Coverage Report

Created: 2017-10-03 07:32

/Users/buildslave/jenkins/sharedspace/clang-stage2-coverage-R@2/llvm/include/llvm/CodeGen/LiveVariables.h
Line
Count
Source (jump to first uncovered line)
1
//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file implements the LiveVariables analysis pass.  For each machine
11
// instruction in the function, this pass calculates the set of registers that
12
// are immediately dead after the instruction (i.e., the instruction calculates
13
// the value, but it is never used) and the set of registers that are used by
14
// the instruction, but are never used after the instruction (i.e., they are
15
// killed).
16
//
17
// This class computes live variables using a sparse implementation based on
18
// the machine code SSA form.  This class computes live variable information for
19
// each virtual and _register allocatable_ physical register in a function.  It
20
// uses the dominance properties of SSA form to efficiently compute live
21
// variables for virtual registers, and assumes that physical registers are only
22
// live within a single basic block (allowing it to do a single local analysis
23
// to resolve physical register lifetimes in each basic block).  If a physical
24
// register is not register allocatable, it is not tracked.  This is useful for
25
// things like the stack pointer and condition codes.
26
//
27
//===----------------------------------------------------------------------===//
28
29
#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30
#define LLVM_CODEGEN_LIVEVARIABLES_H
31
32
#include "llvm/ADT/DenseMap.h"
33
#include "llvm/ADT/IndexedMap.h"
34
#include "llvm/ADT/SmallSet.h"
35
#include "llvm/ADT/SmallVector.h"
36
#include "llvm/ADT/SparseBitVector.h"
37
#include "llvm/CodeGen/MachineFunctionPass.h"
38
#include "llvm/CodeGen/MachineInstr.h"
39
#include "llvm/Target/TargetRegisterInfo.h"
40
41
namespace llvm {
42
43
class MachineBasicBlock;
44
class MachineRegisterInfo;
45
46
class LiveVariables : public MachineFunctionPass {
47
public:
48
  static char ID; // Pass identification, replacement for typeid
49
33.0k
  LiveVariables() : MachineFunctionPass(ID) {
50
33.0k
    initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
51
33.0k
  }
52
53
  /// VarInfo - This represents the regions where a virtual register is live in
54
  /// the program.  We represent this with three different pieces of
55
  /// information: the set of blocks in which the instruction is live
56
  /// throughout, the set of blocks in which the instruction is actually used,
57
  /// and the set of non-phi instructions that are the last users of the value.
58
  ///
59
  /// In the common case where a value is defined and killed in the same block,
60
  /// There is one killing instruction, and AliveBlocks is empty.
61
  ///
62
  /// Otherwise, the value is live out of the block.  If the value is live
63
  /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
64
  /// where the liveness range ends are not included in AliveBlocks, instead
65
  /// being captured by the Kills set.  In these blocks, the value is live into
66
  /// the block (unless the value is defined and killed in the same block) and
67
  /// lives until the specified instruction.  Note that there cannot ever be a
68
  /// value whose Kills set contains two instructions from the same basic block.
69
  ///
70
  /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
71
  /// value in one of its predecessor blocks, it is not listed in the kills set,
72
  /// but does include the predecessor block in the AliveBlocks set (unless that
73
  /// block also defines the value).  This leads to the (perfectly sensical)
74
  /// situation where a value is defined in a block, and the last use is a phi
75
  /// node in the successor.  In this case, AliveBlocks is empty (the value is
76
  /// not live across any  blocks) and Kills is empty (phi nodes are not
77
  /// included). This is sensical because the value must be live to the end of
78
  /// the block, but is not live in any successor blocks.
79
  struct VarInfo {
80
    /// AliveBlocks - Set of blocks in which this value is alive completely
81
    /// through.  This is a bit set which uses the basic block number as an
82
    /// index.
83
    ///
84
    SparseBitVector<> AliveBlocks;
85
86
    /// Kills - List of MachineInstruction's which are the last use of this
87
    /// virtual register (kill it) in their basic block.
88
    ///
89
    std::vector<MachineInstr*> Kills;
90
91
    /// removeKill - Delete a kill corresponding to the specified
92
    /// machine instruction. Returns true if there was a kill
93
    /// corresponding to this instruction, false otherwise.
94
262k
    bool removeKill(MachineInstr &MI) {
95
262k
      std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
96
262k
      if (I == Kills.end())
97
557
        return false;
98
262k
      Kills.erase(I);
99
262k
      return true;
100
262k
    }
101
102
    /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
103
    MachineInstr *findKill(const MachineBasicBlock *MBB) const;
104
105
    /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
106
    /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
107
    /// MBB, it is not considered live in.
108
    bool isLiveIn(const MachineBasicBlock &MBB,
109
                  unsigned Reg,
110
                  MachineRegisterInfo &MRI);
111
112
    void dump() const;
113
  };
114
115
private:
116
  /// VirtRegInfo - This list is a mapping from virtual register number to
117
  /// variable information.
118
  ///
119
  IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
120
121
  /// PHIJoins - list of virtual registers that are PHI joins. These registers
122
  /// may have multiple definitions, and they require special handling when
123
  /// building live intervals.
124
  SparseBitVector<> PHIJoins;
125
126
private:   // Intermediate data structures
127
  MachineFunction *MF;
128
129
  MachineRegisterInfo* MRI;
130
131
  const TargetRegisterInfo *TRI;
132
133
  // PhysRegInfo - Keep track of which instruction was the last def of a
134
  // physical register. This is a purely local property, because all physical
135
  // register references are presumed dead across basic blocks.
136
  std::vector<MachineInstr *> PhysRegDef;
137
138
  // PhysRegInfo - Keep track of which instruction was the last use of a
139
  // physical register. This is a purely local property, because all physical
140
  // register references are presumed dead across basic blocks.
141
  std::vector<MachineInstr *> PhysRegUse;
142
143
  std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
144
145
  // DistanceMap - Keep track the distance of a MI from the start of the
146
  // current basic block.
147
  DenseMap<MachineInstr*, unsigned> DistanceMap;
148
149
  /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
150
  /// uses. Pay special attention to the sub-register uses which may come below
151
  /// the last use of the whole register.
152
  bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
153
154
  /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
155
  void HandleRegMask(const MachineOperand&);
156
157
  void HandlePhysRegUse(unsigned Reg, MachineInstr &MI);
158
  void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
159
                        SmallVectorImpl<unsigned> &Defs);
160
  void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
161
162
  /// FindLastRefOrPartRef - Return the last reference or partial reference of
163
  /// the specified register.
164
  MachineInstr *FindLastRefOrPartRef(unsigned Reg);
165
166
  /// FindLastPartialDef - Return the last partial def of the specified
167
  /// register. Also returns the sub-registers that're defined by the
168
  /// instruction.
169
  MachineInstr *FindLastPartialDef(unsigned Reg,
170
                                   SmallSet<unsigned,4> &PartDefRegs);
171
172
  /// analyzePHINodes - Gather information about the PHI nodes in here. In
173
  /// particular, we want to map the variable information of a virtual
174
  /// register which is used in a PHI node. We map that to the BB the vreg
175
  /// is coming from.
176
  void analyzePHINodes(const MachineFunction& Fn);
177
178
  void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
179
180
  void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
181
public:
182
183
  bool runOnMachineFunction(MachineFunction &MF) override;
184
185
  /// RegisterDefIsDead - Return true if the specified instruction defines the
186
  /// specified register, but that definition is dead.
187
  bool RegisterDefIsDead(MachineInstr &MI, unsigned Reg) const;
188
189
  //===--------------------------------------------------------------------===//
190
  //  API to update live variable information
191
192
  /// replaceKillInstruction - Update register kill info by replacing a kill
193
  /// instruction with a new one.
194
  void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI,
195
                              MachineInstr &NewMI);
196
197
  /// addVirtualRegisterKilled - Add information about the fact that the
198
  /// specified register is killed after being used by the specified
199
  /// instruction. If AddIfNotFound is true, add a implicit operand if it's
200
  /// not found.
201
  void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI,
202
3.29M
                                bool AddIfNotFound = false) {
203
3.29M
    if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
204
3.29M
      getVarInfo(IncomingReg).Kills.push_back(&MI);
205
3.29M
  }
206
207
  /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
208
  /// register from the live variable information. Returns true if the
209
  /// variable was marked as killed by the specified instruction,
210
  /// false otherwise.
211
1.75k
  bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI) {
212
1.75k
    if (!getVarInfo(reg).removeKill(MI))
213
0
      return false;
214
1.75k
215
1.75k
    bool Removed = false;
216
4.46k
    for (unsigned i = 0, e = MI.getNumOperands(); 
i != e4.46k
;
++i2.70k
) {
217
4.46k
      MachineOperand &MO = MI.getOperand(i);
218
4.46k
      if (
MO.isReg() && 4.46k
MO.isKill()4.29k
&&
MO.getReg() == reg2.27k
) {
219
1.75k
        MO.setIsKill(false);
220
1.75k
        Removed = true;
221
1.75k
        break;
222
1.75k
      }
223
4.46k
    }
224
1.75k
225
1.75k
    assert(Removed && "Register is not used by this instruction!");
226
1.75k
    (void)Removed;
227
1.75k
    return true;
228
1.75k
  }
229
230
  /// removeVirtualRegistersKilled - Remove all killed info for the specified
231
  /// instruction.
232
  void removeVirtualRegistersKilled(MachineInstr &MI);
233
234
  /// addVirtualRegisterDead - Add information about the fact that the specified
235
  /// register is dead after being used by the specified instruction. If
236
  /// AddIfNotFound is true, add a implicit operand if it's not found.
237
  void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI,
238
1
                              bool AddIfNotFound = false) {
239
1
    if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
240
1
      getVarInfo(IncomingReg).Kills.push_back(&MI);
241
1
  }
242
243
  /// removeVirtualRegisterDead - Remove the specified kill of the virtual
244
  /// register from the live variable information. Returns true if the
245
  /// variable was marked dead at the specified instruction, false
246
  /// otherwise.
247
558
  bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI) {
248
558
    if (!getVarInfo(reg).removeKill(MI))
249
557
      return false;
250
558
251
1
    bool Removed = false;
252
1
    for (unsigned i = 0, e = MI.getNumOperands(); 
i != e1
;
++i0
) {
253
1
      MachineOperand &MO = MI.getOperand(i);
254
1
      if (
MO.isReg() && 1
MO.isDef()1
&&
MO.getReg() == reg1
) {
255
1
        MO.setIsDead(false);
256
1
        Removed = true;
257
1
        break;
258
1
      }
259
1
    }
260
1
    assert(Removed && "Register is not defined by this instruction!");
261
1
    (void)Removed;
262
1
    return true;
263
558
  }
264
265
  void getAnalysisUsage(AnalysisUsage &AU) const override;
266
267
594k
  void releaseMemory() override {
268
594k
    VirtRegInfo.clear();
269
594k
  }
270
271
  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
272
  /// register.
273
  VarInfo &getVarInfo(unsigned RegIdx);
274
275
  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
276
                               MachineBasicBlock *BB);
277
  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
278
                               MachineBasicBlock *BB,
279
                               std::vector<MachineBasicBlock*> &WorkList);
280
  void HandleVirtRegDef(unsigned reg, MachineInstr &MI);
281
  void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr &MI);
282
283
175k
  bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
284
175k
    return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
285
175k
  }
286
287
  /// isLiveOut - Determine if Reg is live out from MBB, when not considering
288
  /// PHI nodes. This means that Reg is either killed by a successor block or
289
  /// passed through one.
290
  bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
291
292
  /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
293
  /// variables that are live out of DomBB and live into SuccBB will be marked
294
  /// as passing live through BB. This method assumes that the machine code is
295
  /// still in SSA form.
296
  void addNewBlock(MachineBasicBlock *BB,
297
                   MachineBasicBlock *DomBB,
298
                   MachineBasicBlock *SuccBB);
299
300
  /// isPHIJoin - Return true if Reg is a phi join register.
301
0
  bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
302
303
  /// setPHIJoin - Mark Reg as a phi join register.
304
936k
  void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
305
};
306
307
} // End llvm namespace
308
309
#endif