Coverage Report

Created: 2019-07-24 05:18

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/include/polly/CodeGen/BlockGenerators.h
Line
Count
Source (jump to first uncovered line)
1
//===-BlockGenerators.h - Helper to generate code for statements-*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the BlockGenerator and VectorBlockGenerator classes, which
10
// generate sequential code and vectorized code for a polyhedral statement,
11
// respectively.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#ifndef POLLY_BLOCK_GENERATORS_H
16
#define POLLY_BLOCK_GENERATORS_H
17
18
#include "polly/CodeGen/IRBuilder.h"
19
#include "polly/Support/ScopHelper.h"
20
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21
#include "isl/isl-noexceptions.h"
22
23
namespace polly {
24
using namespace llvm;
25
class MemoryAccess;
26
class ScopArrayInfo;
27
class IslExprBuilder;
28
29
/// Generate a new basic block for a polyhedral statement.
30
class BlockGenerator {
31
public:
32
  typedef llvm::SmallVector<ValueMapT, 8> VectorValueMapT;
33
34
  /// Map types to resolve scalar dependences.
35
  ///
36
  ///@{
37
  using AllocaMapTy = DenseMap<const ScopArrayInfo *, AssertingVH<AllocaInst>>;
38
39
  /// Simple vector of instructions to store escape users.
40
  using EscapeUserVectorTy = SmallVector<Instruction *, 4>;
41
42
  /// Map type to resolve escaping users for scalar instructions.
43
  ///
44
  /// @see The EscapeMap member.
45
  using EscapeUsersAllocaMapTy =
46
      MapVector<Instruction *,
47
                std::pair<AssertingVH<Value>, EscapeUserVectorTy>>;
48
49
  ///@}
50
51
  /// Create a generator for basic blocks.
52
  ///
53
  /// @param Builder     The LLVM-IR Builder used to generate the statement. The
54
  ///                    code is generated at the location, the Builder points
55
  ///                    to.
56
  /// @param LI          The loop info for the current function
57
  /// @param SE          The scalar evolution info for the current function
58
  /// @param DT          The dominator tree of this function.
59
  /// @param ScalarMap   Map from scalars to their demoted location.
60
  /// @param EscapeMap   Map from scalars to their escape users and locations.
61
  /// @param GlobalMap   A mapping from llvm::Values used in the original scop
62
  ///                    region to a new set of llvm::Values. Each reference to
63
  ///                    an original value appearing in this mapping is replaced
64
  ///                    with the new value it is mapped to.
65
  /// @param ExprBuilder An expression builder to generate new access functions.
66
  /// @param StartBlock  The first basic block after the RTC.
67
  BlockGenerator(PollyIRBuilder &Builder, LoopInfo &LI, ScalarEvolution &SE,
68
                 DominatorTree &DT, AllocaMapTy &ScalarMap,
69
                 EscapeUsersAllocaMapTy &EscapeMap, ValueMapT &GlobalMap,
70
                 IslExprBuilder *ExprBuilder, BasicBlock *StartBlock);
71
72
  /// Copy the basic block.
73
  ///
74
  /// This copies the entire basic block and updates references to old values
75
  /// with references to new values, as defined by GlobalMap.
76
  ///
77
  /// @param Stmt        The block statement to code generate.
78
  /// @param LTS         A map from old loops to new induction variables as
79
  ///                    SCEVs.
80
  /// @param NewAccesses A map from memory access ids to new ast expressions,
81
  ///                    which may contain new access expressions for certain
82
  ///                    memory accesses.
83
  void copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
84
                isl_id_to_ast_expr *NewAccesses);
85
86
  /// Remove a ScopArrayInfo's allocation from the ScalarMap.
87
  ///
88
  /// This function allows to remove values from the ScalarMap. This is useful
89
  /// if the corresponding alloca instruction will be deleted (or moved into
90
  /// another module), as without removing these values the underlying
91
  /// AssertingVH will trigger due to us still keeping reference to this
92
  /// scalar.
93
  ///
94
  /// @param Array The array for which the alloca was generated.
95
0
  void freeScalarAlloc(ScopArrayInfo *Array) { ScalarMap.erase(Array); }
96
97
  /// Return the alloca for @p Access.
98
  ///
99
  /// If no alloca was mapped for @p Access a new one is created.
100
  ///
101
  /// @param Access    The memory access for which to generate the alloca.
102
  ///
103
  /// @returns The alloca for @p Access or a replacement value taken from
104
  ///          GlobalMap.
105
  Value *getOrCreateAlloca(const MemoryAccess &Access);
106
107
  /// Return the alloca for @p Array.
108
  ///
109
  /// If no alloca was mapped for @p Array a new one is created.
110
  ///
111
  /// @param Array The array for which to generate the alloca.
112
  ///
113
  /// @returns The alloca for @p Array or a replacement value taken from
114
  ///          GlobalMap.
115
  Value *getOrCreateAlloca(const ScopArrayInfo *Array);
116
117
  /// Finalize the code generation for the SCoP @p S.
118
  ///
119
  /// This will initialize and finalize the scalar variables we demoted during
120
  /// the code generation.
121
  ///
122
  /// @see createScalarInitialization(Scop &)
123
  /// @see createScalarFinalization(Region &)
124
  void finalizeSCoP(Scop &S);
125
126
  /// An empty destructor
127
630
  virtual ~BlockGenerator() {}
128
129
325
  BlockGenerator(const BlockGenerator &) = default;
130
131
protected:
132
  PollyIRBuilder &Builder;
133
  LoopInfo &LI;
134
  ScalarEvolution &SE;
135
  IslExprBuilder *ExprBuilder;
136
137
  /// The dominator tree of this function.
138
  DominatorTree &DT;
139
140
  /// The entry block of the current function.
141
  BasicBlock *EntryBB;
142
143
  /// Map to resolve scalar dependences for PHI operands and scalars.
144
  ///
145
  /// When translating code that contains scalar dependences as they result from
146
  /// inter-block scalar dependences (including the use of data carrying PHI
147
  /// nodes), we do not directly regenerate in-register SSA code, but instead
148
  /// allocate some stack memory through which these scalar values are passed.
149
  /// Only a later pass of -mem2reg will then (re)introduce in-register
150
  /// computations.
151
  ///
152
  /// To keep track of the memory location(s) used to store the data computed by
153
  /// a given SSA instruction, we use the map 'ScalarMap'. ScalarMap maps a
154
  /// given ScopArrayInfo to the junk of stack allocated memory, that is
155
  /// used for code generation.
156
  ///
157
  /// Up to two different ScopArrayInfo objects are associated with each
158
  /// llvm::Value:
159
  ///
160
  /// MemoryType::Value objects are used for normal scalar dependences that go
161
  /// from a scalar definition to its use. Such dependences are lowered by
162
  /// directly writing the value an instruction computes into the corresponding
163
  /// chunk of memory and reading it back from this chunk of memory right before
164
  /// every use of this original scalar value. The memory allocations for
165
  /// MemoryType::Value objects end with '.s2a'.
166
  ///
167
  /// MemoryType::PHI (and MemoryType::ExitPHI) objects are used to model PHI
168
  /// nodes. For each PHI nodes we introduce, besides the Array of type
169
  /// MemoryType::Value, a second chunk of memory into which we write at the end
170
  /// of each basic block preceding the PHI instruction the value passed
171
  /// through this basic block. At the place where the PHI node is executed, we
172
  /// replace the PHI node with a load from the corresponding MemoryType::PHI
173
  /// memory location. The memory allocations for MemoryType::PHI end with
174
  /// '.phiops'.
175
  ///
176
  /// Example:
177
  ///
178
  ///                              Input C Code
179
  ///                              ============
180
  ///
181
  ///                 S1:      x1 = ...
182
  ///                          for (i=0...N) {
183
  ///                 S2:           x2 = phi(x1, add)
184
  ///                 S3:           add = x2 + 42;
185
  ///                          }
186
  ///                 S4:      print(x1)
187
  ///                          print(x2)
188
  ///                          print(add)
189
  ///
190
  ///
191
  ///        Unmodified IR                         IR After expansion
192
  ///        =============                         ==================
193
  ///
194
  /// S1:   x1 = ...                     S1:    x1 = ...
195
  ///                                           x1.s2a = s1
196
  ///                                           x2.phiops = s1
197
  ///        |                                    |
198
  ///        |   <--<--<--<--<                    |   <--<--<--<--<
199
  ///        | /              \                   | /              \     .
200
  ///        V V               \                  V V               \    .
201
  /// S2:  x2 = phi (x1, add)   |        S2:    x2 = x2.phiops       |
202
  ///                           |               x2.s2a = x2          |
203
  ///                           |                                    |
204
  /// S3:  add = x2 + 42        |        S3:    add = x2 + 42        |
205
  ///                           |               add.s2a = add        |
206
  ///                           |               x2.phiops = add      |
207
  ///        | \               /                  | \               /
208
  ///        |  \             /                   |  \             /
209
  ///        |   >-->-->-->-->                    |   >-->-->-->-->
210
  ///        V                                    V
211
  ///
212
  ///                                    S4:    x1 = x1.s2a
213
  /// S4:  ... = x1                             ... = x1
214
  ///                                           x2 = x2.s2a
215
  ///      ... = x2                             ... = x2
216
  ///                                           add = add.s2a
217
  ///      ... = add                            ... = add
218
  ///
219
  ///      ScalarMap = { x1:Value -> x1.s2a, x2:Value -> x2.s2a,
220
  ///                    add:Value -> add.s2a, x2:PHI -> x2.phiops }
221
  ///
222
  ///  ??? Why does a PHI-node require two memory chunks ???
223
  ///
224
  ///  One may wonder why a PHI node requires two memory chunks and not just
225
  ///  all data is stored in a single location. The following example tries
226
  ///  to store all data in .s2a and drops the .phiops location:
227
  ///
228
  ///      S1:    x1 = ...
229
  ///             x1.s2a = s1
230
  ///             x2.s2a = s1             // use .s2a instead of .phiops
231
  ///               |
232
  ///               |   <--<--<--<--<
233
  ///               | /              \    .
234
  ///               V V               \   .
235
  ///      S2:    x2 = x2.s2a          |  // value is same as above, but read
236
  ///                                  |  // from .s2a
237
  ///                                  |
238
  ///             x2.s2a = x2          |  // store into .s2a as normal
239
  ///                                  |
240
  ///      S3:    add = x2 + 42        |
241
  ///             add.s2a = add        |
242
  ///             x2.s2a = add         |  // use s2a instead of .phiops
243
  ///               | \               /   // !!! This is wrong, as x2.s2a now
244
  ///               |   >-->-->-->-->     // contains add instead of x2.
245
  ///               V
246
  ///
247
  ///      S4:    x1 = x1.s2a
248
  ///             ... = x1
249
  ///             x2 = x2.s2a             // !!! We now read 'add' instead of
250
  ///             ... = x2                // 'x2'
251
  ///             add = add.s2a
252
  ///             ... = add
253
  ///
254
  ///  As visible in the example, the SSA value of the PHI node may still be
255
  ///  needed _after_ the basic block, which could conceptually branch to the
256
  ///  PHI node, has been run and has overwritten the PHI's old value. Hence, a
257
  ///  single memory location is not enough to code-generate a PHI node.
258
  ///
259
  /// Memory locations used for the special PHI node modeling.
260
  AllocaMapTy &ScalarMap;
261
262
  /// Map from instructions to their escape users as well as the alloca.
263
  EscapeUsersAllocaMapTy &EscapeMap;
264
265
  /// A map from llvm::Values referenced in the old code to a new set of
266
  ///        llvm::Values, which is used to replace these old values during
267
  ///        code generation.
268
  ValueMapT &GlobalMap;
269
270
  /// The first basic block after the RTC.
271
  BasicBlock *StartBlock;
272
273
  /// Split @p BB to create a new one we can use to clone @p BB in.
274
  BasicBlock *splitBB(BasicBlock *BB);
275
276
  /// Copy the given basic block.
277
  ///
278
  /// @param Stmt      The statement to code generate.
279
  /// @param BB        The basic block to code generate.
280
  /// @param BBMap     A mapping from old values to their new values in this
281
  /// block.
282
  /// @param LTS         A map from old loops to new induction variables as
283
  ///                    SCEVs.
284
  /// @param NewAccesses A map from memory access ids to new ast expressions,
285
  ///                    which may contain new access expressions for certain
286
  ///                    memory accesses.
287
  ///
288
  /// @returns The copy of the basic block.
289
  BasicBlock *copyBB(ScopStmt &Stmt, BasicBlock *BB, ValueMapT &BBMap,
290
                     LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);
291
292
  /// Copy the given basic block.
293
  ///
294
  /// @param Stmt      The statement to code generate.
295
  /// @param BB        The basic block to code generate.
296
  /// @param BBCopy    The new basic block to generate code in.
297
  /// @param BBMap     A mapping from old values to their new values in this
298
  /// block.
299
  /// @param LTS         A map from old loops to new induction variables as
300
  ///                    SCEVs.
301
  /// @param NewAccesses A map from memory access ids to new ast expressions,
302
  ///                    which may contain new access expressions for certain
303
  ///                    memory accesses.
304
  void copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *BBCopy,
305
              ValueMapT &BBMap, LoopToScevMapT &LTS,
306
              isl_id_to_ast_expr *NewAccesses);
307
308
  /// Generate reload of scalars demoted to memory and needed by @p Stmt.
309
  ///
310
  /// @param Stmt  The statement we generate code for.
311
  /// @param LTS   A mapping from loops virtual canonical induction
312
  ///              variable to their new values.
313
  /// @param BBMap A mapping from old values to their new values in this block.
314
  /// @param NewAccesses A map from memory access ids to new ast expressions.
315
  void generateScalarLoads(ScopStmt &Stmt, LoopToScevMapT &LTS,
316
                           ValueMapT &BBMap,
317
                           __isl_keep isl_id_to_ast_expr *NewAccesses);
318
319
  /// When statement tracing is enabled, build the print instructions for
320
  /// printing the current statement instance.
321
  ///
322
  /// The printed output looks like:
323
  ///
324
  ///     Stmt1(0)
325
  ///
326
  /// If printing of scalars is enabled, it also appends the value of each
327
  /// scalar to the line:
328
  ///
329
  ///     Stmt1(0) %i=1 %sum=5
330
  ///
331
  /// @param Stmt  The statement we generate code for.
332
  /// @param LTS   A mapping from loops virtual canonical induction
333
  ///              variable to their new values.
334
  /// @param BBMap A mapping from old values to their new values in this block.
335
  void generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT &LTS,
336
                              ValueMapT &BBMap);
337
338
  /// Generate instructions that compute whether one instance of @p Set is
339
  /// executed.
340
  ///
341
  /// @param Stmt      The statement we generate code for.
342
  /// @param Subdomain A set in the space of @p Stmt's domain. Elements not in
343
  ///                  @p Stmt's domain are ignored.
344
  ///
345
  /// @return An expression of type i1, generated into the current builder
346
  ///         position, that evaluates to 1 if the executed instance is part of
347
  ///         @p Set.
348
  Value *buildContainsCondition(ScopStmt &Stmt, const isl::set &Subdomain);
349
350
  /// Generate code that executes in a subset of @p Stmt's domain.
351
  ///
352
  /// @param Stmt        The statement we generate code for.
353
  /// @param Subdomain   The condition for some code to be executed.
354
  /// @param Subject     A name for the code that is executed
355
  ///                    conditionally. Used to name new basic blocks and
356
  ///                    instructions.
357
  /// @param GenThenFunc Callback which generates the code to be executed
358
  ///                    when the current executed instance is in @p Set. The
359
  ///                    IRBuilder's position is moved to within the block that
360
  ///                    executes conditionally for this callback.
361
  void generateConditionalExecution(ScopStmt &Stmt, const isl::set &Subdomain,
362
                                    StringRef Subject,
363
                                    const std::function<void()> &GenThenFunc);
364
365
  /// Generate the scalar stores for the given statement.
366
  ///
367
  /// After the statement @p Stmt was copied all inner-SCoP scalar dependences
368
  /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
369
  /// be demoted to memory.
370
  ///
371
  /// @param Stmt  The statement we generate code for.
372
  /// @param LTS   A mapping from loops virtual canonical induction
373
  ///              variable to their new values
374
  ///              (for values recalculated in the new ScoP, but not
375
  ///               within this basic block)
376
  /// @param BBMap A mapping from old values to their new values in this block.
377
  /// @param NewAccesses A map from memory access ids to new ast expressions.
378
  virtual void generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
379
                                    ValueMapT &BBMap,
380
                                    __isl_keep isl_id_to_ast_expr *NewAccesses);
381
382
  /// Handle users of @p Array outside the SCoP.
383
  ///
384
  /// @param S         The current SCoP.
385
  /// @param Inst      The ScopArrayInfo to handle.
386
  void handleOutsideUsers(const Scop &S, ScopArrayInfo *Array);
387
388
  /// Find scalar statements that have outside users.
389
  ///
390
  /// We register these scalar values to later update subsequent scalar uses of
391
  /// these values to either use the newly computed value from within the scop
392
  /// (if the scop was executed) or the unchanged original code (if the run-time
393
  /// check failed).
394
  ///
395
  /// @param S The scop for which to find the outside users.
396
  void findOutsideUsers(Scop &S);
397
398
  /// Initialize the memory of demoted scalars.
399
  ///
400
  /// @param S The scop for which to generate the scalar initializers.
401
  void createScalarInitialization(Scop &S);
402
403
  /// Create exit PHI node merges for PHI nodes with more than two edges
404
  ///        from inside the scop.
405
  ///
406
  /// For scops which have a PHI node in the exit block that has more than two
407
  /// incoming edges from inside the scop region, we require some special
408
  /// handling to understand which of the possible values will be passed to the
409
  /// PHI node from inside the optimized version of the scop. To do so ScopInfo
410
  /// models the possible incoming values as write accesses of the ScopStmts.
411
  ///
412
  /// This function creates corresponding code to reload the computed outgoing
413
  /// value from the stack slot it has been stored into and to pass it on to the
414
  /// PHI node in the original exit block.
415
  ///
416
  /// @param S The scop for which to generate the exiting PHI nodes.
417
  void createExitPHINodeMerges(Scop &S);
418
419
  /// Promote the values of demoted scalars after the SCoP.
420
  ///
421
  /// If a scalar value was used outside the SCoP we need to promote the value
422
  /// stored in the memory cell allocated for that scalar and combine it with
423
  /// the original value in the non-optimized SCoP.
424
  void createScalarFinalization(Scop &S);
425
426
  /// Try to synthesize a new value
427
  ///
428
  /// Given an old value, we try to synthesize it in a new context from its
429
  /// original SCEV expression. We start from the original SCEV expression,
430
  /// then replace outdated parameter and loop references, and finally
431
  /// expand it to code that computes this updated expression.
432
  ///
433
  /// @param Stmt      The statement to code generate
434
  /// @param Old       The old Value
435
  /// @param BBMap     A mapping from old values to their new values
436
  ///                  (for values recalculated within this basic block)
437
  /// @param LTS       A mapping from loops virtual canonical induction
438
  ///                  variable to their new values
439
  ///                  (for values recalculated in the new ScoP, but not
440
  ///                   within this basic block)
441
  /// @param L         The loop that surrounded the instruction that referenced
442
  ///                  this value in the original code. This loop is used to
443
  ///                  evaluate the scalar evolution at the right scope.
444
  ///
445
  /// @returns  o A newly synthesized value.
446
  ///           o NULL, if synthesizing the value failed.
447
  Value *trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
448
                               LoopToScevMapT &LTS, Loop *L) const;
449
450
  /// Get the new version of a value.
451
  ///
452
  /// Given an old value, we first check if a new version of this value is
453
  /// available in the BBMap or GlobalMap. In case it is not and the value can
454
  /// be recomputed using SCEV, we do so. If we can not recompute a value
455
  /// using SCEV, but we understand that the value is constant within the scop,
456
  /// we return the old value.  If the value can still not be derived, this
457
  /// function will assert.
458
  ///
459
  /// @param Stmt      The statement to code generate.
460
  /// @param Old       The old Value.
461
  /// @param BBMap     A mapping from old values to their new values
462
  ///                  (for values recalculated within this basic block).
463
  /// @param LTS       A mapping from loops virtual canonical induction
464
  ///                  variable to their new values
465
  ///                  (for values recalculated in the new ScoP, but not
466
  ///                   within this basic block).
467
  /// @param L         The loop that surrounded the instruction that referenced
468
  ///                  this value in the original code. This loop is used to
469
  ///                  evaluate the scalar evolution at the right scope.
470
  ///
471
  /// @returns  o The old value, if it is still valid.
472
  ///           o The new value, if available.
473
  ///           o NULL, if no value is found.
474
  Value *getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
475
                     LoopToScevMapT &LTS, Loop *L) const;
476
477
  void copyInstScalar(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap,
478
                      LoopToScevMapT &LTS);
479
480
  /// Get the innermost loop that surrounds the statement @p Stmt.
481
  Loop *getLoopForStmt(const ScopStmt &Stmt) const;
482
483
  /// Generate the operand address
484
  /// @param NewAccesses A map from memory access ids to new ast expressions,
485
  ///                    which may contain new access expressions for certain
486
  ///                    memory accesses.
487
  Value *generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
488
                                  ValueMapT &BBMap, LoopToScevMapT &LTS,
489
                                  isl_id_to_ast_expr *NewAccesses);
490
491
  /// Generate the operand address.
492
  ///
493
  /// @param Stmt         The statement to generate code for.
494
  /// @param L            The innermost loop that surrounds the statement.
495
  /// @param Pointer      If the access expression is not changed (ie. not found
496
  ///                     in @p LTS), use this Pointer from the original code
497
  ///                     instead.
498
  /// @param BBMap        A mapping from old values to their new values.
499
  /// @param LTS          A mapping from loops virtual canonical induction
500
  ///                     variable to their new values.
501
  /// @param NewAccesses  Ahead-of-time generated access expressions.
502
  /// @param Id           Identifier of the MemoryAccess to generate.
503
  /// @param ExpectedType The type the returned value should have.
504
  ///
505
  /// @return The generated address.
506
  Value *generateLocationAccessed(ScopStmt &Stmt, Loop *L, Value *Pointer,
507
                                  ValueMapT &BBMap, LoopToScevMapT &LTS,
508
                                  isl_id_to_ast_expr *NewAccesses,
509
                                  __isl_take isl_id *Id, Type *ExpectedType);
510
511
  /// Generate the pointer value that is accesses by @p Access.
512
  ///
513
  /// For write accesses, generate the target address. For read accesses,
514
  /// generate the source address.
515
  /// The access can be either an array access or a scalar access. In the first
516
  /// case, the returned address will point to an element into that array. In
517
  /// the scalar case, an alloca is used.
518
  /// If a new AccessRelation is set for the MemoryAccess, the new relation will
519
  /// be used.
520
  ///
521
  /// @param Access      The access to generate a pointer for.
522
  /// @param L           The innermost loop that surrounds the statement.
523
  /// @param LTS         A mapping from loops virtual canonical induction
524
  ///                    variable to their new values.
525
  /// @param BBMap       A mapping from old values to their new values.
526
  /// @param NewAccesses A map from memory access ids to new ast expressions.
527
  ///
528
  /// @return The generated address.
529
  Value *getImplicitAddress(MemoryAccess &Access, Loop *L, LoopToScevMapT &LTS,
530
                            ValueMapT &BBMap,
531
                            __isl_keep isl_id_to_ast_expr *NewAccesses);
532
533
  /// @param NewAccesses A map from memory access ids to new ast expressions,
534
  ///                    which may contain new access expressions for certain
535
  ///                    memory accesses.
536
  Value *generateArrayLoad(ScopStmt &Stmt, LoadInst *load, ValueMapT &BBMap,
537
                           LoopToScevMapT &LTS,
538
                           isl_id_to_ast_expr *NewAccesses);
539
540
  /// @param NewAccesses A map from memory access ids to new ast expressions,
541
  ///                    which may contain new access expressions for certain
542
  ///                    memory accesses.
543
  void generateArrayStore(ScopStmt &Stmt, StoreInst *store, ValueMapT &BBMap,
544
                          LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);
545
546
  /// Copy a single PHI instruction.
547
  ///
548
  /// The implementation in the BlockGenerator is trivial, however it allows
549
  /// subclasses to handle PHIs different.
550
  virtual void copyPHIInstruction(ScopStmt &, PHINode *, ValueMapT &,
551
38
                                  LoopToScevMapT &) {}
552
553
  /// Copy a single Instruction.
554
  ///
555
  /// This copies a single Instruction and updates references to old values
556
  /// with references to new values, as defined by GlobalMap and BBMap.
557
  ///
558
  /// @param Stmt        The statement to code generate.
559
  /// @param Inst        The instruction to copy.
560
  /// @param BBMap       A mapping from old values to their new values
561
  ///                    (for values recalculated within this basic block).
562
  /// @param GlobalMap   A mapping from old values to their new values
563
  ///                    (for values recalculated in the new ScoP, but not
564
  ///                    within this basic block).
565
  /// @param LTS         A mapping from loops virtual canonical induction
566
  ///                    variable to their new values
567
  ///                    (for values recalculated in the new ScoP, but not
568
  ///                     within this basic block).
569
  /// @param NewAccesses A map from memory access ids to new ast expressions,
570
  ///                    which may contain new access expressions for certain
571
  ///                    memory accesses.
572
  void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap,
573
                       LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);
574
575
  /// Helper to determine if @p Inst can be synthesized in @p Stmt.
576
  ///
577
  /// @returns false, iff @p Inst can be synthesized in @p Stmt.
578
  bool canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst);
579
580
  /// Remove dead instructions generated for BB
581
  ///
582
  /// @param BB The basic block code for which code has been generated.
583
  /// @param BBMap A local map from old to new instructions.
584
  void removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap);
585
586
  /// Invalidate the scalar evolution expressions for a scop.
587
  ///
588
  /// This function invalidates the scalar evolution results for all
589
  /// instructions that are part of a given scop, and the loops
590
  /// surrounding the users of merge blocks. This is necessary to ensure that
591
  /// later scops do not obtain scalar evolution expressions that reference
592
  /// values that earlier dominated the later scop, but have been moved in the
593
  /// conditional part of an earlier scop and consequently do not any more
594
  /// dominate the later scop.
595
  ///
596
  /// @param S The scop to invalidate.
597
  void invalidateScalarEvolution(Scop &S);
598
};
599
600
/// Generate a new vector basic block for a polyhedral statement.
601
///
602
/// The only public function exposed is generate().
603
class VectorBlockGenerator : BlockGenerator {
604
public:
605
  /// Generate a new vector basic block for a ScoPStmt.
606
  ///
607
  /// This code generation is similar to the normal, scalar code generation,
608
  /// except that each instruction is code generated for several vector lanes
609
  /// at a time. If possible instructions are issued as actual vector
610
  /// instructions, but e.g. for address calculation instructions we currently
611
  /// generate scalar instructions for each vector lane.
612
  ///
613
  /// @param BlockGen    A block generator object used as parent.
614
  /// @param Stmt        The statement to code generate.
615
  /// @param VLTS        A mapping from loops virtual canonical induction
616
  ///                    variable to their new values
617
  ///                    (for values recalculated in the new ScoP, but not
618
  ///                     within this basic block), one for each lane.
619
  /// @param Schedule    A map from the statement to a schedule where the
620
  ///                    innermost dimension is the dimension of the innermost
621
  ///                    loop containing the statement.
622
  /// @param NewAccesses A map from memory access ids to new ast expressions,
623
  ///                    which may contain new access expressions for certain
624
  ///                    memory accesses.
625
  static void generate(BlockGenerator &BlockGen, ScopStmt &Stmt,
626
                       std::vector<LoopToScevMapT> &VLTS,
627
                       __isl_keep isl_map *Schedule,
628
20
                       __isl_keep isl_id_to_ast_expr *NewAccesses) {
629
20
    VectorBlockGenerator Generator(BlockGen, VLTS, Schedule);
630
20
    Generator.copyStmt(Stmt, NewAccesses);
631
20
  }
632
633
private:
634
  // This is a vector of loop->scev maps.  The first map is used for the first
635
  // vector lane, ...
636
  // Each map, contains information about Instructions in the old ScoP, which
637
  // are recalculated in the new SCoP. When copying the basic block, we replace
638
  // all references to the old instructions with their recalculated values.
639
  //
640
  // For example, when the code generator produces this AST:
641
  //
642
  //   for (int c1 = 0; c1 <= 1023; c1 += 1)
643
  //     for (int c2 = 0; c2 <= 1023; c2 += VF)
644
  //       for (int lane = 0; lane <= VF; lane += 1)
645
  //         Stmt(c2 + lane + 3, c1);
646
  //
647
  // VLTS[lane] contains a map:
648
  //   "outer loop in the old loop nest" -> SCEV("c2 + lane + 3"),
649
  //   "inner loop in the old loop nest" -> SCEV("c1").
650
  std::vector<LoopToScevMapT> &VLTS;
651
652
  // A map from the statement to a schedule where the innermost dimension is the
653
  // dimension of the innermost loop containing the statement.
654
  isl_map *Schedule;
655
656
  VectorBlockGenerator(BlockGenerator &BlockGen,
657
                       std::vector<LoopToScevMapT> &VLTS,
658
                       __isl_keep isl_map *Schedule);
659
660
  int getVectorWidth();
661
662
  Value *getVectorValue(ScopStmt &Stmt, Value *Old, ValueMapT &VectorMap,
663
                        VectorValueMapT &ScalarMaps, Loop *L);
664
665
  Type *getVectorPtrTy(const Value *V, int Width);
666
667
  /// Load a vector from a set of adjacent scalars
668
  ///
669
  /// In case a set of scalars is known to be next to each other in memory,
670
  /// create a vector load that loads those scalars
671
  ///
672
  /// %vector_ptr= bitcast double* %p to <4 x double>*
673
  /// %vec_full = load <4 x double>* %vector_ptr
674
  ///
675
  /// @param Stmt           The statement to code generate.
676
  /// @param NegativeStride This is used to indicate a -1 stride. In such
677
  ///                       a case we load the end of a base address and
678
  ///                       shuffle the accesses in reverse order into the
679
  ///                       vector. By default we would do only positive
680
  ///                       strides.
681
  ///
682
  /// @param NewAccesses    A map from memory access ids to new ast
683
  ///                       expressions, which may contain new access
684
  ///                       expressions for certain memory accesses.
685
  Value *generateStrideOneLoad(ScopStmt &Stmt, LoadInst *Load,
686
                               VectorValueMapT &ScalarMaps,
687
                               __isl_keep isl_id_to_ast_expr *NewAccesses,
688
                               bool NegativeStride);
689
690
  /// Load a vector initialized from a single scalar in memory
691
  ///
692
  /// In case all elements of a vector are initialized to the same
693
  /// scalar value, this value is loaded and shuffled into all elements
694
  /// of the vector.
695
  ///
696
  /// %splat_one = load <1 x double>* %p
697
  /// %splat = shufflevector <1 x double> %splat_one, <1 x
698
  ///       double> %splat_one, <4 x i32> zeroinitializer
699
  ///
700
  /// @param NewAccesses A map from memory access ids to new ast expressions,
701
  ///                    which may contain new access expressions for certain
702
  ///                    memory accesses.
703
  Value *generateStrideZeroLoad(ScopStmt &Stmt, LoadInst *Load,
704
                                ValueMapT &BBMap,
705
                                __isl_keep isl_id_to_ast_expr *NewAccesses);
706
707
  /// Load a vector from scalars distributed in memory
708
  ///
709
  /// In case some scalars a distributed randomly in memory. Create a vector
710
  /// by loading each scalar and by inserting one after the other into the
711
  /// vector.
712
  ///
713
  /// %scalar_1= load double* %p_1
714
  /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0
715
  /// %scalar 2 = load double* %p_2
716
  /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1
717
  ///
718
  /// @param NewAccesses A map from memory access ids to new ast expressions,
719
  ///                    which may contain new access expressions for certain
720
  ///                    memory accesses.
721
  Value *generateUnknownStrideLoad(ScopStmt &Stmt, LoadInst *Load,
722
                                   VectorValueMapT &ScalarMaps,
723
                                   __isl_keep isl_id_to_ast_expr *NewAccesses);
724
725
  /// @param NewAccesses A map from memory access ids to new ast expressions,
726
  ///                    which may contain new access expressions for certain
727
  ///                    memory accesses.
728
  void generateLoad(ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
729
                    VectorValueMapT &ScalarMaps,
730
                    __isl_keep isl_id_to_ast_expr *NewAccesses);
731
732
  void copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
733
                     ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);
734
735
  void copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
736
                      ValueMapT &VectorMap, VectorValueMapT &ScalarMaps);
737
738
  /// @param NewAccesses A map from memory access ids to new ast expressions,
739
  ///                    which may contain new access expressions for certain
740
  ///                    memory accesses.
741
  void copyStore(ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
742
                 VectorValueMapT &ScalarMaps,
743
                 __isl_keep isl_id_to_ast_expr *NewAccesses);
744
745
  /// @param NewAccesses A map from memory access ids to new ast expressions,
746
  ///                    which may contain new access expressions for certain
747
  ///                    memory accesses.
748
  void copyInstScalarized(ScopStmt &Stmt, Instruction *Inst,
749
                          ValueMapT &VectorMap, VectorValueMapT &ScalarMaps,
750
                          __isl_keep isl_id_to_ast_expr *NewAccesses);
751
752
  bool extractScalarValues(const Instruction *Inst, ValueMapT &VectorMap,
753
                           VectorValueMapT &ScalarMaps);
754
755
  bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap);
756
757
  /// Generate vector loads for scalars.
758
  ///
759
  /// @param Stmt           The scop statement for which to generate the loads.
760
  /// @param VectorBlockMap A map that will be updated to relate the original
761
  ///                       values with the newly generated vector loads.
762
  void generateScalarVectorLoads(ScopStmt &Stmt, ValueMapT &VectorBlockMap);
763
764
  /// Verify absence of scalar stores.
765
  ///
766
  /// @param Stmt The scop statement to check for scalar stores.
767
  void verifyNoScalarStores(ScopStmt &Stmt);
768
769
  /// @param NewAccesses A map from memory access ids to new ast expressions,
770
  ///                    which may contain new access expressions for certain
771
  ///                    memory accesses.
772
  void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
773
                       VectorValueMapT &ScalarMaps,
774
                       __isl_keep isl_id_to_ast_expr *NewAccesses);
775
776
  /// @param NewAccesses A map from memory access ids to new ast expressions,
777
  ///                    which may contain new access expressions for certain
778
  ///                    memory accesses.
779
  void copyStmt(ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses);
780
};
781
782
/// Generator for new versions of polyhedral region statements.
783
class RegionGenerator : public BlockGenerator {
784
public:
785
  /// Create a generator for regions.
786
  ///
787
  /// @param BlockGen A generator for basic blocks.
788
305
  RegionGenerator(BlockGenerator &BlockGen) : BlockGenerator(BlockGen) {}
789
790
305
  virtual ~RegionGenerator() {}
791
792
  /// Copy the region statement @p Stmt.
793
  ///
794
  /// This copies the entire region represented by @p Stmt and updates
795
  /// references to old values with references to new values, as defined by
796
  /// GlobalMap.
797
  ///
798
  /// @param Stmt      The statement to code generate.
799
  /// @param LTS       A map from old loops to new induction variables as SCEVs.
800
  void copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
801
                __isl_keep isl_id_to_ast_expr *IdToAstExp);
802
803
private:
804
  /// A map from old to the first new block in the region, that was created to
805
  /// model the old basic block.
806
  DenseMap<BasicBlock *, BasicBlock *> StartBlockMap;
807
808
  /// A map from old to the last new block in the region, that was created to
809
  /// model the old basic block.
810
  DenseMap<BasicBlock *, BasicBlock *> EndBlockMap;
811
812
  /// The "BBMaps" for the whole region (one for each block). In case a basic
813
  /// block is code generated to multiple basic blocks (e.g., for partial
814
  /// writes), the StartBasic is used as index for the RegionMap.
815
  DenseMap<BasicBlock *, ValueMapT> RegionMaps;
816
817
  /// Mapping to remember PHI nodes that still need incoming values.
818
  using PHINodePairTy = std::pair<PHINode *, PHINode *>;
819
  DenseMap<BasicBlock *, SmallVector<PHINodePairTy, 4>> IncompletePHINodeMap;
820
821
  /// Repair the dominance tree after we created a copy block for @p BB.
822
  ///
823
  /// @returns The immediate dominator in the DT for @p BBCopy if in the region.
824
  BasicBlock *repairDominance(BasicBlock *BB, BasicBlock *BBCopy);
825
826
  /// Add the new operand from the copy of @p IncomingBB to @p PHICopy.
827
  ///
828
  /// PHI nodes, which may have (multiple) edges that enter from outside the
829
  /// non-affine subregion and even from outside the scop, are code generated as
830
  /// follows:
831
  ///
832
  /// # Original
833
  ///
834
  ///   Region: %A-> %exit
835
  ///   NonAffine Stmt: %nonaffB -> %D (includes %nonaffB, %nonaffC)
836
  ///
837
  ///     pre:
838
  ///       %val = add i64 1, 1
839
  ///
840
  ///     A:
841
  ///      br label %nonaff
842
  ///
843
  ///     nonaffB:
844
  ///       %phi = phi i64 [%val, %A], [%valC, %nonAffC], [%valD, %D]
845
  ///       %cmp = <nonaff>
846
  ///       br i1 %cmp, label %C, label %nonaffC
847
  ///
848
  ///     nonaffC:
849
  ///       %valC = add i64 1, 1
850
  ///       br i1 undef, label %D, label %nonaffB
851
  ///
852
  ///     D:
853
  ///       %valD = ...
854
  ///       %exit_cond = <loopexit>
855
  ///       br i1 %exit_cond, label %nonaffB, label %exit
856
  ///
857
  ///     exit:
858
  ///       ...
859
  ///
860
  ///  - %start and %C enter from outside the non-affine region.
861
  ///  - %nonaffC enters from within the non-affine region.
862
  ///
863
  ///  # New
864
  ///
865
  ///    polly.A:
866
  ///       store i64 %val, i64* %phi.phiops
867
  ///       br label %polly.nonaffA.entry
868
  ///
869
  ///    polly.nonaffB.entry:
870
  ///       %phi.phiops.reload = load i64, i64* %phi.phiops
871
  ///       br label %nonaffB
872
  ///
873
  ///    polly.nonaffB:
874
  ///       %polly.phi = [%phi.phiops.reload, %nonaffB.entry],
875
  ///                    [%p.valC, %polly.nonaffC]
876
  ///
877
  ///    polly.nonaffC:
878
  ///       %p.valC = add i64 1, 1
879
  ///       br i1 undef, label %polly.D, label %polly.nonaffB
880
  ///
881
  ///    polly.D:
882
  ///        %p.valD = ...
883
  ///        store i64 %p.valD, i64* %phi.phiops
884
  ///        %p.exit_cond = <loopexit>
885
  ///        br i1 %p.exit_cond, label %polly.nonaffB, label %exit
886
  ///
887
  /// Values that enter the PHI from outside the non-affine region are stored
888
  /// into the stack slot %phi.phiops by statements %polly.A and %polly.D and
889
  /// reloaded in %polly.nonaffB.entry, a basic block generated before the
890
  /// actual non-affine region.
891
  ///
892
  /// When generating the PHI node of the non-affine region in %polly.nonaffB,
893
  /// incoming edges from outside the region are combined into a single branch
894
  /// from %polly.nonaffB.entry which has as incoming value the value reloaded
895
  /// from the %phi.phiops stack slot. Incoming edges from within the region
896
  /// refer to the copied instructions (%p.valC) and basic blocks
897
  /// (%polly.nonaffC) of the non-affine region.
898
  ///
899
  /// @param Stmt       The statement to code generate.
900
  /// @param PHI        The original PHI we copy.
901
  /// @param PHICopy    The copy of @p PHI.
902
  /// @param IncomingBB An incoming block of @p PHI.
903
  /// @param LTS        A map from old loops to new induction variables as
904
  /// SCEVs.
905
  void addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, PHINode *PHICopy,
906
                       BasicBlock *IncomingBB, LoopToScevMapT &LTS);
907
908
  /// Create a PHI that combines the incoming values from all incoming blocks
909
  /// that are in the subregion.
910
  ///
911
  /// PHIs in the subregion's exit block can have incoming edges from within and
912
  /// outside the subregion. This function combines the incoming values from
913
  /// within the subregion to appear as if there is only one incoming edge from
914
  /// the subregion (an additional exit block is created by RegionGenerator).
915
  /// This is to avoid that a value is written to the .phiops location without
916
  /// leaving the subregion because the exiting block as an edge back into the
917
  /// subregion.
918
  ///
919
  /// @param MA    The WRITE of MemoryKind::PHI/MemoryKind::ExitPHI for a PHI in
920
  ///              the subregion's exit block.
921
  /// @param LTS   Virtual induction variable mapping.
922
  /// @param BBMap A mapping from old values to their new values in this block.
923
  /// @param L     Loop surrounding this region statement.
924
  ///
925
  /// @returns The constructed PHI node.
926
  PHINode *buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS, ValueMapT &BBMap,
927
                        Loop *L);
928
929
  /// @param Return the new value of a scalar write, creating a PHINode if
930
  ///        necessary.
931
  ///
932
  /// @param MA    A scalar WRITE MemoryAccess.
933
  /// @param LTS   Virtual induction variable mapping.
934
  /// @param BBMap A mapping from old values to their new values in this block.
935
  ///
936
  /// @returns The effective value of @p MA's written value when leaving the
937
  ///          subregion.
938
  /// @see buildExitPHI
939
  Value *getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS, ValueMapT &BBMap);
940
941
  /// Generate the scalar stores for the given statement.
942
  ///
943
  /// After the statement @p Stmt was copied all inner-SCoP scalar dependences
944
  /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
945
  /// be demoted to memory.
946
  ///
947
  /// @param Stmt  The statement we generate code for.
948
  /// @param LTS   A mapping from loops virtual canonical induction variable to
949
  ///              their new values (for values recalculated in the new ScoP,
950
  ///              but not within this basic block)
951
  /// @param BBMap A mapping from old values to their new values in this block.
952
  /// @param LTS   A mapping from loops virtual canonical induction variable to
953
  /// their new values.
954
  virtual void
955
  generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMAp,
956
                       __isl_keep isl_id_to_ast_expr *NewAccesses) override;
957
958
  /// Copy a single PHI instruction.
959
  ///
960
  /// This copies a single PHI instruction and updates references to old values
961
  /// with references to new values, as defined by GlobalMap and BBMap.
962
  ///
963
  /// @param Stmt      The statement to code generate.
964
  /// @param PHI       The PHI instruction to copy.
965
  /// @param BBMap     A mapping from old values to their new values
966
  ///                  (for values recalculated within this basic block).
967
  /// @param LTS       A map from old loops to new induction variables as SCEVs.
968
  virtual void copyPHIInstruction(ScopStmt &Stmt, PHINode *Inst,
969
                                  ValueMapT &BBMap,
970
                                  LoopToScevMapT &LTS) override;
971
};
972
} // namespace polly
973
#endif