Coverage Report

Created: 2019-07-24 05:18

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/include/llvm/CodeGen/ScheduleDAGInstrs.h
Line
Count
Source (jump to first uncovered line)
1
//===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file Implements the ScheduleDAGInstrs class, which implements scheduling
10
/// for a MachineInstr-based dependency graph.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
15
#define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
16
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/PointerIntPair.h"
19
#include "llvm/ADT/STLExtras.h"
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/SparseMultiSet.h"
22
#include "llvm/ADT/SparseSet.h"
23
#include "llvm/CodeGen/LivePhysRegs.h"
24
#include "llvm/CodeGen/MachineBasicBlock.h"
25
#include "llvm/CodeGen/ScheduleDAG.h"
26
#include "llvm/CodeGen/TargetRegisterInfo.h"
27
#include "llvm/CodeGen/TargetSchedule.h"
28
#include "llvm/MC/LaneBitmask.h"
29
#include <cassert>
30
#include <cstdint>
31
#include <list>
32
#include <utility>
33
#include <vector>
34
35
namespace llvm {
36
37
  class LiveIntervals;
38
  class MachineFrameInfo;
39
  class MachineFunction;
40
  class MachineInstr;
41
  class MachineLoopInfo;
42
  class MachineOperand;
43
  struct MCSchedClassDesc;
44
  class PressureDiffs;
45
  class PseudoSourceValue;
46
  class RegPressureTracker;
47
  class UndefValue;
48
  class Value;
49
50
  /// An individual mapping from virtual register number to SUnit.
51
  struct VReg2SUnit {
52
    unsigned VirtReg;
53
    LaneBitmask LaneMask;
54
    SUnit *SU;
55
56
    VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
57
17.1M
      : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
58
59
57.9M
    unsigned getSparseSetIndex() const {
60
57.9M
      return TargetRegisterInfo::virtReg2Index(VirtReg);
61
57.9M
    }
62
  };
63
64
  /// Mapping from virtual register to SUnit including an operand index.
65
  struct VReg2SUnitOperIdx : public VReg2SUnit {
66
    unsigned OperandIndex;
67
68
    VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
69
                      unsigned OperandIndex, SUnit *SU)
70
11.9M
      : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
71
  };
72
73
  /// Record a physical register access.
74
  /// For non-data-dependent uses, OpIdx == -1.
75
  struct PhysRegSUOper {
76
    SUnit *SU;
77
    int OpIdx;
78
    unsigned Reg;
79
80
13.4M
    PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
81
82
111M
    unsigned getSparseSetIndex() const { return Reg; }
83
  };
84
85
  /// Use a SparseMultiSet to track physical registers. Storage is only
86
  /// allocated once for the pass. It can be cleared in constant time and reused
87
  /// without any frees.
88
  using Reg2SUnitsMap =
89
      SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>;
90
91
  /// Use SparseSet as a SparseMap by relying on the fact that it never
92
  /// compares ValueT's, only unsigned keys. This allows the set to be cleared
93
  /// between scheduling regions in constant time as long as ValueT does not
94
  /// require a destructor.
95
  using VReg2SUnitMap = SparseSet<VReg2SUnit, VirtReg2IndexFunctor>;
96
97
  /// Track local uses of virtual registers. These uses are gathered by the DAG
98
  /// builder and may be consulted by the scheduler to avoid iterating an entire
99
  /// vreg use list.
100
  using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>;
101
102
  using VReg2SUnitOperIdxMultiMap =
103
      SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>;
104
105
  using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
106
107
  struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> {
108
    UnderlyingObject(ValueType V, bool MayAlias)
109
1.10M
        : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {}
110
111
1.85M
    ValueType getValue() const { return getPointer(); }
112
1.85M
    bool mayAlias() const { return getInt(); }
113
  };
114
115
  using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>;
116
117
  /// A ScheduleDAG for scheduling lists of MachineInstr.
118
  class ScheduleDAGInstrs : public ScheduleDAG {
119
  protected:
120
    const MachineLoopInfo *MLI;
121
    const MachineFrameInfo &MFI;
122
123
    /// TargetSchedModel provides an interface to the machine model.
124
    TargetSchedModel SchedModel;
125
126
    /// True if the DAG builder should remove kill flags (in preparation for
127
    /// rescheduling).
128
    bool RemoveKillFlags;
129
130
    /// The standard DAG builder does not normally include terminators as DAG
131
    /// nodes because it does not create the necessary dependencies to prevent
132
    /// reordering. A specialized scheduler can override
133
    /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
134
    /// it has taken responsibility for scheduling the terminator correctly.
135
    bool CanHandleTerminators = false;
136
137
    /// Whether lane masks should get tracked.
138
    bool TrackLaneMasks = false;
139
140
    // State specific to the current scheduling region.
141
    // ------------------------------------------------
142
143
    /// The block in which to insert instructions
144
    MachineBasicBlock *BB;
145
146
    /// The beginning of the range to be scheduled.
147
    MachineBasicBlock::iterator RegionBegin;
148
149
    /// The end of the range to be scheduled.
150
    MachineBasicBlock::iterator RegionEnd;
151
152
    /// Instructions in this region (distance(RegionBegin, RegionEnd)).
153
    unsigned NumRegionInstrs;
154
155
    /// After calling BuildSchedGraph, each machine instruction in the current
156
    /// scheduling region is mapped to an SUnit.
157
    DenseMap<MachineInstr*, SUnit*> MISUnitMap;
158
159
    // State internal to DAG building.
160
    // -------------------------------
161
162
    /// Defs, Uses - Remember where defs and uses of each register are as we
163
    /// iterate upward through the instructions. This is allocated here instead
164
    /// of inside BuildSchedGraph to avoid the need for it to be initialized and
165
    /// destructed for each block.
166
    Reg2SUnitsMap Defs;
167
    Reg2SUnitsMap Uses;
168
169
    /// Tracks the last instruction(s) in this region defining each virtual
170
    /// register. There may be multiple current definitions for a register with
171
    /// disjunct lanemasks.
172
    VReg2SUnitMultiMap CurrentVRegDefs;
173
    /// Tracks the last instructions in this region using each virtual register.
174
    VReg2SUnitOperIdxMultiMap CurrentVRegUses;
175
176
    AliasAnalysis *AAForDep = nullptr;
177
178
    /// Remember a generic side-effecting instruction as we proceed.
179
    /// No other SU ever gets scheduled around it (except in the special
180
    /// case of a huge region that gets reduced).
181
    SUnit *BarrierChain = nullptr;
182
183
  public:
184
    /// A list of SUnits, used in Value2SUsMap, during DAG construction.
185
    /// Note: to gain speed it might be worth investigating an optimized
186
    /// implementation of this data structure, such as a singly linked list
187
    /// with a memory pool (SmallVector was tried but slow and SparseSet is not
188
    /// applicable).
189
    using SUList = std::list<SUnit *>;
190
191
  protected:
192
    /// A map from ValueType to SUList, used during DAG construction, as
193
    /// a means of remembering which SUs depend on which memory locations.
194
    class Value2SUsMap;
195
196
    /// Reduces maps in FIFO order, by N SUs. This is better than turning
197
    /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
198
    /// it avoids unnecessary edges between seen SUs above the new BarrierChain,
199
    /// and those below it.
200
    void reduceHugeMemNodeMaps(Value2SUsMap &stores,
201
                               Value2SUsMap &loads, unsigned N);
202
203
    /// Adds a chain edge between SUa and SUb, but only if both
204
    /// AliasAnalysis and Target fail to deny the dependency.
205
    void addChainDependency(SUnit *SUa, SUnit *SUb,
206
                            unsigned Latency = 0);
207
208
    /// Adds dependencies as needed from all SUs in list to SU.
209
1.35M
    void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) {
210
1.35M
      for (SUnit *Entry : SUs)
211
16.5M
        addChainDependency(SU, Entry, Latency);
212
1.35M
    }
213
214
    /// Adds dependencies as needed from all SUs in map, to SU.
215
    void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap);
216
217
    /// Adds dependencies as needed to SU, from all SUs mapped to V.
218
    void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap,
219
                              ValueType V);
220
221
    /// Adds barrier chain edges from all SUs in map, and then clear the map.
222
    /// This is equivalent to insertBarrierChain(), but optimized for the common
223
    /// case where the new BarrierChain (a global memory object) has a higher
224
    /// NodeNum than all SUs in map. It is assumed BarrierChain has been set
225
    /// before calling this.
226
    void addBarrierChain(Value2SUsMap &map);
227
228
    /// Inserts a barrier chain in a huge region, far below current SU.
229
    /// Adds barrier chain edges from all SUs in map with higher NodeNums than
230
    /// this new BarrierChain, and remove them from map. It is assumed
231
    /// BarrierChain has been set before calling this.
232
    void insertBarrierChain(Value2SUsMap &map);
233
234
    /// For an unanalyzable memory access, this Value is used in maps.
235
    UndefValue *UnknownValue;
236
237
238
    /// Topo - A topological ordering for SUnits which permits fast IsReachable
239
    /// and similar queries.
240
    ScheduleDAGTopologicalSort Topo;
241
242
    using DbgValueVector =
243
        std::vector<std::pair<MachineInstr *, MachineInstr *>>;
244
    /// Remember instruction that precedes DBG_VALUE.
245
    /// These are generated by buildSchedGraph but persist so they can be
246
    /// referenced when emitting the final schedule.
247
    DbgValueVector DbgValues;
248
    MachineInstr *FirstDbgValue = nullptr;
249
250
    /// Set of live physical registers for updating kill flags.
251
    LivePhysRegs LiveRegs;
252
253
  public:
254
    explicit ScheduleDAGInstrs(MachineFunction &mf,
255
                               const MachineLoopInfo *mli,
256
                               bool RemoveKillFlags = false);
257
258
526k
    ~ScheduleDAGInstrs() override = default;
259
260
    /// Gets the machine model for instruction scheduling.
261
2.69M
    const TargetSchedModel *getSchedModel() const { return &SchedModel; }
262
263
    /// Resolves and cache a resolved scheduling class for an SUnit.
264
50.7M
    const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
265
50.7M
      if (!SU->SchedClass && 
SchedModel.hasInstrSchedModel()12.3M
)
266
11.1M
        SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
267
50.7M
      return SU->SchedClass;
268
50.7M
    }
269
270
    /// Returns an iterator to the top of the current scheduling region.
271
5.41M
    MachineBasicBlock::iterator begin() const { return RegionBegin; }
272
273
    /// Returns an iterator to the bottom of the current scheduling region.
274
8.03M
    MachineBasicBlock::iterator end() const { return RegionEnd; }
275
276
    /// Creates a new SUnit and return a ptr to it.
277
    SUnit *newSUnit(MachineInstr *MI);
278
279
    /// Returns an existing SUnit for this MI, or nullptr.
280
    SUnit *getSUnit(MachineInstr *MI) const;
281
282
    /// If this method returns true, handling of the scheduling regions
283
    /// themselves (in case of a scheduling boundary in MBB) will be done
284
    /// beginning with the topmost region of MBB.
285
0
    virtual bool doMBBSchedRegionsTopDown() const { return false; }
286
287
    /// Prepares to perform scheduling in the given block.
288
    virtual void startBlock(MachineBasicBlock *BB);
289
290
    /// Cleans up after scheduling in the given block.
291
    virtual void finishBlock();
292
293
    /// Initialize the DAG and common scheduler state for a new
294
    /// scheduling region. This does not actually create the DAG, only clears
295
    /// it. The scheduling driver may call BuildSchedGraph multiple times per
296
    /// scheduling region.
297
    virtual void enterRegion(MachineBasicBlock *bb,
298
                             MachineBasicBlock::iterator begin,
299
                             MachineBasicBlock::iterator end,
300
                             unsigned regioninstrs);
301
302
    /// Called when the scheduler has finished scheduling the current region.
303
    virtual void exitRegion();
304
305
    /// Builds SUnits for the current region.
306
    /// If \p RPTracker is non-null, compute register pressure as a side effect.
307
    /// The DAG builder is an efficient place to do it because it already visits
308
    /// operands.
309
    void buildSchedGraph(AliasAnalysis *AA,
310
                         RegPressureTracker *RPTracker = nullptr,
311
                         PressureDiffs *PDiffs = nullptr,
312
                         LiveIntervals *LIS = nullptr,
313
                         bool TrackLaneMasks = false);
314
315
    /// Adds dependencies from instructions in the current list of
316
    /// instructions being scheduled to scheduling barrier. We want to make sure
317
    /// instructions which define registers that are either used by the
318
    /// terminator or are live-out are properly scheduled. This is especially
319
    /// important when the definition latency of the return value(s) are too
320
    /// high to be hidden by the branch or when the liveout registers used by
321
    /// instructions in the fallthrough block.
322
    void addSchedBarrierDeps();
323
324
    /// Orders nodes according to selected style.
325
    ///
326
    /// Typically, a scheduling algorithm will implement schedule() without
327
    /// overriding enterRegion() or exitRegion().
328
    virtual void schedule() = 0;
329
330
    /// Allow targets to perform final scheduling actions at the level of the
331
    /// whole MachineFunction. By default does nothing.
332
448k
    virtual void finalizeSchedule() {}
333
334
    void dumpNode(const SUnit &SU) const override;
335
    void dump() const override;
336
337
    /// Returns a label for a DAG node that points to an instruction.
338
    std::string getGraphNodeLabel(const SUnit *SU) const override;
339
340
    /// Returns a label for the region of code covered by the DAG.
341
    std::string getDAGName() const override;
342
343
    /// Fixes register kill flags that scheduling has made invalid.
344
    void fixupKills(MachineBasicBlock &MBB);
345
346
    /// True if an edge can be added from PredSU to SuccSU without creating
347
    /// a cycle.
348
    bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
349
350
    /// Add a DAG edge to the given SU with the given predecessor
351
    /// dependence data.
352
    ///
353
    /// \returns true if the edge may be added without creating a cycle OR if an
354
    /// equivalent edge already existed (false indicates failure).
355
    bool addEdge(SUnit *SuccSU, const SDep &PredDep);
356
357
  protected:
358
    void initSUnits();
359
    void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
360
    void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
361
    void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
362
    void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
363
364
    /// Initializes register live-range state for updating kills.
365
    /// PostRA helper for rewriting kill flags.
366
    void startBlockForKills(MachineBasicBlock *BB);
367
368
    /// Toggles a register operand kill flag.
369
    ///
370
    /// Other adjustments may be made to the instruction if necessary. Return
371
    /// true if the operand has been deleted, false if not.
372
    void toggleKillFlag(MachineInstr &MI, MachineOperand &MO);
373
374
    /// Returns a mask for which lanes get read/written by the given (register)
375
    /// machine operand.
376
    LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
377
  };
378
379
  /// Creates a new SUnit and return a ptr to it.
380
12.9M
  inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
381
#ifndef NDEBUG
382
    const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
383
#endif
384
    SUnits.emplace_back(MI, (unsigned)SUnits.size());
385
12.9M
    assert((Addr == nullptr || Addr == &SUnits[0]) &&
386
12.9M
           "SUnits std::vector reallocated on the fly!");
387
12.9M
    return &SUnits.back();
388
12.9M
  }
389
390
  /// Returns an existing SUnit for this MI, or nullptr.
391
369k
  inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
392
369k
    DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
393
369k
    if (I == MISUnitMap.end())
394
62.3k
      return nullptr;
395
307k
    return I->second;
396
307k
  }
397
398
} // end namespace llvm
399
400
#endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H