Coverage Report

Created: 2017-03-28 09:59

/Users/buildslave/jenkins/sharedspace/clang-stage2-coverage-R@2/llvm/tools/polly/lib/External/isl/basis_reduction_templ.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2006-2007 Universiteit Leiden
3
 * Copyright 2008-2009 Katholieke Universiteit Leuven
4
 *
5
 * Use of this software is governed by the MIT license
6
 *
7
 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8
 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9
 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10
 * B-3001 Leuven, Belgium
11
 */
12
13
#include <stdlib.h>
14
#include <isl_ctx_private.h>
15
#include <isl_map_private.h>
16
#include <isl_vec_private.h>
17
#include <isl_options_private.h>
18
#include "isl_basis_reduction.h"
19
20
static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
21
7.83k
{
22
7.83k
  int i;
23
7.83k
24
29.7k
  for (i = 0; 
i < n29.7k
;
++i21.9k
)
25
21.9k
    GBR_lp_get_alpha(lp, first + i, &alpha[i]);
26
7.83k
}
27
28
/* Compute a reduced basis for the set represented by the tableau "tab".
29
 * tab->basis, which must be initialized by the calling function to an affine
30
 * unimodular basis, is updated to reflect the reduced basis.
31
 * The first tab->n_zero rows of the basis (ignoring the constant row)
32
 * are assumed to correspond to equalities and are left untouched.
33
 * tab->n_zero is updated to reflect any additional equalities that
34
 * have been detected in the first rows of the new basis.
35
 * The final tab->n_unbounded rows of the basis are assumed to correspond
36
 * to unbounded directions and are also left untouched.
37
 * In particular this means that the remaining rows are assumed to
38
 * correspond to bounded directions.
39
 *
40
 * This function implements the algorithm described in
41
 * "An Implementation of the Generalized Basis Reduction Algorithm
42
 *  for Integer Programming" of Cook el al. to compute a reduced basis.
43
 * We use \epsilon = 1/4.
44
 *
45
 * If ctx->opt->gbr_only_first is set, the user is only interested
46
 * in the first direction.  In this case we stop the basis reduction when
47
 * the width in the first direction becomes smaller than 2.
48
 */
49
struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
50
1.33k
{
51
1.33k
  unsigned dim;
52
1.33k
  struct isl_ctx *ctx;
53
1.33k
  struct isl_mat *B;
54
1.33k
  int i;
55
1.33k
  GBR_LP *lp = NULL;
56
1.33k
  GBR_type F_old, alpha, F_new;
57
1.33k
  int row;
58
1.33k
  isl_int tmp;
59
1.33k
  struct isl_vec *b_tmp;
60
1.33k
  GBR_type *F = NULL;
61
1.33k
  GBR_type *alpha_buffer[2] = { NULL, NULL };
62
1.33k
  GBR_type *alpha_saved;
63
1.33k
  GBR_type F_saved;
64
1.33k
  int use_saved = 0;
65
1.33k
  isl_int mu[2];
66
1.33k
  GBR_type mu_F[2];
67
1.33k
  GBR_type two;
68
1.33k
  GBR_type one;
69
1.33k
  int empty = 0;
70
1.33k
  int fixed = 0;
71
1.33k
  int fixed_saved = 0;
72
1.33k
  int mu_fixed[2];
73
1.33k
  int n_bounded;
74
1.33k
  int gbr_only_first;
75
1.33k
76
1.33k
  if (!tab)
77
0
    return NULL;
78
1.33k
79
1.33k
  
if (1.33k
tab->empty1.33k
)
80
0
    return tab;
81
1.33k
82
1.33k
  ctx = tab->mat->ctx;
83
1.33k
  gbr_only_first = ctx->opt->gbr_only_first;
84
1.33k
  dim = tab->n_var;
85
1.33k
  B = tab->basis;
86
1.33k
  if (!B)
87
0
    return tab;
88
1.33k
89
1.33k
  n_bounded = dim - tab->n_unbounded;
90
1.33k
  if (n_bounded <= tab->n_zero + 1)
91
0
    return tab;
92
1.33k
93
1.33k
  
isl_int_init1.33k
(tmp);1.33k
94
1.33k
  isl_int_init(mu[0]);
95
1.33k
  isl_int_init(mu[1]);
96
1.33k
97
1.33k
  GBR_init(alpha);
98
1.33k
  GBR_init(F_old);
99
1.33k
  GBR_init(F_new);
100
1.33k
  GBR_init(F_saved);
101
1.33k
  GBR_init(mu_F[0]);
102
1.33k
  GBR_init(mu_F[1]);
103
1.33k
  GBR_init(two);
104
1.33k
  GBR_init(one);
105
1.33k
106
1.33k
  b_tmp = isl_vec_alloc(ctx, dim);
107
1.33k
  if (!b_tmp)
108
0
    goto error;
109
1.33k
110
1.33k
  
F = 1.33k
isl_alloc_array1.33k
(ctx, GBR_type, n_bounded);
111
1.33k
  alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
112
1.33k
  alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
113
1.33k
  alpha_saved = alpha_buffer[0];
114
1.33k
115
1.33k
  if (
!F || 1.33k
!alpha_buffer[0]1.33k
||
!alpha_buffer[1]1.33k
)
116
0
    goto error;
117
1.33k
118
8.60k
  
for (i = 0; 1.33k
i < n_bounded8.60k
;
++i7.26k
)
{7.26k
119
7.26k
    GBR_init(F[i]);
120
7.26k
    GBR_init(alpha_buffer[0][i]);
121
7.26k
    GBR_init(alpha_buffer[1][i]);
122
7.26k
  }
123
1.33k
124
1.33k
  GBR_set_ui(two, 2);
125
1.33k
  GBR_set_ui(one, 1);
126
1.33k
127
1.33k
  lp = GBR_lp_init(tab);
128
1.33k
  if (!lp)
129
0
    goto error;
130
1.33k
131
1.33k
  i = tab->n_zero;
132
1.33k
133
1.33k
  GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
134
1.33k
  ctx->stats->gbr_solved_lps++;
135
1.33k
  if (
GBR_lp_solve1.33k
(lp) < 01.33k
)
136
0
    goto error;
137
1.33k
  
GBR_lp_get_obj_val1.33k
(lp, &F[i]);1.33k
138
1.33k
139
1.33k
  if (
GBR_lt1.33k
(F[i], one))
{0
140
0
    if (
!0
GBR_is_zero0
(F[i]))
{0
141
0
      empty = GBR_lp_cut(lp, B->row[1+i]+1);
142
0
      if (empty)
143
0
        goto done;
144
0
      
GBR_set_ui0
(F[i], 0);0
145
0
    }
146
0
    tab->n_zero++;
147
0
  }
148
1.33k
149
8.27k
  
do 1.33k
{8.27k
150
8.27k
    if (
i+1 == tab->n_zero8.27k
)
{0
151
0
      GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
152
0
      ctx->stats->gbr_solved_lps++;
153
0
      if (
GBR_lp_solve0
(lp) < 00
)
154
0
        goto error;
155
0
      
GBR_lp_get_obj_val0
(lp, &F_new);0
156
0
      fixed = GBR_lp_is_fixed(lp);
157
0
      GBR_set_ui(alpha, 0);
158
0
    } else
159
8.27k
    
if (8.27k
use_saved8.27k
)
{2.64k
160
2.64k
      row = GBR_lp_next_row(lp);
161
2.64k
      GBR_set(F_new, F_saved);
162
2.64k
      fixed = fixed_saved;
163
2.64k
      GBR_set(alpha, alpha_saved[i]);
164
5.63k
    } else {
165
5.63k
      row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
166
5.63k
      GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
167
5.63k
      ctx->stats->gbr_solved_lps++;
168
5.63k
      if (
GBR_lp_solve5.63k
(lp) < 05.63k
)
169
0
        goto error;
170
5.63k
      
GBR_lp_get_obj_val5.63k
(lp, &F_new);5.63k
171
5.63k
      fixed = GBR_lp_is_fixed(lp);
172
5.63k
173
5.63k
      GBR_lp_get_alpha(lp, row, &alpha);
174
5.63k
175
5.63k
      if (i > 0)
176
4.52k
        save_alpha(lp, row-i, i, alpha_saved);
177
5.63k
178
5.63k
      if (
GBR_lp_del_row5.63k
(lp) < 05.63k
)
179
0
        goto error;
180
5.63k
    }
181
8.27k
    
GBR_set8.27k
(F[i+1], F_new);8.27k
182
8.27k
183
8.27k
    GBR_floor(mu[0], alpha);
184
8.27k
    GBR_ceil(mu[1], alpha);
185
8.27k
186
8.27k
    if (isl_int_eq(mu[0], mu[1]))
187
5.98k
      isl_int_set(tmp, mu[0]);
188
2.29k
    else {
189
2.29k
      int j;
190
2.29k
191
6.87k
      for (j = 0; 
j <= 16.87k
;
++j4.58k
)
{4.58k
192
4.58k
        isl_int_set(tmp, mu[j]);
193
4.58k
        isl_seq_combine(b_tmp->el,
194
4.58k
            ctx->one, B->row[1+i+1]+1,
195
4.58k
            tmp, B->row[1+i]+1, dim);
196
4.58k
        GBR_lp_set_obj(lp, b_tmp->el, dim);
197
4.58k
        ctx->stats->gbr_solved_lps++;
198
4.58k
        if (
GBR_lp_solve4.58k
(lp) < 04.58k
)
199
0
          goto error;
200
4.58k
        
GBR_lp_get_obj_val4.58k
(lp, &mu_F[j]);4.58k
201
4.58k
        mu_fixed[j] = GBR_lp_is_fixed(lp);
202
4.58k
        if (i > 0)
203
3.30k
          save_alpha(lp, row-i, i, alpha_buffer[j]);
204
4.58k
      }
205
2.29k
206
2.29k
      
if (2.29k
GBR_lt2.29k
(mu_F[0], mu_F[1]))
207
1.18k
        j = 0;
208
2.29k
      else
209
1.11k
        j = 1;
210
2.29k
211
2.29k
      isl_int_set(tmp, mu[j]);
212
2.29k
      GBR_set(F_new, mu_F[j]);
213
2.29k
      fixed = mu_fixed[j];
214
2.29k
      alpha_saved = alpha_buffer[j];
215
2.29k
    }
216
8.27k
    isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
217
8.27k
        tmp, B->row[1+i]+1, dim);
218
8.27k
219
8.27k
    if (
i+1 == tab->n_zero && 8.27k
fixed0
)
{0
220
0
      if (
!0
GBR_is_zero0
(F[i+1]))
{0
221
0
        empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
222
0
        if (empty)
223
0
          goto done;
224
0
        
GBR_set_ui0
(F[i+1], 0);0
225
0
      }
226
0
      tab->n_zero++;
227
0
    }
228
8.27k
229
8.27k
    
GBR_set8.27k
(F_old, F[i]);8.27k
230
8.27k
231
8.27k
    use_saved = 0;
232
8.27k
    /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
233
8.27k
    GBR_set_ui(mu_F[0], 4);
234
8.27k
    GBR_mul(mu_F[0], mu_F[0], F_new);
235
8.27k
    GBR_set_ui(mu_F[1], 3);
236
8.27k
    GBR_mul(mu_F[1], mu_F[1], F_old);
237
8.27k
    if (
GBR_lt8.27k
(mu_F[0], mu_F[1]))
{4.23k
238
4.23k
      B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
239
4.23k
      if (
i > tab->n_zero4.23k
)
{2.64k
240
2.64k
        use_saved = 1;
241
2.64k
        GBR_set(F_saved, F_new);
242
2.64k
        fixed_saved = fixed;
243
2.64k
        if (
GBR_lp_del_row2.64k
(lp) < 02.64k
)
244
0
          goto error;
245
2.64k
        --i;
246
1.59k
      } else {
247
1.59k
        GBR_set(F[tab->n_zero], F_new);
248
1.59k
        if (
gbr_only_first && 1.59k
GBR_lt1.59k
(F[tab->n_zero], two))
249
968
          break;
250
1.59k
251
624
        
if (624
fixed624
)
{0
252
0
          if (
!0
GBR_is_zero0
(F[tab->n_zero]))
{0
253
0
            empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
254
0
            if (empty)
255
0
              goto done;
256
0
            
GBR_set_ui0
(F[tab->n_zero], 0);0
257
0
          }
258
0
          tab->n_zero++;
259
0
        }
260
624
      }
261
4.04k
    } else {
262
4.04k
      GBR_lp_add_row(lp, B->row[1+i]+1, dim);
263
4.04k
      ++i;
264
4.04k
    }
265
7.31k
  } while (i < n_bounded - 1);
266
1.33k
267
1.33k
  
if (1.33k
01.33k
)
{0
268
0
done:
269
0
    if (
empty < 00
)
{0
270
0
error:
271
0
      isl_mat_free(B);
272
0
      B = NULL;
273
0
    }
274
0
  }
275
1.33k
276
1.33k
  
GBR_lp_delete1.33k
(lp);1.33k
277
1.33k
278
1.33k
  if (alpha_buffer[1])
279
8.60k
    
for (i = 0; 1.33k
i < n_bounded8.60k
;
++i7.26k
)
{7.26k
280
7.26k
      GBR_clear(F[i]);
281
7.26k
      GBR_clear(alpha_buffer[0][i]);
282
7.26k
      GBR_clear(alpha_buffer[1][i]);
283
7.26k
    }
284
1.33k
  free(F);
285
1.33k
  free(alpha_buffer[0]);
286
1.33k
  free(alpha_buffer[1]);
287
1.33k
288
1.33k
  isl_vec_free(b_tmp);
289
1.33k
290
1.33k
  GBR_clear(alpha);
291
1.33k
  GBR_clear(F_old);
292
1.33k
  GBR_clear(F_new);
293
1.33k
  GBR_clear(F_saved);
294
1.33k
  GBR_clear(mu_F[0]);
295
1.33k
  GBR_clear(mu_F[1]);
296
1.33k
  GBR_clear(two);
297
1.33k
  GBR_clear(one);
298
1.33k
299
1.33k
  isl_int_clear(tmp);
300
1.33k
  isl_int_clear(mu[0]);
301
1.33k
  isl_int_clear(mu[1]);
302
1.33k
303
1.33k
  tab->basis = B;
304
1.33k
305
1.33k
  return tab;
306
1.33k
}
307
308
/* Compute an affine form of a reduced basis of the given basic
309
 * non-parametric set, which is assumed to be bounded and not
310
 * include any integer divisions.
311
 * The first column and the first row correspond to the constant term.
312
 *
313
 * If the input contains any equalities, we first create an initial
314
 * basis with the equalities first.  Otherwise, we start off with
315
 * the identity matrix.
316
 */
317
struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
318
0
{
319
0
  struct isl_mat *basis;
320
0
  struct isl_tab *tab;
321
0
322
0
  if (!bset)
323
0
    return NULL;
324
0
325
0
  
if (0
isl_basic_set_dim(bset, isl_dim_div) != 00
)
326
0
    isl_die(bset->ctx, isl_error_invalid,
327
0
      "no integer division allowed", return NULL);
328
0
  
if (0
isl_basic_set_dim(bset, isl_dim_param) != 00
)
329
0
    isl_die(bset->ctx, isl_error_invalid,
330
0
      "no parameters allowed", return NULL);
331
0
332
0
  tab = isl_tab_from_basic_set(bset, 0);
333
0
  if (!tab)
334
0
    return NULL;
335
0
336
0
  
if (0
bset->n_eq == 00
)
337
0
    tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
338
0
  else {
339
0
    isl_mat *eq;
340
0
    unsigned nvar = isl_basic_set_total_dim(bset);
341
0
    eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
342
0
          1, nvar);
343
0
    eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
344
0
    tab->basis = isl_mat_lin_to_aff(tab->basis);
345
0
    tab->n_zero = bset->n_eq;
346
0
    isl_mat_free(eq);
347
0
  }
348
0
  tab = isl_tab_compute_reduced_basis(tab);
349
0
  if (!tab)
350
0
    return NULL;
351
0
352
0
  basis = isl_mat_copy(tab->basis);
353
0
354
0
  isl_tab_free(tab);
355
0
356
0
  return basis;
357
0
}