Coverage Report

Created: 2018-07-19 03:59

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/include/llvm/LTO/Config.h
Line
Count
Source
1
//===-Config.h - LLVM Link Time Optimizer Configuration -------------------===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file defines the lto::Config data structure, which allows clients to
11
// configure LTO.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#ifndef LLVM_LTO_CONFIG_H
16
#define LLVM_LTO_CONFIG_H
17
18
#include "llvm/IR/DiagnosticInfo.h"
19
#include "llvm/Support/CodeGen.h"
20
#include "llvm/Target/TargetMachine.h"
21
#include "llvm/Target/TargetOptions.h"
22
23
#include <functional>
24
25
namespace llvm {
26
27
class Error;
28
class Module;
29
class ModuleSummaryIndex;
30
class raw_pwrite_stream;
31
32
namespace lto {
33
34
/// LTO configuration. A linker can configure LTO by setting fields in this data
35
/// structure and passing it to the lto::LTO constructor.
36
struct Config {
37
  // Note: when adding fields here, consider whether they need to be added to
38
  // computeCacheKey in LTO.cpp.
39
  std::string CPU;
40
  TargetOptions Options;
41
  std::vector<std::string> MAttrs;
42
  Optional<Reloc::Model> RelocModel = Reloc::PIC_;
43
  Optional<CodeModel::Model> CodeModel = None;
44
  CodeGenOpt::Level CGOptLevel = CodeGenOpt::Default;
45
  TargetMachine::CodeGenFileType CGFileType = TargetMachine::CGFT_ObjectFile;
46
  unsigned OptLevel = 2;
47
  bool DisableVerify = false;
48
49
  /// Use the new pass manager
50
  bool UseNewPM = false;
51
52
  /// Disable entirely the optimizer, including importing for ThinLTO
53
  bool CodeGenOnly = false;
54
55
  /// If this field is set, the set of passes run in the middle-end optimizer
56
  /// will be the one specified by the string. Only works with the new pass
57
  /// manager as the old one doesn't have this ability.
58
  std::string OptPipeline;
59
60
  // If this field is set, it has the same effect of specifying an AA pipeline
61
  // identified by the string. Only works with the new pass manager, in
62
  // conjunction OptPipeline.
63
  std::string AAPipeline;
64
65
  /// Setting this field will replace target triples in input files with this
66
  /// triple.
67
  std::string OverrideTriple;
68
69
  /// Setting this field will replace unspecified target triples in input files
70
  /// with this triple.
71
  std::string DefaultTriple;
72
73
  /// Sample PGO profile path.
74
  std::string SampleProfile;
75
76
  /// The directory to store .dwo files.
77
  std::string DwoDir;
78
79
  /// The path to write a .dwo file to. This should generally only be used when
80
  /// running an individual backend directly via thinBackend(), as otherwise
81
  /// all .dwo files will be written to the same path.
82
  std::string DwoPath;
83
84
  /// Optimization remarks file path.
85
  std::string RemarksFilename = "";
86
87
  /// Whether to emit optimization remarks with hotness informations.
88
  bool RemarksWithHotness = false;
89
90
  /// Whether to emit the pass manager debuggging informations.
91
  bool DebugPassManager = false;
92
93
  /// Statistics output file path.
94
  std::string StatsFile;
95
96
  bool ShouldDiscardValueNames = true;
97
  DiagnosticHandlerFunction DiagHandler;
98
99
  /// If this field is set, LTO will write input file paths and symbol
100
  /// resolutions here in llvm-lto2 command line flag format. This can be
101
  /// used for testing and for running the LTO pipeline outside of the linker
102
  /// with llvm-lto2.
103
  std::unique_ptr<raw_ostream> ResolutionFile;
104
105
  /// The following callbacks deal with tasks, which normally represent the
106
  /// entire optimization and code generation pipeline for what will become a
107
  /// single native object file. Each task has a unique identifier between 0 and
108
  /// getMaxTasks()-1, which is supplied to the callback via the Task parameter.
109
  /// A task represents the entire pipeline for ThinLTO and regular
110
  /// (non-parallel) LTO, but a parallel code generation task will be split into
111
  /// N tasks before code generation, where N is the parallelism level.
112
  ///
113
  /// LTO may decide to stop processing a task at any time, for example if the
114
  /// module is empty or if a module hook (see below) returns false. For this
115
  /// reason, the client should not expect to receive exactly getMaxTasks()
116
  /// native object files.
117
118
  /// A module hook may be used by a linker to perform actions during the LTO
119
  /// pipeline. For example, a linker may use this function to implement
120
  /// -save-temps. If this function returns false, any further processing for
121
  /// that task is aborted.
122
  ///
123
  /// Module hooks must be thread safe with respect to the linker's internal
124
  /// data structures. A module hook will never be called concurrently from
125
  /// multiple threads with the same task ID, or the same module.
126
  ///
127
  /// Note that in out-of-process backend scenarios, none of the hooks will be
128
  /// called for ThinLTO tasks.
129
  typedef std::function<bool(unsigned Task, const Module &)> ModuleHookFn;
130
131
  /// This module hook is called after linking (regular LTO) or loading
132
  /// (ThinLTO) the module, before modifying it.
133
  ModuleHookFn PreOptModuleHook;
134
135
  /// This hook is called after promoting any internal functions
136
  /// (ThinLTO-specific).
137
  ModuleHookFn PostPromoteModuleHook;
138
139
  /// This hook is called after internalizing the module.
140
  ModuleHookFn PostInternalizeModuleHook;
141
142
  /// This hook is called after importing from other modules (ThinLTO-specific).
143
  ModuleHookFn PostImportModuleHook;
144
145
  /// This module hook is called after optimization is complete.
146
  ModuleHookFn PostOptModuleHook;
147
148
  /// This module hook is called before code generation. It is similar to the
149
  /// PostOptModuleHook, but for parallel code generation it is called after
150
  /// splitting the module.
151
  ModuleHookFn PreCodeGenModuleHook;
152
153
  /// A combined index hook is called after all per-module indexes have been
154
  /// combined (ThinLTO-specific). It can be used to implement -save-temps for
155
  /// the combined index.
156
  ///
157
  /// If this function returns false, any further processing for ThinLTO tasks
158
  /// is aborted.
159
  ///
160
  /// It is called regardless of whether the backend is in-process, although it
161
  /// is not called from individual backend processes.
162
  typedef std::function<bool(const ModuleSummaryIndex &Index)>
163
      CombinedIndexHookFn;
164
  CombinedIndexHookFn CombinedIndexHook;
165
166
  /// This is a convenience function that configures this Config object to write
167
  /// temporary files named after the given OutputFileName for each of the LTO
168
  /// phases to disk. A client can use this function to implement -save-temps.
169
  ///
170
  /// FIXME: Temporary files derived from ThinLTO backends are currently named
171
  /// after the input file name, rather than the output file name, when
172
  /// UseInputModulePath is set to true.
173
  ///
174
  /// Specifically, it (1) sets each of the above module hooks and the combined
175
  /// index hook to a function that calls the hook function (if any) that was
176
  /// present in the appropriate field when the addSaveTemps function was
177
  /// called, and writes the module to a bitcode file with a name prefixed by
178
  /// the given output file name, and (2) creates a resolution file whose name
179
  /// is prefixed by the given output file name and sets ResolutionFile to its
180
  /// file handle.
181
  Error addSaveTemps(std::string OutputFileName,
182
                     bool UseInputModulePath = false);
183
};
184
185
struct LTOLLVMDiagnosticHandler : public DiagnosticHandler {
186
  DiagnosticHandlerFunction *Fn;
187
  LTOLLVMDiagnosticHandler(DiagnosticHandlerFunction *DiagHandlerFn)
188
502
      : Fn(DiagHandlerFn) {}
189
2
  bool handleDiagnostics(const DiagnosticInfo &DI) override {
190
2
    (*Fn)(DI);
191
2
    return true;
192
2
  }
193
};
194
/// A derived class of LLVMContext that initializes itself according to a given
195
/// Config object. The purpose of this class is to tie ownership of the
196
/// diagnostic handler to the context, as opposed to the Config object (which
197
/// may be ephemeral).
198
// FIXME: This should not be required as diagnostic handler is not callback.
199
struct LTOLLVMContext : LLVMContext {
200
201
501
  LTOLLVMContext(const Config &C) : DiagHandler(C.DiagHandler) {
202
501
    setDiscardValueNames(C.ShouldDiscardValueNames);
203
501
    enableDebugTypeODRUniquing();
204
501
    setDiagnosticHandler(
205
501
        llvm::make_unique<LTOLLVMDiagnosticHandler>(&DiagHandler), true);
206
501
  }
207
  DiagnosticHandlerFunction DiagHandler;
208
};
209
210
}
211
}
212
213
#endif