Coverage Report

Created: 2019-07-24 05:18

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/include/llvm/CodeGen/FastISel.h
Line
Count
Source (jump to first uncovered line)
1
//===- FastISel.h - Definition of the FastISel class ------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file defines the FastISel class.
11
///
12
//===----------------------------------------------------------------------===//
13
14
#ifndef LLVM_CODEGEN_FASTISEL_H
15
#define LLVM_CODEGEN_FASTISEL_H
16
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/ADT/StringRef.h"
20
#include "llvm/CodeGen/MachineBasicBlock.h"
21
#include "llvm/CodeGen/TargetLowering.h"
22
#include "llvm/IR/Attributes.h"
23
#include "llvm/IR/CallSite.h"
24
#include "llvm/IR/CallingConv.h"
25
#include "llvm/IR/DebugLoc.h"
26
#include "llvm/IR/DerivedTypes.h"
27
#include "llvm/IR/InstrTypes.h"
28
#include "llvm/IR/IntrinsicInst.h"
29
#include "llvm/Support/MachineValueType.h"
30
#include <algorithm>
31
#include <cstdint>
32
#include <utility>
33
34
namespace llvm {
35
36
class AllocaInst;
37
class BasicBlock;
38
class CallInst;
39
class Constant;
40
class ConstantFP;
41
class DataLayout;
42
class FunctionLoweringInfo;
43
class LoadInst;
44
class MachineConstantPool;
45
class MachineFrameInfo;
46
class MachineFunction;
47
class MachineInstr;
48
class MachineMemOperand;
49
class MachineOperand;
50
class MachineRegisterInfo;
51
class MCContext;
52
class MCInstrDesc;
53
class MCSymbol;
54
class TargetInstrInfo;
55
class TargetLibraryInfo;
56
class TargetMachine;
57
class TargetRegisterClass;
58
class TargetRegisterInfo;
59
class Type;
60
class User;
61
class Value;
62
63
/// This is a fast-path instruction selection class that generates poor
64
/// code and doesn't support illegal types or non-trivial lowering, but runs
65
/// quickly.
66
class FastISel {
67
public:
68
  using ArgListEntry = TargetLoweringBase::ArgListEntry;
69
  using ArgListTy = TargetLoweringBase::ArgListTy;
70
  struct CallLoweringInfo {
71
    Type *RetTy = nullptr;
72
    bool RetSExt : 1;
73
    bool RetZExt : 1;
74
    bool IsVarArg : 1;
75
    bool IsInReg : 1;
76
    bool DoesNotReturn : 1;
77
    bool IsReturnValueUsed : 1;
78
    bool IsPatchPoint : 1;
79
80
    // IsTailCall Should be modified by implementations of FastLowerCall
81
    // that perform tail call conversions.
82
    bool IsTailCall = false;
83
84
    unsigned NumFixedArgs = -1;
85
    CallingConv::ID CallConv = CallingConv::C;
86
    const Value *Callee = nullptr;
87
    MCSymbol *Symbol = nullptr;
88
    ArgListTy Args;
89
    ImmutableCallSite *CS = nullptr;
90
    MachineInstr *Call = nullptr;
91
    unsigned ResultReg = 0;
92
    unsigned NumResultRegs = 0;
93
94
    SmallVector<Value *, 16> OutVals;
95
    SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
96
    SmallVector<unsigned, 16> OutRegs;
97
    SmallVector<ISD::InputArg, 4> Ins;
98
    SmallVector<unsigned, 4> InRegs;
99
100
    CallLoweringInfo()
101
        : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
102
2.19k
          DoesNotReturn(false), IsReturnValueUsed(true), IsPatchPoint(false) {}
103
104
    CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
105
                                const Value *Target, ArgListTy &&ArgsList,
106
2.10k
                                ImmutableCallSite &Call) {
107
2.10k
      RetTy = ResultTy;
108
2.10k
      Callee = Target;
109
2.10k
110
2.10k
      IsInReg = Call.hasRetAttr(Attribute::InReg);
111
2.10k
      DoesNotReturn = Call.doesNotReturn();
112
2.10k
      IsVarArg = FuncTy->isVarArg();
113
2.10k
      IsReturnValueUsed = !Call.getInstruction()->use_empty();
114
2.10k
      RetSExt = Call.hasRetAttr(Attribute::SExt);
115
2.10k
      RetZExt = Call.hasRetAttr(Attribute::ZExt);
116
2.10k
117
2.10k
      CallConv = Call.getCallingConv();
118
2.10k
      Args = std::move(ArgsList);
119
2.10k
      NumFixedArgs = FuncTy->getNumParams();
120
2.10k
121
2.10k
      CS = &Call;
122
2.10k
123
2.10k
      return *this;
124
2.10k
    }
125
126
    CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
127
                                MCSymbol *Target, ArgListTy &&ArgsList,
128
                                ImmutableCallSite &Call,
129
34
                                unsigned FixedArgs = ~0U) {
130
34
      RetTy = ResultTy;
131
34
      Callee = Call.getCalledValue();
132
34
      Symbol = Target;
133
34
134
34
      IsInReg = Call.hasRetAttr(Attribute::InReg);
135
34
      DoesNotReturn = Call.doesNotReturn();
136
34
      IsVarArg = FuncTy->isVarArg();
137
34
      IsReturnValueUsed = !Call.getInstruction()->use_empty();
138
34
      RetSExt = Call.hasRetAttr(Attribute::SExt);
139
34
      RetZExt = Call.hasRetAttr(Attribute::ZExt);
140
34
141
34
      CallConv = Call.getCallingConv();
142
34
      Args = std::move(ArgsList);
143
34
      NumFixedArgs = (FixedArgs == ~0U) ? 
FuncTy->getNumParams()0
: FixedArgs;
144
34
145
34
      CS = &Call;
146
34
147
34
      return *this;
148
34
    }
149
150
    CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
151
                                const Value *Target, ArgListTy &&ArgsList,
152
39
                                unsigned FixedArgs = ~0U) {
153
39
      RetTy = ResultTy;
154
39
      Callee = Target;
155
39
      CallConv = CC;
156
39
      Args = std::move(ArgsList);
157
39
      NumFixedArgs = (FixedArgs == ~0U) ? 
Args.size()0
: FixedArgs;
158
39
      return *this;
159
39
    }
160
161
    CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
162
                                CallingConv::ID CC, Type *ResultTy,
163
                                StringRef Target, ArgListTy &&ArgsList,
164
                                unsigned FixedArgs = ~0U);
165
166
    CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
167
                                MCSymbol *Target, ArgListTy &&ArgsList,
168
16
                                unsigned FixedArgs = ~0U) {
169
16
      RetTy = ResultTy;
170
16
      Symbol = Target;
171
16
      CallConv = CC;
172
16
      Args = std::move(ArgsList);
173
16
      NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : 
FixedArgs0
;
174
16
      return *this;
175
16
    }
176
177
2.10k
    CallLoweringInfo &setTailCall(bool Value = true) {
178
2.10k
      IsTailCall = Value;
179
2.10k
      return *this;
180
2.10k
    }
181
182
39
    CallLoweringInfo &setIsPatchPoint(bool Value = true) {
183
39
      IsPatchPoint = Value;
184
39
      return *this;
185
39
    }
186
187
2.19k
    ArgListTy &getArgs() { return Args; }
188
189
2.19k
    void clearOuts() {
190
2.19k
      OutVals.clear();
191
2.19k
      OutFlags.clear();
192
2.19k
      OutRegs.clear();
193
2.19k
    }
194
195
2.19k
    void clearIns() {
196
2.19k
      Ins.clear();
197
2.19k
      InRegs.clear();
198
2.19k
    }
199
  };
200
201
protected:
202
  DenseMap<const Value *, unsigned> LocalValueMap;
203
  FunctionLoweringInfo &FuncInfo;
204
  MachineFunction *MF;
205
  MachineRegisterInfo &MRI;
206
  MachineFrameInfo &MFI;
207
  MachineConstantPool &MCP;
208
  DebugLoc DbgLoc;
209
  const TargetMachine &TM;
210
  const DataLayout &DL;
211
  const TargetInstrInfo &TII;
212
  const TargetLowering &TLI;
213
  const TargetRegisterInfo &TRI;
214
  const TargetLibraryInfo *LibInfo;
215
  bool SkipTargetIndependentISel;
216
217
  /// The position of the last instruction for materializing constants
218
  /// for use in the current block. It resets to EmitStartPt when it makes sense
219
  /// (for example, it's usually profitable to avoid function calls between the
220
  /// definition and the use)
221
  MachineInstr *LastLocalValue;
222
223
  /// The top most instruction in the current block that is allowed for
224
  /// emitting local variables. LastLocalValue resets to EmitStartPt when it
225
  /// makes sense (for example, on function calls)
226
  MachineInstr *EmitStartPt;
227
228
  /// Last local value flush point. On a subsequent flush, no local value will
229
  /// sink past this point.
230
  MachineBasicBlock::iterator LastFlushPoint;
231
232
public:
233
  virtual ~FastISel();
234
235
  /// Return the position of the last instruction emitted for
236
  /// materializing constants for use in the current block.
237
221k
  MachineInstr *getLastLocalValue() { return LastLocalValue; }
238
239
  /// Update the position of the last instruction emitted for
240
  /// materializing constants for use in the current block.
241
13.4k
  void setLastLocalValue(MachineInstr *I) {
242
13.4k
    EmitStartPt = I;
243
13.4k
    LastLocalValue = I;
244
13.4k
  }
245
246
  /// Set the current block to which generated machine instructions will
247
  /// be appended.
248
  void startNewBlock();
249
250
  /// Flush the local value map and sink local values if possible.
251
  void finishBasicBlock();
252
253
  /// Return current debug location information.
254
0
  DebugLoc getCurDebugLoc() const { return DbgLoc; }
255
256
  /// Do "fast" instruction selection for function arguments and append
257
  /// the machine instructions to the current block. Returns true when
258
  /// successful.
259
  bool lowerArguments();
260
261
  /// Do "fast" instruction selection for the given LLVM IR instruction
262
  /// and append the generated machine instructions to the current block.
263
  /// Returns true if selection was successful.
264
  bool selectInstruction(const Instruction *I);
265
266
  /// Do "fast" instruction selection for the given LLVM IR operator
267
  /// (Instruction or ConstantExpr), and append generated machine instructions
268
  /// to the current block. Return true if selection was successful.
269
  bool selectOperator(const User *I, unsigned Opcode);
270
271
  /// Create a virtual register and arrange for it to be assigned the
272
  /// value for the given LLVM value.
273
  unsigned getRegForValue(const Value *V);
274
275
  /// Look up the value to see if its value is already cached in a
276
  /// register. It may be defined by instructions across blocks or defined
277
  /// locally.
278
  unsigned lookUpRegForValue(const Value *V);
279
280
  /// This is a wrapper around getRegForValue that also takes care of
281
  /// truncating or sign-extending the given getelementptr index value.
282
  std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
283
284
  /// We're checking to see if we can fold \p LI into \p FoldInst. Note
285
  /// that we could have a sequence where multiple LLVM IR instructions are
286
  /// folded into the same machineinstr.  For example we could have:
287
  ///
288
  ///   A: x = load i32 *P
289
  ///   B: y = icmp A, 42
290
  ///   C: br y, ...
291
  ///
292
  /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
293
  /// (and any other folded instructions) because it is between A and C.
294
  ///
295
  /// If we succeed folding, return true.
296
  bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
297
298
  /// The specified machine instr operand is a vreg, and that vreg is
299
  /// being provided by the specified load instruction.  If possible, try to
300
  /// fold the load as an operand to the instruction, returning true if
301
  /// possible.
302
  ///
303
  /// This method should be implemented by targets.
304
  virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
305
479
                                   const LoadInst * /*LI*/) {
306
479
    return false;
307
479
  }
308
309
  /// Reset InsertPt to prepare for inserting instructions into the
310
  /// current block.
311
  void recomputeInsertPt();
312
313
  /// Remove all dead instructions between the I and E.
314
  void removeDeadCode(MachineBasicBlock::iterator I,
315
                      MachineBasicBlock::iterator E);
316
317
  struct SavePoint {
318
    MachineBasicBlock::iterator InsertPt;
319
    DebugLoc DL;
320
  };
321
322
  /// Prepare InsertPt to begin inserting instructions into the local
323
  /// value area and return the old insert position.
324
  SavePoint enterLocalValueArea();
325
326
  /// Reset InsertPt to the given old insert position.
327
  void leaveLocalValueArea(SavePoint Old);
328
329
protected:
330
  explicit FastISel(FunctionLoweringInfo &FuncInfo,
331
                    const TargetLibraryInfo *LibInfo,
332
                    bool SkipTargetIndependentISel = false);
333
334
  /// This method is called by target-independent code when the normal
335
  /// FastISel process fails to select an instruction. This gives targets a
336
  /// chance to emit code for anything that doesn't fit into FastISel's
337
  /// framework. It returns true if it was successful.
338
  virtual bool fastSelectInstruction(const Instruction *I) = 0;
339
340
  /// This method is called by target-independent code to do target-
341
  /// specific argument lowering. It returns true if it was successful.
342
  virtual bool fastLowerArguments();
343
344
  /// This method is called by target-independent code to do target-
345
  /// specific call lowering. It returns true if it was successful.
346
  virtual bool fastLowerCall(CallLoweringInfo &CLI);
347
348
  /// This method is called by target-independent code to do target-
349
  /// specific intrinsic lowering. It returns true if it was successful.
350
  virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
351
352
  /// This method is called by target-independent code to request that an
353
  /// instruction with the given type and opcode be emitted.
354
  virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
355
356
  /// This method is called by target-independent code to request that an
357
  /// instruction with the given type, opcode, and register operand be emitted.
358
  virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
359
                              bool Op0IsKill);
360
361
  /// This method is called by target-independent code to request that an
362
  /// instruction with the given type, opcode, and register operands be emitted.
363
  virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
364
                               bool Op0IsKill, unsigned Op1, bool Op1IsKill);
365
366
  /// This method is called by target-independent code to request that an
367
  /// instruction with the given type, opcode, and register and immediate
368
  /// operands be emitted.
369
  virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
370
                               bool Op0IsKill, uint64_t Imm);
371
372
  /// This method is a wrapper of fastEmit_ri.
373
  ///
374
  /// It first tries to emit an instruction with an immediate operand using
375
  /// fastEmit_ri.  If that fails, it materializes the immediate into a register
376
  /// and try fastEmit_rr instead.
377
  unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
378
                        uint64_t Imm, MVT ImmType);
379
380
  /// This method is called by target-independent code to request that an
381
  /// instruction with the given type, opcode, and immediate operand be emitted.
382
  virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
383
384
  /// This method is called by target-independent code to request that an
385
  /// instruction with the given type, opcode, and floating-point immediate
386
  /// operand be emitted.
387
  virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
388
                              const ConstantFP *FPImm);
389
390
  /// Emit a MachineInstr with no operands and a result register in the
391
  /// given register class.
392
  unsigned fastEmitInst_(unsigned MachineInstOpcode,
393
                         const TargetRegisterClass *RC);
394
395
  /// Emit a MachineInstr with one register operand and a result register
396
  /// in the given register class.
397
  unsigned fastEmitInst_r(unsigned MachineInstOpcode,
398
                          const TargetRegisterClass *RC, unsigned Op0,
399
                          bool Op0IsKill);
400
401
  /// Emit a MachineInstr with two register operands and a result
402
  /// register in the given register class.
403
  unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
404
                           const TargetRegisterClass *RC, unsigned Op0,
405
                           bool Op0IsKill, unsigned Op1, bool Op1IsKill);
406
407
  /// Emit a MachineInstr with three register operands and a result
408
  /// register in the given register class.
409
  unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
410
                            const TargetRegisterClass *RC, unsigned Op0,
411
                            bool Op0IsKill, unsigned Op1, bool Op1IsKill,
412
                            unsigned Op2, bool Op2IsKill);
413
414
  /// Emit a MachineInstr with a register operand, an immediate, and a
415
  /// result register in the given register class.
416
  unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
417
                           const TargetRegisterClass *RC, unsigned Op0,
418
                           bool Op0IsKill, uint64_t Imm);
419
420
  /// Emit a MachineInstr with one register operand and two immediate
421
  /// operands.
422
  unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
423
                            const TargetRegisterClass *RC, unsigned Op0,
424
                            bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
425
426
  /// Emit a MachineInstr with a floating point immediate, and a result
427
  /// register in the given register class.
428
  unsigned fastEmitInst_f(unsigned MachineInstOpcode,
429
                          const TargetRegisterClass *RC,
430
                          const ConstantFP *FPImm);
431
432
  /// Emit a MachineInstr with two register operands, an immediate, and a
433
  /// result register in the given register class.
434
  unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
435
                            const TargetRegisterClass *RC, unsigned Op0,
436
                            bool Op0IsKill, unsigned Op1, bool Op1IsKill,
437
                            uint64_t Imm);
438
439
  /// Emit a MachineInstr with a single immediate operand, and a result
440
  /// register in the given register class.
441
  unsigned fastEmitInst_i(unsigned MachineInstOpcode,
442
                          const TargetRegisterClass *RC, uint64_t Imm);
443
444
  /// Emit a MachineInstr for an extract_subreg from a specified index of
445
  /// a superregister to a specified type.
446
  unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
447
                                      uint32_t Idx);
448
449
  /// Emit MachineInstrs to compute the value of Op with all but the
450
  /// least significant bit set to zero.
451
  unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
452
453
  /// Emit an unconditional branch to the given block, unless it is the
454
  /// immediate (fall-through) successor, and update the CFG.
455
  void fastEmitBranch(MachineBasicBlock *MSucc, const DebugLoc &DbgLoc);
456
457
  /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight
458
  /// and adds TrueMBB and FalseMBB to the successor list.
459
  void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB,
460
                        MachineBasicBlock *FalseMBB);
461
462
  /// Update the value map to include the new mapping for this
463
  /// instruction, or insert an extra copy to get the result in a previous
464
  /// determined register.
465
  ///
466
  /// NOTE: This is only necessary because we might select a block that uses a
467
  /// value before we select the block that defines the value. It might be
468
  /// possible to fix this by selecting blocks in reverse postorder.
469
  void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
470
471
  unsigned createResultReg(const TargetRegisterClass *RC);
472
473
  /// Try to constrain Op so that it is usable by argument OpNum of the
474
  /// provided MCInstrDesc. If this fails, create a new virtual register in the
475
  /// correct class and COPY the value there.
476
  unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
477
                                    unsigned OpNum);
478
479
  /// Emit a constant in a register using target-specific logic, such as
480
  /// constant pool loads.
481
0
  virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
482
483
  /// Emit an alloca address in a register using target-specific logic.
484
0
  virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
485
486
  /// Emit the floating-point constant +0.0 in a register using target-
487
  /// specific logic.
488
0
  virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
489
0
    return 0;
490
0
  }
491
492
  /// Check if \c Add is an add that can be safely folded into \c GEP.
493
  ///
494
  /// \c Add can be folded into \c GEP if:
495
  /// - \c Add is an add,
496
  /// - \c Add's size matches \c GEP's,
497
  /// - \c Add is in the same basic block as \c GEP, and
498
  /// - \c Add has a constant operand.
499
  bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
500
501
  /// Test whether the given value has exactly one use.
502
  bool hasTrivialKill(const Value *V);
503
504
  /// Create a machine mem operand from the given instruction.
505
  MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
506
507
  CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
508
509
  bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
510
  bool lowerCallTo(const CallInst *CI, const char *SymName,
511
                   unsigned NumArgs);
512
  bool lowerCallTo(CallLoweringInfo &CLI);
513
514
1
  bool isCommutativeIntrinsic(IntrinsicInst const *II) {
515
1
    switch (II->getIntrinsicID()) {
516
1
    case Intrinsic::sadd_with_overflow:
517
1
    case Intrinsic::uadd_with_overflow:
518
1
    case Intrinsic::smul_with_overflow:
519
1
    case Intrinsic::umul_with_overflow:
520
1
      return true;
521
1
    default:
522
0
      return false;
523
1
    }
524
1
  }
525
526
  bool lowerCall(const CallInst *I);
527
  /// Select and emit code for a binary operator instruction, which has
528
  /// an opcode which directly corresponds to the given ISD opcode.
529
  bool selectBinaryOp(const User *I, unsigned ISDOpcode);
530
  bool selectFNeg(const User *I, const Value *In);
531
  bool selectGetElementPtr(const User *I);
532
  bool selectStackmap(const CallInst *I);
533
  bool selectPatchpoint(const CallInst *I);
534
  bool selectCall(const User *I);
535
  bool selectIntrinsicCall(const IntrinsicInst *II);
536
  bool selectBitCast(const User *I);
537
  bool selectCast(const User *I, unsigned Opcode);
538
  bool selectExtractValue(const User *U);
539
  bool selectInsertValue(const User *I);
540
  bool selectXRayCustomEvent(const CallInst *II);
541
  bool selectXRayTypedEvent(const CallInst *II);
542
543
private:
544
  /// Handle PHI nodes in successor blocks.
545
  ///
546
  /// Emit code to ensure constants are copied into registers when needed.
547
  /// Remember the virtual registers that need to be added to the Machine PHI
548
  /// nodes as input.  We cannot just directly add them, because expansion might
549
  /// result in multiple MBB's for one BB.  As such, the start of the BB might
550
  /// correspond to a different MBB than the end.
551
  bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
552
553
  /// Helper for materializeRegForValue to materialize a constant in a
554
  /// target-independent way.
555
  unsigned materializeConstant(const Value *V, MVT VT);
556
557
  /// Helper for getRegForVale. This function is called when the value
558
  /// isn't already available in a register and must be materialized with new
559
  /// instructions.
560
  unsigned materializeRegForValue(const Value *V, MVT VT);
561
562
  /// Clears LocalValueMap and moves the area for the new local variables
563
  /// to the beginning of the block. It helps to avoid spilling cached variables
564
  /// across heavy instructions like calls.
565
  void flushLocalValueMap();
566
567
  /// Removes dead local value instructions after SavedLastLocalvalue.
568
  void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue);
569
570
  struct InstOrderMap {
571
    DenseMap<MachineInstr *, unsigned> Orders;
572
    MachineInstr *FirstTerminator = nullptr;
573
    unsigned FirstTerminatorOrder = std::numeric_limits<unsigned>::max();
574
575
    void initialize(MachineBasicBlock *MBB,
576
                    MachineBasicBlock::iterator LastFlushPoint);
577
  };
578
579
  /// Sinks the local value materialization instruction LocalMI to its first use
580
  /// in the basic block, or deletes it if it is not used.
581
  void sinkLocalValueMaterialization(MachineInstr &LocalMI, unsigned DefReg,
582
                                     InstOrderMap &OrderMap);
583
584
  /// Insertion point before trying to select the current instruction.
585
  MachineBasicBlock::iterator SavedInsertPt;
586
587
  /// Add a stackmap or patchpoint intrinsic call's live variable
588
  /// operands to a stackmap or patchpoint machine instruction.
589
  bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
590
                           const CallInst *CI, unsigned StartIdx);
591
  bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
592
                         const Value *Callee, bool ForceRetVoidTy,
593
                         CallLoweringInfo &CLI);
594
};
595
596
} // end namespace llvm
597
598
#endif // LLVM_CODEGEN_FASTISEL_H