Coverage Report

Created: 2017-04-29 12:21

/Users/buildslave/jenkins/sharedspace/clang-stage2-coverage-R@2/llvm/tools/polly/lib/External/isl/imath/gmp_compat.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
  Name:     gmp_compat.c
3
  Purpose:  Provide GMP compatiable routines for imath library
4
  Author:   David Peixotto
5
6
  Copyright (c) 2012 Qualcomm Innovation Center, Inc. All rights reserved.
7
8
  Permission is hereby granted, free of charge, to any person obtaining a copy
9
  of this software and associated documentation files (the "Software"), to deal
10
  in the Software without restriction, including without limitation the rights
11
  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
  copies of the Software, and to permit persons to whom the Software is
13
  furnished to do so, subject to the following conditions:
14
15
  The above copyright notice and this permission notice shall be included in
16
  all copies or substantial portions of the Software.
17
18
  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
21
  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24
  SOFTWARE.
25
 */
26
#include "gmp_compat.h"
27
#include <stdlib.h>
28
#include <assert.h>
29
#include <ctype.h>
30
#include <string.h>
31
#include <stdio.h>
32
33
#if defined(_MSC_VER)
34
#include <BaseTsd.h>
35
typedef SSIZE_T ssize_t;
36
#endif
37
38
#ifdef  NDEBUG
39
3.60M
#define CHECK(res) 
(3.60M
res0
)
40
#else
41
#define CHECK(res) assert(((res) == MP_OK) && "expected MP_OK")
42
#endif
43
44
/* *(signed char *)&endian_test will thus either be:
45
 *     0b00000001 =  1 on big-endian
46
 *     0b11111111 = -1 on little-endian */
47
static const uint16_t endian_test = 0x1FF;
48
17.0k
#define HOST_ENDIAN (*(signed char *)&endian_test)
49
50
/*************************************************************************
51
 *
52
 * Functions with direct translations
53
 *
54
 *************************************************************************/
55
/* gmp: mpq_clear */
56
0
void GMPQAPI(clear)(mp_rat x) {
57
0
  mp_rat_clear(x);
58
0
}
59
60
/* gmp: mpq_cmp */
61
0
int GMPQAPI(cmp)(mp_rat op1, mp_rat op2) {
62
0
  return mp_rat_compare(op1, op2);
63
0
}
64
65
/* gmp: mpq_init */
66
0
void GMPQAPI(init)(mp_rat x) {
67
0
  CHECK(mp_rat_init(x));
68
0
}
69
70
/* gmp: mpq_mul */
71
0
void GMPQAPI(mul)(mp_rat product, mp_rat multiplier, mp_rat multiplicand) {
72
0
  CHECK(mp_rat_mul(multiplier, multiplicand, product));
73
0
}
74
75
/* gmp: mpq_set*/
76
0
void GMPQAPI(set)(mp_rat rop, mp_rat op) {
77
0
  CHECK(mp_rat_copy(op, rop));
78
0
}
79
80
/* gmp: mpz_abs */
81
0
void GMPZAPI(abs)(mp_int rop, mp_int op) {
82
0
  CHECK(mp_int_abs(op, rop));
83
0
}
84
85
/* gmp: mpz_add */
86
0
void GMPZAPI(add)(mp_int rop, mp_int op1, mp_int op2) {
87
0
  CHECK(mp_int_add(op1, op2, rop));
88
0
}
89
90
/* gmp: mpz_clear */
91
0
void GMPZAPI(clear)(mp_int x) {
92
0
  mp_int_clear(x);
93
0
}
94
95
/* gmp: mpz_cmp_si */
96
0
int GMPZAPI(cmp_si)(mp_int op1, long op2) {
97
0
  return mp_int_compare_value(op1, op2);
98
0
}
99
100
/* gmp: mpz_cmpabs */
101
0
int GMPZAPI(cmpabs)(mp_int op1, mp_int op2) {
102
0
  return mp_int_compare_unsigned(op1, op2);
103
0
}
104
105
/* gmp: mpz_cmp */
106
0
int GMPZAPI(cmp)(mp_int op1, mp_int op2) {
107
0
  return mp_int_compare(op1, op2);
108
0
}
109
110
/* gmp: mpz_init */
111
0
void GMPZAPI(init)(mp_int x) {
112
0
  CHECK(mp_int_init(x));
113
0
}
114
115
/* gmp: mpz_mul */
116
0
void GMPZAPI(mul)(mp_int rop, mp_int op1, mp_int op2) {
117
0
  CHECK(mp_int_mul(op1, op2, rop));
118
0
}
119
120
/* gmp: mpz_neg */
121
39.8k
void GMPZAPI(neg)(mp_int rop, mp_int op) {
122
39.8k
  CHECK(mp_int_neg(op, rop));
123
39.8k
}
124
125
/* gmp: mpz_set_si */
126
0
void GMPZAPI(set_si)(mp_int rop, long op) {
127
0
  CHECK(mp_int_set_value(rop, op));
128
0
}
129
130
/* gmp: mpz_set */
131
39.8k
void GMPZAPI(set)(mp_int rop, mp_int op) {
132
39.8k
  CHECK(mp_int_copy(op, rop));
133
39.8k
}
134
135
/* gmp: mpz_sub */
136
0
void GMPZAPI(sub)(mp_int rop, mp_int op1, mp_int op2) {
137
0
  CHECK(mp_int_sub(op1, op2, rop));
138
0
}
139
140
/* gmp: mpz_swap */
141
0
void GMPZAPI(swap)(mp_int rop1, mp_int rop2) {
142
0
  mp_int_swap(rop1, rop2);
143
0
}
144
145
/* gmp: mpq_sgn */
146
0
int GMPQAPI(sgn)(mp_rat op) {
147
0
  return mp_rat_compare_zero(op);
148
0
}
149
150
/* gmp: mpz_sgn */
151
0
int GMPZAPI(sgn)(mp_int op) {
152
0
  return mp_int_compare_zero(op);
153
0
}
154
155
/* gmp: mpq_set_ui */
156
0
void GMPQAPI(set_ui)(mp_rat rop, unsigned long op1, unsigned long op2) {
157
0
  CHECK(mp_rat_set_uvalue(rop, op1, op2));
158
0
}
159
160
/* gmp: mpz_set_ui */
161
0
void GMPZAPI(set_ui)(mp_int rop, unsigned long op) {
162
0
  CHECK(mp_int_set_uvalue(rop, op));
163
0
}
164
165
/* gmp: mpq_den_ref */
166
0
mp_int GMPQAPI(denref)(mp_rat op) {
167
0
  return mp_rat_denom_ref(op);
168
0
}
169
170
/* gmp: mpq_num_ref */
171
0
mp_int GMPQAPI(numref)(mp_rat op) {
172
0
  return mp_rat_numer_ref(op);
173
0
}
174
175
/* gmp: mpq_canonicalize */
176
0
void GMPQAPI(canonicalize)(mp_rat op) {
177
0
  CHECK(mp_rat_reduce(op));
178
0
}
179
180
/*************************************************************************
181
 *
182
 * Functions that can be implemented as a combination of imath functions
183
 *
184
 *************************************************************************/
185
/* gmp: mpz_addmul */
186
/* gmp: rop = rop + (op1 * op2) */
187
0
void GMPZAPI(addmul)(mp_int rop, mp_int op1, mp_int op2) {
188
0
  mpz_t tempz;
189
0
  mp_int temp = &tempz;
190
0
  mp_int_init(temp);
191
0
192
0
  CHECK(mp_int_mul(op1, op2, temp));
193
0
  CHECK(mp_int_add(rop, temp, rop));
194
0
  mp_int_clear(temp);
195
0
}
196
197
/* gmp: mpz_divexact */
198
/* gmp: only produces correct results when d divides n */
199
0
void GMPZAPI(divexact)(mp_int q, mp_int n, mp_int d) {
200
0
  CHECK(mp_int_div(n, d, q, NULL));
201
0
}
202
203
/* gmp: mpz_divisible_p */
204
/* gmp: return 1 if d divides n, 0 otherwise */
205
/* gmp: 0 is considered to divide only 0 */
206
0
int GMPZAPI(divisible_p)(mp_int n, mp_int d) {
207
0
  /* variables to hold remainder */
208
0
  mpz_t rz;
209
0
  mp_int r = &rz;
210
0
  int r_is_zero;
211
0
212
0
  /* check for d = 0 */
213
0
  int n_is_zero = mp_int_compare_zero(n) == 0;
214
0
  int d_is_zero = mp_int_compare_zero(d) == 0;
215
0
  if (d_is_zero)
216
0
    return n_is_zero;
217
0
218
0
  /* return true if remainder is 0 */
219
0
  
CHECK0
(mp_int_init(r));0
220
0
  CHECK(mp_int_div(n, d, NULL, r));
221
0
  r_is_zero = mp_int_compare_zero(r) == 0;
222
0
  mp_int_clear(r);
223
0
224
0
  return r_is_zero;
225
0
}
226
227
/* gmp: mpz_submul */
228
/* gmp: rop = rop - (op1 * op2) */
229
0
void GMPZAPI(submul)(mp_int rop, mp_int op1, mp_int op2) {
230
0
  mpz_t tempz;
231
0
  mp_int temp = &tempz;
232
0
  mp_int_init(temp);
233
0
234
0
  CHECK(mp_int_mul(op1, op2, temp));
235
0
  CHECK(mp_int_sub(rop, temp, rop));
236
0
237
0
  mp_int_clear(temp);
238
0
}
239
240
/* gmp: mpz_add_ui */
241
63.9k
void GMPZAPI(add_ui)(mp_int rop, mp_int op1, unsigned long op2) {
242
63.9k
  mpz_t tempz;
243
63.9k
  mp_int temp = &tempz;
244
63.9k
  CHECK(mp_int_init_uvalue(temp, op2));
245
63.9k
246
63.9k
  CHECK(mp_int_add(op1, temp, rop));
247
63.9k
248
63.9k
  mp_int_clear(temp);
249
63.9k
}
250
251
/* gmp: mpz_divexact_ui */
252
/* gmp: only produces correct results when d divides n */
253
0
void GMPZAPI(divexact_ui)(mp_int q, mp_int n, unsigned long d) {
254
0
  mpz_t tempz;
255
0
  mp_int temp = &tempz;
256
0
  CHECK(mp_int_init_uvalue(temp, d));
257
0
258
0
  CHECK(mp_int_div(n, temp, q, NULL));
259
0
260
0
  mp_int_clear(temp);
261
0
}
262
263
/* gmp: mpz_mul_ui */
264
0
void GMPZAPI(mul_ui)(mp_int rop, mp_int op1, unsigned long op2) {
265
0
  mpz_t tempz;
266
0
  mp_int temp = &tempz;
267
0
  CHECK(mp_int_init_uvalue(temp, op2));
268
0
269
0
  CHECK(mp_int_mul(op1, temp, rop));
270
0
271
0
  mp_int_clear(temp);
272
0
}
273
274
/* gmp: mpz_pow_ui */
275
/* gmp: 0^0 = 1 */
276
0
void GMPZAPI(pow_ui)(mp_int rop, mp_int base, unsigned long exp) {
277
0
  mpz_t tempz;
278
0
  mp_int temp = &tempz;
279
0
280
0
  /* check for 0^0 */
281
0
  if (
exp == 0 && 0
mp_int_compare_zero(base) == 00
)
{0
282
0
    CHECK(mp_int_set_value(rop, 1));
283
0
    return;
284
0
  }
285
0
286
0
  /* rop = base^exp */
287
0
  
CHECK0
(mp_int_init_uvalue(temp, exp));0
288
0
  CHECK(mp_int_expt_full(base, temp, rop));
289
0
  mp_int_clear(temp);
290
0
}
291
292
/* gmp: mpz_sub_ui */
293
91.2k
void GMPZAPI(sub_ui)(mp_int rop, mp_int op1, unsigned long op2) {
294
91.2k
  mpz_t tempz;
295
91.2k
  mp_int temp = &tempz;
296
91.2k
  CHECK(mp_int_init_uvalue(temp, op2));
297
91.2k
298
91.2k
  CHECK(mp_int_sub(op1, temp, rop));
299
91.2k
300
91.2k
  mp_int_clear(temp);
301
91.2k
}
302
303
/*************************************************************************
304
 *
305
 * Functions with different behavior in corner cases
306
 *
307
 *************************************************************************/
308
309
/* gmp: mpz_gcd */
310
2.19M
void GMPZAPI(gcd)(mp_int rop, mp_int op1, mp_int op2) {
311
2.19M
  int op1_is_zero = mp_int_compare_zero(op1) == 0;
312
2.19M
  int op2_is_zero = mp_int_compare_zero(op2) == 0;
313
2.19M
314
2.19M
  if (
op1_is_zero && 2.19M
op2_is_zero21
)
{0
315
0
    mp_int_zero(rop);
316
0
    return;
317
0
  }
318
2.19M
319
2.19M
  
CHECK2.19M
(mp_int_gcd(op1, op2, rop));2.19M
320
2.19M
}
321
322
/* gmp: mpz_get_str */
323
1.35k
char* GMPZAPI(get_str)(char *str, int radix, mp_int op) {
324
1.35k
  int i, r, len;
325
1.35k
326
1.35k
  /* Support negative radix like gmp */
327
1.35k
  r = radix;
328
1.35k
  if (r < 0)
329
0
    r = -r;
330
1.35k
331
1.35k
  /* Compute the length of the string needed to hold the int */
332
1.35k
  len = mp_int_string_len(op, r);
333
1.35k
  if (
str == NULL1.35k
)
{1.35k
334
1.35k
    str = malloc(len);
335
1.35k
  }
336
1.35k
337
1.35k
  /* Convert to string using imath function */
338
1.35k
  CHECK(mp_int_to_string(op, r, str, len));
339
1.35k
340
1.35k
  /* Change case to match gmp */
341
27.4k
  for (i = 0; 
i < len - 127.4k
;
i++26.0k
)
342
26.0k
    
if (26.0k
radix < 026.0k
)
343
0
      str[i] = toupper(str[i]);
344
26.0k
    else
345
26.0k
      str[i] = tolower(str[i]);
346
1.35k
  return str;
347
1.35k
}
348
349
/* gmp: mpq_get_str */
350
0
char* GMPQAPI(get_str)(char *str, int radix, mp_rat op) {
351
0
  int i, r, len;
352
0
353
0
  /* Only print numerator if it is a whole number */
354
0
  if (mp_int_compare_value(mp_rat_denom_ref(op), 1) == 0)
355
0
    
return 0
GMPZAPI0
(get_str)(str, radix, mp_rat_numer_ref(op));
356
0
357
0
  /* Support negative radix like gmp */
358
0
  r = radix;
359
0
  if (r < 0)
360
0
    r = -r;
361
0
362
0
  /* Compute the length of the string needed to hold the int */
363
0
  len = mp_rat_string_len(op, r);
364
0
  if (
str == NULL0
)
{0
365
0
    str = malloc(len);
366
0
  }
367
0
368
0
  /* Convert to string using imath function */
369
0
  CHECK(mp_rat_to_string(op, r, str, len));
370
0
371
0
  /* Change case to match gmp */
372
0
  for (i = 0; 
i < len0
;
i++0
)
373
0
    
if (0
radix < 00
)
374
0
      str[i] = toupper(str[i]);
375
0
    else
376
0
      str[i] = tolower(str[i]);
377
0
378
0
  return str;
379
0
}
380
381
/* gmp: mpz_set_str */
382
0
int GMPZAPI(set_str)(mp_int rop, char *str, int base) {
383
0
  mp_result res = mp_int_read_string(rop, base, str);
384
0
  return ((res == MP_OK) ? 
00
:
-10
);
385
0
}
386
387
/* gmp: mpq_set_str */
388
0
int GMPQAPI(set_str)(mp_rat rop, char *s, int base) {
389
0
  char *slash;
390
0
  char *str;
391
0
  mp_result resN;
392
0
  mp_result resD;
393
0
  int res = 0;
394
0
395
0
  /* Copy string to temporary storage so we can modify it below */
396
0
  str = malloc(strlen(s)+1);
397
0
  strcpy(str, s);
398
0
399
0
  /* Properly format the string as an int by terminating at the / */
400
0
  slash = strchr(str, '/');
401
0
  if (slash)
402
0
    *slash = '\0';
403
0
404
0
  /* Parse numerator */
405
0
  resN = mp_int_read_string(mp_rat_numer_ref(rop), base, str);
406
0
407
0
  /* Parse denomenator if given or set to 1 if not */
408
0
  if (slash)
409
0
    resD = mp_int_read_string(mp_rat_denom_ref(rop), base, slash+1);
410
0
  else
411
0
    resD = mp_int_set_uvalue(mp_rat_denom_ref(rop), 1);
412
0
413
0
  /* Return failure if either parse failed */
414
0
  if (
resN != MP_OK || 0
resD != MP_OK0
)
415
0
    res = -1;
416
0
417
0
  free(str);
418
0
  return res;
419
0
}
420
421
0
static unsigned long get_long_bits(mp_int op) {
422
0
  /* Deal with integer that does not fit into unsigned long. We want to grab
423
0
   * the least significant digits that will fit into the long.  Read the digits
424
0
   * into the long starting at the most significant digit that fits into a
425
0
   * long. The long is shifted over by MP_DIGIT_BIT before each digit is added.
426
0
   * The shift is decomposed into two steps to follow the patten used in the
427
0
   * rest of the imath library. The two step shift is used to accomedate
428
0
   * architectures that don't deal well with 32-bit shifts. */
429
0
  mp_size num_digits_in_long = sizeof(unsigned long) / sizeof(mp_digit);
430
0
  mp_digit *digits = MP_DIGITS(op);
431
0
  unsigned long out = 0;
432
0
  int i;
433
0
434
0
  for (i = num_digits_in_long - 1; 
i >= 00
;
i--0
)
{0
435
0
    out <<= (MP_DIGIT_BIT/2);
436
0
    out <<= (MP_DIGIT_BIT/2);
437
0
    out  |= digits[i];
438
0
  }
439
0
440
0
  return out;
441
0
}
442
443
/* gmp: mpz_get_ui */
444
0
unsigned long GMPZAPI(get_ui)(mp_int op) {
445
0
  unsigned long out;
446
0
447
0
  /* Try a standard conversion that fits into an unsigned long */
448
0
  mp_result res = mp_int_to_uint(op, &out);
449
0
  if (res == MP_OK)
450
0
    return out;
451
0
452
0
  /* Abort the try if we don't have a range error in the conversion.
453
0
   * The range error indicates that the value cannot fit into a long. */
454
0
  
CHECK0
(res == MP_RANGE ? MP_OK : MP_RANGE);0
455
0
  if (res != MP_RANGE)
456
0
    return 0;
457
0
458
0
  return get_long_bits(op);
459
0
}
460
461
/* gmp: mpz_get_si */
462
0
long GMPZAPI(get_si)(mp_int op) {
463
0
  long out;
464
0
  unsigned long uout;
465
0
  int long_msb;
466
0
467
0
  /* Try a standard conversion that fits into a long */
468
0
  mp_result res = mp_int_to_int(op, &out);
469
0
  if (res == MP_OK)
470
0
    return out;
471
0
472
0
  /* Abort the try if we don't have a range error in the conversion.
473
0
   * The range error indicates that the value cannot fit into a long. */
474
0
  
CHECK0
(res == MP_RANGE ? MP_OK : MP_RANGE);0
475
0
  if (res != MP_RANGE)
476
0
    return 0;
477
0
478
0
  /* get least significant bits into an unsigned long */
479
0
  uout = get_long_bits(op);
480
0
481
0
  /* clear the top bit */
482
0
  long_msb = (sizeof(unsigned long) * 8) - 1;
483
0
  uout &= (~(1UL << long_msb));
484
0
485
0
  /* convert to negative if needed based on sign of op */
486
0
  if (
MP_SIGN0
(op) == MP_NEG0
)
487
0
    uout = 0 - uout;
488
0
489
0
  out = (long) uout;
490
0
  return out;
491
0
}
492
493
/* gmp: mpz_lcm */
494
267k
void GMPZAPI(lcm)(mp_int rop, mp_int op1, mp_int op2) {
495
267k
  int op1_is_zero = mp_int_compare_zero(op1) == 0;
496
267k
  int op2_is_zero = mp_int_compare_zero(op2) == 0;
497
267k
498
267k
  if (
op1_is_zero || 267k
op2_is_zero267k
)
{0
499
0
    mp_int_zero(rop);
500
0
    return;
501
0
  }
502
267k
503
267k
  
CHECK267k
(mp_int_lcm(op1, op2, rop));267k
504
267k
  CHECK(mp_int_abs(rop, rop));
505
267k
}
506
507
/* gmp: mpz_mul_2exp */
508
/* gmp: allow big values for op2 when op1 == 0 */
509
0
void GMPZAPI(mul_2exp)(mp_int rop, mp_int op1, unsigned long op2) {
510
0
  if (mp_int_compare_zero(op1) == 0)
511
0
    mp_int_zero(rop);
512
0
  else
513
0
    CHECK(mp_int_mul_pow2(op1, op2, rop));
514
0
}
515
516
/*************************************************************************
517
 *
518
 * Functions needing expanded functionality
519
 *
520
 *************************************************************************/
521
/* [Note]Overview of division implementation
522
523
    All division operations (N / D) compute q and r such that
524
525
      N = q * D + r, with 0 <= abs(r) < abs(d)
526
527
    The q and r values are not uniquely specified by N and D. To specify which q
528
    and r values should be used, GMP implements three different rounding modes
529
    for integer division:
530
531
      ceiling  - round q twords +infinity, r has opposite sign as d
532
      floor    - round q twords -infinity, r has same sign as d
533
      truncate - round q twords zero,      r has same sign as n
534
535
    The imath library only supports truncate as a rounding mode. We need to
536
    implement the other rounding modes in terms of truncating division. We first
537
    perform the division in trucate mode and then adjust q accordingly. Once we
538
    know q, we can easily compute the correct r according the the formula above
539
    by computing:
540
541
      r = N - q * D
542
543
    The main task is to compute q. We can compute the correct q from a trucated
544
    version as follows.
545
546
    For ceiling rounding mode, if q is less than 0 then the truncated rounding
547
    mode is the same as the ceiling rounding mode.  If q is greater than zero
548
    then we need to round q up by one because the truncated version was rounded
549
    down to zero. If q equals zero then check to see if the result of the
550
    divison is positive. A positive result needs to increment q to one.
551
552
    For floor rounding mode, if q is greater than 0 then the trucated rounding
553
    mode is the same as the floor rounding mode. If q is less than zero then we
554
    need to round q down by one because the trucated mode rounded q up by one
555
    twords zero. If q is zero then we need to check to see if the result of the
556
    division is negative. A negative result needs to decrement q to negative
557
    one.
558
 */
559
560
/* gmp: mpz_cdiv_q */
561
28.9k
void GMPZAPI(cdiv_q)(mp_int q, mp_int n, mp_int d) {
562
28.9k
  mpz_t rz;
563
28.9k
  mp_int r = &rz;
564
28.9k
  int qsign, rsign, nsign, dsign;
565
28.9k
  CHECK(mp_int_init(r));
566
28.9k
567
28.9k
  /* save signs before division because q can alias with n or d */
568
28.9k
  nsign = mp_int_compare_zero(n);
569
28.9k
  dsign = mp_int_compare_zero(d);
570
28.9k
571
28.9k
  /* truncating division */
572
28.9k
  CHECK(mp_int_div(n, d, q, r));
573
28.9k
574
28.9k
  /* see: [Note]Overview of division implementation */
575
28.9k
  qsign = mp_int_compare_zero(q);
576
28.9k
  rsign = mp_int_compare_zero(r);
577
28.9k
  if (
qsign > 028.9k
)
{ /* q > 0 */2.93k
578
2.93k
    if (
rsign != 02.93k
)
{ /* r != 0 */1.32k
579
1.32k
      CHECK(mp_int_add_value(q, 1, q));
580
1.32k
    }
581
2.93k
  }
582
26.0k
  else 
if (26.0k
qsign == 026.0k
)
{ /* q == 0 */7.38k
583
7.38k
    if (
rsign != 07.38k
)
{ /* r != 0 */2.49k
584
2.49k
      if (
(nsign > 0 && 2.49k
dsign > 01.37k
) ||
(nsign < 0 && 1.11k
dsign < 01.11k
))
{1.37k
585
1.37k
        CHECK(mp_int_set_value(q, 1));
586
1.37k
      }
587
2.49k
    }
588
7.38k
  }
589
28.9k
  mp_int_clear(r);
590
28.9k
}
591
592
/* gmp: mpz_fdiv_q */
593
186k
void GMPZAPI(fdiv_q)(mp_int q, mp_int n, mp_int d) {
594
186k
  mpz_t rz;
595
186k
  mp_int r = &rz;
596
186k
  int qsign, rsign, nsign, dsign;
597
186k
  CHECK(mp_int_init(r));
598
186k
599
186k
  /* save signs before division because q can alias with n or d */
600
186k
  nsign = mp_int_compare_zero(n);
601
186k
  dsign = mp_int_compare_zero(d);
602
186k
603
186k
  /* truncating division */
604
186k
  CHECK(mp_int_div(n, d, q, r));
605
186k
606
186k
  /* see: [Note]Overview of division implementation */
607
186k
  qsign = mp_int_compare_zero(q);
608
186k
  rsign = mp_int_compare_zero(r);
609
186k
  if (
qsign < 0186k
)
{ /* q < 0 */40.1k
610
40.1k
    if (
rsign != 040.1k
)
{ /* r != 0 */13.7k
611
13.7k
      CHECK(mp_int_sub_value(q, 1, q));
612
13.7k
    }
613
40.1k
  }
614
146k
  else 
if (146k
qsign == 0146k
)
{ /* q == 0 */30.7k
615
30.7k
    if (
rsign != 030.7k
)
{ /* r != 0 */17.2k
616
17.2k
      if (
(nsign < 0 && 17.2k
dsign > 04.92k
) ||
(nsign > 0 && 12.3k
dsign < 012.3k
))
{4.92k
617
4.92k
        CHECK(mp_int_set_value(q, -1));
618
4.92k
      }
619
17.2k
    }
620
30.7k
  }
621
186k
  mp_int_clear(r);
622
186k
}
623
624
/* gmp: mpz_fdiv_r */
625
6.69k
void GMPZAPI(fdiv_r)(mp_int r, mp_int n, mp_int d) {
626
6.69k
  mpz_t qz;
627
6.69k
  mpz_t tempz;
628
6.69k
  mpz_t orig_dz;
629
6.69k
  mpz_t orig_nz;
630
6.69k
  mp_int q = &qz;
631
6.69k
  mp_int temp = &tempz;
632
6.69k
  mp_int orig_d = &orig_dz;
633
6.69k
  mp_int orig_n = &orig_nz;
634
6.69k
  CHECK(mp_int_init(q));
635
6.69k
  CHECK(mp_int_init(temp));
636
6.69k
  /* Make a copy of n in case n and d in case they overlap with q */
637
6.69k
  CHECK(mp_int_init_copy(orig_d, d));
638
6.69k
  CHECK(mp_int_init_copy(orig_n, n));
639
6.69k
640
6.69k
  /* floor division */
641
6.69k
  GMPZAPI(fdiv_q)(q, n, d);
642
6.69k
643
6.69k
  /* see: [Note]Overview of division implementation */
644
6.69k
  /* n = q * d + r  ==>  r = n - q * d */
645
6.69k
  mp_int_mul(q, orig_d, temp);
646
6.69k
  mp_int_sub(orig_n, temp, r);
647
6.69k
648
6.69k
  mp_int_clear(q);
649
6.69k
  mp_int_clear(temp);
650
6.69k
  mp_int_clear(orig_d);
651
6.69k
  mp_int_clear(orig_n);
652
6.69k
}
653
654
/* gmp: mpz_tdiv_q */
655
0
void GMPZAPI(tdiv_q)(mp_int q, mp_int n, mp_int d) {
656
0
  /* truncating division*/
657
0
  CHECK(mp_int_div(n, d, q, NULL));
658
0
}
659
660
/* gmp: mpz_fdiv_q_ui */
661
0
unsigned long GMPZAPI(fdiv_q_ui)(mp_int q, mp_int n, unsigned long d) {
662
0
  mpz_t tempz;
663
0
  mp_int temp = &tempz;
664
0
  mpz_t rz;
665
0
  mp_int r = &rz;
666
0
  mpz_t orig_nz;
667
0
  mp_int orig_n = &orig_nz;
668
0
  unsigned long rl;
669
0
  CHECK(mp_int_init_uvalue(temp, d));
670
0
  CHECK(mp_int_init(r));
671
0
  /* Make a copy of n in case n and q overlap */
672
0
  CHECK(mp_int_init_copy(orig_n, n));
673
0
674
0
  /* use floor division mode to compute q and r */
675
0
  GMPZAPI(fdiv_q)(q, n, temp);
676
0
  GMPZAPI(fdiv_r)(r, orig_n, temp);
677
0
  CHECK(mp_int_to_uint(r, &rl));
678
0
679
0
  mp_int_clear(temp);
680
0
  mp_int_clear(r);
681
0
  mp_int_clear(orig_n);
682
0
683
0
  return rl;
684
0
}
685
686
/* gmp: mpz_export */
687
1.98k
void* GMPZAPI(export)(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, mp_int op) {
688
1.98k
  int i, j;
689
1.98k
  int num_used_bytes;
690
1.98k
  size_t num_words, num_missing_bytes;
691
1.98k
  ssize_t word_offset;
692
1.98k
  unsigned char* dst;
693
1.98k
  mp_digit* src;
694
1.98k
  int src_bits;
695
1.98k
696
1.98k
  /* We do not have a complete implementation. Assert to ensure our
697
1.98k
   * restrictions are in place. */
698
1.98k
  assert(nails  == 0 && "Do not support non-full words");
699
1.98k
  assert(endian == 1 || endian == 0 || endian == -1);
700
1.98k
  assert(order == 1 || order == -1);
701
1.98k
702
1.98k
  /* Test for zero */
703
1.98k
  if (
mp_int_compare_zero(op) == 01.98k
)
{677
704
677
    if (countp)
705
0
      *countp = 0;
706
677
    return rop;
707
677
  }
708
1.98k
709
1.98k
  /* Calculate how many words we need */
710
1.30k
  num_used_bytes  = mp_int_unsigned_len(op);
711
1.30k
  num_words       = (num_used_bytes + (size-1)) / size; /* ceil division */
712
1.30k
  assert(num_used_bytes > 0);
713
1.30k
714
1.30k
  /* Check to see if we will have missing bytes in the last word.
715
1.30k
716
1.30k
     Missing bytes can only occur when the size of words we output is
717
1.30k
     greater than the size of words used internally by imath. The number of
718
1.30k
     missing bytes is the number of bytes needed to fill out the last word. If
719
1.30k
     this number is greater than the size of a single mp_digit, then we need to
720
1.30k
     pad the word with extra zeros. Otherwise, the missing bytes can be filled
721
1.30k
     directly from the zeros in the last digit in the number.
722
1.30k
   */
723
1.30k
  num_missing_bytes   = (size * num_words) - num_used_bytes;
724
1.30k
  assert(num_missing_bytes < size);
725
1.30k
726
1.30k
  /* Allocate space for the result if needed */
727
1.30k
  if (
rop == NULL1.30k
)
{0
728
0
    rop = malloc(num_words * size);
729
0
  }
730
1.30k
731
1.30k
  if (
endian == 01.30k
)
{1.30k
732
1.30k
    endian = HOST_ENDIAN;
733
1.30k
  }
734
1.30k
735
1.30k
  /* Initialize dst and src pointers */
736
1.30k
  dst = (unsigned char *) rop + (order >= 0 ? 
(num_words-1) * size0
:
01.30k
) + (endian >= 0 ?
size-10
:
01.30k
);
737
1.30k
  src = MP_DIGITS(op);
738
1.30k
  src_bits = MP_DIGIT_BIT;
739
1.30k
740
1.30k
  word_offset = (endian >= 0 ? 
size0
:
-size1.30k
) + (order < 0 ?
size1.30k
:
-size0
);
741
1.30k
742
2.64k
  for (i = 0; 
i < num_words2.64k
;
i++1.33k
)
{1.33k
743
3.59k
    for (j = 0; 
j < size && 3.59k
i * size + j < num_used_bytes3.49k
;
j++2.26k
)
{2.26k
744
2.26k
      if (
src_bits == 02.26k
)
{129
745
129
        ++src;
746
129
        src_bits = MP_DIGIT_BIT;
747
129
      }
748
2.26k
      *dst = (*src >> (MP_DIGIT_BIT - src_bits)) & 0xFF;
749
2.26k
      src_bits -= 8;
750
2.26k
      dst -= endian;
751
2.26k
    }
752
9.75k
    for (; 
j < size9.75k
;
j++8.42k
)
{8.42k
753
8.42k
      *dst = 0;
754
8.42k
      dst -= endian;
755
8.42k
    }
756
1.33k
    dst += word_offset;
757
1.33k
  }
758
1.30k
759
1.30k
  if (countp)
760
0
    *countp = num_words;
761
1.30k
  return rop;
762
1.98k
}
763
764
/* gmp: mpz_import */
765
15.7k
void GMPZAPI(import)(mp_int rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op) {
766
15.7k
  mpz_t tmpz;
767
15.7k
  mp_int tmp = &tmpz;
768
15.7k
  size_t total_size;
769
15.7k
  size_t num_digits;
770
15.7k
  ssize_t word_offset;
771
15.7k
  const unsigned char *src;
772
15.7k
  mp_digit *dst;
773
15.7k
  int dst_bits;
774
15.7k
  int i, j;
775
15.7k
  if (
count == 0 || 15.7k
op == NULL15.7k
)
776
0
    return;
777
15.7k
778
15.7k
  /* We do not have a complete implementation. Assert to ensure our
779
15.7k
   * restrictions are in place. */
780
15.7k
  assert(nails  == 0 && "Do not support non-full words");
781
15.7k
  assert(endian == 1 || endian == 0 || endian == -1);
782
15.7k
  assert(order == 1 || order == -1);
783
15.7k
784
15.7k
  if (
endian == 015.7k
)
{15.7k
785
15.7k
    endian = HOST_ENDIAN;
786
15.7k
  }
787
15.7k
788
15.7k
  /* Compute number of needed digits by ceil division */
789
15.7k
  total_size = count * size;
790
15.7k
  num_digits = (total_size + sizeof(mp_digit) - 1) / sizeof(mp_digit);
791
15.7k
792
15.7k
  /* Init temporary */
793
15.7k
  mp_int_init_size(tmp, num_digits);
794
69.4k
  for (i = 0; 
i < num_digits69.4k
;
i++53.6k
)
795
53.6k
    tmp->digits[i] = 0;
796
15.7k
797
15.7k
  /* Copy bytes */
798
15.7k
  src = (const unsigned char *) op + (order >= 0 ? 
(count-1) * size0
:
015.7k
) + (endian >= 0 ?
size-10
:
015.7k
);
799
15.7k
  dst = MP_DIGITS(tmp);
800
15.7k
  dst_bits = 0;
801
15.7k
802
15.7k
  word_offset = (endian >= 0 ? 
size0
:
-size15.7k
) + (order < 0 ?
size15.7k
:
-size0
);
803
15.7k
804
42.5k
  for (i = 0; 
i < count42.5k
;
i++26.8k
)
{26.8k
805
241k
    for (j = 0; 
j < size241k
;
j++214k
)
{214k
806
214k
      if (
dst_bits == 214k
MP_DIGIT_BIT214k
)
{37.8k
807
37.8k
        ++dst;
808
37.8k
        dst_bits = 0;
809
37.8k
      }
810
214k
      *dst |= ((mp_digit)*src) << dst_bits;
811
214k
      dst_bits += 8;
812
214k
      src -= endian;
813
214k
    }
814
26.8k
    src += word_offset;
815
26.8k
  }
816
15.7k
817
15.7k
  MP_USED(tmp) = num_digits;
818
15.7k
819
15.7k
  /* Remove leading zeros from number */
820
15.7k
  {
821
15.7k
    mp_size uz_   = MP_USED(tmp);
822
15.7k
    mp_digit *dz_ = MP_DIGITS(tmp) + uz_ -1;
823
52.5k
    while (
uz_ > 1 && 52.5k
(*dz_-- == 0)37.7k
)
824
36.7k
      --uz_;
825
15.7k
    MP_USED(tmp) = uz_;
826
15.7k
  }
827
15.7k
828
15.7k
  /* Copy to destination */
829
15.7k
  mp_int_copy(tmp, rop);
830
15.7k
  mp_int_clear(tmp);
831
15.7k
}
832
833
/* gmp: mpz_sizeinbase */
834
85
size_t GMPZAPI(sizeinbase)(mp_int op, int base) {
835
85
  mp_result res;
836
85
  size_t size;
837
85
838
85
  /* If op == 0, return 1 */
839
85
  if (mp_int_compare_zero(op) == 0)
840
0
    return 1;
841
85
842
85
  /* Compute string length in base */
843
85
  res = mp_int_string_len(op, base);
844
85
  CHECK((res > 0) == MP_OK);
845
85
846
85
  /* Now adjust the final size by getting rid of string artifacts */
847
85
  size = res;
848
85
849
85
  /* subtract one for the null terminator */
850
85
  size -= 1;
851
85
852
85
  /* subtract one for the negative sign */
853
85
  if (mp_int_compare_zero(op) < 0)
854
30
    size -= 1;
855
85
856
85
  return size;
857
85
}