Coverage Report

Created: 2017-10-03 07:32

/Users/buildslave/jenkins/sharedspace/clang-stage2-coverage-R@2/llvm/lib/Support/ThreadPool.cpp
Line
Count
Source
1
//==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file implements a crude C++11 based thread pool.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Support/ThreadPool.h"
15
16
#include "llvm/Config/llvm-config.h"
17
#include "llvm/Support/raw_ostream.h"
18
19
using namespace llvm;
20
21
#if LLVM_ENABLE_THREADS
22
23
// Default to std::thread::hardware_concurrency
24
7
ThreadPool::ThreadPool() : ThreadPool(std::thread::hardware_concurrency()) {}
Unexecuted instantiation: llvm::ThreadPool::ThreadPool()
llvm::ThreadPool::ThreadPool()
Line
Count
Source
24
7
ThreadPool::ThreadPool() : ThreadPool(std::thread::hardware_concurrency()) {}
25
26
ThreadPool::ThreadPool(unsigned ThreadCount)
27
115
    : ActiveThreads(0), EnableFlag(true) {
28
115
  // Create ThreadCount threads that will loop forever, wait on QueueCondition
29
115
  // for tasks to be queued or the Pool to be destroyed.
30
115
  Threads.reserve(ThreadCount);
31
360
  for (unsigned ThreadID = 0; 
ThreadID < ThreadCount360
;
++ThreadID245
) {
32
245
    Threads.emplace_back([&] {
33
471
      while (
true471
) {
34
469
        PackagedTaskTy Task;
35
469
        {
36
469
          std::unique_lock<std::mutex> LockGuard(QueueLock);
37
469
          // Wait for tasks to be pushed in the queue
38
469
          QueueCondition.wait(LockGuard,
39
793
                              [&] 
{ return !EnableFlag || 793
!Tasks.empty()522
; });
40
469
          // Exit condition
41
469
          if (
!EnableFlag && 469
Tasks.empty()271
)
42
243
            return;
43
226
          // Yeah, we have a task, grab it and release the lock on the queue
44
226
45
226
          // We first need to signal that we are active before popping the queue
46
226
          // in order for wait() to properly detect that even if the queue is
47
226
          // empty, there is still a task in flight.
48
226
          {
49
226
            ++ActiveThreads;
50
226
            std::unique_lock<std::mutex> LockGuard(CompletionLock);
51
226
          }
52
226
          Task = std::move(Tasks.front());
53
226
          Tasks.pop();
54
226
        }
55
226
        // Run the task we just grabbed
56
226
        Task();
57
226
58
226
        {
59
226
          // Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait()
60
226
          std::unique_lock<std::mutex> LockGuard(CompletionLock);
61
226
          --ActiveThreads;
62
226
        }
63
226
64
226
        // Notify task completion, in case someone waits on ThreadPool::wait()
65
226
        CompletionCondition.notify_all();
66
226
      }
67
245
    });
68
245
  }
69
115
}
70
71
97
void ThreadPool::wait() {
72
97
  // Wait for all threads to complete and the queue to be empty
73
97
  std::unique_lock<std::mutex> LockGuard(CompletionLock);
74
97
  // The order of the checks for ActiveThreads and Tasks.empty() matters because
75
97
  // any active threads might be modifying the Tasks queue, and this would be a
76
97
  // race.
77
97
  CompletionCondition.wait(LockGuard,
78
229
                           [&] 
{ return !ActiveThreads && 229
Tasks.empty()147
; });
79
97
}
80
81
226
std::shared_future<void> ThreadPool::asyncImpl(TaskTy Task) {
82
226
  /// Wrap the Task in a packaged_task to return a future object.
83
226
  PackagedTaskTy PackagedTask(std::move(Task));
84
226
  auto Future = PackagedTask.get_future();
85
226
  {
86
226
    // Lock the queue and push the new task
87
226
    std::unique_lock<std::mutex> LockGuard(QueueLock);
88
226
89
226
    // Don't allow enqueueing after disabling the pool
90
226
    assert(EnableFlag && "Queuing a thread during ThreadPool destruction");
91
226
92
226
    Tasks.push(std::move(PackagedTask));
93
226
  }
94
226
  QueueCondition.notify_one();
95
226
  return Future.share();
96
226
}
97
98
// The destructor joins all threads, waiting for completion.
99
115
ThreadPool::~ThreadPool() {
100
115
  {
101
115
    std::unique_lock<std::mutex> LockGuard(QueueLock);
102
115
    EnableFlag = false;
103
115
  }
104
115
  QueueCondition.notify_all();
105
115
  for (auto &Worker : Threads)
106
242
    Worker.join();
107
115
}
108
109
#else // LLVM_ENABLE_THREADS Disabled
110
111
ThreadPool::ThreadPool() : ThreadPool(0) {}
112
113
// No threads are launched, issue a warning if ThreadCount is not 0
114
ThreadPool::ThreadPool(unsigned ThreadCount)
115
    : ActiveThreads(0) {
116
  if (ThreadCount) {
117
    errs() << "Warning: request a ThreadPool with " << ThreadCount
118
           << " threads, but LLVM_ENABLE_THREADS has been turned off\n";
119
  }
120
}
121
122
void ThreadPool::wait() {
123
  // Sequential implementation running the tasks
124
  while (!Tasks.empty()) {
125
    auto Task = std::move(Tasks.front());
126
    Tasks.pop();
127
    Task();
128
  }
129
}
130
131
std::shared_future<void> ThreadPool::asyncImpl(TaskTy Task) {
132
  // Get a Future with launch::deferred execution using std::async
133
  auto Future = std::async(std::launch::deferred, std::move(Task)).share();
134
  // Wrap the future so that both ThreadPool::wait() can operate and the
135
  // returned future can be sync'ed on.
136
  PackagedTaskTy PackagedTask([Future]() { Future.get(); });
137
  Tasks.push(std::move(PackagedTask));
138
  return Future;
139
}
140
141
ThreadPool::~ThreadPool() {
142
  wait();
143
}
144
145
#endif