Coverage Report

Created: 2017-10-03 07:32

/Users/buildslave/jenkins/sharedspace/clang-stage2-coverage-R@2/llvm/include/llvm/ADT/APInt.h
Line
Count
Source (jump to first uncovered line)
1
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
///
10
/// \file
11
/// \brief This file implements a class to represent arbitrary precision
12
/// integral constant values and operations on them.
13
///
14
//===----------------------------------------------------------------------===//
15
16
#ifndef LLVM_ADT_APINT_H
17
#define LLVM_ADT_APINT_H
18
19
#include "llvm/Support/Compiler.h"
20
#include "llvm/Support/MathExtras.h"
21
#include <cassert>
22
#include <climits>
23
#include <cstring>
24
#include <string>
25
26
namespace llvm {
27
class FoldingSetNodeID;
28
class StringRef;
29
class hash_code;
30
class raw_ostream;
31
32
template <typename T> class SmallVectorImpl;
33
template <typename T> class ArrayRef;
34
35
class APInt;
36
37
inline APInt operator-(APInt);
38
39
//===----------------------------------------------------------------------===//
40
//                              APInt Class
41
//===----------------------------------------------------------------------===//
42
43
/// \brief Class for arbitrary precision integers.
44
///
45
/// APInt is a functional replacement for common case unsigned integer type like
46
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49
/// and methods to manipulate integer values of any bit-width. It supports both
50
/// the typical integer arithmetic and comparison operations as well as bitwise
51
/// manipulation.
52
///
53
/// The class has several invariants worth noting:
54
///   * All bit, byte, and word positions are zero-based.
55
///   * Once the bit width is set, it doesn't change except by the Truncate,
56
///     SignExtend, or ZeroExtend operations.
57
///   * All binary operators must be on APInt instances of the same bit width.
58
///     Attempting to use these operators on instances with different bit
59
///     widths will yield an assertion.
60
///   * The value is stored canonically as an unsigned value. For operations
61
///     where it makes a difference, there are both signed and unsigned variants
62
///     of the operation. For example, sdiv and udiv. However, because the bit
63
///     widths must be the same, operations such as Mul and Add produce the same
64
///     results regardless of whether the values are interpreted as signed or
65
///     not.
66
///   * In general, the class tries to follow the style of computation that LLVM
67
///     uses in its IR. This simplifies its use for LLVM.
68
///
69
class LLVM_NODISCARD APInt {
70
public:
71
  typedef uint64_t WordType;
72
73
  /// This enum is used to hold the constants we needed for APInt.
74
  enum : unsigned {
75
    /// Byte size of a word.
76
    APINT_WORD_SIZE = sizeof(WordType),
77
    /// Bits in a word.
78
    APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
79
  };
80
81
  static const WordType WORD_MAX = ~WordType(0);
82
83
private:
84
  /// This union is used to store the integer value. When the
85
  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
86
  union {
87
    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
88
    uint64_t *pVal; ///< Used to store the >64 bits integer value.
89
  } U;
90
91
  unsigned BitWidth; ///< The number of bits in this APInt.
92
93
  friend struct DenseMapAPIntKeyInfo;
94
95
  friend class APSInt;
96
97
  /// \brief Fast internal constructor
98
  ///
99
  /// This constructor is used only internally for speed of construction of
100
  /// temporaries. It is unsafe for general use so it is not public.
101
712M
  APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
102
712M
    U.pVal = val;
103
712M
  }
104
105
  /// \brief Determine if this APInt just has one word to store value.
106
  ///
107
  /// \returns true if the number of bits <= 64, false otherwise.
108
54.4G
  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
109
110
  /// \brief Determine which word a bit is in.
111
  ///
112
  /// \returns the word position for the specified bit position.
113
54.9M
  static unsigned whichWord(unsigned bitPosition) {
114
54.9M
    return bitPosition / APINT_BITS_PER_WORD;
115
54.9M
  }
116
117
  /// \brief Determine which bit in a word a bit is in.
118
  ///
119
  /// \returns the bit position in a word for the specified bit position
120
  /// in the APInt.
121
878M
  static unsigned whichBit(unsigned bitPosition) {
122
878M
    return bitPosition % APINT_BITS_PER_WORD;
123
878M
  }
124
125
  /// \brief Get a single bit mask.
126
  ///
127
  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
128
  /// This method generates and returns a uint64_t (word) mask for a single
129
  /// bit at a specific bit position. This is used to mask the bit in the
130
  /// corresponding word.
131
874M
  static uint64_t maskBit(unsigned bitPosition) {
132
874M
    return 1ULL << whichBit(bitPosition);
133
874M
  }
134
135
  /// \brief Clear unused high order bits
136
  ///
137
  /// This method is used internally to clear the top "N" bits in the high order
138
  /// word that are not used by the APInt. This is needed after the most
139
  /// significant word is assigned a value to ensure that those bits are
140
  /// zero'd out.
141
7.26G
  APInt &clearUnusedBits() {
142
7.26G
    // Compute how many bits are used in the final word
143
7.26G
    unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
144
7.26G
145
7.26G
    // Mask out the high bits.
146
7.26G
    uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
147
7.26G
    if (isSingleWord())
148
7.18G
      U.VAL &= mask;
149
7.26G
    else
150
80.5M
      U.pVal[getNumWords() - 1] &= mask;
151
7.26G
    return *this;
152
7.26G
  }
153
154
  /// \brief Get the word corresponding to a bit position
155
  /// \returns the corresponding word for the specified bit position.
156
737M
  uint64_t getWord(unsigned bitPosition) const {
157
737M
    return isSingleWord() ? 
U.VAL702M
:
U.pVal[whichWord(bitPosition)]35.5M
;
158
737M
  }
159
160
  /// Utility method to change the bit width of this APInt to new bit width,
161
  /// allocating and/or deallocating as necessary. There is no guarantee on the
162
  /// value of any bits upon return. Caller should populate the bits after.
163
  void reallocate(unsigned NewBitWidth);
164
165
  /// \brief Convert a char array into an APInt
166
  ///
167
  /// \param radix 2, 8, 10, 16, or 36
168
  /// Converts a string into a number.  The string must be non-empty
169
  /// and well-formed as a number of the given base. The bit-width
170
  /// must be sufficient to hold the result.
171
  ///
172
  /// This is used by the constructors that take string arguments.
173
  ///
174
  /// StringRef::getAsInteger is superficially similar but (1) does
175
  /// not assume that the string is well-formed and (2) grows the
176
  /// result to hold the input.
177
  void fromString(unsigned numBits, StringRef str, uint8_t radix);
178
179
  /// \brief An internal division function for dividing APInts.
180
  ///
181
  /// This is used by the toString method to divide by the radix. It simply
182
  /// provides a more convenient form of divide for internal use since KnuthDiv
183
  /// has specific constraints on its inputs. If those constraints are not met
184
  /// then it provides a simpler form of divide.
185
  static void divide(const WordType *LHS, unsigned lhsWords,
186
                     const WordType *RHS, unsigned rhsWords, WordType *Quotient,
187
                     WordType *Remainder);
188
189
  /// out-of-line slow case for inline constructor
190
  void initSlowCase(uint64_t val, bool isSigned);
191
192
  /// shared code between two array constructors
193
  void initFromArray(ArrayRef<uint64_t> array);
194
195
  /// out-of-line slow case for inline copy constructor
196
  void initSlowCase(const APInt &that);
197
198
  /// out-of-line slow case for shl
199
  void shlSlowCase(unsigned ShiftAmt);
200
201
  /// out-of-line slow case for lshr.
202
  void lshrSlowCase(unsigned ShiftAmt);
203
204
  /// out-of-line slow case for ashr.
205
  void ashrSlowCase(unsigned ShiftAmt);
206
207
  /// out-of-line slow case for operator=
208
  void AssignSlowCase(const APInt &RHS);
209
210
  /// out-of-line slow case for operator==
211
  bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
212
213
  /// out-of-line slow case for countLeadingZeros
214
  unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
215
216
  /// out-of-line slow case for countLeadingOnes.
217
  unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
218
219
  /// out-of-line slow case for countTrailingZeros.
220
  unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
221
222
  /// out-of-line slow case for countTrailingOnes
223
  unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
224
225
  /// out-of-line slow case for countPopulation
226
  unsigned countPopulationSlowCase() const LLVM_READONLY;
227
228
  /// out-of-line slow case for intersects.
229
  bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
230
231
  /// out-of-line slow case for isSubsetOf.
232
  bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
233
234
  /// out-of-line slow case for setBits.
235
  void setBitsSlowCase(unsigned loBit, unsigned hiBit);
236
237
  /// out-of-line slow case for flipAllBits.
238
  void flipAllBitsSlowCase();
239
240
  /// out-of-line slow case for operator&=.
241
  void AndAssignSlowCase(const APInt& RHS);
242
243
  /// out-of-line slow case for operator|=.
244
  void OrAssignSlowCase(const APInt& RHS);
245
246
  /// out-of-line slow case for operator^=.
247
  void XorAssignSlowCase(const APInt& RHS);
248
249
  /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
250
  /// to, or greater than RHS.
251
  int compare(const APInt &RHS) const LLVM_READONLY;
252
253
  /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
254
  /// to, or greater than RHS.
255
  int compareSigned(const APInt &RHS) const LLVM_READONLY;
256
257
public:
258
  /// \name Constructors
259
  /// @{
260
261
  /// \brief Create a new APInt of numBits width, initialized as val.
262
  ///
263
  /// If isSigned is true then val is treated as if it were a signed value
264
  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
265
  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
266
  /// the range of val are zero filled).
267
  ///
268
  /// \param numBits the bit width of the constructed APInt
269
  /// \param val the initial value of the APInt
270
  /// \param isSigned how to treat signedness of val
271
  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
272
4.18G
      : BitWidth(numBits) {
273
4.18G
    assert(BitWidth && "bitwidth too small");
274
4.18G
    if (
isSingleWord()4.18G
) {
275
4.16G
      U.VAL = val;
276
4.16G
      clearUnusedBits();
277
4.18G
    } else {
278
19.4M
      initSlowCase(val, isSigned);
279
19.4M
    }
280
4.18G
  }
281
282
  /// \brief Construct an APInt of numBits width, initialized as bigVal[].
283
  ///
284
  /// Note that bigVal.size() can be smaller or larger than the corresponding
285
  /// bit width but any extraneous bits will be dropped.
286
  ///
287
  /// \param numBits the bit width of the constructed APInt
288
  /// \param bigVal a sequence of words to form the initial value of the APInt
289
  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
290
291
  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
292
  /// deprecated because this constructor is prone to ambiguity with the
293
  /// APInt(unsigned, uint64_t, bool) constructor.
294
  ///
295
  /// If this overload is ever deleted, care should be taken to prevent calls
296
  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
297
  /// constructor.
298
  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
299
300
  /// \brief Construct an APInt from a string representation.
301
  ///
302
  /// This constructor interprets the string \p str in the given radix. The
303
  /// interpretation stops when the first character that is not suitable for the
304
  /// radix is encountered, or the end of the string. Acceptable radix values
305
  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
306
  /// string to require more bits than numBits.
307
  ///
308
  /// \param numBits the bit width of the constructed APInt
309
  /// \param str the string to be interpreted
310
  /// \param radix the radix to use for the conversion
311
  APInt(unsigned numBits, StringRef str, uint8_t radix);
312
313
  /// Simply makes *this a copy of that.
314
  /// @brief Copy Constructor.
315
5.67G
  APInt(const APInt &that) : BitWidth(that.BitWidth) {
316
5.67G
    if (isSingleWord())
317
5.61G
      U.VAL = that.U.VAL;
318
5.67G
    else
319
62.7M
      initSlowCase(that);
320
5.67G
  }
321
322
  /// \brief Move Constructor.
323
5.25G
  APInt(APInt &&that) : BitWidth(that.BitWidth) {
324
5.25G
    memcpy(&U, &that.U, sizeof(U));
325
5.25G
    that.BitWidth = 0;
326
5.25G
  }
327
328
  /// \brief Destructor.
329
16.6G
  ~APInt() {
330
16.6G
    if (needsCleanup())
331
109M
      delete[] U.pVal;
332
16.6G
  }
333
334
  /// \brief Default constructor that creates an uninteresting APInt
335
  /// representing a 1-bit zero value.
336
  ///
337
  /// This is useful for object deserialization (pair this with the static
338
  ///  method Read).
339
873M
  explicit APInt() : BitWidth(1) { U.VAL = 0; }
340
341
  /// \brief Returns whether this instance allocated memory.
342
16.6G
  bool needsCleanup() const { return !isSingleWord(); }
343
344
  /// Used to insert APInt objects, or objects that contain APInt objects, into
345
  ///  FoldingSets.
346
  void Profile(FoldingSetNodeID &id) const;
347
348
  /// @}
349
  /// \name Value Tests
350
  /// @{
351
352
  /// \brief Determine sign of this APInt.
353
  ///
354
  /// This tests the high bit of this APInt to determine if it is set.
355
  ///
356
  /// \returns true if this APInt is negative, false otherwise
357
325M
  bool isNegative() const { return (*this)[BitWidth - 1]; }
358
359
  /// \brief Determine if this APInt Value is non-negative (>= 0)
360
  ///
361
  /// This tests the high bit of the APInt to determine if it is unset.
362
38.8M
  bool isNonNegative() const { return !isNegative(); }
363
364
  /// \brief Determine if sign bit of this APInt is set.
365
  ///
366
  /// This tests the high bit of this APInt to determine if it is set.
367
  ///
368
  /// \returns true if this APInt has its sign bit set, false otherwise.
369
361M
  bool isSignBitSet() const { return (*this)[BitWidth-1]; }
370
371
  /// \brief Determine if sign bit of this APInt is clear.
372
  ///
373
  /// This tests the high bit of this APInt to determine if it is clear.
374
  ///
375
  /// \returns true if this APInt has its sign bit clear, false otherwise.
376
1.65M
  bool isSignBitClear() const { return !isSignBitSet(); }
377
378
  /// \brief Determine if this APInt Value is positive.
379
  ///
380
  /// This tests if the value of this APInt is positive (> 0). Note
381
  /// that 0 is not a positive value.
382
  ///
383
  /// \returns true if this APInt is positive.
384
33.4M
  bool isStrictlyPositive() const 
{ return isNonNegative() && 33.4M
!isNullValue()23.6M
; }
385
386
  /// \brief Determine if all bits are set
387
  ///
388
  /// This checks to see if the value has all bits of the APInt are set or not.
389
310M
  bool isAllOnesValue() const {
390
310M
    if (isSingleWord())
391
304M
      return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
392
5.93M
    return countTrailingOnesSlowCase() == BitWidth;
393
310M
  }
394
395
  /// \brief Determine if all bits are clear
396
  ///
397
  /// This checks to see if the value has all bits of the APInt are clear or
398
  /// not.
399
1.20G
  bool isNullValue() const { return !*this; }
400
401
  /// \brief Determine if this is a value of 1.
402
  ///
403
  /// This checks to see if the value of this APInt is one.
404
66.8M
  bool isOneValue() const {
405
66.8M
    if (isSingleWord())
406
66.7M
      return U.VAL == 1;
407
37.9k
    return countLeadingZerosSlowCase() == BitWidth - 1;
408
66.8M
  }
409
410
  /// \brief Determine if this is the largest unsigned value.
411
  ///
412
  /// This checks to see if the value of this APInt is the maximum unsigned
413
  /// value for the APInt's bit width.
414
236M
  bool isMaxValue() const { return isAllOnesValue(); }
415
416
  /// \brief Determine if this is the largest signed value.
417
  ///
418
  /// This checks to see if the value of this APInt is the maximum signed
419
  /// value for the APInt's bit width.
420
15.0M
  bool isMaxSignedValue() const {
421
15.0M
    if (isSingleWord())
422
15.0M
      return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
423
1.23k
    
return !isNegative() && 1.23k
countTrailingOnesSlowCase() == BitWidth - 1893
;
424
15.0M
  }
425
426
  /// \brief Determine if this is the smallest unsigned value.
427
  ///
428
  /// This checks to see if the value of this APInt is the minimum unsigned
429
  /// value for the APInt's bit width.
430
113M
  bool isMinValue() const { return isNullValue(); }
431
432
  /// \brief Determine if this is the smallest signed value.
433
  ///
434
  /// This checks to see if the value of this APInt is the minimum signed
435
  /// value for the APInt's bit width.
436
85.6M
  bool isMinSignedValue() const {
437
85.6M
    if (isSingleWord())
438
85.5M
      return U.VAL == (WordType(1) << (BitWidth - 1));
439
29.6k
    
return isNegative() && 29.6k
countTrailingZerosSlowCase() == BitWidth - 120.2k
;
440
85.6M
  }
441
442
  /// \brief Check if this APInt has an N-bits unsigned integer value.
443
2.11M
  bool isIntN(unsigned N) const {
444
2.11M
    assert(N && "N == 0 ???");
445
2.11M
    return getActiveBits() <= N;
446
2.11M
  }
447
448
  /// \brief Check if this APInt has an N-bits signed integer value.
449
6.96k
  bool isSignedIntN(unsigned N) const {
450
6.96k
    assert(N && "N == 0 ???");
451
6.96k
    return getMinSignedBits() <= N;
452
6.96k
  }
453
454
  /// \brief Check if this APInt's value is a power of two greater than zero.
455
  ///
456
  /// \returns true if the argument APInt value is a power of two > 0.
457
5.20M
  bool isPowerOf2() const {
458
5.20M
    if (isSingleWord())
459
5.19M
      return isPowerOf2_64(U.VAL);
460
7.76k
    return countPopulationSlowCase() == 1;
461
5.20M
  }
462
463
  /// \brief Check if the APInt's value is returned by getSignMask.
464
  ///
465
  /// \returns true if this is the value returned by getSignMask.
466
6.74M
  bool isSignMask() const { return isMinSignedValue(); }
467
468
  /// \brief Convert APInt to a boolean value.
469
  ///
470
  /// This converts the APInt to a boolean value as a test against zero.
471
19.0M
  bool getBoolValue() const { return !!*this; }
472
473
  /// If this value is smaller than the specified limit, return it, otherwise
474
  /// return the limit value.  This causes the value to saturate to the limit.
475
77.9M
  uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
476
77.9M
    return ugt(Limit) ? 
Limit1.32k
:
getZExtValue()77.9M
;
477
77.9M
  }
478
479
  /// \brief Check if the APInt consists of a repeated bit pattern.
480
  ///
481
  /// e.g. 0x01010101 satisfies isSplat(8).
482
  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
483
  /// width without remainder.
484
  bool isSplat(unsigned SplatSizeInBits) const;
485
486
  /// \returns true if this APInt value is a sequence of \param numBits ones
487
  /// starting at the least significant bit with the remainder zero.
488
74.5k
  bool isMask(unsigned numBits) const {
489
74.5k
    assert(numBits != 0 && "numBits must be non-zero");
490
74.5k
    assert(numBits <= BitWidth && "numBits out of range");
491
74.5k
    if (isSingleWord())
492
73.8k
      return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
493
647
    unsigned Ones = countTrailingOnesSlowCase();
494
647
    return (numBits == Ones) &&
495
643
           ((Ones + countLeadingZerosSlowCase()) == BitWidth);
496
74.5k
  }
497
498
  /// \returns true if this APInt is a non-empty sequence of ones starting at
499
  /// the least significant bit with the remainder zero.
500
  /// Ex. isMask(0x0000FFFFU) == true.
501
835k
  bool isMask() const {
502
835k
    if (isSingleWord())
503
834k
      return isMask_64(U.VAL);
504
985
    unsigned Ones = countTrailingOnesSlowCase();
505
713
    return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
506
835k
  }
507
508
  /// \brief Return true if this APInt value contains a sequence of ones with
509
  /// the remainder zero.
510
  bool isShiftedMask() const {
511
    if (isSingleWord())
512
      return isShiftedMask_64(U.VAL);
513
    unsigned Ones = countPopulationSlowCase();
514
    unsigned LeadZ = countLeadingZerosSlowCase();
515
    return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
516
  }
517
518
  /// @}
519
  /// \name Value Generators
520
  /// @{
521
522
  /// \brief Gets maximum unsigned value of APInt for specific bit width.
523
522M
  static APInt getMaxValue(unsigned numBits) {
524
522M
    return getAllOnesValue(numBits);
525
522M
  }
526
527
  /// \brief Gets maximum signed value of APInt for a specific bit width.
528
8.95M
  static APInt getSignedMaxValue(unsigned numBits) {
529
8.95M
    APInt API = getAllOnesValue(numBits);
530
8.95M
    API.clearBit(numBits - 1);
531
8.95M
    return API;
532
8.95M
  }
533
534
  /// \brief Gets minimum unsigned value of APInt for a specific bit width.
535
68.4M
  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
536
537
  /// \brief Gets minimum signed value of APInt for a specific bit width.
538
88.9M
  static APInt getSignedMinValue(unsigned numBits) {
539
88.9M
    APInt API(numBits, 0);
540
88.9M
    API.setBit(numBits - 1);
541
88.9M
    return API;
542
88.9M
  }
543
544
  /// \brief Get the SignMask for a specific bit width.
545
  ///
546
  /// This is just a wrapper function of getSignedMinValue(), and it helps code
547
  /// readability when we want to get a SignMask.
548
2.59M
  static APInt getSignMask(unsigned BitWidth) {
549
2.59M
    return getSignedMinValue(BitWidth);
550
2.59M
  }
551
552
  /// \brief Get the all-ones value.
553
  ///
554
  /// \returns the all-ones value for an APInt of the specified bit-width.
555
624M
  static APInt getAllOnesValue(unsigned numBits) {
556
624M
    return APInt(numBits, WORD_MAX, true);
557
624M
  }
558
559
  /// \brief Get the '0' value.
560
  ///
561
  /// \returns the '0' value for an APInt of the specified bit-width.
562
112M
  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
563
564
  /// \brief Compute an APInt containing numBits highbits from this APInt.
565
  ///
566
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
567
  /// the low bits and right shift to the least significant bit.
568
  ///
569
  /// \returns the high "numBits" bits of this APInt.
570
  APInt getHiBits(unsigned numBits) const;
571
572
  /// \brief Compute an APInt containing numBits lowbits from this APInt.
573
  ///
574
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
575
  /// the high bits.
576
  ///
577
  /// \returns the low "numBits" bits of this APInt.
578
  APInt getLoBits(unsigned numBits) const;
579
580
  /// \brief Return an APInt with exactly one bit set in the result.
581
2.06M
  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
582
2.06M
    APInt Res(numBits, 0);
583
2.06M
    Res.setBit(BitNo);
584
2.06M
    return Res;
585
2.06M
  }
586
587
  /// \brief Get a value with a block of bits set.
588
  ///
589
  /// Constructs an APInt value that has a contiguous range of bits set. The
590
  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
591
  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
592
  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
593
  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
594
  ///
595
  /// \param numBits the intended bit width of the result
596
  /// \param loBit the index of the lowest bit set.
597
  /// \param hiBit the index of the highest bit set.
598
  ///
599
  /// \returns An APInt value with the requested bits set.
600
50.3k
  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
601
50.3k
    APInt Res(numBits, 0);
602
50.3k
    Res.setBits(loBit, hiBit);
603
50.3k
    return Res;
604
50.3k
  }
605
606
  /// \brief Get a value with upper bits starting at loBit set.
607
  ///
608
  /// Constructs an APInt value that has a contiguous range of bits set. The
609
  /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
610
  /// bits will be zero. For example, with parameters(32, 12) you would get
611
  /// 0xFFFFF000.
612
  ///
613
  /// \param numBits the intended bit width of the result
614
  /// \param loBit the index of the lowest bit to set.
615
  ///
616
  /// \returns An APInt value with the requested bits set.
617
3.38M
  static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
618
3.38M
    APInt Res(numBits, 0);
619
3.38M
    Res.setBitsFrom(loBit);
620
3.38M
    return Res;
621
3.38M
  }
622
623
  /// \brief Get a value with high bits set
624
  ///
625
  /// Constructs an APInt value that has the top hiBitsSet bits set.
626
  ///
627
  /// \param numBits the bitwidth of the result
628
  /// \param hiBitsSet the number of high-order bits set in the result.
629
7.75M
  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
630
7.75M
    APInt Res(numBits, 0);
631
7.75M
    Res.setHighBits(hiBitsSet);
632
7.75M
    return Res;
633
7.75M
  }
634
635
  /// \brief Get a value with low bits set
636
  ///
637
  /// Constructs an APInt value that has the bottom loBitsSet bits set.
638
  ///
639
  /// \param numBits the bitwidth of the result
640
  /// \param loBitsSet the number of low-order bits set in the result.
641
23.5M
  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
642
23.5M
    APInt Res(numBits, 0);
643
23.5M
    Res.setLowBits(loBitsSet);
644
23.5M
    return Res;
645
23.5M
  }
646
647
  /// \brief Return a value containing V broadcasted over NewLen bits.
648
  static APInt getSplat(unsigned NewLen, const APInt &V);
649
650
  /// \brief Determine if two APInts have the same value, after zero-extending
651
  /// one of them (if needed!) to ensure that the bit-widths match.
652
32
  static bool isSameValue(const APInt &I1, const APInt &I2) {
653
32
    if (I1.getBitWidth() == I2.getBitWidth())
654
32
      return I1 == I2;
655
32
656
0
    
if (0
I1.getBitWidth() > I2.getBitWidth()0
)
657
0
      return I1 == I2.zext(I1.getBitWidth());
658
0
659
0
    return I1.zext(I2.getBitWidth()) == I2;
660
32
  }
661
662
  /// \brief Overload to compute a hash_code for an APInt value.
663
  friend hash_code hash_value(const APInt &Arg);
664
665
  /// This function returns a pointer to the internal storage of the APInt.
666
  /// This is useful for writing out the APInt in binary form without any
667
  /// conversions.
668
192M
  const uint64_t *getRawData() const {
669
192M
    if (isSingleWord())
670
186M
      return &U.VAL;
671
5.93M
    return &U.pVal[0];
672
192M
  }
673
674
  /// @}
675
  /// \name Unary Operators
676
  /// @{
677
678
  /// \brief Postfix increment operator.
679
  ///
680
  /// Increments *this by 1.
681
  ///
682
  /// \returns a new APInt value representing the original value of *this.
683
1.89k
  const APInt operator++(int) {
684
1.89k
    APInt API(*this);
685
1.89k
    ++(*this);
686
1.89k
    return API;
687
1.89k
  }
688
689
  /// \brief Prefix increment operator.
690
  ///
691
  /// \returns *this incremented by one
692
  APInt &operator++();
693
694
  /// \brief Postfix decrement operator.
695
  ///
696
  /// Decrements *this by 1.
697
  ///
698
  /// \returns a new APInt value representing the original value of *this.
699
0
  const APInt operator--(int) {
700
0
    APInt API(*this);
701
0
    --(*this);
702
0
    return API;
703
0
  }
704
705
  /// \brief Prefix decrement operator.
706
  ///
707
  /// \returns *this decremented by one.
708
  APInt &operator--();
709
710
  /// \brief Logical negation operator.
711
  ///
712
  /// Performs logical negation operation on this APInt.
713
  ///
714
  /// \returns true if *this is zero, false otherwise.
715
1.78G
  bool operator!() const {
716
1.78G
    if (isSingleWord())
717
1.77G
      return U.VAL == 0;
718
9.23M
    return countLeadingZerosSlowCase() == BitWidth;
719
1.78G
  }
720
721
  /// @}
722
  /// \name Assignment Operators
723
  /// @{
724
725
  /// \brief Copy assignment operator.
726
  ///
727
  /// \returns *this after assignment of RHS.
728
667M
  APInt &operator=(const APInt &RHS) {
729
667M
    // If the bitwidths are the same, we can avoid mucking with memory
730
667M
    if (
isSingleWord() && 667M
RHS.isSingleWord()666M
) {
731
666M
      U.VAL = RHS.U.VAL;
732
666M
      BitWidth = RHS.BitWidth;
733
666M
      return clearUnusedBits();
734
666M
    }
735
667M
736
536k
    AssignSlowCase(RHS);
737
536k
    return *this;
738
667M
  }
739
740
  /// @brief Move assignment operator.
741
2.46G
  APInt &operator=(APInt &&that) {
742
2.46G
    assert(this != &that && "Self-move not supported");
743
2.46G
    if (!isSingleWord())
744
16.1M
      delete[] U.pVal;
745
2.46G
746
2.46G
    // Use memcpy so that type based alias analysis sees both VAL and pVal
747
2.46G
    // as modified.
748
2.46G
    memcpy(&U, &that.U, sizeof(U));
749
2.46G
750
2.46G
    BitWidth = that.BitWidth;
751
2.46G
    that.BitWidth = 0;
752
2.46G
753
2.46G
    return *this;
754
2.46G
  }
755
756
  /// \brief Assignment operator.
757
  ///
758
  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
759
  /// the bit width, the excess bits are truncated. If the bit width is larger
760
  /// than 64, the value is zero filled in the unspecified high order bits.
761
  ///
762
  /// \returns *this after assignment of RHS value.
763
93.8M
  APInt &operator=(uint64_t RHS) {
764
93.8M
    if (
isSingleWord()93.8M
) {
765
92.8M
      U.VAL = RHS;
766
92.8M
      clearUnusedBits();
767
93.8M
    } else {
768
1.03M
      U.pVal[0] = RHS;
769
1.03M
      memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
770
1.03M
    }
771
93.8M
    return *this;
772
93.8M
  }
773
774
  /// \brief Bitwise AND assignment operator.
775
  ///
776
  /// Performs a bitwise AND operation on this APInt and RHS. The result is
777
  /// assigned to *this.
778
  ///
779
  /// \returns *this after ANDing with RHS.
780
887M
  APInt &operator&=(const APInt &RHS) {
781
887M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
782
887M
    if (isSingleWord())
783
884M
      U.VAL &= RHS.U.VAL;
784
887M
    else
785
2.24M
      AndAssignSlowCase(RHS);
786
887M
    return *this;
787
887M
  }
788
789
  /// \brief Bitwise AND assignment operator.
790
  ///
791
  /// Performs a bitwise AND operation on this APInt and RHS. RHS is
792
  /// logically zero-extended or truncated to match the bit-width of
793
  /// the LHS.
794
1.27k
  APInt &operator&=(uint64_t RHS) {
795
1.27k
    if (
isSingleWord()1.27k
) {
796
1.26k
      U.VAL &= RHS;
797
1.26k
      return *this;
798
1.26k
    }
799
9
    U.pVal[0] &= RHS;
800
9
    memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801
9
    return *this;
802
1.27k
  }
803
804
  /// \brief Bitwise OR assignment operator.
805
  ///
806
  /// Performs a bitwise OR operation on this APInt and RHS. The result is
807
  /// assigned *this;
808
  ///
809
  /// \returns *this after ORing with RHS.
810
568M
  APInt &operator|=(const APInt &RHS) {
811
568M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
812
568M
    if (isSingleWord())
813
555M
      U.VAL |= RHS.U.VAL;
814
568M
    else
815
13.4M
      OrAssignSlowCase(RHS);
816
568M
    return *this;
817
568M
  }
818
819
  /// \brief Bitwise OR assignment operator.
820
  ///
821
  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
822
  /// logically zero-extended or truncated to match the bit-width of
823
  /// the LHS.
824
1.30M
  APInt &operator|=(uint64_t RHS) {
825
1.30M
    if (
isSingleWord()1.30M
) {
826
45.0k
      U.VAL |= RHS;
827
45.0k
      clearUnusedBits();
828
1.30M
    } else {
829
1.26M
      U.pVal[0] |= RHS;
830
1.26M
    }
831
1.30M
    return *this;
832
1.30M
  }
833
834
  /// \brief Bitwise XOR assignment operator.
835
  ///
836
  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
837
  /// assigned to *this.
838
  ///
839
  /// \returns *this after XORing with RHS.
840
385M
  APInt &operator^=(const APInt &RHS) {
841
385M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
842
385M
    if (isSingleWord())
843
385M
      U.VAL ^= RHS.U.VAL;
844
385M
    else
845
198k
      XorAssignSlowCase(RHS);
846
385M
    return *this;
847
385M
  }
848
849
  /// \brief Bitwise XOR assignment operator.
850
  ///
851
  /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
852
  /// logically zero-extended or truncated to match the bit-width of
853
  /// the LHS.
854
  APInt &operator^=(uint64_t RHS) {
855
    if (isSingleWord()) {
856
      U.VAL ^= RHS;
857
      clearUnusedBits();
858
    } else {
859
      U.pVal[0] ^= RHS;
860
    }
861
    return *this;
862
  }
863
864
  /// \brief Multiplication assignment operator.
865
  ///
866
  /// Multiplies this APInt by RHS and assigns the result to *this.
867
  ///
868
  /// \returns *this
869
  APInt &operator*=(const APInt &RHS);
870
  APInt &operator*=(uint64_t RHS);
871
872
  /// \brief Addition assignment operator.
873
  ///
874
  /// Adds RHS to *this and assigns the result to *this.
875
  ///
876
  /// \returns *this
877
  APInt &operator+=(const APInt &RHS);
878
  APInt &operator+=(uint64_t RHS);
879
880
  /// \brief Subtraction assignment operator.
881
  ///
882
  /// Subtracts RHS from *this and assigns the result to *this.
883
  ///
884
  /// \returns *this
885
  APInt &operator-=(const APInt &RHS);
886
  APInt &operator-=(uint64_t RHS);
887
888
  /// \brief Left-shift assignment function.
889
  ///
890
  /// Shifts *this left by shiftAmt and assigns the result to *this.
891
  ///
892
  /// \returns *this after shifting left by ShiftAmt
893
89.5M
  APInt &operator<<=(unsigned ShiftAmt) {
894
89.5M
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
895
89.5M
    if (
isSingleWord()89.5M
) {
896
74.7M
      if (ShiftAmt == BitWidth)
897
70.9k
        U.VAL = 0;
898
74.7M
      else
899
74.6M
        U.VAL <<= ShiftAmt;
900
74.7M
      return clearUnusedBits();
901
74.7M
    }
902
14.7M
    shlSlowCase(ShiftAmt);
903
14.7M
    return *this;
904
89.5M
  }
905
906
  /// \brief Left-shift assignment function.
907
  ///
908
  /// Shifts *this left by shiftAmt and assigns the result to *this.
909
  ///
910
  /// \returns *this after shifting left by ShiftAmt
911
  APInt &operator<<=(const APInt &ShiftAmt);
912
913
  /// @}
914
  /// \name Binary Operators
915
  /// @{
916
917
  /// \brief Multiplication operator.
918
  ///
919
  /// Multiplies this APInt by RHS and returns the result.
920
  APInt operator*(const APInt &RHS) const;
921
922
  /// \brief Left logical shift operator.
923
  ///
924
  /// Shifts this APInt left by \p Bits and returns the result.
925
38.1M
  APInt operator<<(unsigned Bits) const { return shl(Bits); }
926
927
  /// \brief Left logical shift operator.
928
  ///
929
  /// Shifts this APInt left by \p Bits and returns the result.
930
34.1k
  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
931
932
  /// \brief Arithmetic right-shift function.
933
  ///
934
  /// Arithmetic right-shift this APInt by shiftAmt.
935
14.3M
  APInt ashr(unsigned ShiftAmt) const {
936
14.3M
    APInt R(*this);
937
14.3M
    R.ashrInPlace(ShiftAmt);
938
14.3M
    return R;
939
14.3M
  }
940
941
  /// Arithmetic right-shift this APInt by ShiftAmt in place.
942
14.5M
  void ashrInPlace(unsigned ShiftAmt) {
943
14.5M
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
944
14.5M
    if (
isSingleWord()14.5M
) {
945
14.3M
      int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
946
14.3M
      if (ShiftAmt == BitWidth)
947
3.09k
        U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
948
14.3M
      else
949
14.3M
        U.VAL = SExtVAL >> ShiftAmt;
950
14.3M
      clearUnusedBits();
951
14.3M
      return;
952
14.3M
    }
953
251k
    ashrSlowCase(ShiftAmt);
954
251k
  }
955
956
  /// \brief Logical right-shift function.
957
  ///
958
  /// Logical right-shift this APInt by shiftAmt.
959
26.6M
  APInt lshr(unsigned shiftAmt) const {
960
26.6M
    APInt R(*this);
961
26.6M
    R.lshrInPlace(shiftAmt);
962
26.6M
    return R;
963
26.6M
  }
964
965
  /// Logical right-shift this APInt by ShiftAmt in place.
966
38.6M
  void lshrInPlace(unsigned ShiftAmt) {
967
38.6M
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
968
38.6M
    if (
isSingleWord()38.6M
) {
969
37.0M
      if (ShiftAmt == BitWidth)
970
3.12k
        U.VAL = 0;
971
37.0M
      else
972
37.0M
        U.VAL >>= ShiftAmt;
973
37.0M
      return;
974
37.0M
    }
975
1.65M
    lshrSlowCase(ShiftAmt);
976
1.65M
  }
977
978
  /// \brief Left-shift function.
979
  ///
980
  /// Left-shift this APInt by shiftAmt.
981
49.7M
  APInt shl(unsigned shiftAmt) const {
982
49.7M
    APInt R(*this);
983
49.7M
    R <<= shiftAmt;
984
49.7M
    return R;
985
49.7M
  }
986
987
  /// \brief Rotate left by rotateAmt.
988
  APInt rotl(unsigned rotateAmt) const;
989
990
  /// \brief Rotate right by rotateAmt.
991
  APInt rotr(unsigned rotateAmt) const;
992
993
  /// \brief Arithmetic right-shift function.
994
  ///
995
  /// Arithmetic right-shift this APInt by shiftAmt.
996
197k
  APInt ashr(const APInt &ShiftAmt) const {
997
197k
    APInt R(*this);
998
197k
    R.ashrInPlace(ShiftAmt);
999
197k
    return R;
1000
197k
  }
1001
1002
  /// Arithmetic right-shift this APInt by shiftAmt in place.
1003
  void ashrInPlace(const APInt &shiftAmt);
1004
1005
  /// \brief Logical right-shift function.
1006
  ///
1007
  /// Logical right-shift this APInt by shiftAmt.
1008
376k
  APInt lshr(const APInt &ShiftAmt) const {
1009
376k
    APInt R(*this);
1010
376k
    R.lshrInPlace(ShiftAmt);
1011
376k
    return R;
1012
376k
  }
1013
1014
  /// Logical right-shift this APInt by ShiftAmt in place.
1015
  void lshrInPlace(const APInt &ShiftAmt);
1016
1017
  /// \brief Left-shift function.
1018
  ///
1019
  /// Left-shift this APInt by shiftAmt.
1020
1.22M
  APInt shl(const APInt &ShiftAmt) const {
1021
1.22M
    APInt R(*this);
1022
1.22M
    R <<= ShiftAmt;
1023
1.22M
    return R;
1024
1.22M
  }
1025
1026
  /// \brief Rotate left by rotateAmt.
1027
  APInt rotl(const APInt &rotateAmt) const;
1028
1029
  /// \brief Rotate right by rotateAmt.
1030
  APInt rotr(const APInt &rotateAmt) const;
1031
1032
  /// \brief Unsigned division operation.
1033
  ///
1034
  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1035
  /// RHS are treated as unsigned quantities for purposes of this division.
1036
  ///
1037
  /// \returns a new APInt value containing the division result
1038
  APInt udiv(const APInt &RHS) const;
1039
  APInt udiv(uint64_t RHS) const;
1040
1041
  /// \brief Signed division function for APInt.
1042
  ///
1043
  /// Signed divide this APInt by APInt RHS.
1044
  APInt sdiv(const APInt &RHS) const;
1045
  APInt sdiv(int64_t RHS) const;
1046
1047
  /// \brief Unsigned remainder operation.
1048
  ///
1049
  /// Perform an unsigned remainder operation on this APInt with RHS being the
1050
  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1051
  /// of this operation. Note that this is a true remainder operation and not a
1052
  /// modulo operation because the sign follows the sign of the dividend which
1053
  /// is *this.
1054
  ///
1055
  /// \returns a new APInt value containing the remainder result
1056
  APInt urem(const APInt &RHS) const;
1057
  uint64_t urem(uint64_t RHS) const;
1058
1059
  /// \brief Function for signed remainder operation.
1060
  ///
1061
  /// Signed remainder operation on APInt.
1062
  APInt srem(const APInt &RHS) const;
1063
  int64_t srem(int64_t RHS) const;
1064
1065
  /// \brief Dual division/remainder interface.
1066
  ///
1067
  /// Sometimes it is convenient to divide two APInt values and obtain both the
1068
  /// quotient and remainder. This function does both operations in the same
1069
  /// computation making it a little more efficient. The pair of input arguments
1070
  /// may overlap with the pair of output arguments. It is safe to call
1071
  /// udivrem(X, Y, X, Y), for example.
1072
  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1073
                      APInt &Remainder);
1074
  static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1075
                      uint64_t &Remainder);
1076
1077
  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1078
                      APInt &Remainder);
1079
  static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1080
                      int64_t &Remainder);
1081
1082
  // Operations that return overflow indicators.
1083
  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1084
  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1085
  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1086
  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1087
  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1088
  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1089
  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1090
  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1091
  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1092
1093
  /// \brief Array-indexing support.
1094
  ///
1095
  /// \returns the bit value at bitPosition
1096
737M
  bool operator[](unsigned bitPosition) const {
1097
737M
    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1098
737M
    return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1099
737M
  }
1100
1101
  /// @}
1102
  /// \name Comparison Operators
1103
  /// @{
1104
1105
  /// \brief Equality operator.
1106
  ///
1107
  /// Compares this APInt with RHS for the validity of the equality
1108
  /// relationship.
1109
2.06G
  bool operator==(const APInt &RHS) const {
1110
2.06G
    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1111
2.06G
    if (isSingleWord())
1112
2.00G
      return U.VAL == RHS.U.VAL;
1113
63.2M
    return EqualSlowCase(RHS);
1114
2.06G
  }
1115
1116
  /// \brief Equality operator.
1117
  ///
1118
  /// Compares this APInt with a uint64_t for the validity of the equality
1119
  /// relationship.
1120
  ///
1121
  /// \returns true if *this == Val
1122
282M
  bool operator==(uint64_t Val) const {
1123
282M
    return (isSingleWord() || 
getActiveBits() <= 642.78M
) &&
getZExtValue() == Val281M
;
1124
282M
  }
1125
1126
  /// \brief Equality comparison.
1127
  ///
1128
  /// Compares this APInt with RHS for the validity of the equality
1129
  /// relationship.
1130
  ///
1131
  /// \returns true if *this == Val
1132
1.98M
  bool eq(const APInt &RHS) const { return (*this) == RHS; }
1133
1134
  /// \brief Inequality operator.
1135
  ///
1136
  /// Compares this APInt with RHS for the validity of the inequality
1137
  /// relationship.
1138
  ///
1139
  /// \returns true if *this != Val
1140
35.9M
  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1141
1142
  /// \brief Inequality operator.
1143
  ///
1144
  /// Compares this APInt with a uint64_t for the validity of the inequality
1145
  /// relationship.
1146
  ///
1147
  /// \returns true if *this != Val
1148
159M
  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1149
1150
  /// \brief Inequality comparison
1151
  ///
1152
  /// Compares this APInt with RHS for the validity of the inequality
1153
  /// relationship.
1154
  ///
1155
  /// \returns true if *this != Val
1156
0
  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1157
1158
  /// \brief Unsigned less than comparison
1159
  ///
1160
  /// Regards both *this and RHS as unsigned quantities and compares them for
1161
  /// the validity of the less-than relationship.
1162
  ///
1163
  /// \returns true if *this < RHS when both are considered unsigned.
1164
163M
  bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1165
1166
  /// \brief Unsigned less than comparison
1167
  ///
1168
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1169
  /// the validity of the less-than relationship.
1170
  ///
1171
  /// \returns true if *this < RHS when considered unsigned.
1172
28.5M
  bool ult(uint64_t RHS) const {
1173
28.5M
    // Only need to check active bits if not a single word.
1174
28.5M
    return (isSingleWord() || 
getActiveBits() <= 6499.6k
) &&
getZExtValue() < RHS28.5M
;
1175
28.5M
  }
1176
1177
  /// \brief Signed less than comparison
1178
  ///
1179
  /// Regards both *this and RHS as signed quantities and compares them for
1180
  /// validity of the less-than relationship.
1181
  ///
1182
  /// \returns true if *this < RHS when both are considered signed.
1183
20.9M
  bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1184
1185
  /// \brief Signed less than comparison
1186
  ///
1187
  /// Regards both *this as a signed quantity and compares it with RHS for
1188
  /// the validity of the less-than relationship.
1189
  ///
1190
  /// \returns true if *this < RHS when considered signed.
1191
411k
  bool slt(int64_t RHS) const {
1192
411k
    return (!isSingleWord() && 
getMinSignedBits() > 6414
) ?
isNegative()8
1193
411k
                                                        : getSExtValue() < RHS;
1194
411k
  }
1195
1196
  /// \brief Unsigned less or equal comparison
1197
  ///
1198
  /// Regards both *this and RHS as unsigned quantities and compares them for
1199
  /// validity of the less-or-equal relationship.
1200
  ///
1201
  /// \returns true if *this <= RHS when both are considered unsigned.
1202
405M
  bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1203
1204
  /// \brief Unsigned less or equal comparison
1205
  ///
1206
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1207
  /// the validity of the less-or-equal relationship.
1208
  ///
1209
  /// \returns true if *this <= RHS when considered unsigned.
1210
222k
  bool ule(uint64_t RHS) const { return !ugt(RHS); }
1211
1212
  /// \brief Signed less or equal comparison
1213
  ///
1214
  /// Regards both *this and RHS as signed quantities and compares them for
1215
  /// validity of the less-or-equal relationship.
1216
  ///
1217
  /// \returns true if *this <= RHS when both are considered signed.
1218
142M
  bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1219
1220
  /// \brief Signed less or equal comparison
1221
  ///
1222
  /// Regards both *this as a signed quantity and compares it with RHS for the
1223
  /// validity of the less-or-equal relationship.
1224
  ///
1225
  /// \returns true if *this <= RHS when considered signed.
1226
0
  bool sle(uint64_t RHS) const { return !sgt(RHS); }
1227
1228
  /// \brief Unsigned greather than comparison
1229
  ///
1230
  /// Regards both *this and RHS as unsigned quantities and compares them for
1231
  /// the validity of the greater-than relationship.
1232
  ///
1233
  /// \returns true if *this > RHS when both are considered unsigned.
1234
303M
  bool ugt(const APInt &RHS) const { return !ule(RHS); }
1235
1236
  /// \brief Unsigned greater than comparison
1237
  ///
1238
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1239
  /// the validity of the greater-than relationship.
1240
  ///
1241
  /// \returns true if *this > RHS when considered unsigned.
1242
95.7M
  bool ugt(uint64_t RHS) const {
1243
95.7M
    // Only need to check active bits if not a single word.
1244
95.7M
    return (!isSingleWord() && 
getActiveBits() > 64446k
) ||
getZExtValue() > RHS95.7M
;
1245
95.7M
  }
1246
1247
  /// \brief Signed greather than comparison
1248
  ///
1249
  /// Regards both *this and RHS as signed quantities and compares them for the
1250
  /// validity of the greater-than relationship.
1251
  ///
1252
  /// \returns true if *this > RHS when both are considered signed.
1253
139M
  bool sgt(const APInt &RHS) const { return !sle(RHS); }
1254
1255
  /// \brief Signed greater than comparison
1256
  ///
1257
  /// Regards both *this as a signed quantity and compares it with RHS for
1258
  /// the validity of the greater-than relationship.
1259
  ///
1260
  /// \returns true if *this > RHS when considered signed.
1261
2.75k
  bool sgt(int64_t RHS) const {
1262
2.75k
    return (!isSingleWord() && 
getMinSignedBits() > 6412
) ?
!isNegative()8
1263
2.74k
                                                        : getSExtValue() > RHS;
1264
2.75k
  }
1265
1266
  /// \brief Unsigned greater or equal comparison
1267
  ///
1268
  /// Regards both *this and RHS as unsigned quantities and compares them for
1269
  /// validity of the greater-or-equal relationship.
1270
  ///
1271
  /// \returns true if *this >= RHS when both are considered unsigned.
1272
8.86M
  bool uge(const APInt &RHS) const { return !ult(RHS); }
1273
1274
  /// \brief Unsigned greater or equal comparison
1275
  ///
1276
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1277
  /// the validity of the greater-or-equal relationship.
1278
  ///
1279
  /// \returns true if *this >= RHS when considered unsigned.
1280
21.8M
  bool uge(uint64_t RHS) const { return !ult(RHS); }
1281
1282
  /// \brief Signed greather or equal comparison
1283
  ///
1284
  /// Regards both *this and RHS as signed quantities and compares them for
1285
  /// validity of the greater-or-equal relationship.
1286
  ///
1287
  /// \returns true if *this >= RHS when both are considered signed.
1288
2.65M
  bool sge(const APInt &RHS) const { return !slt(RHS); }
1289
1290
  /// \brief Signed greater or equal comparison
1291
  ///
1292
  /// Regards both *this as a signed quantity and compares it with RHS for
1293
  /// the validity of the greater-or-equal relationship.
1294
  ///
1295
  /// \returns true if *this >= RHS when considered signed.
1296
235k
  bool sge(int64_t RHS) const { return !slt(RHS); }
1297
1298
  /// This operation tests if there are any pairs of corresponding bits
1299
  /// between this APInt and RHS that are both set.
1300
749M
  bool intersects(const APInt &RHS) const {
1301
749M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1302
749M
    if (isSingleWord())
1303
749M
      return (U.VAL & RHS.U.VAL) != 0;
1304
568k
    return intersectsSlowCase(RHS);
1305
749M
  }
1306
1307
  /// This operation checks that all bits set in this APInt are also set in RHS.
1308
130M
  bool isSubsetOf(const APInt &RHS) const {
1309
130M
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1310
130M
    if (isSingleWord())
1311
130M
      return (U.VAL & ~RHS.U.VAL) == 0;
1312
144k
    return isSubsetOfSlowCase(RHS);
1313
130M
  }
1314
1315
  /// @}
1316
  /// \name Resizing Operators
1317
  /// @{
1318
1319
  /// \brief Truncate to new width.
1320
  ///
1321
  /// Truncate the APInt to a specified width. It is an error to specify a width
1322
  /// that is greater than or equal to the current width.
1323
  APInt trunc(unsigned width) const;
1324
1325
  /// \brief Sign extend to a new width.
1326
  ///
1327
  /// This operation sign extends the APInt to a new width. If the high order
1328
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1329
  /// It is an error to specify a width that is less than or equal to the
1330
  /// current width.
1331
  APInt sext(unsigned width) const;
1332
1333
  /// \brief Zero extend to a new width.
1334
  ///
1335
  /// This operation zero extends the APInt to a new width. The high order bits
1336
  /// are filled with 0 bits.  It is an error to specify a width that is less
1337
  /// than or equal to the current width.
1338
  APInt zext(unsigned width) const;
1339
1340
  /// \brief Sign extend or truncate to width
1341
  ///
1342
  /// Make this APInt have the bit width given by \p width. The value is sign
1343
  /// extended, truncated, or left alone to make it that width.
1344
  APInt sextOrTrunc(unsigned width) const;
1345
1346
  /// \brief Zero extend or truncate to width
1347
  ///
1348
  /// Make this APInt have the bit width given by \p width. The value is zero
1349
  /// extended, truncated, or left alone to make it that width.
1350
  APInt zextOrTrunc(unsigned width) const;
1351
1352
  /// \brief Sign extend or truncate to width
1353
  ///
1354
  /// Make this APInt have the bit width given by \p width. The value is sign
1355
  /// extended, or left alone to make it that width.
1356
  APInt sextOrSelf(unsigned width) const;
1357
1358
  /// \brief Zero extend or truncate to width
1359
  ///
1360
  /// Make this APInt have the bit width given by \p width. The value is zero
1361
  /// extended, or left alone to make it that width.
1362
  APInt zextOrSelf(unsigned width) const;
1363
1364
  /// @}
1365
  /// \name Bit Manipulation Operators
1366
  /// @{
1367
1368
  /// \brief Set every bit to 1.
1369
214M
  void setAllBits() {
1370
214M
    if (isSingleWord())
1371
212M
      U.VAL = WORD_MAX;
1372
214M
    else
1373
214M
      // Set all the bits in all the words.
1374
1.59M
      memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1375
214M
    // Clear the unused ones
1376
214M
    clearUnusedBits();
1377
214M
  }
1378
1379
  /// \brief Set a given bit to 1.
1380
  ///
1381
  /// Set the given bit to 1 whose position is given as "bitPosition".
1382
105M
  void setBit(unsigned BitPosition) {
1383
105M
    assert(BitPosition <= BitWidth && "BitPosition out of range");
1384
105M
    WordType Mask = maskBit(BitPosition);
1385
105M
    if (isSingleWord())
1386
102M
      U.VAL |= Mask;
1387
105M
    else
1388
2.96M
      U.pVal[whichWord(BitPosition)] |= Mask;
1389
105M
  }
1390
1391
  /// Set the sign bit to 1.
1392
9.74M
  void setSignBit() {
1393
9.74M
    setBit(BitWidth - 1);
1394
9.74M
  }
1395
1396
  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1397
276M
  void setBits(unsigned loBit, unsigned hiBit) {
1398
276M
    assert(hiBit <= BitWidth && "hiBit out of range");
1399
276M
    assert(loBit <= BitWidth && "loBit out of range");
1400
276M
    assert(loBit <= hiBit && "loBit greater than hiBit");
1401
276M
    if (loBit == hiBit)
1402
122M
      return;
1403
153M
    
if (153M
loBit < APINT_BITS_PER_WORD && 153M
hiBit <= APINT_BITS_PER_WORD152M
) {
1404
151M
      uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1405
151M
      mask <<= loBit;
1406
151M
      if (isSingleWord())
1407
151M
        U.VAL |= mask;
1408
151M
      else
1409
368k
        U.pVal[0] |= mask;
1410
153M
    } else {
1411
2.01M
      setBitsSlowCase(loBit, hiBit);
1412
2.01M
    }
1413
276M
  }
1414
1415
  /// Set the top bits starting from loBit.
1416
28.5M
  void setBitsFrom(unsigned loBit) {
1417
28.5M
    return setBits(loBit, BitWidth);
1418
28.5M
  }
1419
1420
  /// Set the bottom loBits bits.
1421
197M
  void setLowBits(unsigned loBits) {
1422
197M
    return setBits(0, loBits);
1423
197M
  }
1424
1425
  /// Set the top hiBits bits.
1426
50.4M
  void setHighBits(unsigned hiBits) {
1427
50.4M
    return setBits(BitWidth - hiBits, BitWidth);
1428
50.4M
  }
1429
1430
  /// \brief Set every bit to 0.
1431
1.86G
  void clearAllBits() {
1432
1.86G
    if (isSingleWord())
1433
1.86G
      U.VAL = 0;
1434
1.86G
    else
1435
1.49M
      memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1436
1.86G
  }
1437
1438
  /// \brief Set a given bit to 0.
1439
  ///
1440
  /// Set the given bit to 0 whose position is given as "bitPosition".
1441
19.8M
  void clearBit(unsigned BitPosition) {
1442
19.8M
    assert(BitPosition <= BitWidth && "BitPosition out of range");
1443
19.8M
    WordType Mask = ~maskBit(BitPosition);
1444
19.8M
    if (isSingleWord())
1445
19.6M
      U.VAL &= Mask;
1446
19.8M
    else
1447
237k
      U.pVal[whichWord(BitPosition)] &= Mask;
1448
19.8M
  }
1449
1450
  /// Set the sign bit to 0.
1451
10.2M
  void clearSignBit() {
1452
10.2M
    clearBit(BitWidth - 1);
1453
10.2M
  }
1454
1455
  /// \brief Toggle every bit to its opposite value.
1456
880M
  void flipAllBits() {
1457
880M
    if (
isSingleWord()880M
) {
1458
878M
      U.VAL ^= WORD_MAX;
1459
878M
      clearUnusedBits();
1460
880M
    } else {
1461
1.73M
      flipAllBitsSlowCase();
1462
1.73M
    }
1463
880M
  }
1464
1465
  /// \brief Toggles a given bit to its opposite value.
1466
  ///
1467
  /// Toggle a given bit to its opposite value whose position is given
1468
  /// as "bitPosition".
1469
  void flipBit(unsigned bitPosition);
1470
1471
  /// Negate this APInt in place.
1472
35.4M
  void negate() {
1473
35.4M
    flipAllBits();
1474
35.4M
    ++(*this);
1475
35.4M
  }
1476
1477
  /// Insert the bits from a smaller APInt starting at bitPosition.
1478
  void insertBits(const APInt &SubBits, unsigned bitPosition);
1479
1480
  /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1481
  APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1482
1483
  /// @}
1484
  /// \name Value Characterization Functions
1485
  /// @{
1486
1487
  /// \brief Return the number of bits in the APInt.
1488
7.39G
  unsigned getBitWidth() const { return BitWidth; }
1489
1490
  /// \brief Get the number of words.
1491
  ///
1492
  /// Here one word's bitwidth equals to that of uint64_t.
1493
  ///
1494
  /// \returns the number of words to hold the integer value of this APInt.
1495
613M
  unsigned getNumWords() const { return getNumWords(BitWidth); }
1496
1497
  /// \brief Get the number of words.
1498
  ///
1499
  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1500
  ///
1501
  /// \returns the number of words to hold the integer value with a given bit
1502
  /// width.
1503
661M
  static unsigned getNumWords(unsigned BitWidth) {
1504
661M
    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1505
661M
  }
1506
1507
  /// \brief Compute the number of active bits in the value
1508
  ///
1509
  /// This function returns the number of active bits which is defined as the
1510
  /// bit width minus the number of leading zeros. This is used in several
1511
  /// computations to see how "wide" the value is.
1512
79.0M
  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1513
1514
  /// \brief Compute the number of active words in the value of this APInt.
1515
  ///
1516
  /// This is used in conjunction with getActiveData to extract the raw value of
1517
  /// the APInt.
1518
  unsigned getActiveWords() const {
1519
    unsigned numActiveBits = getActiveBits();
1520
    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1521
  }
1522
1523
  /// \brief Get the minimum bit size for this signed APInt
1524
  ///
1525
  /// Computes the minimum bit width for this APInt while considering it to be a
1526
  /// signed (and probably negative) value. If the value is not negative, this
1527
  /// function returns the same value as getActiveBits()+1. Otherwise, it
1528
  /// returns the smallest bit width that will retain the negative value. For
1529
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1530
  /// for -1, this function will always return 1.
1531
28.9M
  unsigned getMinSignedBits() const {
1532
28.9M
    if (isNegative())
1533
4.60M
      return BitWidth - countLeadingOnes() + 1;
1534
24.3M
    return getActiveBits() + 1;
1535
28.9M
  }
1536
1537
  /// \brief Get zero extended value
1538
  ///
1539
  /// This method attempts to return the value of this APInt as a zero extended
1540
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1541
  /// uint64_t. Otherwise an assertion will result.
1542
1.37G
  uint64_t getZExtValue() const {
1543
1.37G
    if (isSingleWord())
1544
1.37G
      return U.VAL;
1545
2.69M
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1546
2.69M
    return U.pVal[0];
1547
1.37G
  }
1548
1549
  /// \brief Get sign extended value
1550
  ///
1551
  /// This method attempts to return the value of this APInt as a sign extended
1552
  /// int64_t. The bit width must be <= 64 or the value must fit within an
1553
  /// int64_t. Otherwise an assertion will result.
1554
443M
  int64_t getSExtValue() const {
1555
443M
    if (isSingleWord())
1556
443M
      return SignExtend64(U.VAL, BitWidth);
1557
439
    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1558
439
    return int64_t(U.pVal[0]);
1559
443M
  }
1560
1561
  /// \brief Get bits required for string value.
1562
  ///
1563
  /// This method determines how many bits are required to hold the APInt
1564
  /// equivalent of the string given by \p str.
1565
  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1566
1567
  /// \brief The APInt version of the countLeadingZeros functions in
1568
  ///   MathExtras.h.
1569
  ///
1570
  /// It counts the number of zeros from the most significant bit to the first
1571
  /// one bit.
1572
  ///
1573
  /// \returns BitWidth if the value is zero, otherwise returns the number of
1574
  ///   zeros from the most significant bit to the first one bits.
1575
106M
  unsigned countLeadingZeros() const {
1576
106M
    if (
isSingleWord()106M
) {
1577
92.5M
      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1578
92.5M
      return llvm::countLeadingZeros(U.VAL) - unusedBits;
1579
92.5M
    }
1580
13.5M
    return countLeadingZerosSlowCase();
1581
106M
  }
1582
1583
  /// \brief Count the number of leading one bits.
1584
  ///
1585
  /// This function is an APInt version of the countLeadingOnes
1586
  /// functions in MathExtras.h. It counts the number of ones from the most
1587
  /// significant bit to the first zero bit.
1588
  ///
1589
  /// \returns 0 if the high order bit is not set, otherwise returns the number
1590
  /// of 1 bits from the most significant to the least
1591
89.8M
  unsigned countLeadingOnes() const {
1592
89.8M
    if (isSingleWord())
1593
89.8M
      return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1594
26.1k
    return countLeadingOnesSlowCase();
1595
89.8M
  }
1596
1597
  /// Computes the number of leading bits of this APInt that are equal to its
1598
  /// sign bit.
1599
1.16M
  unsigned getNumSignBits() const {
1600
1.16M
    return isNegative() ? 
countLeadingOnes()121k
:
countLeadingZeros()1.03M
;
1601
1.16M
  }
1602
1603
  /// \brief Count the number of trailing zero bits.
1604
  ///
1605
  /// This function is an APInt version of the countTrailingZeros
1606
  /// functions in MathExtras.h. It counts the number of zeros from the least
1607
  /// significant bit to the first set bit.
1608
  ///
1609
  /// \returns BitWidth if the value is zero, otherwise returns the number of
1610
  /// zeros from the least significant bit to the first one bit.
1611
4.71M
  unsigned countTrailingZeros() const {
1612
4.71M
    if (isSingleWord())
1613
4.62M
      return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1614
93.0k
    return countTrailingZerosSlowCase();
1615
4.71M
  }
1616
1617
  /// \brief Count the number of trailing one bits.
1618
  ///
1619
  /// This function is an APInt version of the countTrailingOnes
1620
  /// functions in MathExtras.h. It counts the number of ones from the least
1621
  /// significant bit to the first zero bit.
1622
  ///
1623
  /// \returns BitWidth if the value is all ones, otherwise returns the number
1624
  /// of ones from the least significant bit to the first zero bit.
1625
299M
  unsigned countTrailingOnes() const {
1626
299M
    if (isSingleWord())
1627
298M
      return llvm::countTrailingOnes(U.VAL);
1628
1.57M
    return countTrailingOnesSlowCase();
1629
299M
  }
1630
1631
  /// \brief Count the number of bits set.
1632
  ///
1633
  /// This function is an APInt version of the countPopulation functions
1634
  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1635
  ///
1636
  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1637
268M
  unsigned countPopulation() const {
1638
268M
    if (isSingleWord())
1639
268M
      return llvm::countPopulation(U.VAL);
1640
99.5k
    return countPopulationSlowCase();
1641
268M
  }
1642
1643
  /// @}
1644
  /// \name Conversion Functions
1645
  /// @{
1646
  void print(raw_ostream &OS, bool isSigned) const;
1647
1648
  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1649
  /// SmallString.
1650
  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1651
                bool formatAsCLiteral = false) const;
1652
1653
  /// Considers the APInt to be unsigned and converts it into a string in the
1654
  /// radix given. The radix can be 2, 8, 10 16, or 36.
1655
0
  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1656
0
    toString(Str, Radix, false, false);
1657
0
  }
1658
1659
  /// Considers the APInt to be signed and converts it into a string in the
1660
  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1661
0
  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1662
0
    toString(Str, Radix, true, false);
1663
0
  }
1664
1665
  /// \brief Return the APInt as a std::string.
1666
  ///
1667
  /// Note that this is an inefficient method.  It is better to pass in a
1668
  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1669
  /// for the string.
1670
  std::string toString(unsigned Radix, bool Signed) const;
1671
1672
  /// \returns a byte-swapped representation of this APInt Value.
1673
  APInt byteSwap() const;
1674
1675
  /// \returns the value with the bit representation reversed of this APInt
1676
  /// Value.
1677
  APInt reverseBits() const;
1678
1679
  /// \brief Converts this APInt to a double value.
1680
  double roundToDouble(bool isSigned) const;
1681
1682
  /// \brief Converts this unsigned APInt to a double value.
1683
0
  double roundToDouble() const { return roundToDouble(false); }
1684
1685
  /// \brief Converts this signed APInt to a double value.
1686
0
  double signedRoundToDouble() const { return roundToDouble(true); }
1687
1688
  /// \brief Converts APInt bits to a double
1689
  ///
1690
  /// The conversion does not do a translation from integer to double, it just
1691
  /// re-interprets the bits as a double. Note that it is valid to do this on
1692
  /// any bit width. Exactly 64 bits will be translated.
1693
17.8k
  double bitsToDouble() const {
1694
17.8k
    return BitsToDouble(getWord(0));
1695
17.8k
  }
1696
1697
  /// \brief Converts APInt bits to a double
1698
  ///
1699
  /// The conversion does not do a translation from integer to float, it just
1700
  /// re-interprets the bits as a float. Note that it is valid to do this on
1701
  /// any bit width. Exactly 32 bits will be translated.
1702
7.44k
  float bitsToFloat() const {
1703
7.44k
    return BitsToFloat(getWord(0));
1704
7.44k
  }
1705
1706
  /// \brief Converts a double to APInt bits.
1707
  ///
1708
  /// The conversion does not do a translation from double to integer, it just
1709
  /// re-interprets the bits of the double.
1710
4.76M
  static APInt doubleToBits(double V) {
1711
4.76M
    return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1712
4.76M
  }
1713
1714
  /// \brief Converts a float to APInt bits.
1715
  ///
1716
  /// The conversion does not do a translation from float to integer, it just
1717
  /// re-interprets the bits of the float.
1718
17.6k
  static APInt floatToBits(float V) {
1719
17.6k
    return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1720
17.6k
  }
1721
1722
  /// @}
1723
  /// \name Mathematics Operations
1724
  /// @{
1725
1726
  /// \returns the floor log base 2 of this APInt.
1727
587k
  unsigned logBase2() const { return getActiveBits() -  1; }
1728
1729
  /// \returns the ceil log base 2 of this APInt.
1730
811k
  unsigned ceilLogBase2() const {
1731
811k
    APInt temp(*this);
1732
811k
    --temp;
1733
811k
    return temp.getActiveBits();
1734
811k
  }
1735
1736
  /// \returns the nearest log base 2 of this APInt. Ties round up.
1737
  ///
1738
  /// NOTE: When we have a BitWidth of 1, we define:
1739
  ///
1740
  ///   log2(0) = UINT32_MAX
1741
  ///   log2(1) = 0
1742
  ///
1743
  /// to get around any mathematical concerns resulting from
1744
  /// referencing 2 in a space where 2 does no exist.
1745
  unsigned nearestLogBase2() const {
1746
    // Special case when we have a bitwidth of 1. If VAL is 1, then we
1747
    // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
1748
    // UINT32_MAX.
1749
    if (BitWidth == 1)
1750
      return U.VAL - 1;
1751
1752
    // Handle the zero case.
1753
    if (isNullValue())
1754
      return UINT32_MAX;
1755
1756
    // The non-zero case is handled by computing:
1757
    //
1758
    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1759
    //
1760
    // where x[i] is referring to the value of the ith bit of x.
1761
    unsigned lg = logBase2();
1762
    return lg + unsigned((*this)[lg - 1]);
1763
  }
1764
1765
  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1766
  /// otherwise
1767
462k
  int32_t exactLogBase2() const {
1768
462k
    if (!isPowerOf2())
1769
201k
      return -1;
1770
260k
    return logBase2();
1771
462k
  }
1772
1773
  /// \brief Compute the square root
1774
  APInt sqrt() const;
1775
1776
  /// \brief Get the absolute value;
1777
  ///
1778
  /// If *this is < 0 then return -(*this), otherwise *this;
1779
13.3M
  APInt abs() const {
1780
13.3M
    if (isNegative())
1781
3.41M
      return -(*this);
1782
9.93M
    return *this;
1783
13.3M
  }
1784
1785
  /// \returns the multiplicative inverse for a given modulo.
1786
  APInt multiplicativeInverse(const APInt &modulo) const;
1787
1788
  /// @}
1789
  /// \name Support for division by constant
1790
  /// @{
1791
1792
  /// Calculate the magic number for signed division by a constant.
1793
  struct ms;
1794
  ms magic() const;
1795
1796
  /// Calculate the magic number for unsigned division by a constant.
1797
  struct mu;
1798
  mu magicu(unsigned LeadingZeros = 0) const;
1799
1800
  /// @}
1801
  /// \name Building-block Operations for APInt and APFloat
1802
  /// @{
1803
1804
  // These building block operations operate on a representation of arbitrary
1805
  // precision, two's-complement, bignum integer values. They should be
1806
  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1807
  // generally a pointer to the base of an array of integer parts, representing
1808
  // an unsigned bignum, and a count of how many parts there are.
1809
1810
  /// Sets the least significant part of a bignum to the input value, and zeroes
1811
  /// out higher parts.
1812
  static void tcSet(WordType *, WordType, unsigned);
1813
1814
  /// Assign one bignum to another.
1815
  static void tcAssign(WordType *, const WordType *, unsigned);
1816
1817
  /// Returns true if a bignum is zero, false otherwise.
1818
  static bool tcIsZero(const WordType *, unsigned);
1819
1820
  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1821
  static int tcExtractBit(const WordType *, unsigned bit);
1822
1823
  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1824
  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1825
  /// significant bit of DST.  All high bits above srcBITS in DST are
1826
  /// zero-filled.
1827
  static void tcExtract(WordType *, unsigned dstCount,
1828
                        const WordType *, unsigned srcBits,
1829
                        unsigned srcLSB);
1830
1831
  /// Set the given bit of a bignum.  Zero-based.
1832
  static void tcSetBit(WordType *, unsigned bit);
1833
1834
  /// Clear the given bit of a bignum.  Zero-based.
1835
  static void tcClearBit(WordType *, unsigned bit);
1836
1837
  /// Returns the bit number of the least or most significant set bit of a
1838
  /// number.  If the input number has no bits set -1U is returned.
1839
  static unsigned tcLSB(const WordType *, unsigned n);
1840
  static unsigned tcMSB(const WordType *parts, unsigned n);
1841
1842
  /// Negate a bignum in-place.
1843
  static void tcNegate(WordType *, unsigned);
1844
1845
  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1846
  static WordType tcAdd(WordType *, const WordType *,
1847
                        WordType carry, unsigned);
1848
  /// DST += RHS.  Returns the carry flag.
1849
  static WordType tcAddPart(WordType *, WordType, unsigned);
1850
1851
  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1852
  static WordType tcSubtract(WordType *, const WordType *,
1853
                             WordType carry, unsigned);
1854
  /// DST -= RHS.  Returns the carry flag.
1855
  static WordType tcSubtractPart(WordType *, WordType, unsigned);
1856
1857
  /// DST += SRC * MULTIPLIER + PART   if add is true
1858
  /// DST  = SRC * MULTIPLIER + PART   if add is false
1859
  ///
1860
  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1861
  /// start at the same point, i.e. DST == SRC.
1862
  ///
1863
  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1864
  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1865
  /// result, and if all of the omitted higher parts were zero return zero,
1866
  /// otherwise overflow occurred and return one.
1867
  static int tcMultiplyPart(WordType *dst, const WordType *src,
1868
                            WordType multiplier, WordType carry,
1869
                            unsigned srcParts, unsigned dstParts,
1870
                            bool add);
1871
1872
  /// DST = LHS * RHS, where DST has the same width as the operands and is
1873
  /// filled with the least significant parts of the result.  Returns one if
1874
  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1875
  /// operands.
1876
  static int tcMultiply(WordType *, const WordType *, const WordType *,
1877
                        unsigned);
1878
1879
  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1880
  /// operands. No overflow occurs. DST must be disjoint from both operands.
1881
  static void tcFullMultiply(WordType *, const WordType *,
1882
                             const WordType *, unsigned, unsigned);
1883
1884
  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1885
  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1886
  /// REMAINDER to the remainder, return zero.  i.e.
1887
  ///
1888
  ///  OLD_LHS = RHS * LHS + REMAINDER
1889
  ///
1890
  /// SCRATCH is a bignum of the same size as the operands and result for use by
1891
  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1892
  /// REMAINDER and SCRATCH must be distinct.
1893
  static int tcDivide(WordType *lhs, const WordType *rhs,
1894
                      WordType *remainder, WordType *scratch,
1895
                      unsigned parts);
1896
1897
  /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1898
  /// restrictions on Count.
1899
  static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1900
1901
  /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1902
  /// restrictions on Count.
1903
  static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1904
1905
  /// The obvious AND, OR and XOR and complement operations.
1906
  static void tcAnd(WordType *, const WordType *, unsigned);
1907
  static void tcOr(WordType *, const WordType *, unsigned);
1908
  static void tcXor(WordType *, const WordType *, unsigned);
1909
  static void tcComplement(WordType *, unsigned);
1910
1911
  /// Comparison (unsigned) of two bignums.
1912
  static int tcCompare(const WordType *, const WordType *, unsigned);
1913
1914
  /// Increment a bignum in-place.  Return the carry flag.
1915
1.60M
  static WordType tcIncrement(WordType *dst, unsigned parts) {
1916
1.60M
    return tcAddPart(dst, 1, parts);
1917
1.60M
  }
1918
1919
  /// Decrement a bignum in-place.  Return the borrow flag.
1920
150
  static WordType tcDecrement(WordType *dst, unsigned parts) {
1921
150
    return tcSubtractPart(dst, 1, parts);
1922
150
  }
1923
1924
  /// Set the least significant BITS and clear the rest.
1925
  static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1926
1927
  /// \brief debug method
1928
  void dump() const;
1929
1930
  /// @}
1931
};
1932
1933
/// Magic data for optimising signed division by a constant.
1934
struct APInt::ms {
1935
  APInt m;    ///< magic number
1936
  unsigned s; ///< shift amount
1937
};
1938
1939
/// Magic data for optimising unsigned division by a constant.
1940
struct APInt::mu {
1941
  APInt m;    ///< magic number
1942
  bool a;     ///< add indicator
1943
  unsigned s; ///< shift amount
1944
};
1945
1946
37.6k
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1947
1948
130k
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1949
1950
/// \brief Unary bitwise complement operator.
1951
///
1952
/// \returns an APInt that is the bitwise complement of \p v.
1953
845M
inline APInt operator~(APInt v) {
1954
845M
  v.flipAllBits();
1955
845M
  return v;
1956
845M
}
1957
1958
461M
inline APInt operator&(APInt a, const APInt &b) {
1959
461M
  a &= b;
1960
461M
  return a;
1961
461M
}
1962
1963
15.7M
inline APInt operator&(const APInt &a, APInt &&b) {
1964
15.7M
  b &= a;
1965
15.7M
  return std::move(b);
1966
15.7M
}
1967
1968
1.27k
inline APInt operator&(APInt a, uint64_t RHS) {
1969
1.27k
  a &= RHS;
1970
1.27k
  return a;
1971
1.27k
}
1972
1973
0
inline APInt operator&(uint64_t LHS, APInt b) {
1974
0
  b &= LHS;
1975
0
  return b;
1976
0
}
1977
1978
504M
inline APInt operator|(APInt a, const APInt &b) {
1979
504M
  a |= b;
1980
504M
  return a;
1981
504M
}
1982
1983
14.0M
inline APInt operator|(const APInt &a, APInt &&b) {
1984
14.0M
  b |= a;
1985
14.0M
  return std::move(b);
1986
14.0M
}
1987
1988
29.2k
inline APInt operator|(APInt a, uint64_t RHS) {
1989
29.2k
  a |= RHS;
1990
29.2k
  return a;
1991
29.2k
}
1992
1993
0
inline APInt operator|(uint64_t LHS, APInt b) {
1994
0
  b |= LHS;
1995
0
  return b;
1996
0
}
1997
1998
382M
inline APInt operator^(APInt a, const APInt &b) {
1999
382M
  a ^= b;
2000
382M
  return a;
2001
382M
}
2002
2003
3.39M
inline APInt operator^(const APInt &a, APInt &&b) {
2004
3.39M
  b ^= a;
2005
3.39M
  return std::move(b);
2006
3.39M
}
2007
2008
0
inline APInt operator^(APInt a, uint64_t RHS) {
2009
0
  a ^= RHS;
2010
0
  return a;
2011
0
}
2012
2013
0
inline APInt operator^(uint64_t LHS, APInt b) {
2014
0
  b ^= LHS;
2015
0
  return b;
2016
0
}
2017
2018
580k
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2019
580k
  I.print(OS, true);
2020
580k
  return OS;
2021
580k
}
2022
2023
31.8M
inline APInt operator-(APInt v) {
2024
31.8M
  v.negate();
2025
31.8M
  return v;
2026
31.8M
}
2027
2028
125M
inline APInt operator+(APInt a, const APInt &b) {
2029
125M
  a += b;
2030
125M
  return a;
2031
125M
}
2032
2033
112M
inline APInt operator+(const APInt &a, APInt &&b) {
2034
112M
  b += a;
2035
112M
  return std::move(b);
2036
112M
}
2037
2038
480M
inline APInt operator+(APInt a, uint64_t RHS) {
2039
480M
  a += RHS;
2040
480M
  return a;
2041
480M
}
2042
2043
0
inline APInt operator+(uint64_t LHS, APInt b) {
2044
0
  b += LHS;
2045
0
  return b;
2046
0
}
2047
2048
88.3M
inline APInt operator-(APInt a, const APInt &b) {
2049
88.3M
  a -= b;
2050
88.3M
  return a;
2051
88.3M
}
2052
2053
3.54M
inline APInt operator-(const APInt &a, APInt &&b) {
2054
3.54M
  b.negate();
2055
3.54M
  b += a;
2056
3.54M
  return std::move(b);
2057
3.54M
}
2058
2059
131M
inline APInt operator-(APInt a, uint64_t RHS) {
2060
131M
  a -= RHS;
2061
131M
  return a;
2062
131M
}
2063
2064
0
inline APInt operator-(uint64_t LHS, APInt b) {
2065
0
  b.negate();
2066
0
  b += LHS;
2067
0
  return b;
2068
0
}
2069
2070
4.25M
inline APInt operator*(APInt a, uint64_t RHS) {
2071
4.25M
  a *= RHS;
2072
4.25M
  return a;
2073
4.25M
}
2074
2075
24
inline APInt operator*(uint64_t LHS, APInt b) {
2076
24
  b *= LHS;
2077
24
  return b;
2078
24
}
2079
2080
2081
namespace APIntOps {
2082
2083
/// \brief Determine the smaller of two APInts considered to be signed.
2084
131k
inline const APInt &smin(const APInt &A, const APInt &B) {
2085
131k
  return A.slt(B) ? 
A67.8k
:
B63.9k
;
2086
131k
}
2087
2088
/// \brief Determine the larger of two APInts considered to be signed.
2089
485k
inline const APInt &smax(const APInt &A, const APInt &B) {
2090
485k
  return A.sgt(B) ? 
A223k
:
B261k
;
2091
485k
}
2092
2093
/// \brief Determine the smaller of two APInts considered to be signed.
2094
226k
inline const APInt &umin(const APInt &A, const APInt &B) {
2095
226k
  return A.ult(B) ? 
A87.1k
:
B139k
;
2096
226k
}
2097
2098
/// \brief Determine the larger of two APInts considered to be unsigned.
2099
447k
inline const APInt &umax(const APInt &A, const APInt &B) {
2100
447k
  return A.ugt(B) ? 
A71.9k
:
B375k
;
2101
447k
}
2102
2103
/// \brief Compute GCD of two unsigned APInt values.
2104
///
2105
/// This function returns the greatest common divisor of the two APInt values
2106
/// using Stein's algorithm.
2107
///
2108
/// \returns the greatest common divisor of A and B.
2109
APInt GreatestCommonDivisor(APInt A, APInt B);
2110
2111
/// \brief Converts the given APInt to a double value.
2112
///
2113
/// Treats the APInt as an unsigned value for conversion purposes.
2114
0
inline double RoundAPIntToDouble(const APInt &APIVal) {
2115
0
  return APIVal.roundToDouble();
2116
0
}
2117
2118
/// \brief Converts the given APInt to a double value.
2119
///
2120
/// Treats the APInt as a signed value for conversion purposes.
2121
0
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2122
0
  return APIVal.signedRoundToDouble();
2123
0
}
2124
2125
/// \brief Converts the given APInt to a float vlalue.
2126
0
inline float RoundAPIntToFloat(const APInt &APIVal) {
2127
0
  return float(RoundAPIntToDouble(APIVal));
2128
0
}
2129
2130
/// \brief Converts the given APInt to a float value.
2131
///
2132
/// Treast the APInt as a signed value for conversion purposes.
2133
0
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2134
0
  return float(APIVal.signedRoundToDouble());
2135
0
}
2136
2137
/// \brief Converts the given double value into a APInt.
2138
///
2139
/// This function convert a double value to an APInt value.
2140
APInt RoundDoubleToAPInt(double Double, unsigned width);
2141
2142
/// \brief Converts a float value into a APInt.
2143
///
2144
/// Converts a float value into an APInt value.
2145
0
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2146
0
  return RoundDoubleToAPInt(double(Float), width);
2147
0
}
2148
2149
} // End of APIntOps namespace
2150
2151
// See friend declaration above. This additional declaration is required in
2152
// order to compile LLVM with IBM xlC compiler.
2153
hash_code hash_value(const APInt &Arg);
2154
} // End of llvm namespace
2155
2156
#endif