Coverage Report

Created: 2019-07-24 05:18

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/include/llvm/Transforms/Utils/Cloning.h
Line
Count
Source
1
//===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines various functions that are used to clone chunks of LLVM
10
// code for various purposes.  This varies from copying whole modules into new
11
// modules, to cloning functions with different arguments, to inlining
12
// functions, to copying basic blocks to support loop unrolling or superblock
13
// formation, etc.
14
//
15
//===----------------------------------------------------------------------===//
16
17
#ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
18
#define LLVM_TRANSFORMS_UTILS_CLONING_H
19
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/Twine.h"
22
#include "llvm/Analysis/AliasAnalysis.h"
23
#include "llvm/Analysis/AssumptionCache.h"
24
#include "llvm/Analysis/InlineCost.h"
25
#include "llvm/IR/CallSite.h"
26
#include "llvm/IR/ValueHandle.h"
27
#include "llvm/Transforms/Utils/ValueMapper.h"
28
#include <functional>
29
#include <memory>
30
#include <vector>
31
32
namespace llvm {
33
34
class AllocaInst;
35
class BasicBlock;
36
class BlockFrequencyInfo;
37
class CallInst;
38
class CallGraph;
39
class DebugInfoFinder;
40
class DominatorTree;
41
class Function;
42
class Instruction;
43
class InvokeInst;
44
class Loop;
45
class LoopInfo;
46
class Module;
47
class ProfileSummaryInfo;
48
class ReturnInst;
49
class DomTreeUpdater;
50
51
/// Return an exact copy of the specified module
52
std::unique_ptr<Module> CloneModule(const Module &M);
53
std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
54
55
/// Return a copy of the specified module. The ShouldCloneDefinition function
56
/// controls whether a specific GlobalValue's definition is cloned. If the
57
/// function returns false, the module copy will contain an external reference
58
/// in place of the global definition.
59
std::unique_ptr<Module>
60
CloneModule(const Module &M, ValueToValueMapTy &VMap,
61
            function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
62
63
/// This struct can be used to capture information about code
64
/// being cloned, while it is being cloned.
65
struct ClonedCodeInfo {
66
  /// This is set to true if the cloned code contains a normal call instruction.
67
  bool ContainsCalls = false;
68
69
  /// This is set to true if the cloned code contains a 'dynamic' alloca.
70
  /// Dynamic allocas are allocas that are either not in the entry block or they
71
  /// are in the entry block but are not a constant size.
72
  bool ContainsDynamicAllocas = false;
73
74
  /// All cloned call sites that have operand bundles attached are appended to
75
  /// this vector.  This vector may contain nulls or undefs if some of the
76
  /// originally inserted callsites were DCE'ed after they were cloned.
77
  std::vector<WeakTrackingVH> OperandBundleCallSites;
78
79
541k
  ClonedCodeInfo() = default;
80
};
81
82
/// Return a copy of the specified basic block, but without
83
/// embedding the block into a particular function.  The block returned is an
84
/// exact copy of the specified basic block, without any remapping having been
85
/// performed.  Because of this, this is only suitable for applications where
86
/// the basic block will be inserted into the same function that it was cloned
87
/// from (loop unrolling would use this, for example).
88
///
89
/// Also, note that this function makes a direct copy of the basic block, and
90
/// can thus produce illegal LLVM code.  In particular, it will copy any PHI
91
/// nodes from the original block, even though there are no predecessors for the
92
/// newly cloned block (thus, phi nodes will have to be updated).  Also, this
93
/// block will branch to the old successors of the original block: these
94
/// successors will have to have any PHI nodes updated to account for the new
95
/// incoming edges.
96
///
97
/// The correlation between instructions in the source and result basic blocks
98
/// is recorded in the VMap map.
99
///
100
/// If you have a particular suffix you'd like to use to add to any cloned
101
/// names, specify it as the optional third parameter.
102
///
103
/// If you would like the basic block to be auto-inserted into the end of a
104
/// function, you can specify it as the optional fourth parameter.
105
///
106
/// If you would like to collect additional information about the cloned
107
/// function, you can specify a ClonedCodeInfo object with the optional fifth
108
/// parameter.
109
BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
110
                            const Twine &NameSuffix = "", Function *F = nullptr,
111
                            ClonedCodeInfo *CodeInfo = nullptr,
112
                            DebugInfoFinder *DIFinder = nullptr);
113
114
/// Return a copy of the specified function and add it to that
115
/// function's module.  Also, any references specified in the VMap are changed
116
/// to refer to their mapped value instead of the original one.  If any of the
117
/// arguments to the function are in the VMap, the arguments are deleted from
118
/// the resultant function.  The VMap is updated to include mappings from all of
119
/// the instructions and basicblocks in the function from their old to new
120
/// values.  The final argument captures information about the cloned code if
121
/// non-null.
122
///
123
/// VMap contains no non-identity GlobalValue mappings and debug info metadata
124
/// will not be cloned.
125
///
126
Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
127
                        ClonedCodeInfo *CodeInfo = nullptr);
128
129
/// Clone OldFunc into NewFunc, transforming the old arguments into references
130
/// to VMap values.  Note that if NewFunc already has basic blocks, the ones
131
/// cloned into it will be added to the end of the function.  This function
132
/// fills in a list of return instructions, and can optionally remap types
133
/// and/or append the specified suffix to all values cloned.
134
///
135
/// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
136
/// mappings.
137
///
138
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
139
                       ValueToValueMapTy &VMap, bool ModuleLevelChanges,
140
                       SmallVectorImpl<ReturnInst*> &Returns,
141
                       const char *NameSuffix = "",
142
                       ClonedCodeInfo *CodeInfo = nullptr,
143
                       ValueMapTypeRemapper *TypeMapper = nullptr,
144
                       ValueMaterializer *Materializer = nullptr);
145
146
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
147
                               const Instruction *StartingInst,
148
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
149
                               SmallVectorImpl<ReturnInst *> &Returns,
150
                               const char *NameSuffix = "",
151
                               ClonedCodeInfo *CodeInfo = nullptr);
152
153
/// This works exactly like CloneFunctionInto,
154
/// except that it does some simple constant prop and DCE on the fly.  The
155
/// effect of this is to copy significantly less code in cases where (for
156
/// example) a function call with constant arguments is inlined, and those
157
/// constant arguments cause a significant amount of code in the callee to be
158
/// dead.  Since this doesn't produce an exactly copy of the input, it can't be
159
/// used for things like CloneFunction or CloneModule.
160
///
161
/// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
162
/// mappings.
163
///
164
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
165
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
166
                               SmallVectorImpl<ReturnInst*> &Returns,
167
                               const char *NameSuffix = "",
168
                               ClonedCodeInfo *CodeInfo = nullptr,
169
                               Instruction *TheCall = nullptr);
170
171
/// This class captures the data input to the InlineFunction call, and records
172
/// the auxiliary results produced by it.
173
class InlineFunctionInfo {
174
public:
175
  explicit InlineFunctionInfo(CallGraph *cg = nullptr,
176
                              std::function<AssumptionCache &(Function &)>
177
                                  *GetAssumptionCache = nullptr,
178
                              ProfileSummaryInfo *PSI = nullptr,
179
                              BlockFrequencyInfo *CallerBFI = nullptr,
180
                              BlockFrequencyInfo *CalleeBFI = nullptr)
181
      : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
182
345k
        CallerBFI(CallerBFI), CalleeBFI(CalleeBFI) {}
183
184
  /// If non-null, InlineFunction will update the callgraph to reflect the
185
  /// changes it makes.
186
  CallGraph *CG;
187
  std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
188
  ProfileSummaryInfo *PSI;
189
  BlockFrequencyInfo *CallerBFI, *CalleeBFI;
190
191
  /// InlineFunction fills this in with all static allocas that get copied into
192
  /// the caller.
193
  SmallVector<AllocaInst *, 4> StaticAllocas;
194
195
  /// InlineFunction fills this in with callsites that were inlined from the
196
  /// callee. This is only filled in if CG is non-null.
197
  SmallVector<WeakTrackingVH, 8> InlinedCalls;
198
199
  /// All of the new call sites inlined into the caller.
200
  ///
201
  /// 'InlineFunction' fills this in by scanning the inlined instructions, and
202
  /// only if CG is null. If CG is non-null, instead the value handle
203
  /// `InlinedCalls` above is used.
204
  SmallVector<CallSite, 8> InlinedCallSites;
205
206
541k
  void reset() {
207
541k
    StaticAllocas.clear();
208
541k
    InlinedCalls.clear();
209
541k
    InlinedCallSites.clear();
210
541k
  }
211
};
212
213
/// This function inlines the called function into the basic
214
/// block of the caller.  This returns false if it is not possible to inline
215
/// this call.  The program is still in a well defined state if this occurs
216
/// though.
217
///
218
/// Note that this only does one level of inlining.  For example, if the
219
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
220
/// exists in the instruction stream.  Similarly this will inline a recursive
221
/// function by one level.
222
///
223
/// Note that while this routine is allowed to cleanup and optimize the
224
/// *inlined* code to minimize the actual inserted code, it must not delete
225
/// code in the caller as users of this routine may have pointers to
226
/// instructions in the caller that need to remain stable.
227
///
228
/// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
229
/// and all varargs at the callsite will be passed to any calls to
230
/// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
231
/// are only used by ForwardVarArgsTo.
232
InlineResult InlineFunction(CallBase *CB, InlineFunctionInfo &IFI,
233
                            AAResults *CalleeAAR = nullptr,
234
                            bool InsertLifetime = true);
235
InlineResult InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
236
                            AAResults *CalleeAAR = nullptr,
237
                            bool InsertLifetime = true,
238
                            Function *ForwardVarArgsTo = nullptr);
239
240
/// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
241
/// Blocks.
242
///
243
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
244
/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
245
/// Note: Only innermost loops are supported.
246
Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
247
                             Loop *OrigLoop, ValueToValueMapTy &VMap,
248
                             const Twine &NameSuffix, LoopInfo *LI,
249
                             DominatorTree *DT,
250
                             SmallVectorImpl<BasicBlock *> &Blocks);
251
252
/// Remaps instructions in \p Blocks using the mapping in \p VMap.
253
void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
254
                               ValueToValueMapTy &VMap);
255
256
/// Split edge between BB and PredBB and duplicate all non-Phi instructions
257
/// from BB between its beginning and the StopAt instruction into the split
258
/// block. Phi nodes are not duplicated, but their uses are handled correctly:
259
/// we replace them with the uses of corresponding Phi inputs. ValueMapping
260
/// is used to map the original instructions from BB to their newly-created
261
/// copies. Returns the split block.
262
BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
263
                                                BasicBlock *PredBB,
264
                                                Instruction *StopAt,
265
                                                ValueToValueMapTy &ValueMapping,
266
                                                DomTreeUpdater &DTU);
267
268
/// Updates profile information by adjusting the entry count by adding
269
/// entryDelta then scaling callsite information by the new count divided by the
270
/// old count. VMap is used during inlinng to also update the new clone
271
void updateProfileCallee(
272
    Function *Callee, int64_t entryDelta,
273
    const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
274
275
} // end namespace llvm
276
277
#endif // LLVM_TRANSFORMS_UTILS_CLONING_H