/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/lib/Analysis/ScopBuilder.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- ScopBuilder.cpp ----------------------------------------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // Create a polyhedral description for a static control flow region. |
10 | | // |
11 | | // The pass creates a polyhedral description of the Scops detected by the SCoP |
12 | | // detection derived from their LLVM-IR code. |
13 | | // |
14 | | //===----------------------------------------------------------------------===// |
15 | | |
16 | | #include "polly/ScopBuilder.h" |
17 | | #include "polly/Options.h" |
18 | | #include "polly/ScopDetection.h" |
19 | | #include "polly/ScopInfo.h" |
20 | | #include "polly/Support/GICHelper.h" |
21 | | #include "polly/Support/ISLTools.h" |
22 | | #include "polly/Support/SCEVValidator.h" |
23 | | #include "polly/Support/ScopHelper.h" |
24 | | #include "polly/Support/VirtualInstruction.h" |
25 | | #include "llvm/ADT/ArrayRef.h" |
26 | | #include "llvm/ADT/EquivalenceClasses.h" |
27 | | #include "llvm/ADT/PostOrderIterator.h" |
28 | | #include "llvm/ADT/Statistic.h" |
29 | | #include "llvm/Analysis/AliasAnalysis.h" |
30 | | #include "llvm/Analysis/Loads.h" |
31 | | #include "llvm/Analysis/LoopInfo.h" |
32 | | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
33 | | #include "llvm/Analysis/RegionInfo.h" |
34 | | #include "llvm/Analysis/RegionIterator.h" |
35 | | #include "llvm/Analysis/ScalarEvolution.h" |
36 | | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
37 | | #include "llvm/IR/BasicBlock.h" |
38 | | #include "llvm/IR/DataLayout.h" |
39 | | #include "llvm/IR/DebugLoc.h" |
40 | | #include "llvm/IR/DerivedTypes.h" |
41 | | #include "llvm/IR/Dominators.h" |
42 | | #include "llvm/IR/Function.h" |
43 | | #include "llvm/IR/InstrTypes.h" |
44 | | #include "llvm/IR/Instruction.h" |
45 | | #include "llvm/IR/Instructions.h" |
46 | | #include "llvm/IR/Type.h" |
47 | | #include "llvm/IR/Use.h" |
48 | | #include "llvm/IR/Value.h" |
49 | | #include "llvm/Support/CommandLine.h" |
50 | | #include "llvm/Support/Compiler.h" |
51 | | #include "llvm/Support/Debug.h" |
52 | | #include "llvm/Support/ErrorHandling.h" |
53 | | #include "llvm/Support/raw_ostream.h" |
54 | | #include <cassert> |
55 | | |
56 | | using namespace llvm; |
57 | | using namespace polly; |
58 | | |
59 | 3.76k | #define DEBUG_TYPE "polly-scops" |
60 | | |
61 | | STATISTIC(ScopFound, "Number of valid Scops"); |
62 | | STATISTIC(RichScopFound, "Number of Scops containing a loop"); |
63 | | STATISTIC(InfeasibleScops, |
64 | | "Number of SCoPs with statically infeasible context."); |
65 | | |
66 | | bool polly::ModelReadOnlyScalars; |
67 | | |
68 | | // The maximal number of dimensions we allow during invariant load construction. |
69 | | // More complex access ranges will result in very high compile time and are also |
70 | | // unlikely to result in good code. This value is very high and should only |
71 | | // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006). |
72 | | static int const MaxDimensionsInAccessRange = 9; |
73 | | |
74 | | static cl::opt<bool, true> XModelReadOnlyScalars( |
75 | | "polly-analyze-read-only-scalars", |
76 | | cl::desc("Model read-only scalar values in the scop description"), |
77 | | cl::location(ModelReadOnlyScalars), cl::Hidden, cl::ZeroOrMore, |
78 | | cl::init(true), cl::cat(PollyCategory)); |
79 | | |
80 | | static cl::opt<int> |
81 | | OptComputeOut("polly-analysis-computeout", |
82 | | cl::desc("Bound the scop analysis by a maximal amount of " |
83 | | "computational steps (0 means no bound)"), |
84 | | cl::Hidden, cl::init(800000), cl::ZeroOrMore, |
85 | | cl::cat(PollyCategory)); |
86 | | |
87 | | static cl::opt<bool> PollyAllowDereferenceOfAllFunctionParams( |
88 | | "polly-allow-dereference-of-all-function-parameters", |
89 | | cl::desc( |
90 | | "Treat all parameters to functions that are pointers as dereferencible." |
91 | | " This is useful for invariant load hoisting, since we can generate" |
92 | | " less runtime checks. This is only valid if all pointers to functions" |
93 | | " are always initialized, so that Polly can choose to hoist" |
94 | | " their loads. "), |
95 | | cl::Hidden, cl::init(false), cl::cat(PollyCategory)); |
96 | | |
97 | | static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup( |
98 | | "polly-rtc-max-arrays-per-group", |
99 | | cl::desc("The maximal number of arrays to compare in each alias group."), |
100 | | cl::Hidden, cl::ZeroOrMore, cl::init(20), cl::cat(PollyCategory)); |
101 | | |
102 | | static cl::opt<int> RunTimeChecksMaxAccessDisjuncts( |
103 | | "polly-rtc-max-array-disjuncts", |
104 | | cl::desc("The maximal number of disjunts allowed in memory accesses to " |
105 | | "to build RTCs."), |
106 | | cl::Hidden, cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory)); |
107 | | |
108 | | static cl::opt<unsigned> RunTimeChecksMaxParameters( |
109 | | "polly-rtc-max-parameters", |
110 | | cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden, |
111 | | cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory)); |
112 | | |
113 | | static cl::opt<bool> UnprofitableScalarAccs( |
114 | | "polly-unprofitable-scalar-accs", |
115 | | cl::desc("Count statements with scalar accesses as not optimizable"), |
116 | | cl::Hidden, cl::init(false), cl::cat(PollyCategory)); |
117 | | |
118 | | static cl::opt<std::string> UserContextStr( |
119 | | "polly-context", cl::value_desc("isl parameter set"), |
120 | | cl::desc("Provide additional constraints on the context parameters"), |
121 | | cl::init(""), cl::cat(PollyCategory)); |
122 | | |
123 | | static cl::opt<bool> DetectFortranArrays( |
124 | | "polly-detect-fortran-arrays", |
125 | | cl::desc("Detect Fortran arrays and use this for code generation"), |
126 | | cl::Hidden, cl::init(false), cl::cat(PollyCategory)); |
127 | | |
128 | | static cl::opt<bool> DetectReductions("polly-detect-reductions", |
129 | | cl::desc("Detect and exploit reductions"), |
130 | | cl::Hidden, cl::ZeroOrMore, |
131 | | cl::init(true), cl::cat(PollyCategory)); |
132 | | |
133 | | // Multiplicative reductions can be disabled separately as these kind of |
134 | | // operations can overflow easily. Additive reductions and bit operations |
135 | | // are in contrast pretty stable. |
136 | | static cl::opt<bool> DisableMultiplicativeReductions( |
137 | | "polly-disable-multiplicative-reductions", |
138 | | cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore, |
139 | | cl::init(false), cl::cat(PollyCategory)); |
140 | | |
141 | | enum class GranularityChoice { BasicBlocks, ScalarIndependence, Stores }; |
142 | | |
143 | | static cl::opt<GranularityChoice> StmtGranularity( |
144 | | "polly-stmt-granularity", |
145 | | cl::desc( |
146 | | "Algorithm to use for splitting basic blocks into multiple statements"), |
147 | | cl::values(clEnumValN(GranularityChoice::BasicBlocks, "bb", |
148 | | "One statement per basic block"), |
149 | | clEnumValN(GranularityChoice::ScalarIndependence, "scalar-indep", |
150 | | "Scalar independence heuristic"), |
151 | | clEnumValN(GranularityChoice::Stores, "store", |
152 | | "Store-level granularity")), |
153 | | cl::init(GranularityChoice::ScalarIndependence), cl::cat(PollyCategory)); |
154 | | |
155 | 1.20k | void ScopBuilder::buildInvariantEquivalenceClasses() { |
156 | 1.20k | DenseMap<std::pair<const SCEV *, Type *>, LoadInst *> EquivClasses; |
157 | 1.20k | |
158 | 1.20k | const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads(); |
159 | 1.20k | for (LoadInst *LInst : RIL) { |
160 | 290 | const SCEV *PointerSCEV = SE.getSCEV(LInst->getPointerOperand()); |
161 | 290 | |
162 | 290 | Type *Ty = LInst->getType(); |
163 | 290 | LoadInst *&ClassRep = EquivClasses[std::make_pair(PointerSCEV, Ty)]; |
164 | 290 | if (ClassRep) { |
165 | 36 | scop->addInvariantLoadMapping(LInst, ClassRep); |
166 | 36 | continue; |
167 | 36 | } |
168 | 254 | |
169 | 254 | ClassRep = LInst; |
170 | 254 | scop->addInvariantEquivClass( |
171 | 254 | InvariantEquivClassTy{PointerSCEV, MemoryAccessList(), nullptr, Ty}); |
172 | 254 | } |
173 | 1.20k | } |
174 | | |
175 | | void ScopBuilder::buildPHIAccesses(ScopStmt *PHIStmt, PHINode *PHI, |
176 | | Region *NonAffineSubRegion, |
177 | 294 | bool IsExitBlock) { |
178 | 294 | // PHI nodes that are in the exit block of the region, hence if IsExitBlock is |
179 | 294 | // true, are not modeled as ordinary PHI nodes as they are not part of the |
180 | 294 | // region. However, we model the operands in the predecessor blocks that are |
181 | 294 | // part of the region as regular scalar accesses. |
182 | 294 | |
183 | 294 | // If we can synthesize a PHI we can skip it, however only if it is in |
184 | 294 | // the region. If it is not it can only be in the exit block of the region. |
185 | 294 | // In this case we model the operands but not the PHI itself. |
186 | 294 | auto *Scope = LI.getLoopFor(PHI->getParent()); |
187 | 294 | if (!IsExitBlock && canSynthesize(PHI, *scop, &SE, Scope)252 ) |
188 | 7 | return; |
189 | 287 | |
190 | 287 | // PHI nodes are modeled as if they had been demoted prior to the SCoP |
191 | 287 | // detection. Hence, the PHI is a load of a new memory location in which the |
192 | 287 | // incoming value was written at the end of the incoming basic block. |
193 | 287 | bool OnlyNonAffineSubRegionOperands = true; |
194 | 892 | for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++605 ) { |
195 | 605 | Value *Op = PHI->getIncomingValue(u); |
196 | 605 | BasicBlock *OpBB = PHI->getIncomingBlock(u); |
197 | 605 | ScopStmt *OpStmt = scop->getIncomingStmtFor(PHI->getOperandUse(u)); |
198 | 605 | |
199 | 605 | // Do not build PHI dependences inside a non-affine subregion, but make |
200 | 605 | // sure that the necessary scalar values are still made available. |
201 | 605 | if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB)73 ) { |
202 | 20 | auto *OpInst = dyn_cast<Instruction>(Op); |
203 | 20 | if (!OpInst || !NonAffineSubRegion->contains(OpInst)10 ) |
204 | 12 | ensureValueRead(Op, OpStmt); |
205 | 20 | continue; |
206 | 20 | } |
207 | 585 | |
208 | 585 | OnlyNonAffineSubRegionOperands = false; |
209 | 585 | ensurePHIWrite(PHI, OpStmt, OpBB, Op, IsExitBlock); |
210 | 585 | } |
211 | 287 | |
212 | 287 | if (!OnlyNonAffineSubRegionOperands && !IsExitBlock280 ) { |
213 | 238 | addPHIReadAccess(PHIStmt, PHI); |
214 | 238 | } |
215 | 287 | } |
216 | | |
217 | | void ScopBuilder::buildScalarDependences(ScopStmt *UserStmt, |
218 | 7.88k | Instruction *Inst) { |
219 | 7.88k | assert(!isa<PHINode>(Inst)); |
220 | 7.88k | |
221 | 7.88k | // Pull-in required operands. |
222 | 7.88k | for (Use &Op : Inst->operands()) |
223 | 13.9k | ensureValueRead(Op.get(), UserStmt); |
224 | 7.88k | } |
225 | | |
226 | | // Create a sequence of two schedules. Either argument may be null and is |
227 | | // interpreted as the empty schedule. Can also return null if both schedules are |
228 | | // empty. |
229 | 3.94k | static isl::schedule combineInSequence(isl::schedule Prev, isl::schedule Succ) { |
230 | 3.94k | if (!Prev) |
231 | 2.79k | return Succ; |
232 | 1.15k | if (!Succ) |
233 | 0 | return Prev; |
234 | 1.15k | |
235 | 1.15k | return Prev.sequence(Succ); |
236 | 1.15k | } |
237 | | |
238 | | // Create an isl_multi_union_aff that defines an identity mapping from the |
239 | | // elements of USet to their N-th dimension. |
240 | | // |
241 | | // # Example: |
242 | | // |
243 | | // Domain: { A[i,j]; B[i,j,k] } |
244 | | // N: 1 |
245 | | // |
246 | | // Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] } |
247 | | // |
248 | | // @param USet A union set describing the elements for which to generate a |
249 | | // mapping. |
250 | | // @param N The dimension to map to. |
251 | | // @returns A mapping from USet to its N-th dimension. |
252 | 1.63k | static isl::multi_union_pw_aff mapToDimension(isl::union_set USet, int N) { |
253 | 1.63k | assert(N >= 0); |
254 | 1.63k | assert(USet); |
255 | 1.63k | assert(!USet.is_empty()); |
256 | 1.63k | |
257 | 1.63k | auto Result = isl::union_pw_multi_aff::empty(USet.get_space()); |
258 | 1.63k | |
259 | 2.57k | for (isl::set S : USet.get_set_list()) { |
260 | 2.57k | int Dim = S.dim(isl::dim::set); |
261 | 2.57k | auto PMA = isl::pw_multi_aff::project_out_map(S.get_space(), isl::dim::set, |
262 | 2.57k | N, Dim - N); |
263 | 2.57k | if (N > 1) |
264 | 620 | PMA = PMA.drop_dims(isl::dim::out, 0, N - 1); |
265 | 2.57k | |
266 | 2.57k | Result = Result.add_pw_multi_aff(PMA); |
267 | 2.57k | } |
268 | 1.63k | |
269 | 1.63k | return isl::multi_union_pw_aff(isl::union_pw_multi_aff(Result)); |
270 | 1.63k | } |
271 | | |
272 | 1.16k | void ScopBuilder::buildSchedule() { |
273 | 1.16k | Loop *L = getLoopSurroundingScop(*scop, LI); |
274 | 1.16k | LoopStackTy LoopStack({LoopStackElementTy(L, nullptr, 0)}); |
275 | 1.16k | buildSchedule(scop->getRegion().getNode(), LoopStack); |
276 | 1.16k | assert(LoopStack.size() == 1 && LoopStack.back().L == L); |
277 | 1.16k | scop->setScheduleTree(LoopStack[0].Schedule); |
278 | 1.16k | } |
279 | | |
280 | | /// To generate a schedule for the elements in a Region we traverse the Region |
281 | | /// in reverse-post-order and add the contained RegionNodes in traversal order |
282 | | /// to the schedule of the loop that is currently at the top of the LoopStack. |
283 | | /// For loop-free codes, this results in a correct sequential ordering. |
284 | | /// |
285 | | /// Example: |
286 | | /// bb1(0) |
287 | | /// / \. |
288 | | /// bb2(1) bb3(2) |
289 | | /// \ / \. |
290 | | /// bb4(3) bb5(4) |
291 | | /// \ / |
292 | | /// bb6(5) |
293 | | /// |
294 | | /// Including loops requires additional processing. Whenever a loop header is |
295 | | /// encountered, the corresponding loop is added to the @p LoopStack. Starting |
296 | | /// from an empty schedule, we first process all RegionNodes that are within |
297 | | /// this loop and complete the sequential schedule at this loop-level before |
298 | | /// processing about any other nodes. To implement this |
299 | | /// loop-nodes-first-processing, the reverse post-order traversal is |
300 | | /// insufficient. Hence, we additionally check if the traversal yields |
301 | | /// sub-regions or blocks that are outside the last loop on the @p LoopStack. |
302 | | /// These region-nodes are then queue and only traverse after the all nodes |
303 | | /// within the current loop have been processed. |
304 | 2.38k | void ScopBuilder::buildSchedule(Region *R, LoopStackTy &LoopStack) { |
305 | 2.38k | Loop *OuterScopLoop = getLoopSurroundingScop(*scop, LI); |
306 | 2.38k | |
307 | 2.38k | ReversePostOrderTraversal<Region *> RTraversal(R); |
308 | 2.38k | std::deque<RegionNode *> WorkList(RTraversal.begin(), RTraversal.end()); |
309 | 2.38k | std::deque<RegionNode *> DelayList; |
310 | 2.38k | bool LastRNWaiting = false; |
311 | 2.38k | |
312 | 2.38k | // Iterate over the region @p R in reverse post-order but queue |
313 | 2.38k | // sub-regions/blocks iff they are not part of the last encountered but not |
314 | 2.38k | // completely traversed loop. The variable LastRNWaiting is a flag to indicate |
315 | 2.38k | // that we queued the last sub-region/block from the reverse post-order |
316 | 2.38k | // iterator. If it is set we have to explore the next sub-region/block from |
317 | 2.38k | // the iterator (if any) to guarantee progress. If it is not set we first try |
318 | 2.38k | // the next queued sub-region/blocks. |
319 | 9.16k | while (!WorkList.empty() || !DelayList.empty()2.38k ) { |
320 | 6.78k | RegionNode *RN; |
321 | 6.78k | |
322 | 6.78k | if ((LastRNWaiting && !WorkList.empty()0 ) || DelayList.empty()) { |
323 | 6.78k | RN = WorkList.front(); |
324 | 6.78k | WorkList.pop_front(); |
325 | 6.78k | LastRNWaiting = false; |
326 | 6.78k | } else { |
327 | 0 | RN = DelayList.front(); |
328 | 0 | DelayList.pop_front(); |
329 | 0 | } |
330 | 6.78k | |
331 | 6.78k | Loop *L = getRegionNodeLoop(RN, LI); |
332 | 6.78k | if (!scop->contains(L)) |
333 | 1.48k | L = OuterScopLoop; |
334 | 6.78k | |
335 | 6.78k | Loop *LastLoop = LoopStack.back().L; |
336 | 6.78k | if (LastLoop != L) { |
337 | 1.66k | if (LastLoop && !LastLoop->contains(L)490 ) { |
338 | 0 | LastRNWaiting = true; |
339 | 0 | DelayList.push_back(RN); |
340 | 0 | continue; |
341 | 0 | } |
342 | 1.66k | LoopStack.push_back({L, nullptr, 0}); |
343 | 1.66k | } |
344 | 6.78k | buildSchedule(RN, LoopStack); |
345 | 6.78k | } |
346 | 2.38k | } |
347 | | |
348 | 7.94k | void ScopBuilder::buildSchedule(RegionNode *RN, LoopStackTy &LoopStack) { |
349 | 7.94k | if (RN->isSubRegion()) { |
350 | 2.49k | auto *LocalRegion = RN->getNodeAs<Region>(); |
351 | 2.49k | if (!scop->isNonAffineSubRegion(LocalRegion)) { |
352 | 2.38k | buildSchedule(LocalRegion, LoopStack); |
353 | 2.38k | return; |
354 | 2.38k | } |
355 | 5.55k | } |
356 | 5.55k | |
357 | 5.55k | assert(LoopStack.rbegin() != LoopStack.rend()); |
358 | 5.55k | auto LoopData = LoopStack.rbegin(); |
359 | 5.55k | LoopData->NumBlocksProcessed += getNumBlocksInRegionNode(RN); |
360 | 5.55k | |
361 | 5.55k | for (auto *Stmt : scop->getStmtListFor(RN)) { |
362 | 2.31k | isl::union_set UDomain{Stmt->getDomain()}; |
363 | 2.31k | auto StmtSchedule = isl::schedule::from_domain(UDomain); |
364 | 2.31k | LoopData->Schedule = combineInSequence(LoopData->Schedule, StmtSchedule); |
365 | 2.31k | } |
366 | 5.55k | |
367 | 5.55k | // Check if we just processed the last node in this loop. If we did, finalize |
368 | 5.55k | // the loop by: |
369 | 5.55k | // |
370 | 5.55k | // - adding new schedule dimensions |
371 | 5.55k | // - folding the resulting schedule into the parent loop schedule |
372 | 5.55k | // - dropping the loop schedule from the LoopStack. |
373 | 5.55k | // |
374 | 5.55k | // Then continue to check surrounding loops, which might also have been |
375 | 5.55k | // completed by this node. |
376 | 5.55k | size_t Dimension = LoopStack.size(); |
377 | 7.21k | while (LoopData->L && |
378 | 7.21k | LoopData->NumBlocksProcessed == getNumBlocksInLoop(LoopData->L)5.29k ) { |
379 | 1.66k | isl::schedule Schedule = LoopData->Schedule; |
380 | 1.66k | auto NumBlocksProcessed = LoopData->NumBlocksProcessed; |
381 | 1.66k | |
382 | 1.66k | assert(std::next(LoopData) != LoopStack.rend()); |
383 | 1.66k | ++LoopData; |
384 | 1.66k | --Dimension; |
385 | 1.66k | |
386 | 1.66k | if (Schedule) { |
387 | 1.63k | isl::union_set Domain = Schedule.get_domain(); |
388 | 1.63k | isl::multi_union_pw_aff MUPA = mapToDimension(Domain, Dimension); |
389 | 1.63k | Schedule = Schedule.insert_partial_schedule(MUPA); |
390 | 1.63k | LoopData->Schedule = combineInSequence(LoopData->Schedule, Schedule); |
391 | 1.63k | } |
392 | 1.66k | |
393 | 1.66k | LoopData->NumBlocksProcessed += NumBlocksProcessed; |
394 | 1.66k | } |
395 | 5.55k | // Now pop all loops processed up there from the LoopStack |
396 | 5.55k | LoopStack.erase(LoopStack.begin() + Dimension, LoopStack.end()); |
397 | 5.55k | } |
398 | | |
399 | 21.9k | void ScopBuilder::buildEscapingDependences(Instruction *Inst) { |
400 | 21.9k | // Check for uses of this instruction outside the scop. Because we do not |
401 | 21.9k | // iterate over such instructions and therefore did not "ensure" the existence |
402 | 21.9k | // of a write, we must determine such use here. |
403 | 21.9k | if (scop->isEscaping(Inst)) |
404 | 93 | ensureValueWrite(Inst); |
405 | 21.9k | } |
406 | | |
407 | | /// Check that a value is a Fortran Array descriptor. |
408 | | /// |
409 | | /// We check if V has the following structure: |
410 | | /// %"struct.array1_real(kind=8)" = type { i8*, i<zz>, i<zz>, |
411 | | /// [<num> x %struct.descriptor_dimension] } |
412 | | /// |
413 | | /// |
414 | | /// %struct.descriptor_dimension = type { i<zz>, i<zz>, i<zz> } |
415 | | /// |
416 | | /// 1. V's type name starts with "struct.array" |
417 | | /// 2. V's type has layout as shown. |
418 | | /// 3. Final member of V's type has name "struct.descriptor_dimension", |
419 | | /// 4. "struct.descriptor_dimension" has layout as shown. |
420 | | /// 5. Consistent use of i<zz> where <zz> is some fixed integer number. |
421 | | /// |
422 | | /// We are interested in such types since this is the code that dragonegg |
423 | | /// generates for Fortran array descriptors. |
424 | | /// |
425 | | /// @param V the Value to be checked. |
426 | | /// |
427 | | /// @returns True if V is a Fortran array descriptor, False otherwise. |
428 | 10 | bool isFortranArrayDescriptor(Value *V) { |
429 | 10 | PointerType *PTy = dyn_cast<PointerType>(V->getType()); |
430 | 10 | |
431 | 10 | if (!PTy) |
432 | 0 | return false; |
433 | 10 | |
434 | 10 | Type *Ty = PTy->getElementType(); |
435 | 10 | assert(Ty && "Ty expected to be initialized"); |
436 | 10 | auto *StructArrTy = dyn_cast<StructType>(Ty); |
437 | 10 | |
438 | 10 | if (!(StructArrTy && StructArrTy->hasName())) |
439 | 0 | return false; |
440 | 10 | |
441 | 10 | if (!StructArrTy->getName().startswith("struct.array")) |
442 | 0 | return false; |
443 | 10 | |
444 | 10 | if (StructArrTy->getNumElements() != 4) |
445 | 0 | return false; |
446 | 10 | |
447 | 10 | const ArrayRef<Type *> ArrMemberTys = StructArrTy->elements(); |
448 | 10 | |
449 | 10 | // i8* match |
450 | 10 | if (ArrMemberTys[0] != Type::getInt8PtrTy(V->getContext())) |
451 | 0 | return false; |
452 | 10 | |
453 | 10 | // Get a reference to the int type and check that all the members |
454 | 10 | // share the same int type |
455 | 10 | Type *IntTy = ArrMemberTys[1]; |
456 | 10 | if (ArrMemberTys[2] != IntTy) |
457 | 0 | return false; |
458 | 10 | |
459 | 10 | // type: [<num> x %struct.descriptor_dimension] |
460 | 10 | ArrayType *DescriptorDimArrayTy = dyn_cast<ArrayType>(ArrMemberTys[3]); |
461 | 10 | if (!DescriptorDimArrayTy) |
462 | 0 | return false; |
463 | 10 | |
464 | 10 | // type: %struct.descriptor_dimension := type { ixx, ixx, ixx } |
465 | 10 | StructType *DescriptorDimTy = |
466 | 10 | dyn_cast<StructType>(DescriptorDimArrayTy->getElementType()); |
467 | 10 | |
468 | 10 | if (!(DescriptorDimTy && DescriptorDimTy->hasName())) |
469 | 0 | return false; |
470 | 10 | |
471 | 10 | if (DescriptorDimTy->getName() != "struct.descriptor_dimension") |
472 | 0 | return false; |
473 | 10 | |
474 | 10 | if (DescriptorDimTy->getNumElements() != 3) |
475 | 0 | return false; |
476 | 10 | |
477 | 30 | for (auto MemberTy : DescriptorDimTy->elements())10 { |
478 | 30 | if (MemberTy != IntTy) |
479 | 0 | return false; |
480 | 30 | } |
481 | 10 | |
482 | 10 | return true; |
483 | 10 | } |
484 | | |
485 | 5 | Value *ScopBuilder::findFADAllocationVisible(MemAccInst Inst) { |
486 | 5 | // match: 4.1 & 4.2 store/load |
487 | 5 | if (!isa<LoadInst>(Inst) && !isa<StoreInst>(Inst)1 ) |
488 | 0 | return nullptr; |
489 | 5 | |
490 | 5 | // match: 4 |
491 | 5 | if (Inst.getAlignment() != 8) |
492 | 1 | return nullptr; |
493 | 4 | |
494 | 4 | Value *Address = Inst.getPointerOperand(); |
495 | 4 | |
496 | 4 | const BitCastInst *Bitcast = nullptr; |
497 | 4 | // [match: 3] |
498 | 4 | if (auto *Slot = dyn_cast<GetElementPtrInst>(Address)) { |
499 | 3 | Value *TypedMem = Slot->getPointerOperand(); |
500 | 3 | // match: 2 |
501 | 3 | Bitcast = dyn_cast<BitCastInst>(TypedMem); |
502 | 3 | } else { |
503 | 1 | // match: 2 |
504 | 1 | Bitcast = dyn_cast<BitCastInst>(Address); |
505 | 1 | } |
506 | 4 | |
507 | 4 | if (!Bitcast) |
508 | 1 | return nullptr; |
509 | 3 | |
510 | 3 | auto *MallocMem = Bitcast->getOperand(0); |
511 | 3 | |
512 | 3 | // match: 1 |
513 | 3 | auto *MallocCall = dyn_cast<CallInst>(MallocMem); |
514 | 3 | if (!MallocCall) |
515 | 1 | return nullptr; |
516 | 2 | |
517 | 2 | Function *MallocFn = MallocCall->getCalledFunction(); |
518 | 2 | if (!(MallocFn && MallocFn->hasName() && MallocFn->getName() == "malloc")) |
519 | 0 | return nullptr; |
520 | 2 | |
521 | 2 | // Find all uses the malloc'd memory. |
522 | 2 | // We are looking for a "store" into a struct with the type being the Fortran |
523 | 2 | // descriptor type |
524 | 4 | for (auto user : MallocMem->users())2 { |
525 | 4 | /// match: 5 |
526 | 4 | auto *MallocStore = dyn_cast<StoreInst>(user); |
527 | 4 | if (!MallocStore) |
528 | 2 | continue; |
529 | 2 | |
530 | 2 | auto *DescriptorGEP = |
531 | 2 | dyn_cast<GEPOperator>(MallocStore->getPointerOperand()); |
532 | 2 | if (!DescriptorGEP) |
533 | 0 | continue; |
534 | 2 | |
535 | 2 | // match: 5 |
536 | 2 | auto DescriptorType = |
537 | 2 | dyn_cast<StructType>(DescriptorGEP->getSourceElementType()); |
538 | 2 | if (!(DescriptorType && DescriptorType->hasName())) |
539 | 0 | continue; |
540 | 2 | |
541 | 2 | Value *Descriptor = dyn_cast<Value>(DescriptorGEP->getPointerOperand()); |
542 | 2 | |
543 | 2 | if (!Descriptor) |
544 | 0 | continue; |
545 | 2 | |
546 | 2 | if (!isFortranArrayDescriptor(Descriptor)) |
547 | 0 | continue; |
548 | 2 | |
549 | 2 | return Descriptor; |
550 | 2 | } |
551 | 2 | |
552 | 2 | return nullptr0 ; |
553 | 2 | } |
554 | | |
555 | 13 | Value *ScopBuilder::findFADAllocationInvisible(MemAccInst Inst) { |
556 | 13 | // match: 3 |
557 | 13 | if (!isa<LoadInst>(Inst) && !isa<StoreInst>(Inst)5 ) |
558 | 0 | return nullptr; |
559 | 13 | |
560 | 13 | Value *Slot = Inst.getPointerOperand(); |
561 | 13 | |
562 | 13 | LoadInst *MemLoad = nullptr; |
563 | 13 | // [match: 2] |
564 | 13 | if (auto *SlotGEP = dyn_cast<GetElementPtrInst>(Slot)) { |
565 | 11 | // match: 1 |
566 | 11 | MemLoad = dyn_cast<LoadInst>(SlotGEP->getPointerOperand()); |
567 | 11 | } else { |
568 | 2 | // match: 1 |
569 | 2 | MemLoad = dyn_cast<LoadInst>(Slot); |
570 | 2 | } |
571 | 13 | |
572 | 13 | if (!MemLoad) |
573 | 5 | return nullptr; |
574 | 8 | |
575 | 8 | auto *BitcastOperator = |
576 | 8 | dyn_cast<BitCastOperator>(MemLoad->getPointerOperand()); |
577 | 8 | if (!BitcastOperator) |
578 | 0 | return nullptr; |
579 | 8 | |
580 | 8 | Value *Descriptor = dyn_cast<Value>(BitcastOperator->getOperand(0)); |
581 | 8 | if (!Descriptor) |
582 | 0 | return nullptr; |
583 | 8 | |
584 | 8 | if (!isFortranArrayDescriptor(Descriptor)) |
585 | 0 | return nullptr; |
586 | 8 | |
587 | 8 | return Descriptor; |
588 | 8 | } |
589 | | |
590 | 1.16k | void ScopBuilder::addRecordedAssumptions() { |
591 | 7.99k | for (auto &AS : llvm::reverse(scop->recorded_assumptions())) { |
592 | 7.99k | |
593 | 7.99k | if (!AS.BB) { |
594 | 5.11k | scop->addAssumption(AS.Kind, AS.Set, AS.Loc, AS.Sign, |
595 | 5.11k | nullptr /* BasicBlock */); |
596 | 5.11k | continue; |
597 | 5.11k | } |
598 | 2.87k | |
599 | 2.87k | // If the domain was deleted the assumptions are void. |
600 | 2.87k | isl_set *Dom = scop->getDomainConditions(AS.BB).release(); |
601 | 2.87k | if (!Dom) |
602 | 0 | continue; |
603 | 2.87k | |
604 | 2.87k | // If a basic block was given use its domain to simplify the assumption. |
605 | 2.87k | // In case of restrictions we know they only have to hold on the domain, |
606 | 2.87k | // thus we can intersect them with the domain of the block. However, for |
607 | 2.87k | // assumptions the domain has to imply them, thus: |
608 | 2.87k | // _ _____ |
609 | 2.87k | // Dom => S <==> A v B <==> A - B |
610 | 2.87k | // |
611 | 2.87k | // To avoid the complement we will register A - B as a restriction not an |
612 | 2.87k | // assumption. |
613 | 2.87k | isl_set *S = AS.Set.copy(); |
614 | 2.87k | if (AS.Sign == AS_RESTRICTION) |
615 | 2.87k | S = isl_set_params(isl_set_intersect(S, Dom)); |
616 | 0 | else /* (AS.Sign == AS_ASSUMPTION) */ |
617 | 0 | S = isl_set_params(isl_set_subtract(Dom, S)); |
618 | 2.87k | |
619 | 2.87k | scop->addAssumption(AS.Kind, isl::manage(S), AS.Loc, AS_RESTRICTION, AS.BB); |
620 | 2.87k | } |
621 | 1.16k | scop->clearRecordedAssumptions(); |
622 | 1.16k | } |
623 | | |
624 | 3.63k | bool ScopBuilder::buildAccessMultiDimFixed(MemAccInst Inst, ScopStmt *Stmt) { |
625 | 3.63k | Value *Val = Inst.getValueOperand(); |
626 | 3.63k | Type *ElementType = Val->getType(); |
627 | 3.63k | Value *Address = Inst.getPointerOperand(); |
628 | 3.63k | const SCEV *AccessFunction = |
629 | 3.63k | SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent())); |
630 | 3.63k | const SCEVUnknown *BasePointer = |
631 | 3.63k | dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction)); |
632 | 3.63k | enum MemoryAccess::AccessType AccType = |
633 | 3.63k | isa<LoadInst>(Inst) ? MemoryAccess::READ1.81k : MemoryAccess::MUST_WRITE1.82k ; |
634 | 3.63k | |
635 | 3.63k | if (auto *BitCast = dyn_cast<BitCastInst>(Address)) { |
636 | 107 | auto *Src = BitCast->getOperand(0); |
637 | 107 | auto *SrcTy = Src->getType(); |
638 | 107 | auto *DstTy = BitCast->getType(); |
639 | 107 | // Do not try to delinearize non-sized (opaque) pointers. |
640 | 107 | if ((SrcTy->isPointerTy() && !SrcTy->getPointerElementType()->isSized()) || |
641 | 107 | (106 DstTy->isPointerTy()106 && !DstTy->getPointerElementType()->isSized()106 )) { |
642 | 1 | return false; |
643 | 1 | } |
644 | 106 | if (SrcTy->isPointerTy() && DstTy->isPointerTy() && |
645 | 106 | DL.getTypeAllocSize(SrcTy->getPointerElementType()) == |
646 | 106 | DL.getTypeAllocSize(DstTy->getPointerElementType())) |
647 | 63 | Address = Src; |
648 | 106 | } |
649 | 3.63k | |
650 | 3.63k | auto *GEP = dyn_cast<GetElementPtrInst>(Address); |
651 | 3.63k | if (!GEP) |
652 | 871 | return false; |
653 | 2.76k | |
654 | 2.76k | std::vector<const SCEV *> Subscripts; |
655 | 2.76k | std::vector<int> Sizes; |
656 | 2.76k | std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, SE); |
657 | 2.76k | auto *BasePtr = GEP->getOperand(0); |
658 | 2.76k | |
659 | 2.76k | if (auto *BasePtrCast = dyn_cast<BitCastInst>(BasePtr)) |
660 | 18 | BasePtr = BasePtrCast->getOperand(0); |
661 | 2.76k | |
662 | 2.76k | // Check for identical base pointers to ensure that we do not miss index |
663 | 2.76k | // offsets that have been added before this GEP is applied. |
664 | 2.76k | if (BasePtr != BasePointer->getValue()) |
665 | 90 | return false; |
666 | 2.67k | |
667 | 2.67k | std::vector<const SCEV *> SizesSCEV; |
668 | 2.67k | |
669 | 2.67k | const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads(); |
670 | 2.67k | |
671 | 2.67k | Loop *SurroundingLoop = Stmt->getSurroundingLoop(); |
672 | 2.78k | for (auto *Subscript : Subscripts) { |
673 | 2.78k | InvariantLoadsSetTy AccessILS; |
674 | 2.78k | if (!isAffineExpr(&scop->getRegion(), SurroundingLoop, Subscript, SE, |
675 | 2.78k | &AccessILS)) |
676 | 152 | return false; |
677 | 2.63k | |
678 | 2.63k | for (LoadInst *LInst : AccessILS) |
679 | 47 | if (!ScopRIL.count(LInst)) |
680 | 3 | return false; |
681 | 2.63k | } |
682 | 2.67k | |
683 | 2.67k | if (2.52k Sizes.empty()2.52k ) |
684 | 2.27k | return false; |
685 | 246 | |
686 | 246 | SizesSCEV.push_back(nullptr); |
687 | 246 | |
688 | 246 | for (auto V : Sizes) |
689 | 265 | SizesSCEV.push_back(SE.getSCEV( |
690 | 265 | ConstantInt::get(IntegerType::getInt64Ty(BasePtr->getContext()), V))); |
691 | 246 | |
692 | 246 | addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType, |
693 | 246 | true, Subscripts, SizesSCEV, Val); |
694 | 246 | return true; |
695 | 246 | } |
696 | | |
697 | 3.39k | bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt) { |
698 | 3.39k | if (!PollyDelinearize) |
699 | 6 | return false; |
700 | 3.38k | |
701 | 3.38k | Value *Address = Inst.getPointerOperand(); |
702 | 3.38k | Value *Val = Inst.getValueOperand(); |
703 | 3.38k | Type *ElementType = Val->getType(); |
704 | 3.38k | unsigned ElementSize = DL.getTypeAllocSize(ElementType); |
705 | 3.38k | enum MemoryAccess::AccessType AccType = |
706 | 3.38k | isa<LoadInst>(Inst) ? MemoryAccess::READ1.68k : MemoryAccess::MUST_WRITE1.70k ; |
707 | 3.38k | |
708 | 3.38k | const SCEV *AccessFunction = |
709 | 3.38k | SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent())); |
710 | 3.38k | const SCEVUnknown *BasePointer = |
711 | 3.38k | dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction)); |
712 | 3.38k | |
713 | 3.38k | assert(BasePointer && "Could not find base pointer"); |
714 | 3.38k | |
715 | 3.38k | auto &InsnToMemAcc = scop->getInsnToMemAccMap(); |
716 | 3.38k | auto AccItr = InsnToMemAcc.find(Inst); |
717 | 3.38k | if (AccItr == InsnToMemAcc.end()) |
718 | 3.19k | return false; |
719 | 187 | |
720 | 187 | std::vector<const SCEV *> Sizes = {nullptr}; |
721 | 187 | |
722 | 187 | Sizes.insert(Sizes.end(), AccItr->second.Shape->DelinearizedSizes.begin(), |
723 | 187 | AccItr->second.Shape->DelinearizedSizes.end()); |
724 | 187 | |
725 | 187 | // In case only the element size is contained in the 'Sizes' array, the |
726 | 187 | // access does not access a real multi-dimensional array. Hence, we allow |
727 | 187 | // the normal single-dimensional access construction to handle this. |
728 | 187 | if (Sizes.size() == 1) |
729 | 1 | return false; |
730 | 186 | |
731 | 186 | // Remove the element size. This information is already provided by the |
732 | 186 | // ElementSize parameter. In case the element size of this access and the |
733 | 186 | // element size used for delinearization differs the delinearization is |
734 | 186 | // incorrect. Hence, we invalidate the scop. |
735 | 186 | // |
736 | 186 | // TODO: Handle delinearization with differing element sizes. |
737 | 186 | auto DelinearizedSize = |
738 | 186 | cast<SCEVConstant>(Sizes.back())->getAPInt().getSExtValue(); |
739 | 186 | Sizes.pop_back(); |
740 | 186 | if (ElementSize != DelinearizedSize) |
741 | 2 | scop->invalidate(DELINEARIZATION, Inst->getDebugLoc(), Inst->getParent()); |
742 | 186 | |
743 | 186 | addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType, |
744 | 186 | true, AccItr->second.DelinearizedSubscripts, Sizes, Val); |
745 | 186 | return true; |
746 | 186 | } |
747 | | |
748 | 3.68k | bool ScopBuilder::buildAccessMemIntrinsic(MemAccInst Inst, ScopStmt *Stmt) { |
749 | 3.68k | auto *MemIntr = dyn_cast_or_null<MemIntrinsic>(Inst); |
750 | 3.68k | |
751 | 3.68k | if (MemIntr == nullptr) |
752 | 3.66k | return false; |
753 | 19 | |
754 | 19 | auto *L = LI.getLoopFor(Inst->getParent()); |
755 | 19 | auto *LengthVal = SE.getSCEVAtScope(MemIntr->getLength(), L); |
756 | 19 | assert(LengthVal); |
757 | 19 | |
758 | 19 | // Check if the length val is actually affine or if we overapproximate it |
759 | 19 | InvariantLoadsSetTy AccessILS; |
760 | 19 | const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads(); |
761 | 19 | |
762 | 19 | Loop *SurroundingLoop = Stmt->getSurroundingLoop(); |
763 | 19 | bool LengthIsAffine = isAffineExpr(&scop->getRegion(), SurroundingLoop, |
764 | 19 | LengthVal, SE, &AccessILS); |
765 | 19 | for (LoadInst *LInst : AccessILS) |
766 | 0 | if (!ScopRIL.count(LInst)) |
767 | 0 | LengthIsAffine = false; |
768 | 19 | if (!LengthIsAffine) |
769 | 2 | LengthVal = nullptr; |
770 | 19 | |
771 | 19 | auto *DestPtrVal = MemIntr->getDest(); |
772 | 19 | assert(DestPtrVal); |
773 | 19 | |
774 | 19 | auto *DestAccFunc = SE.getSCEVAtScope(DestPtrVal, L); |
775 | 19 | assert(DestAccFunc); |
776 | 19 | // Ignore accesses to "NULL". |
777 | 19 | // TODO: We could use this to optimize the region further, e.g., intersect |
778 | 19 | // the context with |
779 | 19 | // isl_set_complement(isl_set_params(getDomain())) |
780 | 19 | // as we know it would be undefined to execute this instruction anyway. |
781 | 19 | if (DestAccFunc->isZero()) |
782 | 2 | return true; |
783 | 17 | |
784 | 17 | auto *DestPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(DestAccFunc)); |
785 | 17 | assert(DestPtrSCEV); |
786 | 17 | DestAccFunc = SE.getMinusSCEV(DestAccFunc, DestPtrSCEV); |
787 | 17 | addArrayAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, DestPtrSCEV->getValue(), |
788 | 17 | IntegerType::getInt8Ty(DestPtrVal->getContext()), |
789 | 17 | LengthIsAffine, {DestAccFunc, LengthVal}, {nullptr}, |
790 | 17 | Inst.getValueOperand()); |
791 | 17 | |
792 | 17 | auto *MemTrans = dyn_cast<MemTransferInst>(MemIntr); |
793 | 17 | if (!MemTrans) |
794 | 10 | return true; |
795 | 7 | |
796 | 7 | auto *SrcPtrVal = MemTrans->getSource(); |
797 | 7 | assert(SrcPtrVal); |
798 | 7 | |
799 | 7 | auto *SrcAccFunc = SE.getSCEVAtScope(SrcPtrVal, L); |
800 | 7 | assert(SrcAccFunc); |
801 | 7 | // Ignore accesses to "NULL". |
802 | 7 | // TODO: See above TODO |
803 | 7 | if (SrcAccFunc->isZero()) |
804 | 0 | return true; |
805 | 7 | |
806 | 7 | auto *SrcPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(SrcAccFunc)); |
807 | 7 | assert(SrcPtrSCEV); |
808 | 7 | SrcAccFunc = SE.getMinusSCEV(SrcAccFunc, SrcPtrSCEV); |
809 | 7 | addArrayAccess(Stmt, Inst, MemoryAccess::READ, SrcPtrSCEV->getValue(), |
810 | 7 | IntegerType::getInt8Ty(SrcPtrVal->getContext()), |
811 | 7 | LengthIsAffine, {SrcAccFunc, LengthVal}, {nullptr}, |
812 | 7 | Inst.getValueOperand()); |
813 | 7 | |
814 | 7 | return true; |
815 | 7 | } |
816 | | |
817 | 3.66k | bool ScopBuilder::buildAccessCallInst(MemAccInst Inst, ScopStmt *Stmt) { |
818 | 3.66k | auto *CI = dyn_cast_or_null<CallInst>(Inst); |
819 | 3.66k | |
820 | 3.66k | if (CI == nullptr) |
821 | 3.63k | return false; |
822 | 28 | |
823 | 28 | if (CI->doesNotAccessMemory() || isIgnoredIntrinsic(CI)15 || isDebugCall(CI)15 ) |
824 | 14 | return true; |
825 | 14 | |
826 | 14 | bool ReadOnly = false; |
827 | 14 | auto *AF = SE.getConstant(IntegerType::getInt64Ty(CI->getContext()), 0); |
828 | 14 | auto *CalledFunction = CI->getCalledFunction(); |
829 | 14 | switch (AA.getModRefBehavior(CalledFunction)) { |
830 | 14 | case FMRB_UnknownModRefBehavior: |
831 | 0 | llvm_unreachable("Unknown mod ref behaviour cannot be represented."); |
832 | 14 | case FMRB_DoesNotAccessMemory: |
833 | 0 | return true; |
834 | 14 | case FMRB_DoesNotReadMemory: |
835 | 0 | case FMRB_OnlyAccessesInaccessibleMem: |
836 | 0 | case FMRB_OnlyAccessesInaccessibleOrArgMem: |
837 | 0 | return false; |
838 | 8 | case FMRB_OnlyReadsMemory: |
839 | 8 | GlobalReads.emplace_back(Stmt, CI); |
840 | 8 | return true; |
841 | 4 | case FMRB_OnlyReadsArgumentPointees: |
842 | 4 | ReadOnly = true; |
843 | 4 | LLVM_FALLTHROUGH; |
844 | 6 | case FMRB_OnlyAccessesArgumentPointees: { |
845 | 6 | auto AccType = ReadOnly ? MemoryAccess::READ4 : MemoryAccess::MAY_WRITE2 ; |
846 | 6 | Loop *L = LI.getLoopFor(Inst->getParent()); |
847 | 16 | for (const auto &Arg : CI->arg_operands()) { |
848 | 16 | if (!Arg->getType()->isPointerTy()) |
849 | 6 | continue; |
850 | 10 | |
851 | 10 | auto *ArgSCEV = SE.getSCEVAtScope(Arg, L); |
852 | 10 | if (ArgSCEV->isZero()) |
853 | 4 | continue; |
854 | 6 | |
855 | 6 | auto *ArgBasePtr = cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV)); |
856 | 6 | addArrayAccess(Stmt, Inst, AccType, ArgBasePtr->getValue(), |
857 | 6 | ArgBasePtr->getType(), false, {AF}, {nullptr}, CI); |
858 | 6 | } |
859 | 6 | return true; |
860 | 0 | } |
861 | 0 | } |
862 | 0 | |
863 | 0 | return true; |
864 | 0 | } |
865 | | |
866 | 3.20k | void ScopBuilder::buildAccessSingleDim(MemAccInst Inst, ScopStmt *Stmt) { |
867 | 3.20k | Value *Address = Inst.getPointerOperand(); |
868 | 3.20k | Value *Val = Inst.getValueOperand(); |
869 | 3.20k | Type *ElementType = Val->getType(); |
870 | 3.20k | enum MemoryAccess::AccessType AccType = |
871 | 3.20k | isa<LoadInst>(Inst) ? MemoryAccess::READ1.57k : MemoryAccess::MUST_WRITE1.63k ; |
872 | 3.20k | |
873 | 3.20k | const SCEV *AccessFunction = |
874 | 3.20k | SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent())); |
875 | 3.20k | const SCEVUnknown *BasePointer = |
876 | 3.20k | dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction)); |
877 | 3.20k | |
878 | 3.20k | assert(BasePointer && "Could not find base pointer"); |
879 | 3.20k | AccessFunction = SE.getMinusSCEV(AccessFunction, BasePointer); |
880 | 3.20k | |
881 | 3.20k | // Check if the access depends on a loop contained in a non-affine subregion. |
882 | 3.20k | bool isVariantInNonAffineLoop = false; |
883 | 3.20k | SetVector<const Loop *> Loops; |
884 | 3.20k | findLoops(AccessFunction, Loops); |
885 | 3.20k | for (const Loop *L : Loops) |
886 | 1.80k | if (Stmt->contains(L)) { |
887 | 8 | isVariantInNonAffineLoop = true; |
888 | 8 | break; |
889 | 8 | } |
890 | 3.20k | |
891 | 3.20k | InvariantLoadsSetTy AccessILS; |
892 | 3.20k | |
893 | 3.20k | Loop *SurroundingLoop = Stmt->getSurroundingLoop(); |
894 | 3.20k | bool IsAffine = !isVariantInNonAffineLoop && |
895 | 3.20k | isAffineExpr(&scop->getRegion(), SurroundingLoop, |
896 | 3.19k | AccessFunction, SE, &AccessILS); |
897 | 3.20k | |
898 | 3.20k | const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads(); |
899 | 3.20k | for (LoadInst *LInst : AccessILS) |
900 | 51 | if (!ScopRIL.count(LInst)) |
901 | 7 | IsAffine = false; |
902 | 3.20k | |
903 | 3.20k | if (!IsAffine && AccType == MemoryAccess::MUST_WRITE40 ) |
904 | 25 | AccType = MemoryAccess::MAY_WRITE; |
905 | 3.20k | |
906 | 3.20k | addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType, |
907 | 3.20k | IsAffine, {AccessFunction}, {nullptr}, Val); |
908 | 3.20k | } |
909 | | |
910 | 3.68k | void ScopBuilder::buildMemoryAccess(MemAccInst Inst, ScopStmt *Stmt) { |
911 | 3.68k | if (buildAccessMemIntrinsic(Inst, Stmt)) |
912 | 19 | return; |
913 | 3.66k | |
914 | 3.66k | if (buildAccessCallInst(Inst, Stmt)) |
915 | 28 | return; |
916 | 3.63k | |
917 | 3.63k | if (buildAccessMultiDimFixed(Inst, Stmt)) |
918 | 246 | return; |
919 | 3.39k | |
920 | 3.39k | if (buildAccessMultiDimParam(Inst, Stmt)) |
921 | 186 | return; |
922 | 3.20k | |
923 | 3.20k | buildAccessSingleDim(Inst, Stmt); |
924 | 3.20k | } |
925 | | |
926 | 1.20k | void ScopBuilder::buildAccessFunctions() { |
927 | 9.27k | for (auto &Stmt : *scop) { |
928 | 9.27k | if (Stmt.isBlockStmt()) { |
929 | 9.15k | buildAccessFunctions(&Stmt, *Stmt.getBasicBlock()); |
930 | 9.15k | continue; |
931 | 9.15k | } |
932 | 122 | |
933 | 122 | Region *R = Stmt.getRegion(); |
934 | 122 | for (BasicBlock *BB : R->blocks()) |
935 | 336 | buildAccessFunctions(&Stmt, *BB, R); |
936 | 122 | } |
937 | 1.20k | |
938 | 1.20k | // Build write accesses for values that are used after the SCoP. |
939 | 1.20k | // The instructions defining them might be synthesizable and therefore not |
940 | 1.20k | // contained in any statement, hence we iterate over the original instructions |
941 | 1.20k | // to identify all escaping values. |
942 | 5.96k | for (BasicBlock *BB : scop->getRegion().blocks()) { |
943 | 5.96k | for (Instruction &Inst : *BB) |
944 | 21.9k | buildEscapingDependences(&Inst); |
945 | 5.96k | } |
946 | 1.20k | } |
947 | | |
948 | 21.4k | bool ScopBuilder::shouldModelInst(Instruction *Inst, Loop *L) { |
949 | 21.4k | return !Inst->isTerminator() && !isIgnoredIntrinsic(Inst)15.6k && |
950 | 21.4k | !canSynthesize(Inst, *scop, &SE, L)15.6k ; |
951 | 21.4k | } |
952 | | |
953 | | /// Generate a name for a statement. |
954 | | /// |
955 | | /// @param BB The basic block the statement will represent. |
956 | | /// @param BBIdx The index of the @p BB relative to other BBs/regions. |
957 | | /// @param Count The index of the created statement in @p BB. |
958 | | /// @param IsMain Whether this is the main of all statement for @p BB. If true, |
959 | | /// no suffix will be added. |
960 | | /// @param IsLast Uses a special indicator for the last statement of a BB. |
961 | | static std::string makeStmtName(BasicBlock *BB, long BBIdx, int Count, |
962 | 9.15k | bool IsMain, bool IsLast = false) { |
963 | 9.15k | std::string Suffix; |
964 | 9.15k | if (!IsMain) { |
965 | 3.52k | if (UseInstructionNames) |
966 | 3.51k | Suffix = '_'; |
967 | 3.52k | if (IsLast) |
968 | 2.84k | Suffix += "last"; |
969 | 677 | else if (Count < 26) |
970 | 673 | Suffix += 'a' + Count; |
971 | 4 | else |
972 | 4 | Suffix += std::to_string(Count); |
973 | 3.52k | } |
974 | 9.15k | return getIslCompatibleName("Stmt", BB, BBIdx, Suffix, UseInstructionNames); |
975 | 9.15k | } |
976 | | |
977 | | /// Generate a name for a statement that represents a non-affine subregion. |
978 | | /// |
979 | | /// @param R The region the statement will represent. |
980 | | /// @param RIdx The index of the @p R relative to other BBs/regions. |
981 | 122 | static std::string makeStmtName(Region *R, long RIdx) { |
982 | 122 | return getIslCompatibleName("Stmt", R->getNameStr(), RIdx, "", |
983 | 122 | UseInstructionNames); |
984 | 122 | } |
985 | | |
986 | 697 | void ScopBuilder::buildSequentialBlockStmts(BasicBlock *BB, bool SplitOnStore) { |
987 | 697 | Loop *SurroundingLoop = LI.getLoopFor(BB); |
988 | 697 | |
989 | 697 | int Count = 0; |
990 | 697 | long BBIdx = scop->getNextStmtIdx(); |
991 | 697 | std::vector<Instruction *> Instructions; |
992 | 2.61k | for (Instruction &Inst : *BB) { |
993 | 2.61k | if (shouldModelInst(&Inst, SurroundingLoop)) |
994 | 1.00k | Instructions.push_back(&Inst); |
995 | 2.61k | if (Inst.getMetadata("polly_split_after") || |
996 | 2.61k | (2.61k SplitOnStore2.61k && isa<StoreInst>(Inst)13 )) { |
997 | 5 | std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0); |
998 | 5 | scop->addScopStmt(BB, Name, SurroundingLoop, Instructions); |
999 | 5 | Count++; |
1000 | 5 | Instructions.clear(); |
1001 | 5 | } |
1002 | 2.61k | } |
1003 | 697 | |
1004 | 697 | std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0); |
1005 | 697 | scop->addScopStmt(BB, Name, SurroundingLoop, Instructions); |
1006 | 697 | } |
1007 | | |
1008 | | /// Is @p Inst an ordered instruction? |
1009 | | /// |
1010 | | /// An unordered instruction is an instruction, such that a sequence of |
1011 | | /// unordered instructions can be permuted without changing semantics. Any |
1012 | | /// instruction for which this is not always the case is ordered. |
1013 | 6.08k | static bool isOrderedInstruction(Instruction *Inst) { |
1014 | 6.08k | return Inst->mayHaveSideEffects() || Inst->mayReadOrWriteMemory()4.56k ; |
1015 | 6.08k | } |
1016 | | |
1017 | | /// Join instructions to the same statement if one uses the scalar result of the |
1018 | | /// other. |
1019 | | static void joinOperandTree(EquivalenceClasses<Instruction *> &UnionFind, |
1020 | 4.93k | ArrayRef<Instruction *> ModeledInsts) { |
1021 | 6.08k | for (Instruction *Inst : ModeledInsts) { |
1022 | 6.08k | if (isa<PHINode>(Inst)) |
1023 | 135 | continue; |
1024 | 5.95k | |
1025 | 10.4k | for (Use &Op : Inst->operands())5.95k { |
1026 | 10.4k | Instruction *OpInst = dyn_cast<Instruction>(Op.get()); |
1027 | 10.4k | if (!OpInst) |
1028 | 3.23k | continue; |
1029 | 7.21k | |
1030 | 7.21k | // Check if OpInst is in the BB and is a modeled instruction. |
1031 | 7.21k | auto OpVal = UnionFind.findValue(OpInst); |
1032 | 7.21k | if (OpVal == UnionFind.end()) |
1033 | 4.65k | continue; |
1034 | 2.56k | |
1035 | 2.56k | UnionFind.unionSets(Inst, OpInst); |
1036 | 2.56k | } |
1037 | 5.95k | } |
1038 | 4.93k | } |
1039 | | |
1040 | | /// Ensure that the order of ordered instructions does not change. |
1041 | | /// |
1042 | | /// If we encounter an ordered instruction enclosed in instructions belonging to |
1043 | | /// a different statement (which might as well contain ordered instructions, but |
1044 | | /// this is not tested here), join them. |
1045 | | static void |
1046 | | joinOrderedInstructions(EquivalenceClasses<Instruction *> &UnionFind, |
1047 | 4.93k | ArrayRef<Instruction *> ModeledInsts) { |
1048 | 4.93k | SetVector<Instruction *> SeenLeaders; |
1049 | 6.08k | for (Instruction *Inst : ModeledInsts) { |
1050 | 6.08k | if (!isOrderedInstruction(Inst)) |
1051 | 3.32k | continue; |
1052 | 2.76k | |
1053 | 2.76k | Instruction *Leader = UnionFind.getLeaderValue(Inst); |
1054 | 2.76k | bool Inserted = SeenLeaders.insert(Leader); |
1055 | 2.76k | if (Inserted) |
1056 | 1.63k | continue; |
1057 | 1.13k | |
1058 | 1.13k | // Merge statements to close holes. Say, we have already seen statements A |
1059 | 1.13k | // and B, in this order. Then we see an instruction of A again and we would |
1060 | 1.13k | // see the pattern "A B A". This function joins all statements until the |
1061 | 1.13k | // only seen occurrence of A. |
1062 | 1.16k | for (Instruction *Prev : reverse(SeenLeaders))1.13k { |
1063 | 1.16k | // Items added to 'SeenLeaders' are leaders, but may have lost their |
1064 | 1.16k | // leadership status when merged into another statement. |
1065 | 1.16k | Instruction *PrevLeader = UnionFind.getLeaderValue(SeenLeaders.back()); |
1066 | 1.16k | if (PrevLeader == Leader) |
1067 | 1.12k | break; |
1068 | 32 | UnionFind.unionSets(Prev, Leader); |
1069 | 32 | } |
1070 | 1.13k | } |
1071 | 4.93k | } |
1072 | | |
1073 | | /// If the BasicBlock has an edge from itself, ensure that the PHI WRITEs for |
1074 | | /// the incoming values from this block are executed after the PHI READ. |
1075 | | /// |
1076 | | /// Otherwise it could overwrite the incoming value from before the BB with the |
1077 | | /// value for the next execution. This can happen if the PHI WRITE is added to |
1078 | | /// the statement with the instruction that defines the incoming value (instead |
1079 | | /// of the last statement of the same BB). To ensure that the PHI READ and WRITE |
1080 | | /// are in order, we put both into the statement. PHI WRITEs are always executed |
1081 | | /// after PHI READs when they are in the same statement. |
1082 | | /// |
1083 | | /// TODO: This is an overpessimization. We only have to ensure that the PHI |
1084 | | /// WRITE is not put into a statement containing the PHI itself. That could also |
1085 | | /// be done by |
1086 | | /// - having all (strongly connected) PHIs in a single statement, |
1087 | | /// - unite only the PHIs in the operand tree of the PHI WRITE (because it only |
1088 | | /// has a chance of being lifted before a PHI by being in a statement with a |
1089 | | /// PHI that comes before in the basic block), or |
1090 | | /// - when uniting statements, ensure that no (relevant) PHIs are overtaken. |
1091 | | static void joinOrderedPHIs(EquivalenceClasses<Instruction *> &UnionFind, |
1092 | 4.93k | ArrayRef<Instruction *> ModeledInsts) { |
1093 | 6.08k | for (Instruction *Inst : ModeledInsts) { |
1094 | 6.08k | PHINode *PHI = dyn_cast<PHINode>(Inst); |
1095 | 6.08k | if (!PHI) |
1096 | 5.95k | continue; |
1097 | 135 | |
1098 | 135 | int Idx = PHI->getBasicBlockIndex(PHI->getParent()); |
1099 | 135 | if (Idx < 0) |
1100 | 111 | continue; |
1101 | 24 | |
1102 | 24 | Instruction *IncomingVal = |
1103 | 24 | dyn_cast<Instruction>(PHI->getIncomingValue(Idx)); |
1104 | 24 | if (!IncomingVal) |
1105 | 6 | continue; |
1106 | 18 | |
1107 | 18 | UnionFind.unionSets(PHI, IncomingVal); |
1108 | 18 | } |
1109 | 4.93k | } |
1110 | | |
1111 | 4.93k | void ScopBuilder::buildEqivClassBlockStmts(BasicBlock *BB) { |
1112 | 4.93k | Loop *L = LI.getLoopFor(BB); |
1113 | 4.93k | |
1114 | 4.93k | // Extracting out modeled instructions saves us from checking |
1115 | 4.93k | // shouldModelInst() repeatedly. |
1116 | 4.93k | SmallVector<Instruction *, 32> ModeledInsts; |
1117 | 4.93k | EquivalenceClasses<Instruction *> UnionFind; |
1118 | 4.93k | Instruction *MainInst = nullptr; |
1119 | 18.0k | for (Instruction &Inst : *BB) { |
1120 | 18.0k | if (!shouldModelInst(&Inst, L)) |
1121 | 11.9k | continue; |
1122 | 6.08k | ModeledInsts.push_back(&Inst); |
1123 | 6.08k | UnionFind.insert(&Inst); |
1124 | 6.08k | |
1125 | 6.08k | // When a BB is split into multiple statements, the main statement is the |
1126 | 6.08k | // one containing the 'main' instruction. We select the first instruction |
1127 | 6.08k | // that is unlikely to be removed (because it has side-effects) as the main |
1128 | 6.08k | // one. It is used to ensure that at least one statement from the bb has the |
1129 | 6.08k | // same name as with -polly-stmt-granularity=bb. |
1130 | 6.08k | if (!MainInst && (5.17k isa<StoreInst>(Inst)5.17k || |
1131 | 5.17k | (3.86k isa<CallInst>(Inst)3.86k && !isa<IntrinsicInst>(Inst)61 ))) |
1132 | 1.35k | MainInst = &Inst; |
1133 | 6.08k | } |
1134 | 4.93k | |
1135 | 4.93k | joinOperandTree(UnionFind, ModeledInsts); |
1136 | 4.93k | joinOrderedInstructions(UnionFind, ModeledInsts); |
1137 | 4.93k | joinOrderedPHIs(UnionFind, ModeledInsts); |
1138 | 4.93k | |
1139 | 4.93k | // The list of instructions for statement (statement represented by the leader |
1140 | 4.93k | // instruction). The order of statements instructions is reversed such that |
1141 | 4.93k | // the epilogue is first. This makes it easier to ensure that the epilogue is |
1142 | 4.93k | // the last statement. |
1143 | 4.93k | MapVector<Instruction *, std::vector<Instruction *>> LeaderToInstList; |
1144 | 4.93k | |
1145 | 4.93k | // Collect the instructions of all leaders. UnionFind's member iterator |
1146 | 4.93k | // unfortunately are not in any specific order. |
1147 | 18.0k | for (Instruction &Inst : reverse(*BB)) { |
1148 | 18.0k | auto LeaderIt = UnionFind.findLeader(&Inst); |
1149 | 18.0k | if (LeaderIt == UnionFind.member_end()) |
1150 | 11.9k | continue; |
1151 | 6.08k | |
1152 | 6.08k | std::vector<Instruction *> &InstList = LeaderToInstList[*LeaderIt]; |
1153 | 6.08k | InstList.push_back(&Inst); |
1154 | 6.08k | } |
1155 | 4.93k | |
1156 | 4.93k | // Finally build the statements. |
1157 | 4.93k | int Count = 0; |
1158 | 4.93k | long BBIdx = scop->getNextStmtIdx(); |
1159 | 4.93k | bool MainFound = false; |
1160 | 4.93k | for (auto &Instructions : reverse(LeaderToInstList)) { |
1161 | 3.52k | std::vector<Instruction *> &InstList = Instructions.second; |
1162 | 3.52k | |
1163 | 3.52k | // If there is no main instruction, make the first statement the main. |
1164 | 3.52k | bool IsMain; |
1165 | 3.52k | if (MainInst) |
1166 | 1.92k | IsMain = std::find(InstList.begin(), InstList.end(), MainInst) != |
1167 | 1.92k | InstList.end(); |
1168 | 1.59k | else |
1169 | 1.59k | IsMain = (Count == 0); |
1170 | 3.52k | if (IsMain) |
1171 | 2.84k | MainFound = true; |
1172 | 3.52k | |
1173 | 3.52k | std::reverse(InstList.begin(), InstList.end()); |
1174 | 3.52k | std::string Name = makeStmtName(BB, BBIdx, Count, IsMain); |
1175 | 3.52k | scop->addScopStmt(BB, Name, L, std::move(InstList)); |
1176 | 3.52k | Count += 1; |
1177 | 3.52k | } |
1178 | 4.93k | |
1179 | 4.93k | // Unconditionally add an epilogue (last statement). It contains no |
1180 | 4.93k | // instructions, but holds the PHI write accesses for successor basic blocks, |
1181 | 4.93k | // if the incoming value is not defined in another statement if the same BB. |
1182 | 4.93k | // The epilogue will be removed if no PHIWrite is added to it. |
1183 | 4.93k | std::string EpilogueName = makeStmtName(BB, BBIdx, Count, !MainFound, true); |
1184 | 4.93k | scop->addScopStmt(BB, EpilogueName, L, {}); |
1185 | 4.93k | } |
1186 | | |
1187 | 2.58k | void ScopBuilder::buildStmts(Region &SR) { |
1188 | 2.58k | if (scop->isNonAffineSubRegion(&SR)) { |
1189 | 122 | std::vector<Instruction *> Instructions; |
1190 | 122 | Loop *SurroundingLoop = |
1191 | 122 | getFirstNonBoxedLoopFor(SR.getEntry(), LI, scop->getBoxedLoops()); |
1192 | 122 | for (Instruction &Inst : *SR.getEntry()) |
1193 | 725 | if (shouldModelInst(&Inst, SurroundingLoop)) |
1194 | 448 | Instructions.push_back(&Inst); |
1195 | 122 | long RIdx = scop->getNextStmtIdx(); |
1196 | 122 | std::string Name = makeStmtName(&SR, RIdx); |
1197 | 122 | scop->addScopStmt(&SR, Name, SurroundingLoop, Instructions); |
1198 | 122 | return; |
1199 | 122 | } |
1200 | 2.46k | |
1201 | 9.47k | for (auto I = SR.element_begin(), E = SR.element_end(); 2.46k I != E; ++I7.00k ) |
1202 | 7.00k | if (I->isSubRegion()) |
1203 | 1.38k | buildStmts(*I->getNodeAs<Region>()); |
1204 | 5.62k | else { |
1205 | 5.62k | BasicBlock *BB = I->getNodeAs<BasicBlock>(); |
1206 | 5.62k | switch (StmtGranularity) { |
1207 | 5.62k | case GranularityChoice::BasicBlocks: |
1208 | 693 | buildSequentialBlockStmts(BB); |
1209 | 693 | break; |
1210 | 5.62k | case GranularityChoice::ScalarIndependence: |
1211 | 4.93k | buildEqivClassBlockStmts(BB); |
1212 | 4.93k | break; |
1213 | 5.62k | case GranularityChoice::Stores: |
1214 | 4 | buildSequentialBlockStmts(BB, true); |
1215 | 4 | break; |
1216 | 5.62k | } |
1217 | 5.62k | } |
1218 | 2.46k | } |
1219 | | |
1220 | | void ScopBuilder::buildAccessFunctions(ScopStmt *Stmt, BasicBlock &BB, |
1221 | 9.48k | Region *NonAffineSubRegion) { |
1222 | 9.48k | assert( |
1223 | 9.48k | Stmt && |
1224 | 9.48k | "The exit BB is the only one that cannot be represented by a statement"); |
1225 | 9.48k | assert(Stmt->represents(&BB)); |
1226 | 9.48k | |
1227 | 9.48k | // We do not build access functions for error blocks, as they may contain |
1228 | 9.48k | // instructions we can not model. |
1229 | 9.48k | if (isErrorBlock(BB, scop->getRegion(), LI, DT)) |
1230 | 78 | return; |
1231 | 9.41k | |
1232 | 9.41k | auto BuildAccessesForInst = [this, Stmt, |
1233 | 9.41k | NonAffineSubRegion](Instruction *Inst) { |
1234 | 8.13k | PHINode *PHI = dyn_cast<PHINode>(Inst); |
1235 | 8.13k | if (PHI) |
1236 | 252 | buildPHIAccesses(Stmt, PHI, NonAffineSubRegion, false); |
1237 | 8.13k | |
1238 | 8.13k | if (auto MemInst = MemAccInst::dyn_cast(*Inst)) { |
1239 | 3.39k | assert(Stmt && "Cannot build access function in non-existing statement"); |
1240 | 3.39k | buildMemoryAccess(MemInst, Stmt); |
1241 | 3.39k | } |
1242 | 8.13k | |
1243 | 8.13k | // PHI nodes have already been modeled above and terminators that are |
1244 | 8.13k | // not part of a non-affine subregion are fully modeled and regenerated |
1245 | 8.13k | // from the polyhedral domains. Hence, they do not need to be modeled as |
1246 | 8.13k | // explicit data dependences. |
1247 | 8.13k | if (!PHI) |
1248 | 7.88k | buildScalarDependences(Stmt, Inst); |
1249 | 8.13k | }; |
1250 | 9.41k | |
1251 | 9.41k | const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads(); |
1252 | 9.41k | bool IsEntryBlock = (Stmt->getEntryBlock() == &BB); |
1253 | 9.41k | if (IsEntryBlock) { |
1254 | 9.20k | for (Instruction *Inst : Stmt->getInstructions()) |
1255 | 7.48k | BuildAccessesForInst(Inst); |
1256 | 9.20k | if (Stmt->isRegionStmt()) |
1257 | 120 | BuildAccessesForInst(BB.getTerminator()); |
1258 | 9.20k | } else { |
1259 | 529 | for (Instruction &Inst : BB) { |
1260 | 529 | if (isIgnoredIntrinsic(&Inst)) |
1261 | 0 | continue; |
1262 | 529 | |
1263 | 529 | // Invariant loads already have been processed. |
1264 | 529 | if (isa<LoadInst>(Inst) && RIL.count(cast<LoadInst>(&Inst))49 ) |
1265 | 2 | continue; |
1266 | 527 | |
1267 | 527 | BuildAccessesForInst(&Inst); |
1268 | 527 | } |
1269 | 206 | } |
1270 | 9.41k | } |
1271 | | |
1272 | | MemoryAccess *ScopBuilder::addMemoryAccess( |
1273 | | ScopStmt *Stmt, Instruction *Inst, MemoryAccess::AccessType AccType, |
1274 | | Value *BaseAddress, Type *ElementType, bool Affine, Value *AccessValue, |
1275 | | ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes, |
1276 | 5.08k | MemoryKind Kind) { |
1277 | 5.08k | bool isKnownMustAccess = false; |
1278 | 5.08k | |
1279 | 5.08k | // Accesses in single-basic block statements are always executed. |
1280 | 5.08k | if (Stmt->isBlockStmt()) |
1281 | 4.67k | isKnownMustAccess = true; |
1282 | 5.08k | |
1283 | 5.08k | if (Stmt->isRegionStmt()) { |
1284 | 416 | // Accesses that dominate the exit block of a non-affine region are always |
1285 | 416 | // executed. In non-affine regions there may exist MemoryKind::Values that |
1286 | 416 | // do not dominate the exit. MemoryKind::Values will always dominate the |
1287 | 416 | // exit and MemoryKind::PHIs only if there is at most one PHI_WRITE in the |
1288 | 416 | // non-affine region. |
1289 | 416 | if (Inst && DT.dominates(Inst->getParent(), Stmt->getRegion()->getExit())376 ) |
1290 | 236 | isKnownMustAccess = true; |
1291 | 416 | } |
1292 | 5.08k | |
1293 | 5.08k | // Non-affine PHI writes do not "happen" at a particular instruction, but |
1294 | 5.08k | // after exiting the statement. Therefore they are guaranteed to execute and |
1295 | 5.08k | // overwrite the old value. |
1296 | 5.08k | if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI4.49k ) |
1297 | 699 | isKnownMustAccess = true; |
1298 | 5.08k | |
1299 | 5.08k | if (!isKnownMustAccess && AccType == MemoryAccess::MUST_WRITE178 ) |
1300 | 82 | AccType = MemoryAccess::MAY_WRITE; |
1301 | 5.08k | |
1302 | 5.08k | auto *Access = new MemoryAccess(Stmt, Inst, AccType, BaseAddress, ElementType, |
1303 | 5.08k | Affine, Subscripts, Sizes, AccessValue, Kind); |
1304 | 5.08k | |
1305 | 5.08k | scop->addAccessFunction(Access); |
1306 | 5.08k | Stmt->addAccess(Access); |
1307 | 5.08k | return Access; |
1308 | 5.08k | } |
1309 | | |
1310 | | void ScopBuilder::addArrayAccess(ScopStmt *Stmt, MemAccInst MemAccInst, |
1311 | | MemoryAccess::AccessType AccType, |
1312 | | Value *BaseAddress, Type *ElementType, |
1313 | | bool IsAffine, |
1314 | | ArrayRef<const SCEV *> Subscripts, |
1315 | | ArrayRef<const SCEV *> Sizes, |
1316 | 3.68k | Value *AccessValue) { |
1317 | 3.68k | ArrayBasePointers.insert(BaseAddress); |
1318 | 3.68k | auto *MemAccess = addMemoryAccess(Stmt, MemAccInst, AccType, BaseAddress, |
1319 | 3.68k | ElementType, IsAffine, AccessValue, |
1320 | 3.68k | Subscripts, Sizes, MemoryKind::Array); |
1321 | 3.68k | |
1322 | 3.68k | if (!DetectFortranArrays) |
1323 | 3.67k | return; |
1324 | 13 | |
1325 | 13 | if (Value *FAD = findFADAllocationInvisible(MemAccInst)) |
1326 | 8 | MemAccess->setFortranArrayDescriptor(FAD); |
1327 | 5 | else if (Value *FAD = findFADAllocationVisible(MemAccInst)) |
1328 | 2 | MemAccess->setFortranArrayDescriptor(FAD); |
1329 | 13 | } |
1330 | | |
1331 | | /// Check if @p Expr is divisible by @p Size. |
1332 | 6.74k | static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) { |
1333 | 6.74k | assert(Size != 0); |
1334 | 6.74k | if (Size == 1) |
1335 | 141 | return true; |
1336 | 6.60k | |
1337 | 6.60k | // Only one factor needs to be divisible. |
1338 | 6.60k | if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Expr)) { |
1339 | 394 | for (auto *FactorExpr : MulExpr->operands()) |
1340 | 394 | if (isDivisible(FactorExpr, Size, SE)) |
1341 | 394 | return true; |
1342 | 394 | return false0 ; |
1343 | 6.20k | } |
1344 | 6.20k | |
1345 | 6.20k | // For other n-ary expressions (Add, AddRec, Max,...) all operands need |
1346 | 6.20k | // to be divisible. |
1347 | 6.20k | if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Expr)) { |
1348 | 1.68k | for (auto *OpExpr : NAryExpr->operands()) |
1349 | 3.38k | if (!isDivisible(OpExpr, Size, SE)) |
1350 | 0 | return false; |
1351 | 1.68k | return true; |
1352 | 4.51k | } |
1353 | 4.51k | |
1354 | 4.51k | auto *SizeSCEV = SE.getConstant(Expr->getType(), Size); |
1355 | 4.51k | auto *UDivSCEV = SE.getUDivExpr(Expr, SizeSCEV); |
1356 | 4.51k | auto *MulSCEV = SE.getMulExpr(UDivSCEV, SizeSCEV); |
1357 | 4.51k | return MulSCEV == Expr; |
1358 | 4.51k | } |
1359 | | |
1360 | 1.16k | void ScopBuilder::foldSizeConstantsToRight() { |
1361 | 1.16k | isl::union_set Accessed = scop->getAccesses().range(); |
1362 | 1.16k | |
1363 | 2.47k | for (auto Array : scop->arrays()) { |
1364 | 2.47k | if (Array->getNumberOfDimensions() <= 1) |
1365 | 2.18k | continue; |
1366 | 283 | |
1367 | 283 | isl::space Space = Array->getSpace(); |
1368 | 283 | Space = Space.align_params(Accessed.get_space()); |
1369 | 283 | |
1370 | 283 | if (!Accessed.contains(Space)) |
1371 | 0 | continue; |
1372 | 283 | |
1373 | 283 | isl::set Elements = Accessed.extract_set(Space); |
1374 | 283 | isl::map Transform = isl::map::universe(Array->getSpace().map_from_set()); |
1375 | 283 | |
1376 | 283 | std::vector<int> Int; |
1377 | 283 | int Dims = Elements.dim(isl::dim::set); |
1378 | 933 | for (int i = 0; i < Dims; i++650 ) { |
1379 | 650 | isl::set DimOnly = isl::set(Elements).project_out(isl::dim::set, 0, i); |
1380 | 650 | DimOnly = DimOnly.project_out(isl::dim::set, 1, Dims - i - 1); |
1381 | 650 | DimOnly = DimOnly.lower_bound_si(isl::dim::set, 0, 0); |
1382 | 650 | |
1383 | 650 | isl::basic_set DimHull = DimOnly.affine_hull(); |
1384 | 650 | |
1385 | 650 | if (i == Dims - 1) { |
1386 | 283 | Int.push_back(1); |
1387 | 283 | Transform = Transform.equate(isl::dim::in, i, isl::dim::out, i); |
1388 | 283 | continue; |
1389 | 283 | } |
1390 | 367 | |
1391 | 367 | if (DimHull.dim(isl::dim::div) == 1) { |
1392 | 5 | isl::aff Diff = DimHull.get_div(0); |
1393 | 5 | isl::val Val = Diff.get_denominator_val(); |
1394 | 5 | |
1395 | 5 | int ValInt = 1; |
1396 | 5 | if (Val.is_int()) { |
1397 | 5 | auto ValAPInt = APIntFromVal(Val); |
1398 | 5 | if (ValAPInt.isSignedIntN(32)) |
1399 | 4 | ValInt = ValAPInt.getSExtValue(); |
1400 | 5 | } else { |
1401 | 0 | } |
1402 | 5 | |
1403 | 5 | Int.push_back(ValInt); |
1404 | 5 | isl::constraint C = isl::constraint::alloc_equality( |
1405 | 5 | isl::local_space(Transform.get_space())); |
1406 | 5 | C = C.set_coefficient_si(isl::dim::out, i, ValInt); |
1407 | 5 | C = C.set_coefficient_si(isl::dim::in, i, -1); |
1408 | 5 | Transform = Transform.add_constraint(C); |
1409 | 5 | continue; |
1410 | 5 | } |
1411 | 362 | |
1412 | 362 | isl::basic_set ZeroSet = isl::basic_set(DimHull); |
1413 | 362 | ZeroSet = ZeroSet.fix_si(isl::dim::set, 0, 0); |
1414 | 362 | |
1415 | 362 | int ValInt = 1; |
1416 | 362 | if (ZeroSet.is_equal(DimHull)) { |
1417 | 11 | ValInt = 0; |
1418 | 11 | } |
1419 | 362 | |
1420 | 362 | Int.push_back(ValInt); |
1421 | 362 | Transform = Transform.equate(isl::dim::in, i, isl::dim::out, i); |
1422 | 362 | } |
1423 | 283 | |
1424 | 283 | isl::set MappedElements = isl::map(Transform).domain(); |
1425 | 283 | if (!Elements.is_subset(MappedElements)) |
1426 | 0 | continue; |
1427 | 283 | |
1428 | 283 | bool CanFold = true; |
1429 | 283 | if (Int[0] <= 1) |
1430 | 279 | CanFold = false; |
1431 | 283 | |
1432 | 283 | unsigned NumDims = Array->getNumberOfDimensions(); |
1433 | 367 | for (unsigned i = 1; i < NumDims - 1; i++84 ) |
1434 | 84 | if (Int[0] != Int[i] && Int[i]3 ) |
1435 | 1 | CanFold = false; |
1436 | 283 | |
1437 | 283 | if (!CanFold) |
1438 | 279 | continue; |
1439 | 4 | |
1440 | 4 | for (auto &Access : scop->access_functions()) |
1441 | 60 | if (Access->getScopArrayInfo() == Array) |
1442 | 15 | Access->setAccessRelation( |
1443 | 15 | Access->getAccessRelation().apply_range(Transform)); |
1444 | 4 | |
1445 | 4 | std::vector<const SCEV *> Sizes; |
1446 | 12 | for (unsigned i = 0; i < NumDims; i++8 ) { |
1447 | 8 | auto Size = Array->getDimensionSize(i); |
1448 | 8 | |
1449 | 8 | if (i == NumDims - 1) |
1450 | 4 | Size = SE.getMulExpr(Size, SE.getConstant(Size->getType(), Int[0])); |
1451 | 8 | Sizes.push_back(Size); |
1452 | 8 | } |
1453 | 4 | |
1454 | 4 | Array->updateSizes(Sizes, false /* CheckConsistency */); |
1455 | 4 | } |
1456 | 1.16k | } |
1457 | | |
1458 | 1.16k | void ScopBuilder::markFortranArrays() { |
1459 | 2.31k | for (ScopStmt &Stmt : *scop) { |
1460 | 4.72k | for (MemoryAccess *MemAcc : Stmt) { |
1461 | 4.72k | Value *FAD = MemAcc->getFortranArrayDescriptor(); |
1462 | 4.72k | if (!FAD) |
1463 | 4.71k | continue; |
1464 | 10 | |
1465 | 10 | // TODO: const_cast-ing to edit |
1466 | 10 | ScopArrayInfo *SAI = |
1467 | 10 | const_cast<ScopArrayInfo *>(MemAcc->getLatestScopArrayInfo()); |
1468 | 10 | assert(SAI && "memory access into a Fortran array does not " |
1469 | 10 | "have an associated ScopArrayInfo"); |
1470 | 10 | SAI->applyAndSetFAD(FAD); |
1471 | 10 | } |
1472 | 2.31k | } |
1473 | 1.16k | } |
1474 | | |
1475 | 1.16k | void ScopBuilder::finalizeAccesses() { |
1476 | 1.16k | updateAccessDimensionality(); |
1477 | 1.16k | foldSizeConstantsToRight(); |
1478 | 1.16k | foldAccessRelations(); |
1479 | 1.16k | assumeNoOutOfBounds(); |
1480 | 1.16k | markFortranArrays(); |
1481 | 1.16k | } |
1482 | | |
1483 | 1.16k | void ScopBuilder::updateAccessDimensionality() { |
1484 | 1.16k | // Check all array accesses for each base pointer and find a (virtual) element |
1485 | 1.16k | // size for the base pointer that divides all access functions. |
1486 | 1.16k | for (ScopStmt &Stmt : *scop) |
1487 | 4.72k | for (MemoryAccess *Access : Stmt)2.31k { |
1488 | 4.72k | if (!Access->isArrayKind()) |
1489 | 1.32k | continue; |
1490 | 3.39k | ScopArrayInfo *Array = |
1491 | 3.39k | const_cast<ScopArrayInfo *>(Access->getScopArrayInfo()); |
1492 | 3.39k | |
1493 | 3.39k | if (Array->getNumberOfDimensions() != 1) |
1494 | 440 | continue; |
1495 | 2.95k | unsigned DivisibleSize = Array->getElemSizeInBytes(); |
1496 | 2.95k | const SCEV *Subscript = Access->getSubscript(0); |
1497 | 2.96k | while (!isDivisible(Subscript, DivisibleSize, SE)) |
1498 | 2 | DivisibleSize /= 2; |
1499 | 2.95k | auto *Ty = IntegerType::get(SE.getContext(), DivisibleSize * 8); |
1500 | 2.95k | Array->updateElementType(Ty); |
1501 | 2.95k | } |
1502 | 1.16k | |
1503 | 1.16k | for (auto &Stmt : *scop) |
1504 | 2.31k | for (auto &Access : Stmt) |
1505 | 4.72k | Access->updateDimensionality(); |
1506 | 1.16k | } |
1507 | | |
1508 | 1.16k | void ScopBuilder::foldAccessRelations() { |
1509 | 1.16k | for (auto &Stmt : *scop) |
1510 | 2.31k | for (auto &Access : Stmt) |
1511 | 4.72k | Access->foldAccessRelation(); |
1512 | 1.16k | } |
1513 | | |
1514 | 1.16k | void ScopBuilder::assumeNoOutOfBounds() { |
1515 | 1.16k | for (auto &Stmt : *scop) |
1516 | 2.31k | for (auto &Access : Stmt) |
1517 | 4.72k | Access->assumeNoOutOfBound(); |
1518 | 1.16k | } |
1519 | | |
1520 | 409 | void ScopBuilder::ensureValueWrite(Instruction *Inst) { |
1521 | 409 | // Find the statement that defines the value of Inst. That statement has to |
1522 | 409 | // write the value to make it available to those statements that read it. |
1523 | 409 | ScopStmt *Stmt = scop->getStmtFor(Inst); |
1524 | 409 | |
1525 | 409 | // It is possible that the value is synthesizable within a loop (such that it |
1526 | 409 | // is not part of any statement), but not after the loop (where you need the |
1527 | 409 | // number of loop round-trips to synthesize it). In LCSSA-form a PHI node will |
1528 | 409 | // avoid this. In case the IR has no such PHI, use the last statement (where |
1529 | 409 | // the value is synthesizable) to write the value. |
1530 | 409 | if (!Stmt) |
1531 | 42 | Stmt = scop->getLastStmtFor(Inst->getParent()); |
1532 | 409 | |
1533 | 409 | // Inst not defined within this SCoP. |
1534 | 409 | if (!Stmt) |
1535 | 0 | return; |
1536 | 409 | |
1537 | 409 | // Do not process further if the instruction is already written. |
1538 | 409 | if (Stmt->lookupValueWriteOf(Inst)) |
1539 | 66 | return; |
1540 | 343 | |
1541 | 343 | addMemoryAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, Inst, Inst->getType(), |
1542 | 343 | true, Inst, ArrayRef<const SCEV *>(), |
1543 | 343 | ArrayRef<const SCEV *>(), MemoryKind::Value); |
1544 | 343 | } |
1545 | | |
1546 | 14.4k | void ScopBuilder::ensureValueRead(Value *V, ScopStmt *UserStmt) { |
1547 | 14.4k | // TODO: Make ScopStmt::ensureValueRead(Value*) offer the same functionality |
1548 | 14.4k | // to be able to replace this one. Currently, there is a split responsibility. |
1549 | 14.4k | // In a first step, the MemoryAccess is created, but without the |
1550 | 14.4k | // AccessRelation. In the second step by ScopStmt::buildAccessRelations(), the |
1551 | 14.4k | // AccessRelation is created. At least for scalar accesses, there is no new |
1552 | 14.4k | // information available at ScopStmt::buildAccessRelations(), so we could |
1553 | 14.4k | // create the AccessRelation right away. This is what |
1554 | 14.4k | // ScopStmt::ensureValueRead(Value*) does. |
1555 | 14.4k | |
1556 | 14.4k | auto *Scope = UserStmt->getSurroundingLoop(); |
1557 | 14.4k | auto VUse = VirtualUse::create(scop.get(), UserStmt, Scope, V, false); |
1558 | 14.4k | switch (VUse.getKind()) { |
1559 | 14.4k | case VirtualUse::Constant: |
1560 | 14.0k | case VirtualUse::Block: |
1561 | 14.0k | case VirtualUse::Synthesizable: |
1562 | 14.0k | case VirtualUse::Hoisted: |
1563 | 14.0k | case VirtualUse::Intra: |
1564 | 14.0k | // Uses of these kinds do not need a MemoryAccess. |
1565 | 14.0k | break; |
1566 | 14.0k | |
1567 | 14.0k | case VirtualUse::ReadOnly: |
1568 | 65 | // Add MemoryAccess for invariant values only if requested. |
1569 | 65 | if (!ModelReadOnlyScalars) |
1570 | 4 | break; |
1571 | 61 | |
1572 | 61 | LLVM_FALLTHROUGH; |
1573 | 394 | case VirtualUse::Inter: |
1574 | 394 | |
1575 | 394 | // Do not create another MemoryAccess for reloading the value if one already |
1576 | 394 | // exists. |
1577 | 394 | if (UserStmt->lookupValueReadOf(V)) |
1578 | 30 | break; |
1579 | 364 | |
1580 | 364 | addMemoryAccess(UserStmt, nullptr, MemoryAccess::READ, V, V->getType(), |
1581 | 364 | true, V, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(), |
1582 | 364 | MemoryKind::Value); |
1583 | 364 | |
1584 | 364 | // Inter-statement uses need to write the value in their defining statement. |
1585 | 364 | if (VUse.isInter()) |
1586 | 316 | ensureValueWrite(cast<Instruction>(V)); |
1587 | 364 | break; |
1588 | 14.4k | } |
1589 | 14.4k | } |
1590 | | |
1591 | | void ScopBuilder::ensurePHIWrite(PHINode *PHI, ScopStmt *IncomingStmt, |
1592 | | BasicBlock *IncomingBlock, |
1593 | 585 | Value *IncomingValue, bool IsExitBlock) { |
1594 | 585 | // As the incoming block might turn out to be an error statement ensure we |
1595 | 585 | // will create an exit PHI SAI object. It is needed during code generation |
1596 | 585 | // and would be created later anyway. |
1597 | 585 | if (IsExitBlock) |
1598 | 136 | scop->getOrCreateScopArrayInfo(PHI, PHI->getType(), {}, |
1599 | 136 | MemoryKind::ExitPHI); |
1600 | 585 | |
1601 | 585 | // This is possible if PHI is in the SCoP's entry block. The incoming blocks |
1602 | 585 | // from outside the SCoP's region have no statement representation. |
1603 | 585 | if (!IncomingStmt) |
1604 | 71 | return; |
1605 | 514 | |
1606 | 514 | // Take care for the incoming value being available in the incoming block. |
1607 | 514 | // This must be done before the check for multiple PHI writes because multiple |
1608 | 514 | // exiting edges from subregion each can be the effective written value of the |
1609 | 514 | // subregion. As such, all of them must be made available in the subregion |
1610 | 514 | // statement. |
1611 | 514 | ensureValueRead(IncomingValue, IncomingStmt); |
1612 | 514 | |
1613 | 514 | // Do not add more than one MemoryAccess per PHINode and ScopStmt. |
1614 | 514 | if (MemoryAccess *Acc = IncomingStmt->lookupPHIWriteOf(PHI)) { |
1615 | 53 | assert(Acc->getAccessInstruction() == PHI); |
1616 | 53 | Acc->addIncoming(IncomingBlock, IncomingValue); |
1617 | 53 | return; |
1618 | 53 | } |
1619 | 461 | |
1620 | 461 | MemoryAccess *Acc = addMemoryAccess( |
1621 | 461 | IncomingStmt, PHI, MemoryAccess::MUST_WRITE, PHI, PHI->getType(), true, |
1622 | 461 | PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(), |
1623 | 461 | IsExitBlock ? MemoryKind::ExitPHI101 : MemoryKind::PHI360 ); |
1624 | 461 | assert(Acc); |
1625 | 461 | Acc->addIncoming(IncomingBlock, IncomingValue); |
1626 | 461 | } |
1627 | | |
1628 | 238 | void ScopBuilder::addPHIReadAccess(ScopStmt *PHIStmt, PHINode *PHI) { |
1629 | 238 | addMemoryAccess(PHIStmt, PHI, MemoryAccess::READ, PHI, PHI->getType(), true, |
1630 | 238 | PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(), |
1631 | 238 | MemoryKind::PHI); |
1632 | 238 | } |
1633 | | |
1634 | 2.32k | void ScopBuilder::buildDomain(ScopStmt &Stmt) { |
1635 | 2.32k | isl::id Id = isl::id::alloc(scop->getIslCtx(), Stmt.getBaseName(), &Stmt); |
1636 | 2.32k | |
1637 | 2.32k | Stmt.Domain = scop->getDomainConditions(&Stmt); |
1638 | 2.32k | Stmt.Domain = Stmt.Domain.set_tuple_id(Id); |
1639 | 2.32k | } |
1640 | | |
1641 | 2.32k | void ScopBuilder::collectSurroundingLoops(ScopStmt &Stmt) { |
1642 | 2.32k | isl::set Domain = Stmt.getDomain(); |
1643 | 2.32k | BasicBlock *BB = Stmt.getEntryBlock(); |
1644 | 2.32k | |
1645 | 2.32k | Loop *L = LI.getLoopFor(BB); |
1646 | 2.32k | |
1647 | 2.33k | while (L && Stmt.isRegionStmt()2.06k && Stmt.getRegion()->contains(L)86 ) |
1648 | 12 | L = L->getParentLoop(); |
1649 | 2.32k | |
1650 | 2.32k | SmallVector<llvm::Loop *, 8> Loops; |
1651 | 2.32k | |
1652 | 4.91k | while (L && Stmt.getParent()->getRegion().contains(L)2.73k ) { |
1653 | 2.59k | Loops.push_back(L); |
1654 | 2.59k | L = L->getParentLoop(); |
1655 | 2.59k | } |
1656 | 2.32k | |
1657 | 2.32k | Stmt.NestLoops.insert(Stmt.NestLoops.begin(), Loops.rbegin(), Loops.rend()); |
1658 | 2.32k | } |
1659 | | |
1660 | | /// Return the reduction type for a given binary operator. |
1661 | | static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp, |
1662 | 292 | const Instruction *Load) { |
1663 | 292 | if (!BinOp) |
1664 | 0 | return MemoryAccess::RT_NONE; |
1665 | 292 | switch (BinOp->getOpcode()) { |
1666 | 292 | case Instruction::FAdd: |
1667 | 1 | if (!BinOp->isFast()) |
1668 | 0 | return MemoryAccess::RT_NONE; |
1669 | 1 | LLVM_FALLTHROUGH; |
1670 | 269 | case Instruction::Add: |
1671 | 269 | return MemoryAccess::RT_ADD; |
1672 | 1 | case Instruction::Or: |
1673 | 1 | return MemoryAccess::RT_BOR; |
1674 | 3 | case Instruction::Xor: |
1675 | 3 | return MemoryAccess::RT_BXOR; |
1676 | 1 | case Instruction::And: |
1677 | 1 | return MemoryAccess::RT_BAND; |
1678 | 1 | case Instruction::FMul: |
1679 | 0 | if (!BinOp->isFast()) |
1680 | 0 | return MemoryAccess::RT_NONE; |
1681 | 0 | LLVM_FALLTHROUGH; |
1682 | 18 | case Instruction::Mul: |
1683 | 18 | if (DisableMultiplicativeReductions) |
1684 | 0 | return MemoryAccess::RT_NONE; |
1685 | 18 | return MemoryAccess::RT_MUL; |
1686 | 18 | default: |
1687 | 0 | return MemoryAccess::RT_NONE; |
1688 | 292 | } |
1689 | 292 | } |
1690 | | |
1691 | 2.32k | void ScopBuilder::checkForReductions(ScopStmt &Stmt) { |
1692 | 2.32k | SmallVector<MemoryAccess *, 2> Loads; |
1693 | 2.32k | SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates; |
1694 | 2.32k | |
1695 | 2.32k | // First collect candidate load-store reduction chains by iterating over all |
1696 | 2.32k | // stores and collecting possible reduction loads. |
1697 | 4.77k | for (MemoryAccess *StoreMA : Stmt) { |
1698 | 4.77k | if (StoreMA->isRead()) |
1699 | 2.27k | continue; |
1700 | 2.49k | |
1701 | 2.49k | Loads.clear(); |
1702 | 2.49k | collectCandidateReductionLoads(StoreMA, Loads); |
1703 | 2.49k | for (MemoryAccess *LoadMA : Loads) |
1704 | 418 | Candidates.push_back(std::make_pair(LoadMA, StoreMA)); |
1705 | 2.49k | } |
1706 | 2.32k | |
1707 | 2.32k | // Then check each possible candidate pair. |
1708 | 2.32k | for (const auto &CandidatePair : Candidates) { |
1709 | 418 | bool Valid = true; |
1710 | 418 | isl::map LoadAccs = CandidatePair.first->getAccessRelation(); |
1711 | 418 | isl::map StoreAccs = CandidatePair.second->getAccessRelation(); |
1712 | 418 | |
1713 | 418 | // Skip those with obviously unequal base addresses. |
1714 | 418 | if (!LoadAccs.has_equal_space(StoreAccs)) { |
1715 | 75 | continue; |
1716 | 75 | } |
1717 | 343 | |
1718 | 343 | // And check if the remaining for overlap with other memory accesses. |
1719 | 343 | isl::map AllAccsRel = LoadAccs.unite(StoreAccs); |
1720 | 343 | AllAccsRel = AllAccsRel.intersect_domain(Stmt.getDomain()); |
1721 | 343 | isl::set AllAccs = AllAccsRel.range(); |
1722 | 343 | |
1723 | 973 | for (MemoryAccess *MA : Stmt) { |
1724 | 973 | if (MA == CandidatePair.first || MA == CandidatePair.second630 ) |
1725 | 686 | continue; |
1726 | 287 | |
1727 | 287 | isl::map AccRel = |
1728 | 287 | MA->getAccessRelation().intersect_domain(Stmt.getDomain()); |
1729 | 287 | isl::set Accs = AccRel.range(); |
1730 | 287 | |
1731 | 287 | if (AllAccs.has_equal_space(Accs)) { |
1732 | 70 | isl::set OverlapAccs = Accs.intersect(AllAccs); |
1733 | 70 | Valid = Valid && OverlapAccs.is_empty()51 ; |
1734 | 70 | } |
1735 | 287 | } |
1736 | 343 | |
1737 | 343 | if (!Valid) |
1738 | 51 | continue; |
1739 | 292 | |
1740 | 292 | const LoadInst *Load = |
1741 | 292 | dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction()); |
1742 | 292 | MemoryAccess::ReductionType RT = |
1743 | 292 | getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load); |
1744 | 292 | |
1745 | 292 | // If no overlapping access was found we mark the load and store as |
1746 | 292 | // reduction like. |
1747 | 292 | CandidatePair.first->markAsReductionLike(RT); |
1748 | 292 | CandidatePair.second->markAsReductionLike(RT); |
1749 | 292 | } |
1750 | 2.32k | } |
1751 | | |
1752 | 1.15k | void ScopBuilder::verifyInvariantLoads() { |
1753 | 1.15k | auto &RIL = scop->getRequiredInvariantLoads(); |
1754 | 1.15k | for (LoadInst *LI : RIL) { |
1755 | 230 | assert(LI && scop->contains(LI)); |
1756 | 230 | // If there exists a statement in the scop which has a memory access for |
1757 | 230 | // @p LI, then mark this scop as infeasible for optimization. |
1758 | 230 | for (ScopStmt &Stmt : *scop) |
1759 | 887 | if (Stmt.getArrayAccessOrNULLFor(LI)) { |
1760 | 3 | scop->invalidate(INVARIANTLOAD, LI->getDebugLoc(), LI->getParent()); |
1761 | 3 | return; |
1762 | 3 | } |
1763 | 230 | } |
1764 | 1.15k | } |
1765 | | |
1766 | 1.15k | void ScopBuilder::hoistInvariantLoads() { |
1767 | 1.15k | if (!PollyInvariantLoadHoisting) |
1768 | 988 | return; |
1769 | 166 | |
1770 | 166 | isl::union_map Writes = scop->getWrites(); |
1771 | 369 | for (ScopStmt &Stmt : *scop) { |
1772 | 369 | InvariantAccessesTy InvariantAccesses; |
1773 | 369 | |
1774 | 369 | for (MemoryAccess *Access : Stmt) |
1775 | 903 | if (isl::set NHCtx = getNonHoistableCtx(Access, Writes)) |
1776 | 362 | InvariantAccesses.push_back({Access, NHCtx}); |
1777 | 369 | |
1778 | 369 | // Transfer the memory access from the statement to the SCoP. |
1779 | 369 | for (auto InvMA : InvariantAccesses) |
1780 | 362 | Stmt.removeMemoryAccess(InvMA.MA); |
1781 | 369 | addInvariantLoads(Stmt, InvariantAccesses); |
1782 | 369 | } |
1783 | 166 | } |
1784 | | |
1785 | | /// Check if an access range is too complex. |
1786 | | /// |
1787 | | /// An access range is too complex, if it contains either many disjuncts or |
1788 | | /// very complex expressions. As a simple heuristic, we assume if a set to |
1789 | | /// be too complex if the sum of existentially quantified dimensions and |
1790 | | /// set dimensions is larger than a threshold. This reliably detects both |
1791 | | /// sets with many disjuncts as well as sets with many divisions as they |
1792 | | /// arise in h264. |
1793 | | /// |
1794 | | /// @param AccessRange The range to check for complexity. |
1795 | | /// |
1796 | | /// @returns True if the access range is too complex. |
1797 | 411 | static bool isAccessRangeTooComplex(isl::set AccessRange) { |
1798 | 411 | int NumTotalDims = 0; |
1799 | 411 | |
1800 | 457 | for (isl::basic_set BSet : AccessRange.get_basic_set_list()) { |
1801 | 457 | NumTotalDims += BSet.dim(isl::dim::div); |
1802 | 457 | NumTotalDims += BSet.dim(isl::dim::set); |
1803 | 457 | } |
1804 | 411 | |
1805 | 411 | if (NumTotalDims > MaxDimensionsInAccessRange) |
1806 | 1 | return true; |
1807 | 410 | |
1808 | 410 | return false; |
1809 | 410 | } |
1810 | | |
1811 | | bool ScopBuilder::hasNonHoistableBasePtrInScop(MemoryAccess *MA, |
1812 | 486 | isl::union_map Writes) { |
1813 | 486 | if (auto *BasePtrMA = scop->lookupBasePtrAccess(MA)) { |
1814 | 0 | return getNonHoistableCtx(BasePtrMA, Writes).is_null(); |
1815 | 0 | } |
1816 | 486 | |
1817 | 486 | Value *BaseAddr = MA->getOriginalBaseAddr(); |
1818 | 486 | if (auto *BasePtrInst = dyn_cast<Instruction>(BaseAddr)) |
1819 | 115 | if (!isa<LoadInst>(BasePtrInst)) |
1820 | 36 | return scop->contains(BasePtrInst); |
1821 | 450 | |
1822 | 450 | return false; |
1823 | 450 | } |
1824 | | |
1825 | 1.16k | void ScopBuilder::addUserContext() { |
1826 | 1.16k | if (UserContextStr.empty()) |
1827 | 1.15k | return; |
1828 | 3 | |
1829 | 3 | isl::set UserContext = isl::set(scop->getIslCtx(), UserContextStr.c_str()); |
1830 | 3 | isl::space Space = scop->getParamSpace(); |
1831 | 3 | if (Space.dim(isl::dim::param) != UserContext.dim(isl::dim::param)) { |
1832 | 2 | std::string SpaceStr = Space.to_str(); |
1833 | 2 | errs() << "Error: the context provided in -polly-context has not the same " |
1834 | 2 | << "number of dimensions than the computed context. Due to this " |
1835 | 2 | << "mismatch, the -polly-context option is ignored. Please provide " |
1836 | 2 | << "the context in the parameter space: " << SpaceStr << ".\n"; |
1837 | 2 | return; |
1838 | 2 | } |
1839 | 1 | |
1840 | 2 | for (unsigned i = 0; 1 i < Space.dim(isl::dim::param); i++1 ) { |
1841 | 1 | std::string NameContext = |
1842 | 1 | scop->getContext().get_dim_name(isl::dim::param, i); |
1843 | 1 | std::string NameUserContext = UserContext.get_dim_name(isl::dim::param, i); |
1844 | 1 | |
1845 | 1 | if (NameContext != NameUserContext) { |
1846 | 0 | std::string SpaceStr = Space.to_str(); |
1847 | 0 | errs() << "Error: the name of dimension " << i |
1848 | 0 | << " provided in -polly-context " |
1849 | 0 | << "is '" << NameUserContext << "', but the name in the computed " |
1850 | 0 | << "context is '" << NameContext |
1851 | 0 | << "'. Due to this name mismatch, " |
1852 | 0 | << "the -polly-context option is ignored. Please provide " |
1853 | 0 | << "the context in the parameter space: " << SpaceStr << ".\n"; |
1854 | 0 | return; |
1855 | 0 | } |
1856 | 1 | |
1857 | 1 | UserContext = UserContext.set_dim_id(isl::dim::param, i, |
1858 | 1 | Space.get_dim_id(isl::dim::param, i)); |
1859 | 1 | } |
1860 | 1 | isl::set newContext = scop->getContext().intersect(UserContext); |
1861 | 1 | scop->setContext(newContext); |
1862 | 1 | } |
1863 | | |
1864 | | isl::set ScopBuilder::getNonHoistableCtx(MemoryAccess *Access, |
1865 | 903 | isl::union_map Writes) { |
1866 | 903 | // TODO: Loads that are not loop carried, hence are in a statement with |
1867 | 903 | // zero iterators, are by construction invariant, though we |
1868 | 903 | // currently "hoist" them anyway. This is necessary because we allow |
1869 | 903 | // them to be treated as parameters (e.g., in conditions) and our code |
1870 | 903 | // generation would otherwise use the old value. |
1871 | 903 | |
1872 | 903 | auto &Stmt = *Access->getStatement(); |
1873 | 903 | BasicBlock *BB = Stmt.getEntryBlock(); |
1874 | 903 | |
1875 | 903 | if (Access->isScalarKind() || Access->isWrite()762 || !Access->isAffine()500 || |
1876 | 903 | Access->isMemoryIntrinsic()486 ) |
1877 | 417 | return nullptr; |
1878 | 486 | |
1879 | 486 | // Skip accesses that have an invariant base pointer which is defined but |
1880 | 486 | // not loaded inside the SCoP. This can happened e.g., if a readnone call |
1881 | 486 | // returns a pointer that is used as a base address. However, as we want |
1882 | 486 | // to hoist indirect pointers, we allow the base pointer to be defined in |
1883 | 486 | // the region if it is also a memory access. Each ScopArrayInfo object |
1884 | 486 | // that has a base pointer origin has a base pointer that is loaded and |
1885 | 486 | // that it is invariant, thus it will be hoisted too. However, if there is |
1886 | 486 | // no base pointer origin we check that the base pointer is defined |
1887 | 486 | // outside the region. |
1888 | 486 | auto *LI = cast<LoadInst>(Access->getAccessInstruction()); |
1889 | 486 | if (hasNonHoistableBasePtrInScop(Access, Writes)) |
1890 | 0 | return nullptr; |
1891 | 486 | |
1892 | 486 | isl::map AccessRelation = Access->getAccessRelation(); |
1893 | 486 | assert(!AccessRelation.is_empty()); |
1894 | 486 | |
1895 | 486 | if (AccessRelation.involves_dims(isl::dim::in, 0, Stmt.getNumIterators())) |
1896 | 74 | return nullptr; |
1897 | 412 | |
1898 | 412 | AccessRelation = AccessRelation.intersect_domain(Stmt.getDomain()); |
1899 | 412 | isl::set SafeToLoad; |
1900 | 412 | |
1901 | 412 | auto &DL = scop->getFunction().getParent()->getDataLayout(); |
1902 | 412 | if (isSafeToLoadUnconditionally(LI->getPointerOperand(), LI->getType(), |
1903 | 412 | LI->getAlignment(), DL)) { |
1904 | 79 | SafeToLoad = isl::set::universe(AccessRelation.get_space().range()); |
1905 | 333 | } else if (BB != LI->getParent()) { |
1906 | 1 | // Skip accesses in non-affine subregions as they might not be executed |
1907 | 1 | // under the same condition as the entry of the non-affine subregion. |
1908 | 1 | return nullptr; |
1909 | 332 | } else { |
1910 | 332 | SafeToLoad = AccessRelation.range(); |
1911 | 332 | } |
1912 | 412 | |
1913 | 412 | if (411 isAccessRangeTooComplex(AccessRelation.range())411 ) |
1914 | 1 | return nullptr; |
1915 | 410 | |
1916 | 410 | isl::union_map Written = Writes.intersect_range(SafeToLoad); |
1917 | 410 | isl::set WrittenCtx = Written.params(); |
1918 | 410 | bool IsWritten = !WrittenCtx.is_empty(); |
1919 | 410 | |
1920 | 410 | if (!IsWritten) |
1921 | 348 | return WrittenCtx; |
1922 | 62 | |
1923 | 62 | WrittenCtx = WrittenCtx.remove_divs(); |
1924 | 62 | bool TooComplex = WrittenCtx.n_basic_set() >= MaxDisjunctsInDomain; |
1925 | 62 | if (TooComplex || !isRequiredInvariantLoad(LI)56 ) |
1926 | 48 | return nullptr; |
1927 | 14 | |
1928 | 14 | scop->addAssumption(INVARIANTLOAD, WrittenCtx, LI->getDebugLoc(), |
1929 | 14 | AS_RESTRICTION, LI->getParent()); |
1930 | 14 | return WrittenCtx; |
1931 | 14 | } |
1932 | | |
1933 | 6 | static bool isAParameter(llvm::Value *maybeParam, const Function &F) { |
1934 | 6 | for (const llvm::Argument &Arg : F.args()) |
1935 | 10 | if (&Arg == maybeParam) |
1936 | 6 | return true; |
1937 | 6 | |
1938 | 6 | return false0 ; |
1939 | 6 | } |
1940 | | |
1941 | | bool ScopBuilder::canAlwaysBeHoisted(MemoryAccess *MA, |
1942 | | bool StmtInvalidCtxIsEmpty, |
1943 | | bool MAInvalidCtxIsEmpty, |
1944 | 361 | bool NonHoistableCtxIsEmpty) { |
1945 | 361 | LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction()); |
1946 | 361 | const DataLayout &DL = LInst->getParent()->getModule()->getDataLayout(); |
1947 | 361 | if (PollyAllowDereferenceOfAllFunctionParams && |
1948 | 361 | isAParameter(LInst->getPointerOperand(), scop->getFunction())6 ) |
1949 | 6 | return true; |
1950 | 355 | |
1951 | 355 | // TODO: We can provide more information for better but more expensive |
1952 | 355 | // results. |
1953 | 355 | if (!isDereferenceableAndAlignedPointer(LInst->getPointerOperand(), |
1954 | 355 | LInst->getType(), |
1955 | 355 | LInst->getAlignment(), DL)) |
1956 | 299 | return false; |
1957 | 56 | |
1958 | 56 | // If the location might be overwritten we do not hoist it unconditionally. |
1959 | 56 | // |
1960 | 56 | // TODO: This is probably too conservative. |
1961 | 56 | if (!NonHoistableCtxIsEmpty) |
1962 | 1 | return false; |
1963 | 55 | |
1964 | 55 | // If a dereferenceable load is in a statement that is modeled precisely we |
1965 | 55 | // can hoist it. |
1966 | 55 | if (StmtInvalidCtxIsEmpty && MAInvalidCtxIsEmpty50 ) |
1967 | 50 | return true; |
1968 | 5 | |
1969 | 5 | // Even if the statement is not modeled precisely we can hoist the load if it |
1970 | 5 | // does not involve any parameters that might have been specialized by the |
1971 | 5 | // statement domain. |
1972 | 10 | for (unsigned u = 0, e = MA->getNumSubscripts(); 5 u < e; u++5 ) |
1973 | 5 | if (!isa<SCEVConstant>(MA->getSubscript(u))) |
1974 | 0 | return false; |
1975 | 5 | return true; |
1976 | 5 | } |
1977 | | |
1978 | | void ScopBuilder::addInvariantLoads(ScopStmt &Stmt, |
1979 | 369 | InvariantAccessesTy &InvMAs) { |
1980 | 369 | if (InvMAs.empty()) |
1981 | 122 | return; |
1982 | 247 | |
1983 | 247 | isl::set StmtInvalidCtx = Stmt.getInvalidContext(); |
1984 | 247 | bool StmtInvalidCtxIsEmpty = StmtInvalidCtx.is_empty(); |
1985 | 247 | |
1986 | 247 | // Get the context under which the statement is executed but remove the error |
1987 | 247 | // context under which this statement is reached. |
1988 | 247 | isl::set DomainCtx = Stmt.getDomain().params(); |
1989 | 247 | DomainCtx = DomainCtx.subtract(StmtInvalidCtx); |
1990 | 247 | |
1991 | 247 | if (DomainCtx.n_basic_set() >= MaxDisjunctsInDomain) { |
1992 | 1 | auto *AccInst = InvMAs.front().MA->getAccessInstruction(); |
1993 | 1 | scop->invalidate(COMPLEXITY, AccInst->getDebugLoc(), AccInst->getParent()); |
1994 | 1 | return; |
1995 | 1 | } |
1996 | 246 | |
1997 | 246 | // Project out all parameters that relate to loads in the statement. Otherwise |
1998 | 246 | // we could have cyclic dependences on the constraints under which the |
1999 | 246 | // hoisted loads are executed and we could not determine an order in which to |
2000 | 246 | // pre-load them. This happens because not only lower bounds are part of the |
2001 | 246 | // domain but also upper bounds. |
2002 | 361 | for (auto &InvMA : InvMAs)246 { |
2003 | 361 | auto *MA = InvMA.MA; |
2004 | 361 | Instruction *AccInst = MA->getAccessInstruction(); |
2005 | 361 | if (SE.isSCEVable(AccInst->getType())) { |
2006 | 337 | SetVector<Value *> Values; |
2007 | 586 | for (const SCEV *Parameter : scop->parameters()) { |
2008 | 586 | Values.clear(); |
2009 | 586 | findValues(Parameter, SE, Values); |
2010 | 586 | if (!Values.count(AccInst)) |
2011 | 474 | continue; |
2012 | 112 | |
2013 | 112 | if (isl::id ParamId = scop->getIdForParam(Parameter)) { |
2014 | 112 | int Dim = DomainCtx.find_dim_by_id(isl::dim::param, ParamId); |
2015 | 112 | if (Dim >= 0) |
2016 | 111 | DomainCtx = DomainCtx.eliminate(isl::dim::param, Dim, 1); |
2017 | 112 | } |
2018 | 112 | } |
2019 | 337 | } |
2020 | 361 | } |
2021 | 246 | |
2022 | 361 | for (auto &InvMA : InvMAs) { |
2023 | 361 | auto *MA = InvMA.MA; |
2024 | 361 | isl::set NHCtx = InvMA.NonHoistableCtx; |
2025 | 361 | |
2026 | 361 | // Check for another invariant access that accesses the same location as |
2027 | 361 | // MA and if found consolidate them. Otherwise create a new equivalence |
2028 | 361 | // class at the end of InvariantEquivClasses. |
2029 | 361 | LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction()); |
2030 | 361 | Type *Ty = LInst->getType(); |
2031 | 361 | const SCEV *PointerSCEV = SE.getSCEV(LInst->getPointerOperand()); |
2032 | 361 | |
2033 | 361 | isl::set MAInvalidCtx = MA->getInvalidContext(); |
2034 | 361 | bool NonHoistableCtxIsEmpty = NHCtx.is_empty(); |
2035 | 361 | bool MAInvalidCtxIsEmpty = MAInvalidCtx.is_empty(); |
2036 | 361 | |
2037 | 361 | isl::set MACtx; |
2038 | 361 | // Check if we know that this pointer can be speculatively accessed. |
2039 | 361 | if (canAlwaysBeHoisted(MA, StmtInvalidCtxIsEmpty, MAInvalidCtxIsEmpty, |
2040 | 361 | NonHoistableCtxIsEmpty)) { |
2041 | 61 | MACtx = isl::set::universe(DomainCtx.get_space()); |
2042 | 300 | } else { |
2043 | 300 | MACtx = DomainCtx; |
2044 | 300 | MACtx = MACtx.subtract(MAInvalidCtx.unite(NHCtx)); |
2045 | 300 | MACtx = MACtx.gist_params(scop->getContext()); |
2046 | 300 | } |
2047 | 361 | |
2048 | 361 | bool Consolidated = false; |
2049 | 927 | for (auto &IAClass : scop->invariantEquivClasses()) { |
2050 | 927 | if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType241 ) |
2051 | 690 | continue; |
2052 | 237 | |
2053 | 237 | // If the pointer and the type is equal check if the access function wrt. |
2054 | 237 | // to the domain is equal too. It can happen that the domain fixes |
2055 | 237 | // parameter values and these can be different for distinct part of the |
2056 | 237 | // SCoP. If this happens we cannot consolidate the loads but need to |
2057 | 237 | // create a new invariant load equivalence class. |
2058 | 237 | auto &MAs = IAClass.InvariantAccesses; |
2059 | 237 | if (!MAs.empty()) { |
2060 | 45 | auto *LastMA = MAs.front(); |
2061 | 45 | |
2062 | 45 | isl::set AR = MA->getAccessRelation().range(); |
2063 | 45 | isl::set LastAR = LastMA->getAccessRelation().range(); |
2064 | 45 | bool SameAR = AR.is_equal(LastAR); |
2065 | 45 | |
2066 | 45 | if (!SameAR) |
2067 | 4 | continue; |
2068 | 233 | } |
2069 | 233 | |
2070 | 233 | // Add MA to the list of accesses that are in this class. |
2071 | 233 | MAs.push_front(MA); |
2072 | 233 | |
2073 | 233 | Consolidated = true; |
2074 | 233 | |
2075 | 233 | // Unify the execution context of the class and this statement. |
2076 | 233 | isl::set IAClassDomainCtx = IAClass.ExecutionContext; |
2077 | 233 | if (IAClassDomainCtx) |
2078 | 41 | IAClassDomainCtx = IAClassDomainCtx.unite(MACtx).coalesce(); |
2079 | 192 | else |
2080 | 192 | IAClassDomainCtx = MACtx; |
2081 | 233 | IAClass.ExecutionContext = IAClassDomainCtx; |
2082 | 233 | break; |
2083 | 233 | } |
2084 | 361 | |
2085 | 361 | if (Consolidated) |
2086 | 233 | continue; |
2087 | 128 | |
2088 | 128 | MACtx = MACtx.coalesce(); |
2089 | 128 | |
2090 | 128 | // If we did not consolidate MA, thus did not find an equivalence class |
2091 | 128 | // for it, we create a new one. |
2092 | 128 | scop->addInvariantEquivClass( |
2093 | 128 | InvariantEquivClassTy{PointerSCEV, MemoryAccessList{MA}, MACtx, Ty}); |
2094 | 128 | } |
2095 | 246 | } |
2096 | | |
2097 | | void ScopBuilder::collectCandidateReductionLoads( |
2098 | 2.49k | MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) { |
2099 | 2.49k | ScopStmt *Stmt = StoreMA->getStatement(); |
2100 | 2.49k | |
2101 | 2.49k | auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction()); |
2102 | 2.49k | if (!Store) |
2103 | 778 | return; |
2104 | 1.72k | |
2105 | 1.72k | // Skip if there is not one binary operator between the load and the store |
2106 | 1.72k | auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand()); |
2107 | 1.72k | if (!BinOp) |
2108 | 1.05k | return; |
2109 | 666 | |
2110 | 666 | // Skip if the binary operators has multiple uses |
2111 | 666 | if (BinOp->getNumUses() != 1) |
2112 | 48 | return; |
2113 | 618 | |
2114 | 618 | // Skip if the opcode of the binary operator is not commutative/associative |
2115 | 618 | if (!BinOp->isCommutative() || !BinOp->isAssociative()604 ) |
2116 | 244 | return; |
2117 | 374 | |
2118 | 374 | // Skip if the binary operator is outside the current SCoP |
2119 | 374 | if (BinOp->getParent() != Store->getParent()) |
2120 | 1 | return; |
2121 | 373 | |
2122 | 373 | // Skip if it is a multiplicative reduction and we disabled them |
2123 | 373 | if (DisableMultiplicativeReductions && |
2124 | 373 | (2 BinOp->getOpcode() == Instruction::Mul2 || |
2125 | 2 | BinOp->getOpcode() == Instruction::FMul1 )) |
2126 | 1 | return; |
2127 | 372 | |
2128 | 372 | // Check the binary operator operands for a candidate load |
2129 | 372 | auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0)); |
2130 | 372 | auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1)); |
2131 | 372 | if (!PossibleLoad0 && !PossibleLoad119 ) |
2132 | 9 | return; |
2133 | 363 | |
2134 | 363 | // A load is only a candidate if it cannot escape (thus has only this use) |
2135 | 363 | if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1353 ) |
2136 | 346 | if (PossibleLoad0->getParent() == Store->getParent()) |
2137 | 342 | Loads.push_back(&Stmt->getArrayAccessFor(PossibleLoad0)); |
2138 | 363 | if (PossibleLoad1 && PossibleLoad1->getNumUses() == 183 ) |
2139 | 77 | if (PossibleLoad1->getParent() == Store->getParent()) |
2140 | 76 | Loads.push_back(&Stmt->getArrayAccessFor(PossibleLoad1)); |
2141 | 363 | } |
2142 | | |
2143 | | /// Find the canonical scop array info object for a set of invariant load |
2144 | | /// hoisted loads. The canonical array is the one that corresponds to the |
2145 | | /// first load in the list of accesses which is used as base pointer of a |
2146 | | /// scop array. |
2147 | | static const ScopArrayInfo *findCanonicalArray(Scop &S, |
2148 | 327 | MemoryAccessList &Accesses) { |
2149 | 345 | for (MemoryAccess *Access : Accesses) { |
2150 | 345 | const ScopArrayInfo *CanonicalArray = S.getScopArrayInfoOrNull( |
2151 | 345 | Access->getAccessInstruction(), MemoryKind::Array); |
2152 | 345 | if (CanonicalArray) |
2153 | 75 | return CanonicalArray; |
2154 | 345 | } |
2155 | 327 | return nullptr252 ; |
2156 | 327 | } |
2157 | | |
2158 | | /// Check if @p Array severs as base array in an invariant load. |
2159 | 11 | static bool isUsedForIndirectHoistedLoad(Scop &S, const ScopArrayInfo *Array) { |
2160 | 11 | for (InvariantEquivClassTy &EqClass2 : S.getInvariantAccesses()) |
2161 | 23 | for (MemoryAccess *Access2 : EqClass2.InvariantAccesses) |
2162 | 38 | if (Access2->getScopArrayInfo() == Array) |
2163 | 6 | return true; |
2164 | 11 | return false5 ; |
2165 | 11 | } |
2166 | | |
2167 | | /// Replace the base pointer arrays in all memory accesses referencing @p Old, |
2168 | | /// with a reference to @p New. |
2169 | | static void replaceBasePtrArrays(Scop &S, const ScopArrayInfo *Old, |
2170 | 5 | const ScopArrayInfo *New) { |
2171 | 5 | for (ScopStmt &Stmt : S) |
2172 | 17 | for (MemoryAccess *Access : Stmt)14 { |
2173 | 17 | if (Access->getLatestScopArrayInfo() != Old) |
2174 | 11 | continue; |
2175 | 6 | |
2176 | 6 | isl::id Id = New->getBasePtrId(); |
2177 | 6 | isl::map Map = Access->getAccessRelation(); |
2178 | 6 | Map = Map.set_tuple_id(isl::dim::out, Id); |
2179 | 6 | Access->setAccessRelation(Map); |
2180 | 6 | } |
2181 | 5 | } |
2182 | | |
2183 | 1.15k | void ScopBuilder::canonicalizeDynamicBasePtrs() { |
2184 | 1.15k | for (InvariantEquivClassTy &EqClass : scop->InvariantEquivClasses) { |
2185 | 327 | MemoryAccessList &BasePtrAccesses = EqClass.InvariantAccesses; |
2186 | 327 | |
2187 | 327 | const ScopArrayInfo *CanonicalBasePtrSAI = |
2188 | 327 | findCanonicalArray(*scop, BasePtrAccesses); |
2189 | 327 | |
2190 | 327 | if (!CanonicalBasePtrSAI) |
2191 | 252 | continue; |
2192 | 75 | |
2193 | 92 | for (MemoryAccess *BasePtrAccess : BasePtrAccesses)75 { |
2194 | 92 | const ScopArrayInfo *BasePtrSAI = scop->getScopArrayInfoOrNull( |
2195 | 92 | BasePtrAccess->getAccessInstruction(), MemoryKind::Array); |
2196 | 92 | if (!BasePtrSAI || BasePtrSAI == CanonicalBasePtrSAI89 || |
2197 | 92 | !BasePtrSAI->isCompatibleWith(CanonicalBasePtrSAI)14 ) |
2198 | 81 | continue; |
2199 | 11 | |
2200 | 11 | // we currently do not canonicalize arrays where some accesses are |
2201 | 11 | // hoisted as invariant loads. If we would, we need to update the access |
2202 | 11 | // function of the invariant loads as well. However, as this is not a |
2203 | 11 | // very common situation, we leave this for now to avoid further |
2204 | 11 | // complexity increases. |
2205 | 11 | if (isUsedForIndirectHoistedLoad(*scop, BasePtrSAI)) |
2206 | 6 | continue; |
2207 | 5 | |
2208 | 5 | replaceBasePtrArrays(*scop, BasePtrSAI, CanonicalBasePtrSAI); |
2209 | 5 | } |
2210 | 75 | } |
2211 | 1.15k | } |
2212 | | |
2213 | 2.32k | void ScopBuilder::buildAccessRelations(ScopStmt &Stmt) { |
2214 | 4.77k | for (MemoryAccess *Access : Stmt.MemAccs) { |
2215 | 4.77k | Type *ElementType = Access->getElementType(); |
2216 | 4.77k | |
2217 | 4.77k | MemoryKind Ty; |
2218 | 4.77k | if (Access->isPHIKind()) |
2219 | 576 | Ty = MemoryKind::PHI; |
2220 | 4.19k | else if (Access->isExitPHIKind()) |
2221 | 84 | Ty = MemoryKind::ExitPHI; |
2222 | 4.11k | else if (Access->isValueKind()) |
2223 | 682 | Ty = MemoryKind::Value; |
2224 | 3.43k | else |
2225 | 3.43k | Ty = MemoryKind::Array; |
2226 | 4.77k | |
2227 | 4.77k | auto *SAI = scop->getOrCreateScopArrayInfo(Access->getOriginalBaseAddr(), |
2228 | 4.77k | ElementType, Access->Sizes, Ty); |
2229 | 4.77k | Access->buildAccessRelation(SAI); |
2230 | 4.77k | scop->addAccessData(Access); |
2231 | 4.77k | } |
2232 | 2.32k | } |
2233 | | |
2234 | | /// Add the minimal/maximal access in @p Set to @p User. |
2235 | | /// |
2236 | | /// @return True if more accesses should be added, false if we reached the |
2237 | | /// maximal number of run-time checks to be generated. |
2238 | | static bool buildMinMaxAccess(isl::set Set, |
2239 | 550 | Scop::MinMaxVectorTy &MinMaxAccesses, Scop &S) { |
2240 | 550 | isl::pw_multi_aff MinPMA, MaxPMA; |
2241 | 550 | isl::pw_aff LastDimAff; |
2242 | 550 | isl::aff OneAff; |
2243 | 550 | unsigned Pos; |
2244 | 550 | |
2245 | 550 | Set = Set.remove_divs(); |
2246 | 550 | polly::simplify(Set); |
2247 | 550 | |
2248 | 550 | if (Set.n_basic_set() > RunTimeChecksMaxAccessDisjuncts) |
2249 | 4 | Set = Set.simple_hull(); |
2250 | 550 | |
2251 | 550 | // Restrict the number of parameters involved in the access as the lexmin/ |
2252 | 550 | // lexmax computation will take too long if this number is high. |
2253 | 550 | // |
2254 | 550 | // Experiments with a simple test case using an i7 4800MQ: |
2255 | 550 | // |
2256 | 550 | // #Parameters involved | Time (in sec) |
2257 | 550 | // 6 | 0.01 |
2258 | 550 | // 7 | 0.04 |
2259 | 550 | // 8 | 0.12 |
2260 | 550 | // 9 | 0.40 |
2261 | 550 | // 10 | 1.54 |
2262 | 550 | // 11 | 6.78 |
2263 | 550 | // 12 | 30.38 |
2264 | 550 | // |
2265 | 550 | if (isl_set_n_param(Set.get()) > RunTimeChecksMaxParameters) { |
2266 | 7 | unsigned InvolvedParams = 0; |
2267 | 81 | for (unsigned u = 0, e = isl_set_n_param(Set.get()); u < e; u++74 ) |
2268 | 74 | if (Set.involves_dims(isl::dim::param, u, 1)) |
2269 | 23 | InvolvedParams++; |
2270 | 7 | |
2271 | 7 | if (InvolvedParams > RunTimeChecksMaxParameters) |
2272 | 1 | return false; |
2273 | 549 | } |
2274 | 549 | |
2275 | 549 | MinPMA = Set.lexmin_pw_multi_aff(); |
2276 | 549 | MaxPMA = Set.lexmax_pw_multi_aff(); |
2277 | 549 | |
2278 | 549 | MinPMA = MinPMA.coalesce(); |
2279 | 549 | MaxPMA = MaxPMA.coalesce(); |
2280 | 549 | |
2281 | 549 | // Adjust the last dimension of the maximal access by one as we want to |
2282 | 549 | // enclose the accessed memory region by MinPMA and MaxPMA. The pointer |
2283 | 549 | // we test during code generation might now point after the end of the |
2284 | 549 | // allocated array but we will never dereference it anyway. |
2285 | 549 | assert((!MaxPMA || MaxPMA.dim(isl::dim::out)) && |
2286 | 549 | "Assumed at least one output dimension"); |
2287 | 549 | |
2288 | 549 | Pos = MaxPMA.dim(isl::dim::out) - 1; |
2289 | 549 | LastDimAff = MaxPMA.get_pw_aff(Pos); |
2290 | 549 | OneAff = isl::aff(isl::local_space(LastDimAff.get_domain_space())); |
2291 | 549 | OneAff = OneAff.add_constant_si(1); |
2292 | 549 | LastDimAff = LastDimAff.add(OneAff); |
2293 | 549 | MaxPMA = MaxPMA.set_pw_aff(Pos, LastDimAff); |
2294 | 549 | |
2295 | 549 | if (!MinPMA || !MaxPMA546 ) |
2296 | 3 | return false; |
2297 | 546 | |
2298 | 546 | MinMaxAccesses.push_back(std::make_pair(MinPMA, MaxPMA)); |
2299 | 546 | |
2300 | 546 | return true; |
2301 | 546 | } |
2302 | | |
2303 | | /// Wrapper function to calculate minimal/maximal accesses to each array. |
2304 | | bool ScopBuilder::calculateMinMaxAccess(AliasGroupTy AliasGroup, |
2305 | 429 | Scop::MinMaxVectorTy &MinMaxAccesses) { |
2306 | 429 | MinMaxAccesses.reserve(AliasGroup.size()); |
2307 | 429 | |
2308 | 429 | isl::union_set Domains = scop->getDomains(); |
2309 | 429 | isl::union_map Accesses = isl::union_map::empty(scop->getParamSpace()); |
2310 | 429 | |
2311 | 429 | for (MemoryAccess *MA : AliasGroup) |
2312 | 848 | Accesses = Accesses.add_map(MA->getAccessRelation()); |
2313 | 429 | |
2314 | 429 | Accesses = Accesses.intersect_domain(Domains); |
2315 | 429 | isl::union_set Locations = Accesses.range(); |
2316 | 429 | |
2317 | 429 | bool LimitReached = false; |
2318 | 550 | for (isl::set Set : Locations.get_set_list()) { |
2319 | 550 | LimitReached |= !buildMinMaxAccess(Set, MinMaxAccesses, *scop); |
2320 | 550 | if (LimitReached) |
2321 | 4 | break; |
2322 | 550 | } |
2323 | 429 | |
2324 | 429 | return !LimitReached; |
2325 | 429 | } |
2326 | | |
2327 | 1.76k | static isl::set getAccessDomain(MemoryAccess *MA) { |
2328 | 1.76k | isl::set Domain = MA->getStatement()->getDomain(); |
2329 | 1.76k | Domain = Domain.project_out(isl::dim::set, 0, Domain.n_dim()); |
2330 | 1.76k | return Domain.reset_tuple_id(); |
2331 | 1.76k | } |
2332 | | |
2333 | 1.16k | bool ScopBuilder::buildAliasChecks() { |
2334 | 1.16k | if (!PollyUseRuntimeAliasChecks) |
2335 | 21 | return true; |
2336 | 1.13k | |
2337 | 1.13k | if (buildAliasGroups()) { |
2338 | 1.13k | // Aliasing assumptions do not go through addAssumption but we still want to |
2339 | 1.13k | // collect statistics so we do it here explicitly. |
2340 | 1.13k | if (scop->getAliasGroups().size()) |
2341 | 204 | Scop::incrementNumberOfAliasingAssumptions(1); |
2342 | 1.13k | return true; |
2343 | 1.13k | } |
2344 | 6 | |
2345 | 6 | // If a problem occurs while building the alias groups we need to delete |
2346 | 6 | // this SCoP and pretend it wasn't valid in the first place. To this end |
2347 | 6 | // we make the assumed context infeasible. |
2348 | 6 | scop->invalidate(ALIASING, DebugLoc()); |
2349 | 6 | |
2350 | 6 | LLVM_DEBUG( |
2351 | 6 | dbgs() << "\n\nNOTE: Run time checks for " << scop->getNameStr() |
2352 | 6 | << " could not be created as the number of parameters involved " |
2353 | 6 | "is too high. The SCoP will be " |
2354 | 6 | "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust " |
2355 | 6 | "the maximal number of parameters but be advised that the " |
2356 | 6 | "compile time might increase exponentially.\n\n"); |
2357 | 6 | return false; |
2358 | 6 | } |
2359 | | |
2360 | | std::tuple<ScopBuilder::AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>> |
2361 | 1.13k | ScopBuilder::buildAliasGroupsForAccesses() { |
2362 | 1.13k | AliasSetTracker AST(AA); |
2363 | 1.13k | |
2364 | 1.13k | DenseMap<Value *, MemoryAccess *> PtrToAcc; |
2365 | 1.13k | DenseSet<const ScopArrayInfo *> HasWriteAccess; |
2366 | 2.25k | for (ScopStmt &Stmt : *scop) { |
2367 | 2.25k | |
2368 | 2.25k | isl::set StmtDomain = Stmt.getDomain(); |
2369 | 2.25k | bool StmtDomainEmpty = StmtDomain.is_empty(); |
2370 | 2.25k | |
2371 | 2.25k | // Statements with an empty domain will never be executed. |
2372 | 2.25k | if (StmtDomainEmpty) |
2373 | 4 | continue; |
2374 | 2.25k | |
2375 | 4.57k | for (MemoryAccess *MA : Stmt)2.25k { |
2376 | 4.57k | if (MA->isScalarKind()) |
2377 | 1.32k | continue; |
2378 | 3.25k | if (!MA->isRead()) |
2379 | 1.68k | HasWriteAccess.insert(MA->getScopArrayInfo()); |
2380 | 3.25k | MemAccInst Acc(MA->getAccessInstruction()); |
2381 | 3.25k | if (MA->isRead() && isa<MemTransferInst>(Acc)1.57k ) |
2382 | 7 | PtrToAcc[cast<MemTransferInst>(Acc)->getRawSource()] = MA; |
2383 | 3.25k | else |
2384 | 3.25k | PtrToAcc[Acc.getPointerOperand()] = MA; |
2385 | 3.25k | AST.add(Acc); |
2386 | 3.25k | } |
2387 | 2.25k | } |
2388 | 1.13k | |
2389 | 1.13k | AliasGroupVectorTy AliasGroups; |
2390 | 1.51k | for (AliasSet &AS : AST) { |
2391 | 1.51k | if (AS.isMustAlias() || AS.isForwardingAliasSet()375 ) |
2392 | 1.14k | continue; |
2393 | 375 | AliasGroupTy AG; |
2394 | 375 | for (auto &PR : AS) |
2395 | 1.38k | AG.push_back(PtrToAcc[PR.getValue()]); |
2396 | 375 | if (AG.size() < 2) |
2397 | 8 | continue; |
2398 | 367 | AliasGroups.push_back(std::move(AG)); |
2399 | 367 | } |
2400 | 1.13k | |
2401 | 1.13k | return std::make_tuple(AliasGroups, HasWriteAccess); |
2402 | 1.13k | } |
2403 | | |
2404 | 1.13k | bool ScopBuilder::buildAliasGroups() { |
2405 | 1.13k | // To create sound alias checks we perform the following steps: |
2406 | 1.13k | // o) We partition each group into read only and non read only accesses. |
2407 | 1.13k | // o) For each group with more than one base pointer we then compute minimal |
2408 | 1.13k | // and maximal accesses to each array of a group in read only and non |
2409 | 1.13k | // read only partitions separately. |
2410 | 1.13k | AliasGroupVectorTy AliasGroups; |
2411 | 1.13k | DenseSet<const ScopArrayInfo *> HasWriteAccess; |
2412 | 1.13k | |
2413 | 1.13k | std::tie(AliasGroups, HasWriteAccess) = buildAliasGroupsForAccesses(); |
2414 | 1.13k | |
2415 | 1.13k | splitAliasGroupsByDomain(AliasGroups); |
2416 | 1.13k | |
2417 | 1.13k | for (AliasGroupTy &AG : AliasGroups) { |
2418 | 374 | if (!scop->hasFeasibleRuntimeContext()) |
2419 | 1 | return false; |
2420 | 373 | |
2421 | 373 | { |
2422 | 373 | IslMaxOperationsGuard MaxOpGuard(scop->getIslCtx().get(), OptComputeOut); |
2423 | 373 | bool Valid = buildAliasGroup(AG, HasWriteAccess); |
2424 | 373 | if (!Valid) |
2425 | 5 | return false; |
2426 | 368 | } |
2427 | 368 | if (isl_ctx_last_error(scop->getIslCtx().get()) == isl_error_quota) { |
2428 | 0 | scop->invalidate(COMPLEXITY, DebugLoc()); |
2429 | 0 | return false; |
2430 | 0 | } |
2431 | 368 | } |
2432 | 1.13k | |
2433 | 1.13k | return true1.13k ; |
2434 | 1.13k | } |
2435 | | |
2436 | | bool ScopBuilder::buildAliasGroup( |
2437 | 373 | AliasGroupTy &AliasGroup, DenseSet<const ScopArrayInfo *> HasWriteAccess) { |
2438 | 373 | AliasGroupTy ReadOnlyAccesses; |
2439 | 373 | AliasGroupTy ReadWriteAccesses; |
2440 | 373 | SmallPtrSet<const ScopArrayInfo *, 4> ReadWriteArrays; |
2441 | 373 | SmallPtrSet<const ScopArrayInfo *, 4> ReadOnlyArrays; |
2442 | 373 | |
2443 | 373 | if (AliasGroup.size() < 2) |
2444 | 4 | return true; |
2445 | 369 | |
2446 | 1.35k | for (MemoryAccess *Access : AliasGroup)369 { |
2447 | 1.35k | ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "PossibleAlias", |
2448 | 1.35k | Access->getAccessInstruction()) |
2449 | 1.35k | << "Possibly aliasing pointer, use restrict keyword."); |
2450 | 1.35k | const ScopArrayInfo *Array = Access->getScopArrayInfo(); |
2451 | 1.35k | if (HasWriteAccess.count(Array)) { |
2452 | 890 | ReadWriteArrays.insert(Array); |
2453 | 890 | ReadWriteAccesses.push_back(Access); |
2454 | 890 | } else { |
2455 | 469 | ReadOnlyArrays.insert(Array); |
2456 | 469 | ReadOnlyAccesses.push_back(Access); |
2457 | 469 | } |
2458 | 1.35k | } |
2459 | 369 | |
2460 | 369 | // If there are no read-only pointers, and less than two read-write pointers, |
2461 | 369 | // no alias check is needed. |
2462 | 369 | if (ReadOnlyAccesses.empty() && ReadWriteArrays.size() <= 1187 ) |
2463 | 144 | return true; |
2464 | 225 | |
2465 | 225 | // If there is no read-write pointer, no alias check is needed. |
2466 | 225 | if (ReadWriteArrays.empty()) |
2467 | 10 | return true; |
2468 | 215 | |
2469 | 215 | // For non-affine accesses, no alias check can be generated as we cannot |
2470 | 215 | // compute a sufficiently tight lower and upper bound: bail out. |
2471 | 848 | for (MemoryAccess *MA : AliasGroup)215 { |
2472 | 848 | if (!MA->isAffine()) { |
2473 | 0 | scop->invalidate(ALIASING, MA->getAccessInstruction()->getDebugLoc(), |
2474 | 0 | MA->getAccessInstruction()->getParent()); |
2475 | 0 | return false; |
2476 | 0 | } |
2477 | 848 | } |
2478 | 215 | |
2479 | 215 | // Ensure that for all memory accesses for which we generate alias checks, |
2480 | 215 | // their base pointers are available. |
2481 | 848 | for (MemoryAccess *MA : AliasGroup)215 { |
2482 | 848 | if (MemoryAccess *BasePtrMA = scop->lookupBasePtrAccess(MA)) |
2483 | 0 | scop->addRequiredInvariantLoad( |
2484 | 0 | cast<LoadInst>(BasePtrMA->getAccessInstruction())); |
2485 | 848 | } |
2486 | 215 | |
2487 | 215 | // scop->getAliasGroups().emplace_back(); |
2488 | 215 | // Scop::MinMaxVectorPairTy &pair = scop->getAliasGroups().back(); |
2489 | 215 | Scop::MinMaxVectorTy MinMaxAccessesReadWrite; |
2490 | 215 | Scop::MinMaxVectorTy MinMaxAccessesReadOnly; |
2491 | 215 | |
2492 | 215 | bool Valid; |
2493 | 215 | |
2494 | 215 | Valid = calculateMinMaxAccess(ReadWriteAccesses, MinMaxAccessesReadWrite); |
2495 | 215 | |
2496 | 215 | if (!Valid) |
2497 | 0 | return false; |
2498 | 215 | |
2499 | 215 | // Bail out if the number of values we need to compare is too large. |
2500 | 215 | // This is important as the number of comparisons grows quadratically with |
2501 | 215 | // the number of values we need to compare. |
2502 | 215 | if (MinMaxAccessesReadWrite.size() + ReadOnlyArrays.size() > |
2503 | 215 | RunTimeChecksMaxArraysPerGroup) |
2504 | 1 | return false; |
2505 | 214 | |
2506 | 214 | Valid = calculateMinMaxAccess(ReadOnlyAccesses, MinMaxAccessesReadOnly); |
2507 | 214 | |
2508 | 214 | scop->addAliasGroup(MinMaxAccessesReadWrite, MinMaxAccessesReadOnly); |
2509 | 214 | if (!Valid) |
2510 | 4 | return false; |
2511 | 210 | |
2512 | 210 | return true; |
2513 | 210 | } |
2514 | | |
2515 | 1.13k | void ScopBuilder::splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups) { |
2516 | 1.51k | for (unsigned u = 0; u < AliasGroups.size(); u++375 ) { |
2517 | 375 | AliasGroupTy NewAG; |
2518 | 375 | AliasGroupTy &AG = AliasGroups[u]; |
2519 | 375 | AliasGroupTy::iterator AGI = AG.begin(); |
2520 | 375 | isl::set AGDomain = getAccessDomain(*AGI); |
2521 | 1.76k | while (AGI != AG.end()) { |
2522 | 1.39k | MemoryAccess *MA = *AGI; |
2523 | 1.39k | isl::set MADomain = getAccessDomain(MA); |
2524 | 1.39k | if (AGDomain.is_disjoint(MADomain)) { |
2525 | 26 | NewAG.push_back(MA); |
2526 | 26 | AGI = AG.erase(AGI); |
2527 | 1.36k | } else { |
2528 | 1.36k | AGDomain = AGDomain.unite(MADomain); |
2529 | 1.36k | AGI++; |
2530 | 1.36k | } |
2531 | 1.39k | } |
2532 | 375 | if (NewAG.size() > 1) |
2533 | 8 | AliasGroups.push_back(std::move(NewAG)); |
2534 | 375 | } |
2535 | 1.13k | } |
2536 | | |
2537 | | #ifndef NDEBUG |
2538 | | static void verifyUse(Scop *S, Use &Op, LoopInfo &LI) { |
2539 | | auto PhysUse = VirtualUse::create(S, Op, &LI, false); |
2540 | | auto VirtUse = VirtualUse::create(S, Op, &LI, true); |
2541 | | assert(PhysUse.getKind() == VirtUse.getKind()); |
2542 | | } |
2543 | | |
2544 | | /// Check the consistency of every statement's MemoryAccesses. |
2545 | | /// |
2546 | | /// The check is carried out by expecting the "physical" kind of use (derived |
2547 | | /// from the BasicBlocks instructions resides in) to be same as the "virtual" |
2548 | | /// kind of use (derived from a statement's MemoryAccess). |
2549 | | /// |
2550 | | /// The "physical" uses are taken by ensureValueRead to determine whether to |
2551 | | /// create MemoryAccesses. When done, the kind of scalar access should be the |
2552 | | /// same no matter which way it was derived. |
2553 | | /// |
2554 | | /// The MemoryAccesses might be changed by later SCoP-modifying passes and hence |
2555 | | /// can intentionally influence on the kind of uses (not corresponding to the |
2556 | | /// "physical" anymore, hence called "virtual"). The CodeGenerator therefore has |
2557 | | /// to pick up the virtual uses. But here in the code generator, this has not |
2558 | | /// happened yet, such that virtual and physical uses are equivalent. |
2559 | | static void verifyUses(Scop *S, LoopInfo &LI, DominatorTree &DT) { |
2560 | | for (auto *BB : S->getRegion().blocks()) { |
2561 | | for (auto &Inst : *BB) { |
2562 | | auto *Stmt = S->getStmtFor(&Inst); |
2563 | | if (!Stmt) |
2564 | | continue; |
2565 | | |
2566 | | if (isIgnoredIntrinsic(&Inst)) |
2567 | | continue; |
2568 | | |
2569 | | // Branch conditions are encoded in the statement domains. |
2570 | | if (Inst.isTerminator() && Stmt->isBlockStmt()) |
2571 | | continue; |
2572 | | |
2573 | | // Verify all uses. |
2574 | | for (auto &Op : Inst.operands()) |
2575 | | verifyUse(S, Op, LI); |
2576 | | |
2577 | | // Stores do not produce values used by other statements. |
2578 | | if (isa<StoreInst>(Inst)) |
2579 | | continue; |
2580 | | |
2581 | | // For every value defined in the block, also check that a use of that |
2582 | | // value in the same statement would not be an inter-statement use. It can |
2583 | | // still be synthesizable or load-hoisted, but these kind of instructions |
2584 | | // are not directly copied in code-generation. |
2585 | | auto VirtDef = |
2586 | | VirtualUse::create(S, Stmt, Stmt->getSurroundingLoop(), &Inst, true); |
2587 | | assert(VirtDef.getKind() == VirtualUse::Synthesizable || |
2588 | | VirtDef.getKind() == VirtualUse::Intra || |
2589 | | VirtDef.getKind() == VirtualUse::Hoisted); |
2590 | | } |
2591 | | } |
2592 | | |
2593 | | if (S->hasSingleExitEdge()) |
2594 | | return; |
2595 | | |
2596 | | // PHINodes in the SCoP region's exit block are also uses to be checked. |
2597 | | if (!S->getRegion().isTopLevelRegion()) { |
2598 | | for (auto &Inst : *S->getRegion().getExit()) { |
2599 | | if (!isa<PHINode>(Inst)) |
2600 | | break; |
2601 | | |
2602 | | for (auto &Op : Inst.operands()) |
2603 | | verifyUse(S, Op, LI); |
2604 | | } |
2605 | | } |
2606 | | } |
2607 | | #endif |
2608 | | |
2609 | | /// Return the block that is the representing block for @p RN. |
2610 | 115 | static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) { |
2611 | 115 | return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry() |
2612 | 115 | : RN->getNodeAs<BasicBlock>()0 ; |
2613 | 115 | } |
2614 | | |
2615 | 1.20k | void ScopBuilder::buildScop(Region &R, AssumptionCache &AC) { |
2616 | 1.20k | scop.reset(new Scop(R, SE, LI, DT, *SD.getDetectionContext(&R), ORE)); |
2617 | 1.20k | |
2618 | 1.20k | buildStmts(R); |
2619 | 1.20k | |
2620 | 1.20k | // Create all invariant load instructions first. These are categorized as |
2621 | 1.20k | // 'synthesizable', therefore are not part of any ScopStmt but need to be |
2622 | 1.20k | // created somewhere. |
2623 | 1.20k | const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads(); |
2624 | 5.96k | for (BasicBlock *BB : scop->getRegion().blocks()) { |
2625 | 5.96k | if (isErrorBlock(*BB, scop->getRegion(), LI, DT)) |
2626 | 43 | continue; |
2627 | 5.92k | |
2628 | 21.8k | for (Instruction &Inst : *BB)5.92k { |
2629 | 21.8k | LoadInst *Load = dyn_cast<LoadInst>(&Inst); |
2630 | 21.8k | if (!Load) |
2631 | 20.0k | continue; |
2632 | 1.81k | |
2633 | 1.81k | if (!RIL.count(Load)) |
2634 | 1.52k | continue; |
2635 | 288 | |
2636 | 288 | // Invariant loads require a MemoryAccess to be created in some statement. |
2637 | 288 | // It is not important to which statement the MemoryAccess is added |
2638 | 288 | // because it will later be removed from the ScopStmt again. We chose the |
2639 | 288 | // first statement of the basic block the LoadInst is in. |
2640 | 288 | ArrayRef<ScopStmt *> List = scop->getStmtListFor(BB); |
2641 | 288 | assert(!List.empty()); |
2642 | 288 | ScopStmt *RILStmt = List.front(); |
2643 | 288 | buildMemoryAccess(Load, RILStmt); |
2644 | 288 | } |
2645 | 5.92k | } |
2646 | 1.20k | buildAccessFunctions(); |
2647 | 1.20k | |
2648 | 1.20k | // In case the region does not have an exiting block we will later (during |
2649 | 1.20k | // code generation) split the exit block. This will move potential PHI nodes |
2650 | 1.20k | // from the current exit block into the new region exiting block. Hence, PHI |
2651 | 1.20k | // nodes that are at this point not part of the region will be. |
2652 | 1.20k | // To handle these PHI nodes later we will now model their operands as scalar |
2653 | 1.20k | // accesses. Note that we do not model anything in the exit block if we have |
2654 | 1.20k | // an exiting block in the region, as there will not be any splitting later. |
2655 | 1.20k | if (!R.isTopLevelRegion() && !scop->hasSingleExitEdge()1.20k ) { |
2656 | 203 | for (Instruction &Inst : *R.getExit()) { |
2657 | 203 | PHINode *PHI = dyn_cast<PHINode>(&Inst); |
2658 | 203 | if (!PHI) |
2659 | 161 | break; |
2660 | 42 | |
2661 | 42 | buildPHIAccesses(nullptr, PHI, nullptr, true); |
2662 | 42 | } |
2663 | 161 | } |
2664 | 1.20k | |
2665 | 1.20k | // Create memory accesses for global reads since all arrays are now known. |
2666 | 1.20k | auto *AF = SE.getConstant(IntegerType::getInt64Ty(SE.getContext()), 0); |
2667 | 1.20k | for (auto GlobalReadPair : GlobalReads) { |
2668 | 8 | ScopStmt *GlobalReadStmt = GlobalReadPair.first; |
2669 | 8 | Instruction *GlobalRead = GlobalReadPair.second; |
2670 | 8 | for (auto *BP : ArrayBasePointers) |
2671 | 16 | addArrayAccess(GlobalReadStmt, MemAccInst(GlobalRead), MemoryAccess::READ, |
2672 | 16 | BP, BP->getType(), false, {AF}, {nullptr}, GlobalRead); |
2673 | 8 | } |
2674 | 1.20k | |
2675 | 1.20k | buildInvariantEquivalenceClasses(); |
2676 | 1.20k | |
2677 | 1.20k | /// A map from basic blocks to their invalid domains. |
2678 | 1.20k | DenseMap<BasicBlock *, isl::set> InvalidDomainMap; |
2679 | 1.20k | |
2680 | 1.20k | if (!scop->buildDomains(&R, DT, LI, InvalidDomainMap)) { |
2681 | 8 | LLVM_DEBUG( |
2682 | 8 | dbgs() << "Bailing-out because buildDomains encountered problems\n"); |
2683 | 8 | return; |
2684 | 8 | } |
2685 | 1.19k | |
2686 | 1.19k | scop->addUserAssumptions(AC, DT, LI, InvalidDomainMap); |
2687 | 1.19k | |
2688 | 1.19k | // Initialize the invalid domain. |
2689 | 1.19k | for (ScopStmt &Stmt : scop->Stmts) |
2690 | 9.12k | if (Stmt.isBlockStmt()) |
2691 | 9.01k | Stmt.setInvalidDomain(InvalidDomainMap[Stmt.getEntryBlock()]); |
2692 | 115 | else |
2693 | 115 | Stmt.setInvalidDomain(InvalidDomainMap[getRegionNodeBasicBlock( |
2694 | 115 | Stmt.getRegion()->getNode())]); |
2695 | 1.19k | |
2696 | 1.19k | // Remove empty statements. |
2697 | 1.19k | // Exit early in case there are no executable statements left in this scop. |
2698 | 1.19k | scop->removeStmtNotInDomainMap(); |
2699 | 1.19k | scop->simplifySCoP(false); |
2700 | 1.19k | if (scop->isEmpty()) { |
2701 | 31 | LLVM_DEBUG(dbgs() << "Bailing-out because SCoP is empty\n"); |
2702 | 31 | return; |
2703 | 31 | } |
2704 | 1.16k | |
2705 | 1.16k | // The ScopStmts now have enough information to initialize themselves. |
2706 | 2.32k | for (ScopStmt &Stmt : *scop)1.16k { |
2707 | 2.32k | collectSurroundingLoops(Stmt); |
2708 | 2.32k | |
2709 | 2.32k | buildDomain(Stmt); |
2710 | 2.32k | buildAccessRelations(Stmt); |
2711 | 2.32k | |
2712 | 2.32k | if (DetectReductions) |
2713 | 2.32k | checkForReductions(Stmt); |
2714 | 2.32k | } |
2715 | 1.16k | |
2716 | 1.16k | // Check early for a feasible runtime context. |
2717 | 1.16k | if (!scop->hasFeasibleRuntimeContext()) { |
2718 | 3 | LLVM_DEBUG(dbgs() << "Bailing-out because of unfeasible context (early)\n"); |
2719 | 3 | return; |
2720 | 3 | } |
2721 | 1.16k | |
2722 | 1.16k | // Check early for profitability. Afterwards it cannot change anymore, |
2723 | 1.16k | // only the runtime context could become infeasible. |
2724 | 1.16k | if (!scop->isProfitable(UnprofitableScalarAccs)) { |
2725 | 2 | scop->invalidate(PROFITABLE, DebugLoc()); |
2726 | 2 | LLVM_DEBUG( |
2727 | 2 | dbgs() << "Bailing-out because SCoP is not considered profitable\n"); |
2728 | 2 | return; |
2729 | 2 | } |
2730 | 1.16k | |
2731 | 1.16k | buildSchedule(); |
2732 | 1.16k | |
2733 | 1.16k | finalizeAccesses(); |
2734 | 1.16k | |
2735 | 1.16k | scop->realignParams(); |
2736 | 1.16k | addUserContext(); |
2737 | 1.16k | |
2738 | 1.16k | // After the context was fully constructed, thus all our knowledge about |
2739 | 1.16k | // the parameters is in there, we add all recorded assumptions to the |
2740 | 1.16k | // assumed/invalid context. |
2741 | 1.16k | addRecordedAssumptions(); |
2742 | 1.16k | |
2743 | 1.16k | scop->simplifyContexts(); |
2744 | 1.16k | if (!buildAliasChecks()) { |
2745 | 6 | LLVM_DEBUG(dbgs() << "Bailing-out because could not build alias checks\n"); |
2746 | 6 | return; |
2747 | 6 | } |
2748 | 1.15k | |
2749 | 1.15k | hoistInvariantLoads(); |
2750 | 1.15k | canonicalizeDynamicBasePtrs(); |
2751 | 1.15k | verifyInvariantLoads(); |
2752 | 1.15k | scop->simplifySCoP(true); |
2753 | 1.15k | |
2754 | 1.15k | // Check late for a feasible runtime context because profitability did not |
2755 | 1.15k | // change. |
2756 | 1.15k | if (!scop->hasFeasibleRuntimeContext()) { |
2757 | 18 | LLVM_DEBUG(dbgs() << "Bailing-out because of unfeasible context (late)\n"); |
2758 | 18 | return; |
2759 | 18 | } |
2760 | 1.15k | |
2761 | | #ifndef NDEBUG |
2762 | | verifyUses(scop.get(), LI, DT); |
2763 | | #endif |
2764 | | } |
2765 | | |
2766 | | ScopBuilder::ScopBuilder(Region *R, AssumptionCache &AC, AliasAnalysis &AA, |
2767 | | const DataLayout &DL, DominatorTree &DT, LoopInfo &LI, |
2768 | | ScopDetection &SD, ScalarEvolution &SE, |
2769 | | OptimizationRemarkEmitter &ORE) |
2770 | 1.20k | : AA(AA), DL(DL), DT(DT), LI(LI), SD(SD), SE(SE), ORE(ORE) { |
2771 | 1.20k | DebugLoc Beg, End; |
2772 | 1.20k | auto P = getBBPairForRegion(R); |
2773 | 1.20k | getDebugLocations(P, Beg, End); |
2774 | 1.20k | |
2775 | 1.20k | std::string Msg = "SCoP begins here."; |
2776 | 1.20k | ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEntry", Beg, P.first) |
2777 | 1.20k | << Msg); |
2778 | 1.20k | |
2779 | 1.20k | buildScop(*R, AC); |
2780 | 1.20k | |
2781 | 1.20k | LLVM_DEBUG(dbgs() << *scop); |
2782 | 1.20k | |
2783 | 1.20k | if (!scop->hasFeasibleRuntimeContext()) { |
2784 | 68 | InfeasibleScops++; |
2785 | 68 | Msg = "SCoP ends here but was dismissed."; |
2786 | 68 | LLVM_DEBUG(dbgs() << "SCoP detected but dismissed\n"); |
2787 | 68 | scop.reset(); |
2788 | 1.13k | } else { |
2789 | 1.13k | Msg = "SCoP ends here."; |
2790 | 1.13k | ++ScopFound; |
2791 | 1.13k | if (scop->getMaxLoopDepth() > 0) |
2792 | 1.06k | ++RichScopFound; |
2793 | 1.13k | } |
2794 | 1.20k | |
2795 | 1.20k | if (R->isTopLevelRegion()) |
2796 | 4 | ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.first) |
2797 | 4 | << Msg); |
2798 | 1.20k | else |
2799 | 1.20k | ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.second) |
2800 | 1.20k | << Msg); |
2801 | 1.20k | } |