Coverage Report

Created: 2022-01-25 06:29

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// These tablegen backends emit Clang attribute processing code
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "TableGenBackends.h"
14
#include "ASTTableGen.h"
15
16
#include "llvm/ADT/ArrayRef.h"
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/DenseSet.h"
19
#include "llvm/ADT/MapVector.h"
20
#include "llvm/ADT/STLExtras.h"
21
#include "llvm/ADT/SmallString.h"
22
#include "llvm/ADT/StringExtras.h"
23
#include "llvm/ADT/StringRef.h"
24
#include "llvm/ADT/StringSet.h"
25
#include "llvm/ADT/StringSwitch.h"
26
#include "llvm/ADT/iterator_range.h"
27
#include "llvm/Support/ErrorHandling.h"
28
#include "llvm/Support/raw_ostream.h"
29
#include "llvm/TableGen/Error.h"
30
#include "llvm/TableGen/Record.h"
31
#include "llvm/TableGen/StringMatcher.h"
32
#include "llvm/TableGen/TableGenBackend.h"
33
#include <algorithm>
34
#include <cassert>
35
#include <cctype>
36
#include <cstddef>
37
#include <cstdint>
38
#include <map>
39
#include <memory>
40
#include <set>
41
#include <sstream>
42
#include <string>
43
#include <utility>
44
#include <vector>
45
46
using namespace llvm;
47
48
namespace {
49
50
class FlattenedSpelling {
51
  std::string V, N, NS;
52
  bool K = false;
53
54
public:
55
  FlattenedSpelling(const std::string &Variety, const std::string &Name,
56
                    const std::string &Namespace, bool KnownToGCC) :
57
720
    V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {}
58
  explicit FlattenedSpelling(const Record &Spelling)
59
      : V(std::string(Spelling.getValueAsString("Variety"))),
60
142
        N(std::string(Spelling.getValueAsString("Name"))) {
61
142
    assert(V != "GCC" && V != "Clang" &&
62
142
           "Given a GCC spelling, which means this hasn't been flattened!");
63
142
    if (V == "CXX11" || 
V == "C2x"127
||
V == "Pragma"120
)
64
27
      NS = std::string(Spelling.getValueAsString("Namespace"));
65
142
  }
66
67
392
  const std::string &variety() const { return V; }
68
0
  const std::string &name() const { return N; }
69
0
  const std::string &nameSpace() const { return NS; }
70
0
  bool knownToGCC() const { return K; }
71
};
72
73
} // end anonymous namespace
74
75
static std::vector<FlattenedSpelling>
76
309
GetFlattenedSpellings(const Record &Attr) {
77
309
  std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
78
309
  std::vector<FlattenedSpelling> Ret;
79
80
392
  for (const auto &Spelling : Spellings) {
81
392
    StringRef Variety = Spelling->getValueAsString("Variety");
82
392
    StringRef Name = Spelling->getValueAsString("Name");
83
392
    if (Variety == "GCC") {
84
88
      Ret.emplace_back("GNU", std::string(Name), "", true);
85
88
      Ret.emplace_back("CXX11", std::string(Name), "gnu", true);
86
88
      if (Spelling->getValueAsBit("AllowInC"))
87
86
        Ret.emplace_back("C2x", std::string(Name), "gnu", true);
88
304
    } else if (Variety == "Clang") {
89
162
      Ret.emplace_back("GNU", std::string(Name), "", false);
90
162
      Ret.emplace_back("CXX11", std::string(Name), "clang", false);
91
162
      if (Spelling->getValueAsBit("AllowInC"))
92
134
        Ret.emplace_back("C2x", std::string(Name), "clang", false);
93
162
    } else
94
142
      Ret.push_back(FlattenedSpelling(*Spelling));
95
392
  }
96
97
309
  return Ret;
98
309
}
99
100
0
static std::string ReadPCHRecord(StringRef type) {
101
0
  return StringSwitch<std::string>(type)
102
0
      .EndsWith("Decl *", "Record.GetLocalDeclAs<" +
103
0
                              std::string(type.data(), 0, type.size() - 1) +
104
0
                              ">(Record.readInt())")
105
0
      .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
106
0
      .Case("Expr *", "Record.readExpr()")
107
0
      .Case("IdentifierInfo *", "Record.readIdentifier()")
108
0
      .Case("StringRef", "Record.readString()")
109
0
      .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
110
0
      .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
111
0
      .Default("Record.readInt()");
112
0
}
113
114
// Get a type that is suitable for storing an object of the specified type.
115
0
static StringRef getStorageType(StringRef type) {
116
0
  return StringSwitch<StringRef>(type)
117
0
    .Case("StringRef", "std::string")
118
0
    .Default(type);
119
0
}
120
121
// Assumes that the way to get the value is SA->getname()
122
0
static std::string WritePCHRecord(StringRef type, StringRef name) {
123
0
  return "Record." +
124
0
         StringSwitch<std::string>(type)
125
0
             .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
126
0
             .Case("TypeSourceInfo *",
127
0
                   "AddTypeSourceInfo(" + std::string(name) + ");\n")
128
0
             .Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
129
0
             .Case("IdentifierInfo *",
130
0
                   "AddIdentifierRef(" + std::string(name) + ");\n")
131
0
             .Case("StringRef", "AddString(" + std::string(name) + ");\n")
132
0
             .Case("ParamIdx",
133
0
                   "push_back(" + std::string(name) + ".serialize());\n")
134
0
             .Case("OMPTraitInfo *",
135
0
                   "writeOMPTraitInfo(" + std::string(name) + ");\n")
136
0
             .Default("push_back(" + std::string(name) + ");\n");
137
0
}
138
139
// Normalize attribute name by removing leading and trailing
140
// underscores. For example, __foo, foo__, __foo__ would
141
// become foo.
142
331
static StringRef NormalizeAttrName(StringRef AttrName) {
143
331
  AttrName.consume_front("__");
144
331
  AttrName.consume_back("__");
145
331
  return AttrName;
146
331
}
147
148
// Normalize the name by removing any and all leading and trailing underscores.
149
// This is different from NormalizeAttrName in that it also handles names like
150
// _pascal and __pascal.
151
0
static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
152
0
  return Name.trim("_");
153
0
}
154
155
// Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
156
// removing "__" if it appears at the beginning and end of the attribute's name.
157
0
static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
158
0
  if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
159
0
    AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
160
0
  }
161
162
0
  return AttrSpelling;
163
0
}
164
165
typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
166
167
static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
168
1
                                       ParsedAttrMap *Dupes = nullptr) {
169
1
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
170
1
  std::set<std::string> Seen;
171
1
  ParsedAttrMap R;
172
363
  for (const auto *Attr : Attrs) {
173
363
    if (Attr->getValueAsBit("SemaHandler")) {
174
338
      std::string AN;
175
338
      if (Attr->isSubClassOf("TargetSpecificAttr") &&
176
338
          
!Attr->isValueUnset("ParseKind")36
) {
177
7
        AN = std::string(Attr->getValueAsString("ParseKind"));
178
179
        // If this attribute has already been handled, it does not need to be
180
        // handled again.
181
7
        if (Seen.find(AN) != Seen.end()) {
182
6
          if (Dupes)
183
0
            Dupes->push_back(std::make_pair(AN, Attr));
184
6
          continue;
185
6
        }
186
1
        Seen.insert(AN);
187
1
      } else
188
331
        AN = NormalizeAttrName(Attr->getName()).str();
189
190
332
      R.push_back(std::make_pair(AN, Attr));
191
332
    }
192
363
  }
193
1
  return R;
194
1
}
195
196
namespace {
197
198
  class Argument {
199
    std::string lowerName, upperName;
200
    StringRef attrName;
201
    bool isOpt;
202
    bool Fake;
203
204
  public:
205
    Argument(const Record &Arg, StringRef Attr)
206
        : lowerName(std::string(Arg.getValueAsString("Name"))),
207
0
          upperName(lowerName), attrName(Attr), isOpt(false), Fake(false) {
208
0
      if (!lowerName.empty()) {
209
0
        lowerName[0] = std::tolower(lowerName[0]);
210
0
        upperName[0] = std::toupper(upperName[0]);
211
0
      }
212
      // Work around MinGW's macro definition of 'interface' to 'struct'. We
213
      // have an attribute argument called 'Interface', so only the lower case
214
      // name conflicts with the macro definition.
215
0
      if (lowerName == "interface")
216
0
        lowerName = "interface_";
217
0
    }
218
0
    virtual ~Argument() = default;
219
220
0
    StringRef getLowerName() const { return lowerName; }
221
0
    StringRef getUpperName() const { return upperName; }
222
0
    StringRef getAttrName() const { return attrName; }
223
224
0
    bool isOptional() const { return isOpt; }
225
0
    void setOptional(bool set) { isOpt = set; }
226
227
0
    bool isFake() const { return Fake; }
228
0
    void setFake(bool fake) { Fake = fake; }
229
230
    // These functions print the argument contents formatted in different ways.
231
    virtual void writeAccessors(raw_ostream &OS) const = 0;
232
0
    virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
233
0
    virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
234
    virtual void writeCloneArgs(raw_ostream &OS) const = 0;
235
    virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
236
0
    virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
237
0
    virtual void writeCtorBody(raw_ostream &OS) const {}
238
    virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
239
    virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
240
    virtual void writeCtorParameters(raw_ostream &OS) const = 0;
241
    virtual void writeDeclarations(raw_ostream &OS) const = 0;
242
    virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
243
    virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
244
    virtual void writePCHWrite(raw_ostream &OS) const = 0;
245
0
    virtual std::string getIsOmitted() const { return "false"; }
246
    virtual void writeValue(raw_ostream &OS) const = 0;
247
    virtual void writeDump(raw_ostream &OS) const = 0;
248
0
    virtual void writeDumpChildren(raw_ostream &OS) const {}
249
0
    virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
250
251
0
    virtual bool isEnumArg() const { return false; }
252
0
    virtual bool isVariadicEnumArg() const { return false; }
253
0
    virtual bool isVariadic() const { return false; }
254
255
0
    virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
256
0
      OS << getUpperName();
257
0
    }
258
  };
259
260
  class SimpleArgument : public Argument {
261
    std::string type;
262
263
  public:
264
    SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
265
0
        : Argument(Arg, Attr), type(std::move(T)) {}
266
267
0
    std::string getType() const { return type; }
268
269
0
    void writeAccessors(raw_ostream &OS) const override {
270
0
      OS << "  " << type << " get" << getUpperName() << "() const {\n";
271
0
      OS << "    return " << getLowerName() << ";\n";
272
0
      OS << "  }";
273
0
    }
274
275
0
    void writeCloneArgs(raw_ostream &OS) const override {
276
0
      OS << getLowerName();
277
0
    }
278
279
0
    void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
280
0
      OS << "A->get" << getUpperName() << "()";
281
0
    }
282
283
0
    void writeCtorInitializers(raw_ostream &OS) const override {
284
0
      OS << getLowerName() << "(" << getUpperName() << ")";
285
0
    }
286
287
0
    void writeCtorDefaultInitializers(raw_ostream &OS) const override {
288
0
      OS << getLowerName() << "()";
289
0
    }
290
291
0
    void writeCtorParameters(raw_ostream &OS) const override {
292
0
      OS << type << " " << getUpperName();
293
0
    }
294
295
0
    void writeDeclarations(raw_ostream &OS) const override {
296
0
      OS << type << " " << getLowerName() << ";";
297
0
    }
298
299
0
    void writePCHReadDecls(raw_ostream &OS) const override {
300
0
      std::string read = ReadPCHRecord(type);
301
0
      OS << "    " << type << " " << getLowerName() << " = " << read << ";\n";
302
0
    }
303
304
0
    void writePCHReadArgs(raw_ostream &OS) const override {
305
0
      OS << getLowerName();
306
0
    }
307
308
0
    void writePCHWrite(raw_ostream &OS) const override {
309
0
      OS << "    "
310
0
         << WritePCHRecord(type,
311
0
                           "SA->get" + std::string(getUpperName()) + "()");
312
0
    }
313
314
0
    std::string getIsOmitted() const override {
315
0
      if (type == "IdentifierInfo *")
316
0
        return "!get" + getUpperName().str() + "()";
317
0
      if (type == "TypeSourceInfo *")
318
0
        return "!get" + getUpperName().str() + "Loc()";
319
0
      if (type == "ParamIdx")
320
0
        return "!get" + getUpperName().str() + "().isValid()";
321
0
      return "false";
322
0
    }
323
324
0
    void writeValue(raw_ostream &OS) const override {
325
0
      if (type == "FunctionDecl *")
326
0
        OS << "\" << get" << getUpperName()
327
0
           << "()->getNameInfo().getAsString() << \"";
328
0
      else if (type == "IdentifierInfo *")
329
        // Some non-optional (comma required) identifier arguments can be the
330
        // empty string but are then recorded as a nullptr.
331
0
        OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
332
0
           << "()->getName() : \"\") << \"";
333
0
      else if (type == "VarDecl *")
334
0
        OS << "\" << get" << getUpperName() << "()->getName() << \"";
335
0
      else if (type == "TypeSourceInfo *")
336
0
        OS << "\" << get" << getUpperName() << "().getAsString() << \"";
337
0
      else if (type == "ParamIdx")
338
0
        OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
339
0
      else
340
0
        OS << "\" << get" << getUpperName() << "() << \"";
341
0
    }
342
343
0
    void writeDump(raw_ostream &OS) const override {
344
0
      if (StringRef(type).endswith("Decl *")) {
345
0
        OS << "    OS << \" \";\n";
346
0
        OS << "    dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
347
0
      } else if (type == "IdentifierInfo *") {
348
        // Some non-optional (comma required) identifier arguments can be the
349
        // empty string but are then recorded as a nullptr.
350
0
        OS << "    if (SA->get" << getUpperName() << "())\n"
351
0
           << "      OS << \" \" << SA->get" << getUpperName()
352
0
           << "()->getName();\n";
353
0
      } else if (type == "TypeSourceInfo *") {
354
0
        if (isOptional())
355
0
          OS << "    if (SA->get" << getUpperName() << "Loc())";
356
0
        OS << "    OS << \" \" << SA->get" << getUpperName()
357
0
           << "().getAsString();\n";
358
0
      } else if (type == "bool") {
359
0
        OS << "    if (SA->get" << getUpperName() << "()) OS << \" "
360
0
           << getUpperName() << "\";\n";
361
0
      } else if (type == "int" || type == "unsigned") {
362
0
        OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
363
0
      } else if (type == "ParamIdx") {
364
0
        if (isOptional())
365
0
          OS << "    if (SA->get" << getUpperName() << "().isValid())\n  ";
366
0
        OS << "    OS << \" \" << SA->get" << getUpperName()
367
0
           << "().getSourceIndex();\n";
368
0
      } else if (type == "OMPTraitInfo *") {
369
0
        OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
370
0
      } else {
371
0
        llvm_unreachable("Unknown SimpleArgument type!");
372
0
      }
373
0
    }
374
  };
375
376
  class DefaultSimpleArgument : public SimpleArgument {
377
    int64_t Default;
378
379
  public:
380
    DefaultSimpleArgument(const Record &Arg, StringRef Attr,
381
                          std::string T, int64_t Default)
382
0
      : SimpleArgument(Arg, Attr, T), Default(Default) {}
383
384
0
    void writeAccessors(raw_ostream &OS) const override {
385
0
      SimpleArgument::writeAccessors(OS);
386
387
0
      OS << "\n\n  static const " << getType() << " Default" << getUpperName()
388
0
         << " = ";
389
0
      if (getType() == "bool")
390
0
        OS << (Default != 0 ? "true" : "false");
391
0
      else
392
0
        OS << Default;
393
0
      OS << ";";
394
0
    }
395
  };
396
397
  class StringArgument : public Argument {
398
  public:
399
    StringArgument(const Record &Arg, StringRef Attr)
400
      : Argument(Arg, Attr)
401
0
    {}
402
403
0
    void writeAccessors(raw_ostream &OS) const override {
404
0
      OS << "  llvm::StringRef get" << getUpperName() << "() const {\n";
405
0
      OS << "    return llvm::StringRef(" << getLowerName() << ", "
406
0
         << getLowerName() << "Length);\n";
407
0
      OS << "  }\n";
408
0
      OS << "  unsigned get" << getUpperName() << "Length() const {\n";
409
0
      OS << "    return " << getLowerName() << "Length;\n";
410
0
      OS << "  }\n";
411
0
      OS << "  void set" << getUpperName()
412
0
         << "(ASTContext &C, llvm::StringRef S) {\n";
413
0
      OS << "    " << getLowerName() << "Length = S.size();\n";
414
0
      OS << "    this->" << getLowerName() << " = new (C, 1) char ["
415
0
         << getLowerName() << "Length];\n";
416
0
      OS << "    if (!S.empty())\n";
417
0
      OS << "      std::memcpy(this->" << getLowerName() << ", S.data(), "
418
0
         << getLowerName() << "Length);\n";
419
0
      OS << "  }";
420
0
    }
421
422
0
    void writeCloneArgs(raw_ostream &OS) const override {
423
0
      OS << "get" << getUpperName() << "()";
424
0
    }
425
426
0
    void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
427
0
      OS << "A->get" << getUpperName() << "()";
428
0
    }
429
430
0
    void writeCtorBody(raw_ostream &OS) const override {
431
0
      OS << "    if (!" << getUpperName() << ".empty())\n";
432
0
      OS << "      std::memcpy(" << getLowerName() << ", " << getUpperName()
433
0
         << ".data(), " << getLowerName() << "Length);\n";
434
0
    }
435
436
0
    void writeCtorInitializers(raw_ostream &OS) const override {
437
0
      OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
438
0
         << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
439
0
         << "Length])";
440
0
    }
441
442
0
    void writeCtorDefaultInitializers(raw_ostream &OS) const override {
443
0
      OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
444
0
    }
445
446
0
    void writeCtorParameters(raw_ostream &OS) const override {
447
0
      OS << "llvm::StringRef " << getUpperName();
448
0
    }
449
450
0
    void writeDeclarations(raw_ostream &OS) const override {
451
0
      OS << "unsigned " << getLowerName() << "Length;\n";
452
0
      OS << "char *" << getLowerName() << ";";
453
0
    }
454
455
0
    void writePCHReadDecls(raw_ostream &OS) const override {
456
0
      OS << "    std::string " << getLowerName()
457
0
         << "= Record.readString();\n";
458
0
    }
459
460
0
    void writePCHReadArgs(raw_ostream &OS) const override {
461
0
      OS << getLowerName();
462
0
    }
463
464
0
    void writePCHWrite(raw_ostream &OS) const override {
465
0
      OS << "    Record.AddString(SA->get" << getUpperName() << "());\n";
466
0
    }
467
468
0
    void writeValue(raw_ostream &OS) const override {
469
0
      OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
470
0
    }
471
472
0
    void writeDump(raw_ostream &OS) const override {
473
0
      OS << "    OS << \" \\\"\" << SA->get" << getUpperName()
474
0
         << "() << \"\\\"\";\n";
475
0
    }
476
  };
477
478
  class AlignedArgument : public Argument {
479
  public:
480
    AlignedArgument(const Record &Arg, StringRef Attr)
481
      : Argument(Arg, Attr)
482
0
    {}
483
484
0
    void writeAccessors(raw_ostream &OS) const override {
485
0
      OS << "  bool is" << getUpperName() << "Dependent() const;\n";
486
0
      OS << "  bool is" << getUpperName() << "ErrorDependent() const;\n";
487
488
0
      OS << "  unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
489
490
0
      OS << "  bool is" << getUpperName() << "Expr() const {\n";
491
0
      OS << "    return is" << getLowerName() << "Expr;\n";
492
0
      OS << "  }\n";
493
494
0
      OS << "  Expr *get" << getUpperName() << "Expr() const {\n";
495
0
      OS << "    assert(is" << getLowerName() << "Expr);\n";
496
0
      OS << "    return " << getLowerName() << "Expr;\n";
497
0
      OS << "  }\n";
498
499
0
      OS << "  TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
500
0
      OS << "    assert(!is" << getLowerName() << "Expr);\n";
501
0
      OS << "    return " << getLowerName() << "Type;\n";
502
0
      OS << "  }";
503
0
    }
504
505
0
    void writeAccessorDefinitions(raw_ostream &OS) const override {
506
0
      OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
507
0
         << "Dependent() const {\n";
508
0
      OS << "  if (is" << getLowerName() << "Expr)\n";
509
0
      OS << "    return " << getLowerName() << "Expr && (" << getLowerName()
510
0
         << "Expr->isValueDependent() || " << getLowerName()
511
0
         << "Expr->isTypeDependent());\n";
512
0
      OS << "  else\n";
513
0
      OS << "    return " << getLowerName()
514
0
         << "Type->getType()->isDependentType();\n";
515
0
      OS << "}\n";
516
517
0
      OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
518
0
         << "ErrorDependent() const {\n";
519
0
      OS << "  if (is" << getLowerName() << "Expr)\n";
520
0
      OS << "    return " << getLowerName() << "Expr && " << getLowerName()
521
0
         << "Expr->containsErrors();\n";
522
0
      OS << "  return " << getLowerName()
523
0
         << "Type->getType()->containsErrors();\n";
524
0
      OS << "}\n";
525
526
      // FIXME: Do not do the calculation here
527
      // FIXME: Handle types correctly
528
      // A null pointer means maximum alignment
529
0
      OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName()
530
0
         << "(ASTContext &Ctx) const {\n";
531
0
      OS << "  assert(!is" << getUpperName() << "Dependent());\n";
532
0
      OS << "  if (is" << getLowerName() << "Expr)\n";
533
0
      OS << "    return " << getLowerName() << "Expr ? " << getLowerName()
534
0
         << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()"
535
0
         << " * Ctx.getCharWidth() : "
536
0
         << "Ctx.getTargetDefaultAlignForAttributeAligned();\n";
537
0
      OS << "  else\n";
538
0
      OS << "    return 0; // FIXME\n";
539
0
      OS << "}\n";
540
0
    }
541
542
0
    void writeASTVisitorTraversal(raw_ostream &OS) const override {
543
0
      StringRef Name = getUpperName();
544
0
      OS << "  if (A->is" << Name << "Expr()) {\n"
545
0
         << "    if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
546
0
         << "      return false;\n"
547
0
         << "  } else if (auto *TSI = A->get" << Name << "Type()) {\n"
548
0
         << "    if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
549
0
         << "      return false;\n"
550
0
         << "  }\n";
551
0
    }
552
553
0
    void writeCloneArgs(raw_ostream &OS) const override {
554
0
      OS << "is" << getLowerName() << "Expr, is" << getLowerName()
555
0
         << "Expr ? static_cast<void*>(" << getLowerName()
556
0
         << "Expr) : " << getLowerName()
557
0
         << "Type";
558
0
    }
559
560
0
    void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
561
      // FIXME: move the definition in Sema::InstantiateAttrs to here.
562
      // In the meantime, aligned attributes are cloned.
563
0
    }
564
565
0
    void writeCtorBody(raw_ostream &OS) const override {
566
0
      OS << "    if (is" << getLowerName() << "Expr)\n";
567
0
      OS << "       " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
568
0
         << getUpperName() << ");\n";
569
0
      OS << "    else\n";
570
0
      OS << "       " << getLowerName()
571
0
         << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
572
0
         << ");\n";
573
0
    }
574
575
0
    void writeCtorInitializers(raw_ostream &OS) const override {
576
0
      OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
577
0
    }
578
579
0
    void writeCtorDefaultInitializers(raw_ostream &OS) const override {
580
0
      OS << "is" << getLowerName() << "Expr(false)";
581
0
    }
582
583
0
    void writeCtorParameters(raw_ostream &OS) const override {
584
0
      OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
585
0
    }
586
587
0
    void writeImplicitCtorArgs(raw_ostream &OS) const override {
588
0
      OS << "Is" << getUpperName() << "Expr, " << getUpperName();
589
0
    }
590
591
0
    void writeDeclarations(raw_ostream &OS) const override {
592
0
      OS << "bool is" << getLowerName() << "Expr;\n";
593
0
      OS << "union {\n";
594
0
      OS << "Expr *" << getLowerName() << "Expr;\n";
595
0
      OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
596
0
      OS << "};";
597
0
    }
598
599
0
    void writePCHReadArgs(raw_ostream &OS) const override {
600
0
      OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
601
0
    }
602
603
0
    void writePCHReadDecls(raw_ostream &OS) const override {
604
0
      OS << "    bool is" << getLowerName() << "Expr = Record.readInt();\n";
605
0
      OS << "    void *" << getLowerName() << "Ptr;\n";
606
0
      OS << "    if (is" << getLowerName() << "Expr)\n";
607
0
      OS << "      " << getLowerName() << "Ptr = Record.readExpr();\n";
608
0
      OS << "    else\n";
609
0
      OS << "      " << getLowerName()
610
0
         << "Ptr = Record.readTypeSourceInfo();\n";
611
0
    }
612
613
0
    void writePCHWrite(raw_ostream &OS) const override {
614
0
      OS << "    Record.push_back(SA->is" << getUpperName() << "Expr());\n";
615
0
      OS << "    if (SA->is" << getUpperName() << "Expr())\n";
616
0
      OS << "      Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
617
0
      OS << "    else\n";
618
0
      OS << "      Record.AddTypeSourceInfo(SA->get" << getUpperName()
619
0
         << "Type());\n";
620
0
    }
621
622
0
    std::string getIsOmitted() const override {
623
0
      return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str()
624
0
             + "Expr";
625
0
    }
626
627
0
    void writeValue(raw_ostream &OS) const override {
628
0
      OS << "\";\n";
629
0
      OS << "    " << getLowerName()
630
0
         << "Expr->printPretty(OS, nullptr, Policy);\n";
631
0
      OS << "    OS << \"";
632
0
    }
633
634
0
    void writeDump(raw_ostream &OS) const override {
635
0
      OS << "    if (!SA->is" << getUpperName() << "Expr())\n";
636
0
      OS << "      dumpType(SA->get" << getUpperName()
637
0
         << "Type()->getType());\n";
638
0
    }
639
640
0
    void writeDumpChildren(raw_ostream &OS) const override {
641
0
      OS << "    if (SA->is" << getUpperName() << "Expr())\n";
642
0
      OS << "      Visit(SA->get" << getUpperName() << "Expr());\n";
643
0
    }
644
645
0
    void writeHasChildren(raw_ostream &OS) const override {
646
0
      OS << "SA->is" << getUpperName() << "Expr()";
647
0
    }
648
  };
649
650
  class VariadicArgument : public Argument {
651
    std::string Type, ArgName, ArgSizeName, RangeName;
652
653
  protected:
654
    // Assumed to receive a parameter: raw_ostream OS.
655
0
    virtual void writeValueImpl(raw_ostream &OS) const {
656
0
      OS << "    OS << Val;\n";
657
0
    }
658
    // Assumed to receive a parameter: raw_ostream OS.
659
0
    virtual void writeDumpImpl(raw_ostream &OS) const {
660
0
      OS << "      OS << \" \" << Val;\n";
661
0
    }
662
663
  public:
664
    VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
665
        : Argument(Arg, Attr), Type(std::move(T)),
666
          ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
667
0
          RangeName(std::string(getLowerName())) {}
668
669
0
    const std::string &getType() const { return Type; }
670
0
    const std::string &getArgName() const { return ArgName; }
671
0
    const std::string &getArgSizeName() const { return ArgSizeName; }
672
0
    bool isVariadic() const override { return true; }
673
674
0
    void writeAccessors(raw_ostream &OS) const override {
675
0
      std::string IteratorType = getLowerName().str() + "_iterator";
676
0
      std::string BeginFn = getLowerName().str() + "_begin()";
677
0
      std::string EndFn = getLowerName().str() + "_end()";
678
679
0
      OS << "  typedef " << Type << "* " << IteratorType << ";\n";
680
0
      OS << "  " << IteratorType << " " << BeginFn << " const {"
681
0
         << " return " << ArgName << "; }\n";
682
0
      OS << "  " << IteratorType << " " << EndFn << " const {"
683
0
         << " return " << ArgName << " + " << ArgSizeName << "; }\n";
684
0
      OS << "  unsigned " << getLowerName() << "_size() const {"
685
0
         << " return " << ArgSizeName << "; }\n";
686
0
      OS << "  llvm::iterator_range<" << IteratorType << "> " << RangeName
687
0
         << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
688
0
         << "); }\n";
689
0
    }
690
691
0
    void writeCloneArgs(raw_ostream &OS) const override {
692
0
      OS << ArgName << ", " << ArgSizeName;
693
0
    }
694
695
0
    void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
696
      // This isn't elegant, but we have to go through public methods...
697
0
      OS << "A->" << getLowerName() << "_begin(), "
698
0
         << "A->" << getLowerName() << "_size()";
699
0
    }
700
701
0
    void writeASTVisitorTraversal(raw_ostream &OS) const override {
702
      // FIXME: Traverse the elements.
703
0
    }
704
705
0
    void writeCtorBody(raw_ostream &OS) const override {
706
0
      OS << "  std::copy(" << getUpperName() << ", " << getUpperName() << " + "
707
0
         << ArgSizeName << ", " << ArgName << ");\n";
708
0
    }
709
710
0
    void writeCtorInitializers(raw_ostream &OS) const override {
711
0
      OS << ArgSizeName << "(" << getUpperName() << "Size), "
712
0
         << ArgName << "(new (Ctx, 16) " << getType() << "["
713
0
         << ArgSizeName << "])";
714
0
    }
715
716
0
    void writeCtorDefaultInitializers(raw_ostream &OS) const override {
717
0
      OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
718
0
    }
719
720
0
    void writeCtorParameters(raw_ostream &OS) const override {
721
0
      OS << getType() << " *" << getUpperName() << ", unsigned "
722
0
         << getUpperName() << "Size";
723
0
    }
724
725
0
    void writeImplicitCtorArgs(raw_ostream &OS) const override {
726
0
      OS << getUpperName() << ", " << getUpperName() << "Size";
727
0
    }
728
729
0
    void writeDeclarations(raw_ostream &OS) const override {
730
0
      OS << "  unsigned " << ArgSizeName << ";\n";
731
0
      OS << "  " << getType() << " *" << ArgName << ";";
732
0
    }
733
734
0
    void writePCHReadDecls(raw_ostream &OS) const override {
735
0
      OS << "    unsigned " << getLowerName() << "Size = Record.readInt();\n";
736
0
      OS << "    SmallVector<" << getType() << ", 4> "
737
0
         << getLowerName() << ";\n";
738
0
      OS << "    " << getLowerName() << ".reserve(" << getLowerName()
739
0
         << "Size);\n";
740
741
      // If we can't store the values in the current type (if it's something
742
      // like StringRef), store them in a different type and convert the
743
      // container afterwards.
744
0
      std::string StorageType = std::string(getStorageType(getType()));
745
0
      std::string StorageName = std::string(getLowerName());
746
0
      if (StorageType != getType()) {
747
0
        StorageName += "Storage";
748
0
        OS << "    SmallVector<" << StorageType << ", 4> "
749
0
           << StorageName << ";\n";
750
0
        OS << "    " << StorageName << ".reserve(" << getLowerName()
751
0
           << "Size);\n";
752
0
      }
753
754
0
      OS << "    for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
755
0
      std::string read = ReadPCHRecord(Type);
756
0
      OS << "      " << StorageName << ".push_back(" << read << ");\n";
757
758
0
      if (StorageType != getType()) {
759
0
        OS << "    for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
760
0
        OS << "      " << getLowerName() << ".push_back("
761
0
           << StorageName << "[i]);\n";
762
0
      }
763
0
    }
764
765
0
    void writePCHReadArgs(raw_ostream &OS) const override {
766
0
      OS << getLowerName() << ".data(), " << getLowerName() << "Size";
767
0
    }
768
769
0
    void writePCHWrite(raw_ostream &OS) const override {
770
0
      OS << "    Record.push_back(SA->" << getLowerName() << "_size());\n";
771
0
      OS << "    for (auto &Val : SA->" << RangeName << "())\n";
772
0
      OS << "      " << WritePCHRecord(Type, "Val");
773
0
    }
774
775
0
    void writeValue(raw_ostream &OS) const override {
776
0
      OS << "\";\n";
777
0
      OS << "  for (const auto &Val : " << RangeName << "()) {\n"
778
0
         << "    DelimitAttributeArgument(OS, IsFirstArgument);\n";
779
0
      writeValueImpl(OS);
780
0
      OS << "  }\n";
781
0
      OS << "  OS << \"";
782
0
    }
783
784
0
    void writeDump(raw_ostream &OS) const override {
785
0
      OS << "    for (const auto &Val : SA->" << RangeName << "())\n";
786
0
      writeDumpImpl(OS);
787
0
    }
788
  };
789
790
  class VariadicParamIdxArgument : public VariadicArgument {
791
  public:
792
    VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
793
0
        : VariadicArgument(Arg, Attr, "ParamIdx") {}
794
795
  public:
796
0
    void writeValueImpl(raw_ostream &OS) const override {
797
0
      OS << "    OS << Val.getSourceIndex();\n";
798
0
    }
799
800
0
    void writeDumpImpl(raw_ostream &OS) const override {
801
0
      OS << "      OS << \" \" << Val.getSourceIndex();\n";
802
0
    }
803
  };
804
805
  struct VariadicParamOrParamIdxArgument : public VariadicArgument {
806
    VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
807
0
        : VariadicArgument(Arg, Attr, "int") {}
808
  };
809
810
  // Unique the enums, but maintain the original declaration ordering.
811
  std::vector<StringRef>
812
0
  uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
813
0
    std::vector<StringRef> uniques;
814
0
    SmallDenseSet<StringRef, 8> unique_set;
815
0
    for (const auto &i : enums) {
816
0
      if (unique_set.insert(i).second)
817
0
        uniques.push_back(i);
818
0
    }
819
0
    return uniques;
820
0
  }
821
822
  class EnumArgument : public Argument {
823
    std::string type;
824
    std::vector<StringRef> values, enums, uniques;
825
826
  public:
827
    EnumArgument(const Record &Arg, StringRef Attr)
828
        : Argument(Arg, Attr), type(std::string(Arg.getValueAsString("Type"))),
829
          values(Arg.getValueAsListOfStrings("Values")),
830
          enums(Arg.getValueAsListOfStrings("Enums")),
831
0
          uniques(uniqueEnumsInOrder(enums)) {
832
      // FIXME: Emit a proper error
833
0
      assert(!uniques.empty());
834
0
    }
835
836
0
    bool isEnumArg() const override { return true; }
837
838
0
    void writeAccessors(raw_ostream &OS) const override {
839
0
      OS << "  " << type << " get" << getUpperName() << "() const {\n";
840
0
      OS << "    return " << getLowerName() << ";\n";
841
0
      OS << "  }";
842
0
    }
843
844
0
    void writeCloneArgs(raw_ostream &OS) const override {
845
0
      OS << getLowerName();
846
0
    }
847
848
0
    void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
849
0
      OS << "A->get" << getUpperName() << "()";
850
0
    }
851
0
    void writeCtorInitializers(raw_ostream &OS) const override {
852
0
      OS << getLowerName() << "(" << getUpperName() << ")";
853
0
    }
854
0
    void writeCtorDefaultInitializers(raw_ostream &OS) const override {
855
0
      OS << getLowerName() << "(" << type << "(0))";
856
0
    }
857
0
    void writeCtorParameters(raw_ostream &OS) const override {
858
0
      OS << type << " " << getUpperName();
859
0
    }
860
0
    void writeDeclarations(raw_ostream &OS) const override {
861
0
      auto i = uniques.cbegin(), e = uniques.cend();
862
      // The last one needs to not have a comma.
863
0
      --e;
864
865
0
      OS << "public:\n";
866
0
      OS << "  enum " << type << " {\n";
867
0
      for (; i != e; ++i)
868
0
        OS << "    " << *i << ",\n";
869
0
      OS << "    " << *e << "\n";
870
0
      OS << "  };\n";
871
0
      OS << "private:\n";
872
0
      OS << "  " << type << " " << getLowerName() << ";";
873
0
    }
874
875
0
    void writePCHReadDecls(raw_ostream &OS) const override {
876
0
      OS << "    " << getAttrName() << "Attr::" << type << " " << getLowerName()
877
0
         << "(static_cast<" << getAttrName() << "Attr::" << type
878
0
         << ">(Record.readInt()));\n";
879
0
    }
880
881
0
    void writePCHReadArgs(raw_ostream &OS) const override {
882
0
      OS << getLowerName();
883
0
    }
884
885
0
    void writePCHWrite(raw_ostream &OS) const override {
886
0
      OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
887
0
    }
888
889
0
    void writeValue(raw_ostream &OS) const override {
890
      // FIXME: this isn't 100% correct -- some enum arguments require printing
891
      // as a string literal, while others require printing as an identifier.
892
      // Tablegen currently does not distinguish between the two forms.
893
0
      OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
894
0
         << getUpperName() << "()) << \"\\\"";
895
0
    }
896
897
0
    void writeDump(raw_ostream &OS) const override {
898
0
      OS << "    switch(SA->get" << getUpperName() << "()) {\n";
899
0
      for (const auto &I : uniques) {
900
0
        OS << "    case " << getAttrName() << "Attr::" << I << ":\n";
901
0
        OS << "      OS << \" " << I << "\";\n";
902
0
        OS << "      break;\n";
903
0
      }
904
0
      OS << "    }\n";
905
0
    }
906
907
0
    void writeConversion(raw_ostream &OS, bool Header) const {
908
0
      if (Header) {
909
0
        OS << "  static bool ConvertStrTo" << type << "(StringRef Val, " << type
910
0
           << " &Out);\n";
911
0
        OS << "  static const char *Convert" << type << "ToStr(" << type
912
0
           << " Val);\n";
913
0
        return;
914
0
      }
915
916
0
      OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
917
0
         << "(StringRef Val, " << type << " &Out) {\n";
918
0
      OS << "  Optional<" << type << "> R = llvm::StringSwitch<Optional<";
919
0
      OS << type << ">>(Val)\n";
920
0
      for (size_t I = 0; I < enums.size(); ++I) {
921
0
        OS << "    .Case(\"" << values[I] << "\", ";
922
0
        OS << getAttrName() << "Attr::" << enums[I] << ")\n";
923
0
      }
924
0
      OS << "    .Default(Optional<" << type << ">());\n";
925
0
      OS << "  if (R) {\n";
926
0
      OS << "    Out = *R;\n      return true;\n    }\n";
927
0
      OS << "  return false;\n";
928
0
      OS << "}\n\n";
929
930
      // Mapping from enumeration values back to enumeration strings isn't
931
      // trivial because some enumeration values have multiple named
932
      // enumerators, such as type_visibility(internal) and
933
      // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
934
0
      OS << "const char *" << getAttrName() << "Attr::Convert" << type
935
0
         << "ToStr(" << type << " Val) {\n"
936
0
         << "  switch(Val) {\n";
937
0
      SmallDenseSet<StringRef, 8> Uniques;
938
0
      for (size_t I = 0; I < enums.size(); ++I) {
939
0
        if (Uniques.insert(enums[I]).second)
940
0
          OS << "  case " << getAttrName() << "Attr::" << enums[I]
941
0
             << ": return \"" << values[I] << "\";\n";
942
0
      }
943
0
      OS << "  }\n"
944
0
         << "  llvm_unreachable(\"No enumerator with that value\");\n"
945
0
         << "}\n";
946
0
    }
947
  };
948
949
  class VariadicEnumArgument: public VariadicArgument {
950
    std::string type, QualifiedTypeName;
951
    std::vector<StringRef> values, enums, uniques;
952
953
  protected:
954
0
    void writeValueImpl(raw_ostream &OS) const override {
955
      // FIXME: this isn't 100% correct -- some enum arguments require printing
956
      // as a string literal, while others require printing as an identifier.
957
      // Tablegen currently does not distinguish between the two forms.
958
0
      OS << "    OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
959
0
         << "ToStr(Val)" << "<< \"\\\"\";\n";
960
0
    }
961
962
  public:
963
    VariadicEnumArgument(const Record &Arg, StringRef Attr)
964
        : VariadicArgument(Arg, Attr,
965
                           std::string(Arg.getValueAsString("Type"))),
966
          type(std::string(Arg.getValueAsString("Type"))),
967
          values(Arg.getValueAsListOfStrings("Values")),
968
          enums(Arg.getValueAsListOfStrings("Enums")),
969
0
          uniques(uniqueEnumsInOrder(enums)) {
970
0
      QualifiedTypeName = getAttrName().str() + "Attr::" + type;
971
972
      // FIXME: Emit a proper error
973
0
      assert(!uniques.empty());
974
0
    }
975
976
0
    bool isVariadicEnumArg() const override { return true; }
977
978
0
    void writeDeclarations(raw_ostream &OS) const override {
979
0
      auto i = uniques.cbegin(), e = uniques.cend();
980
      // The last one needs to not have a comma.
981
0
      --e;
982
983
0
      OS << "public:\n";
984
0
      OS << "  enum " << type << " {\n";
985
0
      for (; i != e; ++i)
986
0
        OS << "    " << *i << ",\n";
987
0
      OS << "    " << *e << "\n";
988
0
      OS << "  };\n";
989
0
      OS << "private:\n";
990
991
0
      VariadicArgument::writeDeclarations(OS);
992
0
    }
993
994
0
    void writeDump(raw_ostream &OS) const override {
995
0
      OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
996
0
         << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
997
0
         << getLowerName() << "_end(); I != E; ++I) {\n";
998
0
      OS << "      switch(*I) {\n";
999
0
      for (const auto &UI : uniques) {
1000
0
        OS << "    case " << getAttrName() << "Attr::" << UI << ":\n";
1001
0
        OS << "      OS << \" " << UI << "\";\n";
1002
0
        OS << "      break;\n";
1003
0
      }
1004
0
      OS << "      }\n";
1005
0
      OS << "    }\n";
1006
0
    }
1007
1008
0
    void writePCHReadDecls(raw_ostream &OS) const override {
1009
0
      OS << "    unsigned " << getLowerName() << "Size = Record.readInt();\n";
1010
0
      OS << "    SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
1011
0
         << ";\n";
1012
0
      OS << "    " << getLowerName() << ".reserve(" << getLowerName()
1013
0
         << "Size);\n";
1014
0
      OS << "    for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1015
0
      OS << "      " << getLowerName() << ".push_back(" << "static_cast<"
1016
0
         << QualifiedTypeName << ">(Record.readInt()));\n";
1017
0
    }
1018
1019
0
    void writePCHWrite(raw_ostream &OS) const override {
1020
0
      OS << "    Record.push_back(SA->" << getLowerName() << "_size());\n";
1021
0
      OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
1022
0
         << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1023
0
         << getLowerName() << "_end(); i != e; ++i)\n";
1024
0
      OS << "      " << WritePCHRecord(QualifiedTypeName, "(*i)");
1025
0
    }
1026
1027
0
    void writeConversion(raw_ostream &OS, bool Header) const {
1028
0
      if (Header) {
1029
0
        OS << "  static bool ConvertStrTo" << type << "(StringRef Val, " << type
1030
0
           << " &Out);\n";
1031
0
        OS << "  static const char *Convert" << type << "ToStr(" << type
1032
0
           << " Val);\n";
1033
0
        return;
1034
0
      }
1035
1036
0
      OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
1037
0
         << "(StringRef Val, ";
1038
0
      OS << type << " &Out) {\n";
1039
0
      OS << "  Optional<" << type << "> R = llvm::StringSwitch<Optional<";
1040
0
      OS << type << ">>(Val)\n";
1041
0
      for (size_t I = 0; I < enums.size(); ++I) {
1042
0
        OS << "    .Case(\"" << values[I] << "\", ";
1043
0
        OS << getAttrName() << "Attr::" << enums[I] << ")\n";
1044
0
      }
1045
0
      OS << "    .Default(Optional<" << type << ">());\n";
1046
0
      OS << "  if (R) {\n";
1047
0
      OS << "    Out = *R;\n      return true;\n    }\n";
1048
0
      OS << "  return false;\n";
1049
0
      OS << "}\n\n";
1050
1051
0
      OS << "const char *" << getAttrName() << "Attr::Convert" << type
1052
0
         << "ToStr(" << type << " Val) {\n"
1053
0
         << "  switch(Val) {\n";
1054
0
      SmallDenseSet<StringRef, 8> Uniques;
1055
0
      for (size_t I = 0; I < enums.size(); ++I) {
1056
0
        if (Uniques.insert(enums[I]).second)
1057
0
          OS << "  case " << getAttrName() << "Attr::" << enums[I]
1058
0
             << ": return \"" << values[I] << "\";\n";
1059
0
      }
1060
0
      OS << "  }\n"
1061
0
         << "  llvm_unreachable(\"No enumerator with that value\");\n"
1062
0
         << "}\n";
1063
0
    }
1064
  };
1065
1066
  class VersionArgument : public Argument {
1067
  public:
1068
    VersionArgument(const Record &Arg, StringRef Attr)
1069
      : Argument(Arg, Attr)
1070
0
    {}
1071
1072
0
    void writeAccessors(raw_ostream &OS) const override {
1073
0
      OS << "  VersionTuple get" << getUpperName() << "() const {\n";
1074
0
      OS << "    return " << getLowerName() << ";\n";
1075
0
      OS << "  }\n";
1076
0
      OS << "  void set" << getUpperName()
1077
0
         << "(ASTContext &C, VersionTuple V) {\n";
1078
0
      OS << "    " << getLowerName() << " = V;\n";
1079
0
      OS << "  }";
1080
0
    }
1081
1082
0
    void writeCloneArgs(raw_ostream &OS) const override {
1083
0
      OS << "get" << getUpperName() << "()";
1084
0
    }
1085
1086
0
    void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1087
0
      OS << "A->get" << getUpperName() << "()";
1088
0
    }
1089
1090
0
    void writeCtorInitializers(raw_ostream &OS) const override {
1091
0
      OS << getLowerName() << "(" << getUpperName() << ")";
1092
0
    }
1093
1094
0
    void writeCtorDefaultInitializers(raw_ostream &OS) const override {
1095
0
      OS << getLowerName() << "()";
1096
0
    }
1097
1098
0
    void writeCtorParameters(raw_ostream &OS) const override {
1099
0
      OS << "VersionTuple " << getUpperName();
1100
0
    }
1101
1102
0
    void writeDeclarations(raw_ostream &OS) const override {
1103
0
      OS << "VersionTuple " << getLowerName() << ";\n";
1104
0
    }
1105
1106
0
    void writePCHReadDecls(raw_ostream &OS) const override {
1107
0
      OS << "    VersionTuple " << getLowerName()
1108
0
         << "= Record.readVersionTuple();\n";
1109
0
    }
1110
1111
0
    void writePCHReadArgs(raw_ostream &OS) const override {
1112
0
      OS << getLowerName();
1113
0
    }
1114
1115
0
    void writePCHWrite(raw_ostream &OS) const override {
1116
0
      OS << "    Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1117
0
    }
1118
1119
0
    void writeValue(raw_ostream &OS) const override {
1120
0
      OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1121
0
    }
1122
1123
0
    void writeDump(raw_ostream &OS) const override {
1124
0
      OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
1125
0
    }
1126
  };
1127
1128
  class ExprArgument : public SimpleArgument {
1129
  public:
1130
    ExprArgument(const Record &Arg, StringRef Attr)
1131
      : SimpleArgument(Arg, Attr, "Expr *")
1132
0
    {}
1133
1134
0
    void writeASTVisitorTraversal(raw_ostream &OS) const override {
1135
0
      OS << "  if (!"
1136
0
         << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1137
0
      OS << "    return false;\n";
1138
0
    }
1139
1140
0
    void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1141
0
      OS << "tempInst" << getUpperName();
1142
0
    }
1143
1144
0
    void writeTemplateInstantiation(raw_ostream &OS) const override {
1145
0
      OS << "      " << getType() << " tempInst" << getUpperName() << ";\n";
1146
0
      OS << "      {\n";
1147
0
      OS << "        EnterExpressionEvaluationContext "
1148
0
         << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1149
0
      OS << "        ExprResult " << "Result = S.SubstExpr("
1150
0
         << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1151
0
      OS << "        if (Result.isInvalid())\n";
1152
0
      OS << "          return nullptr;\n";
1153
0
      OS << "        tempInst" << getUpperName() << " = Result.get();\n";
1154
0
      OS << "      }\n";
1155
0
    }
1156
1157
0
    void writeDump(raw_ostream &OS) const override {}
1158
1159
0
    void writeDumpChildren(raw_ostream &OS) const override {
1160
0
      OS << "    Visit(SA->get" << getUpperName() << "());\n";
1161
0
    }
1162
1163
0
    void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1164
  };
1165
1166
  class VariadicExprArgument : public VariadicArgument {
1167
  public:
1168
    VariadicExprArgument(const Record &Arg, StringRef Attr)
1169
      : VariadicArgument(Arg, Attr, "Expr *")
1170
0
    {}
1171
1172
0
    void writeASTVisitorTraversal(raw_ostream &OS) const override {
1173
0
      OS << "  {\n";
1174
0
      OS << "    " << getType() << " *I = A->" << getLowerName()
1175
0
         << "_begin();\n";
1176
0
      OS << "    " << getType() << " *E = A->" << getLowerName()
1177
0
         << "_end();\n";
1178
0
      OS << "    for (; I != E; ++I) {\n";
1179
0
      OS << "      if (!getDerived().TraverseStmt(*I))\n";
1180
0
      OS << "        return false;\n";
1181
0
      OS << "    }\n";
1182
0
      OS << "  }\n";
1183
0
    }
1184
1185
0
    void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1186
0
      OS << "tempInst" << getUpperName() << ", "
1187
0
         << "A->" << getLowerName() << "_size()";
1188
0
    }
1189
1190
0
    void writeTemplateInstantiation(raw_ostream &OS) const override {
1191
0
      OS << "      auto *tempInst" << getUpperName()
1192
0
         << " = new (C, 16) " << getType()
1193
0
         << "[A->" << getLowerName() << "_size()];\n";
1194
0
      OS << "      {\n";
1195
0
      OS << "        EnterExpressionEvaluationContext "
1196
0
         << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1197
0
      OS << "        " << getType() << " *TI = tempInst" << getUpperName()
1198
0
         << ";\n";
1199
0
      OS << "        " << getType() << " *I = A->" << getLowerName()
1200
0
         << "_begin();\n";
1201
0
      OS << "        " << getType() << " *E = A->" << getLowerName()
1202
0
         << "_end();\n";
1203
0
      OS << "        for (; I != E; ++I, ++TI) {\n";
1204
0
      OS << "          ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
1205
0
      OS << "          if (Result.isInvalid())\n";
1206
0
      OS << "            return nullptr;\n";
1207
0
      OS << "          *TI = Result.get();\n";
1208
0
      OS << "        }\n";
1209
0
      OS << "      }\n";
1210
0
    }
1211
1212
0
    void writeDump(raw_ostream &OS) const override {}
1213
1214
0
    void writeDumpChildren(raw_ostream &OS) const override {
1215
0
      OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
1216
0
         << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1217
0
         << getLowerName() << "_end(); I != E; ++I)\n";
1218
0
      OS << "      Visit(*I);\n";
1219
0
    }
1220
1221
0
    void writeHasChildren(raw_ostream &OS) const override {
1222
0
      OS << "SA->" << getLowerName() << "_begin() != "
1223
0
         << "SA->" << getLowerName() << "_end()";
1224
0
    }
1225
  };
1226
1227
  class VariadicIdentifierArgument : public VariadicArgument {
1228
  public:
1229
    VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
1230
      : VariadicArgument(Arg, Attr, "IdentifierInfo *")
1231
0
    {}
1232
  };
1233
1234
  class VariadicStringArgument : public VariadicArgument {
1235
  public:
1236
    VariadicStringArgument(const Record &Arg, StringRef Attr)
1237
      : VariadicArgument(Arg, Attr, "StringRef")
1238
0
    {}
1239
1240
0
    void writeCtorBody(raw_ostream &OS) const override {
1241
0
      OS << "  for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1242
0
            "       ++I) {\n"
1243
0
            "    StringRef Ref = " << getUpperName() << "[I];\n"
1244
0
            "    if (!Ref.empty()) {\n"
1245
0
            "      char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1246
0
            "      std::memcpy(Mem, Ref.data(), Ref.size());\n"
1247
0
            "      " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1248
0
            "    }\n"
1249
0
            "  }\n";
1250
0
    }
1251
1252
0
    void writeValueImpl(raw_ostream &OS) const override {
1253
0
      OS << "    OS << \"\\\"\" << Val << \"\\\"\";\n";
1254
0
    }
1255
  };
1256
1257
  class TypeArgument : public SimpleArgument {
1258
  public:
1259
    TypeArgument(const Record &Arg, StringRef Attr)
1260
      : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
1261
0
    {}
1262
1263
0
    void writeAccessors(raw_ostream &OS) const override {
1264
0
      OS << "  QualType get" << getUpperName() << "() const {\n";
1265
0
      OS << "    return " << getLowerName() << "->getType();\n";
1266
0
      OS << "  }";
1267
0
      OS << "  " << getType() << " get" << getUpperName() << "Loc() const {\n";
1268
0
      OS << "    return " << getLowerName() << ";\n";
1269
0
      OS << "  }";
1270
0
    }
1271
1272
0
    void writeASTVisitorTraversal(raw_ostream &OS) const override {
1273
0
      OS << "  if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1274
0
      OS << "    if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1275
0
      OS << "      return false;\n";
1276
0
    }
1277
1278
0
    void writeTemplateInstantiation(raw_ostream &OS) const override {
1279
0
      OS << "      " << getType() << " tempInst" << getUpperName() << " =\n";
1280
0
      OS << "        S.SubstType(A->get" << getUpperName() << "Loc(), "
1281
0
         << "TemplateArgs, A->getLoc(), A->getAttrName());\n";
1282
0
      OS << "      if (!tempInst" << getUpperName() << ")\n";
1283
0
      OS << "        return nullptr;\n";
1284
0
    }
1285
1286
0
    void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1287
0
      OS << "tempInst" << getUpperName();
1288
0
    }
1289
1290
0
    void writePCHWrite(raw_ostream &OS) const override {
1291
0
      OS << "    "
1292
0
         << WritePCHRecord(getType(),
1293
0
                           "SA->get" + std::string(getUpperName()) + "Loc()");
1294
0
    }
1295
  };
1296
1297
} // end anonymous namespace
1298
1299
static std::unique_ptr<Argument>
1300
createArgument(const Record &Arg, StringRef Attr,
1301
0
               const Record *Search = nullptr) {
1302
0
  if (!Search)
1303
0
    Search = &Arg;
1304
1305
0
  std::unique_ptr<Argument> Ptr;
1306
0
  llvm::StringRef ArgName = Search->getName();
1307
1308
0
  if (ArgName == "AlignedArgument")
1309
0
    Ptr = std::make_unique<AlignedArgument>(Arg, Attr);
1310
0
  else if (ArgName == "EnumArgument")
1311
0
    Ptr = std::make_unique<EnumArgument>(Arg, Attr);
1312
0
  else if (ArgName == "ExprArgument")
1313
0
    Ptr = std::make_unique<ExprArgument>(Arg, Attr);
1314
0
  else if (ArgName == "DeclArgument")
1315
0
    Ptr = std::make_unique<SimpleArgument>(
1316
0
        Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str());
1317
0
  else if (ArgName == "IdentifierArgument")
1318
0
    Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
1319
0
  else if (ArgName == "DefaultBoolArgument")
1320
0
    Ptr = std::make_unique<DefaultSimpleArgument>(
1321
0
        Arg, Attr, "bool", Arg.getValueAsBit("Default"));
1322
0
  else if (ArgName == "BoolArgument")
1323
0
    Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool");
1324
0
  else if (ArgName == "DefaultIntArgument")
1325
0
    Ptr = std::make_unique<DefaultSimpleArgument>(
1326
0
        Arg, Attr, "int", Arg.getValueAsInt("Default"));
1327
0
  else if (ArgName == "IntArgument")
1328
0
    Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int");
1329
0
  else if (ArgName == "StringArgument")
1330
0
    Ptr = std::make_unique<StringArgument>(Arg, Attr);
1331
0
  else if (ArgName == "TypeArgument")
1332
0
    Ptr = std::make_unique<TypeArgument>(Arg, Attr);
1333
0
  else if (ArgName == "UnsignedArgument")
1334
0
    Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
1335
0
  else if (ArgName == "VariadicUnsignedArgument")
1336
0
    Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
1337
0
  else if (ArgName == "VariadicStringArgument")
1338
0
    Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr);
1339
0
  else if (ArgName == "VariadicEnumArgument")
1340
0
    Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr);
1341
0
  else if (ArgName == "VariadicExprArgument")
1342
0
    Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr);
1343
0
  else if (ArgName == "VariadicParamIdxArgument")
1344
0
    Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr);
1345
0
  else if (ArgName == "VariadicParamOrParamIdxArgument")
1346
0
    Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
1347
0
  else if (ArgName == "ParamIdxArgument")
1348
0
    Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
1349
0
  else if (ArgName == "VariadicIdentifierArgument")
1350
0
    Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr);
1351
0
  else if (ArgName == "VersionArgument")
1352
0
    Ptr = std::make_unique<VersionArgument>(Arg, Attr);
1353
0
  else if (ArgName == "OMPTraitInfoArgument")
1354
0
    Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *");
1355
1356
0
  if (!Ptr) {
1357
    // Search in reverse order so that the most-derived type is handled first.
1358
0
    ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
1359
0
    for (const auto &Base : llvm::reverse(Bases)) {
1360
0
      if ((Ptr = createArgument(Arg, Attr, Base.first)))
1361
0
        break;
1362
0
    }
1363
0
  }
1364
1365
0
  if (Ptr && Arg.getValueAsBit("Optional"))
1366
0
    Ptr->setOptional(true);
1367
1368
0
  if (Ptr && Arg.getValueAsBit("Fake"))
1369
0
    Ptr->setFake(true);
1370
1371
0
  return Ptr;
1372
0
}
1373
1374
0
static void writeAvailabilityValue(raw_ostream &OS) {
1375
0
  OS << "\" << getPlatform()->getName();\n"
1376
0
     << "  if (getStrict()) OS << \", strict\";\n"
1377
0
     << "  if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1378
0
     << "  if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1379
0
     << "  if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1380
0
     << "  if (getUnavailable()) OS << \", unavailable\";\n"
1381
0
     << "  OS << \"";
1382
0
}
1383
1384
0
static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
1385
0
  OS << "\\\"\" << getMessage() << \"\\\"\";\n";
1386
  // Only GNU deprecated has an optional fixit argument at the second position.
1387
0
  if (Variety == "GNU")
1388
0
     OS << "    if (!getReplacement().empty()) OS << \", \\\"\""
1389
0
           " << getReplacement() << \"\\\"\";\n";
1390
0
  OS << "    OS << \"";
1391
0
}
1392
1393
0
static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
1394
0
  std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1395
1396
0
  OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
1397
0
  if (Spellings.empty()) {
1398
0
    OS << "  return \"(No spelling)\";\n}\n\n";
1399
0
    return;
1400
0
  }
1401
1402
0
  OS << "  switch (getAttributeSpellingListIndex()) {\n"
1403
0
        "  default:\n"
1404
0
        "    llvm_unreachable(\"Unknown attribute spelling!\");\n"
1405
0
        "    return \"(No spelling)\";\n";
1406
1407
0
  for (unsigned I = 0; I < Spellings.size(); ++I)
1408
0
    OS << "  case " << I << ":\n"
1409
0
          "    return \"" << Spellings[I].name() << "\";\n";
1410
  // End of the switch statement.
1411
0
  OS << "  }\n";
1412
  // End of the getSpelling function.
1413
0
  OS << "}\n\n";
1414
0
}
1415
1416
static void
1417
writePrettyPrintFunction(const Record &R,
1418
                         const std::vector<std::unique_ptr<Argument>> &Args,
1419
0
                         raw_ostream &OS) {
1420
0
  std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1421
1422
0
  OS << "void " << R.getName() << "Attr::printPretty("
1423
0
    << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1424
1425
0
  if (Spellings.empty()) {
1426
0
    OS << "}\n\n";
1427
0
    return;
1428
0
  }
1429
1430
0
  OS << "  bool IsFirstArgument = true; (void)IsFirstArgument;\n"
1431
0
     << "  unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
1432
0
     << "  switch (getAttributeSpellingListIndex()) {\n"
1433
0
     << "  default:\n"
1434
0
     << "    llvm_unreachable(\"Unknown attribute spelling!\");\n"
1435
0
     << "    break;\n";
1436
1437
0
  for (unsigned I = 0; I < Spellings.size(); ++ I) {
1438
0
    llvm::SmallString<16> Prefix;
1439
0
    llvm::SmallString<8> Suffix;
1440
    // The actual spelling of the name and namespace (if applicable)
1441
    // of an attribute without considering prefix and suffix.
1442
0
    llvm::SmallString<64> Spelling;
1443
0
    std::string Name = Spellings[I].name();
1444
0
    std::string Variety = Spellings[I].variety();
1445
1446
0
    if (Variety == "GNU") {
1447
0
      Prefix = " __attribute__((";
1448
0
      Suffix = "))";
1449
0
    } else if (Variety == "CXX11" || Variety == "C2x") {
1450
0
      Prefix = " [[";
1451
0
      Suffix = "]]";
1452
0
      std::string Namespace = Spellings[I].nameSpace();
1453
0
      if (!Namespace.empty()) {
1454
0
        Spelling += Namespace;
1455
0
        Spelling += "::";
1456
0
      }
1457
0
    } else if (Variety == "Declspec") {
1458
0
      Prefix = " __declspec(";
1459
0
      Suffix = ")";
1460
0
    } else if (Variety == "Microsoft") {
1461
0
      Prefix = "[";
1462
0
      Suffix = "]";
1463
0
    } else if (Variety == "Keyword") {
1464
0
      Prefix = " ";
1465
0
      Suffix = "";
1466
0
    } else if (Variety == "Pragma") {
1467
0
      Prefix = "#pragma ";
1468
0
      Suffix = "\n";
1469
0
      std::string Namespace = Spellings[I].nameSpace();
1470
0
      if (!Namespace.empty()) {
1471
0
        Spelling += Namespace;
1472
0
        Spelling += " ";
1473
0
      }
1474
0
    } else {
1475
0
      llvm_unreachable("Unknown attribute syntax variety!");
1476
0
    }
1477
1478
0
    Spelling += Name;
1479
1480
0
    OS << "  case " << I << " : {\n"
1481
0
       << "    OS << \"" << Prefix << Spelling << "\";\n";
1482
1483
0
    if (Variety == "Pragma") {
1484
0
      OS << "    printPrettyPragma(OS, Policy);\n";
1485
0
      OS << "    OS << \"\\n\";";
1486
0
      OS << "    break;\n";
1487
0
      OS << "  }\n";
1488
0
      continue;
1489
0
    }
1490
1491
0
    if (Spelling == "availability") {
1492
0
      OS << "    OS << \"(";
1493
0
      writeAvailabilityValue(OS);
1494
0
      OS << ")\";\n";
1495
0
    } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
1496
0
      OS << "    OS << \"(";
1497
0
      writeDeprecatedAttrValue(OS, Variety);
1498
0
      OS << ")\";\n";
1499
0
    } else {
1500
      // To avoid printing parentheses around an empty argument list or
1501
      // printing spurious commas at the end of an argument list, we need to
1502
      // determine where the last provided non-fake argument is.
1503
0
      unsigned NonFakeArgs = 0;
1504
0
      bool FoundNonOptArg = false;
1505
0
      for (const auto &arg : llvm::reverse(Args)) {
1506
0
        if (arg->isFake())
1507
0
          continue;
1508
0
        ++NonFakeArgs;
1509
0
        if (FoundNonOptArg)
1510
0
          continue;
1511
        // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1512
        // any way to detect whether the argument was omitted.
1513
0
        if (!arg->isOptional() || arg->getIsOmitted() == "false") {
1514
0
          FoundNonOptArg = true;
1515
0
          continue;
1516
0
        }
1517
0
        OS << "    if (" << arg->getIsOmitted() << ")\n"
1518
0
           << "      ++TrailingOmittedArgs;\n";
1519
0
      }
1520
0
      unsigned ArgIndex = 0;
1521
0
      for (const auto &arg : Args) {
1522
0
        if (arg->isFake())
1523
0
          continue;
1524
0
        std::string IsOmitted = arg->getIsOmitted();
1525
0
        if (arg->isOptional() && IsOmitted != "false")
1526
0
          OS << "    if (!(" << IsOmitted << ")) {\n";
1527
        // Variadic arguments print their own leading comma.
1528
0
        if (!arg->isVariadic())
1529
0
          OS << "    DelimitAttributeArgument(OS, IsFirstArgument);\n";
1530
0
        OS << "    OS << \"";
1531
0
        arg->writeValue(OS);
1532
0
        OS << "\";\n";
1533
0
        if (arg->isOptional() && IsOmitted != "false")
1534
0
          OS << "    }\n";
1535
0
        ++ArgIndex;
1536
0
      }
1537
0
      if (ArgIndex != 0)
1538
0
        OS << "    if (!IsFirstArgument)\n"
1539
0
           << "      OS << \")\";\n";
1540
0
    }
1541
0
    OS << "    OS << \"" << Suffix << "\";\n"
1542
0
       << "    break;\n"
1543
0
       << "  }\n";
1544
0
  }
1545
1546
  // End of the switch statement.
1547
0
  OS << "}\n";
1548
  // End of the print function.
1549
0
  OS << "}\n\n";
1550
0
}
1551
1552
/// Return the index of a spelling in a spelling list.
1553
static unsigned
1554
getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
1555
0
                     const FlattenedSpelling &Spelling) {
1556
0
  assert(!SpellingList.empty() && "Spelling list is empty!");
1557
1558
0
  for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
1559
0
    const FlattenedSpelling &S = SpellingList[Index];
1560
0
    if (S.variety() != Spelling.variety())
1561
0
      continue;
1562
0
    if (S.nameSpace() != Spelling.nameSpace())
1563
0
      continue;
1564
0
    if (S.name() != Spelling.name())
1565
0
      continue;
1566
1567
0
    return Index;
1568
0
  }
1569
1570
0
  llvm_unreachable("Unknown spelling!");
1571
0
}
1572
1573
0
static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
1574
0
  std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
1575
0
  if (Accessors.empty())
1576
0
    return;
1577
1578
0
  const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
1579
0
  assert(!SpellingList.empty() &&
1580
0
         "Attribute with empty spelling list can't have accessors!");
1581
0
  for (const auto *Accessor : Accessors) {
1582
0
    const StringRef Name = Accessor->getValueAsString("Name");
1583
0
    std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
1584
1585
0
    OS << "  bool " << Name
1586
0
       << "() const { return getAttributeSpellingListIndex() == ";
1587
0
    for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
1588
0
      OS << getSpellingListIndex(SpellingList, Spellings[Index]);
1589
0
      if (Index != Spellings.size() - 1)
1590
0
        OS << " ||\n    getAttributeSpellingListIndex() == ";
1591
0
      else
1592
0
        OS << "; }\n";
1593
0
    }
1594
0
  }
1595
0
}
1596
1597
static bool
1598
0
SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
1599
0
  assert(!Spellings.empty() && "An empty list of spellings was provided");
1600
0
  std::string FirstName =
1601
0
      std::string(NormalizeNameForSpellingComparison(Spellings.front().name()));
1602
0
  for (const auto &Spelling :
1603
0
       llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
1604
0
    std::string Name =
1605
0
        std::string(NormalizeNameForSpellingComparison(Spelling.name()));
1606
0
    if (Name != FirstName)
1607
0
      return false;
1608
0
  }
1609
0
  return true;
1610
0
}
1611
1612
typedef std::map<unsigned, std::string> SemanticSpellingMap;
1613
static std::string
1614
CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
1615
0
                        SemanticSpellingMap &Map) {
1616
  // The enumerants are automatically generated based on the variety,
1617
  // namespace (if present) and name for each attribute spelling. However,
1618
  // care is taken to avoid trampling on the reserved namespace due to
1619
  // underscores.
1620
0
  std::string Ret("  enum Spelling {\n");
1621
0
  std::set<std::string> Uniques;
1622
0
  unsigned Idx = 0;
1623
1624
  // If we have a need to have this many spellings we likely need to add an
1625
  // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1626
  // value of SpellingNotCalculated there and here.
1627
0
  assert(Spellings.size() < 15 &&
1628
0
         "Too many spellings, would step on SpellingNotCalculated in "
1629
0
         "AttributeCommonInfo");
1630
0
  for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
1631
0
    const FlattenedSpelling &S = *I;
1632
0
    const std::string &Variety = S.variety();
1633
0
    const std::string &Spelling = S.name();
1634
0
    const std::string &Namespace = S.nameSpace();
1635
0
    std::string EnumName;
1636
1637
0
    EnumName += (Variety + "_");
1638
0
    if (!Namespace.empty())
1639
0
      EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
1640
0
      "_");
1641
0
    EnumName += NormalizeNameForSpellingComparison(Spelling);
1642
1643
    // Even if the name is not unique, this spelling index corresponds to a
1644
    // particular enumerant name that we've calculated.
1645
0
    Map[Idx] = EnumName;
1646
1647
    // Since we have been stripping underscores to avoid trampling on the
1648
    // reserved namespace, we may have inadvertently created duplicate
1649
    // enumerant names. These duplicates are not considered part of the
1650
    // semantic spelling, and can be elided.
1651
0
    if (Uniques.find(EnumName) != Uniques.end())
1652
0
      continue;
1653
1654
0
    Uniques.insert(EnumName);
1655
0
    if (I != Spellings.begin())
1656
0
      Ret += ",\n";
1657
    // Duplicate spellings are not considered part of the semantic spelling
1658
    // enumeration, but the spelling index and semantic spelling values are
1659
    // meant to be equivalent, so we must specify a concrete value for each
1660
    // enumerator.
1661
0
    Ret += "    " + EnumName + " = " + llvm::utostr(Idx);
1662
0
  }
1663
0
  Ret += ",\n  SpellingNotCalculated = 15\n";
1664
0
  Ret += "\n  };\n\n";
1665
0
  return Ret;
1666
0
}
1667
1668
void WriteSemanticSpellingSwitch(const std::string &VarName,
1669
                                 const SemanticSpellingMap &Map,
1670
0
                                 raw_ostream &OS) {
1671
0
  OS << "  switch (" << VarName << ") {\n    default: "
1672
0
    << "llvm_unreachable(\"Unknown spelling list index\");\n";
1673
0
  for (const auto &I : Map)
1674
0
    OS << "    case " << I.first << ": return " << I.second << ";\n";
1675
0
  OS << "  }\n";
1676
0
}
1677
1678
// Emits the LateParsed property for attributes.
1679
0
static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
1680
0
  OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1681
0
  std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
1682
1683
0
  for (const auto *Attr : Attrs) {
1684
0
    bool LateParsed = Attr->getValueAsBit("LateParsed");
1685
1686
0
    if (LateParsed) {
1687
0
      std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
1688
1689
      // FIXME: Handle non-GNU attributes
1690
0
      for (const auto &I : Spellings) {
1691
0
        if (I.variety() != "GNU")
1692
0
          continue;
1693
0
        OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
1694
0
      }
1695
0
    }
1696
0
  }
1697
0
  OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1698
0
}
1699
1700
309
static bool hasGNUorCXX11Spelling(const Record &Attribute) {
1701
309
  std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
1702
329
  for (const auto &I : Spellings) {
1703
329
    if (I.variety() == "GNU" || 
I.variety() == "CXX11"63
)
1704
277
      return true;
1705
329
  }
1706
32
  return false;
1707
309
}
1708
1709
namespace {
1710
1711
struct AttributeSubjectMatchRule {
1712
  const Record *MetaSubject;
1713
  const Record *Constraint;
1714
1715
  AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
1716
50
      : MetaSubject(MetaSubject), Constraint(Constraint) {
1717
50
    assert(MetaSubject && "Missing subject");
1718
50
  }
1719
1720
352
  bool isSubRule() const { return Constraint != nullptr; }
1721
1722
291
  std::vector<Record *> getSubjects() const {
1723
291
    return (Constraint ? 
Constraint44
:
MetaSubject247
)
1724
291
        ->getValueAsListOfDefs("Subjects");
1725
291
  }
1726
1727
0
  std::vector<Record *> getLangOpts() const {
1728
0
    if (Constraint) {
1729
      // Lookup the options in the sub-rule first, in case the sub-rule
1730
      // overrides the rules options.
1731
0
      std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
1732
0
      if (!Opts.empty())
1733
0
        return Opts;
1734
0
    }
1735
0
    return MetaSubject->getValueAsListOfDefs("LangOpts");
1736
0
  }
1737
1738
  // Abstract rules are used only for sub-rules
1739
291
  bool isAbstractRule() const { return getSubjects().empty(); }
1740
1741
0
  StringRef getName() const {
1742
0
    return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
1743
0
  }
1744
1745
44
  bool isNegatedSubRule() const {
1746
44
    assert(isSubRule() && "Not a sub-rule");
1747
0
    return Constraint->getValueAsBit("Negated");
1748
44
  }
1749
1750
0
  std::string getSpelling() const {
1751
0
    std::string Result = std::string(MetaSubject->getValueAsString("Name"));
1752
0
    if (isSubRule()) {
1753
0
      Result += '(';
1754
0
      if (isNegatedSubRule())
1755
0
        Result += "unless(";
1756
0
      Result += getName();
1757
0
      if (isNegatedSubRule())
1758
0
        Result += ')';
1759
0
      Result += ')';
1760
0
    }
1761
0
    return Result;
1762
0
  }
1763
1764
291
  std::string getEnumValueName() const {
1765
291
    SmallString<128> Result;
1766
291
    Result += "SubjectMatchRule_";
1767
291
    Result += MetaSubject->getValueAsString("Name");
1768
291
    if (isSubRule()) {
1769
44
      Result += "_";
1770
44
      if (isNegatedSubRule())
1771
5
        Result += "not_";
1772
44
      Result += Constraint->getValueAsString("Name");
1773
44
    }
1774
291
    if (isAbstractRule())
1775
0
      Result += "_abstract";
1776
291
    return std::string(Result.str());
1777
291
  }
1778
1779
0
  std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
1780
1781
  static const char *EnumName;
1782
};
1783
1784
const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
1785
1786
struct PragmaClangAttributeSupport {
1787
  std::vector<AttributeSubjectMatchRule> Rules;
1788
1789
  class RuleOrAggregateRuleSet {
1790
    std::vector<AttributeSubjectMatchRule> Rules;
1791
    bool IsRule;
1792
    RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
1793
                           bool IsRule)
1794
26
        : Rules(Rules), IsRule(IsRule) {}
1795
1796
  public:
1797
280
    bool isRule() const { return IsRule; }
1798
1799
293
    const AttributeSubjectMatchRule &getRule() const {
1800
293
      assert(IsRule && "not a rule!");
1801
0
      return Rules[0];
1802
293
    }
1803
1804
2
    ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
1805
2
      return Rules;
1806
2
    }
1807
1808
    static RuleOrAggregateRuleSet
1809
25
    getRule(const AttributeSubjectMatchRule &Rule) {
1810
25
      return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
1811
25
    }
1812
    static RuleOrAggregateRuleSet
1813
1
    getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
1814
1
      return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
1815
1
    }
1816
  };
1817
  llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
1818
1819
  PragmaClangAttributeSupport(RecordKeeper &Records);
1820
1821
  bool isAttributedSupported(const Record &Attribute);
1822
1823
  void emitMatchRuleList(raw_ostream &OS);
1824
1825
  void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
1826
1827
  void generateParsingHelpers(raw_ostream &OS);
1828
};
1829
1830
} // end anonymous namespace
1831
1832
622
static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) {
1833
  // FIXME: #pragma clang attribute does not currently support statement
1834
  // attributes, so test whether the subject is one that appertains to a
1835
  // declaration node. However, it may be reasonable for support for statement
1836
  // attributes to be added.
1837
622
  if (Subject.isSubClassOf("DeclNode") || 
Subject.isSubClassOf("DeclBase")85
||
1838
622
      
Subject.getName() == "DeclBase"85
)
1839
554
    return true;
1840
1841
68
  if (Subject.isSubClassOf("SubsetSubject"))
1842
59
    return isSupportedPragmaClangAttributeSubject(
1843
59
        *Subject.getValueAsDef("Base"));
1844
1845
9
  return false;
1846
68
}
1847
1848
229
static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
1849
229
  const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
1850
229
  if (!CurrentBase)
1851
24
    return false;
1852
205
  if (CurrentBase == Base)
1853
71
    return true;
1854
134
  return doesDeclDeriveFrom(CurrentBase, Base);
1855
205
}
1856
1857
PragmaClangAttributeSupport::PragmaClangAttributeSupport(
1858
1
    RecordKeeper &Records) {
1859
1
  std::vector<Record *> MetaSubjects =
1860
1
      Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
1861
1
  auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
1862
1
                                       const Record *MetaSubject,
1863
25
                                       const Record *Constraint) {
1864
25
    Rules.emplace_back(MetaSubject, Constraint);
1865
25
    std::vector<Record *> ApplicableSubjects =
1866
25
        SubjectContainer->getValueAsListOfDefs("Subjects");
1867
25
    for (const auto *Subject : ApplicableSubjects) {
1868
25
      bool Inserted =
1869
25
          SubjectsToRules
1870
25
              .try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
1871
25
                                        AttributeSubjectMatchRule(MetaSubject,
1872
25
                                                                  Constraint)))
1873
25
              .second;
1874
25
      if (!Inserted) {
1875
0
        PrintFatalError("Attribute subject match rules should not represent"
1876
0
                        "same attribute subjects.");
1877
0
      }
1878
25
    }
1879
25
  };
1880
16
  for (const auto *MetaSubject : MetaSubjects) {
1881
16
    MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
1882
16
    std::vector<Record *> Constraints =
1883
16
        MetaSubject->getValueAsListOfDefs("Constraints");
1884
16
    for (const auto *Constraint : Constraints)
1885
9
      MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
1886
16
  }
1887
1888
1
  std::vector<Record *> Aggregates =
1889
1
      Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
1890
1
  std::vector<Record *> DeclNodes =
1891
1
    Records.getAllDerivedDefinitions(DeclNodeClassName);
1892
1
  for (const auto *Aggregate : Aggregates) {
1893
1
    Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
1894
1895
    // Gather sub-classes of the aggregate subject that act as attribute
1896
    // subject rules.
1897
1
    std::vector<AttributeSubjectMatchRule> Rules;
1898
95
    for (const auto *D : DeclNodes) {
1899
95
      if (doesDeclDeriveFrom(D, SubjectDecl)) {
1900
71
        auto It = SubjectsToRules.find(D);
1901
71
        if (It == SubjectsToRules.end())
1902
54
          continue;
1903
17
        if (!It->second.isRule() || It->second.getRule().isSubRule())
1904
2
          continue; // Assume that the rule will be included as well.
1905
15
        Rules.push_back(It->second.getRule());
1906
15
      }
1907
95
    }
1908
1909
1
    bool Inserted =
1910
1
        SubjectsToRules
1911
1
            .try_emplace(SubjectDecl,
1912
1
                         RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
1913
1
            .second;
1914
1
    if (!Inserted) {
1915
0
      PrintFatalError("Attribute subject match rules should not represent"
1916
0
                      "same attribute subjects.");
1917
0
    }
1918
1
  }
1919
1
}
1920
1921
static PragmaClangAttributeSupport &
1922
1
getPragmaAttributeSupport(RecordKeeper &Records) {
1923
1
  static PragmaClangAttributeSupport Instance(Records);
1924
1
  return Instance;
1925
1
}
1926
1927
0
void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
1928
0
  OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
1929
0
  OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
1930
0
        "IsNegated) "
1931
0
     << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
1932
0
  OS << "#endif\n";
1933
0
  for (const auto &Rule : Rules) {
1934
0
    OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
1935
0
    OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
1936
0
       << Rule.isAbstractRule();
1937
0
    if (Rule.isSubRule())
1938
0
      OS << ", "
1939
0
         << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
1940
0
         << ", " << Rule.isNegatedSubRule();
1941
0
    OS << ")\n";
1942
0
  }
1943
0
  OS << "#undef ATTR_MATCH_SUB_RULE\n";
1944
0
}
1945
1946
bool PragmaClangAttributeSupport::isAttributedSupported(
1947
332
    const Record &Attribute) {
1948
  // If the attribute explicitly specified whether to support #pragma clang
1949
  // attribute, use that setting.
1950
332
  bool Unset;
1951
332
  bool SpecifiedResult =
1952
332
    Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
1953
332
  if (!Unset)
1954
7
    return SpecifiedResult;
1955
1956
  // Opt-out rules:
1957
  // An attribute requires delayed parsing (LateParsed is on)
1958
325
  if (Attribute.getValueAsBit("LateParsed"))
1959
16
    return false;
1960
  // An attribute has no GNU/CXX11 spelling
1961
309
  if (!hasGNUorCXX11Spelling(Attribute))
1962
32
    return false;
1963
  // An attribute subject list has a subject that isn't covered by one of the
1964
  // subject match rules or has no subjects at all.
1965
277
  if (Attribute.isValueUnset("Subjects"))
1966
68
    return false;
1967
209
  const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
1968
209
  std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
1969
209
  bool HasAtLeastOneValidSubject = false;
1970
299
  for (const auto *Subject : Subjects) {
1971
299
    if (!isSupportedPragmaClangAttributeSubject(*Subject))
1972
8
      continue;
1973
291
    if (SubjectsToRules.find(Subject) == SubjectsToRules.end())
1974
21
      return false;
1975
270
    HasAtLeastOneValidSubject = true;
1976
270
  }
1977
188
  return HasAtLeastOneValidSubject;
1978
209
}
1979
1980
0
static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) {
1981
0
  std::string Test;
1982
1983
0
  for (auto *E : LangOpts) {
1984
0
    if (!Test.empty())
1985
0
      Test += " || ";
1986
1987
0
    const StringRef Code = E->getValueAsString("CustomCode");
1988
0
    if (!Code.empty()) {
1989
0
      Test += "(";
1990
0
      Test += Code;
1991
0
      Test += ")";
1992
0
      if (!E->getValueAsString("Name").empty()) {
1993
0
        PrintWarning(
1994
0
            E->getLoc(),
1995
0
            "non-empty 'Name' field ignored because 'CustomCode' was supplied");
1996
0
      }
1997
0
    } else {
1998
0
      Test += "LangOpts.";
1999
0
      Test += E->getValueAsString("Name");
2000
0
    }
2001
0
  }
2002
2003
0
  if (Test.empty())
2004
0
    return "true";
2005
2006
0
  return Test;
2007
0
}
2008
2009
void
2010
PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
2011
0
                                                      raw_ostream &OS) {
2012
0
  if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects"))
2013
0
    return;
2014
  // Generate a function that constructs a set of matching rules that describe
2015
  // to which declarations the attribute should apply to.
2016
0
  OS << "void getPragmaAttributeMatchRules("
2017
0
     << "llvm::SmallVectorImpl<std::pair<"
2018
0
     << AttributeSubjectMatchRule::EnumName
2019
0
     << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2020
0
  const Record *SubjectObj = Attr.getValueAsDef("Subjects");
2021
0
  std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
2022
0
  for (const auto *Subject : Subjects) {
2023
0
    if (!isSupportedPragmaClangAttributeSubject(*Subject))
2024
0
      continue;
2025
0
    auto It = SubjectsToRules.find(Subject);
2026
0
    assert(It != SubjectsToRules.end() &&
2027
0
           "This attribute is unsupported by #pragma clang attribute");
2028
0
    for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
2029
      // The rule might be language specific, so only subtract it from the given
2030
      // rules if the specific language options are specified.
2031
0
      std::vector<Record *> LangOpts = Rule.getLangOpts();
2032
0
      OS << "  MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
2033
0
         << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
2034
0
         << "));\n";
2035
0
    }
2036
0
  }
2037
0
  OS << "}\n\n";
2038
0
}
2039
2040
0
void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
2041
  // Generate routines that check the names of sub-rules.
2042
0
  OS << "Optional<attr::SubjectMatchRule> "
2043
0
        "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2044
0
  OS << "  return None;\n";
2045
0
  OS << "}\n\n";
2046
2047
0
  llvm::MapVector<const Record *, std::vector<AttributeSubjectMatchRule>>
2048
0
      SubMatchRules;
2049
0
  for (const auto &Rule : Rules) {
2050
0
    if (!Rule.isSubRule())
2051
0
      continue;
2052
0
    SubMatchRules[Rule.MetaSubject].push_back(Rule);
2053
0
  }
2054
2055
0
  for (const auto &SubMatchRule : SubMatchRules) {
2056
0
    OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_"
2057
0
       << SubMatchRule.first->getValueAsString("Name")
2058
0
       << "(StringRef Name, bool IsUnless) {\n";
2059
0
    OS << "  if (IsUnless)\n";
2060
0
    OS << "    return "
2061
0
          "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2062
0
    for (const auto &Rule : SubMatchRule.second) {
2063
0
      if (Rule.isNegatedSubRule())
2064
0
        OS << "    Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2065
0
           << ").\n";
2066
0
    }
2067
0
    OS << "    Default(None);\n";
2068
0
    OS << "  return "
2069
0
          "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2070
0
    for (const auto &Rule : SubMatchRule.second) {
2071
0
      if (!Rule.isNegatedSubRule())
2072
0
        OS << "  Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2073
0
           << ").\n";
2074
0
    }
2075
0
    OS << "  Default(None);\n";
2076
0
    OS << "}\n\n";
2077
0
  }
2078
2079
  // Generate the function that checks for the top-level rules.
2080
0
  OS << "std::pair<Optional<attr::SubjectMatchRule>, "
2081
0
        "Optional<attr::SubjectMatchRule> (*)(StringRef, "
2082
0
        "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2083
0
  OS << "  return "
2084
0
        "llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, "
2085
0
        "Optional<attr::SubjectMatchRule> (*) (StringRef, "
2086
0
        "bool)>>(Name).\n";
2087
0
  for (const auto &Rule : Rules) {
2088
0
    if (Rule.isSubRule())
2089
0
      continue;
2090
0
    std::string SubRuleFunction;
2091
0
    if (SubMatchRules.count(Rule.MetaSubject))
2092
0
      SubRuleFunction =
2093
0
          ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
2094
0
    else
2095
0
      SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
2096
0
    OS << "  Case(\"" << Rule.getName() << "\", std::make_pair("
2097
0
       << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
2098
0
  }
2099
0
  OS << "  Default(std::make_pair(None, "
2100
0
        "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2101
0
  OS << "}\n\n";
2102
2103
  // Generate the function that checks for the submatch rules.
2104
0
  OS << "const char *validAttributeSubjectMatchSubRules("
2105
0
     << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
2106
0
  OS << "  switch (Rule) {\n";
2107
0
  for (const auto &SubMatchRule : SubMatchRules) {
2108
0
    OS << "  case "
2109
0
       << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
2110
0
       << ":\n";
2111
0
    OS << "  return \"'";
2112
0
    bool IsFirst = true;
2113
0
    for (const auto &Rule : SubMatchRule.second) {
2114
0
      if (!IsFirst)
2115
0
        OS << ", '";
2116
0
      IsFirst = false;
2117
0
      if (Rule.isNegatedSubRule())
2118
0
        OS << "unless(";
2119
0
      OS << Rule.getName();
2120
0
      if (Rule.isNegatedSubRule())
2121
0
        OS << ')';
2122
0
      OS << "'";
2123
0
    }
2124
0
    OS << "\";\n";
2125
0
  }
2126
0
  OS << "  default: return nullptr;\n";
2127
0
  OS << "  }\n";
2128
0
  OS << "}\n\n";
2129
0
}
2130
2131
template <typename Fn>
2132
0
static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
2133
0
  std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
2134
0
  SmallDenseSet<StringRef, 8> Seen;
2135
0
  for (const FlattenedSpelling &S : Spellings) {
2136
0
    if (Seen.insert(S.name()).second)
2137
0
      F(S);
2138
0
  }
2139
0
}
Unexecuted instantiation: ClangAttrEmitter.cpp:void forEachUniqueSpelling<emitClangAttrArgContextList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_5>(llvm::Record const&, emitClangAttrArgContextList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_5&&)
Unexecuted instantiation: ClangAttrEmitter.cpp:void forEachUniqueSpelling<emitClangAttrIdentifierArgList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_7>(llvm::Record const&, emitClangAttrIdentifierArgList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_7&&)
Unexecuted instantiation: ClangAttrEmitter.cpp:void forEachUniqueSpelling<emitClangAttrVariadicIdentifierArgList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_6>(llvm::Record const&, emitClangAttrVariadicIdentifierArgList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_6&&)
Unexecuted instantiation: ClangAttrEmitter.cpp:void forEachUniqueSpelling<emitClangAttrThisIsaIdentifierArgList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_8>(llvm::Record const&, emitClangAttrThisIsaIdentifierArgList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_8&&)
Unexecuted instantiation: ClangAttrEmitter.cpp:void forEachUniqueSpelling<emitClangAttrTypeArgList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_4>(llvm::Record const&, emitClangAttrTypeArgList(llvm::RecordKeeper&, llvm::raw_ostream&)::$_4&&)
2140
2141
/// Emits the first-argument-is-type property for attributes.
2142
0
static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
2143
0
  OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2144
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2145
2146
0
  for (const auto *Attr : Attrs) {
2147
    // Determine whether the first argument is a type.
2148
0
    std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2149
0
    if (Args.empty())
2150
0
      continue;
2151
2152
0
    if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument")
2153
0
      continue;
2154
2155
    // All these spellings take a single type argument.
2156
0
    forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2157
0
      OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2158
0
    });
2159
0
  }
2160
0
  OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2161
0
}
2162
2163
/// Emits the parse-arguments-in-unevaluated-context property for
2164
/// attributes.
2165
0
static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
2166
0
  OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2167
0
  ParsedAttrMap Attrs = getParsedAttrList(Records);
2168
0
  for (const auto &I : Attrs) {
2169
0
    const Record &Attr = *I.second;
2170
2171
0
    if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
2172
0
      continue;
2173
2174
    // All these spellings take are parsed unevaluated.
2175
0
    forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2176
0
      OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2177
0
    });
2178
0
  }
2179
0
  OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2180
0
}
2181
2182
0
static bool isIdentifierArgument(Record *Arg) {
2183
0
  return !Arg->getSuperClasses().empty() &&
2184
0
    llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2185
0
    .Case("IdentifierArgument", true)
2186
0
    .Case("EnumArgument", true)
2187
0
    .Case("VariadicEnumArgument", true)
2188
0
    .Default(false);
2189
0
}
2190
2191
0
static bool isVariadicIdentifierArgument(Record *Arg) {
2192
0
  return !Arg->getSuperClasses().empty() &&
2193
0
         llvm::StringSwitch<bool>(
2194
0
             Arg->getSuperClasses().back().first->getName())
2195
0
             .Case("VariadicIdentifierArgument", true)
2196
0
             .Case("VariadicParamOrParamIdxArgument", true)
2197
0
             .Default(false);
2198
0
}
2199
2200
static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records,
2201
0
                                                   raw_ostream &OS) {
2202
0
  OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2203
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2204
0
  for (const auto *A : Attrs) {
2205
    // Determine whether the first argument is a variadic identifier.
2206
0
    std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2207
0
    if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
2208
0
      continue;
2209
2210
    // All these spellings take an identifier argument.
2211
0
    forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2212
0
      OS << ".Case(\"" << S.name() << "\", "
2213
0
         << "true"
2214
0
         << ")\n";
2215
0
    });
2216
0
  }
2217
0
  OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2218
0
}
2219
2220
// Emits the first-argument-is-identifier property for attributes.
2221
0
static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
2222
0
  OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2223
0
  std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2224
2225
0
  for (const auto *Attr : Attrs) {
2226
    // Determine whether the first argument is an identifier.
2227
0
    std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2228
0
    if (Args.empty() || !isIdentifierArgument(Args[0]))
2229
0
      continue;
2230
2231
    // All these spellings take an identifier argument.
2232
0
    forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2233
0
      OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2234
0
    });
2235
0
  }
2236
0
  OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2237
0
}
2238
2239
0
static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
2240
0
  return !Arg->getSuperClasses().empty() &&
2241
0
         llvm::StringSwitch<bool>(
2242
0
             Arg->getSuperClasses().back().first->getName())
2243
0
             .Case("VariadicParamOrParamIdxArgument", true)
2244
0
             .Default(false);
2245
0
}
2246
2247
static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records,
2248
0
                                                  raw_ostream &OS) {
2249
0
  OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2250
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2251
0
  for (const auto *A : Attrs) {
2252
    // Determine whether the first argument is a variadic identifier.
2253
0
    std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2254
0
    if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
2255
0
      continue;
2256
2257
    // All these spellings take an identifier argument.
2258
0
    forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2259
0
      OS << ".Case(\"" << S.name() << "\", "
2260
0
         << "true"
2261
0
         << ")\n";
2262
0
    });
2263
0
  }
2264
0
  OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2265
0
}
2266
2267
static void emitAttributes(RecordKeeper &Records, raw_ostream &OS,
2268
0
                           bool Header) {
2269
0
  std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2270
0
  ParsedAttrMap AttrMap = getParsedAttrList(Records);
2271
2272
  // Helper to print the starting character of an attribute argument. If there
2273
  // hasn't been an argument yet, it prints an opening parenthese; otherwise it
2274
  // prints a comma.
2275
0
  OS << "static inline void DelimitAttributeArgument("
2276
0
     << "raw_ostream& OS, bool& IsFirst) {\n"
2277
0
     << "  if (IsFirst) {\n"
2278
0
     << "    IsFirst = false;\n"
2279
0
     << "    OS << \"(\";\n"
2280
0
     << "  } else\n"
2281
0
     << "    OS << \", \";\n"
2282
0
     << "}\n";
2283
2284
0
  for (const auto *Attr : Attrs) {
2285
0
    const Record &R = *Attr;
2286
2287
    // FIXME: Currently, documentation is generated as-needed due to the fact
2288
    // that there is no way to allow a generated project "reach into" the docs
2289
    // directory (for instance, it may be an out-of-tree build). However, we want
2290
    // to ensure that every attribute has a Documentation field, and produce an
2291
    // error if it has been neglected. Otherwise, the on-demand generation which
2292
    // happens server-side will fail. This code is ensuring that functionality,
2293
    // even though this Emitter doesn't technically need the documentation.
2294
    // When attribute documentation can be generated as part of the build
2295
    // itself, this code can be removed.
2296
0
    (void)R.getValueAsListOfDefs("Documentation");
2297
2298
0
    if (!R.getValueAsBit("ASTNode"))
2299
0
      continue;
2300
2301
0
    ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
2302
0
    assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
2303
0
    std::string SuperName;
2304
0
    bool Inheritable = false;
2305
0
    for (const auto &Super : llvm::reverse(Supers)) {
2306
0
      const Record *R = Super.first;
2307
0
      if (R->getName() != "TargetSpecificAttr" &&
2308
0
          R->getName() != "DeclOrTypeAttr" && SuperName.empty())
2309
0
        SuperName = std::string(R->getName());
2310
0
      if (R->getName() == "InheritableAttr")
2311
0
        Inheritable = true;
2312
0
    }
2313
2314
0
    if (Header)
2315
0
      OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
2316
0
    else
2317
0
      OS << "\n// " << R.getName() << "Attr implementation\n\n";
2318
2319
0
    std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
2320
0
    std::vector<std::unique_ptr<Argument>> Args;
2321
0
    Args.reserve(ArgRecords.size());
2322
2323
0
    bool HasOptArg = false;
2324
0
    bool HasFakeArg = false;
2325
0
    for (const auto *ArgRecord : ArgRecords) {
2326
0
      Args.emplace_back(createArgument(*ArgRecord, R.getName()));
2327
0
      if (Header) {
2328
0
        Args.back()->writeDeclarations(OS);
2329
0
        OS << "\n\n";
2330
0
      }
2331
2332
      // For these purposes, fake takes priority over optional.
2333
0
      if (Args.back()->isFake()) {
2334
0
        HasFakeArg = true;
2335
0
      } else if (Args.back()->isOptional()) {
2336
0
        HasOptArg = true;
2337
0
      }
2338
0
    }
2339
2340
0
    if (Header)
2341
0
      OS << "public:\n";
2342
2343
0
    std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
2344
2345
    // If there are zero or one spellings, all spelling-related functionality
2346
    // can be elided. If all of the spellings share the same name, the spelling
2347
    // functionality can also be elided.
2348
0
    bool ElideSpelling = (Spellings.size() <= 1) ||
2349
0
                         SpellingNamesAreCommon(Spellings);
2350
2351
    // This maps spelling index values to semantic Spelling enumerants.
2352
0
    SemanticSpellingMap SemanticToSyntacticMap;
2353
2354
0
    std::string SpellingEnum;
2355
0
    if (Spellings.size() > 1)
2356
0
      SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
2357
0
    if (Header)
2358
0
      OS << SpellingEnum;
2359
2360
0
    const auto &ParsedAttrSpellingItr = llvm::find_if(
2361
0
        AttrMap, [R](const std::pair<std::string, const Record *> &P) {
2362
0
          return &R == P.second;
2363
0
        });
2364
2365
    // Emit CreateImplicit factory methods.
2366
0
    auto emitCreate = [&](bool Implicit, bool emitFake) {
2367
0
      if (Header)
2368
0
        OS << "  static ";
2369
0
      OS << R.getName() << "Attr *";
2370
0
      if (!Header)
2371
0
        OS << R.getName() << "Attr::";
2372
0
      OS << "Create";
2373
0
      if (Implicit)
2374
0
        OS << "Implicit";
2375
0
      OS << "(";
2376
0
      OS << "ASTContext &Ctx";
2377
0
      for (auto const &ai : Args) {
2378
0
        if (ai->isFake() && !emitFake) continue;
2379
0
        OS << ", ";
2380
0
        ai->writeCtorParameters(OS);
2381
0
      }
2382
0
      OS << ", const AttributeCommonInfo &CommonInfo";
2383
0
      if (Header && Implicit)
2384
0
        OS << " = {SourceRange{}}";
2385
0
      OS << ")";
2386
0
      if (Header) {
2387
0
        OS << ";\n";
2388
0
        return;
2389
0
      }
2390
2391
0
      OS << " {\n";
2392
0
      OS << "  auto *A = new (Ctx) " << R.getName();
2393
0
      OS << "Attr(Ctx, CommonInfo";
2394
0
      for (auto const &ai : Args) {
2395
0
        if (ai->isFake() && !emitFake) continue;
2396
0
        OS << ", ";
2397
0
        ai->writeImplicitCtorArgs(OS);
2398
0
      }
2399
0
      OS << ");\n";
2400
0
      if (Implicit) {
2401
0
        OS << "  A->setImplicit(true);\n";
2402
0
      }
2403
0
      if (Implicit || ElideSpelling) {
2404
0
        OS << "  if (!A->isAttributeSpellingListCalculated() && "
2405
0
              "!A->getAttrName())\n";
2406
0
        OS << "    A->setAttributeSpellingListIndex(0);\n";
2407
0
      }
2408
0
      OS << "  return A;\n}\n\n";
2409
0
    };
2410
2411
0
    auto emitCreateNoCI = [&](bool Implicit, bool emitFake) {
2412
0
      if (Header)
2413
0
        OS << "  static ";
2414
0
      OS << R.getName() << "Attr *";
2415
0
      if (!Header)
2416
0
        OS << R.getName() << "Attr::";
2417
0
      OS << "Create";
2418
0
      if (Implicit)
2419
0
        OS << "Implicit";
2420
0
      OS << "(";
2421
0
      OS << "ASTContext &Ctx";
2422
0
      for (auto const &ai : Args) {
2423
0
        if (ai->isFake() && !emitFake) continue;
2424
0
        OS << ", ";
2425
0
        ai->writeCtorParameters(OS);
2426
0
      }
2427
0
      OS << ", SourceRange Range, AttributeCommonInfo::Syntax Syntax";
2428
0
      if (!ElideSpelling) {
2429
0
        OS << ", " << R.getName() << "Attr::Spelling S";
2430
0
        if (Header)
2431
0
          OS << " = static_cast<Spelling>(SpellingNotCalculated)";
2432
0
      }
2433
0
      OS << ")";
2434
0
      if (Header) {
2435
0
        OS << ";\n";
2436
0
        return;
2437
0
      }
2438
2439
0
      OS << " {\n";
2440
0
      OS << "  AttributeCommonInfo I(Range, ";
2441
2442
0
      if (ParsedAttrSpellingItr != std::end(AttrMap))
2443
0
        OS << "AT_" << ParsedAttrSpellingItr->first;
2444
0
      else
2445
0
        OS << "NoSemaHandlerAttribute";
2446
2447
0
      OS << ", Syntax";
2448
0
      if (!ElideSpelling)
2449
0
        OS << ", S";
2450
0
      OS << ");\n";
2451
0
      OS << "  return Create";
2452
0
      if (Implicit)
2453
0
        OS << "Implicit";
2454
0
      OS << "(Ctx";
2455
0
      for (auto const &ai : Args) {
2456
0
        if (ai->isFake() && !emitFake) continue;
2457
0
        OS << ", ";
2458
0
        ai->writeImplicitCtorArgs(OS);
2459
0
      }
2460
0
      OS << ", I);\n";
2461
0
      OS << "}\n\n";
2462
0
    };
2463
2464
0
    auto emitCreates = [&](bool emitFake) {
2465
0
      emitCreate(true, emitFake);
2466
0
      emitCreate(false, emitFake);
2467
0
      emitCreateNoCI(true, emitFake);
2468
0
      emitCreateNoCI(false, emitFake);
2469
0
    };
2470
2471
0
    if (Header)
2472
0
      OS << "  // Factory methods\n";
2473
2474
    // Emit a CreateImplicit that takes all the arguments.
2475
0
    emitCreates(true);
2476
2477
    // Emit a CreateImplicit that takes all the non-fake arguments.
2478
0
    if (HasFakeArg)
2479
0
      emitCreates(false);
2480
2481
    // Emit constructors.
2482
0
    auto emitCtor = [&](bool emitOpt, bool emitFake) {
2483
0
      auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
2484
0
        if (arg->isFake()) return emitFake;
2485
0
        if (arg->isOptional()) return emitOpt;
2486
0
        return true;
2487
0
      };
2488
0
      if (Header)
2489
0
        OS << "  ";
2490
0
      else
2491
0
        OS << R.getName() << "Attr::";
2492
0
      OS << R.getName()
2493
0
         << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
2494
0
      OS << '\n';
2495
0
      for (auto const &ai : Args) {
2496
0
        if (!shouldEmitArg(ai)) continue;
2497
0
        OS << "              , ";
2498
0
        ai->writeCtorParameters(OS);
2499
0
        OS << "\n";
2500
0
      }
2501
2502
0
      OS << "             )";
2503
0
      if (Header) {
2504
0
        OS << ";\n";
2505
0
        return;
2506
0
      }
2507
0
      OS << "\n  : " << SuperName << "(Ctx, CommonInfo, ";
2508
0
      OS << "attr::" << R.getName() << ", "
2509
0
         << (R.getValueAsBit("LateParsed") ? "true" : "false");
2510
0
      if (Inheritable) {
2511
0
        OS << ", "
2512
0
           << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
2513
0
                                                              : "false");
2514
0
      }
2515
0
      OS << ")\n";
2516
2517
0
      for (auto const &ai : Args) {
2518
0
        OS << "              , ";
2519
0
        if (!shouldEmitArg(ai)) {
2520
0
          ai->writeCtorDefaultInitializers(OS);
2521
0
        } else {
2522
0
          ai->writeCtorInitializers(OS);
2523
0
        }
2524
0
        OS << "\n";
2525
0
      }
2526
2527
0
      OS << "  {\n";
2528
2529
0
      for (auto const &ai : Args) {
2530
0
        if (!shouldEmitArg(ai)) continue;
2531
0
        ai->writeCtorBody(OS);
2532
0
      }
2533
0
      OS << "}\n\n";
2534
0
    };
2535
2536
0
    if (Header)
2537
0
      OS << "\n  // Constructors\n";
2538
2539
    // Emit a constructor that includes all the arguments.
2540
    // This is necessary for cloning.
2541
0
    emitCtor(true, true);
2542
2543
    // Emit a constructor that takes all the non-fake arguments.
2544
0
    if (HasFakeArg)
2545
0
      emitCtor(true, false);
2546
2547
    // Emit a constructor that takes all the non-fake, non-optional arguments.
2548
0
    if (HasOptArg)
2549
0
      emitCtor(false, false);
2550
2551
0
    if (Header) {
2552
0
      OS << '\n';
2553
0
      OS << "  " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
2554
0
      OS << "  void printPretty(raw_ostream &OS,\n"
2555
0
         << "                   const PrintingPolicy &Policy) const;\n";
2556
0
      OS << "  const char *getSpelling() const;\n";
2557
0
    }
2558
2559
0
    if (!ElideSpelling) {
2560
0
      assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
2561
0
      if (Header)
2562
0
        OS << "  Spelling getSemanticSpelling() const;\n";
2563
0
      else {
2564
0
        OS << R.getName() << "Attr::Spelling " << R.getName()
2565
0
           << "Attr::getSemanticSpelling() const {\n";
2566
0
        WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
2567
0
                                    SemanticToSyntacticMap, OS);
2568
0
        OS << "}\n";
2569
0
      }
2570
0
    }
2571
2572
0
    if (Header)
2573
0
      writeAttrAccessorDefinition(R, OS);
2574
2575
0
    for (auto const &ai : Args) {
2576
0
      if (Header) {
2577
0
        ai->writeAccessors(OS);
2578
0
      } else {
2579
0
        ai->writeAccessorDefinitions(OS);
2580
0
      }
2581
0
      OS << "\n\n";
2582
2583
      // Don't write conversion routines for fake arguments.
2584
0
      if (ai->isFake()) continue;
2585
2586
0
      if (ai->isEnumArg())
2587
0
        static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
2588
0
                                                                     Header);
2589
0
      else if (ai->isVariadicEnumArg())
2590
0
        static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
2591
0
            OS, Header);
2592
0
    }
2593
2594
0
    if (Header) {
2595
0
      OS << R.getValueAsString("AdditionalMembers");
2596
0
      OS << "\n\n";
2597
2598
0
      OS << "  static bool classof(const Attr *A) { return A->getKind() == "
2599
0
         << "attr::" << R.getName() << "; }\n";
2600
2601
0
      OS << "};\n\n";
2602
0
    } else {
2603
0
      OS << R.getName() << "Attr *" << R.getName()
2604
0
         << "Attr::clone(ASTContext &C) const {\n";
2605
0
      OS << "  auto *A = new (C) " << R.getName() << "Attr(C, *this";
2606
0
      for (auto const &ai : Args) {
2607
0
        OS << ", ";
2608
0
        ai->writeCloneArgs(OS);
2609
0
      }
2610
0
      OS << ");\n";
2611
0
      OS << "  A->Inherited = Inherited;\n";
2612
0
      OS << "  A->IsPackExpansion = IsPackExpansion;\n";
2613
0
      OS << "  A->setImplicit(Implicit);\n";
2614
0
      OS << "  return A;\n}\n\n";
2615
2616
0
      writePrettyPrintFunction(R, Args, OS);
2617
0
      writeGetSpellingFunction(R, OS);
2618
0
    }
2619
0
  }
2620
0
}
2621
// Emits the class definitions for attributes.
2622
0
void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
2623
0
  emitSourceFileHeader("Attribute classes' definitions", OS);
2624
2625
0
  OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
2626
0
  OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
2627
2628
0
  emitAttributes(Records, OS, true);
2629
2630
0
  OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
2631
0
}
2632
2633
// Emits the class method definitions for attributes.
2634
0
void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
2635
0
  emitSourceFileHeader("Attribute classes' member function definitions", OS);
2636
2637
0
  emitAttributes(Records, OS, false);
2638
2639
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2640
2641
  // Instead of relying on virtual dispatch we just create a huge dispatch
2642
  // switch. This is both smaller and faster than virtual functions.
2643
0
  auto EmitFunc = [&](const char *Method) {
2644
0
    OS << "  switch (getKind()) {\n";
2645
0
    for (const auto *Attr : Attrs) {
2646
0
      const Record &R = *Attr;
2647
0
      if (!R.getValueAsBit("ASTNode"))
2648
0
        continue;
2649
2650
0
      OS << "  case attr::" << R.getName() << ":\n";
2651
0
      OS << "    return cast<" << R.getName() << "Attr>(this)->" << Method
2652
0
         << ";\n";
2653
0
    }
2654
0
    OS << "  }\n";
2655
0
    OS << "  llvm_unreachable(\"Unexpected attribute kind!\");\n";
2656
0
    OS << "}\n\n";
2657
0
  };
2658
2659
0
  OS << "const char *Attr::getSpelling() const {\n";
2660
0
  EmitFunc("getSpelling()");
2661
2662
0
  OS << "Attr *Attr::clone(ASTContext &C) const {\n";
2663
0
  EmitFunc("clone(C)");
2664
2665
0
  OS << "void Attr::printPretty(raw_ostream &OS, "
2666
0
        "const PrintingPolicy &Policy) const {\n";
2667
0
  EmitFunc("printPretty(OS, Policy)");
2668
0
}
2669
2670
static void emitAttrList(raw_ostream &OS, StringRef Class,
2671
0
                         const std::vector<Record*> &AttrList) {
2672
0
  for (auto Cur : AttrList) {
2673
0
    OS << Class << "(" << Cur->getName() << ")\n";
2674
0
  }
2675
0
}
2676
2677
// Determines if an attribute has a Pragma spelling.
2678
0
static bool AttrHasPragmaSpelling(const Record *R) {
2679
0
  std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
2680
0
  return llvm::any_of(Spellings, [](const FlattenedSpelling &S) {
2681
0
    return S.variety() == "Pragma";
2682
0
  });
2683
0
}
2684
2685
namespace {
2686
2687
  struct AttrClassDescriptor {
2688
    const char * const MacroName;
2689
    const char * const TableGenName;
2690
  };
2691
2692
} // end anonymous namespace
2693
2694
static const AttrClassDescriptor AttrClassDescriptors[] = {
2695
  { "ATTR", "Attr" },
2696
  { "TYPE_ATTR", "TypeAttr" },
2697
  { "STMT_ATTR", "StmtAttr" },
2698
  { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" },
2699
  { "INHERITABLE_ATTR", "InheritableAttr" },
2700
  { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
2701
  { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
2702
  { "PARAMETER_ABI_ATTR", "ParameterABIAttr" }
2703
};
2704
2705
static void emitDefaultDefine(raw_ostream &OS, StringRef name,
2706
0
                              const char *superName) {
2707
0
  OS << "#ifndef " << name << "\n";
2708
0
  OS << "#define " << name << "(NAME) ";
2709
0
  if (superName) OS << superName << "(NAME)";
2710
0
  OS << "\n#endif\n\n";
2711
0
}
2712
2713
namespace {
2714
2715
  /// A class of attributes.
2716
  struct AttrClass {
2717
    const AttrClassDescriptor &Descriptor;
2718
    Record *TheRecord;
2719
    AttrClass *SuperClass = nullptr;
2720
    std::vector<AttrClass*> SubClasses;
2721
    std::vector<Record*> Attrs;
2722
2723
    AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
2724
0
      : Descriptor(Descriptor), TheRecord(R) {}
2725
2726
0
    void emitDefaultDefines(raw_ostream &OS) const {
2727
      // Default the macro unless this is a root class (i.e. Attr).
2728
0
      if (SuperClass) {
2729
0
        emitDefaultDefine(OS, Descriptor.MacroName,
2730
0
                          SuperClass->Descriptor.MacroName);
2731
0
      }
2732
0
    }
2733
2734
0
    void emitUndefs(raw_ostream &OS) const {
2735
0
      OS << "#undef " << Descriptor.MacroName << "\n";
2736
0
    }
2737
2738
0
    void emitAttrList(raw_ostream &OS) const {
2739
0
      for (auto SubClass : SubClasses) {
2740
0
        SubClass->emitAttrList(OS);
2741
0
      }
2742
2743
0
      ::emitAttrList(OS, Descriptor.MacroName, Attrs);
2744
0
    }
2745
2746
0
    void classifyAttrOnRoot(Record *Attr) {
2747
0
      bool result = classifyAttr(Attr);
2748
0
      assert(result && "failed to classify on root"); (void) result;
2749
0
    }
2750
2751
0
    void emitAttrRange(raw_ostream &OS) const {
2752
0
      OS << "ATTR_RANGE(" << Descriptor.TableGenName
2753
0
         << ", " << getFirstAttr()->getName()
2754
0
         << ", " << getLastAttr()->getName() << ")\n";
2755
0
    }
2756
2757
  private:
2758
0
    bool classifyAttr(Record *Attr) {
2759
      // Check all the subclasses.
2760
0
      for (auto SubClass : SubClasses) {
2761
0
        if (SubClass->classifyAttr(Attr))
2762
0
          return true;
2763
0
      }
2764
2765
      // It's not more specific than this class, but it might still belong here.
2766
0
      if (Attr->isSubClassOf(TheRecord)) {
2767
0
        Attrs.push_back(Attr);
2768
0
        return true;
2769
0
      }
2770
2771
0
      return false;
2772
0
    }
2773
2774
0
    Record *getFirstAttr() const {
2775
0
      if (!SubClasses.empty())
2776
0
        return SubClasses.front()->getFirstAttr();
2777
0
      return Attrs.front();
2778
0
    }
2779
2780
0
    Record *getLastAttr() const {
2781
0
      if (!Attrs.empty())
2782
0
        return Attrs.back();
2783
0
      return SubClasses.back()->getLastAttr();
2784
0
    }
2785
  };
2786
2787
  /// The entire hierarchy of attribute classes.
2788
  class AttrClassHierarchy {
2789
    std::vector<std::unique_ptr<AttrClass>> Classes;
2790
2791
  public:
2792
0
    AttrClassHierarchy(RecordKeeper &Records) {
2793
      // Find records for all the classes.
2794
0
      for (auto &Descriptor : AttrClassDescriptors) {
2795
0
        Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
2796
0
        AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
2797
0
        Classes.emplace_back(Class);
2798
0
      }
2799
2800
      // Link up the hierarchy.
2801
0
      for (auto &Class : Classes) {
2802
0
        if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
2803
0
          Class->SuperClass = SuperClass;
2804
0
          SuperClass->SubClasses.push_back(Class.get());
2805
0
        }
2806
0
      }
2807
2808
0
#ifndef NDEBUG
2809
0
      for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
2810
0
        assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
2811
0
               "only the first class should be a root class!");
2812
0
      }
2813
0
#endif
2814
0
    }
2815
2816
0
    void emitDefaultDefines(raw_ostream &OS) const {
2817
0
      for (auto &Class : Classes) {
2818
0
        Class->emitDefaultDefines(OS);
2819
0
      }
2820
0
    }
2821
2822
0
    void emitUndefs(raw_ostream &OS) const {
2823
0
      for (auto &Class : Classes) {
2824
0
        Class->emitUndefs(OS);
2825
0
      }
2826
0
    }
2827
2828
0
    void emitAttrLists(raw_ostream &OS) const {
2829
      // Just start from the root class.
2830
0
      Classes[0]->emitAttrList(OS);
2831
0
    }
2832
2833
0
    void emitAttrRanges(raw_ostream &OS) const {
2834
0
      for (auto &Class : Classes)
2835
0
        Class->emitAttrRange(OS);
2836
0
    }
2837
2838
0
    void classifyAttr(Record *Attr) {
2839
      // Add the attribute to the root class.
2840
0
      Classes[0]->classifyAttrOnRoot(Attr);
2841
0
    }
2842
2843
  private:
2844
0
    AttrClass *findClassByRecord(Record *R) const {
2845
0
      for (auto &Class : Classes) {
2846
0
        if (Class->TheRecord == R)
2847
0
          return Class.get();
2848
0
      }
2849
0
      return nullptr;
2850
0
    }
2851
2852
0
    AttrClass *findSuperClass(Record *R) const {
2853
      // TableGen flattens the superclass list, so we just need to walk it
2854
      // in reverse.
2855
0
      auto SuperClasses = R->getSuperClasses();
2856
0
      for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
2857
0
        auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
2858
0
        if (SuperClass) return SuperClass;
2859
0
      }
2860
0
      return nullptr;
2861
0
    }
2862
  };
2863
2864
} // end anonymous namespace
2865
2866
namespace clang {
2867
2868
// Emits the enumeration list for attributes.
2869
0
void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
2870
0
  emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
2871
2872
0
  AttrClassHierarchy Hierarchy(Records);
2873
2874
  // Add defaulting macro definitions.
2875
0
  Hierarchy.emitDefaultDefines(OS);
2876
0
  emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
2877
2878
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2879
0
  std::vector<Record *> PragmaAttrs;
2880
0
  for (auto *Attr : Attrs) {
2881
0
    if (!Attr->getValueAsBit("ASTNode"))
2882
0
      continue;
2883
2884
    // Add the attribute to the ad-hoc groups.
2885
0
    if (AttrHasPragmaSpelling(Attr))
2886
0
      PragmaAttrs.push_back(Attr);
2887
2888
    // Place it in the hierarchy.
2889
0
    Hierarchy.classifyAttr(Attr);
2890
0
  }
2891
2892
  // Emit the main attribute list.
2893
0
  Hierarchy.emitAttrLists(OS);
2894
2895
  // Emit the ad hoc groups.
2896
0
  emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
2897
2898
  // Emit the attribute ranges.
2899
0
  OS << "#ifdef ATTR_RANGE\n";
2900
0
  Hierarchy.emitAttrRanges(OS);
2901
0
  OS << "#undef ATTR_RANGE\n";
2902
0
  OS << "#endif\n";
2903
2904
0
  Hierarchy.emitUndefs(OS);
2905
0
  OS << "#undef PRAGMA_SPELLING_ATTR\n";
2906
0
}
2907
2908
// Emits the enumeration list for attributes.
2909
0
void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
2910
0
  emitSourceFileHeader(
2911
0
      "List of all attribute subject matching rules that Clang recognizes", OS);
2912
0
  PragmaClangAttributeSupport &PragmaAttributeSupport =
2913
0
      getPragmaAttributeSupport(Records);
2914
0
  emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
2915
0
  PragmaAttributeSupport.emitMatchRuleList(OS);
2916
0
  OS << "#undef ATTR_MATCH_RULE\n";
2917
0
}
2918
2919
// Emits the code to read an attribute from a precompiled header.
2920
0
void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
2921
0
  emitSourceFileHeader("Attribute deserialization code", OS);
2922
2923
0
  Record *InhClass = Records.getClass("InheritableAttr");
2924
0
  std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
2925
0
                       ArgRecords;
2926
0
  std::vector<std::unique_ptr<Argument>> Args;
2927
2928
0
  OS << "  switch (Kind) {\n";
2929
0
  for (const auto *Attr : Attrs) {
2930
0
    const Record &R = *Attr;
2931
0
    if (!R.getValueAsBit("ASTNode"))
2932
0
      continue;
2933
2934
0
    OS << "  case attr::" << R.getName() << ": {\n";
2935
0
    if (R.isSubClassOf(InhClass))
2936
0
      OS << "    bool isInherited = Record.readInt();\n";
2937
0
    OS << "    bool isImplicit = Record.readInt();\n";
2938
0
    OS << "    bool isPackExpansion = Record.readInt();\n";
2939
0
    ArgRecords = R.getValueAsListOfDefs("Args");
2940
0
    Args.clear();
2941
0
    for (const auto *Arg : ArgRecords) {
2942
0
      Args.emplace_back(createArgument(*Arg, R.getName()));
2943
0
      Args.back()->writePCHReadDecls(OS);
2944
0
    }
2945
0
    OS << "    New = new (Context) " << R.getName() << "Attr(Context, Info";
2946
0
    for (auto const &ri : Args) {
2947
0
      OS << ", ";
2948
0
      ri->writePCHReadArgs(OS);
2949
0
    }
2950
0
    OS << ");\n";
2951
0
    if (R.isSubClassOf(InhClass))
2952
0
      OS << "    cast<InheritableAttr>(New)->setInherited(isInherited);\n";
2953
0
    OS << "    New->setImplicit(isImplicit);\n";
2954
0
    OS << "    New->setPackExpansion(isPackExpansion);\n";
2955
0
    OS << "    break;\n";
2956
0
    OS << "  }\n";
2957
0
  }
2958
0
  OS << "  }\n";
2959
0
}
2960
2961
// Emits the code to write an attribute to a precompiled header.
2962
0
void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
2963
0
  emitSourceFileHeader("Attribute serialization code", OS);
2964
2965
0
  Record *InhClass = Records.getClass("InheritableAttr");
2966
0
  std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
2967
2968
0
  OS << "  switch (A->getKind()) {\n";
2969
0
  for (const auto *Attr : Attrs) {
2970
0
    const Record &R = *Attr;
2971
0
    if (!R.getValueAsBit("ASTNode"))
2972
0
      continue;
2973
0
    OS << "  case attr::" << R.getName() << ": {\n";
2974
0
    Args = R.getValueAsListOfDefs("Args");
2975
0
    if (R.isSubClassOf(InhClass) || !Args.empty())
2976
0
      OS << "    const auto *SA = cast<" << R.getName()
2977
0
         << "Attr>(A);\n";
2978
0
    if (R.isSubClassOf(InhClass))
2979
0
      OS << "    Record.push_back(SA->isInherited());\n";
2980
0
    OS << "    Record.push_back(A->isImplicit());\n";
2981
0
    OS << "    Record.push_back(A->isPackExpansion());\n";
2982
2983
0
    for (const auto *Arg : Args)
2984
0
      createArgument(*Arg, R.getName())->writePCHWrite(OS);
2985
0
    OS << "    break;\n";
2986
0
    OS << "  }\n";
2987
0
  }
2988
0
  OS << "  }\n";
2989
0
}
2990
2991
// Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
2992
// parameter with only a single check type, if applicable.
2993
static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
2994
                                            std::string *FnName,
2995
                                            StringRef ListName,
2996
                                            StringRef CheckAgainst,
2997
0
                                            StringRef Scope) {
2998
0
  if (!R->isValueUnset(ListName)) {
2999
0
    Test += " && (";
3000
0
    std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
3001
0
    for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
3002
0
      StringRef Part = *I;
3003
0
      Test += CheckAgainst;
3004
0
      Test += " == ";
3005
0
      Test += Scope;
3006
0
      Test += Part;
3007
0
      if (I + 1 != E)
3008
0
        Test += " || ";
3009
0
      if (FnName)
3010
0
        *FnName += Part;
3011
0
    }
3012
0
    Test += ")";
3013
0
    return true;
3014
0
  }
3015
0
  return false;
3016
0
}
3017
3018
// Generate a conditional expression to check if the current target satisfies
3019
// the conditions for a TargetSpecificAttr record, and append the code for
3020
// those checks to the Test string. If the FnName string pointer is non-null,
3021
// append a unique suffix to distinguish this set of target checks from other
3022
// TargetSpecificAttr records.
3023
static bool GenerateTargetSpecificAttrChecks(const Record *R,
3024
                                             std::vector<StringRef> &Arches,
3025
                                             std::string &Test,
3026
0
                                             std::string *FnName) {
3027
0
  bool AnyTargetChecks = false;
3028
3029
  // It is assumed that there will be an llvm::Triple object
3030
  // named "T" and a TargetInfo object named "Target" within
3031
  // scope that can be used to determine whether the attribute exists in
3032
  // a given target.
3033
0
  Test += "true";
3034
  // If one or more architectures is specified, check those.  Arches are handled
3035
  // differently because GenerateTargetRequirements needs to combine the list
3036
  // with ParseKind.
3037
0
  if (!Arches.empty()) {
3038
0
    AnyTargetChecks = true;
3039
0
    Test += " && (";
3040
0
    for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
3041
0
      StringRef Part = *I;
3042
0
      Test += "T.getArch() == llvm::Triple::";
3043
0
      Test += Part;
3044
0
      if (I + 1 != E)
3045
0
        Test += " || ";
3046
0
      if (FnName)
3047
0
        *FnName += Part;
3048
0
    }
3049
0
    Test += ")";
3050
0
  }
3051
3052
  // If the attribute is specific to particular OSes, check those.
3053
0
  AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
3054
0
      R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
3055
3056
  // If one or more object formats is specified, check those.
3057
0
  AnyTargetChecks |=
3058
0
      GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
3059
0
                                      "T.getObjectFormat()", "llvm::Triple::");
3060
3061
  // If custom code is specified, emit it.
3062
0
  StringRef Code = R->getValueAsString("CustomCode");
3063
0
  if (!Code.empty()) {
3064
0
    AnyTargetChecks = true;
3065
0
    Test += " && (";
3066
0
    Test += Code;
3067
0
    Test += ")";
3068
0
  }
3069
3070
0
  return AnyTargetChecks;
3071
0
}
3072
3073
static void GenerateHasAttrSpellingStringSwitch(
3074
    const std::vector<Record *> &Attrs, raw_ostream &OS,
3075
0
    const std::string &Variety = "", const std::string &Scope = "") {
3076
0
  for (const auto *Attr : Attrs) {
3077
    // C++11-style attributes have specific version information associated with
3078
    // them. If the attribute has no scope, the version information must not
3079
    // have the default value (1), as that's incorrect. Instead, the unscoped
3080
    // attribute version information should be taken from the SD-6 standing
3081
    // document, which can be found at:
3082
    // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3083
    //
3084
    // C2x-style attributes have the same kind of version information
3085
    // associated with them. The unscoped attribute version information should
3086
    // be taken from the specification of the attribute in the C Standard.
3087
0
    int Version = 1;
3088
3089
0
    if (Variety == "CXX11" || Variety == "C2x") {
3090
0
      std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings");
3091
0
      for (const auto &Spelling : Spellings) {
3092
0
        if (Spelling->getValueAsString("Variety") == Variety) {
3093
0
          Version = static_cast<int>(Spelling->getValueAsInt("Version"));
3094
0
          if (Scope.empty() && Version == 1)
3095
0
            PrintError(Spelling->getLoc(), "Standard attributes must have "
3096
0
                                           "valid version information.");
3097
0
          break;
3098
0
        }
3099
0
      }
3100
0
    }
3101
3102
0
    std::string Test;
3103
0
    if (Attr->isSubClassOf("TargetSpecificAttr")) {
3104
0
      const Record *R = Attr->getValueAsDef("Target");
3105
0
      std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3106
0
      GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
3107
3108
      // If this is the C++11 variety, also add in the LangOpts test.
3109
0
      if (Variety == "CXX11")
3110
0
        Test += " && LangOpts.CPlusPlus11";
3111
0
      else if (Variety == "C2x")
3112
0
        Test += " && LangOpts.DoubleSquareBracketAttributes";
3113
0
    } else if (Variety == "CXX11")
3114
      // C++11 mode should be checked against LangOpts, which is presumed to be
3115
      // present in the caller.
3116
0
      Test = "LangOpts.CPlusPlus11";
3117
0
    else if (Variety == "C2x")
3118
0
      Test = "LangOpts.DoubleSquareBracketAttributes";
3119
3120
0
    std::string TestStr =
3121
0
        !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1";
3122
0
    std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
3123
0
    for (const auto &S : Spellings)
3124
0
      if (Variety.empty() || (Variety == S.variety() &&
3125
0
                              (Scope.empty() || Scope == S.nameSpace())))
3126
0
        OS << "    .Case(\"" << S.name() << "\", " << TestStr << ")\n";
3127
0
  }
3128
0
  OS << "    .Default(0);\n";
3129
0
}
3130
3131
// Emits the list of spellings for attributes.
3132
0
void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3133
0
  emitSourceFileHeader("Code to implement the __has_attribute logic", OS);
3134
3135
  // Separate all of the attributes out into four group: generic, C++11, GNU,
3136
  // and declspecs. Then generate a big switch statement for each of them.
3137
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3138
0
  std::vector<Record *> Declspec, Microsoft, GNU, Pragma;
3139
0
  std::map<std::string, std::vector<Record *>> CXX, C2x;
3140
3141
  // Walk over the list of all attributes, and split them out based on the
3142
  // spelling variety.
3143
0
  for (auto *R : Attrs) {
3144
0
    std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
3145
0
    for (const auto &SI : Spellings) {
3146
0
      const std::string &Variety = SI.variety();
3147
0
      if (Variety == "GNU")
3148
0
        GNU.push_back(R);
3149
0
      else if (Variety == "Declspec")
3150
0
        Declspec.push_back(R);
3151
0
      else if (Variety == "Microsoft")
3152
0
        Microsoft.push_back(R);
3153
0
      else if (Variety == "CXX11")
3154
0
        CXX[SI.nameSpace()].push_back(R);
3155
0
      else if (Variety == "C2x")
3156
0
        C2x[SI.nameSpace()].push_back(R);
3157
0
      else if (Variety == "Pragma")
3158
0
        Pragma.push_back(R);
3159
0
    }
3160
0
  }
3161
3162
0
  OS << "const llvm::Triple &T = Target.getTriple();\n";
3163
0
  OS << "switch (Syntax) {\n";
3164
0
  OS << "case AttrSyntax::GNU:\n";
3165
0
  OS << "  return llvm::StringSwitch<int>(Name)\n";
3166
0
  GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
3167
0
  OS << "case AttrSyntax::Declspec:\n";
3168
0
  OS << "  return llvm::StringSwitch<int>(Name)\n";
3169
0
  GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
3170
0
  OS << "case AttrSyntax::Microsoft:\n";
3171
0
  OS << "  return llvm::StringSwitch<int>(Name)\n";
3172
0
  GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
3173
0
  OS << "case AttrSyntax::Pragma:\n";
3174
0
  OS << "  return llvm::StringSwitch<int>(Name)\n";
3175
0
  GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
3176
0
  auto fn = [&OS](const char *Spelling, const char *Variety,
3177
0
                  const std::map<std::string, std::vector<Record *>> &List) {
3178
0
    OS << "case AttrSyntax::" << Variety << ": {\n";
3179
    // C++11-style attributes are further split out based on the Scope.
3180
0
    for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
3181
0
      if (I != List.cbegin())
3182
0
        OS << " else ";
3183
0
      if (I->first.empty())
3184
0
        OS << "if (ScopeName == \"\") {\n";
3185
0
      else
3186
0
        OS << "if (ScopeName == \"" << I->first << "\") {\n";
3187
0
      OS << "  return llvm::StringSwitch<int>(Name)\n";
3188
0
      GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
3189
0
      OS << "}";
3190
0
    }
3191
0
    OS << "\n} break;\n";
3192
0
  };
3193
0
  fn("CXX11", "CXX", CXX);
3194
0
  fn("C2x", "C", C2x);
3195
0
  OS << "}\n";
3196
0
}
3197
3198
0
void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
3199
0
  emitSourceFileHeader("Code to translate different attribute spellings "
3200
0
                       "into internal identifiers", OS);
3201
3202
0
  OS << "  switch (getParsedKind()) {\n";
3203
0
  OS << "    case IgnoredAttribute:\n";
3204
0
  OS << "    case UnknownAttribute:\n";
3205
0
  OS << "    case NoSemaHandlerAttribute:\n";
3206
0
  OS << "      llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3207
3208
0
  ParsedAttrMap Attrs = getParsedAttrList(Records);
3209
0
  for (const auto &I : Attrs) {
3210
0
    const Record &R = *I.second;
3211
0
    std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
3212
0
    OS << "  case AT_" << I.first << ": {\n";
3213
0
    for (unsigned I = 0; I < Spellings.size(); ++ I) {
3214
0
      OS << "    if (Name == \"" << Spellings[I].name() << "\" && "
3215
0
         << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety()
3216
0
         << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
3217
0
         << "        return " << I << ";\n";
3218
0
    }
3219
3220
0
    OS << "    break;\n";
3221
0
    OS << "  }\n";
3222
0
  }
3223
3224
0
  OS << "  }\n";
3225
0
  OS << "  return 0;\n";
3226
0
}
3227
3228
// Emits code used by RecursiveASTVisitor to visit attributes
3229
0
void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
3230
0
  emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS);
3231
3232
0
  std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3233
3234
  // Write method declarations for Traverse* methods.
3235
  // We emit this here because we only generate methods for attributes that
3236
  // are declared as ASTNodes.
3237
0
  OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3238
0
  for (const auto *Attr : Attrs) {
3239
0
    const Record &R = *Attr;
3240
0
    if (!R.getValueAsBit("ASTNode"))
3241
0
      continue;
3242
0
    OS << "  bool Traverse"
3243
0
       << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
3244
0
    OS << "  bool Visit"
3245
0
       << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3246
0
       << "    return true; \n"
3247
0
       << "  }\n";
3248
0
  }
3249
0
  OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3250
3251
  // Write individual Traverse* methods for each attribute class.
3252
0
  for (const auto *Attr : Attrs) {
3253
0
    const Record &R = *Attr;
3254
0
    if (!R.getValueAsBit("ASTNode"))
3255
0
      continue;
3256
3257
0
    OS << "template <typename Derived>\n"
3258
0
       << "bool VISITORCLASS<Derived>::Traverse"
3259
0
       << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3260
0
       << "  if (!getDerived().VisitAttr(A))\n"
3261
0
       << "    return false;\n"
3262
0
       << "  if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
3263
0
       << "    return false;\n";
3264
3265
0
    std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3266
0
    for (const auto *Arg : ArgRecords)
3267
0
      createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
3268
3269
0
    OS << "  return true;\n";
3270
0
    OS << "}\n\n";
3271
0
  }
3272
3273
  // Write generic Traverse routine
3274
0
  OS << "template <typename Derived>\n"
3275
0
     << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
3276
0
     << "  if (!A)\n"
3277
0
     << "    return true;\n"
3278
0
     << "\n"
3279
0
     << "  switch (A->getKind()) {\n";
3280
3281
0
  for (const auto *Attr : Attrs) {
3282
0
    const Record &R = *Attr;
3283
0
    if (!R.getValueAsBit("ASTNode"))
3284
0
      continue;
3285
3286
0
    OS << "    case attr::" << R.getName() << ":\n"
3287
0
       << "      return getDerived().Traverse" << R.getName() << "Attr("
3288
0
       << "cast<" << R.getName() << "Attr>(A));\n";
3289
0
  }
3290
0
  OS << "  }\n";  // end switch
3291
0
  OS << "  llvm_unreachable(\"bad attribute kind\");\n";
3292
0
  OS << "}\n";  // end function
3293
0
  OS << "#endif  // ATTR_VISITOR_DECLS_ONLY\n";
3294
0
}
3295
3296
void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
3297
                                            raw_ostream &OS,
3298
0
                                            bool AppliesToDecl) {
3299
3300
0
  OS << "  switch (At->getKind()) {\n";
3301
0
  for (const auto *Attr : Attrs) {
3302
0
    const Record &R = *Attr;
3303
0
    if (!R.getValueAsBit("ASTNode"))
3304
0
      continue;
3305
0
    OS << "    case attr::" << R.getName() << ": {\n";
3306
0
    bool ShouldClone = R.getValueAsBit("Clone") &&
3307
0
                       (!AppliesToDecl ||
3308
0
                        R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
3309
3310
0
    if (!ShouldClone) {
3311
0
      OS << "      return nullptr;\n";
3312
0
      OS << "    }\n";
3313
0
      continue;
3314
0
    }
3315
3316
0
    OS << "      const auto *A = cast<"
3317
0
       << R.getName() << "Attr>(At);\n";
3318
0
    bool TDependent = R.getValueAsBit("TemplateDependent");
3319
3320
0
    if (!TDependent) {
3321
0
      OS << "      return A->clone(C);\n";
3322
0
      OS << "    }\n";
3323
0
      continue;
3324
0
    }
3325
3326
0
    std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3327
0
    std::vector<std::unique_ptr<Argument>> Args;
3328
0
    Args.reserve(ArgRecords.size());
3329
3330
0
    for (const auto *ArgRecord : ArgRecords)
3331
0
      Args.emplace_back(createArgument(*ArgRecord, R.getName()));
3332
3333
0
    for (auto const &ai : Args)
3334
0
      ai->writeTemplateInstantiation(OS);
3335
3336
0
    OS << "      return new (C) " << R.getName() << "Attr(C, *A";
3337
0
    for (auto const &ai : Args) {
3338
0
      OS << ", ";
3339
0
      ai->writeTemplateInstantiationArgs(OS);
3340
0
    }
3341
0
    OS << ");\n"
3342
0
       << "    }\n";
3343
0
  }
3344
0
  OS << "  } // end switch\n"
3345
0
     << "  llvm_unreachable(\"Unknown attribute!\");\n"
3346
0
     << "  return nullptr;\n";
3347
0
}
3348
3349
// Emits code to instantiate dependent attributes on templates.
3350
0
void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
3351
0
  emitSourceFileHeader("Template instantiation code for attributes", OS);
3352
3353
0
  std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3354
3355
0
  OS << "namespace clang {\n"
3356
0
     << "namespace sema {\n\n"
3357
0
     << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
3358
0
     << "Sema &S,\n"
3359
0
     << "        const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3360
0
  EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
3361
0
  OS << "}\n\n"
3362
0
     << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
3363
0
     << " ASTContext &C, Sema &S,\n"
3364
0
     << "        const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3365
0
  EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
3366
0
  OS << "}\n\n"
3367
0
     << "} // end namespace sema\n"
3368
0
     << "} // end namespace clang\n";
3369
0
}
3370
3371
// Emits the list of parsed attributes.
3372
0
void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
3373
0
  emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
3374
3375
0
  OS << "#ifndef PARSED_ATTR\n";
3376
0
  OS << "#define PARSED_ATTR(NAME) NAME\n";
3377
0
  OS << "#endif\n\n";
3378
3379
0
  ParsedAttrMap Names = getParsedAttrList(Records);
3380
0
  for (const auto &I : Names) {
3381
0
    OS << "PARSED_ATTR(" << I.first << ")\n";
3382
0
  }
3383
0
}
3384
3385
0
static bool isArgVariadic(const Record &R, StringRef AttrName) {
3386
0
  return createArgument(R, AttrName)->isVariadic();
3387
0
}
3388
3389
0
static void emitArgInfo(const Record &R, raw_ostream &OS) {
3390
  // This function will count the number of arguments specified for the
3391
  // attribute and emit the number of required arguments followed by the
3392
  // number of optional arguments.
3393
0
  std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
3394
0
  unsigned ArgCount = 0, OptCount = 0;
3395
0
  bool HasVariadic = false;
3396
0
  for (const auto *Arg : Args) {
3397
    // If the arg is fake, it's the user's job to supply it: general parsing
3398
    // logic shouldn't need to know anything about it.
3399
0
    if (Arg->getValueAsBit("Fake"))
3400
0
      continue;
3401
0
    Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
3402
0
    if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
3403
0
      HasVariadic = true;
3404
0
  }
3405
3406
  // If there is a variadic argument, we will set the optional argument count
3407
  // to its largest value. Since it's currently a 4-bit number, we set it to 15.
3408
0
  OS << "    NumArgs = " << ArgCount << ";\n";
3409
0
  OS << "    OptArgs = " << (HasVariadic ? 15 : OptCount) << ";\n";
3410
0
}
3411
3412
0
static std::string GetDiagnosticSpelling(const Record &R) {
3413
0
  std::string Ret = std::string(R.getValueAsString("DiagSpelling"));
3414
0
  if (!Ret.empty())
3415
0
    return Ret;
3416
3417
  // If we couldn't find the DiagSpelling in this object, we can check to see
3418
  // if the object is one that has a base, and if it is, loop up to the Base
3419
  // member recursively.
3420
0
  if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
3421
0
    return GetDiagnosticSpelling(*Base);
3422
3423
0
  return "";
3424
0
}
3425
3426
0
static std::string CalculateDiagnostic(const Record &S) {
3427
  // If the SubjectList object has a custom diagnostic associated with it,
3428
  // return that directly.
3429
0
  const StringRef CustomDiag = S.getValueAsString("CustomDiag");
3430
0
  if (!CustomDiag.empty())
3431
0
    return ("\"" + Twine(CustomDiag) + "\"").str();
3432
3433
0
  std::vector<std::string> DiagList;
3434
0
  std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
3435
0
  for (const auto *Subject : Subjects) {
3436
0
    const Record &R = *Subject;
3437
    // Get the diagnostic text from the Decl or Stmt node given.
3438
0
    std::string V = GetDiagnosticSpelling(R);
3439
0
    if (V.empty()) {
3440
0
      PrintError(R.getLoc(),
3441
0
                 "Could not determine diagnostic spelling for the node: " +
3442
0
                     R.getName() + "; please add one to DeclNodes.td");
3443
0
    } else {
3444
      // The node may contain a list of elements itself, so split the elements
3445
      // by a comma, and trim any whitespace.
3446
0
      SmallVector<StringRef, 2> Frags;
3447
0
      llvm::SplitString(V, Frags, ",");
3448
0
      for (auto Str : Frags) {
3449
0
        DiagList.push_back(std::string(Str.trim()));
3450
0
      }
3451
0
    }
3452
0
  }
3453
3454
0
  if (DiagList.empty()) {
3455
0
    PrintFatalError(S.getLoc(),
3456
0
                    "Could not deduce diagnostic argument for Attr subjects");
3457
0
    return "";
3458
0
  }
3459
3460
  // FIXME: this is not particularly good for localization purposes and ideally
3461
  // should be part of the diagnostics engine itself with some sort of list
3462
  // specifier.
3463
3464
  // A single member of the list can be returned directly.
3465
0
  if (DiagList.size() == 1)
3466
0
    return '"' + DiagList.front() + '"';
3467
3468
0
  if (DiagList.size() == 2)
3469
0
    return '"' + DiagList[0] + " and " + DiagList[1] + '"';
3470
3471
  // If there are more than two in the list, we serialize the first N - 1
3472
  // elements with a comma. This leaves the string in the state: foo, bar,
3473
  // baz (but misses quux). We can then add ", and " for the last element
3474
  // manually.
3475
0
  std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
3476
0
  return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
3477
0
}
3478
3479
0
static std::string GetSubjectWithSuffix(const Record *R) {
3480
0
  const std::string &B = std::string(R->getName());
3481
0
  if (B == "DeclBase")
3482
0
    return "Decl";
3483
0
  return B + "Decl";
3484
0
}
3485
3486
0
static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
3487
0
  return "is" + Subject.getName().str();
3488
0
}
3489
3490
0
static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
3491
0
  std::string FnName = functionNameForCustomAppertainsTo(Subject);
3492
3493
  // If this code has already been generated, we don't need to do anything.
3494
0
  static std::set<std::string> CustomSubjectSet;
3495
0
  auto I = CustomSubjectSet.find(FnName);
3496
0
  if (I != CustomSubjectSet.end())
3497
0
    return;
3498
3499
  // This only works with non-root Decls.
3500
0
  Record *Base = Subject.getValueAsDef(BaseFieldName);
3501
3502
  // Not currently support custom subjects within custom subjects.
3503
0
  if (Base->isSubClassOf("SubsetSubject")) {
3504
0
    PrintFatalError(Subject.getLoc(),
3505
0
                    "SubsetSubjects within SubsetSubjects is not supported");
3506
0
    return;
3507
0
  }
3508
3509
0
  OS << "static bool " << FnName << "(const Decl *D) {\n";
3510
0
  OS << "  if (const auto *S = dyn_cast<";
3511
0
  OS << GetSubjectWithSuffix(Base);
3512
0
  OS << ">(D))\n";
3513
0
  OS << "    return " << Subject.getValueAsString("CheckCode") << ";\n";
3514
0
  OS << "  return false;\n";
3515
0
  OS << "}\n\n";
3516
3517
0
  CustomSubjectSet.insert(FnName);
3518
0
}
3519
3520
0
static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
3521
  // If the attribute does not contain a Subjects definition, then use the
3522
  // default appertainsTo logic.
3523
0
  if (Attr.isValueUnset("Subjects"))
3524
0
    return;
3525
3526
0
  const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3527
0
  std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
3528
3529
  // If the list of subjects is empty, it is assumed that the attribute
3530
  // appertains to everything.
3531
0
  if (Subjects.empty())
3532
0
    return;
3533
3534
0
  bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
3535
3536
  // Split the subjects into declaration subjects and statement subjects.
3537
  // FIXME: subset subjects are added to the declaration list until there are
3538
  // enough statement attributes with custom subject needs to warrant
3539
  // the implementation effort.
3540
0
  std::vector<Record *> DeclSubjects, StmtSubjects;
3541
0
  llvm::copy_if(
3542
0
      Subjects, std::back_inserter(DeclSubjects), [](const Record *R) {
3543
0
        return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode");
3544
0
      });
3545
0
  llvm::copy_if(Subjects, std::back_inserter(StmtSubjects),
3546
0
                [](const Record *R) { return R->isSubClassOf("StmtNode"); });
3547
3548
  // We should have sorted all of the subjects into two lists.
3549
  // FIXME: this assertion will be wrong if we ever add type attribute subjects.
3550
0
  assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size());
3551
3552
0
  if (DeclSubjects.empty()) {
3553
    // If there are no decl subjects but there are stmt subjects, diagnose
3554
    // trying to apply a statement attribute to a declaration.
3555
0
    if (!StmtSubjects.empty()) {
3556
0
      OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
3557
0
      OS << "const Decl *D) const override {\n";
3558
0
      OS << "  S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)\n";
3559
0
      OS << "    << AL << D->getLocation();\n";
3560
0
      OS << "  return false;\n";
3561
0
      OS << "}\n\n";
3562
0
    }
3563
0
  } else {
3564
    // Otherwise, generate an appertainsTo check specific to this attribute
3565
    // which checks all of the given subjects against the Decl passed in.
3566
0
    OS << "bool diagAppertainsToDecl(Sema &S, ";
3567
0
    OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
3568
0
    OS << "  if (";
3569
0
    for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) {
3570
      // If the subject has custom code associated with it, use the generated
3571
      // function for it. The function cannot be inlined into this check (yet)
3572
      // because it requires the subject to be of a specific type, and were that
3573
      // information inlined here, it would not support an attribute with
3574
      // multiple custom subjects.
3575
0
      if ((*I)->isSubClassOf("SubsetSubject"))
3576
0
        OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)";
3577
0
      else
3578
0
        OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3579
3580
0
      if (I + 1 != E)
3581
0
        OS << " && ";
3582
0
    }
3583
0
    OS << ") {\n";
3584
0
    OS << "    S.Diag(Attr.getLoc(), diag::";
3585
0
    OS << (Warn ? "warn_attribute_wrong_decl_type_str"
3586
0
                : "err_attribute_wrong_decl_type_str");
3587
0
    OS << ")\n";
3588
0
    OS << "      << Attr << ";
3589
0
    OS << CalculateDiagnostic(*SubjectObj) << ";\n";
3590
0
    OS << "    return false;\n";
3591
0
    OS << "  }\n";
3592
0
    OS << "  return true;\n";
3593
0
    OS << "}\n\n";
3594
0
  }
3595
3596
0
  if (StmtSubjects.empty()) {
3597
    // If there are no stmt subjects but there are decl subjects, diagnose
3598
    // trying to apply a declaration attribute to a statement.
3599
0
    if (!DeclSubjects.empty()) {
3600
0
      OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
3601
0
      OS << "const Stmt *St) const override {\n";
3602
0
      OS << "  S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
3603
0
      OS << "    << AL << St->getBeginLoc();\n";
3604
0
      OS << "  return false;\n";
3605
0
      OS << "}\n\n";
3606
0
    }
3607
0
  } else {
3608
    // Now, do the same for statements.
3609
0
    OS << "bool diagAppertainsToStmt(Sema &S, ";
3610
0
    OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n";
3611
0
    OS << "  if (";
3612
0
    for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) {
3613
0
      OS << "!isa<" << (*I)->getName() << ">(St)";
3614
0
      if (I + 1 != E)
3615
0
        OS << " && ";
3616
0
    }
3617
0
    OS << ") {\n";
3618
0
    OS << "    S.Diag(Attr.getLoc(), diag::";
3619
0
    OS << (Warn ? "warn_attribute_wrong_decl_type_str"
3620
0
                : "err_attribute_wrong_decl_type_str");
3621
0
    OS << ")\n";
3622
0
    OS << "      << Attr << ";
3623
0
    OS << CalculateDiagnostic(*SubjectObj) << ";\n";
3624
0
    OS << "    return false;\n";
3625
0
    OS << "  }\n";
3626
0
    OS << "  return true;\n";
3627
0
    OS << "}\n\n";
3628
0
  }
3629
0
}
3630
3631
// Generates the mutual exclusion checks. The checks for parsed attributes are
3632
// written into OS and the checks for merging declaration attributes are
3633
// written into MergeOS.
3634
static void GenerateMutualExclusionsChecks(const Record &Attr,
3635
                                           const RecordKeeper &Records,
3636
                                           raw_ostream &OS,
3637
                                           raw_ostream &MergeDeclOS,
3638
0
                                           raw_ostream &MergeStmtOS) {
3639
  // Find all of the definitions that inherit from MutualExclusions and include
3640
  // the given attribute in the list of exclusions to generate the
3641
  // diagMutualExclusion() check.
3642
0
  std::vector<Record *> ExclusionsList =
3643
0
      Records.getAllDerivedDefinitions("MutualExclusions");
3644
3645
  // We don't do any of this magic for type attributes yet.
3646
0
  if (Attr.isSubClassOf("TypeAttr"))
3647
0
    return;
3648
3649
  // This means the attribute is either a statement attribute, a decl
3650
  // attribute, or both; find out which.
3651
0
  bool CurAttrIsStmtAttr =
3652
0
      Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr");
3653
0
  bool CurAttrIsDeclAttr =
3654
0
      !CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr");
3655
3656
0
  std::vector<std::string> DeclAttrs, StmtAttrs;
3657
3658
0
  for (const Record *Exclusion : ExclusionsList) {
3659
0
    std::vector<Record *> MutuallyExclusiveAttrs =
3660
0
        Exclusion->getValueAsListOfDefs("Exclusions");
3661
0
    auto IsCurAttr = [Attr](const Record *R) {
3662
0
      return R->getName() == Attr.getName();
3663
0
    };
3664
0
    if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) {
3665
      // This list of exclusions includes the attribute we're looking for, so
3666
      // add the exclusive attributes to the proper list for checking.
3667
0
      for (const Record *AttrToExclude : MutuallyExclusiveAttrs) {
3668
0
        if (IsCurAttr(AttrToExclude))
3669
0
          continue;
3670
3671
0
        if (CurAttrIsStmtAttr)
3672
0
          StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str());
3673
0
        if (CurAttrIsDeclAttr)
3674
0
          DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str());
3675
0
      }
3676
0
    }
3677
0
  }
3678
3679
  // If there are any decl or stmt attributes, silence -Woverloaded-virtual
3680
  // warnings for them both.
3681
0
  if (!DeclAttrs.empty() || !StmtAttrs.empty())
3682
0
    OS << "  using ParsedAttrInfo::diagMutualExclusion;\n\n";
3683
3684
  // If we discovered any decl or stmt attributes to test for, generate the
3685
  // predicates for them now.
3686
0
  if (!DeclAttrs.empty()) {
3687
    // Generate the ParsedAttrInfo subclass logic for declarations.
3688
0
    OS << "  bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
3689
0
       << "const Decl *D) const override {\n";
3690
0
    for (const std::string &A : DeclAttrs) {
3691
0
      OS << "    if (const auto *A = D->getAttr<" << A << ">()) {\n";
3692
0
      OS << "      S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
3693
0
         << " << AL << A;\n";
3694
0
      OS << "      S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
3695
0
      OS << "      \nreturn false;\n";
3696
0
      OS << "    }\n";
3697
0
    }
3698
0
    OS << "    return true;\n";
3699
0
    OS << "  }\n\n";
3700
3701
    // Also generate the declaration attribute merging logic if the current
3702
    // attribute is one that can be inheritted on a declaration. It is assumed
3703
    // this code will be executed in the context of a function with parameters:
3704
    // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
3705
    // true on success).
3706
0
    if (Attr.isSubClassOf("InheritableAttr")) {
3707
0
      MergeDeclOS << "  if (const auto *Second = dyn_cast<"
3708
0
                  << (Attr.getName() + "Attr").str() << ">(A)) {\n";
3709
0
      for (const std::string &A : DeclAttrs) {
3710
0
        MergeDeclOS << "    if (const auto *First = D->getAttr<" << A
3711
0
                    << ">()) {\n";
3712
0
        MergeDeclOS << "      S.Diag(First->getLocation(), "
3713
0
                    << "diag::err_attributes_are_not_compatible) << First << "
3714
0
                    << "Second;\n";
3715
0
        MergeDeclOS << "      S.Diag(Second->getLocation(), "
3716
0
                    << "diag::note_conflicting_attribute);\n";
3717
0
        MergeDeclOS << "      return false;\n";
3718
0
        MergeDeclOS << "    }\n";
3719
0
      }
3720
0
      MergeDeclOS << "    return true;\n";
3721
0
      MergeDeclOS << "  }\n";
3722
0
    }
3723
0
  }
3724
3725
  // Statement attributes are a bit different from declarations. With
3726
  // declarations, each attribute is added to the declaration as it is
3727
  // processed, and so you can look on the Decl * itself to see if there is a
3728
  // conflicting attribute. Statement attributes are processed as a group
3729
  // because AttributedStmt needs to tail-allocate all of the attribute nodes
3730
  // at once. This means we cannot check whether the statement already contains
3731
  // an attribute to check for the conflict. Instead, we need to check whether
3732
  // the given list of semantic attributes contain any conflicts. It is assumed
3733
  // this code will be executed in the context of a function with parameters:
3734
  // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
3735
  // loop which loops over the container C with a loop variable named A to
3736
  // represent the current attribute to check for conflicts.
3737
  //
3738
  // FIXME: it would be nice not to walk over the list of potential attributes
3739
  // to apply to the statement more than once, but statements typically don't
3740
  // have long lists of attributes on them, so re-walking the list should not
3741
  // be an expensive operation.
3742
0
  if (!StmtAttrs.empty()) {
3743
0
    MergeStmtOS << "    if (const auto *Second = dyn_cast<"
3744
0
                << (Attr.getName() + "Attr").str() << ">(A)) {\n";
3745
0
    MergeStmtOS << "      auto Iter = llvm::find_if(C, [](const Attr *Check) "
3746
0
                << "{ return isa<";
3747
0
    interleave(
3748
0
        StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; },
3749
0
        [&] { MergeStmtOS << ", "; });
3750
0
    MergeStmtOS << ">(Check); });\n";
3751
0
    MergeStmtOS << "      if (Iter != C.end()) {\n";
3752
0
    MergeStmtOS << "        S.Diag((*Iter)->getLocation(), "
3753
0
                << "diag::err_attributes_are_not_compatible) << *Iter << "
3754
0
                << "Second;\n";
3755
0
    MergeStmtOS << "        S.Diag(Second->getLocation(), "
3756
0
                << "diag::note_conflicting_attribute);\n";
3757
0
    MergeStmtOS << "        return false;\n";
3758
0
    MergeStmtOS << "      }\n";
3759
0
    MergeStmtOS << "    }\n";
3760
0
  }
3761
0
}
3762
3763
static void
3764
emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
3765
0
                        raw_ostream &OS) {
3766
0
  OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
3767
0
     << AttributeSubjectMatchRule::EnumName << " rule) {\n";
3768
0
  OS << "  switch (rule) {\n";
3769
0
  for (const auto &Rule : PragmaAttributeSupport.Rules) {
3770
0
    if (Rule.isAbstractRule()) {
3771
0
      OS << "  case " << Rule.getEnumValue() << ":\n";
3772
0
      OS << "    assert(false && \"Abstract matcher rule isn't allowed\");\n";
3773
0
      OS << "    return false;\n";
3774
0
      continue;
3775
0
    }
3776
0
    std::vector<Record *> Subjects = Rule.getSubjects();
3777
0
    assert(!Subjects.empty() && "Missing subjects");
3778
0
    OS << "  case " << Rule.getEnumValue() << ":\n";
3779
0
    OS << "    return ";
3780
0
    for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
3781
      // If the subject has custom code associated with it, use the function
3782
      // that was generated for GenerateAppertainsTo to check if the declaration
3783
      // is valid.
3784
0
      if ((*I)->isSubClassOf("SubsetSubject"))
3785
0
        OS << functionNameForCustomAppertainsTo(**I) << "(D)";
3786
0
      else
3787
0
        OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3788
3789
0
      if (I + 1 != E)
3790
0
        OS << " || ";
3791
0
    }
3792
0
    OS << ";\n";
3793
0
  }
3794
0
  OS << "  }\n";
3795
0
  OS << "  llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
3796
0
  OS << "}\n\n";
3797
0
}
3798
3799
static void GenerateLangOptRequirements(const Record &R,
3800
0
                                        raw_ostream &OS) {
3801
  // If the attribute has an empty or unset list of language requirements,
3802
  // use the default handler.
3803
0
  std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
3804
0
  if (LangOpts.empty())
3805
0
    return;
3806
3807
0
  OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n";
3808
0
  OS << "  return " << GenerateTestExpression(LangOpts) << ";\n";
3809
0
  OS << "}\n\n";
3810
0
}
3811
3812
static void GenerateTargetRequirements(const Record &Attr,
3813
                                       const ParsedAttrMap &Dupes,
3814
0
                                       raw_ostream &OS) {
3815
  // If the attribute is not a target specific attribute, use the default
3816
  // target handler.
3817
0
  if (!Attr.isSubClassOf("TargetSpecificAttr"))
3818
0
    return;
3819
3820
  // Get the list of architectures to be tested for.
3821
0
  const Record *R = Attr.getValueAsDef("Target");
3822
0
  std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3823
3824
  // If there are other attributes which share the same parsed attribute kind,
3825
  // such as target-specific attributes with a shared spelling, collapse the
3826
  // duplicate architectures. This is required because a shared target-specific
3827
  // attribute has only one ParsedAttr::Kind enumeration value, but it
3828
  // applies to multiple target architectures. In order for the attribute to be
3829
  // considered valid, all of its architectures need to be included.
3830
0
  if (!Attr.isValueUnset("ParseKind")) {
3831
0
    const StringRef APK = Attr.getValueAsString("ParseKind");
3832
0
    for (const auto &I : Dupes) {
3833
0
      if (I.first == APK) {
3834
0
        std::vector<StringRef> DA =
3835
0
            I.second->getValueAsDef("Target")->getValueAsListOfStrings(
3836
0
                "Arches");
3837
0
        Arches.insert(Arches.end(), DA.begin(), DA.end());
3838
0
      }
3839
0
    }
3840
0
  }
3841
3842
0
  std::string FnName = "isTarget";
3843
0
  std::string Test;
3844
0
  bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
3845
3846
0
  OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
3847
0
  if (UsesT)
3848
0
    OS << "  const llvm::Triple &T = Target.getTriple(); (void)T;\n";
3849
0
  OS << "  return " << Test << ";\n";
3850
0
  OS << "}\n\n";
3851
0
}
3852
3853
static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
3854
0
                                                    raw_ostream &OS) {
3855
  // If the attribute does not have a semantic form, we can bail out early.
3856
0
  if (!Attr.getValueAsBit("ASTNode"))
3857
0
    return;
3858
3859
0
  std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
3860
3861
  // If there are zero or one spellings, or all of the spellings share the same
3862
  // name, we can also bail out early.
3863
0
  if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
3864
0
    return;
3865
3866
  // Generate the enumeration we will use for the mapping.
3867
0
  SemanticSpellingMap SemanticToSyntacticMap;
3868
0
  std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
3869
0
  std::string Name = Attr.getName().str() + "AttrSpellingMap";
3870
3871
0
  OS << "unsigned spellingIndexToSemanticSpelling(";
3872
0
  OS << "const ParsedAttr &Attr) const override {\n";
3873
0
  OS << Enum;
3874
0
  OS << "  unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
3875
0
  WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
3876
0
  OS << "}\n\n";
3877
0
}
3878
3879
0
static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
3880
  // Only generate if Attr can be handled simply.
3881
0
  if (!Attr.getValueAsBit("SimpleHandler"))
3882
0
    return;
3883
3884
  // Generate a function which just converts from ParsedAttr to the Attr type.
3885
0
  OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
3886
0
  OS << "const ParsedAttr &Attr) const override {\n";
3887
0
  OS << "  D->addAttr(::new (S.Context) " << Attr.getName();
3888
0
  OS << "Attr(S.Context, Attr));\n";
3889
0
  OS << "  return AttributeApplied;\n";
3890
0
  OS << "}\n\n";
3891
0
}
3892
3893
0
static bool IsKnownToGCC(const Record &Attr) {
3894
  // Look at the spellings for this subject; if there are any spellings which
3895
  // claim to be known to GCC, the attribute is known to GCC.
3896
0
  return llvm::any_of(
3897
0
      GetFlattenedSpellings(Attr),
3898
0
      [](const FlattenedSpelling &S) { return S.knownToGCC(); });
3899
0
}
3900
3901
/// Emits the parsed attribute helpers
3902
0
void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3903
0
  emitSourceFileHeader("Parsed attribute helpers", OS);
3904
3905
0
  OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && "
3906
0
     << "!defined(WANT_STMT_MERGE_LOGIC)\n";
3907
0
  PragmaClangAttributeSupport &PragmaAttributeSupport =
3908
0
      getPragmaAttributeSupport(Records);
3909
3910
  // Get the list of parsed attributes, and accept the optional list of
3911
  // duplicates due to the ParseKind.
3912
0
  ParsedAttrMap Dupes;
3913
0
  ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
3914
3915
  // Generate all of the custom appertainsTo functions that the attributes
3916
  // will be using.
3917
0
  for (auto I : Attrs) {
3918
0
    const Record &Attr = *I.second;
3919
0
    if (Attr.isValueUnset("Subjects"))
3920
0
      continue;
3921
0
    const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3922
0
    for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects"))
3923
0
      if (Subject->isSubClassOf("SubsetSubject"))
3924
0
        GenerateCustomAppertainsTo(*Subject, OS);
3925
0
  }
3926
3927
  // This stream is used to collect all of the declaration attribute merging
3928
  // logic for performing mutual exclusion checks. This gets emitted at the
3929
  // end of the file in a helper function of its own.
3930
0
  std::string DeclMergeChecks, StmtMergeChecks;
3931
0
  raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks);
3932
3933
  // Generate a ParsedAttrInfo struct for each of the attributes.
3934
0
  for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
3935
    // TODO: If the attribute's kind appears in the list of duplicates, that is
3936
    // because it is a target-specific attribute that appears multiple times.
3937
    // It would be beneficial to test whether the duplicates are "similar
3938
    // enough" to each other to not cause problems. For instance, check that
3939
    // the spellings are identical, and custom parsing rules match, etc.
3940
3941
    // We need to generate struct instances based off ParsedAttrInfo from
3942
    // ParsedAttr.cpp.
3943
0
    const std::string &AttrName = I->first;
3944
0
    const Record &Attr = *I->second;
3945
0
    auto Spellings = GetFlattenedSpellings(Attr);
3946
0
    if (!Spellings.empty()) {
3947
0
      OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
3948
0
         << "Spellings[] = {\n";
3949
0
      for (const auto &S : Spellings) {
3950
0
        const std::string &RawSpelling = S.name();
3951
0
        std::string Spelling;
3952
0
        if (!S.nameSpace().empty())
3953
0
          Spelling += S.nameSpace() + "::";
3954
0
        if (S.variety() == "GNU")
3955
0
          Spelling += NormalizeGNUAttrSpelling(RawSpelling);
3956
0
        else
3957
0
          Spelling += RawSpelling;
3958
0
        OS << "  {AttributeCommonInfo::AS_" << S.variety();
3959
0
        OS << ", \"" << Spelling << "\"},\n";
3960
0
      }
3961
0
      OS << "};\n";
3962
0
    }
3963
3964
0
    std::vector<std::string> ArgNames;
3965
0
    for (const auto &Arg : Attr.getValueAsListOfDefs("Args")) {
3966
0
      bool UnusedUnset;
3967
0
      if (Arg->getValueAsBitOrUnset("Fake", UnusedUnset))
3968
0
        continue;
3969
0
      ArgNames.push_back(Arg->getValueAsString("Name").str());
3970
0
      for (const auto &Class : Arg->getSuperClasses()) {
3971
0
        if (Class.first->getName().startswith("Variadic")) {
3972
0
          ArgNames.back().append("...");
3973
0
          break;
3974
0
        }
3975
0
      }
3976
0
    }
3977
0
    if (!ArgNames.empty()) {
3978
0
      OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n";
3979
0
      for (const auto &N : ArgNames)
3980
0
        OS << '"' << N << "\",";
3981
0
      OS << "};\n";
3982
0
    }
3983
3984
0
    OS << "struct ParsedAttrInfo" << I->first
3985
0
       << " final : public ParsedAttrInfo {\n";
3986
0
    OS << "  ParsedAttrInfo" << I->first << "() {\n";
3987
0
    OS << "    AttrKind = ParsedAttr::AT_" << AttrName << ";\n";
3988
0
    emitArgInfo(Attr, OS);
3989
0
    OS << "    HasCustomParsing = ";
3990
0
    OS << Attr.getValueAsBit("HasCustomParsing") << ";\n";
3991
0
    OS << "    IsTargetSpecific = ";
3992
0
    OS << Attr.isSubClassOf("TargetSpecificAttr") << ";\n";
3993
0
    OS << "    IsType = ";
3994
0
    OS << (Attr.isSubClassOf("TypeAttr") ||
3995
0
           Attr.isSubClassOf("DeclOrTypeAttr")) << ";\n";
3996
0
    OS << "    IsStmt = ";
3997
0
    OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"))
3998
0
       << ";\n";
3999
0
    OS << "    IsKnownToGCC = ";
4000
0
    OS << IsKnownToGCC(Attr) << ";\n";
4001
0
    OS << "    IsSupportedByPragmaAttribute = ";
4002
0
    OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ";\n";
4003
0
    if (!Spellings.empty())
4004
0
      OS << "    Spellings = " << I->first << "Spellings;\n";
4005
0
    if (!ArgNames.empty())
4006
0
      OS << "    ArgNames = " << I->first << "ArgNames;\n";
4007
0
    OS << "  }\n";
4008
0
    GenerateAppertainsTo(Attr, OS);
4009
0
    GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS);
4010
0
    GenerateLangOptRequirements(Attr, OS);
4011
0
    GenerateTargetRequirements(Attr, Dupes, OS);
4012
0
    GenerateSpellingIndexToSemanticSpelling(Attr, OS);
4013
0
    PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
4014
0
    GenerateHandleDeclAttribute(Attr, OS);
4015
0
    OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
4016
0
    OS << "};\n";
4017
0
    OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
4018
0
       << "::Instance;\n";
4019
0
  }
4020
4021
0
  OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
4022
0
  for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4023
0
    OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
4024
0
  }
4025
0
  OS << "};\n\n";
4026
4027
  // Generate the attribute match rules.
4028
0
  emitAttributeMatchRules(PragmaAttributeSupport, OS);
4029
4030
0
  OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
4031
4032
  // Write out the declaration merging check logic.
4033
0
  OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
4034
0
     << "const Attr *A) {\n";
4035
0
  OS << MergeDeclOS.str();
4036
0
  OS << "  return true;\n";
4037
0
  OS << "}\n\n";
4038
4039
0
  OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
4040
4041
  // Write out the statement merging check logic.
4042
0
  OS << "static bool DiagnoseMutualExclusions(Sema &S, "
4043
0
     << "const SmallVectorImpl<const Attr *> &C) {\n";
4044
0
  OS << "  for (const Attr *A : C) {\n";
4045
0
  OS << MergeStmtOS.str();
4046
0
  OS << "  }\n";
4047
0
  OS << "  return true;\n";
4048
0
  OS << "}\n\n";
4049
4050
0
  OS << "#endif\n";
4051
0
}
4052
4053
// Emits the kind list of parsed attributes
4054
0
void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
4055
0
  emitSourceFileHeader("Attribute name matcher", OS);
4056
4057
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4058
0
  std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
4059
0
      Keywords, Pragma, C2x;
4060
0
  std::set<std::string> Seen;
4061
0
  for (const auto *A : Attrs) {
4062
0
    const Record &Attr = *A;
4063
4064
0
    bool SemaHandler = Attr.getValueAsBit("SemaHandler");
4065
0
    bool Ignored = Attr.getValueAsBit("Ignored");
4066
0
    if (SemaHandler || Ignored) {
4067
      // Attribute spellings can be shared between target-specific attributes,
4068
      // and can be shared between syntaxes for the same attribute. For
4069
      // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
4070
      // specific attribute, or MSP430-specific attribute. Additionally, an
4071
      // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
4072
      // for the same semantic attribute. Ultimately, we need to map each of
4073
      // these to a single AttributeCommonInfo::Kind value, but the
4074
      // StringMatcher class cannot handle duplicate match strings. So we
4075
      // generate a list of string to match based on the syntax, and emit
4076
      // multiple string matchers depending on the syntax used.
4077
0
      std::string AttrName;
4078
0
      if (Attr.isSubClassOf("TargetSpecificAttr") &&
4079
0
          !Attr.isValueUnset("ParseKind")) {
4080
0
        AttrName = std::string(Attr.getValueAsString("ParseKind"));
4081
0
        if (Seen.find(AttrName) != Seen.end())
4082
0
          continue;
4083
0
        Seen.insert(AttrName);
4084
0
      } else
4085
0
        AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
4086
4087
0
      std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4088
0
      for (const auto &S : Spellings) {
4089
0
        const std::string &RawSpelling = S.name();
4090
0
        std::vector<StringMatcher::StringPair> *Matches = nullptr;
4091
0
        std::string Spelling;
4092
0
        const std::string &Variety = S.variety();
4093
0
        if (Variety == "CXX11") {
4094
0
          Matches = &CXX11;
4095
0
          if (!S.nameSpace().empty())
4096
0
            Spelling += S.nameSpace() + "::";
4097
0
        } else if (Variety == "C2x") {
4098
0
          Matches = &C2x;
4099
0
          if (!S.nameSpace().empty())
4100
0
            Spelling += S.nameSpace() + "::";
4101
0
        } else if (Variety == "GNU")
4102
0
          Matches = &GNU;
4103
0
        else if (Variety == "Declspec")
4104
0
          Matches = &Declspec;
4105
0
        else if (Variety == "Microsoft")
4106
0
          Matches = &Microsoft;
4107
0
        else if (Variety == "Keyword")
4108
0
          Matches = &Keywords;
4109
0
        else if (Variety == "Pragma")
4110
0
          Matches = &Pragma;
4111
4112
0
        assert(Matches && "Unsupported spelling variety found");
4113
4114
0
        if (Variety == "GNU")
4115
0
          Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4116
0
        else
4117
0
          Spelling += RawSpelling;
4118
4119
0
        if (SemaHandler)
4120
0
          Matches->push_back(StringMatcher::StringPair(
4121
0
              Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
4122
0
        else
4123
0
          Matches->push_back(StringMatcher::StringPair(
4124
0
              Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
4125
0
      }
4126
0
    }
4127
0
  }
4128
4129
0
  OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
4130
0
  OS << "AttributeCommonInfo::Syntax Syntax) {\n";
4131
0
  OS << "  if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
4132
0
  StringMatcher("Name", GNU, OS).Emit();
4133
0
  OS << "  } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
4134
0
  StringMatcher("Name", Declspec, OS).Emit();
4135
0
  OS << "  } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
4136
0
  StringMatcher("Name", Microsoft, OS).Emit();
4137
0
  OS << "  } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
4138
0
  StringMatcher("Name", CXX11, OS).Emit();
4139
0
  OS << "  } else if (AttributeCommonInfo::AS_C2x == Syntax) {\n";
4140
0
  StringMatcher("Name", C2x, OS).Emit();
4141
0
  OS << "  } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
4142
0
  OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
4143
0
  StringMatcher("Name", Keywords, OS).Emit();
4144
0
  OS << "  } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
4145
0
  StringMatcher("Name", Pragma, OS).Emit();
4146
0
  OS << "  }\n";
4147
0
  OS << "  return AttributeCommonInfo::UnknownAttribute;\n"
4148
0
     << "}\n";
4149
0
}
4150
4151
// Emits the code to dump an attribute.
4152
0
void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) {
4153
0
  emitSourceFileHeader("Attribute text node dumper", OS);
4154
4155
0
  std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4156
0
  for (const auto *Attr : Attrs) {
4157
0
    const Record &R = *Attr;
4158
0
    if (!R.getValueAsBit("ASTNode"))
4159
0
      continue;
4160
4161
    // If the attribute has a semantically-meaningful name (which is determined
4162
    // by whether there is a Spelling enumeration for it), then write out the
4163
    // spelling used for the attribute.
4164
4165
0
    std::string FunctionContent;
4166
0
    llvm::raw_string_ostream SS(FunctionContent);
4167
4168
0
    std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
4169
0
    if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
4170
0
      SS << "    OS << \" \" << A->getSpelling();\n";
4171
4172
0
    Args = R.getValueAsListOfDefs("Args");
4173
0
    for (const auto *Arg : Args)
4174
0
      createArgument(*Arg, R.getName())->writeDump(SS);
4175
4176
0
    if (SS.tell()) {
4177
0
      OS << "  void Visit" << R.getName() << "Attr(const " << R.getName()
4178
0
         << "Attr *A) {\n";
4179
0
      if (!Args.empty())
4180
0
        OS << "    const auto *SA = cast<" << R.getName()
4181
0
           << "Attr>(A); (void)SA;\n";
4182
0
      OS << SS.str();
4183
0
      OS << "  }\n";
4184
0
    }
4185
0
  }
4186
0
}
4187
4188
0
void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) {
4189
0
  emitSourceFileHeader("Attribute text node traverser", OS);
4190
4191
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4192
0
  for (const auto *Attr : Attrs) {
4193
0
    const Record &R = *Attr;
4194
0
    if (!R.getValueAsBit("ASTNode"))
4195
0
      continue;
4196
4197
0
    std::string FunctionContent;
4198
0
    llvm::raw_string_ostream SS(FunctionContent);
4199
4200
0
    Args = R.getValueAsListOfDefs("Args");
4201
0
    for (const auto *Arg : Args)
4202
0
      createArgument(*Arg, R.getName())->writeDumpChildren(SS);
4203
0
    if (SS.tell()) {
4204
0
      OS << "  void Visit" << R.getName() << "Attr(const " << R.getName()
4205
0
         << "Attr *A) {\n";
4206
0
      if (!Args.empty())
4207
0
        OS << "    const auto *SA = cast<" << R.getName()
4208
0
           << "Attr>(A); (void)SA;\n";
4209
0
      OS << SS.str();
4210
0
      OS << "  }\n";
4211
0
    }
4212
0
  }
4213
0
}
4214
4215
void EmitClangAttrParserStringSwitches(RecordKeeper &Records,
4216
0
                                       raw_ostream &OS) {
4217
0
  emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS);
4218
0
  emitClangAttrArgContextList(Records, OS);
4219
0
  emitClangAttrIdentifierArgList(Records, OS);
4220
0
  emitClangAttrVariadicIdentifierArgList(Records, OS);
4221
0
  emitClangAttrThisIsaIdentifierArgList(Records, OS);
4222
0
  emitClangAttrTypeArgList(Records, OS);
4223
0
  emitClangAttrLateParsedList(Records, OS);
4224
0
}
4225
4226
void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
4227
0
                                                        raw_ostream &OS) {
4228
0
  getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
4229
0
}
4230
4231
0
void EmitClangAttrDocTable(RecordKeeper &Records, raw_ostream &OS) {
4232
0
  emitSourceFileHeader("Clang attribute documentation", OS);
4233
4234
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4235
0
  for (const auto *A : Attrs) {
4236
0
    if (!A->getValueAsBit("ASTNode"))
4237
0
      continue;
4238
0
    std::vector<Record *> Docs = A->getValueAsListOfDefs("Documentation");
4239
0
    assert(!Docs.empty());
4240
    // Only look at the first documentation if there are several.
4241
    // (Currently there's only one such attr, revisit if this becomes common).
4242
0
    StringRef Text =
4243
0
        Docs.front()->getValueAsOptionalString("Content").getValueOr("");
4244
0
    OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = "
4245
0
       << "R\"reST(" << Text.trim() << ")reST\";\n";
4246
0
  }
4247
0
}
4248
4249
enum class SpellingKind {
4250
  GNU,
4251
  CXX11,
4252
  C2x,
4253
  Declspec,
4254
  Microsoft,
4255
  Keyword,
4256
  Pragma,
4257
};
4258
static const size_t NumSpellingKinds = (size_t)SpellingKind::Pragma + 1;
4259
4260
class SpellingList {
4261
  std::vector<std::string> Spellings[NumSpellingKinds];
4262
4263
public:
4264
0
  ArrayRef<std::string> operator[](SpellingKind K) const {
4265
0
    return Spellings[(size_t)K];
4266
0
  }
4267
4268
0
  void add(const Record &Attr, FlattenedSpelling Spelling) {
4269
0
    SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety())
4270
0
                            .Case("GNU", SpellingKind::GNU)
4271
0
                            .Case("CXX11", SpellingKind::CXX11)
4272
0
                            .Case("C2x", SpellingKind::C2x)
4273
0
                            .Case("Declspec", SpellingKind::Declspec)
4274
0
                            .Case("Microsoft", SpellingKind::Microsoft)
4275
0
                            .Case("Keyword", SpellingKind::Keyword)
4276
0
                            .Case("Pragma", SpellingKind::Pragma);
4277
0
    std::string Name;
4278
0
    if (!Spelling.nameSpace().empty()) {
4279
0
      switch (Kind) {
4280
0
      case SpellingKind::CXX11:
4281
0
      case SpellingKind::C2x:
4282
0
        Name = Spelling.nameSpace() + "::";
4283
0
        break;
4284
0
      case SpellingKind::Pragma:
4285
0
        Name = Spelling.nameSpace() + " ";
4286
0
        break;
4287
0
      default:
4288
0
        PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
4289
0
      }
4290
0
    }
4291
0
    Name += Spelling.name();
4292
4293
0
    Spellings[(size_t)Kind].push_back(Name);
4294
0
  }
4295
};
4296
4297
class DocumentationData {
4298
public:
4299
  const Record *Documentation;
4300
  const Record *Attribute;
4301
  std::string Heading;
4302
  SpellingList SupportedSpellings;
4303
4304
  DocumentationData(const Record &Documentation, const Record &Attribute,
4305
                    std::pair<std::string, SpellingList> HeadingAndSpellings)
4306
      : Documentation(&Documentation), Attribute(&Attribute),
4307
        Heading(std::move(HeadingAndSpellings.first)),
4308
0
        SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
4309
};
4310
4311
static void WriteCategoryHeader(const Record *DocCategory,
4312
0
                                raw_ostream &OS) {
4313
0
  const StringRef Name = DocCategory->getValueAsString("Name");
4314
0
  OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
4315
4316
  // If there is content, print that as well.
4317
0
  const StringRef ContentStr = DocCategory->getValueAsString("Content");
4318
  // Trim leading and trailing newlines and spaces.
4319
0
  OS << ContentStr.trim();
4320
4321
0
  OS << "\n\n";
4322
0
}
4323
4324
static std::pair<std::string, SpellingList>
4325
GetAttributeHeadingAndSpellings(const Record &Documentation,
4326
0
                                const Record &Attribute) {
4327
  // FIXME: there is no way to have a per-spelling category for the attribute
4328
  // documentation. This may not be a limiting factor since the spellings
4329
  // should generally be consistently applied across the category.
4330
4331
0
  std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
4332
0
  if (Spellings.empty())
4333
0
    PrintFatalError(Attribute.getLoc(),
4334
0
                    "Attribute has no supported spellings; cannot be "
4335
0
                    "documented");
4336
4337
  // Determine the heading to be used for this attribute.
4338
0
  std::string Heading = std::string(Documentation.getValueAsString("Heading"));
4339
0
  if (Heading.empty()) {
4340
    // If there's only one spelling, we can simply use that.
4341
0
    if (Spellings.size() == 1)
4342
0
      Heading = Spellings.begin()->name();
4343
0
    else {
4344
0
      std::set<std::string> Uniques;
4345
0
      for (auto I = Spellings.begin(), E = Spellings.end();
4346
0
           I != E && Uniques.size() <= 1; ++I) {
4347
0
        std::string Spelling =
4348
0
            std::string(NormalizeNameForSpellingComparison(I->name()));
4349
0
        Uniques.insert(Spelling);
4350
0
      }
4351
      // If the semantic map has only one spelling, that is sufficient for our
4352
      // needs.
4353
0
      if (Uniques.size() == 1)
4354
0
        Heading = *Uniques.begin();
4355
0
    }
4356
0
  }
4357
4358
  // If the heading is still empty, it is an error.
4359
0
  if (Heading.empty())
4360
0
    PrintFatalError(Attribute.getLoc(),
4361
0
                    "This attribute requires a heading to be specified");
4362
4363
0
  SpellingList SupportedSpellings;
4364
0
  for (const auto &I : Spellings)
4365
0
    SupportedSpellings.add(Attribute, I);
4366
4367
0
  return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
4368
0
}
4369
4370
static void WriteDocumentation(RecordKeeper &Records,
4371
0
                               const DocumentationData &Doc, raw_ostream &OS) {
4372
0
  OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
4373
4374
  // List what spelling syntaxes the attribute supports.
4375
0
  OS << ".. csv-table:: Supported Syntaxes\n";
4376
0
  OS << "   :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\",";
4377
0
  OS << " \"Keyword\", \"``#pragma``\", \"``#pragma clang attribute``\"\n\n";
4378
0
  OS << "   \"";
4379
0
  for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
4380
0
    SpellingKind K = (SpellingKind)Kind;
4381
    // TODO: List Microsoft (IDL-style attribute) spellings once we fully
4382
    // support them.
4383
0
    if (K == SpellingKind::Microsoft)
4384
0
      continue;
4385
4386
0
    bool PrintedAny = false;
4387
0
    for (StringRef Spelling : Doc.SupportedSpellings[K]) {
4388
0
      if (PrintedAny)
4389
0
        OS << " |br| ";
4390
0
      OS << "``" << Spelling << "``";
4391
0
      PrintedAny = true;
4392
0
    }
4393
4394
0
    OS << "\",\"";
4395
0
  }
4396
4397
0
  if (getPragmaAttributeSupport(Records).isAttributedSupported(
4398
0
          *Doc.Attribute))
4399
0
    OS << "Yes";
4400
0
  OS << "\"\n\n";
4401
4402
  // If the attribute is deprecated, print a message about it, and possibly
4403
  // provide a replacement attribute.
4404
0
  if (!Doc.Documentation->isValueUnset("Deprecated")) {
4405
0
    OS << "This attribute has been deprecated, and may be removed in a future "
4406
0
       << "version of Clang.";
4407
0
    const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
4408
0
    const StringRef Replacement = Deprecated.getValueAsString("Replacement");
4409
0
    if (!Replacement.empty())
4410
0
      OS << "  This attribute has been superseded by ``" << Replacement
4411
0
         << "``.";
4412
0
    OS << "\n\n";
4413
0
  }
4414
4415
0
  const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
4416
  // Trim leading and trailing newlines and spaces.
4417
0
  OS << ContentStr.trim();
4418
4419
0
  OS << "\n\n\n";
4420
0
}
4421
4422
0
void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
4423
  // Get the documentation introduction paragraph.
4424
0
  const Record *Documentation = Records.getDef("GlobalDocumentation");
4425
0
  if (!Documentation) {
4426
0
    PrintFatalError("The Documentation top-level definition is missing, "
4427
0
                    "no documentation will be generated.");
4428
0
    return;
4429
0
  }
4430
4431
0
  OS << Documentation->getValueAsString("Intro") << "\n";
4432
4433
  // Gather the Documentation lists from each of the attributes, based on the
4434
  // category provided.
4435
0
  std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4436
0
  struct CategoryLess {
4437
0
    bool operator()(const Record *L, const Record *R) const {
4438
0
      return L->getValueAsString("Name") < R->getValueAsString("Name");
4439
0
    }
4440
0
  };
4441
0
  std::map<const Record *, std::vector<DocumentationData>, CategoryLess>
4442
0
      SplitDocs;
4443
0
  for (const auto *A : Attrs) {
4444
0
    const Record &Attr = *A;
4445
0
    std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
4446
0
    for (const auto *D : Docs) {
4447
0
      const Record &Doc = *D;
4448
0
      const Record *Category = Doc.getValueAsDef("Category");
4449
      // If the category is "undocumented", then there cannot be any other
4450
      // documentation categories (otherwise, the attribute would become
4451
      // documented).
4452
0
      const StringRef Cat = Category->getValueAsString("Name");
4453
0
      bool Undocumented = Cat == "Undocumented";
4454
0
      if (Undocumented && Docs.size() > 1)
4455
0
        PrintFatalError(Doc.getLoc(),
4456
0
                        "Attribute is \"Undocumented\", but has multiple "
4457
0
                        "documentation categories");
4458
4459
0
      if (!Undocumented)
4460
0
        SplitDocs[Category].push_back(DocumentationData(
4461
0
            Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr)));
4462
0
    }
4463
0
  }
4464
4465
  // Having split the attributes out based on what documentation goes where,
4466
  // we can begin to generate sections of documentation.
4467
0
  for (auto &I : SplitDocs) {
4468
0
    WriteCategoryHeader(I.first, OS);
4469
4470
0
    llvm::sort(I.second,
4471
0
               [](const DocumentationData &D1, const DocumentationData &D2) {
4472
0
                 return D1.Heading < D2.Heading;
4473
0
               });
4474
4475
    // Walk over each of the attributes in the category and write out their
4476
    // documentation.
4477
0
    for (const auto &Doc : I.second)
4478
0
      WriteDocumentation(Records, Doc, OS);
4479
0
  }
4480
0
}
4481
4482
void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
4483
1
                                                raw_ostream &OS) {
4484
1
  PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
4485
1
  ParsedAttrMap Attrs = getParsedAttrList(Records);
4486
1
  OS << "#pragma clang attribute supports the following attributes:\n";
4487
332
  for (const auto &I : Attrs) {
4488
332
    if (!Support.isAttributedSupported(*I.second))
4489
144
      continue;
4490
188
    OS << I.first;
4491
188
    if (I.second->isValueUnset("Subjects")) {
4492
2
      OS << " ()\n";
4493
2
      continue;
4494
2
    }
4495
186
    const Record *SubjectObj = I.second->getValueAsDef("Subjects");
4496
186
    std::vector<Record *> Subjects =
4497
186
        SubjectObj->getValueAsListOfDefs("Subjects");
4498
186