType& ConvertedType,
2506
2.11M
                                   bool &IncompatibleObjC) {
2507
2.11M
  if (!getLangOpts().ObjC)
2508
2.04M
    return false;
2509
2510
  // The set of qualifiers on the type we're converting from.
2511
75.8k
  Qualifiers FromQualifiers = FromType.getQualifiers();
2512
2513
  // First, we handle all conversions on ObjC object pointer types.
2514
75.8k
  const ObjCObjectPointerType* ToObjCPtr =
2515
75.8k
    ToType->getAs<ObjCObjectPointerType>();
2516
75.8k
  const ObjCObjectPointerType *FromObjCPtr =
2517
75.8k
    FromType->getAs<ObjCObjectPointerType>();
2518
2519
75.8k
  if (ToObjCPtr && 
FromObjCPtr8.42k
) {
2520
    // If the pointee types are the same (ignoring qualifications),
2521
    // then this is not a pointer conversion.
2522
4.67k
    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2523
4.67k
                                       FromObjCPtr->getPointeeType()))
2524
117
      return false;
2525
2526
    // Conversion between Objective-C pointers.
2527
4.55k
    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2528
4.41k
      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2529
4.41k
      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2530
4.41k
      if (getLangOpts().CPlusPlus && 
LHS1.32k
&&
RHS334
&&
2531
93
          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2532
93
                                                FromObjCPtr->getPointeeType()))
2533
1
        return false;
2534
4.41k
      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2535
4.41k
                                                   ToObjCPtr->getPointeeType(),
2536
4.41k
                                                         ToType, Context);
2537
4.41k
      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2538
4.41k
      return true;
2539
4.41k
    }
2540
2541
142
    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2542
      // Okay: this is some kind of implicit downcast of Objective-C
2543
      // interfaces, which is permitted. However, we're going to
2544
      // complain about it.
2545
28
      IncompatibleObjC = true;
2546
28
      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2547
28
                                                   ToObjCPtr->getPointeeType(),
2548
28
                                                         ToType, Context);
2549
28
      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2550
28
      return true;
2551
28
    }
2552
71.3k
  }
2553
  // Beyond this point, both types need to be C pointers or block pointers.
2554
71.3k
  QualType ToPointeeType;
2555
71.3k
  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2556
36.8k
    ToPointeeType = ToCPtr->getPointeeType();
2557
34.5k
  else if (const BlockPointerType *ToBlockPtr =
2558
59
            ToType->getAs<BlockPointerType>()) {
2559
    // Objective C++: We're able to convert from a pointer to any object
2560
    // to a block pointer type.
2561
59
    if (FromObjCPtr && 
FromObjCPtr->isObjCBuiltinType()21
) {
2562
14
      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2563
14
      return true;
2564
14
    }
2565
45
    ToPointeeType = ToBlockPtr->getPointeeType();
2566
45
  }
2567
34.4k
  else if (FromType->getAs<BlockPointerType>() &&
2568
28
           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2569
    // Objective C++: We're able to convert from a block pointer type to a
2570
    // pointer to any object.
2571
27
    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2572
27
    return true;
2573
27
  }
2574
34.4k
  else
2575
34.4k
    return false;
2576
2577
36.8k
  QualType FromPointeeType;
2578
36.8k
  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2579
27.6k
    FromPointeeType = FromCPtr->getPointeeType();
2580
9.15k
  else if (const BlockPointerType *FromBlockPtr =
2581
48
           FromType->getAs<BlockPointerType>())
2582
48
    FromPointeeType = FromBlockPtr->getPointeeType();
2583
9.10k
  else
2584
9.10k
    return false;
2585
2586
  // If we have pointers to pointers, recursively check whether this
2587
  // is an Objective-C conversion.
2588
27.7k
  if (FromPointeeType->isPointerType() && 
ToPointeeType->isPointerType()176
&&
2589
13
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2590
0
                              IncompatibleObjC)) {
2591
    // We always complain about this conversion.
2592
0
    IncompatibleObjC = true;
2593
0
    ConvertedType = Context.getPointerType(ConvertedType);
2594
0
    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2595
0
    return true;
2596
0
  }
2597
  // Allow conversion of pointee being objective-c pointer to another one;
2598
  // as in I* to id.
2599
27.7k
  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2600
194
      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2601
101
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2602
16
                              IncompatibleObjC)) {
2603
2604
16
    ConvertedType = Context.getPointerType(ConvertedType);
2605
16
    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2606
16
    return true;
2607
16
  }
2608
2609
  // If we have pointers to functions or blocks, check whether the only
2610
  // differences in the argument and result types are in Objective-C
2611
  // pointer conversions. If so, we permit the conversion (but
2612
  // complain about it).
2613
27.7k
  const FunctionProtoType *FromFunctionType
2614
27.7k
    = FromPointeeType->getAs<FunctionProtoType>();
2615
27.7k
  const FunctionProtoType *ToFunctionType
2616
27.7k
    = ToPointeeType->getAs<FunctionProtoType>();
2617
27.7k
  if (FromFunctionType && 
ToFunctionType78
) {
2618
    // If the function types are exactly the same, this isn't an
2619
    // Objective-C pointer conversion.
2620
68
    if (Context.getCanonicalType(FromPointeeType)
2621
68
          == Context.getCanonicalType(ToPointeeType))
2622
45
      return false;
2623
2624
    // Perform the quick checks that will tell us whether these
2625
    // function types are obviously different.
2626
23
    if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2627
18
        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2628
18
        FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2629
5
      return false;
2630
2631
18
    bool HasObjCConversion = false;
2632
18
    if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2633
15
        Context.getCanonicalType(ToFunctionType->getReturnType())) {
2634
      // Okay, the types match exactly. Nothing to do.
2635
3
    } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2636
3
                                       ToFunctionType->getReturnType(),
2637
2
                                       ConvertedType, IncompatibleObjC)) {
2638
      // Okay, we have an Objective-C pointer conversion.
2639
2
      HasObjCConversion = true;
2640
1
    } else {
2641
      // Function types are too different. Abort.
2642
1
      return false;
2643
1
    }
2644
2645
    // Check argument types.
2646
17
    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2647
37
         ArgIdx != NumArgs; 
++ArgIdx20
) {
2648
20
      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2649
20
      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2650
20
      if (Context.getCanonicalType(FromArgType)
2651
19
            == Context.getCanonicalType(ToArgType)) {
2652
        // Okay, the types match exactly. Nothing to do.
2653
1
      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2654
1
                                         ConvertedType, IncompatibleObjC)) {
2655
        // Okay, we have an Objective-C pointer conversion.
2656
1
        HasObjCConversion = true;
2657
0
      } else {
2658
        // Argument types are too different. Abort.
2659
0
        return false;
2660
0
      }
2661
20
    }
2662
2663
17
    if (HasObjCConversion) {
2664
      // We had an Objective-C conversion. Allow this pointer
2665
      // conversion, but complain about it.
2666
3
      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2667
3
      IncompatibleObjC = true;
2668
3
      return true;
2669
3
    }
2670
27.6k
  }
2671
2672
27.6k
  return false;
2673
27.6k
}
2674
2675
/// Determine whether this is an Objective-C writeback conversion,
2676
/// used for parameter passing when performing automatic reference counting.
2677
///
2678
/// \param FromType The type we're converting form.
2679
///
2680
/// \param ToType The type we're converting to.
2681
///
2682
/// \param ConvertedType The type that will be produced after applying
2683
/// this conversion.
2684
bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2685
2.18k
                                     QualType &ConvertedType) {
2686
2.18k
  if (!getLangOpts().ObjCAutoRefCount ||
2687
2.18k
      Context.hasSameUnqualifiedType(FromType, ToType))
2688
1.16k
    return false;
2689
2690
  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2691
1.01k
  QualType ToPointee;
2692
1.01k
  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2693
513
    ToPointee = ToPointer->getPointeeType();
2694
502
  else
2695
502
    return false;
2696
2697
513
  Qualifiers ToQuals = ToPointee.getQualifiers();
2698
513
  if (!ToPointee->isObjCLifetimeType() ||
2699
135
      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2700
97
      !ToQuals.withoutObjCLifetime().empty())
2701
427
    return false;
2702
2703
  // Argument must be a pointer to __strong to __weak.
2704
86
  QualType FromPointee;
2705
86
  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2706
85
    FromPointee = FromPointer->getPointeeType();
2707
1
  else
2708
1
    return false;
2709
2710
85
  Qualifiers FromQuals = FromPointee.getQualifiers();
2711
85
  if (!FromPointee->isObjCLifetimeType() ||
2712
84
      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2713
20
       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2714
6
    return false;
2715
2716
  // Make sure that we have compatible qualifiers.
2717
79
  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2718
79
  if (!ToQuals.compatiblyIncludes(FromQuals))
2719
0
    return false;
2720
2721
  // Remove qualifiers from the pointee type we're converting from; they
2722
  // aren't used in the compatibility check belong, and we'll be adding back
2723
  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2724
79
  FromPointee = FromPointee.getUnqualifiedType();
2725
2726
  // The unqualified form of the pointee types must be compatible.
2727
79
  ToPointee = ToPointee.getUnqualifiedType();
2728
79
  bool IncompatibleObjC;
2729
79
  if (Context.typesAreCompatible(FromPointee, ToPointee))
2730
76
    FromPointee = ToPointee;
2731
3
  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2732
3
                                    IncompatibleObjC))
2733
0
    return false;
2734
2735
  /// Construct the type we're converting to, which is a pointer to
2736
  /// __autoreleasing pointee.
2737
79
  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2738
79
  ConvertedType = Context.getPointerType(FromPointee);
2739
79
  return true;
2740
79
}
2741
2742
bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2743
2.11M
                                    QualType& ConvertedType) {
2744
2.11M
  QualType ToPointeeType;
2745
2.11M
  if (const BlockPointerType *ToBlockPtr =
2746
83
        ToType->getAs<BlockPointerType>())
2747
83
    ToPointeeType = ToBlockPtr->getPointeeType();
2748
2.11M
  else
2749
2.11M
    return false;
2750
2751
83
  QualType FromPointeeType;
2752
83
  if (const BlockPointerType *FromBlockPtr =
2753
21
      FromType->getAs<BlockPointerType>())
2754
21
    FromPointeeType = FromBlockPtr->getPointeeType();
2755
62
  else
2756
62
    return false;
2757
  // We have pointer to blocks, check whether the only
2758
  // differences in the argument and result types are in Objective-C
2759
  // pointer conversions. If so, we permit the conversion.
2760
2761
21
  const FunctionProtoType *FromFunctionType
2762
21
    = FromPointeeType->getAs<FunctionProtoType>();
2763
21
  const FunctionProtoType *ToFunctionType
2764
21
    = ToPointeeType->getAs<FunctionProtoType>();
2765
2766
21
  if (!FromFunctionType || !ToFunctionType)
2767
0
    return false;
2768
2769
21
  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2770
0
    return true;
2771
2772
  // Perform the quick checks that will tell us whether these
2773
  // function types are obviously different.
2774
21
  if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2775
17
      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2776
4
    return false;
2777
2778
17
  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2779
17
  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2780
17
  if (FromEInfo != ToEInfo)
2781
0
    return false;
2782
2783
17
  bool IncompatibleObjC = false;
2784
17
  if (Context.hasSameType(FromFunctionType->getReturnType(),
2785
11
                          ToFunctionType->getReturnType())) {
2786
    // Okay, the types match exactly. Nothing to do.
2787
6
  } else {
2788
6
    QualType RHS = FromFunctionType->getReturnType();
2789
6
    QualType LHS = ToFunctionType->getReturnType();
2790
6
    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2791
6
        !RHS.hasQualifiers() && 
LHS.hasQualifiers()5
)
2792
1
       LHS = LHS.getUnqualifiedType();
2793
2794
6
     if (Context.hasSameType(RHS,LHS)) {
2795
       // OK exact match.
2796
5
     } else if (isObjCPointerConversion(RHS, LHS,
2797
4
                                        ConvertedType, IncompatibleObjC)) {
2798
4
     if (IncompatibleObjC)
2799
0
       return false;
2800
     // Okay, we have an Objective-C pointer conversion.
2801
1
     }
2802
1
     else
2803
1
       return false;
2804
16
   }
2805
2806
   // Check argument types.
2807
16
   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2808
32
        ArgIdx != NumArgs; 
++ArgIdx16
) {
2809
18
     IncompatibleObjC = false;
2810
18
     QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2811
18
     QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2812
18
     if (Context.hasSameType(FromArgType, ToArgType)) {
2813
       // Okay, the types match exactly. Nothing to do.
2814
5
     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2815
4
                                        ConvertedType, IncompatibleObjC)) {
2816
4
       if (IncompatibleObjC)
2817
1
         return false;
2818
       // Okay, we have an Objective-C pointer conversion.
2819
1
     } else
2820
       // Argument types are too different. Abort.
2821
1
       return false;
2822
18
   }
2823
2824
14
   SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2825
14
   bool CanUseToFPT, CanUseFromFPT;
2826
14
   if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2827
14
                                      CanUseToFPT, CanUseFromFPT,
2828
14
                                      NewParamInfos))
2829
6
     return false;
2830
2831
8
   ConvertedType = ToType;
2832
8
   return true;
2833
8
}
2834
2835
enum {
2836
  ft_default,
2837
  ft_different_class,
2838
  ft_parameter_arity,
2839
  ft_parameter_mismatch,
2840
  ft_return_type,
2841
  ft_qualifer_mismatch,
2842
  ft_noexcept
2843
};
2844
2845
/// Attempts to get the FunctionProtoType from a Type. Handles
2846
/// MemberFunctionPointers properly.
2847
12.2k
static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2848
12.2k
  if (auto *FPT = FromType->getAs<FunctionProtoType>())
2849
404
    return FPT;
2850
2851
11.8k
  if (auto *MPT = FromType->getAs<MemberPointerType>())
2852
3
    return MPT->getPointeeType()->getAs<FunctionProtoType>();
2853
2854
11.8k
  return nullptr;
2855
11.8k
}
2856
2857
/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2858
/// function types.  Catches different number of parameter, mismatch in
2859
/// parameter types, and different return types.
2860
void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2861
10.1k
                                      QualType FromType, QualType ToType) {
2862
  // If either type is not valid, include no extra info.
2863
10.1k
  if (FromType.isNull() || ToType.isNull()) {
2864
3.87k
    PDiag << ft_default;
2865
3.87k
    return;
2866
3.87k
  }
2867
2868
  // Get the function type from the pointers.
2869
6.26k
  if (FromType->isMemberPointerType() && 
ToType->isMemberPointerType()43
) {
2870
43
    const auto *FromMember = FromType->castAs<MemberPointerType>(),
2871
43
               *ToMember = ToType->castAs<MemberPointerType>();
2872
43
    if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2873
6
      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2874
6
            << QualType(FromMember->getClass(), 0);
2875
6
      return;
2876
6
    }
2877
37
    FromType = FromMember->getPointeeType();
2878
37
    ToType = ToMember->getPointeeType();
2879
37
  }
2880
2881
6.25k
  if (FromType->isPointerType())
2882
316
    FromType = FromType->getPointeeType();
2883
6.25k
  if (ToType->isPointerType())
2884
499
    ToType = ToType->getPointeeType();
2885
2886
  // Remove references.
2887
6.25k
  FromType = FromType.getNonReferenceType();
2888
6.25k
  ToType = ToType.getNonReferenceType();
2889
2890
  // Don't print extra info for non-specialized template functions.
2891
6.25k
  if (FromType->isInstantiationDependentType() &&
2892
10
      !FromType->getAs<TemplateSpecializationType>()) {
2893
10
    PDiag << ft_default;
2894
10
    return;
2895
10
  }
2896
2897
  // No extra info for same types.
2898
6.24k
  if (Context.hasSameType(FromType, ToType)) {
2899
130
    PDiag << ft_default;
2900
130
    return;
2901
130
  }
2902
2903
6.11k
  const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2904
6.11k
                          *ToFunction = tryGetFunctionProtoType(ToType);
2905
2906
  // Both types need to be function types.
2907
6.11k
  if (!FromFunction || 
!ToFunction201
) {
2908
5.94k
    PDiag << ft_default;
2909
5.94k
    return;
2910
5.94k
  }
2911
2912
176
  if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2913
54
    PDiag << ft_parameter_arity << ToFunction->getNumParams()
2914
54
          << FromFunction->getNumParams();
2915
54
    return;
2916
54
  }
2917
2918
  // Handle different parameter types.
2919
122
  unsigned ArgPos;
2920
122
  if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2921
48
    PDiag << ft_parameter_mismatch << ArgPos + 1
2922
48
          << ToFunction->getParamType(ArgPos)
2923
48
          << FromFunction->getParamType(ArgPos);
2924
48
    return;
2925
48
  }
2926
2927
  // Handle different return type.
2928
74
  if (!Context.hasSameType(FromFunction->getReturnType(),
2929
12
                           ToFunction->getReturnType())) {
2930
12
    PDiag << ft_return_type << ToFunction->getReturnType()
2931
12
          << FromFunction->getReturnType();
2932
12
    return;
2933
12
  }
2934
2935
62
  if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2936
30
    PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2937
30
          << FromFunction->getMethodQuals();
2938
30
    return;
2939
30
  }
2940
2941
  // Handle exception specification differences on canonical type (in C++17
2942
  // onwards).
2943
32
  if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2944
32
          ->isNothrow() !=
2945
32
      cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2946
17
          ->isNothrow()) {
2947
17
    PDiag << ft_noexcept;
2948
17
    return;
2949
17
  }
2950
2951
  // Unable to find a difference, so add no extra info.
2952
15
  PDiag << ft_default;
2953
15
}
2954
2955
/// FunctionParamTypesAreEqual - This routine checks two function proto types
2956
/// for equality of their argument types. Caller has already checked that
2957
/// they have same number of arguments.  If the parameters are different,
2958
/// ArgPos will have the parameter index of the first different parameter.
2959
bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2960
                                      const FunctionProtoType *NewType,
2961
46.8M
                                      unsigned *ArgPos) {
2962
46.8M
  for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2963
46.8M
                                              N = NewType->param_type_begin(),
2964
46.8M
                                              E = OldType->param_type_end();
2965
79.3M
       O && (O != E); 
++O, ++N32.5M
) {
2966
    // Ignore address spaces in pointee type. This is to disallow overloading
2967
    // on __ptr32/__ptr64 address spaces.
2968
79.2M
    QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2969
79.2M
    QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2970
2971
79.2M
    if (!Context.hasSameType(Old, New)) {
2972
46.6M
      if (ArgPos)
2973
48
        *ArgPos = O - OldType->param_type_begin();
2974
46.6M
      return false;
2975
46.6M
    }
2976
79.2M
  }
2977
127k
  return true;
2978
46.8M
}
2979
2980
/// CheckPointerConversion - Check the pointer conversion from the
2981
/// expression From to the type ToType. This routine checks for
2982
/// ambiguous or inaccessible derived-to-base pointer
2983
/// conversions for which IsPointerConversion has already returned
2984
/// true. It returns true and produces a diagnostic if there was an
2985
/// error, or returns false otherwise.
2986
bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2987
                                  CastKind &Kind,
2988
                                  CXXCastPath& BasePath,
2989
                                  bool IgnoreBaseAccess,
2990
102k
                                  bool Diagnose) {
2991
102k
  QualType FromType = From->getType();
2992
102k
  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2993
2994
102k
  Kind = CK_BitCast;
2995
2996
102k
  if (Diagnose && !IsCStyleOrFunctionalCast && 
!FromType->isAnyPointerType()94.5k
&&
2997
43.8k
      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2998
24
          Expr::NPCK_ZeroExpression) {
2999
24
    if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3000
9
      DiagRuntimeBehavior(From->getExprLoc(), From,
3001
9
                          PDiag(diag::warn_impcast_bool_to_null_pointer)
3002
9
                            << ToType << From->getSourceRange());
3003
15
    else if (!isUnevaluatedContext())
3004
15
      Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3005
15
        << ToType << From->getSourceRange();
3006
24
  }
3007
102k
  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3008
98.5k
    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3009
50.2k
      QualType FromPointeeType = FromPtrType->getPointeeType(),
3010
50.2k
               ToPointeeType   = ToPtrType->getPointeeType();
3011
3012
50.2k
      if (FromPointeeType->isRecordType() && 
ToPointeeType->isRecordType()18.8k
&&
3013
5.25k
          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3014
        // We must have a derived-to-base conversion. Check an
3015
        // ambiguous or inaccessible conversion.
3016
5.25k
        unsigned InaccessibleID = 0;
3017
5.25k
        unsigned AmbiguousID = 0;
3018
5.25k
        if (Diagnose) {
3019
5.25k
          InaccessibleID = diag::err_upcast_to_inaccessible_base;
3020
5.25k
          AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3021
5.25k
        }
3022
5.25k
        if (CheckDerivedToBaseConversion(
3023
5.25k
                FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3024
5.25k
                From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3025
5.25k
                &BasePath, IgnoreBaseAccess))
3026
13
          return true;
3027
3028
        // The conversion was successful.
3029
5.24k
        Kind = CK_DerivedToBase;
3030
5.24k
      }
3031
3032
50.2k
      if (Diagnose && !IsCStyleOrFunctionalCast &&
3033
46.7k
          FromPointeeType->isFunctionType() && 
ToPointeeType->isVoidType()8
) {
3034
6
        assert(getLangOpts().MSVCCompat &&
3035
6
               "this should only be possible with MSVCCompat!");
3036
6
        Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3037
6
            << From->getSourceRange();
3038
6
      }
3039
50.2k
    }
3040
3.68k
  } else if (const ObjCObjectPointerType *ToPtrType =
3041
3.53k
               ToType->getAs<ObjCObjectPointerType>()) {
3042
3.53k
    if (const ObjCObjectPointerType *FromPtrType =
3043
1.27k
          FromType->getAs<ObjCObjectPointerType>()) {
3044
      // Objective-C++ conversions are always okay.
3045
      // FIXME: We should have a different class of conversions for the
3046
      // Objective-C++ implicit conversions.
3047
1.27k
      if (FromPtrType->isObjCBuiltinType() || 
ToPtrType->isObjCBuiltinType()997
)
3048
1.09k
        return false;
3049
2.26k
    } else if (FromType->isBlockPointerType()) {
3050
24
      Kind = CK_BlockPointerToObjCPointerCast;
3051
2.23k
    } else {
3052
2.23k
      Kind = CK_CPointerToObjCPointerCast;
3053
2.23k
    }
3054
143
  } else if (ToType->isBlockPointerType()) {
3055
125
    if (!FromType->isBlockPointerType())
3056
125
      Kind = CK_AnyPointerToBlockPointerCast;
3057
125
  }
3058
3059
  // We shouldn't fall into this case unless it's valid for other
3060
  // reasons.
3061
101k
  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3062
49.6k
    Kind = CK_NullToPointer;
3063
3064
101k
  return false;
3065
102k
}
3066
3067
/// IsMemberPointerConversion - Determines whether the conversion of the
3068
/// expression From, which has the (possibly adjusted) type FromType, can be
3069
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
3070
/// If so, returns true and places the converted type (that might differ from
3071
/// ToType in its cv-qualifiers at some level) into ConvertedType.
3072
bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3073
                                     QualType ToType,
3074
                                     bool InOverloadResolution,
3075
1.97M
                                     QualType &ConvertedType) {
3076
1.97M
  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3077
1.97M
  if (!ToTypePtr)
3078
1.97M
    return false;
3079
3080
  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3081
1.79k
  if (From->isNullPointerConstant(Context,
3082
461
                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3083
1.32k
                                        : Expr::NPC_ValueDependentIsNull)) {
3084
734
    ConvertedType = ToType;
3085
734
    return true;
3086
734
  }
3087
3088
  // Otherwise, both types have to be member pointers.
3089
1.05k
  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3090
1.05k
  if (!FromTypePtr)
3091
7
    return false;
3092
3093
  // A pointer to member of B can be converted to a pointer to member of D,
3094
  // where D is derived from B (C++ 4.11p2).
3095
1.04k
  QualType FromClass(FromTypePtr->getClass(), 0);
3096
1.04k
  QualType ToClass(ToTypePtr->getClass(), 0);
3097
3098
1.04k
  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3099
630
      IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3100
491
    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3101
491
                                                 ToClass.getTypePtr());
3102
491
    return true;
3103
491
  }
3104
3105
558
  return false;
3106
558
}
3107
3108
/// CheckMemberPointerConversion - Check the member pointer conversion from the
3109
/// expression From to the type ToType. This routine checks for ambiguous or
3110
/// virtual or inaccessible base-to-derived member pointer conversions
3111
/// for which IsMemberPointerConversion has already returned true. It returns
3112
/// true and produces a diagnostic if there was an error, or returns false
3113
/// otherwise.
3114
bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3115
                                        CastKind &Kind,
3116
                                        CXXCastPath &BasePath,
3117
652
                                        bool IgnoreBaseAccess) {
3118
652
  QualType FromType = From->getType();
3119
652
  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3120
652
  if (!FromPtrType) {
3121
    // This must be a null pointer to member pointer conversion
3122
246
    assert(From->isNullPointerConstant(Context,
3123
246
                                       Expr::NPC_ValueDependentIsNull) &&
3124
246
           "Expr must be null pointer constant!");
3125
246
    Kind = CK_NullToMemberPointer;
3126
246
    return false;
3127
246
  }
3128
3129
406
  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3130
406
  assert(ToPtrType && "No member pointer cast has a target type "
3131
406
                      "that is not a member pointer.");
3132
3133
406
  QualType FromClass = QualType(FromPtrType->getClass(), 0);
3134
406
  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
3135
3136
  // FIXME: What about dependent types?
3137
406
  assert(FromClass->isRecordType() && "Pointer into non-class.");
3138
406
  assert(ToClass->isRecordType() && "Pointer into non-class.");
3139
3140
406
  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3141
406
                     /*DetectVirtual=*/true);
3142
406
  bool DerivationOkay =
3143
406
      IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3144
406
  assert(DerivationOkay &&
3145
406
         "Should not have been called if derivation isn't OK.");
3146
406
  (void)DerivationOkay;
3147
3148
406
  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3149
7
                                  getUnqualifiedType())) {
3150
7
    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3151
7
    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3152
7
      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3153
7
    return true;
3154
7
  }
3155
3156
399
  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3157
17
    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3158
17
      << FromClass << ToClass << QualType(VBase, 0)
3159
17
      << From->getSourceRange();
3160
17
    return true;
3161
17
  }
3162
3163
382
  if (!IgnoreBaseAccess)
3164
328
    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3165
328
                         Paths.front(),
3166
328
                         diag::err_downcast_from_inaccessible_base);
3167
3168
  // Must be a base to derived member conversion.
3169
382
  BuildBasePathArray(Paths, BasePath);
3170
382
  Kind = CK_BaseToDerivedMemberPointer;
3171
382
  return false;
3172
382
}
3173
3174
/// Determine whether the lifetime conversion between the two given
3175
/// qualifiers sets is nontrivial.
3176
static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3177
77
                                               Qualifiers ToQuals) {
3178
  // Converting anything to const __unsafe_unretained is trivial.
3179
77
  if (ToQuals.hasConst() &&
3180
56
      ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3181
13
    return false;
3182
3183
64
  return true;
3184
64
}
3185
3186
/// Perform a single iteration of the loop for checking if a qualification
3187
/// conversion is valid.
3188
///
3189
/// Specifically, check whether any change between the qualifiers of \p
3190
/// FromType and \p ToType is permissible, given knowledge about whether every
3191
/// outer layer is const-qualified.
3192
static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3193
                                          bool CStyle, bool IsTopLevel,
3194
                                          bool &PreviousToQualsIncludeConst,
3195
5.23M
                                          bool &ObjCLifetimeConversion) {
3196
5.23M
  Qualifiers FromQuals = FromType.getQualifiers();
3197
5.23M
  Qualifiers ToQuals = ToType.getQualifiers();
3198
3199
  // Ignore __unaligned qualifier if this type is void.
3200
5.23M
  if (ToType.getUnqualifiedType()->isVoidType())
3201
12.7k
    FromQuals.removeUnaligned();
3202
3203
  // Objective-C ARC:
3204
  //   Check Objective-C lifetime conversions.
3205
5.23M
  if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3206
170
    if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3207
77
      if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3208
64
        ObjCLifetimeConversion = true;
3209
77
      FromQuals.removeObjCLifetime();
3210
77
      ToQuals.removeObjCLifetime();
3211
93
    } else {
3212
      // Qualification conversions cannot cast between different
3213
      // Objective-C lifetime qualifiers.
3214
93
      return false;
3215
93
    }
3216
5.23M
  }
3217
3218
  // Allow addition/removal of GC attributes but not changing GC attributes.
3219
5.23M
  if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3220
8
      (!FromQuals.hasObjCGCAttr() || 
!ToQuals.hasObjCGCAttr()2
)) {
3221
6
    FromQuals.removeObjCGCAttr();
3222
6
    ToQuals.removeObjCGCAttr();
3223
6
  }
3224
3225
  //   -- for every j > 0, if const is in cv 1,j then const is in cv
3226
  //      2,j, and similarly for volatile.
3227
5.23M
  if (!CStyle && 
!ToQuals.compatiblyIncludes(FromQuals)5.19M
)
3228
113k
    return false;
3229
3230
  // If address spaces mismatch:
3231
  //  - in top level it is only valid to convert to addr space that is a
3232
  //    superset in all cases apart from C-style casts where we allow
3233
  //    conversions between overlapping address spaces.
3234
  //  - in non-top levels it is not a valid conversion.
3235
5.11M
  if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3236
408
      (!IsTopLevel ||
3237
386
       !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3238
29
         (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3239
50
    return false;
3240
3241
  //   -- if the cv 1,j and cv 2,j are different, then const is in
3242
  //      every cv for 0 < k < j.
3243
5.11M
  if (!CStyle && 
FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()5.08M
&&
3244
2.47M
      !PreviousToQualsIncludeConst)
3245
715
    return false;
3246
3247
  // Keep track of whether all prior cv-qualifiers in the "to" type
3248
  // include const.
3249
5.11M
  PreviousToQualsIncludeConst =
3250
5.11M
      PreviousToQualsIncludeConst && 
ToQuals.hasConst()5.11M
;
3251
5.11M
  return true;
3252
5.11M
}
3253
3254
/// IsQualificationConversion - Determines whether the conversion from
3255
/// an rvalue of type FromType to ToType is a qualification conversion
3256
/// (C++ 4.4).
3257
///
3258
/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3259
/// when the qualification conversion involves a change in the Objective-C
3260
/// object lifetime.
3261
bool
3262
Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3263
22.2M
                                bool CStyle, bool &ObjCLifetimeConversion) {
3264
22.2M
  FromType = Context.getCanonicalType(FromType);
3265
22.2M
  ToType = Context.getCanonicalType(ToType);
3266
22.2M
  ObjCLifetimeConversion = false;
3267
3268
  // If FromType and ToType are the same type, this is not a
3269
  // qualification conversion.
3270
22.2M
  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3271
21.2M
    return false;
3272
3273
  // (C++ 4.4p4):
3274
  //   A conversion can add cv-qualifiers at levels other than the first
3275
  //   in multi-level pointers, subject to the following rules: [...]
3276
923k
  bool PreviousToQualsIncludeConst = true;
3277
923k
  bool UnwrappedAnyPointer = false;
3278
1.36M
  while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3279
446k
    if (!isQualificationConversionStep(
3280
446k
            FromType, ToType, CStyle, !UnwrappedAnyPointer,
3281
446k
            PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3282
5.33k
      return false;
3283
440k
    UnwrappedAnyPointer = true;
3284
440k
  }
3285
3286
  // We are left with FromType and ToType being the pointee types
3287
  // after unwrapping the original FromType and ToType the same number
3288
  // of times. If we unwrapped any pointers, and if FromType and
3289
  // ToType have the same unqualified type (since we checked
3290
  // qualifiers above), then this is a qualification conversion.
3291
918k
  return UnwrappedAnyPointer && 
Context.hasSameUnqualifiedType(FromType,ToType)439k
;
3292
923k
}
3293
3294
/// - Determine whether this is a conversion from a scalar type to an
3295
/// atomic type.
3296
///
3297
/// If successful, updates \c SCS's second and third steps in the conversion
3298
/// sequence to finish the conversion.
3299
static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3300
                                bool InOverloadResolution,
3301
                                StandardConversionSequence &SCS,
3302
894k
                                bool CStyle) {
3303
894k
  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3304
894k
  if (!ToAtomic)
3305
893k
    return false;
3306
3307
616
  StandardConversionSequence InnerSCS;
3308
616
  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3309
616
                            InOverloadResolution, InnerSCS,
3310
616
                            CStyle, /*AllowObjCWritebackConversion=*/false))
3311
54
    return false;
3312
3313
562
  SCS.Second = InnerSCS.Second;
3314
562
  SCS.setToType(1, InnerSCS.getToType(1));
3315
562
  SCS.Third = InnerSCS.Third;
3316
562
  SCS.QualificationIncludesObjCLifetime
3317
562
    = InnerSCS.QualificationIncludesObjCLifetime;
3318
562
  SCS.setToType(2, InnerSCS.getToType(2));
3319
562
  return true;
3320
562
}
3321
3322
static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3323
                                              CXXConstructorDecl *Constructor,
3324
1.04k
                                              QualType Type) {
3325
1.04k
  const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3326
1.04k
  if (CtorType->getNumParams() > 0) {
3327
1.02k
    QualType FirstArg = CtorType->getParamType(0);
3328
1.02k
    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3329
582
      return true;
3330
463
  }
3331
463
  return false;
3332
463
}
3333
3334
static OverloadingResult
3335
IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3336
                                       CXXRecordDecl *To,
3337
                                       UserDefinedConversionSequence &User,
3338
                                       OverloadCandidateSet &CandidateSet,
3339
679
                                       bool AllowExplicit) {
3340
679
  CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3341
2.93k
  for (auto *D : S.LookupConstructors(To)) {
3342
2.93k
    auto Info = getConstructorInfo(D);
3343
2.93k
    if (!Info)
3344
7
      continue;
3345
3346
2.92k
    bool Usable = !Info.Constructor->isInvalidDecl() &&
3347
2.92k
                  S.isInitListConstructor(Info.Constructor);
3348
2.92k
    if (Usable) {
3349
      // If the first argument is (a reference to) the target type,
3350
      // suppress conversions.
3351
109
      bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3352
109
          S.Context, Info.Constructor, ToType);
3353
109
      if (Info.ConstructorTmpl)
3354
0
        S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3355
0
                                       /*ExplicitArgs*/ nullptr, From,
3356
0
                                       CandidateSet, SuppressUserConversions,
3357
0
                                       /*PartialOverloading*/ false,
3358
0
                                       AllowExplicit);
3359
109
      else
3360
109
        S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3361
109
                               CandidateSet, SuppressUserConversions,
3362
109
                               /*PartialOverloading*/ false, AllowExplicit);
3363
109
    }
3364
2.92k
  }
3365
3366
679
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3367
3368
679
  OverloadCandidateSet::iterator Best;
3369
679
  switch (auto Result =
3370
679
              CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3371
2
  case OR_Deleted:
3372
106
  case OR_Success: {
3373
    // Record the standard conversion we used and the conversion function.
3374
106
    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3375
106
    QualType ThisType = Constructor->getThisType();
3376
    // Initializer lists don't have conversions as such.
3377
106
    User.Before.setAsIdentityConversion();
3378
106
    User.HadMultipleCandidates = HadMultipleCandidates;
3379
106
    User.ConversionFunction = Constructor;
3380
106
    User.FoundConversionFunction = Best->FoundDecl;
3381
106
    User.After.setAsIdentityConversion();
3382
106
    User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3383
106
    User.After.setAllToTypes(ToType);
3384
106
    return Result;
3385
2
  }
3386
3387
573
  case OR_No_Viable_Function:
3388
573
    return OR_No_Viable_Function;
3389
0
  case OR_Ambiguous:
3390
0
    return OR_Ambiguous;
3391
0
  }
3392
3393
0
  llvm_unreachable("Invalid OverloadResult!");
3394
0
}
3395
3396
/// Determines whether there is a user-defined conversion sequence
3397
/// (C++ [over.ics.user]) that converts expression From to the type
3398
/// ToType. If such a conversion exists, User will contain the
3399
/// user-defined conversion sequence that performs such a conversion
3400
/// and this routine will return true. Otherwise, this routine returns
3401
/// false and User is unspecified.
3402
///
3403
/// \param AllowExplicit  true if the conversion should consider C++0x
3404
/// "explicit" conversion functions as well as non-explicit conversion
3405
/// functions (C++0x [class.conv.fct]p2).
3406
///
3407
/// \param AllowObjCConversionOnExplicit true if the conversion should
3408
/// allow an extra Objective-C pointer conversion on uses of explicit
3409
/// constructors. Requires \c AllowExplicit to also be set.
3410
static OverloadingResult
3411
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3412
                        UserDefinedConversionSequence &User,
3413
                        OverloadCandidateSet &CandidateSet,
3414
                        AllowedExplicit AllowExplicit,
3415
1.07M
                        bool AllowObjCConversionOnExplicit) {
3416
1.07M
  assert(AllowExplicit != AllowedExplicit::None ||
3417
1.07M
         !AllowObjCConversionOnExplicit);
3418
1.07M
  CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3419
3420
  // Whether we will only visit constructors.
3421
1.07M
  bool ConstructorsOnly = false;
3422
3423
  // If the type we are conversion to is a class type, enumerate its
3424
  // constructors.
3425
1.07M
  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3426
    // C++ [over.match.ctor]p1:
3427
    //   When objects of class type are direct-initialized (8.5), or
3428
    //   copy-initialized from an expression of the same or a
3429
    //   derived class type (8.5), overload resolution selects the
3430
    //   constructor. [...] For copy-initialization, the candidate
3431
    //   functions are all the converting constructors (12.3.1) of
3432
    //   that class. The argument list is the expression-list within
3433
    //   the parentheses of the initializer.
3434
159k
    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3435
159k
        (From->getType()->getAs<RecordType>() &&
3436
71.1k
         S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3437
0
      ConstructorsOnly = true;
3438
3439
159k
    if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3440
      // We're not going to find any constructors.
3441
149k
    } else if (CXXRecordDecl *ToRecordDecl
3442
149k
                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3443
3444
149k
      Expr **Args = &From;
3445
149k
      unsigned NumArgs = 1;
3446
149k
      bool ListInitializing = false;
3447
149k
      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3448
        // But first, see if there is an init-list-constructor that will work.
3449
679
        OverloadingResult Result = IsInitializerListConstructorConversion(
3450
679
            S, From, ToType, ToRecordDecl, User, CandidateSet,
3451
679
            AllowExplicit == AllowedExplicit::All);
3452
679
        if (Result != OR_No_Viable_Function)
3453
106
          return Result;
3454
        // Never mind.
3455
573
        CandidateSet.clear(
3456
573
            OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3457
3458
        // If we're list-initializing, we pass the individual elements as
3459
        // arguments, not the entire list.
3460
573
        Args = InitList->getInits();
3461
573
        NumArgs = InitList->getNumInits();
3462
573
        ListInitializing = true;
3463
573
      }
3464
3465
674k
      
for (auto *D : S.LookupConstructors(ToRecordDecl))149k
{
3466
674k
        auto Info = getConstructorInfo(D);
3467
674k
        if (!Info)
3468
448
          continue;
3469
3470
673k
        bool Usable = !Info.Constructor->isInvalidDecl();
3471
673k
        if (!ListInitializing)
3472
671k
          Usable = Usable && Info.Constructor->isConvertingConstructor(
3473
671k
                                 /*AllowExplicit*/ true);
3474
673k
        if (Usable) {
3475
461k
          bool SuppressUserConversions = !ConstructorsOnly;
3476
461k
          if (SuppressUserConversions && ListInitializing) {
3477
1.98k
            SuppressUserConversions = false;
3478
1.98k
            if (NumArgs == 1) {
3479
              // If the first argument is (a reference to) the target type,
3480
              // suppress conversions.
3481
936
              SuppressUserConversions = isFirstArgumentCompatibleWithType(
3482
936
                  S.Context, Info.Constructor, ToType);
3483
936
            }
3484
1.98k
          }
3485
461k
          if (Info.ConstructorTmpl)
3486
95.3k
            S.AddTemplateOverloadCandidate(
3487
95.3k
                Info.ConstructorTmpl, Info.FoundDecl,
3488
95.3k
                /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3489
95.3k
                CandidateSet, SuppressUserConversions,
3490
95.3k
                /*PartialOverloading*/ false,
3491
95.3k
                AllowExplicit == AllowedExplicit::All);
3492
365k
          else
3493
            // Allow one user-defined conversion when user specifies a
3494
            // From->ToType conversion via an static cast (c-style, etc).
3495
365k
            S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3496
365k
                                   llvm::makeArrayRef(Args, NumArgs),
3497
365k
                                   CandidateSet, SuppressUserConversions,
3498
365k
                                   /*PartialOverloading*/ false,
3499
365k
                                   AllowExplicit == AllowedExplicit::All);
3500
461k
        }
3501
673k
      }
3502
149k
    }
3503
159k
  }
3504
3505
  // Enumerate conversion functions, if we're allowed to.
3506
1.07M
  if (ConstructorsOnly || isa<InitListExpr>(From)) {
3507
1.07M
  } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3508
    // No conversion functions from incomplete types.
3509
1.06M
  } else if (const RecordType *FromRecordType =
3510
798k
                 From->getType()->getAs<RecordType>()) {
3511
798k
    if (CXXRecordDecl *FromRecordDecl
3512
798k
         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3513
      // Add all of the conversion functions as candidates.
3514
798k
      const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3515
1.26M
      for (auto I = Conversions.begin(), E = Conversions.end(); I != E; 
++I469k
) {
3516
469k
        DeclAccessPair FoundDecl = I.getPair();
3517
469k
        NamedDecl *D = FoundDecl.getDecl();
3518
469k
        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3519
469k
        if (isa<UsingShadowDecl>(D))
3520
14
          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3521
3522
469k
        CXXConversionDecl *Conv;
3523
469k
        FunctionTemplateDecl *ConvTemplate;
3524
469k
        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3525
2.76k
          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3526
466k
        else
3527
466k
          Conv = cast<CXXConversionDecl>(D);
3528
3529
469k
        if (ConvTemplate)
3530
2.76k
          S.AddTemplateConversionCandidate(
3531
2.76k
              ConvTemplate, FoundDecl, ActingContext, From, ToType,
3532
2.76k
              CandidateSet, AllowObjCConversionOnExplicit,
3533
2.76k
              AllowExplicit != AllowedExplicit::None);
3534
466k
        else
3535
466k
          S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3536
466k
                                   CandidateSet, AllowObjCConversionOnExplicit,
3537
466k
                                   AllowExplicit != AllowedExplicit::None);
3538
469k
      }
3539
798k
    }
3540
798k
  }
3541
3542
1.07M
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3543
3544
1.07M
  OverloadCandidateSet::iterator Best;
3545
1.07M
  switch (auto Result =
3546
1.07M
              CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3547
406k
  case OR_Success:
3548
406k
  case OR_Deleted:
3549
    // Record the standard conversion we used and the conversion function.
3550
406k
    if (CXXConstructorDecl *Constructor
3551
25.9k
          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3552
      // C++ [over.ics.user]p1:
3553
      //   If the user-defined conversion is specified by a
3554
      //   constructor (12.3.1), the initial standard conversion
3555
      //   sequence converts the source type to the type required by
3556
      //   the argument of the constructor.
3557
      //
3558
25.9k
      QualType ThisType = Constructor->getThisType();
3559
25.9k
      if (isa<InitListExpr>(From)) {
3560
        // Initializer lists don't have conversions as such.
3561
461
        User.Before.setAsIdentityConversion();
3562
25.4k
      } else {
3563
25.4k
        if (Best->Conversions[0].isEllipsis())
3564
386
          User.EllipsisConversion = true;
3565
25.0k
        else {
3566
25.0k
          User.Before = Best->Conversions[0].Standard;
3567
25.0k
          User.EllipsisConversion = false;
3568
25.0k
        }
3569
25.4k
      }
3570
25.9k
      User.HadMultipleCandidates = HadMultipleCandidates;
3571
25.9k
      User.ConversionFunction = Constructor;
3572
25.9k
      User.FoundConversionFunction = Best->FoundDecl;
3573
25.9k
      User.After.setAsIdentityConversion();
3574
25.9k
      User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3575
25.9k
      User.After.setAllToTypes(ToType);
3576
25.9k
      return Result;
3577
25.9k
    }
3578
380k
    if (CXXConversionDecl *Conversion
3579
380k
                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3580
      // C++ [over.ics.user]p1:
3581
      //
3582
      //   [...] If the user-defined conversion is specified by a
3583
      //   conversion function (12.3.2), the initial standard
3584
      //   conversion sequence converts the source type to the
3585
      //   implicit object parameter of the conversion function.
3586
380k
      User.Before = Best->Conversions[0].Standard;
3587
380k
      User.HadMultipleCandidates = HadMultipleCandidates;
3588
380k
      User.ConversionFunction = Conversion;
3589
380k
      User.FoundConversionFunction = Best->FoundDecl;
3590
380k
      User.EllipsisConversion = false;
3591
3592
      // C++ [over.ics.user]p2:
3593
      //   The second standard conversion sequence converts the
3594
      //   result of the user-defined conversion to the target type
3595
      //   for the sequence. Since an implicit conversion sequence
3596
      //   is an initialization, the special rules for
3597
      //   initialization by user-defined conversion apply when
3598
      //   selecting the best user-defined conversion for a
3599
      //   user-defined conversion sequence (see 13.3.3 and
3600
      //   13.3.3.1).
3601
380k
      User.After = Best->FinalConversion;
3602
380k
      return Result;
3603
380k
    }
3604
0
    llvm_unreachable("Not a constructor or conversion function?");
3605
3606
658k
  case OR_No_Viable_Function:
3607
658k
    return OR_No_Viable_Function;
3608
3609
7.99k
  case OR_Ambiguous:
3610
7.99k
    return OR_Ambiguous;
3611
0
  }
3612
3613
0
  llvm_unreachable("Invalid OverloadResult!");
3614
0
}
3615
3616
bool
3617
1.21k
Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3618
1.21k
  ImplicitConversionSequence ICS;
3619
1.21k
  OverloadCandidateSet CandidateSet(From->getExprLoc(),
3620
1.21k
                                    OverloadCandidateSet::CSK_Normal);
3621
1.21k
  OverloadingResult OvResult =
3622
1.21k
    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3623
1.21k
                            CandidateSet, AllowedExplicit::None, false);
3624
3625
1.21k
  if (!(OvResult == OR_Ambiguous ||
3626
1.21k
        (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3627
125
    return false;
3628
3629
1.08k
  auto Cands = CandidateSet.CompleteCandidates(
3630
1.08k
      *this,
3631
1.08k
      OvResult == OR_Ambiguous ? 
OCD_AmbiguousCandidates2
: OCD_AllCandidates,
3632
1.08k
      From);
3633
1.08k
  if (OvResult == OR_Ambiguous)
3634
2
    Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3635
2
        << From->getType() << ToType << From->getSourceRange();
3636
1.08k
  else { // OR_No_Viable_Function && !CandidateSet.empty()
3637
1.08k
    if (!RequireCompleteType(From->getBeginLoc(), ToType,
3638
1.08k
                             diag::err_typecheck_nonviable_condition_incomplete,
3639
1.08k
                             From->getType(), From->getSourceRange()))
3640
1.08k
      Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3641
1.08k
          << false << From->getType() << From->getSourceRange() << ToType;
3642
1.08k
  }
3643
3644
1.08k
  CandidateSet.NoteCandidates(
3645
1.08k
                              *this, From, Cands);
3646
1.08k
  return true;
3647
1.08k
}
3648
3649
// Helper for compareConversionFunctions that gets the FunctionType that the
3650
// conversion-operator return  value 'points' to, or nullptr.
3651
static const FunctionType *
3652
168
getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3653
168
  const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3654
168
  const PointerType *RetPtrTy =
3655
168
      ConvFuncTy->getReturnType()->getAs<PointerType>();
3656
3657
168
  if (!RetPtrTy)
3658
0
    return nullptr;
3659
3660
168
  return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3661
168
}
3662
3663
/// Compare the user-defined conversion functions or constructors
3664
/// of two user-defined conversion sequences to determine whether any ordering
3665
/// is possible.
3666
static ImplicitConversionSequence::CompareKind
3667
compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3668
32.5k
                           FunctionDecl *Function2) {
3669
32.5k
  CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3670
32.5k
  CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3671
32.5k
  if (!Conv1 || 
!Conv232.5k
)
3672
30
    return ImplicitConversionSequence::Indistinguishable;
3673
3674
32.5k
  if (!Conv1->getParent()->isLambda() || 
!Conv2->getParent()->isLambda()96
)
3675
32.4k
    return ImplicitConversionSequence::Indistinguishable;
3676
3677
  // Objective-C++:
3678
  //   If both conversion functions are implicitly-declared conversions from
3679
  //   a lambda closure type to a function pointer and a block pointer,
3680
  //   respectively, always prefer the conversion to a function pointer,
3681
  //   because the function pointer is more lightweight and is more likely
3682
  //   to keep code working.
3683
96
  if (S.getLangOpts().ObjC && 
S.getLangOpts().CPlusPlus1112
) {
3684
12
    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3685
12
    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3686
12
    if (Block1 != Block2)
3687
12
      return Block1 ? 
ImplicitConversionSequence::Worse4
3688
8
                    : ImplicitConversionSequence::Better;
3689
84
  }
3690
3691
  // In order to support multiple calling conventions for the lambda conversion
3692
  // operator (such as when the free and member function calling convention is
3693
  // different), prefer the 'free' mechanism, followed by the calling-convention
3694
  // of operator(). The latter is in place to support the MSVC-like solution of
3695
  // defining ALL of the possible conversions in regards to calling-convention.
3696
84
  const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3697
84
  const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3698
3699
84
  if (Conv1FuncRet && Conv2FuncRet &&
3700
84
      Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3701
52
    CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3702
52
    CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3703
3704
52
    CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3705
52
    const FunctionProtoType *CallOpProto =
3706
52
        CallOp->getType()->getAs<FunctionProtoType>();
3707
3708
52
    CallingConv CallOpCC =
3709
52
        CallOp->getType()->getAs<FunctionType>()->getCallConv();
3710
52
    CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3711
52
        CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3712
52
    CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3713
52
        CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3714
3715
52
    CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3716
52
    for (CallingConv CC : PrefOrder) {
3717
52
      if (Conv1CC == CC)
3718
26
        return ImplicitConversionSequence::Better;
3719
26
      if (Conv2CC == CC)
3720
26
        return ImplicitConversionSequence::Worse;
3721
26
    }
3722
52
  }
3723
3724
32
  return ImplicitConversionSequence::Indistinguishable;
3725
84
}
3726
3727
static bool hasDeprecatedStringLiteralToCharPtrConversion(
3728
65.3M
    const ImplicitConversionSequence &ICS) {
3729
65.3M
  return (ICS.isStandard() && 
ICS.Standard.DeprecatedStringLiteralToCharPtr63.1M
) ||
3730
65.3M
         (ICS.isUserDefined() &&
3731
2.06M
          ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3732
65.3M
}
3733
3734
/// CompareImplicitConversionSequences - Compare two implicit
3735
/// conversion sequences to determine whether one is better than the
3736
/// other or if they are indistinguishable (C++ 13.3.3.2).
3737
static ImplicitConversionSequence::CompareKind
3738
CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3739
                                   const ImplicitConversionSequence& ICS1,
3740
                                   const ImplicitConversionSequence& ICS2)
3741
16.7M
{
3742
  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3743
  // conversion sequences (as defined in 13.3.3.1)
3744
  //   -- a standard conversion sequence (13.3.3.1.1) is a better
3745
  //      conversion sequence than a user-defined conversion sequence or
3746
  //      an ellipsis conversion sequence, and
3747
  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3748
  //      conversion sequence than an ellipsis conversion sequence
3749
  //      (13.3.3.1.3).
3750
  //
3751
  // C++0x [over.best.ics]p10:
3752
  //   For the purpose of ranking implicit conversion sequences as
3753
  //   described in 13.3.3.2, the ambiguous conversion sequence is
3754
  //   treated as a user-defined sequence that is indistinguishable
3755
  //   from any other user-defined conversion sequence.
3756
3757
  // String literal to 'char *' conversion has been deprecated in C++03. It has
3758
  // been removed from C++11. We still accept this conversion, if it happens at
3759
  // the best viable function. Otherwise, this conversion is considered worse
3760
  // than ellipsis conversion. Consider this as an extension; this is not in the
3761
  // standard. For example:
3762
  //
3763
  // int &f(...);    // #1
3764
  // void f(char*);  // #2
3765
  // void g() { int &r = f("foo"); }
3766
  //
3767
  // In C++03, we pick #2 as the best viable function.
3768
  // In C++11, we pick #1 as the best viable function, because ellipsis
3769
  // conversion is better than string-literal to char* conversion (since there
3770
  // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3771
  // convert arguments, #2 would be the best viable function in C++11.
3772
  // If the best viable function has this conversion, a warning will be issued
3773
  // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3774
3775
16.7M
  if (S.getLangOpts().CPlusPlus11 && 
!S.getLangOpts().WritableStrings14.4M
&&
3776
14.4M
      hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3777
14.4M
      hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3778
0
    return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3779
0
               ? ImplicitConversionSequence::Worse
3780
0
               : ImplicitConversionSequence::Better;
3781
3782
16.7M
  if (ICS1.getKindRank() < ICS2.getKindRank())
3783
93.6k
    return ImplicitConversionSequence::Better;
3784
16.6M
  if (ICS2.getKindRank() < ICS1.getKindRank())
3785
66.9k
    return ImplicitConversionSequence::Worse;
3786
3787
  // The following checks require both conversion sequences to be of
3788
  // the same kind.
3789
16.5M
  if (ICS1.getKind() != ICS2.getKind())
3790
4
    return ImplicitConversionSequence::Indistinguishable;
3791
3792
16.5M
  ImplicitConversionSequence::CompareKind Result =
3793
16.5M
      ImplicitConversionSequence::Indistinguishable;
3794
3795
  // Two implicit conversion sequences of the same form are
3796
  // indistinguishable conversion sequences unless one of the
3797
  // following rules apply: (C++ 13.3.3.2p3):
3798
3799
  // List-initialization sequence L1 is a better conversion sequence than
3800
  // list-initialization sequence L2 if:
3801
  // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3802
  //   if not that,
3803
  // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3804
  //   and N1 is smaller than N2.,
3805
  // even if one of the other rules in this paragraph would otherwise apply.
3806
16.5M
  if (!ICS1.isBad()) {
3807
16.5M
    if (ICS1.isStdInitializerListElement() &&
3808
149
        !ICS2.isStdInitializerListElement())
3809
63
      return ImplicitConversionSequence::Better;
3810
16.5M
    if (!ICS1.isStdInitializerListElement() &&
3811
16.5M
        ICS2.isStdInitializerListElement())
3812
42
      return ImplicitConversionSequence::Worse;
3813
16.5M
  }
3814
3815
16.5M
  if (ICS1.isStandard())
3816
    // Standard conversion sequence S1 is a better conversion sequence than
3817
    // standard conversion sequence S2 if [...]
3818
15.9M
    Result = CompareStandardConversionSequences(S, Loc,
3819
15.9M
                                                ICS1.Standard, ICS2.Standard);
3820
631k
  else if (ICS1.isUserDefined()) {
3821
    // User-defined conversion sequence U1 is a better conversion
3822
    // sequence than another user-defined conversion sequence U2 if
3823
    // they contain the same user-defined conversion function or
3824
    // constructor and if the second standard conversion sequence of
3825
    // U1 is better than the second standard conversion sequence of
3826
    // U2 (C++ 13.3.3.2p3).
3827
618k
    if (ICS1.UserDefined.ConversionFunction ==
3828
618k
          ICS2.UserDefined.ConversionFunction)
3829
606k
      Result = CompareStandardConversionSequences(S, Loc,
3830
606k
                                                  ICS1.UserDefined.After,
3831
606k
                                                  ICS2.UserDefined.After);
3832
12.0k
    else
3833
12.0k
      Result = compareConversionFunctions(S,
3834
12.0k
                                          ICS1.UserDefined.ConversionFunction,
3835
12.0k
                                          ICS2.UserDefined.ConversionFunction);
3836
618k
  }
3837
3838
16.5M
  return Result;
3839
16.5M
}
3840
3841
// Per 13.3.3.2p3, compare the given standard conversion sequences to
3842
// determine if one is a proper subset of the other.
3843
static ImplicitConversionSequence::CompareKind
3844
compareStandardConversionSubsets(ASTContext &Context,
3845
                                 const StandardConversionSequence& SCS1,
3846
16.5M
                                 const StandardConversionSequence& SCS2) {
3847
16.5M
  ImplicitConversionSequence::CompareKind Result
3848
16.5M
    = ImplicitConversionSequence::Indistinguishable;
3849
3850
  // the identity conversion sequence is considered to be a subsequence of
3851
  // any non-identity conversion sequence
3852
16.5M
  if (SCS1.isIdentityConversion() && 
!SCS2.isIdentityConversion()9.07M
)
3853
7.83M
    return ImplicitConversionSequence::Better;
3854
8.71M
  else if (!SCS1.isIdentityConversion() && 
SCS2.isIdentityConversion()7.48M
)
3855
3.69M
    return ImplicitConversionSequence::Worse;
3856
3857
5.01M
  if (SCS1.Second != SCS2.Second) {
3858
2.41M
    if (SCS1.Second == ICK_Identity)
3859
3.51k
      Result = ImplicitConversionSequence::Better;
3860
2.41M
    else if (SCS2.Second == ICK_Identity)
3861
1.24k
      Result = ImplicitConversionSequence::Worse;
3862
2.40M
    else
3863
2.40M
      return ImplicitConversionSequence::Indistinguishable;
3864
2.60M
  } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3865
949k
    return ImplicitConversionSequence::Indistinguishable;
3866
3867
1.65M
  if (SCS1.Third == SCS2.Third) {
3868
1.31M
    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3869
337k
                             : ImplicitConversionSequence::Indistinguishable;
3870
1.64M
  }
3871
3872
8.43k
  if (SCS1.Third == ICK_Identity)
3873
3.11k
    return Result == ImplicitConversionSequence::Worse
3874
1.24k
             ? ImplicitConversionSequence::Indistinguishable
3875
1.87k
             : ImplicitConversionSequence::Better;
3876
3877
5.32k
  if (SCS2.Third == ICK_Identity)
3878
5.32k
    return Result == ImplicitConversionSequence::Better
3879
3.47k
             ? ImplicitConversionSequence::Indistinguishable
3880
1.84k
             : ImplicitConversionSequence::Worse;
3881
3882
0
  return ImplicitConversionSequence::Indistinguishable;
3883
0
}
3884
3885
/// Determine whether one of the given reference bindings is better
3886
/// than the other based on what kind of bindings they are.
3887
static bool
3888
isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3889
681k
                             const StandardConversionSequence &SCS2) {
3890
  // C++0x [over.ics.rank]p3b4:
3891
  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3892
  //      implicit object parameter of a non-static member function declared
3893
  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3894
  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3895
  //      lvalue reference to a function lvalue and S2 binds an rvalue
3896
  //      reference*.
3897
  //
3898
  // FIXME: Rvalue references. We're going rogue with the above edits,
3899
  // because the semantics in the current C++0x working paper (N3225 at the
3900
  // time of this writing) break the standard definition of std::forward
3901
  // and std::reference_wrapper when dealing with references to functions.
3902
  // Proposed wording changes submitted to CWG for consideration.
3903
681k
  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3904
407k
      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3905
286k
    return false;
3906
3907
395k
  return (!SCS1.IsLvalueReference && 
SCS1.BindsToRvalue266k
&&
3908
265k
          SCS2.IsLvalueReference) ||
3909
150k
         (SCS1.IsLvalueReference && 
SCS1.BindsToFunctionLvalue128k
&&
3910
884
          !SCS2.IsLvalueReference && 
SCS2.BindsToFunctionLvalue814
);
3911
395k
}
3912
3913
enum class FixedEnumPromotion {
3914
  None,
3915
  ToUnderlyingType,
3916
  ToPromotedUnderlyingType
3917
};
3918
3919
/// Returns kind of fixed enum promotion the \a SCS uses.
3920
static FixedEnumPromotion
3921
5.41M
getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3922
3923
5.41M
  if (SCS.Second != ICK_Integral_Promotion)
3924
4.95M
    return FixedEnumPromotion::None;
3925
3926
455k
  QualType FromType = SCS.getFromType();
3927
455k
  if (!FromType->isEnumeralType())
3928
15.0k
    return FixedEnumPromotion::None;
3929
3930
440k
  EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
3931
440k
  if (!Enum->isFixed())
3932
430k
    return FixedEnumPromotion::None;
3933
3934
10.5k
  QualType UnderlyingType = Enum->getIntegerType();
3935
10.5k
  if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3936
10.4k
    return FixedEnumPromotion::ToUnderlyingType;
3937
3938
80
  return FixedEnumPromotion::ToPromotedUnderlyingType;
3939
80
}
3940
3941
/// CompareStandardConversionSequences - Compare two standard
3942
/// conversion sequences to determine whether one is better than the
3943
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3944
static ImplicitConversionSequence::CompareKind
3945
CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3946
                                   const StandardConversionSequence& SCS1,
3947
                                   const StandardConversionSequence& SCS2)
3948
16.5M
{
3949
  // Standard conversion sequence S1 is a better conversion sequence
3950
  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3951
3952
  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3953
  //     sequences in the canonical form defined by 13.3.3.1.1,
3954
  //     excluding any Lvalue Transformation; the identity conversion
3955
  //     sequence is considered to be a subsequence of any
3956
  //     non-identity conversion sequence) or, if not that,
3957
16.5M
  if (ImplicitConversionSequence::CompareKind CK
3958
11.5M
        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3959
11.5M
    return CK;
3960
3961
  //  -- the rank of S1 is better than the rank of S2 (by the rules
3962
  //     defined below), or, if not that,
3963
5.01M
  ImplicitConversionRank Rank1 = SCS1.getRank();
3964
5.01M
  ImplicitConversionRank Rank2 = SCS2.getRank();
3965
5.01M
  if (Rank1 < Rank2)
3966
1.51M
    return ImplicitConversionSequence::Better;
3967
3.50M
  else if (Rank2 < Rank1)
3968
794k
    return ImplicitConversionSequence::Worse;
3969
3970
  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3971
  // are indistinguishable unless one of the following rules
3972
  // applies:
3973
3974
  //   A conversion that is not a conversion of a pointer, or
3975
  //   pointer to member, to bool is better than another conversion
3976
  //   that is such a conversion.
3977
2.70M
  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3978
119
    return SCS2.isPointerConversionToBool()
3979
112
             ? ImplicitConversionSequence::Better
3980
7
             : ImplicitConversionSequence::Worse;
3981
3982
  // C++14 [over.ics.rank]p4b2:
3983
  // This is retroactively applied to C++11 by CWG 1601.
3984
  //
3985
  //   A conversion that promotes an enumeration whose underlying type is fixed
3986
  //   to its underlying type is better than one that promotes to the promoted
3987
  //   underlying type, if the two are different.
3988
2.70M
  FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3989
2.70M
  FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3990
2.70M
  if (FEP1 != FixedEnumPromotion::None && 
FEP2 != FixedEnumPromotion::None5.28k
&&
3991
5.28k
      FEP1 != FEP2)
3992
20
    return FEP1 == FixedEnumPromotion::ToUnderlyingType
3993
20
               ? ImplicitConversionSequence::Better
3994
0
               : ImplicitConversionSequence::Worse;
3995
3996
  // C++ [over.ics.rank]p4b2:
3997
  //
3998
  //   If class B is derived directly or indirectly from class A,
3999
  //   conversion of B* to A* is better than conversion of B* to
4000
  //   void*, and conversion of A* to void* is better than conversion
4001
  //   of B* to void*.
4002
2.70M
  bool SCS1ConvertsToVoid
4003
2.70M
    = SCS1.isPointerConversionToVoidPointer(S.Context);
4004
2.70M
  bool SCS2ConvertsToVoid
4005
2.70M
    = SCS2.isPointerConversionToVoidPointer(S.Context);
4006
2.70M
  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4007
    // Exactly one of the conversion sequences is a conversion to
4008
    // a void pointer; it's the worse conversion.
4009
19
    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4010
3
                              : ImplicitConversionSequence::Worse;
4011
2.70M
  } else if (!SCS1ConvertsToVoid && 
!SCS2ConvertsToVoid2.70M
) {
4012
    // Neither conversion sequence converts to a void pointer; compare
4013
    // their derived-to-base conversions.
4014
2.70M
    if (ImplicitConversionSequence::CompareKind DerivedCK
4015
519
          = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4016
519
      return DerivedCK;
4017
52
  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4018
52
             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4019
    // Both conversion sequences are conversions to void
4020
    // pointers. Compare the source types to determine if there's an
4021
    // inheritance relationship in their sources.
4022
0
    QualType FromType1 = SCS1.getFromType();
4023
0
    QualType FromType2 = SCS2.getFromType();
4024
4025
    // Adjust the types we're converting from via the array-to-pointer
4026
    // conversion, if we need to.
4027
0
    if (SCS1.First == ICK_Array_To_Pointer)
4028
0
      FromType1 = S.Context.getArrayDecayedType(FromType1);
4029
0
    if (SCS2.First == ICK_Array_To_Pointer)
4030
0
      FromType2 = S.Context.getArrayDecayedType(FromType2);
4031
4032
0
    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4033
0
    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4034
4035
0
    if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4036
0
      return ImplicitConversionSequence::Better;
4037
0
    else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4038
0
      return ImplicitConversionSequence::Worse;
4039
4040
    // Objective-C++: If one interface is more specific than the
4041
    // other, it is the better one.
4042
0
    const ObjCObjectPointerType* FromObjCPtr1
4043
0
      = FromType1->getAs<ObjCObjectPointerType>();
4044
0
    const ObjCObjectPointerType* FromObjCPtr2
4045
0
      = FromType2->getAs<ObjCObjectPointerType>();
4046
0
    if (FromObjCPtr1 && FromObjCPtr2) {
4047
0
      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4048
0
                                                          FromObjCPtr2);
4049
0
      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4050
0
                                                           FromObjCPtr1);
4051
0
      if (AssignLeft != AssignRight) {
4052
0
        return AssignLeft? ImplicitConversionSequence::Better
4053
0
                         : ImplicitConversionSequence::Worse;
4054
0
      }
4055
2.70M
    }
4056
0
  }
4057
4058
2.70M
  if (SCS1.ReferenceBinding && 
SCS2.ReferenceBinding464k
) {
4059
    // Check for a better reference binding based on the kind of bindings.
4060
460k
    if (isBetterReferenceBindingKind(SCS1, SCS2))
4061
239k
      return ImplicitConversionSequence::Better;
4062
220k
    else if (isBetterReferenceBindingKind(SCS2, SCS1))
4063
5.48k
      return ImplicitConversionSequence::Worse;
4064
2.46M
  }
4065
4066
  // Compare based on qualification conversions (C++ 13.3.3.2p3,
4067
  // bullet 3).
4068
2.46M
  if (ImplicitConversionSequence::CompareKind QualCK
4069
197
        = CompareQualificationConversions(S, SCS1, SCS2))
4070
197
    return QualCK;
4071
4072
2.46M
  if (SCS1.ReferenceBinding && 
SCS2.ReferenceBinding219k
) {
4073
    // C++ [over.ics.rank]p3b4:
4074
    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
4075
    //      which the references refer are the same type except for
4076
    //      top-level cv-qualifiers, and the type to which the reference
4077
    //      initialized by S2 refers is more cv-qualified than the type
4078
    //      to which the reference initialized by S1 refers.
4079
215k
    QualType T1 = SCS1.getToType(2);
4080
215k
    QualType T2 = SCS2.getToType(2);
4081
215k
    T1 = S.Context.getCanonicalType(T1);
4082
215k
    T2 = S.Context.getCanonicalType(T2);
4083
215k
    Qualifiers T1Quals, T2Quals;
4084
215k
    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4085
215k
    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4086
215k
    if (UnqualT1 == UnqualT2) {
4087
      // Objective-C++ ARC: If the references refer to objects with different
4088
      // lifetimes, prefer bindings that don't change lifetime.
4089
215k
      if (SCS1.ObjCLifetimeConversionBinding !=
4090
2
                                          SCS2.ObjCLifetimeConversionBinding) {
4091
2
        return SCS1.ObjCLifetimeConversionBinding
4092
0
                                           ? ImplicitConversionSequence::Worse
4093
2
                                           : ImplicitConversionSequence::Better;
4094
2
      }
4095
4096
      // If the type is an array type, promote the element qualifiers to the
4097
      // type for comparison.
4098
215k
      if (isa<ArrayType>(T1) && 
T1Quals69
)
4099
63
        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4100
215k
      if (isa<ArrayType>(T2) && 
T2Quals69
)
4101
63
        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4102
215k
      if (T2.isMoreQualifiedThan(T1))
4103
52.8k
        return ImplicitConversionSequence::Better;
4104
162k
      if (T1.isMoreQualifiedThan(T2))
4105
34.1k
        return ImplicitConversionSequence::Worse;
4106
2.37M
    }
4107
215k
  }
4108
4109
  // In Microsoft mode, prefer an integral conversion to a
4110
  // floating-to-integral conversion if the integral conversion
4111
  // is between types of the same size.
4112
  // For example:
4113
  // void f(float);
4114
  // void f(int);
4115
  // int main {
4116
  //    long a;
4117
  //    f(a);
4118
  // }
4119
  // Here, MSVC will call f(int) instead of generating a compile error
4120
  // as clang will do in standard mode.
4121
2.37M
  if (S.getLangOpts().MSVCCompat && 
SCS1.Second == ICK_Integral_Conversion16.1k
&&
4122
7.09k
      SCS2.Second == ICK_Floating_Integral &&
4123
2.49k
      S.Context.getTypeSize(SCS1.getFromType()) ==
4124
2.49k
          S.Context.getTypeSize(SCS1.getToType(2)))
4125
540
    return ImplicitConversionSequence::Better;
4126
4127
  // Prefer a compatible vector conversion over a lax vector conversion
4128
  // For example:
4129
  //
4130
  // typedef float __v4sf __attribute__((__vector_size__(16)));
4131
  // void f(vector float);
4132
  // void f(vector signed int);
4133
  // int main() {
4134
  //   __v4sf a;
4135
  //   f(a);
4136
  // }
4137
  // Here, we'd like to choose f(vector float) and not
4138
  // report an ambiguous call error
4139
2.37M
  if (SCS1.Second == ICK_Vector_Conversion &&
4140
529k
      SCS2.Second == ICK_Vector_Conversion) {
4141
529k
    bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4142
529k
        SCS1.getFromType(), SCS1.getToType(2));
4143
529k
    bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4144
529k
        SCS2.getFromType(), SCS2.getToType(2));
4145
4146
529k
    if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4147
60.8k
      return SCS1IsCompatibleVectorConversion
4148
42.9k
                 ? ImplicitConversionSequence::Better
4149
17.9k
                 : ImplicitConversionSequence::Worse;
4150
2.31M
  }
4151
4152
2.31M
  if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4153
178
      SCS2.Second == ICK_SVE_Vector_Conversion) {
4154
178
    bool SCS1IsCompatibleSVEVectorConversion =
4155
178
        S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4156
178
    bool SCS2IsCompatibleSVEVectorConversion =
4157
178
        S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4158
4159
178
    if (SCS1IsCompatibleSVEVectorConversion !=
4160
178
        SCS2IsCompatibleSVEVectorConversion)
4161
148
      return SCS1IsCompatibleSVEVectorConversion
4162
128
                 ? ImplicitConversionSequence::Better
4163
20
                 : ImplicitConversionSequence::Worse;
4164
2.31M
  }
4165
4166
2.31M
  return ImplicitConversionSequence::Indistinguishable;
4167
2.31M
}
4168
4169
/// CompareQualificationConversions - Compares two standard conversion
4170
/// sequences to determine whether they can be ranked based on their
4171
/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4172
static ImplicitConversionSequence::CompareKind
4173
CompareQualificationConversions(Sema &S,
4174
                                const StandardConversionSequence& SCS1,
4175
2.46M
                                const StandardConversionSequence& SCS2) {
4176
  // C++ 13.3.3.2p3:
4177
  //  -- S1 and S2 differ only in their qualification conversion and
4178
  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
4179
  //     cv-qualification signature of type T1 is a proper subset of
4180
  //     the cv-qualification signature of type T2, and S1 is not the
4181
  //     deprecated string literal array-to-pointer conversion (4.2).
4182
2.46M
  if (SCS1.First != SCS2.First || 
SCS1.Second != SCS2.Second2.45M
||
4183
2.34M
      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4184
2.46M
    return ImplicitConversionSequence::Indistinguishable;
4185
4186
  // FIXME: the example in the standard doesn't use a qualification
4187
  // conversion (!)
4188
1.54k
  QualType T1 = SCS1.getToType(2);
4189
1.54k
  QualType T2 = SCS2.getToType(2);
4190
1.54k
  T1 = S.Context.getCanonicalType(T1);
4191
1.54k
  T2 = S.Context.getCanonicalType(T2);
4192
1.54k
  assert(!T1->isReferenceType() && !T2->isReferenceType());
4193
1.54k
  Qualifiers T1Quals, T2Quals;
4194
1.54k
  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4195
1.54k
  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4196
4197
  // If the types are the same, we won't learn anything by unwrapping
4198
  // them.
4199
1.54k
  if (UnqualT1 == UnqualT2)
4200
1.31k
    return ImplicitConversionSequence::Indistinguishable;
4201
4202
225
  ImplicitConversionSequence::CompareKind Result
4203
225
    = ImplicitConversionSequence::Indistinguishable;
4204
4205
  // Objective-C++ ARC:
4206
  //   Prefer qualification conversions not involving a change in lifetime
4207
  //   to qualification conversions that do not change lifetime.
4208
225
  if (SCS1.QualificationIncludesObjCLifetime !=
4209
4
                                      SCS2.QualificationIncludesObjCLifetime) {
4210
4
    Result = SCS1.QualificationIncludesObjCLifetime
4211
1
               ? ImplicitConversionSequence::Worse
4212
3
               : ImplicitConversionSequence::Better;
4213
4
  }
4214
4215
257
  while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4216
    // Within each iteration of the loop, we check the qualifiers to
4217
    // determine if this still looks like a qualification
4218
    // conversion. Then, if all is well, we unwrap one more level of
4219
    // pointers or pointers-to-members and do it all again
4220
    // until there are no more pointers or pointers-to-members left
4221
    // to unwrap. This essentially mimics what
4222
    // IsQualificationConversion does, but here we're checking for a
4223
    // strict subset of qualifiers.
4224
257
    if (T1.getQualifiers().withoutObjCLifetime() ==
4225
257
        T2.getQualifiers().withoutObjCLifetime())
4226
      // The qualifiers are the same, so this doesn't tell us anything
4227
      // about how the sequences rank.
4228
      // ObjC ownership quals are omitted above as they interfere with
4229
      // the ARC overload rule.
4230
28
      ;
4231
229
    else if (T2.isMoreQualifiedThan(T1)) {
4232
      // T1 has fewer qualifiers, so it could be the better sequence.
4233
112
      if (Result == ImplicitConversionSequence::Worse)
4234
        // Neither has qualifiers that are a subset of the other's
4235
        // qualifiers.
4236
6
        return ImplicitConversionSequence::Indistinguishable;
4237
4238
106
      Result = ImplicitConversionSequence::Better;
4239
117
    } else if (T1.isMoreQualifiedThan(T2)) {
4240
      // T2 has fewer qualifiers, so it could be the better sequence.
4241
105
      if (Result == ImplicitConversionSequence::Better)
4242
        // Neither has qualifiers that are a subset of the other's
4243
        // qualifiers.
4244
6
        return ImplicitConversionSequence::Indistinguishable;
4245
4246
99
      Result = ImplicitConversionSequence::Worse;
4247
12
    } else {
4248
      // Qualifiers are disjoint.
4249
12
      return ImplicitConversionSequence::Indistinguishable;
4250
12
    }
4251
4252
    // If the types after this point are equivalent, we're done.
4253
233
    if (S.Context.hasSameUnqualifiedType(T1, T2))
4254
201
      break;
4255
233
  }
4256
4257
  // Check that the winning standard conversion sequence isn't using
4258
  // the deprecated string literal array to pointer conversion.
4259
201
  switch (Result) {
4260
103
  case ImplicitConversionSequence::Better:
4261
103
    if (SCS1.DeprecatedStringLiteralToCharPtr)
4262
0
      Result = ImplicitConversionSequence::Indistinguishable;
4263
103
    break;
4264
4265
4
  case ImplicitConversionSequence::Indistinguishable:
4266
4
    break;
4267
4268
94
  case ImplicitConversionSequence::Worse:
4269
94
    if (SCS2.DeprecatedStringLiteralToCharPtr)
4270
0
      Result = ImplicitConversionSequence::Indistinguishable;
4271
94
    break;
4272
201
  }
4273
4274
201
  return Result;
4275
201
}
4276
4277
/// CompareDerivedToBaseConversions - Compares two standard conversion
4278
/// sequences to determine whether they can be ranked based on their
4279
/// various kinds of derived-to-base conversions (C++
4280
/// [over.ics.rank]p4b3).  As part of these checks, we also look at
4281
/// conversions between Objective-C interface types.
4282
static ImplicitConversionSequence::CompareKind
4283
CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4284
                                const StandardConversionSequence& SCS1,
4285
2.70M
                                const StandardConversionSequence& SCS2) {
4286
2.70M
  QualType FromType1 = SCS1.getFromType();
4287
2.70M
  QualType ToType1 = SCS1.getToType(1);
4288
2.70M
  QualType FromType2 = SCS2.getFromType();
4289
2.70M
  QualType ToType2 = SCS2.getToType(1);
4290
4291
  // Adjust the types we're converting from via the array-to-pointer
4292
  // conversion, if we need to.
4293
2.70M
  if (SCS1.First == ICK_Array_To_Pointer)
4294
2.71k
    FromType1 = S.Context.getArrayDecayedType(FromType1);
4295
2.70M
  if (SCS2.First == ICK_Array_To_Pointer)
4296
2.73k
    FromType2 = S.Context.getArrayDecayedType(FromType2);
4297
4298
  // Canonicalize all of the types.
4299
2.70M
  FromType1 = S.Context.getCanonicalType(FromType1);
4300
2.70M
  ToType1 = S.Context.getCanonicalType(ToType1);
4301
2.70M
  FromType2 = S.Context.getCanonicalType(FromType2);
4302
2.70M
  ToType2 = S.Context.getCanonicalType(ToType2);
4303
4304
  // C++ [over.ics.rank]p4b3:
4305
  //
4306
  //   If class B is derived directly or indirectly from class A and
4307
  //   class C is derived directly or indirectly from B,
4308
  //
4309
  // Compare based on pointer conversions.
4310
2.70M
  if (SCS1.Second == ICK_Pointer_Conversion &&
4311
1.71k
      SCS2.Second == ICK_Pointer_Conversion &&
4312
      /*FIXME: Remove if Objective-C id conversions get their own rank*/
4313
1.70k
      FromType1->isPointerType() && 
FromType2->isPointerType()644
&&
4314
644
      ToType1->isPointerType() && ToType2->isPointerType()) {
4315
644
    QualType FromPointee1 =
4316
644
        FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4317
644
    QualType ToPointee1 =
4318
644
        ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4319
644
    QualType FromPointee2 =
4320
644
        FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4321
644
    QualType ToPointee2 =
4322
644
        ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4323
4324
    //   -- conversion of C* to B* is better than conversion of C* to A*,
4325
644
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4326
476
      if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4327
10
        return ImplicitConversionSequence::Better;
4328
466
      else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4329
10
        return ImplicitConversionSequence::Worse;
4330
624
    }
4331
4332
    //   -- conversion of B* to A* is better than conversion of C* to A*,
4333
624
    if (FromPointee1 != FromPointee2 && 
ToPointee1 == ToPointee20
) {
4334
0
      if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4335
0
        return ImplicitConversionSequence::Better;
4336
0
      else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4337
0
        return ImplicitConversionSequence::Worse;
4338
2.70M
    }
4339
2.70M
  } else if (SCS1.Second == ICK_Pointer_Conversion &&
4340
1.06k
             SCS2.Second == ICK_Pointer_Conversion) {
4341
1.06k
    const ObjCObjectPointerType *FromPtr1
4342
1.06k
      = FromType1->getAs<ObjCObjectPointerType>();
4343
1.06k
    const ObjCObjectPointerType *FromPtr2
4344
1.06k
      = FromType2->getAs<ObjCObjectPointerType>();
4345
1.06k
    const ObjCObjectPointerType *ToPtr1
4346
1.06k
      = ToType1->getAs<ObjCObjectPointerType>();
4347
1.06k
    const ObjCObjectPointerType *ToPtr2
4348
1.06k
      = ToType2->getAs<ObjCObjectPointerType>();
4349
4350
1.06k
    if (FromPtr1 && 
FromPtr234
&&
ToPtr134
&&
ToPtr234
) {
4351
      // Apply the same conversion ranking rules for Objective-C pointer types
4352
      // that we do for C++ pointers to class types. However, we employ the
4353
      // Objective-C pseudo-subtyping relationship used for assignment of
4354
      // Objective-C pointer types.
4355
34
      bool FromAssignLeft
4356
34
        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4357
34
      bool FromAssignRight
4358
34
        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4359
34
      bool ToAssignLeft
4360
34
        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4361
34
      bool ToAssignRight
4362
34
        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4363
4364
      // A conversion to an a non-id object pointer type or qualified 'id'
4365
      // type is better than a conversion to 'id'.
4366
34
      if (ToPtr1->isObjCIdType() &&
4367
5
          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4368
1
        return ImplicitConversionSequence::Worse;
4369
33
      if (ToPtr2->isObjCIdType() &&
4370
9
          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4371
5
        return ImplicitConversionSequence::Better;
4372
4373
      // A conversion to a non-id object pointer type is better than a
4374
      // conversion to a qualified 'id' type
4375
28
      if (ToPtr1->isObjCQualifiedIdType() && 
ToPtr2->getInterfaceDecl()4
)
4376
0
        return ImplicitConversionSequence::Worse;
4377
28
      if (ToPtr2->isObjCQualifiedIdType() && 
ToPtr1->getInterfaceDecl()6
)
4378
2
        return ImplicitConversionSequence::Better;
4379
4380
      // A conversion to an a non-Class object pointer type or qualified 'Class'
4381
      // type is better than a conversion to 'Class'.
4382
26
      if (ToPtr1->isObjCClassType() &&
4383
0
          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4384
0
        return ImplicitConversionSequence::Worse;
4385
26
      if (ToPtr2->isObjCClassType() &&
4386
0
          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4387
0
        return ImplicitConversionSequence::Better;
4388
4389
      // A conversion to a non-Class object pointer type is better than a
4390
      // conversion to a qualified 'Class' type.
4391
26
      if (ToPtr1->isObjCQualifiedClassType() && 
ToPtr2->getInterfaceDecl()0
)
4392
0
        return ImplicitConversionSequence::Worse;
4393
26
      if (ToPtr2->isObjCQualifiedClassType() && 
ToPtr1->getInterfaceDecl()0
)
4394
0
        return ImplicitConversionSequence::Better;
4395
4396
      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
4397
26
      if (S.Context.hasSameType(FromType1, FromType2) &&
4398
14
          !FromPtr1->isObjCIdType() && 
!FromPtr1->isObjCClassType()10
&&
4399
10
          (ToAssignLeft != ToAssignRight)) {
4400
6
        if (FromPtr1->isSpecialized()) {
4401
          // "conversion of B<A> * to B * is better than conversion of B * to
4402
          // C *.
4403
4
          bool IsFirstSame =
4404
4
              FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4405
4
          bool IsSecondSame =
4406
4
              FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4407
4
          if (IsFirstSame) {
4408
3
            if (!IsSecondSame)
4409
3
              return ImplicitConversionSequence::Better;
4410
1
          } else if (IsSecondSame)
4411
1
            return ImplicitConversionSequence::Worse;
4412
2
        }
4413
2
        return ToAssignLeft? 
ImplicitConversionSequence::Worse1
4414
1
                           : ImplicitConversionSequence::Better;
4415
2
      }
4416
4417
      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
4418
20
      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4419
12
          (FromAssignLeft != FromAssignRight))
4420
12
        return FromAssignLeft? ImplicitConversionSequence::Better
4421
0
        : ImplicitConversionSequence::Worse;
4422
2.70M
    }
4423
1.06k
  }
4424
4425
  // Ranking of member-pointer types.
4426
2.70M
  if (SCS1.Second == ICK_Pointer_Member && 
SCS2.Second == ICK_Pointer_Member599
&&
4427
597
      FromType1->isMemberPointerType() && 
FromType2->isMemberPointerType()24
&&
4428
24
      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4429
24
    const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4430
24
    const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4431
24
    const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4432
24
    const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4433
24
    const Type *FromPointeeType1 = FromMemPointer1->getClass();
4434
24
    const Type *ToPointeeType1 = ToMemPointer1->getClass();
4435
24
    const Type *FromPointeeType2 = FromMemPointer2->getClass();
4436
24
    const Type *ToPointeeType2 = ToMemPointer2->getClass();
4437
24
    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4438
24
    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4439
24
    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4440
24
    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4441
    // conversion of A::* to B::* is better than conversion of A::* to C::*,
4442
24
    if (FromPointee1 == FromPointee2 && 
ToPointee1 != ToPointee28
) {
4443
8
      if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4444
2
        return ImplicitConversionSequence::Worse;
4445
6
      else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4446
6
        return ImplicitConversionSequence::Better;
4447
16
    }
4448
    // conversion of B::* to C::* is better than conversion of A::* to C::*
4449
16
    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4450
16
      if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4451
16
        return ImplicitConversionSequence::Better;
4452
0
      else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4453
0
        return ImplicitConversionSequence::Worse;
4454
2.70M
    }
4455
16
  }
4456
4457
2.70M
  if (SCS1.Second == ICK_Derived_To_Base) {
4458
    //   -- conversion of C to B is better than conversion of C to A,
4459
    //   -- binding of an expression of type C to a reference of type
4460
    //      B& is better than binding an expression of type C to a
4461
    //      reference of type A&,
4462
7.97k
    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4463
7.94k
        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4464
533
      if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4465
433
        return ImplicitConversionSequence::Better;
4466
100
      else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4467
12
        return ImplicitConversionSequence::Worse;
4468
7.52k
    }
4469
4470
    //   -- conversion of B to A is better than conversion of C to A.
4471
    //   -- binding of an expression of type B to a reference of type
4472
    //      A& is better than binding an expression of type C to a
4473
    //      reference of type A&,
4474
7.52k
    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4475
28
        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4476
28
      if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4477
2
        return ImplicitConversionSequence::Better;
4478
26
      else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4479
2
        return ImplicitConversionSequence::Worse;
4480
2.70M
    }
4481
7.52k
  }
4482
4483
2.70M
  return ImplicitConversionSequence::Indistinguishable;
4484
2.70M
}
4485
4486
/// Determine whether the given type is valid, e.g., it is not an invalid
4487
/// C++ class.
4488
8.65M
static bool isTypeValid(QualType T) {
4489
8.65M
  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4490
3.59M
    return !Record->isInvalidDecl();
4491
4492
5.05M
  return true;
4493
5.05M
}
4494
4495
9.57M
static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4496
9.57M
  if (!T.getQualifiers().hasUnaligned())
4497
9.57M
    return T;
4498
4499
15
  Qualifiers Q;
4500
15
  T = Ctx.getUnqualifiedArrayType(T, Q);
4501
15
  Q.removeUnaligned();
4502
15
  return Ctx.getQualifiedType(T, Q);
4503
15
}
4504
4505
/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4506
/// determine whether they are reference-compatible,
4507
/// reference-related, or incompatible, for use in C++ initialization by
4508
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4509
/// type, and the first type (T1) is the pointee type of the reference
4510
/// type being initialized.
4511
Sema::ReferenceCompareResult
4512
Sema::CompareReferenceRelationship(SourceLocation Loc,
4513
                                   QualType OrigT1, QualType OrigT2,
4514
5.47M
                                   ReferenceConversions *ConvOut) {
4515
5.47M
  assert(!OrigT1->isReferenceType() &&
4516
5.47M
    "T1 must be the pointee type of the reference type");
4517
5.47M
  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4518
4519
5.47M
  QualType T1 = Context.getCanonicalType(OrigT1);
4520
5.47M
  QualType T2 = Context.getCanonicalType(OrigT2);
4521
5.47M
  Qualifiers T1Quals, T2Quals;
4522
5.47M
  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4523
5.47M
  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4524
4525
5.47M
  ReferenceConversions ConvTmp;
4526
5.46M
  ReferenceConversions &Conv = ConvOut ? *ConvOut : 
ConvTmp11.9k
;
4527
5.47M
  Conv = ReferenceConversions();
4528
4529
  // C++2a [dcl.init.ref]p4:
4530
  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4531
  //   reference-related to "cv2 T2" if T1 is similar to T2, or
4532
  //   T1 is a base class of T2.
4533
  //   "cv1 T1" is reference-compatible with "cv2 T2" if
4534
  //   a prvalue of type "pointer to cv2 T2" can be converted to the type
4535
  //   "pointer to cv1 T1" via a standard conversion sequence.
4536
4537
  // Check for standard conversions we can apply to pointers: derived-to-base
4538
  // conversions, ObjC pointer conversions, and function pointer conversions.
4539
  // (Qualification conversions are checked last.)
4540
5.47M
  QualType ConvertedT2;
4541
5.47M
  if (UnqualT1 == UnqualT2) {
4542
    // Nothing to do.
4543
4.33M
  } else if (isCompleteType(Loc, OrigT2) &&
4544
4.32M
             isTypeValid(UnqualT1) && 
isTypeValid(UnqualT2)4.32M
&&
4545
4.32M
             IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4546
14.6k
    Conv |= ReferenceConversions::DerivedToBase;
4547
4.32M
  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4548
47
           UnqualT2->isObjCObjectOrInterfaceType() &&
4549
32
           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4550
32
    Conv |= ReferenceConversions::ObjC;
4551
4.32M
  else if (UnqualT2->isFunctionType() &&
4552
2.45k
           IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4553
36
    Conv |= ReferenceConversions::Function;
4554
    // No need to check qualifiers; function types don't have them.
4555
36
    return Ref_Compatible;
4556
36
  }
4557
5.47M
  bool ConvertedReferent = Conv != 0;
4558
4559
  // We can have a qualification conversion. Compute whether the types are
4560
  // similar at the same time.
4561
5.47M
  bool PreviousToQualsIncludeConst = true;
4562
5.47M
  bool TopLevel = true;
4563
5.47M
  do {
4564
5.47M
    if (T1 == T2)
4565
692k
      break;
4566
4567
    // We will need a qualification conversion.
4568
4.78M
    Conv |= ReferenceConversions::Qualification;
4569
4570
    // Track whether we performed a qualification conversion anywhere other
4571
    // than the top level. This matters for ranking reference bindings in
4572
    // overload resolution.
4573
4.78M
    if (!TopLevel)
4574
949
      Conv |= ReferenceConversions::NestedQualification;
4575
4576
    // MS compiler ignores __unaligned qualifier for references; do the same.
4577
4.78M
    T1 = withoutUnaligned(Context, T1);
4578
4.78M
    T2 = withoutUnaligned(Context, T2);
4579
4580
    // If we find a qualifier mismatch, the types are not reference-compatible,
4581
    // but are still be reference-related if they're similar.
4582
4.78M
    bool ObjCLifetimeConversion = false;
4583
4.78M
    if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4584
4.78M
                                       PreviousToQualsIncludeConst,
4585
4.78M
                                       ObjCLifetimeConversion))
4586
108k
      return (ConvertedReferent || 
Context.hasSimilarType(T1, T2)108k
)
4587
56.1k
                 ? Ref_Related
4588
52.6k
                 : Ref_Incompatible;
4589
4590
    // FIXME: Should we track this for any level other than the first?
4591
4.67M
    if (ObjCLifetimeConversion)
4592
29
      Conv |= ReferenceConversions::ObjCLifetime;
4593
4594
4.67M
    TopLevel = false;
4595
4.67M
  } while (Context.UnwrapSimilarTypes(T1, T2));
4596
4597
  // At this point, if the types are reference-related, we must either have the
4598
  // same inner type (ignoring qualifiers), or must have already worked out how
4599
  // to convert the referent.
4600
5.36M
  return (ConvertedReferent || 
Context.hasSameUnqualifiedType(T1, T2)5.35M
)
4601
1.09M
             ? Ref_Compatible
4602
4.26M
             : Ref_Incompatible;
4603
5.47M
}
4604
4605
/// Look for a user-defined conversion to a value reference-compatible
4606
///        with DeclType. Return true if something definite is found.
4607
static bool
4608
FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4609
                         QualType DeclType, SourceLocation DeclLoc,
4610
                         Expr *Init, QualType T2, bool AllowRvalues,
4611
1.82M
                         bool AllowExplicit) {
4612
1.82M
  assert(T2->isRecordType() && "Can only find conversions of record types.");
4613
1.82M
  auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4614
4615
1.82M
  OverloadCandidateSet CandidateSet(
4616
1.82M
      DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4617
1.82M
  const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4618
2.02M
  for (auto I = Conversions.begin(), E = Conversions.end(); I != E; 
++I198k
) {
4619
198k
    NamedDecl *D = *I;
4620
198k
    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4621
198k
    if (isa<UsingShadowDecl>(D))
4622
0
      D = cast<UsingShadowDecl>(D)->getTargetDecl();
4623
4624
198k
    FunctionTemplateDecl *ConvTemplate
4625
198k
      = dyn_cast<FunctionTemplateDecl>(D);
4626
198k
    CXXConversionDecl *Conv;
4627
198k
    if (ConvTemplate)
4628
50
      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4629
198k
    else
4630
198k
      Conv = cast<CXXConversionDecl>(D);
4631
4632
198k
    if (AllowRvalues) {
4633
      // If we are initializing an rvalue reference, don't permit conversion
4634
      // functions that return lvalues.
4635
8.43k
      if (!ConvTemplate && 
DeclType->isRValueReferenceType()8.39k
) {
4636
1.66k
        const ReferenceType *RefType
4637
1.66k
          = Conv->getConversionType()->getAs<LValueReferenceType>();
4638
1.66k
        if (RefType && 
!RefType->getPointeeType()->isFunctionType()92
)
4639
85
          continue;
4640
8.34k
      }
4641
4642
8.34k
      if (!ConvTemplate &&
4643
8.31k
          S.CompareReferenceRelationship(
4644
8.31k
              DeclLoc,
4645
8.31k
              Conv->getConversionType()
4646
8.31k
                  .getNonReferenceType()
4647
8.31k
                  .getUnqualifiedType(),
4648
8.31k
              DeclType.getNonReferenceType().getUnqualifiedType()) ==
4649
8.31k
              Sema::Ref_Incompatible)
4650
6.91k
        continue;
4651
190k
    } else {
4652
      // If the conversion function doesn't return a reference type,
4653
      // it can't be considered for this conversion. An rvalue reference
4654
      // is only acceptable if its referencee is a function type.
4655
4656
190k
      const ReferenceType *RefType =
4657
190k
        Conv->getConversionType()->getAs<ReferenceType>();
4658
190k
      if (!RefType ||
4659
42.7k
          (!RefType->isLValueReferenceType() &&
4660
2
           !RefType->getPointeeType()->isFunctionType()))
4661
147k
        continue;
4662
44.2k
    }
4663
4664
44.2k
    if (ConvTemplate)
4665
37
      S.AddTemplateConversionCandidate(
4666
37
          ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4667
37
          /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4668
44.1k
    else
4669
44.1k
      S.AddConversionCandidate(
4670
44.1k
          Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4671
44.1k
          /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4672
44.2k
  }
4673
4674
1.82M
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4675
4676
1.82M
  OverloadCandidateSet::iterator Best;
4677
1.82M
  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4678
2.11k
  case OR_Success:
4679
    // C++ [over.ics.ref]p1:
4680
    //
4681
    //   [...] If the parameter binds directly to the result of
4682
    //   applying a conversion function to the argument
4683
    //   expression, the implicit conversion sequence is a
4684
    //   user-defined conversion sequence (13.3.3.1.2), with the
4685
    //   second standard conversion sequence either an identity
4686
    //   conversion or, if the conversion function returns an
4687
    //   entity of a type that is a derived class of the parameter
4688
    //   type, a derived-to-base Conversion.
4689
2.11k
    if (!Best->FinalConversion.DirectBinding)
4690
43
      return false;
4691
4692
2.06k
    ICS.setUserDefined();
4693
2.06k
    ICS.UserDefined.Before = Best->Conversions[0].Standard;
4694
2.06k
    ICS.UserDefined.After = Best->FinalConversion;
4695
2.06k
    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4696
2.06k
    ICS.UserDefined.ConversionFunction = Best->Function;
4697
2.06k
    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4698
2.06k
    ICS.UserDefined.EllipsisConversion = false;
4699
2.06k
    assert(ICS.UserDefined.After.ReferenceBinding &&
4700
2.06k
           ICS.UserDefined.After.DirectBinding &&
4701
2.06k
           "Expected a direct reference binding!");
4702
2.06k
    return true;
4703
4704
1
  case OR_Ambiguous:
4705
1
    ICS.setAmbiguous();
4706
1
    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4707
3
         Cand != CandidateSet.end(); 
++Cand2
)
4708
2
      if (Cand->Best)
4709
2
        ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4710
1
    return true;
4711
4712
1.82M
  case OR_No_Viable_Function:
4713
1.82M
  case OR_Deleted:
4714
    // There was no suitable conversion, or we found a deleted
4715
    // conversion; continue with other checks.
4716
1.82M
    return false;
4717
0
  }
4718
4719
0
  llvm_unreachable("Invalid OverloadResult!");
4720
0
}
4721
4722
/// Compute an implicit conversion sequence for reference
4723
/// initialization.
4724
static ImplicitConversionSequence
4725
TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4726
                 SourceLocation DeclLoc,
4727
                 bool SuppressUserConversions,
4728
4.95M
                 bool AllowExplicit) {
4729
4.95M
  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4730
4731
  // Most paths end in a failed conversion.
4732
4.95M
  ImplicitConversionSequence ICS;
4733
4.95M
  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4734
4735
4.95M
  QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4736
4.95M
  QualType T2 = Init->getType();
4737
4738
  // If the initializer is the address of an overloaded function, try
4739
  // to resolve the overloaded function. If all goes well, T2 is the
4740
  // type of the resulting function.
4741
4.95M
  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4742
353
    DeclAccessPair Found;
4743
353
    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4744
87
                                                                false, Found))
4745
87
      T2 = Fn->getType();
4746
353
  }
4747
4748
  // Compute some basic properties of the types and the initializer.
4749
4.95M
  bool isRValRef = DeclType->isRValueReferenceType();
4750
4.95M
  Expr::Classification InitCategory = Init->Classify(S.Context);
4751
4752
4.95M
  Sema::ReferenceConversions RefConv;
4753
4.95M
  Sema::ReferenceCompareResult RefRelationship =
4754
4.95M
      S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4755
4756
590k
  auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4757
590k
    ICS.setStandard();
4758
590k
    ICS.Standard.First = ICK_Identity;
4759
    // FIXME: A reference binding can be a function conversion too. We should
4760
    // consider that when ordering reference-to-function bindings.
4761
590k
    ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4762
3.39k
                              ? ICK_Derived_To_Base
4763
586k
                              : (RefConv & Sema::ReferenceConversions::ObjC)
4764
17
                                    ? ICK_Compatible_Conversion
4765
586k
                                    : ICK_Identity;
4766
    // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4767
    // a reference binding that performs a non-top-level qualification
4768
    // conversion as a qualification conversion, not as an identity conversion.
4769
590k
    ICS.Standard.Third = (RefConv &
4770
590k
                              Sema::ReferenceConversions::NestedQualification)
4771
17
                             ? ICK_Qualification
4772
589k
                             : ICK_Identity;
4773
590k
    ICS.Standard.setFromType(T2);
4774
590k
    ICS.Standard.setToType(0, T2);
4775
590k
    ICS.Standard.setToType(1, T1);
4776
590k
    ICS.Standard.setToType(2, T1);
4777
590k
    ICS.Standard.ReferenceBinding = true;
4778
590k
    ICS.Standard.DirectBinding = BindsDirectly;
4779
590k
    ICS.Standard.IsLvalueReference = !isRValRef;
4780
590k
    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4781
590k
    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4782
590k
    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4783
590k
    ICS.Standard.ObjCLifetimeConversionBinding =
4784
590k
        (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4785
590k
    ICS.Standard.CopyConstructor = nullptr;
4786
590k
    ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4787
590k
  };
4788
4789
  // C++0x [dcl.init.ref]p5:
4790
  //   A reference to type "cv1 T1" is initialized by an expression
4791
  //   of type "cv2 T2" as follows:
4792
4793
  //     -- If reference is an lvalue reference and the initializer expression
4794
4.95M
  if (!isRValRef) {
4795
    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4796
    //        reference-compatible with "cv2 T2," or
4797
    //
4798
    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4799
4.57M
    if (InitCategory.isLValue() && 
RefRelationship == Sema::Ref_Compatible4.21M
) {
4800
      // C++ [over.ics.ref]p1:
4801
      //   When a parameter of reference type binds directly (8.5.3)
4802
      //   to an argument expression, the implicit conversion sequence
4803
      //   is the identity conversion, unless the argument expression
4804
      //   has a type that is a derived class of the parameter type,
4805
      //   in which case the implicit conversion sequence is a
4806
      //   derived-to-base Conversion (13.3.3.1).
4807
285k
      SetAsReferenceBinding(/*BindsDirectly=*/true);
4808
4809
      // Nothing more to do: the inaccessibility/ambiguity check for
4810
      // derived-to-base conversions is suppressed when we're
4811
      // computing the implicit conversion sequence (C++
4812
      // [over.best.ics]p2).
4813
285k
      return ICS;
4814
285k
    }
4815
4816
    //       -- has a class type (i.e., T2 is a class type), where T1 is
4817
    //          not reference-related to T2, and can be implicitly
4818
    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4819
    //          is reference-compatible with "cv3 T3" 92) (this
4820
    //          conversion is selected by enumerating the applicable
4821
    //          conversion functions (13.3.1.6) and choosing the best
4822
    //          one through overload resolution (13.3)),
4823
4.28M
    if (!SuppressUserConversions && 
T2->isRecordType()2.00M
&&
4824
1.90M
        S.isCompleteType(DeclLoc, T2) &&
4825
1.89M
        RefRelationship == Sema::Ref_Incompatible) {
4826
1.77M
      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4827
1.77M
                                   Init, T2, /*AllowRvalues=*/false,
4828
1.77M
                                   AllowExplicit))
4829
698
        return ICS;
4830
4.66M
    }
4831
4.28M
  }
4832
4833
  //     -- Otherwise, the reference shall be an lvalue reference to a
4834
  //        non-volatile const type (i.e., cv1 shall be const), or the reference
4835
  //        shall be an rvalue reference.
4836
4.66M
  if (!isRValRef && 
(4.28M
!T1.isConstQualified()4.28M
||
T1.isVolatileQualified()458k
)) {
4837
3.82M
    if (InitCategory.isRValue() && 
RefRelationship != Sema::Ref_Incompatible25.3k
)
4838
417
      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4839
3.82M
    return ICS;
4840
3.82M
  }
4841
4842
  //       -- If the initializer expression
4843
  //
4844
  //            -- is an xvalue, class prvalue, array prvalue or function
4845
  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4846
836k
  if (RefRelationship == Sema::Ref_Compatible &&
4847
362k
      (InitCategory.isXValue() ||
4848
302k
       (InitCategory.isPRValue() &&
4849
263k
          (T2->isRecordType() || 
T2->isArrayType()19.0k
)) ||
4850
304k
       
(58.1k
InitCategory.isLValue()58.1k
&&
T2->isFunctionType()39.0k
))) {
4851
    // In C++11, this is always a direct binding. In C++98/03, it's a direct
4852
    // binding unless we're binding to a class prvalue.
4853
    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4854
    // allow the use of rvalue references in C++98/03 for the benefit of
4855
    // standard library implementors; therefore, we need the xvalue check here.
4856
304k
    SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4857
4.59k
                          !(InitCategory.isPRValue() || 
T2->isRecordType()350
));
4858
304k
    return ICS;
4859
304k
  }
4860
4861
  //            -- has a class type (i.e., T2 is a class type), where T1 is not
4862
  //               reference-related to T2, and can be implicitly converted to
4863
  //               an xvalue, class prvalue, or function lvalue of type
4864
  //               "cv3 T3", where "cv1 T1" is reference-compatible with
4865
  //               "cv3 T3",
4866
  //
4867
  //          then the reference is bound to the value of the initializer
4868
  //          expression in the first case and to the result of the conversion
4869
  //          in the second case (or, in either case, to an appropriate base
4870
  //          class subobject).
4871
532k
  if (!SuppressUserConversions && 
RefRelationship == Sema::Ref_Incompatible199k
&&
4872
130k
      T2->isRecordType() && 
S.isCompleteType(DeclLoc, T2)51.1k
&&
4873
48.2k
      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4874
48.2k
                               Init, T2, /*AllowRvalues=*/true,
4875
1.37k
                               AllowExplicit)) {
4876
    // In the second case, if the reference is an rvalue reference
4877
    // and the second standard conversion sequence of the
4878
    // user-defined conversion sequence includes an lvalue-to-rvalue
4879
    // conversion, the program is ill-formed.
4880
1.37k
    if (ICS.isUserDefined() && isRValRef &&
4881
1.07k
        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4882
0
      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4883
4884
1.37k
    return ICS;
4885
1.37k
  }
4886
4887
  // A temporary of function type cannot be created; don't even try.
4888
530k
  if (T1->isFunctionType())
4889
0
    return ICS;
4890
4891
  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4892
  //          initialized from the initializer expression using the
4893
  //          rules for a non-reference copy initialization (8.5). The
4894
  //          reference is then bound to the temporary. If T1 is
4895
  //          reference-related to T2, cv1 must be the same
4896
  //          cv-qualification as, or greater cv-qualification than,
4897
  //          cv2; otherwise, the program is ill-formed.
4898
530k
  if (RefRelationship == Sema::Ref_Related) {
4899
    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4900
    // we would be reference-compatible or reference-compatible with
4901
    // added qualification. But that wasn't the case, so the reference
4902
    // initialization fails.
4903
    //
4904
    // Note that we only want to check address spaces and cvr-qualifiers here.
4905
    // ObjC GC, lifetime and unaligned qualifiers aren't important.
4906
54.7k
    Qualifiers T1Quals = T1.getQualifiers();
4907
54.7k
    Qualifiers T2Quals = T2.getQualifiers();
4908
54.7k
    T1Quals.removeObjCGCAttr();
4909
54.7k
    T1Quals.removeObjCLifetime();
4910
54.7k
    T2Quals.removeObjCGCAttr();
4911
54.7k
    T2Quals.removeObjCLifetime();
4912
    // MS compiler ignores __unaligned qualifier for references; do the same.
4913
54.7k
    T1Quals.removeUnaligned();
4914
54.7k
    T2Quals.removeUnaligned();
4915
54.7k
    if (!T1Quals.compatiblyIncludes(T2Quals))
4916
54.7k
      return ICS;
4917
476k
  }
4918
4919
  // If at least one of the types is a class type, the types are not
4920
  // related, and we aren't allowed any user conversions, the
4921
  // reference binding fails. This case is important for breaking
4922
  // recursion, since TryImplicitConversion below will attempt to
4923
  // create a temporary through the use of a copy constructor.
4924
476k
  if (SuppressUserConversions && 
RefRelationship == Sema::Ref_Incompatible290k
&&
4925
289k
      (T1->isRecordType() || 
T2->isRecordType()189
))
4926
289k
    return ICS;
4927
4928
  // If T1 is reference-related to T2 and the reference is an rvalue
4929
  // reference, the initializer expression shall not be an lvalue.
4930
186k
  if (RefRelationship >= Sema::Ref_Related && 
isRValRef57.7k
&&
4931
42.4k
      Init->Classify(S.Context).isLValue()) {
4932
38.6k
    ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
4933
38.6k
    return ICS;
4934
38.6k
  }
4935
4936
  // C++ [over.ics.ref]p2:
4937
  //   When a parameter of reference type is not bound directly to
4938
  //   an argument expression, the conversion sequence is the one
4939
  //   required to convert the argument expression to the
4940
  //   underlying type of the reference according to
4941
  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4942
  //   to copy-initializing a temporary of the underlying type with
4943
  //   the argument expression. Any difference in top-level
4944
  //   cv-qualification is subsumed by the initialization itself
4945
  //   and does not constitute a conversion.
4946
148k
  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4947
148k
                              AllowedExplicit::None,
4948
148k
                              /*InOverloadResolution=*/false,
4949
148k
                              /*CStyle=*/false,
4950
148k
                              /*AllowObjCWritebackConversion=*/false,
4951
148k
                              /*AllowObjCConversionOnExplicit=*/false);
4952
4953
  // Of course, that's still a reference binding.
4954
148k
  if (ICS.isStandard()) {
4955
21.2k
    ICS.Standard.ReferenceBinding = true;
4956
21.2k
    ICS.Standard.IsLvalueReference = !isRValRef;
4957
21.2k
    ICS.Standard.BindsToFunctionLvalue = false;
4958
21.2k
    ICS.Standard.BindsToRvalue = true;
4959
21.2k
    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4960
21.2k
    ICS.Standard.ObjCLifetimeConversionBinding = false;
4961
126k
  } else if (ICS.isUserDefined()) {
4962
23.9k
    const ReferenceType *LValRefType =
4963
23.9k
        ICS.UserDefined.ConversionFunction->getReturnType()
4964
23.9k
            ->getAs<LValueReferenceType>();
4965
4966
    // C++ [over.ics.ref]p3:
4967
    //   Except for an implicit object parameter, for which see 13.3.1, a
4968
    //   standard conversion sequence cannot be formed if it requires [...]
4969
    //   binding an rvalue reference to an lvalue other than a function
4970
    //   lvalue.
4971
    // Note that the function case is not possible here.
4972
23.9k
    if (isRValRef && 
LValRefType8.25k
) {
4973
23
      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4974
23
      return ICS;
4975
23
    }
4976
4977
23.8k
    ICS.UserDefined.After.ReferenceBinding = true;
4978
23.8k
    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4979
23.8k
    ICS.UserDefined.After.BindsToFunctionLvalue = false;
4980
23.8k
    ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4981
23.8k
    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4982
23.8k
    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4983
23.8k
  }
4984
4985
148k
  return ICS;
4986
148k
}
4987
4988
static ImplicitConversionSequence
4989
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4990
                      bool SuppressUserConversions,
4991
                      bool InOverloadResolution,
4992
                      bool AllowObjCWritebackConversion,
4993
                      bool AllowExplicit = false);
4994
4995
/// TryListConversion - Try to copy-initialize a value of type ToType from the
4996
/// initializer list From.
4997
static ImplicitConversionSequence
4998
TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4999
                  bool SuppressUserConversions,
5000
                  bool InOverloadResolution,
5001
3.31k
                  bool AllowObjCWritebackConversion) {
5002
  // C++11 [over.ics.list]p1:
5003
  //   When an argument is an initializer list, it is not an expression and
5004
  //   special rules apply for converting it to a parameter type.
5005
5006
3.31k
  ImplicitConversionSequence Result;
5007
3.31k
  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5008
5009
  // We need a complete type for what follows. Incomplete types can never be
5010
  // initialized from init lists.
5011
3.31k
  if (!S.isCompleteType(From->getBeginLoc(), ToType))
5012
0
    return Result;
5013
5014
  // Per DR1467:
5015
  //   If the parameter type is a class X and the initializer list has a single
5016
  //   element of type cv U, where U is X or a class derived from X, the
5017
  //   implicit conversion sequence is the one required to convert the element
5018
  //   to the parameter type.
5019
  //
5020
  //   Otherwise, if the parameter type is a character array [... ]
5021
  //   and the initializer list has a single element that is an
5022
  //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5023
  //   implicit conversion sequence is the identity conversion.
5024
3.31k
  if (From->getNumInits() == 1) {
5025
1.36k
    if (ToType->isRecordType()) {
5026
641
      QualType InitType = From->getInit(0)->getType();
5027
641
      if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5028
633
          S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5029
8
        return TryCopyInitialization(S, From->getInit(0), ToType,
5030
8
                                     SuppressUserConversions,
5031
8
                                     InOverloadResolution,
5032
8
                                     AllowObjCWritebackConversion);
5033
1.35k
    }
5034
5035
1.35k
    if (const auto *AT = S.Context.getAsArrayType(ToType)) {
5036
207
      if (S.IsStringInit(From->getInit(0), AT)) {
5037
26
        InitializedEntity Entity =
5038
26
          InitializedEntity::InitializeParameter(S.Context, ToType,
5039
26
                                                 /*Consumed=*/false);
5040
26
        if (S.CanPerformCopyInitialization(Entity, From)) {
5041
26
          Result.setStandard();
5042
26
          Result.Standard.setAsIdentityConversion();
5043
26
          Result.Standard.setFromType(ToType);
5044
26
          Result.Standard.setAllToTypes(ToType);
5045
26
          return Result;
5046
26
        }
5047
3.27k
      }
5048
207
    }
5049
1.35k
  }
5050
5051
  // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5052
  // C++11 [over.ics.list]p2:
5053
  //   If the parameter type is std::initializer_list<X> or "array of X" and
5054
  //   all the elements can be implicitly converted to X, the implicit
5055
  //   conversion sequence is the worst conversion necessary to convert an
5056
  //   element of the list to X.
5057
  //
5058
  // C++14 [over.ics.list]p3:
5059
  //   Otherwise, if the parameter type is "array of N X", if the initializer
5060
  //   list has exactly N elements or if it has fewer than N elements and X is
5061
  //   default-constructible, and if all the elements of the initializer list
5062
  //   can be implicitly converted to X, the implicit conversion sequence is
5063
  //   the worst conversion necessary to convert an element of the list to X.
5064
  //
5065
  // FIXME: We're missing a lot of these checks.
5066
3.27k
  bool toStdInitializerList = false;
5067
3.27k
  QualType X;
5068
3.27k
  if (ToType->isArrayType())
5069
368
    X = S.Context.getAsArrayType(ToType)->getElementType();
5070
2.91k
  else
5071
2.91k
    toStdInitializerList = S.isStdInitializerList(ToType, &X);
5072
3.27k
  if (!X.isNull()) {
5073
3.00k
    for (unsigned i = 0, e = From->getNumInits(); i < e; 
++i1.97k
) {
5074
2.12k
      Expr *Init = From->getInit(i);
5075
2.12k
      ImplicitConversionSequence ICS =
5076
2.12k
          TryCopyInitialization(S, Init, X, SuppressUserConversions,
5077
2.12k
                                InOverloadResolution,
5078
2.12k
                                AllowObjCWritebackConversion);
5079
      // If a single element isn't convertible, fail.
5080
2.12k
      if (ICS.isBad()) {
5081
155
        Result = ICS;
5082
155
        break;
5083
155
      }
5084
      // Otherwise, look for the worst conversion.
5085
1.97k
      if (Result.isBad() || CompareImplicitConversionSequences(
5086
1.15k
                                S, From->getBeginLoc(), ICS, Result) ==
5087
1.15k
                                ImplicitConversionSequence::Worse)
5088
824
        Result = ICS;
5089
1.97k
    }
5090
5091
    // For an empty list, we won't have computed any conversion sequence.
5092
    // Introduce the identity conversion sequence.
5093
1.02k
    if (From->getNumInits