Coverage Report

Created: 2018-11-16 02:38

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/include/llvm/Analysis/ScalarEvolutionExpander.h
Line
Count
Source (jump to first uncovered line)
1
//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file defines the classes used to generate code from scalar expressions.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
15
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
16
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/DenseSet.h"
19
#include "llvm/ADT/Optional.h"
20
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
22
#include "llvm/Analysis/TargetFolder.h"
23
#include "llvm/IR/IRBuilder.h"
24
#include "llvm/IR/ValueHandle.h"
25
26
namespace llvm {
27
  class TargetTransformInfo;
28
29
  /// Return true if the given expression is safe to expand in the sense that
30
  /// all materialized values are safe to speculate anywhere their operands are
31
  /// defined.
32
  bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
33
34
  /// Return true if the given expression is safe to expand in the sense that
35
  /// all materialized values are defined and safe to speculate at the specified
36
  /// location and their operands are defined at this location.
37
  bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
38
                        ScalarEvolution &SE);
39
40
  /// This class uses information about analyze scalars to rewrite expressions
41
  /// in canonical form.
42
  ///
43
  /// Clients should create an instance of this class when rewriting is needed,
44
  /// and destroy it when finished to allow the release of the associated
45
  /// memory.
46
  class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
47
    ScalarEvolution &SE;
48
    const DataLayout &DL;
49
50
    // New instructions receive a name to identify them with the current pass.
51
    const char* IVName;
52
53
    // InsertedExpressions caches Values for reuse, so must track RAUW.
54
    DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
55
        InsertedExpressions;
56
57
    // InsertedValues only flags inserted instructions so needs no RAUW.
58
    DenseSet<AssertingVH<Value>> InsertedValues;
59
    DenseSet<AssertingVH<Value>> InsertedPostIncValues;
60
61
    /// A memoization of the "relevant" loop for a given SCEV.
62
    DenseMap<const SCEV *, const Loop *> RelevantLoops;
63
64
    /// Addrecs referring to any of the given loops are expanded in post-inc
65
    /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
66
    /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
67
    /// phi starting at 1. This is only supported in non-canonical mode.
68
    PostIncLoopSet PostIncLoops;
69
70
    /// When this is non-null, addrecs expanded in the loop it indicates should
71
    /// be inserted with increments at IVIncInsertPos.
72
    const Loop *IVIncInsertLoop;
73
74
    /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
75
    /// increment at this position.
76
    Instruction *IVIncInsertPos;
77
78
    /// Phis that complete an IV chain. Reuse
79
    DenseSet<AssertingVH<PHINode>> ChainedPhis;
80
81
    /// When true, expressions are expanded in "canonical" form. In particular,
82
    /// addrecs are expanded as arithmetic based on a canonical induction
83
    /// variable. When false, expression are expanded in a more literal form.
84
    bool CanonicalMode;
85
86
    /// When invoked from LSR, the expander is in "strength reduction" mode. The
87
    /// only difference is that phi's are only reused if they are already in
88
    /// "expanded" form.
89
    bool LSRMode;
90
91
    typedef IRBuilder<TargetFolder> BuilderType;
92
    BuilderType Builder;
93
94
    // RAII object that stores the current insertion point and restores it when
95
    // the object is destroyed. This includes the debug location.  Duplicated
96
    // from InsertPointGuard to add SetInsertPoint() which is used to updated
97
    // InsertPointGuards stack when insert points are moved during SCEV
98
    // expansion.
99
    class SCEVInsertPointGuard {
100
      IRBuilderBase &Builder;
101
      AssertingVH<BasicBlock> Block;
102
      BasicBlock::iterator Point;
103
      DebugLoc DbgLoc;
104
      SCEVExpander *SE;
105
106
      SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
107
      SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
108
109
    public:
110
      SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
111
          : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
112
3.27M
            DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
113
3.27M
        SE->InsertPointGuards.push_back(this);
114
3.27M
      }
115
116
3.27M
      ~SCEVInsertPointGuard() {
117
3.27M
        // These guards should always created/destroyed in FIFO order since they
118
3.27M
        // are used to guard lexically scoped blocks of code in
119
3.27M
        // ScalarEvolutionExpander.
120
3.27M
        assert(SE->InsertPointGuards.back() == this);
121
3.27M
        SE->InsertPointGuards.pop_back();
122
3.27M
        Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
123
3.27M
        Builder.SetCurrentDebugLocation(DbgLoc);
124
3.27M
      }
125
126
25
      BasicBlock::iterator GetInsertPoint() const { return Point; }
127
1
      void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
128
    };
129
130
    /// Stack of pointers to saved insert points, used to keep insert points
131
    /// consistent when instructions are moved.
132
    SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
133
134
#ifndef NDEBUG
135
    const char *DebugType;
136
#endif
137
138
    friend struct SCEVVisitor<SCEVExpander, Value*>;
139
140
  public:
141
    /// Construct a SCEVExpander in "canonical" mode.
142
    explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
143
                          const char *name)
144
        : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
145
          IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
146
629k
          Builder(se.getContext(), TargetFolder(DL)) {
147
629k
#ifndef NDEBUG
148
629k
      DebugType = "";
149
629k
#endif
150
629k
    }
151
152
629k
    ~SCEVExpander() {
153
629k
      // Make sure the insert point guard stack is consistent.
154
629k
      assert(InsertPointGuards.empty());
155
629k
    }
156
157
#ifndef NDEBUG
158
    void setDebugType(const char* s) { DebugType = s; }
159
#endif
160
161
    /// Erase the contents of the InsertedExpressions map so that users trying
162
    /// to expand the same expression into multiple BasicBlocks or different
163
    /// places within the same BasicBlock can do so.
164
332k
    void clear() {
165
332k
      InsertedExpressions.clear();
166
332k
      InsertedValues.clear();
167
332k
      InsertedPostIncValues.clear();
168
332k
      ChainedPhis.clear();
169
332k
    }
170
171
    /// Return true for expressions that may incur non-trivial cost to evaluate
172
    /// at runtime.
173
    ///
174
    /// At is an optional parameter which specifies point in code where user is
175
    /// going to expand this expression. Sometimes this knowledge can lead to a
176
    /// more accurate cost estimation.
177
    bool isHighCostExpansion(const SCEV *Expr, Loop *L,
178
90.8k
                             const Instruction *At = nullptr) {
179
90.8k
      SmallPtrSet<const SCEV *, 8> Processed;
180
90.8k
      return isHighCostExpansionHelper(Expr, L, At, Processed);
181
90.8k
    }
182
183
    /// This method returns the canonical induction variable of the specified
184
    /// type for the specified loop (inserting one if there is none).  A
185
    /// canonical induction variable starts at zero and steps by one on each
186
    /// iteration.
187
    PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
188
189
    /// Return the induction variable increment's IV operand.
190
    Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
191
                                 bool allowScale);
192
193
    /// Utility for hoisting an IV increment.
194
    bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
195
196
    /// replace congruent phis with their most canonical representative. Return
197
    /// the number of phis eliminated.
198
    unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
199
                                 SmallVectorImpl<WeakTrackingVH> &DeadInsts,
200
                                 const TargetTransformInfo *TTI = nullptr);
201
202
    /// Insert code to directly compute the specified SCEV expression into the
203
    /// program.  The inserted code is inserted into the specified block.
204
    Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
205
206
    /// Insert code to directly compute the specified SCEV expression into the
207
    /// program.  The inserted code is inserted into the SCEVExpander's current
208
    /// insertion point. If a type is specified, the result will be expanded to
209
    /// have that type, with a cast if necessary.
210
    Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
211
212
213
    /// Generates a code sequence that evaluates this predicate.  The inserted
214
    /// instructions will be at position \p Loc.  The result will be of type i1
215
    /// and will have a value of 0 when the predicate is false and 1 otherwise.
216
    Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
217
218
    /// A specialized variant of expandCodeForPredicate, handling the case when
219
    /// we are expanding code for a SCEVEqualPredicate.
220
    Value *expandEqualPredicate(const SCEVEqualPredicate *Pred,
221
                                Instruction *Loc);
222
223
    /// Generates code that evaluates if the \p AR expression will overflow.
224
    Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
225
                                 bool Signed);
226
227
    /// A specialized variant of expandCodeForPredicate, handling the case when
228
    /// we are expanding code for a SCEVWrapPredicate.
229
    Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
230
231
    /// A specialized variant of expandCodeForPredicate, handling the case when
232
    /// we are expanding code for a SCEVUnionPredicate.
233
    Value *expandUnionPredicate(const SCEVUnionPredicate *Pred,
234
                                Instruction *Loc);
235
236
    /// Set the current IV increment loop and position.
237
102k
    void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
238
102k
      assert(!CanonicalMode &&
239
102k
             "IV increment positions are not supported in CanonicalMode");
240
102k
      IVIncInsertLoop = L;
241
102k
      IVIncInsertPos = Pos;
242
102k
    }
243
244
    /// Enable post-inc expansion for addrecs referring to the given
245
    /// loops. Post-inc expansion is only supported in non-canonical mode.
246
500k
    void setPostInc(const PostIncLoopSet &L) {
247
500k
      assert(!CanonicalMode &&
248
500k
             "Post-inc expansion is not supported in CanonicalMode");
249
500k
      PostIncLoops = L;
250
500k
    }
251
252
    /// Disable all post-inc expansion.
253
506k
    void clearPostInc() {
254
506k
      PostIncLoops.clear();
255
506k
256
506k
      // When we change the post-inc loop set, cached expansions may no
257
506k
      // longer be valid.
258
506k
      InsertedPostIncValues.clear();
259
506k
    }
260
261
    /// Disable the behavior of expanding expressions in canonical form rather
262
    /// than in a more literal form. Non-canonical mode is useful for late
263
    /// optimization passes.
264
324k
    void disableCanonicalMode() { CanonicalMode = false; }
265
266
102k
    void enableLSRMode() { LSRMode = true; }
267
268
    /// Set the current insertion point. This is useful if multiple calls to
269
    /// expandCodeFor() are going to be made with the same insert point and the
270
    /// insert point may be moved during one of the expansions (e.g. if the
271
    /// insert point is not a block terminator).
272
923k
    void setInsertPoint(Instruction *IP) {
273
923k
      assert(IP);
274
923k
      Builder.SetInsertPoint(IP);
275
923k
    }
276
277
    /// Clear the current insertion point. This is useful if the instruction
278
    /// that had been serving as the insertion point may have been deleted.
279
87.8k
    void clearInsertPoint() {
280
87.8k
      Builder.ClearInsertionPoint();
281
87.8k
    }
282
283
    /// Return true if the specified instruction was inserted by the code
284
    /// rewriter.  If so, the client should not modify the instruction.
285
1.30M
    bool isInsertedInstruction(Instruction *I) const {
286
1.30M
      return InsertedValues.count(I) || 
InsertedPostIncValues.count(I)1.03M
;
287
1.30M
    }
288
289
1.21k
    void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
290
291
    /// Try to find existing LLVM IR value for S available at the point At.
292
    Value *getExactExistingExpansion(const SCEV *S, const Instruction *At,
293
                                     Loop *L);
294
295
    /// Try to find the ValueOffsetPair for S. The function is mainly used to
296
    /// check whether S can be expanded cheaply.  If this returns a non-None
297
    /// value, we know we can codegen the `ValueOffsetPair` into a suitable
298
    /// expansion identical with S so that S can be expanded cheaply.
299
    ///
300
    /// L is a hint which tells in which loop to look for the suitable value.
301
    /// On success return value which is equivalent to the expanded S at point
302
    /// At. Return nullptr if value was not found.
303
    ///
304
    /// Note that this function does not perform an exhaustive search. I.e if it
305
    /// didn't find any value it does not mean that there is no such value.
306
    ///
307
    Optional<ScalarEvolution::ValueOffsetPair>
308
    getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L);
309
310
  private:
311
0
    LLVMContext &getContext() const { return SE.getContext(); }
312
313
    /// Recursive helper function for isHighCostExpansion.
314
    bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
315
                                   const Instruction *At,
316
                                   SmallPtrSetImpl<const SCEV *> &Processed);
317
318
    /// Insert the specified binary operator, doing a small amount of work to
319
    /// avoid inserting an obviously redundant operation.
320
    Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
321
322
    /// Arrange for there to be a cast of V to Ty at IP, reusing an existing
323
    /// cast if a suitable one exists, moving an existing cast if a suitable one
324
    /// exists but isn't in the right place, or creating a new one.
325
    Value *ReuseOrCreateCast(Value *V, Type *Ty,
326
                             Instruction::CastOps Op,
327
                             BasicBlock::iterator IP);
328
329
    /// Insert a cast of V to the specified type, which must be possible with a
330
    /// noop cast, doing what we can to share the casts.
331
    Value *InsertNoopCastOfTo(Value *V, Type *Ty);
332
333
    /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
334
    /// ptrtoint+arithmetic+inttoptr.
335
    Value *expandAddToGEP(const SCEV *const *op_begin,
336
                          const SCEV *const *op_end,
337
                          PointerType *PTy, Type *Ty, Value *V);
338
    Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V);
339
340
    /// Find a previous Value in ExprValueMap for expand.
341
    ScalarEvolution::ValueOffsetPair
342
    FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
343
344
    Value *expand(const SCEV *S);
345
346
    /// Determine the most "relevant" loop for the given SCEV.
347
    const Loop *getRelevantLoop(const SCEV *);
348
349
499k
    Value *visitConstant(const SCEVConstant *S) {
350
499k
      return S->getValue();
351
499k
    }
352
353
    Value *visitTruncateExpr(const SCEVTruncateExpr *S);
354
355
    Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
356
357
    Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
358
359
    Value *visitAddExpr(const SCEVAddExpr *S);
360
361
    Value *visitMulExpr(const SCEVMulExpr *S);
362
363
    Value *visitUDivExpr(const SCEVUDivExpr *S);
364
365
    Value *visitAddRecExpr(const SCEVAddRecExpr *S);
366
367
    Value *visitSMaxExpr(const SCEVSMaxExpr *S);
368
369
    Value *visitUMaxExpr(const SCEVUMaxExpr *S);
370
371
1.22M
    Value *visitUnknown(const SCEVUnknown *S) {
372
1.22M
      return S->getValue();
373
1.22M
    }
374
375
    void rememberInstruction(Value *I);
376
377
    bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
378
379
    bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
380
381
    Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
382
    PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
383
                                       const Loop *L,
384
                                       Type *ExpandTy,
385
                                       Type *IntTy,
386
                                       Type *&TruncTy,
387
                                       bool &InvertStep);
388
    Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
389
                       Type *ExpandTy, Type *IntTy, bool useSubtract);
390
391
    void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
392
                        Instruction *Pos, PHINode *LoopPhi);
393
394
    void fixupInsertPoints(Instruction *I);
395
  };
396
}
397
398
#endif