Coverage Report

Created: 2017-10-03 07:32

/Users/buildslave/jenkins/sharedspace/clang-stage2-coverage-R@2/llvm/include/llvm/CodeGen/ScheduleDAGInstrs.h
Line
Count
Source (jump to first uncovered line)
1
//===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
/// \file Implements the ScheduleDAGInstrs class, which implements scheduling
11
/// for a MachineInstr-based dependency graph.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
16
#define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
17
18
#include "llvm/ADT/DenseMap.h"
19
#include "llvm/ADT/PointerIntPair.h"
20
#include "llvm/ADT/STLExtras.h"
21
#include "llvm/ADT/SmallVector.h"
22
#include "llvm/ADT/SparseMultiSet.h"
23
#include "llvm/ADT/SparseSet.h"
24
#include "llvm/CodeGen/LivePhysRegs.h"
25
#include "llvm/CodeGen/MachineBasicBlock.h"
26
#include "llvm/CodeGen/ScheduleDAG.h"
27
#include "llvm/CodeGen/TargetSchedule.h"
28
#include "llvm/MC/LaneBitmask.h"
29
#include "llvm/Target/TargetRegisterInfo.h"
30
#include <cassert>
31
#include <cstdint>
32
#include <list>
33
#include <utility>
34
#include <vector>
35
36
namespace llvm {
37
38
  class LiveIntervals;
39
  class MachineFrameInfo;
40
  class MachineFunction;
41
  class MachineInstr;
42
  class MachineLoopInfo;
43
  class MachineOperand;
44
  struct MCSchedClassDesc;
45
  class PressureDiffs;
46
  class PseudoSourceValue;
47
  class RegPressureTracker;
48
  class UndefValue;
49
  class Value;
50
51
  /// An individual mapping from virtual register number to SUnit.
52
  struct VReg2SUnit {
53
    unsigned VirtReg;
54
    LaneBitmask LaneMask;
55
    SUnit *SU;
56
57
    VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
58
20.8M
      : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
59
60
63.6M
    unsigned getSparseSetIndex() const {
61
63.6M
      return TargetRegisterInfo::virtReg2Index(VirtReg);
62
63.6M
    }
63
  };
64
65
  /// Mapping from virtual register to SUnit including an operand index.
66
  struct VReg2SUnitOperIdx : public VReg2SUnit {
67
    unsigned OperandIndex;
68
69
    VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
70
                      unsigned OperandIndex, SUnit *SU)
71
15.7M
      : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
72
  };
73
74
  /// Record a physical register access.
75
  /// For non-data-dependent uses, OpIdx == -1.
76
  struct PhysRegSUOper {
77
    SUnit *SU;
78
    int OpIdx;
79
    unsigned Reg;
80
81
17.9M
    PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
82
83
121M
    unsigned getSparseSetIndex() const { return Reg; }
84
  };
85
86
  /// Use a SparseMultiSet to track physical registers. Storage is only
87
  /// allocated once for the pass. It can be cleared in constant time and reused
88
  /// without any frees.
89
  using Reg2SUnitsMap =
90
      SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>;
91
92
  /// Use SparseSet as a SparseMap by relying on the fact that it never
93
  /// compares ValueT's, only unsigned keys. This allows the set to be cleared
94
  /// between scheduling regions in constant time as long as ValueT does not
95
  /// require a destructor.
96
  using VReg2SUnitMap = SparseSet<VReg2SUnit, VirtReg2IndexFunctor>;
97
98
  /// Track local uses of virtual registers. These uses are gathered by the DAG
99
  /// builder and may be consulted by the scheduler to avoid iterating an entire
100
  /// vreg use list.
101
  using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>;
102
103
  using VReg2SUnitOperIdxMultiMap =
104
      SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>;
105
106
  using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
107
108
  struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> {
109
    UnderlyingObject(ValueType V, bool MayAlias)
110
1.58M
        : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {}
111
112
2.65M
    ValueType getValue() const { return getPointer(); }
113
2.65M
    bool mayAlias() const { return getInt(); }
114
  };
115
116
  using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>;
117
118
  /// A ScheduleDAG for scheduling lists of MachineInstr.
119
  class ScheduleDAGInstrs : public ScheduleDAG {
120
  protected:
121
    const MachineLoopInfo *MLI;
122
    const MachineFrameInfo &MFI;
123
124
    /// TargetSchedModel provides an interface to the machine model.
125
    TargetSchedModel SchedModel;
126
127
    /// True if the DAG builder should remove kill flags (in preparation for
128
    /// rescheduling).
129
    bool RemoveKillFlags;
130
131
    /// The standard DAG builder does not normally include terminators as DAG
132
    /// nodes because it does not create the necessary dependencies to prevent
133
    /// reordering. A specialized scheduler can override
134
    /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
135
    /// it has taken responsibility for scheduling the terminator correctly.
136
    bool CanHandleTerminators = false;
137
138
    /// Whether lane masks should get tracked.
139
    bool TrackLaneMasks = false;
140
141
    // State specific to the current scheduling region.
142
    // ------------------------------------------------
143
144
    /// The block in which to insert instructions
145
    MachineBasicBlock *BB;
146
147
    /// The beginning of the range to be scheduled.
148
    MachineBasicBlock::iterator RegionBegin;
149
150
    /// The end of the range to be scheduled.
151
    MachineBasicBlock::iterator RegionEnd;
152
153
    /// Instructions in this region (distance(RegionBegin, RegionEnd)).
154
    unsigned NumRegionInstrs;
155
156
    /// After calling BuildSchedGraph, each machine instruction in the current
157
    /// scheduling region is mapped to an SUnit.
158
    DenseMap<MachineInstr*, SUnit*> MISUnitMap;
159
160
    // State internal to DAG building.
161
    // -------------------------------
162
163
    /// Defs, Uses - Remember where defs and uses of each register are as we
164
    /// iterate upward through the instructions. This is allocated here instead
165
    /// of inside BuildSchedGraph to avoid the need for it to be initialized and
166
    /// destructed for each block.
167
    Reg2SUnitsMap Defs;
168
    Reg2SUnitsMap Uses;
169
170
    /// Tracks the last instruction(s) in this region defining each virtual
171
    /// register. There may be multiple current definitions for a register with
172
    /// disjunct lanemasks.
173
    VReg2SUnitMultiMap CurrentVRegDefs;
174
    /// Tracks the last instructions in this region using each virtual register.
175
    VReg2SUnitOperIdxMultiMap CurrentVRegUses;
176
177
    AliasAnalysis *AAForDep = nullptr;
178
179
    /// Remember a generic side-effecting instruction as we proceed.
180
    /// No other SU ever gets scheduled around it (except in the special
181
    /// case of a huge region that gets reduced).
182
    SUnit *BarrierChain = nullptr;
183
184
  public:
185
    /// A list of SUnits, used in Value2SUsMap, during DAG construction.
186
    /// Note: to gain speed it might be worth investigating an optimized
187
    /// implementation of this data structure, such as a singly linked list
188
    /// with a memory pool (SmallVector was tried but slow and SparseSet is not
189
    /// applicable).
190
    using SUList = std::list<SUnit *>;
191
192
  protected:
193
    /// \brief A map from ValueType to SUList, used during DAG construction, as
194
    /// a means of remembering which SUs depend on which memory locations.
195
    class Value2SUsMap;
196
197
    /// Reduces maps in FIFO order, by N SUs. This is better than turning
198
    /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
199
    /// it avoids unnecessary edges between seen SUs above the new BarrierChain,
200
    /// and those below it.
201
    void reduceHugeMemNodeMaps(Value2SUsMap &stores,
202
                               Value2SUsMap &loads, unsigned N);
203
204
    /// \brief Adds a chain edge between SUa and SUb, but only if both
205
    /// AliasAnalysis and Target fail to deny the dependency.
206
    void addChainDependency(SUnit *SUa, SUnit *SUb,
207
                            unsigned Latency = 0);
208
209
    /// Adds dependencies as needed from all SUs in list to SU.
210
1.83M
    void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) {
211
1.83M
      for (SUnit *Entry : SUs)
212
26.6M
        addChainDependency(SU, Entry, Latency);
213
1.83M
    }
214
215
    /// Adds dependencies as needed from all SUs in map, to SU.
216
    void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap);
217
218
    /// Adds dependencies as needed to SU, from all SUs mapped to V.
219
    void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap,
220
                              ValueType V);
221
222
    /// Adds barrier chain edges from all SUs in map, and then clear the map.
223
    /// This is equivalent to insertBarrierChain(), but optimized for the common
224
    /// case where the new BarrierChain (a global memory object) has a higher
225
    /// NodeNum than all SUs in map. It is assumed BarrierChain has been set
226
    /// before calling this.
227
    void addBarrierChain(Value2SUsMap &map);
228
229
    /// Inserts a barrier chain in a huge region, far below current SU.
230
    /// Adds barrier chain edges from all SUs in map with higher NodeNums than
231
    /// this new BarrierChain, and remove them from map. It is assumed
232
    /// BarrierChain has been set before calling this.
233
    void insertBarrierChain(Value2SUsMap &map);
234
235
    /// For an unanalyzable memory access, this Value is used in maps.
236
    UndefValue *UnknownValue;
237
238
    using DbgValueVector =
239
        std::vector<std::pair<MachineInstr *, MachineInstr *>>;
240
    /// Remember instruction that precedes DBG_VALUE.
241
    /// These are generated by buildSchedGraph but persist so they can be
242
    /// referenced when emitting the final schedule.
243
    DbgValueVector DbgValues;
244
    MachineInstr *FirstDbgValue = nullptr;
245
246
    /// Set of live physical registers for updating kill flags.
247
    LivePhysRegs LiveRegs;
248
249
  public:
250
    explicit ScheduleDAGInstrs(MachineFunction &mf,
251
                               const MachineLoopInfo *mli,
252
                               bool RemoveKillFlags = false);
253
254
600k
    ~ScheduleDAGInstrs() override = default;
255
256
    /// Gets the machine model for instruction scheduling.
257
4.08M
    const TargetSchedModel *getSchedModel() const { return &SchedModel; }
258
259
    /// Resolves and cache a resolved scheduling class for an SUnit.
260
72.0M
    const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
261
72.0M
      if (
!SU->SchedClass && 72.0M
SchedModel.hasInstrSchedModel()16.7M
)
262
16.1M
        SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
263
72.0M
      return SU->SchedClass;
264
72.0M
    }
265
266
    /// Returns an iterator to the top of the current scheduling region.
267
8.21M
    MachineBasicBlock::iterator begin() const { return RegionBegin; }
268
269
    /// Returns an iterator to the bottom of the current scheduling region.
270
12.2M
    MachineBasicBlock::iterator end() const { return RegionEnd; }
271
272
    /// Creates a new SUnit and return a ptr to it.
273
    SUnit *newSUnit(MachineInstr *MI);
274
275
    /// Returns an existing SUnit for this MI, or nullptr.
276
    SUnit *getSUnit(MachineInstr *MI) const;
277
278
    /// If this method returns true, handling of the scheduling regions
279
    /// themselves (in case of a scheduling boundary in MBB) will be done
280
    /// beginning with the topmost region of MBB.
281
0
    virtual bool doMBBSchedRegionsTopDown() const { return false; }
282
283
    /// Prepares to perform scheduling in the given block.
284
    virtual void startBlock(MachineBasicBlock *BB);
285
286
    /// Cleans up after scheduling in the given block.
287
    virtual void finishBlock();
288
289
    /// \brief Initialize the DAG and common scheduler state for a new
290
    /// scheduling region. This does not actually create the DAG, only clears
291
    /// it. The scheduling driver may call BuildSchedGraph multiple times per
292
    /// scheduling region.
293
    virtual void enterRegion(MachineBasicBlock *bb,
294
                             MachineBasicBlock::iterator begin,
295
                             MachineBasicBlock::iterator end,
296
                             unsigned regioninstrs);
297
298
    /// Called when the scheduler has finished scheduling the current region.
299
    virtual void exitRegion();
300
301
    /// Builds SUnits for the current region.
302
    /// If \p RPTracker is non-null, compute register pressure as a side effect.
303
    /// The DAG builder is an efficient place to do it because it already visits
304
    /// operands.
305
    void buildSchedGraph(AliasAnalysis *AA,
306
                         RegPressureTracker *RPTracker = nullptr,
307
                         PressureDiffs *PDiffs = nullptr,
308
                         LiveIntervals *LIS = nullptr,
309
                         bool TrackLaneMasks = false);
310
311
    /// \brief Adds dependencies from instructions in the current list of
312
    /// instructions being scheduled to scheduling barrier. We want to make sure
313
    /// instructions which define registers that are either used by the
314
    /// terminator or are live-out are properly scheduled. This is especially
315
    /// important when the definition latency of the return value(s) are too
316
    /// high to be hidden by the branch or when the liveout registers used by
317
    /// instructions in the fallthrough block.
318
    void addSchedBarrierDeps();
319
320
    /// Orders nodes according to selected style.
321
    ///
322
    /// Typically, a scheduling algorithm will implement schedule() without
323
    /// overriding enterRegion() or exitRegion().
324
    virtual void schedule() = 0;
325
326
    /// Allow targets to perform final scheduling actions at the level of the
327
    /// whole MachineFunction. By default does nothing.
328
548k
    virtual void finalizeSchedule() {}
329
330
    void dumpNode(const SUnit *SU) const override;
331
332
    /// Returns a label for a DAG node that points to an instruction.
333
    std::string getGraphNodeLabel(const SUnit *SU) const override;
334
335
    /// Returns a label for the region of code covered by the DAG.
336
    std::string getDAGName() const override;
337
338
    /// Fixes register kill flags that scheduling has made invalid.
339
    void fixupKills(MachineBasicBlock &MBB);
340
341
  protected:
342
    void initSUnits();
343
    void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
344
    void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
345
    void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
346
    void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
347
348
    /// Initializes register live-range state for updating kills.
349
    /// PostRA helper for rewriting kill flags.
350
    void startBlockForKills(MachineBasicBlock *BB);
351
352
    /// Toggles a register operand kill flag.
353
    ///
354
    /// Other adjustments may be made to the instruction if necessary. Return
355
    /// true if the operand has been deleted, false if not.
356
    void toggleKillFlag(MachineInstr &MI, MachineOperand &MO);
357
358
    /// Returns a mask for which lanes get read/written by the given (register)
359
    /// machine operand.
360
    LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
361
  };
362
363
  /// Creates a new SUnit and return a ptr to it.
364
17.1M
  inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
365
#ifndef NDEBUG
366
    const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
367
#endif
368
    SUnits.emplace_back(MI, (unsigned)SUnits.size());
369
17.1M
    assert((Addr == nullptr || Addr == &SUnits[0]) &&
370
17.1M
           "SUnits std::vector reallocated on the fly!");
371
17.1M
    return &SUnits.back();
372
17.1M
  }
373
374
  /// Returns an existing SUnit for this MI, or nullptr.
375
285k
  inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
376
285k
    DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
377
285k
    if (I == MISUnitMap.end())
378
44.5k
      return nullptr;
379
241k
    return I->second;
380
285k
  }
381
382
} // end namespace llvm
383
384
#endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H