Coverage Report

Created: 2017-10-03 07:32

/Users/buildslave/jenkins/sharedspace/clang-stage2-coverage-R@2/llvm/include/llvm/CodeGen/MachineScheduler.h
Line
Count
Source (jump to first uncovered line)
1
//===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file provides an interface for customizing the standard MachineScheduler
11
// pass. Note that the entire pass may be replaced as follows:
12
//
13
// <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
14
//   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
15
//   ...}
16
//
17
// The MachineScheduler pass is only responsible for choosing the regions to be
18
// scheduled. Targets can override the DAG builder and scheduler without
19
// replacing the pass as follows:
20
//
21
// ScheduleDAGInstrs *<Target>PassConfig::
22
// createMachineScheduler(MachineSchedContext *C) {
23
//   return new CustomMachineScheduler(C);
24
// }
25
//
26
// The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
27
// scheduling while updating the instruction stream, register pressure, and live
28
// intervals. Most targets don't need to override the DAG builder and list
29
// scheduler, but subtargets that require custom scheduling heuristics may
30
// plugin an alternate MachineSchedStrategy. The strategy is responsible for
31
// selecting the highest priority node from the list:
32
//
33
// ScheduleDAGInstrs *<Target>PassConfig::
34
// createMachineScheduler(MachineSchedContext *C) {
35
//   return new ScheduleDAGMILive(C, CustomStrategy(C));
36
// }
37
//
38
// The DAG builder can also be customized in a sense by adding DAG mutations
39
// that will run after DAG building and before list scheduling. DAG mutations
40
// can adjust dependencies based on target-specific knowledge or add weak edges
41
// to aid heuristics:
42
//
43
// ScheduleDAGInstrs *<Target>PassConfig::
44
// createMachineScheduler(MachineSchedContext *C) {
45
//   ScheduleDAGMI *DAG = createGenericSchedLive(C);
46
//   DAG->addMutation(new CustomDAGMutation(...));
47
//   return DAG;
48
// }
49
//
50
// A target that supports alternative schedulers can use the
51
// MachineSchedRegistry to allow command line selection. This can be done by
52
// implementing the following boilerplate:
53
//
54
// static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
55
//  return new CustomMachineScheduler(C);
56
// }
57
// static MachineSchedRegistry
58
// SchedCustomRegistry("custom", "Run my target's custom scheduler",
59
//                     createCustomMachineSched);
60
//
61
//
62
// Finally, subtargets that don't need to implement custom heuristics but would
63
// like to configure the GenericScheduler's policy for a given scheduler region,
64
// including scheduling direction and register pressure tracking policy, can do
65
// this:
66
//
67
// void <SubTarget>Subtarget::
68
// overrideSchedPolicy(MachineSchedPolicy &Policy,
69
//                     unsigned NumRegionInstrs) const {
70
//   Policy.<Flag> = true;
71
// }
72
//
73
//===----------------------------------------------------------------------===//
74
75
#ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
76
#define LLVM_CODEGEN_MACHINESCHEDULER_H
77
78
#include "llvm/ADT/ArrayRef.h"
79
#include "llvm/ADT/BitVector.h"
80
#include "llvm/ADT/STLExtras.h"
81
#include "llvm/ADT/SmallVector.h"
82
#include "llvm/ADT/StringRef.h"
83
#include "llvm/ADT/Twine.h"
84
#include "llvm/Analysis/AliasAnalysis.h"
85
#include "llvm/CodeGen/MachineBasicBlock.h"
86
#include "llvm/CodeGen/MachinePassRegistry.h"
87
#include "llvm/CodeGen/RegisterPressure.h"
88
#include "llvm/CodeGen/ScheduleDAG.h"
89
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
90
#include "llvm/CodeGen/ScheduleDAGMutation.h"
91
#include "llvm/CodeGen/TargetSchedule.h"
92
#include "llvm/Support/CommandLine.h"
93
#include "llvm/Support/ErrorHandling.h"
94
#include <algorithm>
95
#include <cassert>
96
#include <memory>
97
#include <string>
98
#include <vector>
99
100
namespace llvm {
101
102
extern cl::opt<bool> ForceTopDown;
103
extern cl::opt<bool> ForceBottomUp;
104
105
class LiveIntervals;
106
class MachineDominatorTree;
107
class MachineFunction;
108
class MachineInstr;
109
class MachineLoopInfo;
110
class RegisterClassInfo;
111
class SchedDFSResult;
112
class ScheduleHazardRecognizer;
113
class TargetInstrInfo;
114
class TargetPassConfig;
115
class TargetRegisterInfo;
116
117
/// MachineSchedContext provides enough context from the MachineScheduler pass
118
/// for the target to instantiate a scheduler.
119
struct MachineSchedContext {
120
  MachineFunction *MF = nullptr;
121
  const MachineLoopInfo *MLI = nullptr;
122
  const MachineDominatorTree *MDT = nullptr;
123
  const TargetPassConfig *PassConfig = nullptr;
124
  AliasAnalysis *AA = nullptr;
125
  LiveIntervals *LIS = nullptr;
126
127
  RegisterClassInfo *RegClassInfo;
128
129
  MachineSchedContext();
130
  virtual ~MachineSchedContext();
131
};
132
133
/// MachineSchedRegistry provides a selection of available machine instruction
134
/// schedulers.
135
class MachineSchedRegistry : public MachinePassRegistryNode {
136
public:
137
  using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *);
138
139
  // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
140
  using FunctionPassCtor = ScheduleDAGCtor;
141
142
  static MachinePassRegistry Registry;
143
144
  MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
145
913k
    : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
146
913k
    Registry.Add(this);
147
913k
  }
148
149
913k
  ~MachineSchedRegistry() { Registry.Remove(this); }
150
151
  // Accessors.
152
  //
153
544k
  MachineSchedRegistry *getNext() const {
154
544k
    return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
155
544k
  }
156
157
92.3k
  static MachineSchedRegistry *getList() {
158
92.3k
    return (MachineSchedRegistry *)Registry.getList();
159
92.3k
  }
160
161
184k
  static void setListener(MachinePassRegistryListener *L) {
162
184k
    Registry.setListener(L);
163
184k
  }
164
};
165
166
class ScheduleDAGMI;
167
168
/// Define a generic scheduling policy for targets that don't provide their own
169
/// MachineSchedStrategy. This can be overriden for each scheduling region
170
/// before building the DAG.
171
struct MachineSchedPolicy {
172
  // Allow the scheduler to disable register pressure tracking.
173
  bool ShouldTrackPressure = false;
174
  /// Track LaneMasks to allow reordering of independent subregister writes
175
  /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
176
  bool ShouldTrackLaneMasks = false;
177
178
  // Allow the scheduler to force top-down or bottom-up scheduling. If neither
179
  // is true, the scheduler runs in both directions and converges.
180
  bool OnlyTopDown = false;
181
  bool OnlyBottomUp = false;
182
183
  // Disable heuristic that tries to fetch nodes from long dependency chains
184
  // first.
185
  bool DisableLatencyHeuristic = false;
186
187
549k
  MachineSchedPolicy() = default;
188
};
189
190
/// MachineSchedStrategy - Interface to the scheduling algorithm used by
191
/// ScheduleDAGMI.
192
///
193
/// Initialization sequence:
194
///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
195
class MachineSchedStrategy {
196
  virtual void anchor();
197
198
public:
199
563k
  virtual ~MachineSchedStrategy() = default;
200
201
  /// Optionally override the per-region scheduling policy.
202
  virtual void initPolicy(MachineBasicBlock::iterator Begin,
203
                          MachineBasicBlock::iterator End,
204
4.97k
                          unsigned NumRegionInstrs) {}
205
206
0
  virtual void dumpPolicy() const {}
207
208
  /// Check if pressure tracking is needed before building the DAG and
209
  /// initializing this strategy. Called after initPolicy.
210
4.95k
  virtual bool shouldTrackPressure() const { return true; }
211
212
  /// Returns true if lanemasks should be tracked. LaneMask tracking is
213
  /// necessary to reorder independent subregister defs for the same vreg.
214
  /// This has to be enabled in combination with shouldTrackPressure().
215
4.95k
  virtual bool shouldTrackLaneMasks() const { return false; }
216
217
  // If this method returns true, handling of the scheduling regions
218
  // themselves (in case of a scheduling boundary in MBB) will be done
219
  // beginning with the topmost region of MBB.
220
4.17M
  virtual bool doMBBSchedRegionsTopDown() const { return false; }
221
222
  /// Initialize the strategy after building the DAG for a new region.
223
  virtual void initialize(ScheduleDAGMI *DAG) = 0;
224
225
  /// Tell the strategy that MBB is about to be processed.
226
4.19M
  virtual void enterMBB(MachineBasicBlock *MBB) {};
227
228
  /// Tell the strategy that current MBB is done.
229
4.19M
  virtual void leaveMBB() {};
230
231
  /// Notify this strategy that all roots have been released (including those
232
  /// that depend on EntrySU or ExitSU).
233
5.33k
  virtual void registerRoots() {}
234
235
  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
236
  /// schedule the node at the top of the unscheduled region. Otherwise it will
237
  /// be scheduled at the bottom.
238
  virtual SUnit *pickNode(bool &IsTopNode) = 0;
239
240
  /// \brief Scheduler callback to notify that a new subtree is scheduled.
241
0
  virtual void scheduleTree(unsigned SubtreeID) {}
242
243
  /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
244
  /// instruction and updated scheduled/remaining flags in the DAG nodes.
245
  virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
246
247
  /// When all predecessor dependencies have been resolved, free this node for
248
  /// top-down scheduling.
249
  virtual void releaseTopNode(SUnit *SU) = 0;
250
251
  /// When all successor dependencies have been resolved, free this node for
252
  /// bottom-up scheduling.
253
  virtual void releaseBottomNode(SUnit *SU) = 0;
254
};
255
256
/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
257
/// schedules machine instructions according to the given MachineSchedStrategy
258
/// without much extra book-keeping. This is the common functionality between
259
/// PreRA and PostRA MachineScheduler.
260
class ScheduleDAGMI : public ScheduleDAGInstrs {
261
protected:
262
  AliasAnalysis *AA;
263
  LiveIntervals *LIS;
264
  std::unique_ptr<MachineSchedStrategy> SchedImpl;
265
266
  /// Topo - A topological ordering for SUnits which permits fast IsReachable
267
  /// and similar queries.
268
  ScheduleDAGTopologicalSort Topo;
269
270
  /// Ordered list of DAG postprocessing steps.
271
  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
272
273
  /// The top of the unscheduled zone.
274
  MachineBasicBlock::iterator CurrentTop;
275
276
  /// The bottom of the unscheduled zone.
277
  MachineBasicBlock::iterator CurrentBottom;
278
279
  /// Record the next node in a scheduled cluster.
280
  const SUnit *NextClusterPred = nullptr;
281
  const SUnit *NextClusterSucc = nullptr;
282
283
#ifndef NDEBUG
284
  /// The number of instructions scheduled so far. Used to cut off the
285
  /// scheduler at the point determined by misched-cutoff.
286
  unsigned NumInstrsScheduled = 0;
287
#endif
288
289
public:
290
  ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
291
                bool RemoveKillFlags)
292
      : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
293
563k
        LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU) {}
294
295
  // Provide a vtable anchor
296
  ~ScheduleDAGMI() override;
297
298
  /// If this method returns true, handling of the scheduling regions
299
  /// themselves (in case of a scheduling boundary in MBB) will be done
300
  /// beginning with the topmost region of MBB.
301
4.18M
  bool doMBBSchedRegionsTopDown() const override {
302
4.18M
    return SchedImpl->doMBBSchedRegionsTopDown();
303
4.18M
  }
304
305
  // Returns LiveIntervals instance for use in DAG mutators and such.
306
14.2M
  LiveIntervals *getLIS() const { return LIS; }
307
308
  /// Return true if this DAG supports VReg liveness and RegPressure.
309
0
  virtual bool hasVRegLiveness() const { return false; }
310
311
  /// Add a postprocessing step to the DAG builder.
312
  /// Mutations are applied in the order that they are added after normal DAG
313
  /// building and before MachineSchedStrategy initialization.
314
  ///
315
  /// ScheduleDAGMI takes ownership of the Mutation object.
316
2.02M
  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
317
2.02M
    if (Mutation)
318
2.02M
      Mutations.push_back(std::move(Mutation));
319
2.02M
  }
320
321
  /// \brief True if an edge can be added from PredSU to SuccSU without creating
322
  /// a cycle.
323
  bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
324
325
  /// \brief Add a DAG edge to the given SU with the given predecessor
326
  /// dependence data.
327
  ///
328
  /// \returns true if the edge may be added without creating a cycle OR if an
329
  /// equivalent edge already existed (false indicates failure).
330
  bool addEdge(SUnit *SuccSU, const SDep &PredDep);
331
332
20.6M
  MachineBasicBlock::iterator top() const { return CurrentTop; }
333
20.6M
  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
334
335
  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
336
  /// region. This covers all instructions in a block, while schedule() may only
337
  /// cover a subset.
338
  void enterRegion(MachineBasicBlock *bb,
339
                   MachineBasicBlock::iterator begin,
340
                   MachineBasicBlock::iterator end,
341
                   unsigned regioninstrs) override;
342
343
  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
344
  /// reorderable instructions.
345
  void schedule() override;
346
347
  void startBlock(MachineBasicBlock *bb) override;
348
  void finishBlock() override;
349
350
  /// Change the position of an instruction within the basic block and update
351
  /// live ranges and region boundary iterators.
352
  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
353
354
79.0M
  const SUnit *getNextClusterPred() const { return NextClusterPred; }
355
356
55.6M
  const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
357
358
  void viewGraph(const Twine &Name, const Twine &Title) override;
359
  void viewGraph() override;
360
361
protected:
362
  // Top-Level entry points for the schedule() driver...
363
364
  /// Apply each ScheduleDAGMutation step in order. This allows different
365
  /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
366
  void postprocessDAG();
367
368
  /// Release ExitSU predecessors and setup scheduler queues.
369
  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
370
371
  /// Update scheduler DAG and queues after scheduling an instruction.
372
  void updateQueues(SUnit *SU, bool IsTopNode);
373
374
  /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
375
  void placeDebugValues();
376
377
  /// \brief dump the scheduled Sequence.
378
  void dumpSchedule() const;
379
380
  // Lesser helpers...
381
  bool checkSchedLimit();
382
383
  void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
384
                             SmallVectorImpl<SUnit*> &BotRoots);
385
386
  void releaseSucc(SUnit *SU, SDep *SuccEdge);
387
  void releaseSuccessors(SUnit *SU);
388
  void releasePred(SUnit *SU, SDep *PredEdge);
389
  void releasePredecessors(SUnit *SU);
390
};
391
392
/// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
393
/// machine instructions while updating LiveIntervals and tracking regpressure.
394
class ScheduleDAGMILive : public ScheduleDAGMI {
395
protected:
396
  RegisterClassInfo *RegClassInfo;
397
398
  /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
399
  /// will be empty.
400
  SchedDFSResult *DFSResult = nullptr;
401
  BitVector ScheduledTrees;
402
403
  MachineBasicBlock::iterator LiveRegionEnd;
404
405
  /// Maps vregs to the SUnits of their uses in the current scheduling region.
406
  VReg2SUnitMultiMap VRegUses;
407
408
  // Map each SU to its summary of pressure changes. This array is updated for
409
  // liveness during bottom-up scheduling. Top-down scheduling may proceed but
410
  // has no affect on the pressure diffs.
411
  PressureDiffs SUPressureDiffs;
412
413
  /// Register pressure in this region computed by initRegPressure.
414
  bool ShouldTrackPressure = false;
415
  bool ShouldTrackLaneMasks = false;
416
  IntervalPressure RegPressure;
417
  RegPressureTracker RPTracker;
418
419
  /// List of pressure sets that exceed the target's pressure limit before
420
  /// scheduling, listed in increasing set ID order. Each pressure set is paired
421
  /// with its max pressure in the currently scheduled regions.
422
  std::vector<PressureChange> RegionCriticalPSets;
423
424
  /// The top of the unscheduled zone.
425
  IntervalPressure TopPressure;
426
  RegPressureTracker TopRPTracker;
427
428
  /// The bottom of the unscheduled zone.
429
  IntervalPressure BotPressure;
430
  RegPressureTracker BotRPTracker;
431
432
  /// True if disconnected subregister components are already renamed.
433
  /// The renaming is only done on demand if lane masks are tracked.
434
  bool DisconnectedComponentsRenamed = false;
435
436
public:
437
  ScheduleDAGMILive(MachineSchedContext *C,
438
                    std::unique_ptr<MachineSchedStrategy> S)
439
      : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
440
        RegClassInfo(C->RegClassInfo), RPTracker(RegPressure),
441
552k
        TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
442
443
  ~ScheduleDAGMILive() override;
444
445
  /// Return true if this DAG supports VReg liveness and RegPressure.
446
0
  bool hasVRegLiveness() const override { return true; }
447
448
  /// \brief Return true if register pressure tracking is enabled.
449
283M
  bool isTrackingPressure() const { return ShouldTrackPressure; }
450
451
  /// Get current register pressure for the top scheduled instructions.
452
0
  const IntervalPressure &getTopPressure() const { return TopPressure; }
453
4.64M
  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
454
455
  /// Get current register pressure for the bottom scheduled instructions.
456
0
  const IntervalPressure &getBotPressure() const { return BotPressure; }
457
8.74M
  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
458
459
  /// Get register pressure for the entire scheduling region before scheduling.
460
52.0M
  const IntervalPressure &getRegPressure() const { return RegPressure; }
461
462
52.0M
  const std::vector<PressureChange> &getRegionCriticalPSets() const {
463
52.0M
    return RegionCriticalPSets;
464
52.0M
  }
465
466
36.6M
  PressureDiff &getPressureDiff(const SUnit *SU) {
467
36.6M
    return SUPressureDiffs[SU->NodeNum];
468
36.6M
  }
469
470
  /// Compute a DFSResult after DAG building is complete, and before any
471
  /// queue comparisons.
472
  void computeDFSResult();
473
474
  /// Return a non-null DFS result if the scheduling strategy initialized it.
475
10
  const SchedDFSResult *getDFSResult() const { return DFSResult; }
476
477
10
  BitVector &getScheduledTrees() { return ScheduledTrees; }
478
479
  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
480
  /// region. This covers all instructions in a block, while schedule() may only
481
  /// cover a subset.
482
  void enterRegion(MachineBasicBlock *bb,
483
                   MachineBasicBlock::iterator begin,
484
                   MachineBasicBlock::iterator end,
485
                   unsigned regioninstrs) override;
486
487
  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
488
  /// reorderable instructions.
489
  void schedule() override;
490
491
  /// Compute the cyclic critical path through the DAG.
492
  unsigned computeCyclicCriticalPath();
493
494
protected:
495
  // Top-Level entry points for the schedule() driver...
496
497
  /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
498
  /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
499
  /// region, TopTracker and BottomTracker will be initialized to the top and
500
  /// bottom of the DAG region without covereing any unscheduled instruction.
501
  void buildDAGWithRegPressure();
502
503
  /// Release ExitSU predecessors and setup scheduler queues. Re-position
504
  /// the Top RP tracker in case the region beginning has changed.
505
  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
506
507
  /// Move an instruction and update register pressure.
508
  void scheduleMI(SUnit *SU, bool IsTopNode);
509
510
  // Lesser helpers...
511
512
  void initRegPressure();
513
514
  void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);
515
516
  void updateScheduledPressure(const SUnit *SU,
517
                               const std::vector<unsigned> &NewMaxPressure);
518
519
  void collectVRegUses(SUnit &SU);
520
};
521
522
//===----------------------------------------------------------------------===//
523
///
524
/// Helpers for implementing custom MachineSchedStrategy classes. These take
525
/// care of the book-keeping associated with list scheduling heuristics.
526
///
527
//===----------------------------------------------------------------------===//
528
529
/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
530
/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
531
/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
532
///
533
/// This is a convenience class that may be used by implementations of
534
/// MachineSchedStrategy.
535
class ReadyQueue {
536
  unsigned ID;
537
  std::string Name;
538
  std::vector<SUnit*> Queue;
539
540
public:
541
2.21M
  ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
542
543
511M
  unsigned getID() const { return ID; }
544
545
0
  StringRef getName() const { return Name; }
546
547
  // SU is in this queue if it's NodeQueueID is a superset of this ID.
548
27.1M
  bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
549
550
26.8M
  bool empty() const { return Queue.empty(); }
551
552
18.5M
  void clear() { Queue.clear(); }
553
554
54.5M
  unsigned size() const { return Queue.size(); }
555
556
  using iterator = std::vector<SUnit*>::iterator;
557
558
38.6M
  iterator begin() { return Queue.begin(); }
559
560
80.8M
  iterator end() { return Queue.end(); }
561
562
35.2M
  ArrayRef<SUnit*> elements() { return Queue; }
563
564
27.1M
  iterator find(SUnit *SU) { return llvm::find(Queue, SU); }
565
566
28.7M
  void push(SUnit *SU) {
567
28.7M
    Queue.push_back(SU);
568
28.7M
    SU->NodeQueueId |= ID;
569
28.7M
  }
570
571
28.7M
  iterator remove(iterator I) {
572
28.7M
    (*I)->NodeQueueId &= ~ID;
573
28.7M
    *I = Queue.back();
574
28.7M
    unsigned idx = I - Queue.begin();
575
28.7M
    Queue.pop_back();
576
28.7M
    return Queue.begin() + idx;
577
28.7M
  }
578
579
  void dump() const;
580
};
581
582
/// Summarize the unscheduled region.
583
struct SchedRemainder {
584
  // Critical path through the DAG in expected latency.
585
  unsigned CriticalPath;
586
  unsigned CyclicCritPath;
587
588
  // Scaled count of micro-ops left to schedule.
589
  unsigned RemIssueCount;
590
591
  bool IsAcyclicLatencyLimited;
592
593
  // Unscheduled resources
594
  SmallVector<unsigned, 16> RemainingCounts;
595
596
557k
  SchedRemainder() { reset(); }
597
598
4.63M
  void reset() {
599
4.63M
    CriticalPath = 0;
600
4.63M
    CyclicCritPath = 0;
601
4.63M
    RemIssueCount = 0;
602
4.63M
    IsAcyclicLatencyLimited = false;
603
4.63M
    RemainingCounts.clear();
604
4.63M
  }
605
606
  void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
607
};
608
609
/// Each Scheduling boundary is associated with ready queues. It tracks the
610
/// current cycle in the direction of movement, and maintains the state
611
/// of "hazards" and other interlocks at the current cycle.
612
class SchedBoundary {
613
public:
614
  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
615
  enum {
616
    TopQID = 1,
617
    BotQID = 2,
618
    LogMaxQID = 2
619
  };
620
621
  ScheduleDAGMI *DAG = nullptr;
622
  const TargetSchedModel *SchedModel = nullptr;
623
  SchedRemainder *Rem = nullptr;
624
625
  ReadyQueue Available;
626
  ReadyQueue Pending;
627
628
  ScheduleHazardRecognizer *HazardRec = nullptr;
629
630
private:
631
  /// True if the pending Q should be checked/updated before scheduling another
632
  /// instruction.
633
  bool CheckPending;
634
635
  /// Number of cycles it takes to issue the instructions scheduled in this
636
  /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
637
  /// See getStalls().
638
  unsigned CurrCycle;
639
640
  /// Micro-ops issued in the current cycle
641
  unsigned CurrMOps;
642
643
  /// MinReadyCycle - Cycle of the soonest available instruction.
644
  unsigned MinReadyCycle;
645
646
  // The expected latency of the critical path in this scheduled zone.
647
  unsigned ExpectedLatency;
648
649
  // The latency of dependence chains leading into this zone.
650
  // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
651
  // For each cycle scheduled: DLat -= 1.
652
  unsigned DependentLatency;
653
654
  /// Count the scheduled (issued) micro-ops that can be retired by
655
  /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
656
  unsigned RetiredMOps;
657
658
  // Count scheduled resources that have been executed. Resources are
659
  // considered executed if they become ready in the time that it takes to
660
  // saturate any resource including the one in question. Counts are scaled
661
  // for direct comparison with other resources. Counts can be compared with
662
  // MOps * getMicroOpFactor and Latency * getLatencyFactor.
663
  SmallVector<unsigned, 16> ExecutedResCounts;
664
665
  /// Cache the max count for a single resource.
666
  unsigned MaxExecutedResCount;
667
668
  // Cache the critical resources ID in this scheduled zone.
669
  unsigned ZoneCritResIdx;
670
671
  // Is the scheduled region resource limited vs. latency limited.
672
  bool IsResourceLimited;
673
674
  // Record the highest cycle at which each resource has been reserved by a
675
  // scheduled instruction.
676
  SmallVector<unsigned, 16> ReservedCycles;
677
678
#ifndef NDEBUG
679
  // Remember the greatest possible stall as an upper bound on the number of
680
  // times we should retry the pending queue because of a hazard.
681
  unsigned MaxObservedStall;
682
#endif
683
684
public:
685
  /// Pending queues extend the ready queues with the same ID and the
686
  /// PendingFlag set.
687
  SchedBoundary(unsigned ID, const Twine &Name):
688
1.10M
    Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") {
689
1.10M
    reset();
690
1.10M
  }
691
692
  ~SchedBoundary();
693
694
  void reset();
695
696
  void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
697
            SchedRemainder *rem);
698
699
511M
  bool isTop() const {
700
511M
    return Available.getID() == TopQID;
701
511M
  }
702
703
  /// Number of cycles to issue the instructions scheduled in this zone.
704
31.8M
  unsigned getCurrCycle() const { return CurrCycle; }
705
706
  /// Micro-ops issued in the current cycle
707
16.1M
  unsigned getCurrMOps() const { return CurrMOps; }
708
709
  // The latency of dependence chains leading into this zone.
710
17.6M
  unsigned getDependentLatency() const { return DependentLatency; }
711
712
  /// Get the number of latency cycles "covered" by the scheduled
713
  /// instructions. This is the larger of the critical path within the zone
714
  /// and the number of cycles required to issue the instructions.
715
27.6M
  unsigned getScheduledLatency() const {
716
27.6M
    return std::max(ExpectedLatency, CurrCycle);
717
27.6M
  }
718
719
111M
  unsigned getUnscheduledLatency(SUnit *SU) const {
720
111M
    return isTop() ? 
SU->getHeight()59.6M
:
SU->getDepth()52.3M
;
721
111M
  }
722
723
256M
  unsigned getResourceCount(unsigned ResIdx) const {
724
256M
    return ExecutedResCounts[ResIdx];
725
256M
  }
726
727
  /// Get the scaled count of scheduled micro-ops and resources, including
728
  /// executed resources.
729
27.5M
  unsigned getCriticalCount() const {
730
27.5M
    if (!ZoneCritResIdx)
731
11.9M
      return RetiredMOps * SchedModel->getMicroOpFactor();
732
15.6M
    return getResourceCount(ZoneCritResIdx);
733
27.5M
  }
734
735
  /// Get a scaled count for the minimum execution time of the scheduled
736
  /// micro-ops that are ready to execute by getExecutedCount. Notice the
737
  /// feedback loop.
738
0
  unsigned getExecutedCount() const {
739
0
    return std::max(CurrCycle * SchedModel->getLatencyFactor(),
740
0
                    MaxExecutedResCount);
741
0
  }
742
743
17.7M
  unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
744
745
  // Is the scheduled region resource limited vs. latency limited.
746
7.10M
  bool isResourceLimited() const { return IsResourceLimited; }
747
748
  /// Get the difference between the given SUnit's ready time and the current
749
  /// cycle.
750
  unsigned getLatencyStallCycles(SUnit *SU);
751
752
  unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
753
754
  bool checkHazard(SUnit *SU);
755
756
  unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
757
758
  unsigned getOtherResourceCount(unsigned &OtherCritIdx);
759
760
  void releaseNode(SUnit *SU, unsigned ReadyCycle);
761
762
  void bumpCycle(unsigned NextCycle);
763
764
  void incExecutedResources(unsigned PIdx, unsigned Count);
765
766
  unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
767
768
  void bumpNode(SUnit *SU);
769
770
  void releasePending();
771
772
  void removeReady(SUnit *SU);
773
774
  /// Call this before applying any other heuristics to the Available queue.
775
  /// Updates the Available/Pending Q's if necessary and returns the single
776
  /// available instruction, or NULL if there are multiple candidates.
777
  SUnit *pickOnlyChoice();
778
779
  void dumpScheduledState() const;
780
};
781
782
/// Base class for GenericScheduler. This class maintains information about
783
/// scheduling candidates based on TargetSchedModel making it easy to implement
784
/// heuristics for either preRA or postRA scheduling.
785
class GenericSchedulerBase : public MachineSchedStrategy {
786
public:
787
  /// Represent the type of SchedCandidate found within a single queue.
788
  /// pickNodeBidirectional depends on these listed by decreasing priority.
789
  enum CandReason : uint8_t {
790
    NoCand, Only1, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak,
791
    RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
792
    TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
793
794
#ifndef NDEBUG
795
  static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
796
#endif
797
798
  /// Policy for scheduling the next instruction in the candidate's zone.
799
  struct CandPolicy {
800
    bool ReduceLatency = false;
801
    unsigned ReduceResIdx = 0;
802
    unsigned DemandResIdx = 0;
803
804
119M
    CandPolicy() = default;
805
806
5.64M
    bool operator==(const CandPolicy &RHS) const {
807
5.64M
      return ReduceLatency == RHS.ReduceLatency &&
808
5.61M
             ReduceResIdx == RHS.ReduceResIdx &&
809
5.58M
             DemandResIdx == RHS.DemandResIdx;
810
5.64M
    }
811
5.64M
    bool operator!=(const CandPolicy &RHS) const {
812
5.64M
      return !(*this == RHS);
813
5.64M
    }
814
  };
815
816
  /// Status of an instruction's critical resource consumption.
817
  struct SchedResourceDelta {
818
    // Count critical resources in the scheduled region required by SU.
819
    unsigned CritResources = 0;
820
821
    // Count critical resources from another region consumed by SU.
822
    unsigned DemandedResources = 0;
823
824
217M
    SchedResourceDelta() = default;
825
826
29.4M
    bool operator==(const SchedResourceDelta &RHS) const {
827
29.4M
      return CritResources == RHS.CritResources
828
28.7M
        && DemandedResources == RHS.DemandedResources;
829
29.4M
    }
830
0
    bool operator!=(const SchedResourceDelta &RHS) const {
831
0
      return !operator==(RHS);
832
0
    }
833
  };
834
835
  /// Store the state used by GenericScheduler heuristics, required for the
836
  /// lifetime of one invocation of pickNode().
837
  struct SchedCandidate {
838
    CandPolicy Policy;
839
840
    // The best SUnit candidate.
841
    SUnit *SU;
842
843
    // The reason for this candidate.
844
    CandReason Reason;
845
846
    // Whether this candidate should be scheduled at top/bottom.
847
    bool AtTop;
848
849
    // Register pressure values for the best candidate.
850
    RegPressureDelta RPDelta;
851
852
    // Critical resource consumption of the best candidate.
853
    SchedResourceDelta ResDelta;
854
855
1.30M
    SchedCandidate() { reset(CandPolicy()); }
856
86.1M
    SchedCandidate(const CandPolicy &Policy) { reset(Policy); }
857
858
100M
    void reset(const CandPolicy &NewPolicy) {
859
100M
      Policy = NewPolicy;
860
100M
      SU = nullptr;
861
100M
      Reason = NoCand;
862
100M
      AtTop = false;
863
100M
      RPDelta = RegPressureDelta();
864
100M
      ResDelta = SchedResourceDelta();
865
100M
    }
866
867
112M
    bool isValid() const { return SU; }
868
869
    // Copy the status of another candidate without changing policy.
870
30.6M
    void setBest(SchedCandidate &Best) {
871
30.6M
      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
872
30.6M
      SU = Best.SU;
873
30.6M
      Reason = Best.Reason;
874
30.6M
      AtTop = Best.AtTop;
875
30.6M
      RPDelta = Best.RPDelta;
876
30.6M
      ResDelta = Best.ResDelta;
877
30.6M
    }
878
879
    void initResourceDelta(const ScheduleDAGMI *DAG,
880
                           const TargetSchedModel *SchedModel);
881
  };
882
883
protected:
884
  const MachineSchedContext *Context;
885
  const TargetSchedModel *SchedModel = nullptr;
886
  const TargetRegisterInfo *TRI = nullptr;
887
888
  SchedRemainder Rem;
889
890
557k
  GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {}
891
892
  void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
893
                 SchedBoundary *OtherZone);
894
895
#ifndef NDEBUG
896
  void traceCandidate(const SchedCandidate &Cand);
897
#endif
898
};
899
900
/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
901
/// the schedule.
902
class GenericScheduler : public GenericSchedulerBase {
903
public:
904
  GenericScheduler(const MachineSchedContext *C):
905
    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"),
906
549k
    Bot(SchedBoundary::BotQID, "BotQ") {}
907
908
  void initPolicy(MachineBasicBlock::iterator Begin,
909
                  MachineBasicBlock::iterator End,
910
                  unsigned NumRegionInstrs) override;
911
912
  void dumpPolicy() const override;
913
914
11.7M
  bool shouldTrackPressure() const override {
915
11.7M
    return RegionPolicy.ShouldTrackPressure;
916
11.7M
  }
917
918
11.7M
  bool shouldTrackLaneMasks() const override {
919
11.7M
    return RegionPolicy.ShouldTrackLaneMasks;
920
11.7M
  }
921
922
  void initialize(ScheduleDAGMI *dag) override;
923
924
  SUnit *pickNode(bool &IsTopNode) override;
925
926
  void schedNode(SUnit *SU, bool IsTopNode) override;
927
928
10.9M
  void releaseTopNode(SUnit *SU) override {
929
10.9M
    if (SU->isScheduled)
930
46.6k
      return;
931
10.9M
932
10.9M
    Top.releaseNode(SU, SU->TopReadyCycle);
933
10.9M
    TopCand.SU = nullptr;
934
10.9M
  }
935
936
16.4M
  void releaseBottomNode(SUnit *SU) override {
937
16.4M
    if (SU->isScheduled)
938
309k
      return;
939
16.4M
940
16.1M
    Bot.releaseNode(SU, SU->BotReadyCycle);
941
16.1M
    BotCand.SU = nullptr;
942
16.1M
  }
943
944
  void registerRoots() override;
945
946
protected:
947
  ScheduleDAGMILive *DAG = nullptr;
948
949
  MachineSchedPolicy RegionPolicy;
950
951
  // State of the top and bottom scheduled instruction boundaries.
952
  SchedBoundary Top;
953
  SchedBoundary Bot;
954
955
  /// Candidate last picked from Top boundary.
956
  SchedCandidate TopCand;
957
  /// Candidate last picked from Bot boundary.
958
  SchedCandidate BotCand;
959
960
  void checkAcyclicLatency();
961
962
  void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
963
                     const RegPressureTracker &RPTracker,
964
                     RegPressureTracker &TempTracker);
965
966
  void tryCandidate(SchedCandidate &Cand,
967
                    SchedCandidate &TryCand,
968
                    SchedBoundary *Zone);
969
970
  SUnit *pickNodeBidirectional(bool &IsTopNode);
971
972
  void pickNodeFromQueue(SchedBoundary &Zone,
973
                         const CandPolicy &ZonePolicy,
974
                         const RegPressureTracker &RPTracker,
975
                         SchedCandidate &Candidate);
976
977
  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
978
};
979
980
/// PostGenericScheduler - Interface to the scheduling algorithm used by
981
/// ScheduleDAGMI.
982
///
983
/// Callbacks from ScheduleDAGMI:
984
///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
985
class PostGenericScheduler : public GenericSchedulerBase {
986
  ScheduleDAGMI *DAG;
987
  SchedBoundary Top;
988
  SmallVector<SUnit*, 8> BotRoots;
989
990
public:
991
  PostGenericScheduler(const MachineSchedContext *C):
992
8.60k
    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
993
994
8.60k
  ~PostGenericScheduler() override = default;
995
996
  void initPolicy(MachineBasicBlock::iterator Begin,
997
                  MachineBasicBlock::iterator End,
998
14.6k
                  unsigned NumRegionInstrs) override {
999
14.6k
    /* no configurable policy */
1000
14.6k
  }
1001
1002
  /// PostRA scheduling does not track pressure.
1003
0
  bool shouldTrackPressure() const override { return false; }
1004
1005
  void initialize(ScheduleDAGMI *Dag) override;
1006
1007
  void registerRoots() override;
1008
1009
  SUnit *pickNode(bool &IsTopNode) override;
1010
1011
0
  void scheduleTree(unsigned SubtreeID) override {
1012
0
    llvm_unreachable("PostRA scheduler does not support subtree analysis.");
1013
0
  }
1014
1015
  void schedNode(SUnit *SU, bool IsTopNode) override;
1016
1017
26.5k
  void releaseTopNode(SUnit *SU) override {
1018
26.5k
    if (SU->isScheduled)
1019
0
      return;
1020
26.5k
    Top.releaseNode(SU, SU->TopReadyCycle);
1021
26.5k
  }
1022
1023
  // Only called for roots.
1024
8.07k
  void releaseBottomNode(SUnit *SU) override {
1025
8.07k
    BotRoots.push_back(SU);
1026
8.07k
  }
1027
1028
protected:
1029
  void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
1030
1031
  void pickNodeFromQueue(SchedCandidate &Cand);
1032
};
1033
1034
/// Create the standard converging machine scheduler. This will be used as the
1035
/// default scheduler if the target does not set a default.
1036
/// Adds default DAG mutations.
1037
ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C);
1038
1039
/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
1040
ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C);
1041
1042
std::unique_ptr<ScheduleDAGMutation>
1043
createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1044
                             const TargetRegisterInfo *TRI);
1045
1046
std::unique_ptr<ScheduleDAGMutation>
1047
createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1048
                              const TargetRegisterInfo *TRI);
1049
1050
std::unique_ptr<ScheduleDAGMutation>
1051
createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1052
                               const TargetRegisterInfo *TRI);
1053
1054
} // end namespace llvm
1055
1056
#endif // LLVM_CODEGEN_MACHINESCHEDULER_H