Coverage Report

Created: 2019-07-24 05:18

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/lib/External/isl/imath/imath.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
  Name:     imath.c
3
  Purpose:  Arbitrary precision integer arithmetic routines.
4
  Author:   M. J. Fromberger <http://spinning-yarns.org/michael/>
5
6
  Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
7
8
  Permission is hereby granted, free of charge, to any person obtaining a copy
9
  of this software and associated documentation files (the "Software"), to deal
10
  in the Software without restriction, including without limitation the rights
11
  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
  copies of the Software, and to permit persons to whom the Software is
13
  furnished to do so, subject to the following conditions:
14
15
  The above copyright notice and this permission notice shall be included in
16
  all copies or substantial portions of the Software.
17
18
  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
21
  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24
  SOFTWARE.
25
 */
26
27
#include "imath.h"
28
29
#if DEBUG
30
#include <stdio.h>
31
#endif
32
33
#include <stdlib.h>
34
#include <string.h>
35
#include <ctype.h>
36
37
#include <assert.h>
38
39
#if DEBUG
40
#define STATIC /* public */
41
#else
42
#define STATIC static
43
#endif
44
45
const mp_result MP_OK     = 0;  /* no error, all is well  */
46
const mp_result MP_FALSE  = 0;  /* boolean false          */
47
const mp_result MP_TRUE   = -1; /* boolean true           */
48
const mp_result MP_MEMORY = -2; /* out of memory          */
49
const mp_result MP_RANGE  = -3; /* argument out of range  */
50
const mp_result MP_UNDEF  = -4; /* result undefined       */
51
const mp_result MP_TRUNC  = -5; /* output truncated       */
52
const mp_result MP_BADARG = -6; /* invalid null argument  */
53
const mp_result MP_MINERR = -6;
54
55
const mp_sign   MP_NEG  = 1;    /* value is strictly negative */
56
const mp_sign   MP_ZPOS = 0;    /* value is non-negative      */
57
58
STATIC const char *s_unknown_err = "unknown result code";
59
STATIC const char *s_error_msg[] = {
60
  "error code 0",
61
  "boolean true",
62
  "out of memory",
63
  "argument out of range",
64
  "result undefined",
65
  "output truncated",
66
  "invalid argument",
67
  NULL
68
};
69
70
/* Argument checking macros
71
   Use CHECK() where a return value is required; NRCHECK() elsewhere */
72
523M
#define CHECK(TEST)   assert(TEST)
73
135M
#define NRCHECK(TEST) assert(TEST)
74
75
/* The ith entry of this table gives the value of log_i(2).
76
77
   An integer value n requires ceil(log_i(n)) digits to be represented
78
   in base i.  Since it is easy to compute lg(n), by counting bits, we
79
   can compute log_i(n) = lg(n) * log_i(2).
80
81
   The use of this table eliminates a dependency upon linkage against
82
   the standard math libraries.
83
84
   If MP_MAX_RADIX is increased, this table should be expanded too.
85
 */
86
STATIC const double s_log2[] = {
87
   0.000000000, 0.000000000, 1.000000000, 0.630929754,  /* (D)(D) 2  3 */
88
   0.500000000, 0.430676558, 0.386852807, 0.356207187,  /*  4  5  6  7 */
89
   0.333333333, 0.315464877, 0.301029996, 0.289064826,  /*  8  9 10 11 */
90
   0.278942946, 0.270238154, 0.262649535, 0.255958025,  /* 12 13 14 15 */
91
   0.250000000, 0.244650542, 0.239812467, 0.235408913,  /* 16 17 18 19 */
92
   0.231378213, 0.227670249, 0.224243824, 0.221064729,  /* 20 21 22 23 */
93
   0.218104292, 0.215338279, 0.212746054, 0.210309918,  /* 24 25 26 27 */
94
   0.208014598, 0.205846832, 0.203795047, 0.201849087,  /* 28 29 30 31 */
95
   0.200000000, 0.198239863, 0.196561632, 0.194959022,  /* 32 33 34 35 */
96
   0.193426404,                                         /* 36          */
97
};
98
99
100
101
/* Return the number of digits needed to represent a static value */
102
57.1M
#define MP_VALUE_DIGITS(V) \
103
57.1M
((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit))
104
105
/* Round precision P to nearest word boundary */
106
25.4M
#define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2)))
107
108
/* Set array P of S digits to zero */
109
11.5M
#define ZERO(P, S) \
110
11.5M
do{ \
111
11.5M
  mp_size i__ = (S) * sizeof(mp_digit); \
112
11.5M
  mp_digit *p__ = (P); \
113
11.5M
  memset(p__, 0, i__); \
114
11.5M
} while(0)
115
116
/* Copy S digits from array P to array Q */
117
161M
#define COPY(P, Q, S) \
118
161M
do{ \
119
145M
  mp_size i__ = (S) * sizeof(mp_digit); \
120
145M
  mp_digit *p__ = (P), *q__ = (Q); \
121
145M
  memcpy(q__, p__, i__); \
122
145M
} while(0)
123
124
/* Reverse N elements of type T in array A */
125
0
#define REV(T, A, N) \
126
0
do{ \
127
0
  T *u_ = (A), *v_ = u_ + (N) - 1; \
128
0
  while (u_ < v_) { \
129
0
    T xch = *u_; \
130
0
    *u_++ = *v_; \
131
0
    *v_-- = xch; \
132
0
  } \
133
0
} while(0)
134
135
219M
#define CLAMP(Z) \
136
219M
do{ \
137
219M
  mp_int z_ = (Z); \
138
219M
  mp_size uz_ = MP_USED(z_); \
139
219M
  mp_digit *dz_ = MP_DIGITS(z_) + uz_ -1; \
140
257M
  while (uz_ > 1 && 
(*dz_-- == 0)156M
) \
141
219M
    
--uz_37.8M
; \
142
219M
  MP_USED(z_) = uz_; \
143
219M
} while(0)
144
145
/* Select min/max.  Do not provide expressions for which multiple
146
   evaluation would be problematic, e.g. x++ */
147
3.61M
#define MIN(A, B) ((B)<(A)?
(B)734k
:
(A)2.88M
)
148
127M
#define MAX(A, B) ((B)>(A)?
(B)50.2M
:
(A)77.5M
)
149
150
/* Exchange lvalues A and B of type T, e.g.
151
   SWAP(int, x, y) where x and y are variables of type int. */
152
8.63M
#define SWAP(T, A, B) \
153
8.63M
do{ \
154
8.63M
  T t_ = (A); \
155
8.63M
  A = (B); \
156
8.63M
  B = t_; \
157
8.63M
} while(0)
158
159
/* Used to set up and access simple temp stacks within functions. */
160
#define DECLARE_TEMP(N) \
161
5.19M
  mpz_t temp[(N)]; \
162
5.19M
  int last__ = 0
163
#define CLEANUP_TEMP() \
164
3.36M
 CLEANUP: \
165
5.33M
  while (--last__ >= 0) \
166
3.36M
    
mp_int_clear(1.97M
TEMP1.97M
(last__))
167
3.94M
#define TEMP(K) (temp + (K))
168
1.97M
#define LAST_TEMP() TEMP(last__)
169
1.97M
#define SETUP(E) \
170
1.97M
do{ \
171
1.97M
  if ((res = (E)) != MP_OK) \
172
1.97M
    
goto CLEANUP0
; \
173
1.97M
  ++(last__); \
174
1.97M
} while(0)
175
176
/* Compare value to zero. */
177
293M
#define CMPZ(Z) \
178
293M
(((Z)->used==1&&
(Z)->digits[0]==0137M
)?
05.89M
:
((Z)->sign==MP_NEG)?287M
-1241M
:
145.7M
)
179
180
/* Multiply X by Y into Z, ignoring signs.  Requires that Z have
181
   enough storage preallocated to hold the result. */
182
0
#define UMUL(X, Y, Z) \
183
0
do{ \
184
0
  mp_size ua_ = MP_USED(X), ub_ = MP_USED(Y); \
185
0
  mp_size o_ = ua_ + ub_; \
186
0
  ZERO(MP_DIGITS(Z), o_); \
187
0
  (void) s_kmul(MP_DIGITS(X), MP_DIGITS(Y), MP_DIGITS(Z), ua_, ub_); \
188
0
  MP_USED(Z) = o_; \
189
0
  CLAMP(Z); \
190
0
} while(0)
191
192
/* Square X into Z.  Requires that Z have enough storage to hold the
193
   result. */
194
0
#define USQR(X, Z) \
195
0
do{ \
196
0
  mp_size ua_ = MP_USED(X), o_ = ua_ + ua_; \
197
0
  ZERO(MP_DIGITS(Z), o_); \
198
0
  (void) s_ksqr(MP_DIGITS(X), MP_DIGITS(Z), ua_); \
199
0
  MP_USED(Z) = o_; \
200
0
  CLAMP(Z); \
201
0
} while(0)
202
203
295M
#define UPPER_HALF(W)           ((mp_word)((W) >> MP_DIGIT_BIT))
204
295M
#define LOWER_HALF(W)           ((mp_digit)(W))
205
0
#define HIGH_BIT_SET(W)         ((W) >> (MP_WORD_BIT - 1))
206
0
#define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W))
207
208
209
210
/* Default number of digits allocated to a new mp_int */
211
#if IMATH_TEST
212
mp_size default_precision = MP_DEFAULT_PREC;
213
#else
214
STATIC const mp_size default_precision = MP_DEFAULT_PREC;
215
#endif
216
217
/* Minimum number of digits to invoke recursive multiply */
218
#if IMATH_TEST
219
mp_size multiply_threshold = MP_MULT_THRESH;
220
#else
221
STATIC const mp_size multiply_threshold = MP_MULT_THRESH;
222
#endif
223
224
/* Allocate a buffer of (at least) num digits, or return
225
   NULL if that couldn't be done.  */
226
STATIC mp_digit *s_alloc(mp_size num);
227
228
/* Release a buffer of digits allocated by s_alloc(). */
229
STATIC void s_free(void *ptr);
230
231
/* Insure that z has at least min digits allocated, resizing if
232
   necessary.  Returns true if successful, false if out of memory. */
233
STATIC int  s_pad(mp_int z, mp_size min);
234
235
/* Fill in a "fake" mp_int on the stack with a given value */
236
STATIC void      s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
237
STATIC void      s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]);
238
239
/* Compare two runs of digits of given length, returns <0, 0, >0 */
240
STATIC int       s_cdig(mp_digit *da, mp_digit *db, mp_size len);
241
242
/* Pack the unsigned digits of v into array t */
243
STATIC int       s_uvpack(mp_usmall v, mp_digit t[]);
244
245
/* Compare magnitudes of a and b, returns <0, 0, >0 */
246
STATIC int       s_ucmp(mp_int a, mp_int b);
247
248
/* Compare magnitudes of a and v, returns <0, 0, >0 */
249
STATIC int       s_vcmp(mp_int a, mp_small v);
250
STATIC int       s_uvcmp(mp_int a, mp_usmall uv);
251
252
/* Unsigned magnitude addition; assumes dc is big enough.
253
   Carry out is returned (no memory allocated). */
254
STATIC mp_digit  s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
255
            mp_size size_a, mp_size size_b);
256
257
/* Unsigned magnitude subtraction.  Assumes dc is big enough. */
258
STATIC void      s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
259
            mp_size size_a, mp_size size_b);
260
261
/* Unsigned recursive multiplication.  Assumes dc is big enough. */
262
STATIC int       s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
263
      mp_size size_a, mp_size size_b);
264
265
/* Unsigned magnitude multiplication.  Assumes dc is big enough. */
266
STATIC void      s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
267
      mp_size size_a, mp_size size_b);
268
269
/* Unsigned recursive squaring.  Assumes dc is big enough. */
270
STATIC int       s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
271
272
/* Unsigned magnitude squaring.  Assumes dc is big enough. */
273
STATIC void      s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
274
275
/* Single digit addition.  Assumes a is big enough. */
276
STATIC void      s_dadd(mp_int a, mp_digit b);
277
278
/* Single digit multiplication.  Assumes a is big enough. */
279
STATIC void      s_dmul(mp_int a, mp_digit b);
280
281
/* Single digit multiplication on buffers; assumes dc is big enough. */
282
STATIC void      s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
283
       mp_size size_a);
284
285
/* Single digit division.  Replaces a with the quotient,
286
   returns the remainder.  */
287
STATIC mp_digit  s_ddiv(mp_int a, mp_digit b);
288
289
/* Quick division by a power of 2, replaces z (no allocation) */
290
STATIC void      s_qdiv(mp_int z, mp_size p2);
291
292
/* Quick remainder by a power of 2, replaces z (no allocation) */
293
STATIC void      s_qmod(mp_int z, mp_size p2);
294
295
/* Quick multiplication by a power of 2, replaces z.
296
   Allocates if necessary; returns false in case this fails. */
297
STATIC int       s_qmul(mp_int z, mp_size p2);
298
299
/* Quick subtraction from a power of 2, replaces z.
300
   Allocates if necessary; returns false in case this fails. */
301
STATIC int       s_qsub(mp_int z, mp_size p2);
302
303
/* Return maximum k such that 2^k divides z. */
304
STATIC int       s_dp2k(mp_int z);
305
306
/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
307
STATIC int       s_isp2(mp_int z);
308
309
/* Set z to 2^k.  May allocate; returns false in case this fails. */
310
STATIC int       s_2expt(mp_int z, mp_small k);
311
312
/* Normalize a and b for division, returns normalization constant */
313
STATIC int       s_norm(mp_int a, mp_int b);
314
315
/* Compute constant mu for Barrett reduction, given modulus m, result
316
   replaces z, m is untouched. */
317
STATIC mp_result s_brmu(mp_int z, mp_int m);
318
319
/* Reduce a modulo m, using Barrett's algorithm. */
320
STATIC int       s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
321
322
/* Modular exponentiation, using Barrett reduction */
323
STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
324
325
/* Unsigned magnitude division.  Assumes |a| > |b|.  Allocates temporaries;
326
   overwrites a with quotient, b with remainder. */
327
STATIC mp_result s_udiv_knuth(mp_int a, mp_int b);
328
329
/* Compute the number of digits in radix r required to represent the given
330
   value.  Does not account for sign flags, terminators, etc. */
331
STATIC int       s_outlen(mp_int z, mp_size r);
332
333
/* Guess how many digits of precision will be needed to represent a radix r
334
   value of the specified number of digits.  Returns a value guaranteed to be
335
   no smaller than the actual number required. */
336
STATIC mp_size   s_inlen(int len, mp_size r);
337
338
/* Convert a character to a digit value in radix r, or
339
   -1 if out of range */
340
STATIC int       s_ch2val(char c, int r);
341
342
/* Convert a digit value to a character */
343
STATIC char      s_val2ch(int v, int caps);
344
345
/* Take 2's complement of a buffer in place */
346
STATIC void      s_2comp(unsigned char *buf, int len);
347
348
/* Convert a value to binary, ignoring sign.  On input, *limpos is the bound on
349
   how many bytes should be written to buf; on output, *limpos is set to the
350
   number of bytes actually written. */
351
STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
352
353
#if DEBUG
354
/* Dump a representation of the mp_int to standard output */
355
void      s_print(char *tag, mp_int z);
356
void      s_print_buf(char *tag, mp_digit *buf, mp_size num);
357
#endif
358
359
mp_result mp_int_init(mp_int z)
360
46.6M
{
361
46.6M
  if (z == NULL)
362
46.6M
    
return MP_BADARG0
;
363
46.6M
364
46.6M
  z->single = 0;
365
46.6M
  z->digits = &(z->single);
366
46.6M
  z->alloc  = 1;
367
46.6M
  z->used   = 1;
368
46.6M
  z->sign   = MP_ZPOS;
369
46.6M
370
46.6M
  return MP_OK;
371
46.6M
}
372
373
mp_int    mp_int_alloc(void)
374
36.6M
{
375
36.6M
  mp_int out = malloc(sizeof(mpz_t));
376
36.6M
377
36.6M
  if (out != NULL)
378
36.6M
    mp_int_init(out);
379
36.6M
380
36.6M
  return out;
381
36.6M
}
382
383
mp_result mp_int_init_size(mp_int z, mp_size prec)
384
6.92M
{
385
6.92M
  CHECK(z != NULL);
386
6.92M
387
6.92M
  if (prec == 0)
388
0
    prec = default_precision;
389
6.92M
  else if (prec == 1)
390
351k
    return mp_int_init(z);
391
6.57M
  else
392
6.57M
    prec = (mp_size) ROUND_PREC(prec);
393
6.92M
394
6.92M
  
if (6.57M
(6.57M
MP_DIGITS6.57M
(z) = s_alloc(prec)) == NULL)
395
6.57M
    
return MP_MEMORY0
;
396
6.57M
397
6.57M
  z->digits[0] = 0;
398
6.57M
  MP_USED(z) = 1;
399
6.57M
  MP_ALLOC(z) = prec;
400
6.57M
  MP_SIGN(z) = MP_ZPOS;
401
6.57M
402
6.57M
  return MP_OK;
403
6.57M
}
404
405
mp_result mp_int_init_copy(mp_int z, mp_int old)
406
9.56M
{
407
9.56M
  mp_result res;
408
9.56M
  mp_size uold;
409
9.56M
410
9.56M
  CHECK(z != NULL && old != NULL);
411
9.56M
412
9.56M
  uold = MP_USED(old);
413
9.56M
  if (uold == 1) {
414
4.40M
    mp_int_init(z);
415
4.40M
  }
416
5.16M
  else {
417
5.16M
    mp_size target = MAX(uold, default_precision);
418
5.16M
419
5.16M
    if ((res = mp_int_init_size(z, target)) != MP_OK)
420
0
      return res;
421
9.56M
  }
422
9.56M
423
9.56M
  MP_USED(z) = uold;
424
9.56M
  MP_SIGN(z) = MP_SIGN(old);
425
9.56M
  COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
426
9.56M
427
9.56M
  return MP_OK;
428
9.56M
}
429
430
mp_result mp_int_init_value(mp_int z, mp_small value)
431
0
{
432
0
  mpz_t    vtmp;
433
0
  mp_digit vbuf[MP_VALUE_DIGITS(value)];
434
0
435
0
  s_fake(&vtmp, value, vbuf);
436
0
  return mp_int_init_copy(z, &vtmp);
437
0
}
438
439
mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue)
440
183k
{
441
183k
  mpz_t    vtmp;
442
183k
  mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
443
183k
444
183k
  s_ufake(&vtmp, uvalue, vbuf);
445
183k
  return mp_int_init_copy(z, &vtmp);
446
183k
}
447
448
mp_result  mp_int_set_value(mp_int z, mp_small value)
449
1.29M
{
450
1.29M
  mpz_t    vtmp;
451
1.29M
  mp_digit vbuf[MP_VALUE_DIGITS(value)];
452
1.29M
453
1.29M
  s_fake(&vtmp, value, vbuf);
454
1.29M
  return mp_int_copy(&vtmp, z);
455
1.29M
}
456
457
mp_result  mp_int_set_uvalue(mp_int z, mp_usmall uvalue)
458
458k
{
459
458k
  mpz_t    vtmp;
460
458k
  mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
461
458k
462
458k
  s_ufake(&vtmp, uvalue, vbuf);
463
458k
  return mp_int_copy(&vtmp, z);
464
458k
}
465
466
void      mp_int_clear(mp_int z)
467
53.2M
{
468
53.2M
  if (z == NULL)
469
53.2M
    
return0
;
470
53.2M
471
53.2M
  if (MP_DIGITS(z) != NULL) {
472
53.2M
    if (MP_DIGITS(z) != &(z->single))
473
22.8M
      s_free(MP_DIGITS(z));
474
53.2M
475
53.2M
    MP_DIGITS(z) = NULL;
476
53.2M
  }
477
53.2M
}
478
479
void      mp_int_free(mp_int z)
480
36.6M
{
481
36.6M
  NRCHECK(z != NULL);
482
36.6M
483
36.6M
  mp_int_clear(z);
484
36.6M
  free(z); /* note: NOT s_free() */
485
36.6M
}
486
487
mp_result mp_int_copy(mp_int a, mp_int c)
488
127M
{
489
127M
  CHECK(a != NULL && c != NULL);
490
127M
491
127M
  if (a != c) {
492
120M
    mp_size ua = MP_USED(a);
493
120M
    mp_digit *da, *dc;
494
120M
495
120M
    if (!s_pad(c, ua))
496
0
      return MP_MEMORY;
497
120M
498
120M
    da = MP_DIGITS(a); dc = MP_DIGITS(c);
499
120M
    COPY(da, dc, ua);
500
120M
501
120M
    MP_USED(c) = ua;
502
120M
    MP_SIGN(c) = MP_SIGN(a);
503
120M
  }
504
127M
505
127M
  return MP_OK;
506
127M
}
507
508
void      mp_int_swap(mp_int a, mp_int c)
509
0
{
510
0
  if (a != c) {
511
0
    mpz_t tmp = *a;
512
0
513
0
    *a = *c;
514
0
    *c = tmp;
515
0
516
0
    if (MP_DIGITS(a) == &(c->single))
517
0
      MP_DIGITS(a) = &(a->single);
518
0
    if (MP_DIGITS(c) == &(a->single))
519
0
      MP_DIGITS(c) = &(c->single);
520
0
  }
521
0
}
522
523
void      mp_int_zero(mp_int z)
524
22.1M
{
525
22.1M
  NRCHECK(z != NULL);
526
22.1M
527
22.1M
  z->digits[0] = 0;
528
22.1M
  MP_USED(z) = 1;
529
22.1M
  MP_SIGN(z) = MP_ZPOS;
530
22.1M
}
531
532
mp_result mp_int_abs(mp_int a, mp_int c)
533
4.38M
{
534
4.38M
  mp_result res;
535
4.38M
536
4.38M
  CHECK(a != NULL && c != NULL);
537
4.38M
538
4.38M
  if ((res = mp_int_copy(a, c)) != MP_OK)
539
0
    return res;
540
4.38M
541
4.38M
  MP_SIGN(c) = MP_ZPOS;
542
4.38M
  return MP_OK;
543
4.38M
}
544
545
mp_result mp_int_neg(mp_int a, mp_int c)
546
84.7M
{
547
84.7M
  mp_result res;
548
84.7M
549
84.7M
  CHECK(a != NULL && c != NULL);
550
84.7M
551
84.7M
  if ((res = mp_int_copy(a, c)) != MP_OK)
552
0
    return res;
553
84.7M
554
84.7M
  if (CMPZ(c) != 0)
555
84.7M
    
MP_SIGN84.5M
(c) = 1 - 84.5M
MP_SIGN84.5M
(a);
556
84.7M
557
84.7M
  return MP_OK;
558
84.7M
}
559
560
mp_result mp_int_add(mp_int a, mp_int b, mp_int c)
561
15.6M
{
562
15.6M
  mp_size ua, ub, uc, max;
563
15.6M
564
15.6M
  CHECK(a != NULL && b != NULL && c != NULL);
565
15.6M
566
15.6M
  ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
567
15.6M
  max = MAX(ua, ub);
568
15.6M
569
15.6M
  if (MP_SIGN(a) == MP_SIGN(b)) {
570
9.12M
    /* Same sign -- add magnitudes, preserve sign of addends */
571
9.12M
    mp_digit carry;
572
9.12M
573
9.12M
    if (!s_pad(c, max))
574
0
      return MP_MEMORY;
575
9.12M
576
9.12M
    carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
577
9.12M
    uc = max;
578
9.12M
579
9.12M
    if (carry) {
580
51.6k
      if (!s_pad(c, max + 1))
581
0
  return MP_MEMORY;
582
51.6k
583
51.6k
      c->digits[max] = carry;
584
51.6k
      ++uc;
585
51.6k
    }
586
9.12M
587
9.12M
    MP_USED(c) = uc;
588
9.12M
    MP_SIGN(c) = MP_SIGN(a);
589
9.12M
590
9.12M
  }
591
6.47M
  else {
592
6.47M
    /* Different signs -- subtract magnitudes, preserve sign of greater */
593
6.47M
    mp_int  x, y;
594
6.47M
    int     cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */
595
6.47M
596
6.47M
    /* Set x to max(a, b), y to min(a, b) to simplify later code.
597
6.47M
       A special case yields zero for equal magnitudes.
598
6.47M
    */
599
6.47M
    if (cmp == 0) {
600
926k
      mp_int_zero(c);
601
926k
      return MP_OK;
602
926k
    }
603
5.55M
    else if (cmp < 0) {
604
1.54M
      x = b; y = a;
605
1.54M
    }
606
4.00M
    else {
607
4.00M
      x = a; y = b;
608
4.00M
    }
609
6.47M
610
6.47M
    
if (5.55M
!s_pad(c, 5.55M
MP_USED5.55M
(x)))
611
0
      return MP_MEMORY;
612
5.55M
613
5.55M
    /* Subtract smaller from larger */
614
5.55M
    s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
615
5.55M
    MP_USED(c) = MP_USED(x);
616
5.55M
    CLAMP(c);
617
5.55M
618
5.55M
    /* Give result the sign of the larger */
619
5.55M
    MP_SIGN(c) = MP_SIGN(x);
620
5.55M
  }
621
15.6M
622
15.6M
  
return MP_OK14.6M
;
623
15.6M
}
624
625
mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c)
626
4.02k
{
627
4.02k
  mpz_t    vtmp;
628
4.02k
  mp_digit vbuf[MP_VALUE_DIGITS(value)];
629
4.02k
630
4.02k
  s_fake(&vtmp, value, vbuf);
631
4.02k
632
4.02k
  return mp_int_add(a, &vtmp, c);
633
4.02k
}
634
635
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c)
636
96.0M
{
637
96.0M
  mp_size ua, ub, uc, max;
638
96.0M
639
96.0M
  CHECK(a != NULL && b != NULL && c != NULL);
640
96.0M
641
96.0M
  ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
642
96.0M
  max = MAX(ua, ub);
643
96.0M
644
96.0M
  if (MP_SIGN(a) != MP_SIGN(b)) {
645
270k
    /* Different signs -- add magnitudes and keep sign of a */
646
270k
    mp_digit carry;
647
270k
648
270k
    if (!s_pad(c, max))
649
0
      return MP_MEMORY;
650
270k
651
270k
    carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
652
270k
    uc = max;
653
270k
654
270k
    if (carry) {
655
2.09k
      if (!s_pad(c, max + 1))
656
0
  return MP_MEMORY;
657
2.09k
658
2.09k
      c->digits[max] = carry;
659
2.09k
      ++uc;
660
2.09k
    }
661
270k
662
270k
    MP_USED(c) = uc;
663
270k
    MP_SIGN(c) = MP_SIGN(a);
664
270k
665
270k
  }
666
95.7M
  else {
667
95.7M
    /* Same signs -- subtract magnitudes */
668
95.7M
    mp_int  x, y;
669
95.7M
    mp_sign osign;
670
95.7M
    int     cmp = s_ucmp(a, b);
671
95.7M
672
95.7M
    if (!s_pad(c, max))
673
0
      return MP_MEMORY;
674
95.7M
675
95.7M
    if (cmp >= 0) {
676
17.8M
      x = a; y = b; osign = MP_ZPOS;
677
17.8M
    }
678
77.8M
    else {
679
77.8M
      x = b; y = a; osign = MP_NEG;
680
77.8M
    }
681
95.7M
682
95.7M
    if (MP_SIGN(a) == MP_NEG && 
cmp != 0158k
)
683
134k
      osign = 1 - osign;
684
95.7M
685
95.7M
    s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
686
95.7M
    MP_USED(c) = MP_USED(x);
687
95.7M
    CLAMP(c);
688
95.7M
689
95.7M
    MP_SIGN(c) = osign;
690
95.7M
  }
691
96.0M
692
96.0M
  return MP_OK;
693
96.0M
}
694
695
mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c)
696
15.0k
{
697
15.0k
  mpz_t    vtmp;
698
15.0k
  mp_digit vbuf[MP_VALUE_DIGITS(value)];
699
15.0k
700
15.0k
  s_fake(&vtmp, value, vbuf);
701
15.0k
702
15.0k
  return mp_int_sub(a, &vtmp, c);
703
15.0k
}
704
705
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c)
706
27.9M
{
707
27.9M
  mp_digit *out;
708
27.9M
  mp_size   osize, ua, ub, p = 0;
709
27.9M
  mp_sign   osign;
710
27.9M
711
27.9M
  CHECK(a != NULL && b != NULL && c != NULL);
712
27.9M
713
27.9M
  /* If either input is zero, we can shortcut multiplication */
714
27.9M
  if (mp_int_compare_zero(a) == 0 || 
mp_int_compare_zero(b) == 022.1M
) {
715
19.3M
    mp_int_zero(c);
716
19.3M
    return MP_OK;
717
19.3M
  }
718
8.64M
719
8.64M
  /* Output is positive if inputs have same sign, otherwise negative */
720
8.64M
  osign = (MP_SIGN(a) == MP_SIGN(b)) ? 
MP_ZPOS5.40M
:
MP_NEG3.24M
;
721
8.64M
722
8.64M
  /* If the output is not identical to any of the inputs, we'll write the
723
8.64M
     results directly; otherwise, allocate a temporary space. */
724
8.64M
  ua = MP_USED(a); ub = MP_USED(b);
725
8.64M
  osize = MAX(ua, ub);
726
8.64M
  osize = 4 * ((osize + 1) / 2);
727
8.64M
728
8.64M
  if (c == a || 
c == b6.28M
) {
729
2.35M
    p = ROUND_PREC(osize);
730
2.35M
    p = MAX(p, default_precision);
731
2.35M
732
2.35M
    if ((out = s_alloc(p)) == NULL)
733
2.35M
      
return MP_MEMORY0
;
734
6.28M
  }
735
6.28M
  else {
736
6.28M
    if (!s_pad(c, osize))
737
0
      return MP_MEMORY;
738
6.28M
739
6.28M
    out = MP_DIGITS(c);
740
6.28M
  }
741
8.64M
  ZERO(out, osize);
742
8.64M
743
8.64M
  if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
744
0
    return MP_MEMORY;
745
8.64M
746
8.64M
  /* If we allocated a new buffer, get rid of whatever memory c was already
747
8.64M
     using, and fix up its fields to reflect that.
748
8.64M
   */
749
8.64M
  if (out != MP_DIGITS(c)) {
750
2.35M
    if ((void *) MP_DIGITS(c) != (void *) c)
751
1.97M
      s_free(MP_DIGITS(c));
752
2.35M
    MP_DIGITS(c) = out;
753
2.35M
    MP_ALLOC(c) = p;
754
2.35M
  }
755
8.64M
756
8.64M
  MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
757
8.64M
  CLAMP(c);           /* ... right here */
758
8.64M
  MP_SIGN(c) = osign;
759
8.64M
760
8.64M
  return MP_OK;
761
8.64M
}
762
763
mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c)
764
0
{
765
0
  mpz_t    vtmp;
766
0
  mp_digit vbuf[MP_VALUE_DIGITS(value)];
767
0
768
0
  s_fake(&vtmp, value, vbuf);
769
0
770
0
  return mp_int_mul(a, &vtmp, c);
771
0
}
772
773
mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c)
774
3.93k
{
775
3.93k
  mp_result res;
776
3.93k
  CHECK(a != NULL && c != NULL && p2 >= 0);
777
3.93k
778
3.93k
  if ((res = mp_int_copy(a, c)) != MP_OK)
779
0
    return res;
780
3.93k
781
3.93k
  if (s_qmul(c, (mp_size) p2))
782
3.93k
    return MP_OK;
783
0
  else
784
0
    return MP_MEMORY;
785
3.93k
}
786
787
mp_result mp_int_sqr(mp_int a, mp_int c)
788
0
{
789
0
  mp_digit *out;
790
0
  mp_size   osize, p = 0;
791
0
792
0
  CHECK(a != NULL && c != NULL);
793
0
794
0
  /* Get a temporary buffer big enough to hold the result */
795
0
  osize = (mp_size) 4 * ((MP_USED(a) + 1) / 2);
796
0
  if (a == c) {
797
0
    p = ROUND_PREC(osize);
798
0
    p = MAX(p, default_precision);
799
0
800
0
    if ((out = s_alloc(p)) == NULL)
801
0
      return MP_MEMORY;
802
0
  }
803
0
  else {
804
0
    if (!s_pad(c, osize))
805
0
      return MP_MEMORY;
806
0
807
0
    out = MP_DIGITS(c);
808
0
  }
809
0
  ZERO(out, osize);
810
0
811
0
  s_ksqr(MP_DIGITS(a), out, MP_USED(a));
812
0
813
0
  /* Get rid of whatever memory c was already using, and fix up its fields to
814
0
     reflect the new digit array it's using
815
0
   */
816
0
  if (out != MP_DIGITS(c)) {
817
0
    if ((void *) MP_DIGITS(c) != (void *) c)
818
0
      s_free(MP_DIGITS(c));
819
0
    MP_DIGITS(c) = out;
820
0
    MP_ALLOC(c) = p;
821
0
  }
822
0
823
0
  MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
824
0
  CLAMP(c);           /* ... right here */
825
0
  MP_SIGN(c) = MP_ZPOS;
826
0
827
0
  return MP_OK;
828
0
}
829
830
mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
831
5.19M
{
832
5.19M
  int cmp, lg;
833
5.19M
  mp_result res = MP_OK;
834
5.19M
  mp_int qout, rout;
835
5.19M
  mp_sign sa = MP_SIGN(a), sb = MP_SIGN(b);
836
5.19M
  DECLARE_TEMP(2);
837
5.19M
838
5.19M
  CHECK(a != NULL && b != NULL && q != r);
839
5.19M
840
5.19M
  if (CMPZ(b) == 0)
841
0
    return MP_UNDEF;
842
5.19M
  else if ((cmp = s_ucmp(a, b)) < 0) {
843
1.05M
    /* If |a| < |b|, no division is required:
844
1.05M
       q = 0, r = a
845
1.05M
     */
846
1.05M
    if (r && 
(res = mp_int_copy(a, r)) != MP_OK225k
)
847
0
      return res;
848
1.05M
849
1.05M
    if (q)
850
1.04M
      mp_int_zero(q);
851
1.05M
852
1.05M
    return MP_OK;
853
1.05M
  }
854
4.14M
  else if (cmp == 0) {
855
777k
    /* If |a| = |b|, no division is required:
856
777k
       q = 1 or -1, r = 0
857
777k
     */
858
777k
    if (r)
859
6.18k
      mp_int_zero(r);
860
777k
861
777k
    if (q) {
862
773k
      mp_int_zero(q);
863
773k
      q->digits[0] = 1;
864
773k
865
773k
      if (sa != sb)
866
773k
  
MP_SIGN95.8k
(q) = MP_NEG95.8k
;
867
773k
    }
868
777k
869
777k
    return MP_OK;
870
777k
  }
871
3.36M
872
3.36M
  /* When |a| > |b|, real division is required.  We need someplace to store
873
3.36M
     quotient and remainder, but q and r are allowed to be NULL or to overlap
874
3.36M
     with the inputs.
875
3.36M
   */
876
3.36M
  if ((lg = s_isp2(b)) < 0) {
877
1.97M
    if (q && 
b != q1.95M
) {
878
1.85M
      if ((res = mp_int_copy(a, q)) != MP_OK)
879
0
  goto CLEANUP;
880
1.85M
      else
881
1.85M
  qout = q;
882
1.85M
    }
883
122k
    else {
884
122k
      qout = LAST_TEMP();
885
122k
      SETUP(mp_int_init_copy(LAST_TEMP(), a));
886
122k
    }
887
1.97M
888
1.97M
    if (r && 
a != r126k
) {
889
126k
      if ((res = mp_int_copy(b, r)) != MP_OK)
890
0
  goto CLEANUP;
891
126k
      else
892
126k
  rout = r;
893
126k
    }
894
1.84M
    else {
895
1.84M
      rout = LAST_TEMP();
896
1.84M
      SETUP(mp_int_init_copy(LAST_TEMP(), b));
897
1.84M
    }
898
1.97M
899
1.97M
    if ((res = s_udiv_knuth(qout, rout)) != MP_OK) 
goto CLEANUP0
;
900
1.39M
  }
901
1.39M
  else {
902
1.39M
    if (q && 
(res = mp_int_copy(a, q)) != MP_OK1.34M
)
goto CLEANUP0
;
903
1.39M
    if (r && 
(res = mp_int_copy(a, r)) != MP_OK165k
)
goto CLEANUP0
;
904
1.39M
905
1.39M
    if (q) 
s_qdiv(q, (mp_size) lg)1.34M
; qout = q;
906
1.39M
    if (r) 
s_qmod(r, (mp_size) lg)165k
; rout = r;
907
1.39M
  }
908
3.36M
909
3.36M
  /* Recompute signs for output */
910
3.36M
  if (rout) {
911
2.13M
    MP_SIGN(rout) = sa;
912
2.13M
    if (CMPZ(rout) == 0)
913
2.13M
      
MP_SIGN2.04M
(rout) = MP_ZPOS2.04M
;
914
2.13M
  }
915
3.36M
  if (qout) {
916
3.31M
    MP_SIGN(qout) = (sa == sb) ? 
MP_ZPOS2.40M
:
MP_NEG914k
;
917
3.31M
    if (CMPZ(qout) == 0)
918
3.31M
      
MP_SIGN0
(qout) = MP_ZPOS0
;
919
3.31M
  }
920
3.36M
921
3.36M
  if (q && 
(res = mp_int_copy(qout, q)) != MP_OK3.30M
)
goto CLEANUP0
;
922
3.36M
  if (r && 
(res = mp_int_copy(rout, r)) != MP_OK292k
)
goto CLEANUP0
;
923
3.36M
924
3.36M
  CLEANUP_TEMP();
925
3.36M
  return res;
926
3.36M
}
927
928
mp_result mp_int_mod(mp_int a, mp_int m, mp_int c)
929
0
{
930
0
  mp_result res;
931
0
  mpz_t     tmp;
932
0
  mp_int    out;
933
0
934
0
  if (m == c) {
935
0
    mp_int_init(&tmp);
936
0
    out = &tmp;
937
0
  }
938
0
  else {
939
0
    out = c;
940
0
  }
941
0
942
0
  if ((res = mp_int_div(a, m, NULL, out)) != MP_OK)
943
0
    goto CLEANUP;
944
0
945
0
  if (CMPZ(out) < 0)
946
0
    res = mp_int_add(out, m, c);
947
0
  else
948
0
    res = mp_int_copy(out, c);
949
0
950
0
 CLEANUP:
951
0
  if (out != c)
952
0
    mp_int_clear(&tmp);
953
0
954
0
  return res;
955
0
}
956
957
mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r)
958
68.6k
{
959
68.6k
  mpz_t     vtmp, rtmp;
960
68.6k
  mp_digit  vbuf[MP_VALUE_DIGITS(value)];
961
68.6k
  mp_result res;
962
68.6k
963
68.6k
  mp_int_init(&rtmp);
964
68.6k
  s_fake(&vtmp, value, vbuf);
965
68.6k
966
68.6k
  if ((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK)
967
0
    goto CLEANUP;
968
68.6k
969
68.6k
  if (r)
970
57.4k
    (void) mp_int_to_int(&rtmp, r); /* can't fail */
971
68.6k
972
68.6k
 CLEANUP:
973
68.6k
  mp_int_clear(&rtmp);
974
68.6k
  return res;
975
68.6k
}
976
977
mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r)
978
0
{
979
0
  mp_result res = MP_OK;
980
0
981
0
  CHECK(a != NULL && p2 >= 0 && q != r);
982
0
983
0
  if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
984
0
    s_qdiv(q, (mp_size) p2);
985
0
986
0
  if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
987
0
    s_qmod(r, (mp_size) p2);
988
0
989
0
  return res;
990
0
}
991
992
mp_result mp_int_expt(mp_int a, mp_small b, mp_int c)
993
0
{
994
0
  mpz_t t;
995
0
  mp_result res;
996
0
  unsigned int v = labs(b);
997
0
998
0
  CHECK(c != NULL);
999
0
  if (b < 0)
1000
0
    return MP_RANGE;
1001
0
1002
0
  if ((res = mp_int_init_copy(&t, a)) != MP_OK)
1003
0
    return res;
1004
0
1005
0
  (void) mp_int_set_value(c, 1);
1006
0
  while (v != 0) {
1007
0
    if (v & 1) {
1008
0
      if ((res = mp_int_mul(c, &t, c)) != MP_OK)
1009
0
  goto CLEANUP;
1010
0
    }
1011
0
1012
0
    v >>= 1;
1013
0
    if (v == 0) break;
1014
0
1015
0
    if ((res = mp_int_sqr(&t, &t)) != MP_OK)
1016
0
      goto CLEANUP;
1017
0
  }
1018
0
1019
0
 CLEANUP:
1020
0
  mp_int_clear(&t);
1021
0
  return res;
1022
0
}
1023
1024
mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c)
1025
0
{
1026
0
  mpz_t     t;
1027
0
  mp_result res;
1028
0
  unsigned int v = labs(b);
1029
0
1030
0
  CHECK(c != NULL);
1031
0
  if (b < 0)
1032
0
    return MP_RANGE;
1033
0
1034
0
  if ((res = mp_int_init_value(&t, a)) != MP_OK)
1035
0
    return res;
1036
0
1037
0
  (void) mp_int_set_value(c, 1);
1038
0
  while (v != 0) {
1039
0
    if (v & 1) {
1040
0
      if ((res = mp_int_mul(c, &t, c)) != MP_OK)
1041
0
  goto CLEANUP;
1042
0
    }
1043
0
1044
0
    v >>= 1;
1045
0
    if (v == 0) break;
1046
0
1047
0
    if ((res = mp_int_sqr(&t, &t)) != MP_OK)
1048
0
      goto CLEANUP;
1049
0
  }
1050
0
1051
0
 CLEANUP:
1052
0
  mp_int_clear(&t);
1053
0
  return res;
1054
0
}
1055
1056
mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c)
1057
0
{
1058
0
  mpz_t t;
1059
0
  mp_result res;
1060
0
  unsigned ix, jx;
1061
0
1062
0
  CHECK(a != NULL && b != NULL && c != NULL);
1063
0
  if (MP_SIGN(b) == MP_NEG)
1064
0
    return MP_RANGE;
1065
0
1066
0
  if ((res = mp_int_init_copy(&t, a)) != MP_OK)
1067
0
    return res;
1068
0
1069
0
  (void) mp_int_set_value(c, 1);
1070
0
  for (ix = 0; ix < MP_USED(b); ++ix) {
1071
0
    mp_digit d = b->digits[ix];
1072
0
1073
0
    for (jx = 0; jx < MP_DIGIT_BIT; ++jx) {
1074
0
      if (d & 1) {
1075
0
  if ((res = mp_int_mul(c, &t, c)) != MP_OK)
1076
0
    goto CLEANUP;
1077
0
      }
1078
0
1079
0
      d >>= 1;
1080
0
      if (d == 0 && ix + 1 == MP_USED(b))
1081
0
  break;
1082
0
      if ((res = mp_int_sqr(&t, &t)) != MP_OK)
1083
0
  goto CLEANUP;
1084
0
    }
1085
0
  }
1086
0
1087
0
 CLEANUP:
1088
0
  mp_int_clear(&t);
1089
0
  return res;
1090
0
}
1091
1092
int       mp_int_compare(mp_int a, mp_int b)
1093
274k
{
1094
274k
  mp_sign sa;
1095
274k
1096
274k
  CHECK(a != NULL && b != NULL);
1097
274k
1098
274k
  sa = MP_SIGN(a);
1099
274k
  if (sa == MP_SIGN(b)) {
1100
239k
    int cmp = s_ucmp(a, b);
1101
239k
1102
239k
    /* If they're both zero or positive, the normal comparison applies; if both
1103
239k
       negative, the sense is reversed. */
1104
239k
    if (sa == MP_ZPOS)
1105
165k
      return cmp;
1106
74.1k
    else
1107
74.1k
      return -cmp;
1108
34.4k
1109
34.4k
  }
1110
34.4k
  else {
1111
34.4k
    if (sa == MP_ZPOS)
1112
15.7k
      return 1;
1113
18.7k
    else
1114
18.7k
      return -1;
1115
34.4k
  }
1116
274k
}
1117
1118
int       mp_int_compare_unsigned(mp_int a, mp_int b)
1119
3.92M
{
1120
3.92M
  NRCHECK(a != NULL && b != NULL);
1121
3.92M
1122
3.92M
  return s_ucmp(a, b);
1123
3.92M
}
1124
1125
int       mp_int_compare_zero(mp_int z)
1126
72.4M
{
1127
72.4M
  NRCHECK(z != NULL);
1128
72.4M
1129
72.4M
  if (MP_USED(z) == 1 && 
z->digits[0] == 042.2M
)
1130
20.0M
    return 0;
1131
52.3M
  else if (MP_SIGN(z) == MP_ZPOS)
1132
37.9M
    return 1;
1133
14.4M
  else
1134
14.4M
    return -1;
1135
72.4M
}
1136
1137
int       mp_int_compare_value(mp_int z, mp_small value)
1138
91.0M
{
1139
91.0M
  mp_sign vsign = (value < 0) ? 
MP_NEG45.2M
:
MP_ZPOS45.8M
;
1140
91.0M
  int cmp;
1141
91.0M
1142
91.0M
  CHECK(z != NULL);
1143
91.0M
1144
91.0M
  if (vsign == MP_SIGN(z)) {
1145
55.0M
    cmp = s_vcmp(z, value);
1146
55.0M
1147
55.0M
    return (vsign == MP_ZPOS) ? 
cmp45.7M
:
-cmp9.30M
;
1148
55.0M
  }
1149
35.9M
  else {
1150
35.9M
    return (value < 0) ? 
135.9M
:
-133.4k
;
1151
35.9M
  }
1152
91.0M
}
1153
1154
int       mp_int_compare_uvalue(mp_int z, mp_usmall uv)
1155
0
{
1156
0
  CHECK(z != NULL);
1157
0
1158
0
  if (MP_SIGN(z) == MP_NEG)
1159
0
    return -1;
1160
0
  else
1161
0
    return s_uvcmp(z, uv);
1162
0
}
1163
1164
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
1165
0
{
1166
0
  mp_result res;
1167
0
  mp_size um;
1168
0
  mp_int s;
1169
0
  DECLARE_TEMP(3);
1170
0
1171
0
  CHECK(a != NULL && b != NULL && c != NULL && m != NULL);
1172
0
1173
0
  /* Zero moduli and negative exponents are not considered. */
1174
0
  if (CMPZ(m) == 0)
1175
0
    return MP_UNDEF;
1176
0
  if (CMPZ(b) < 0)
1177
0
    return MP_RANGE;
1178
0
1179
0
  um = MP_USED(m);
1180
0
  SETUP(mp_int_init_size(TEMP(0), 2 * um));
1181
0
  SETUP(mp_int_init_size(TEMP(1), 2 * um));
1182
0
1183
0
  if (c == b || c == m) {
1184
0
    SETUP(mp_int_init_size(TEMP(2), 2 * um));
1185
0
    s = TEMP(2);
1186
0
  }
1187
0
  else {
1188
0
    s = c;
1189
0
  }
1190
0
1191
0
  if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
1192
0
1193
0
  if ((res = s_brmu(TEMP(1), m)) != MP_OK) goto CLEANUP;
1194
0
1195
0
  if ((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK)
1196
0
    goto CLEANUP;
1197
0
1198
0
  res = mp_int_copy(s, c);
1199
0
1200
0
  CLEANUP_TEMP();
1201
0
  return res;
1202
0
}
1203
1204
mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c)
1205
0
{
1206
0
  mpz_t vtmp;
1207
0
  mp_digit vbuf[MP_VALUE_DIGITS(value)];
1208
0
1209
0
  s_fake(&vtmp, value, vbuf);
1210
0
1211
0
  return mp_int_exptmod(a, &vtmp, m, c);
1212
0
}
1213
1214
mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b,
1215
        mp_int m, mp_int c)
1216
0
{
1217
0
  mpz_t vtmp;
1218
0
  mp_digit vbuf[MP_VALUE_DIGITS(value)];
1219
0
1220
0
  s_fake(&vtmp, value, vbuf);
1221
0
1222
0
  return mp_int_exptmod(&vtmp, b, m, c);
1223
0
}
1224
1225
mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
1226
0
{
1227
0
  mp_result res;
1228
0
  mp_size um;
1229
0
  mp_int s;
1230
0
  DECLARE_TEMP(2);
1231
0
1232
0
  CHECK(a && b && m && c);
1233
0
1234
0
  /* Zero moduli and negative exponents are not considered. */
1235
0
  if (CMPZ(m) == 0)
1236
0
    return MP_UNDEF;
1237
0
  if (CMPZ(b) < 0)
1238
0
    return MP_RANGE;
1239
0
1240
0
  um = MP_USED(m);
1241
0
  SETUP(mp_int_init_size(TEMP(0), 2 * um));
1242
0
1243
0
  if (c == b || c == m) {
1244
0
    SETUP(mp_int_init_size(TEMP(1), 2 * um));
1245
0
    s = TEMP(1);
1246
0
  }
1247
0
  else {
1248
0
    s = c;
1249
0
  }
1250
0
1251
0
  if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
1252
0
1253
0
  if ((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
1254
0
    goto CLEANUP;
1255
0
1256
0
  res = mp_int_copy(s, c);
1257
0
1258
0
  CLEANUP_TEMP();
1259
0
  return res;
1260
0
}
1261
1262
mp_result mp_int_redux_const(mp_int m, mp_int c)
1263
0
{
1264
0
  CHECK(m != NULL && c != NULL && m != c);
1265
0
1266
0
  return s_brmu(c, m);
1267
0
}
1268
1269
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c)
1270
0
{
1271
0
  mp_result res;
1272
0
  mp_sign sa;
1273
0
  DECLARE_TEMP(2);
1274
0
1275
0
  CHECK(a != NULL && m != NULL && c != NULL);
1276
0
1277
0
  if (CMPZ(a) == 0 || CMPZ(m) <= 0)
1278
0
    return MP_RANGE;
1279
0
1280
0
  sa = MP_SIGN(a); /* need this for the result later */
1281
0
1282
0
  for (last__ = 0; last__ < 2; ++last__)
1283
0
    mp_int_init(LAST_TEMP());
1284
0
1285
0
  if ((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
1286
0
    goto CLEANUP;
1287
0
1288
0
  if (mp_int_compare_value(TEMP(0), 1) != 0) {
1289
0
    res = MP_UNDEF;
1290
0
    goto CLEANUP;
1291
0
  }
1292
0
1293
0
  /* It is first necessary to constrain the value to the proper range */
1294
0
  if ((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK)
1295
0
    goto CLEANUP;
1296
0
1297
0
  /* Now, if 'a' was originally negative, the value we have is actually the
1298
0
     magnitude of the negative representative; to get the positive value we
1299
0
     have to subtract from the modulus.  Otherwise, the value is okay as it
1300
0
     stands.
1301
0
   */
1302
0
  if (sa == MP_NEG)
1303
0
    res = mp_int_sub(m, TEMP(1), c);
1304
0
  else
1305
0
    res = mp_int_copy(TEMP(1), c);
1306
0
1307
0
  CLEANUP_TEMP();
1308
0
  return res;
1309
0
}
1310
1311
/* Binary GCD algorithm due to Josef Stein, 1961 */
1312
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
1313
3.62M
{
1314
3.62M
  int ca, cb, k = 0;
1315
3.62M
  mpz_t u, v, t;
1316
3.62M
  mp_result res;
1317
3.62M
1318
3.62M
  CHECK(a != NULL && b != NULL && c != NULL);
1319
3.62M
1320
3.62M
  ca = CMPZ(a);
1321
3.62M
  cb = CMPZ(b);
1322
3.62M
  if (ca == 0 && 
cb == 027
)
1323
0
    return MP_UNDEF;
1324
3.62M
  else if (ca == 0)
1325
27
    return mp_int_abs(b, c);
1326
3.62M
  else if (cb == 0)
1327
9.43k
    return mp_int_abs(a, c);
1328
3.61M
1329
3.61M
  mp_int_init(&t);
1330
3.61M
  if ((res = mp_int_init_copy(&u, a)) != MP_OK)
1331
0
    goto U;
1332
3.61M
  if ((res = mp_int_init_copy(&v, b)) != MP_OK)
1333
0
    goto V;
1334
3.61M
1335
3.61M
  MP_SIGN(&u) = MP_ZPOS; MP_SIGN(&v) = MP_ZPOS;
1336
3.61M
1337
3.61M
  { /* Divide out common factors of 2 from u and v */
1338
3.61M
    int div2_u = s_dp2k(&u), div2_v = s_dp2k(&v);
1339
3.61M
1340
3.61M
    k = MIN(div2_u, div2_v);
1341
3.61M
    s_qdiv(&u, (mp_size) k);
1342
3.61M
    s_qdiv(&v, (mp_size) k);
1343
3.61M
  }
1344
3.61M
1345
3.61M
  if (mp_int_is_odd(&u)) {
1346
2.88M
    if ((res = mp_int_neg(&v, &t)) != MP_OK)
1347
0
      goto CLEANUP;
1348
734k
  }
1349
734k
  else {
1350
734k
    if ((res = mp_int_copy(&u, &t)) != MP_OK)
1351
0
      goto CLEANUP;
1352
3.61M
  }
1353
3.61M
1354
95.3M
  
for (;;)3.61M
{
1355
95.3M
    s_qdiv(&t, s_dp2k(&t));
1356
95.3M
1357
95.3M
    if (CMPZ(&t) > 0) {
1358
14.6M
      if ((res = mp_int_copy(&t, &u)) != MP_OK)
1359
0
  goto CLEANUP;
1360
80.6M
    }
1361
80.6M
    else {
1362
80.6M
      if ((res = mp_int_neg(&t, &v)) != MP_OK)
1363
0
  goto CLEANUP;
1364
95.3M
    }
1365
95.3M
1366
95.3M
    if ((res = mp_int_sub(&u, &v, &t)) != MP_OK)
1367
0
      goto CLEANUP;
1368
95.3M
1369
95.3M
    if (CMPZ(&t) == 0)
1370
3.61M
      break;
1371
95.3M
  }
1372
3.61M
1373
3.61M
  if ((res = mp_int_abs(&u, c)) != MP_OK)
1374
0
    goto CLEANUP;
1375
3.61M
  if (!s_qmul(c, (mp_size) k))
1376
0
    res = MP_MEMORY;
1377
3.61M
1378
3.61M
 CLEANUP:
1379
3.61M
  mp_int_clear(&v);
1380
3.61M
 V: mp_int_clear(&u);
1381
3.61M
 U: mp_int_clear(&t);
1382
3.61M
1383
3.61M
  return res;
1384
3.61M
}
1385
1386
/* This is the binary GCD algorithm again, but this time we keep track of the
1387
   elementary matrix operations as we go, so we can get values x and y
1388
   satisfying c = ax + by.
1389
 */
1390
mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
1391
          mp_int x, mp_int y)
1392
0
{
1393
0
  int k, ca, cb;
1394
0
  mp_result res;
1395
0
  DECLARE_TEMP(8);
1396
0
1397
0
  CHECK(a != NULL && b != NULL && c != NULL &&
1398
0
  (x != NULL || y != NULL));
1399
0
1400
0
  ca = CMPZ(a);
1401
0
  cb = CMPZ(b);
1402
0
  if (ca == 0 && cb == 0)
1403
0
    return MP_UNDEF;
1404
0
  else if (ca == 0) {
1405
0
    if ((res = mp_int_abs(b, c)) != MP_OK) return res;
1406
0
    mp_int_zero(x); (void) mp_int_set_value(y, 1); return MP_OK;
1407
0
  }
1408
0
  else if (cb == 0) {
1409
0
    if ((res = mp_int_abs(a, c)) != MP_OK) return res;
1410
0
    (void) mp_int_set_value(x, 1); mp_int_zero(y); return MP_OK;
1411
0
  }
1412
0
1413
0
  /* Initialize temporaries:
1414
0
     A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */
1415
0
  for (last__ = 0; last__ < 4; ++last__)
1416
0
    mp_int_init(LAST_TEMP());
1417
0
  TEMP(0)->digits[0] = 1;
1418
0
  TEMP(3)->digits[0] = 1;
1419
0
1420
0
  SETUP(mp_int_init_copy(TEMP(4), a));
1421
0
  SETUP(mp_int_init_copy(TEMP(5), b));
1422
0
1423
0
  /* We will work with absolute values here */
1424
0
  MP_SIGN(TEMP(4)) = MP_ZPOS;
1425
0
  MP_SIGN(TEMP(5)) = MP_ZPOS;
1426
0
1427
0
  { /* Divide out common factors of 2 from u and v */
1428
0
    int  div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5));
1429
0
1430
0
    k = MIN(div2_u, div2_v);
1431
0
    s_qdiv(TEMP(4), k);
1432
0
    s_qdiv(TEMP(5), k);
1433
0
  }
1434
0
1435
0
  SETUP(mp_int_init_copy(TEMP(6), TEMP(4)));
1436
0
  SETUP(mp_int_init_copy(TEMP(7), TEMP(5)));
1437
0
1438
0
  for (;;) {
1439
0
    while (mp_int_is_even(TEMP(4))) {
1440
0
      s_qdiv(TEMP(4), 1);
1441
0
1442
0
      if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) {
1443
0
  if ((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
1444
0
    goto CLEANUP;
1445
0
  if ((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
1446
0
    goto CLEANUP;
1447
0
      }
1448
0
1449
0
      s_qdiv(TEMP(0), 1);
1450
0
      s_qdiv(TEMP(1), 1);
1451
0
    }
1452
0
1453
0
    while (mp_int_is_even(TEMP(5))) {
1454
0
      s_qdiv(TEMP(5), 1);
1455
0
1456
0
      if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) {
1457
0
  if ((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
1458
0
    goto CLEANUP;
1459
0
  if ((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
1460
0
    goto CLEANUP;
1461
0
      }
1462
0
1463
0
      s_qdiv(TEMP(2), 1);
1464
0
      s_qdiv(TEMP(3), 1);
1465
0
    }
1466
0
1467
0
    if (mp_int_compare(TEMP(4), TEMP(5)) >= 0) {
1468
0
      if ((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK) goto CLEANUP;
1469
0
      if ((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK) goto CLEANUP;
1470
0
      if ((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK) goto CLEANUP;
1471
0
    }
1472
0
    else {
1473
0
      if ((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK) goto CLEANUP;
1474
0
      if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK) goto CLEANUP;
1475
0
      if ((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK) goto CLEANUP;
1476
0
    }
1477
0
1478
0
    if (CMPZ(TEMP(4)) == 0) {
1479
0
      if (x && (res = mp_int_copy(TEMP(2), x)) != MP_OK) goto CLEANUP;
1480
0
      if (y && (res = mp_int_copy(TEMP(3), y)) != MP_OK) goto CLEANUP;
1481
0
      if (c) {
1482
0
  if (!s_qmul(TEMP(5), k)) {
1483
0
    res = MP_MEMORY;
1484
0
    goto CLEANUP;
1485
0
  }
1486
0
1487
0
  res = mp_int_copy(TEMP(5), c);
1488
0
      }
1489
0
1490
0
      break;
1491
0
    }
1492
0
  }
1493
0
1494
0
  CLEANUP_TEMP();
1495
0
  return res;
1496
0
}
1497
1498
mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c)
1499
287k
{
1500
287k
  mpz_t lcm;
1501
287k
  mp_result res;
1502
287k
1503
287k
  CHECK(a != NULL && b != NULL && c != NULL);
1504
287k
1505
287k
  /* Since a * b = gcd(a, b) * lcm(a, b), we can compute
1506
287k
     lcm(a, b) = (a / gcd(a, b)) * b.
1507
287k
1508
287k
     This formulation insures everything works even if the input
1509
287k
     variables share space.
1510
287k
   */
1511
287k
  if ((res = mp_int_init(&lcm)) != MP_OK)
1512
0
    return res;
1513
287k
  if ((res = mp_int_gcd(a, b, &lcm)) != MP_OK)
1514
0
    goto CLEANUP;
1515
287k
  if ((res = mp_int_div(a, &lcm, &lcm, NULL)) != MP_OK)
1516
0
    goto CLEANUP;
1517
287k
  if ((res = mp_int_mul(&lcm, b, &lcm)) != MP_OK)
1518
0
    goto CLEANUP;
1519
287k
1520
287k
  res = mp_int_copy(&lcm, c);
1521
287k
1522
287k
  CLEANUP:
1523
287k
    mp_int_clear(&lcm);
1524
287k
1525
287k
  return res;
1526
287k
}
1527
1528
int       mp_int_divisible_value(mp_int a, mp_small v)
1529
57.4k
{
1530
57.4k
  mp_small rem = 0;
1531
57.4k
1532
57.4k
  if (mp_int_div_value(a, v, NULL, &rem) != MP_OK)
1533
0
    return 0;
1534
57.4k
1535
57.4k
  return rem == 0;
1536
57.4k
}
1537
1538
int       mp_int_is_pow2(mp_int z)
1539
0
{
1540
0
  CHECK(z != NULL);
1541
0
1542
0
  return s_isp2(z);
1543
0
}
1544
1545
/* Implementation of Newton's root finding method, based loosely on a patch
1546
   contributed by Hal Finkel <half@halssoftware.com>
1547
   modified by M. J. Fromberger.
1548
 */
1549
mp_result mp_int_root(mp_int a, mp_small b, mp_int c)
1550
0
{
1551
0
  mp_result res = MP_OK;
1552
0
  int flips = 0;
1553
0
  DECLARE_TEMP(5);
1554
0
1555
0
  CHECK(a != NULL && c != NULL && b > 0);
1556
0
1557
0
  if (b == 1) {
1558
0
    return mp_int_copy(a, c);
1559
0
  }
1560
0
  if (MP_SIGN(a) == MP_NEG) {
1561
0
    if (b % 2 == 0)
1562
0
      return MP_UNDEF; /* root does not exist for negative a with even b */
1563
0
    else
1564
0
      flips = 1;
1565
0
  }
1566
0
1567
0
  SETUP(mp_int_init_copy(LAST_TEMP(), a));
1568
0
  SETUP(mp_int_init_copy(LAST_TEMP(), a));
1569
0
  SETUP(mp_int_init(LAST_TEMP()));
1570
0
  SETUP(mp_int_init(LAST_TEMP()));
1571
0
  SETUP(mp_int_init(LAST_TEMP()));
1572
0
1573
0
  (void) mp_int_abs(TEMP(0), TEMP(0));
1574
0
  (void) mp_int_abs(TEMP(1), TEMP(1));
1575
0
1576
0
  for (;;) {
1577
0
    if ((res = mp_int_expt(TEMP(1), b, TEMP(2))) != MP_OK)
1578
0
      goto CLEANUP;
1579
0
1580
0
    if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0)
1581
0
      break;
1582
0
1583
0
    if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK)
1584
0
      goto CLEANUP;
1585
0
    if ((res = mp_int_expt(TEMP(1), b - 1, TEMP(3))) != MP_OK)
1586
0
      goto CLEANUP;
1587
0
    if ((res = mp_int_mul_value(TEMP(3), b, TEMP(3))) != MP_OK)
1588
0
      goto CLEANUP;
1589
0
    if ((res = mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL)) != MP_OK)
1590
0
      goto CLEANUP;
1591
0
    if ((res = mp_int_sub(TEMP(1), TEMP(4), TEMP(4))) != MP_OK)
1592
0
      goto CLEANUP;
1593
0
1594
0
    if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0) {
1595
0
      if ((res = mp_int_sub_value(TEMP(4), 1, TEMP(4))) != MP_OK)
1596
0
  goto CLEANUP;
1597
0
    }
1598
0
    if ((res = mp_int_copy(TEMP(4), TEMP(1))) != MP_OK)
1599
0
      goto CLEANUP;
1600
0
  }
1601
0
1602
0
  if ((res = mp_int_copy(TEMP(1), c)) != MP_OK)
1603
0
    goto CLEANUP;
1604
0
1605
0
  /* If the original value of a was negative, flip the output sign. */
1606
0
  if (flips)
1607
0
    (void) mp_int_neg(c, c); /* cannot fail */
1608
0
1609
0
  CLEANUP_TEMP();
1610
0
  return res;
1611
0
}
1612
1613
mp_result mp_int_to_int(mp_int z, mp_small *out)
1614
51.2M
{
1615
51.2M
  mp_usmall uv = 0;
1616
51.2M
  mp_size   uz;
1617
51.2M
  mp_digit *dz;
1618
51.2M
  mp_sign   sz;
1619
51.2M
1620
51.2M
  CHECK(z != NULL);
1621
51.2M
1622
51.2M
  /* Make sure the value is representable as a small integer */
1623
51.2M
  sz = MP_SIGN(z);
1624
51.2M
  if ((sz == MP_ZPOS && 
mp_int_compare_value(z, 41.9M
MP_SMALL_MAX41.9M
) > 0) ||
1625
51.2M
      
mp_int_compare_value(z, 45.2M
MP_SMALL_MIN45.2M
) < 0)
1626
8.50M
    return MP_RANGE;
1627
42.7M
1628
42.7M
  uz = MP_USED(z);
1629
42.7M
  dz = MP_DIGITS(z) + uz - 1;
1630
42.7M
1631
94.8M
  while (uz > 0) {
1632
52.1M
    uv <<= MP_DIGIT_BIT/2;
1633
52.1M
    uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
1634
52.1M
    --uz;
1635
52.1M
  }
1636
42.7M
1637
42.7M
  if (out)
1638
42.7M
    *out = (mp_small)((sz == MP_NEG) ? 
-uv6.79M
:
uv35.9M
);
1639
42.7M
1640
42.7M
  return MP_OK;
1641
42.7M
}
1642
1643
mp_result mp_int_to_uint(mp_int z, mp_usmall *out)
1644
0
{
1645
0
  mp_usmall uv = 0;
1646
0
  mp_size   uz;
1647
0
  mp_digit *dz;
1648
0
  mp_sign   sz;
1649
0
  
1650
0
  CHECK(z != NULL);
1651
0
1652
0
  /* Make sure the value is representable as an unsigned small integer */
1653
0
  sz = MP_SIGN(z);
1654
0
  if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0)
1655
0
    return MP_RANGE;
1656
0
     
1657
0
  uz = MP_USED(z);
1658
0
  dz = MP_DIGITS(z) + uz - 1;
1659
0
  
1660
0
  while (uz > 0) {
1661
0
    uv <<= MP_DIGIT_BIT/2;
1662
0
    uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
1663
0
    --uz;
1664
0
  }
1665
0
  
1666
0
  if (out)
1667
0
    *out = uv;
1668
0
  
1669
0
  return MP_OK;
1670
0
}
1671
1672
mp_result mp_int_to_string(mp_int z, mp_size radix,
1673
         char *str, int limit)
1674
1.46k
{
1675
1.46k
  mp_result res;
1676
1.46k
  int       cmp = 0;
1677
1.46k
1678
1.46k
  CHECK(z != NULL && str != NULL && limit >= 2);
1679
1.46k
1680
1.46k
  if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
1681
1.46k
    
return MP_RANGE0
;
1682
1.46k
1683
1.46k
  if (CMPZ(z) == 0) {
1684
0
    *str++ = s_val2ch(0, 1);
1685
0
  }
1686
1.46k
  else {
1687
1.46k
    mpz_t tmp;
1688
1.46k
    char  *h, *t;
1689
1.46k
1690
1.46k
    if ((res = mp_int_init_copy(&tmp, z)) != MP_OK)
1691
0
      return res;
1692
1.46k
1693
1.46k
    if (MP_SIGN(z) == MP_NEG) {
1694
749
      *str++ = '-';
1695
749
      --limit;
1696
749
    }
1697
1.46k
    h = str;
1698
1.46k
1699
1.46k
    /* Generate digits in reverse order until finished or limit reached */
1700
27.8k
    for (/* */; limit > 0; 
--limit26.4k
) {
1701
27.8k
      mp_digit d;
1702
27.8k
1703
27.8k
      if ((cmp = CMPZ(&tmp)) == 0)
1704
1.46k
  break;
1705
26.4k
1706
26.4k
      d = s_ddiv(&tmp, (mp_digit)radix);
1707
26.4k
      *str++ = s_val2ch(d, 1);
1708
26.4k
    }
1709
1.46k
    t = str - 1;
1710
1.46k
1711
1.46k
    /* Put digits back in correct output order */
1712
14.0k
    while (h < t) {
1713
12.6k
      char tc = *h;
1714
12.6k
      *h++ = *t;
1715
12.6k
      *t-- = tc;
1716
12.6k
    }
1717
1.46k
1718
1.46k
    mp_int_clear(&tmp);
1719
1.46k
  }
1720
1.46k
1721
1.46k
  *str = '\0';
1722
1.46k
  if (cmp == 0)
1723
1.46k
    return MP_OK;
1724
0
  else
1725
0
    return MP_TRUNC;
1726
1.46k
}
1727
1728
mp_result mp_int_string_len(mp_int z, mp_size radix)
1729
1.57k
{
1730
1.57k
  int  len;
1731
1.57k
1732
1.57k
  CHECK(z != NULL);
1733
1.57k
1734
1.57k
  if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
1735
1.57k
    
return MP_RANGE0
;
1736
1.57k
1737
1.57k
  len = s_outlen(z, radix) + 1; /* for terminator */
1738
1.57k
1739
1.57k
  /* Allow for sign marker on negatives */
1740
1.57k
  if (MP_SIGN(z) == MP_NEG)
1741
778
    len += 1;
1742
1.57k
1743
1.57k
  return len;
1744
1.57k
}
1745
1746
/* Read zero-terminated string into z */
1747
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str)
1748
165
{
1749
165
  return mp_int_read_cstring(z, radix, str, NULL);
1750
165
}
1751
1752
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
1753
165
{
1754
165
  int ch;
1755
165
1756
165
  CHECK(z != NULL && str != NULL);
1757
165
1758
165
  if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
1759
165
    
return MP_RANGE0
;
1760
165
1761
165
  /* Skip leading whitespace */
1762
165
  while (isspace((int)*str))
1763
0
    ++str;
1764
165
1765
165
  /* Handle leading sign tag (+/-, positive default) */
1766
165
  switch (*str) {
1767
165
  case '-':
1768
62
    MP_SIGN(z) = MP_NEG;
1769
62
    ++str;
1770
62
    break;
1771
165
  case '+':
1772
0
    ++str; /* fallthrough */
1773
103
  default:
1774
103
    MP_SIGN(z) = MP_ZPOS;
1775
103
    break;
1776
165
  }
1777
165
1778
165
  /* Skip leading zeroes */
1779
165
  while ((ch = s_ch2val(*str, radix)) == 0)
1780
0
    ++str;
1781
165
1782
165
  /* Make sure there is enough space for the value */
1783
165
  if (!s_pad(z, s_inlen(strlen(str), radix)))
1784
0
    return MP_MEMORY;
1785
165
1786
165
  MP_USED(z) = 1; z->digits[0] = 0;
1787
165
1788
2.02k
  while (*str != '\0' && 
((ch = s_ch2val(*str, radix)) >= 0)1.85k
) {
1789
1.85k
    s_dmul(z, (mp_digit)radix);
1790
1.85k
    s_dadd(z, (mp_digit)ch);
1791
1.85k
    ++str;
1792
1.85k
  }
1793
165
1794
165
  CLAMP(z);
1795
165
1796
165
  /* Override sign for zero, even if negative specified. */
1797
165
  if (CMPZ(z) == 0)
1798
165
    
MP_SIGN0
(z) = MP_ZPOS0
;
1799
165
1800
165
  if (end != NULL)
1801
165
    
*end = (char *)str0
;
1802
165
1803
165
  /* Return a truncation error if the string has unprocessed characters
1804
165
     remaining, so the caller can tell if the whole string was done */
1805
165
  if (*str != '\0')
1806
0
    return MP_TRUNC;
1807
165
  else
1808
165
    return MP_OK;
1809
165
}
1810
1811
mp_result mp_int_count_bits(mp_int z)
1812
4.30k
{
1813
4.30k
  mp_size  nbits = 0, uz;
1814
4.30k
  mp_digit d;
1815
4.30k
1816
4.30k
  CHECK(z != NULL);
1817
4.30k
1818
4.30k
  uz = MP_USED(z);
1819
4.30k
  if (uz == 1 && 
z->digits[0] == 02.94k
)
1820
0
    return 1;
1821
4.30k
1822
4.30k
  --uz;
1823
4.30k
  nbits = uz * MP_DIGIT_BIT;
1824
4.30k
  d = z->digits[uz];
1825
4.30k
1826
64.7k
  while (d != 0) {
1827
60.4k
    d >>= 1;
1828
60.4k
    ++nbits;
1829
60.4k
  }
1830
4.30k
1831
4.30k
  return nbits;
1832
4.30k
}
1833
1834
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
1835
0
{
1836
0
  static const int PAD_FOR_2C = 1;
1837
0
1838
0
  mp_result res;
1839
0
  int limpos = limit;
1840
0
1841
0
  CHECK(z != NULL && buf != NULL);
1842
0
1843
0
  res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
1844
0
1845
0
  if (MP_SIGN(z) == MP_NEG)
1846
0
    s_2comp(buf, limpos);
1847
0
1848
0
  return res;
1849
0
}
1850
1851
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len)
1852
0
{
1853
0
  mp_size need, i;
1854
0
  unsigned char *tmp;
1855
0
  mp_digit *dz;
1856
0
1857
0
  CHECK(z != NULL && buf != NULL && len > 0);
1858
0
1859
0
  /* Figure out how many digits are needed to represent this value */
1860
0
  need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
1861
0
  if (!s_pad(z, need))
1862
0
    return MP_MEMORY;
1863
0
1864
0
  mp_int_zero(z);
1865
0
1866
0
  /* If the high-order bit is set, take the 2's complement before reading the
1867
0
     value (it will be restored afterward) */
1868
0
  if (buf[0] >> (CHAR_BIT - 1)) {
1869
0
    MP_SIGN(z) = MP_NEG;
1870
0
    s_2comp(buf, len);
1871
0
  }
1872
0
1873
0
  dz = MP_DIGITS(z);
1874
0
  for (tmp = buf, i = len; i > 0; --i, ++tmp) {
1875
0
    s_qmul(z, (mp_size) CHAR_BIT);
1876
0
    *dz |= *tmp;
1877
0
  }
1878
0
1879
0
  /* Restore 2's complement if we took it before */
1880
0
  if (MP_SIGN(z) == MP_NEG)
1881
0
    s_2comp(buf, len);
1882
0
1883
0
  return MP_OK;
1884
0
}
1885
1886
mp_result mp_int_binary_len(mp_int z)
1887
0
{
1888
0
  mp_result  res = mp_int_count_bits(z);
1889
0
  int        bytes = mp_int_unsigned_len(z);
1890
0
1891
0
  if (res <= 0)
1892
0
    return res;
1893
0
1894
0
  bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
1895
0
1896
0
  /* If the highest-order bit falls exactly on a byte boundary, we need to pad
1897
0
     with an extra byte so that the sign will be read correctly when reading it
1898
0
     back in. */
1899
0
  if (bytes * CHAR_BIT == res)
1900
0
    ++bytes;
1901
0
1902
0
  return bytes;
1903
0
}
1904
1905
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
1906
0
{
1907
0
  static const int NO_PADDING = 0;
1908
0
1909
0
  CHECK(z != NULL && buf != NULL);
1910
0
1911
0
  return s_tobin(z, buf, &limit, NO_PADDING);
1912
0
}
1913
1914
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
1915
0
{
1916
0
  mp_size need, i;
1917
0
  unsigned char *tmp;
1918
0
1919
0
  CHECK(z != NULL && buf != NULL && len > 0);
1920
0
1921
0
  /* Figure out how many digits are needed to represent this value */
1922
0
  need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
1923
0
  if (!s_pad(z, need))
1924
0
    return MP_MEMORY;
1925
0
1926
0
  mp_int_zero(z);
1927
0
1928
0
  for (tmp = buf, i = len; i > 0; --i, ++tmp) {
1929
0
    (void) s_qmul(z, CHAR_BIT);
1930
0
    *MP_DIGITS(z) |= *tmp;
1931
0
  }
1932
0
1933
0
  return MP_OK;
1934
0
}
1935
1936
mp_result mp_int_unsigned_len(mp_int z)
1937
2.73k
{
1938
2.73k
  mp_result  res = mp_int_count_bits(z);
1939
2.73k
  int        bytes;
1940
2.73k
1941
2.73k
  if (res <= 0)
1942
0
    return res;
1943
2.73k
1944
2.73k
  bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
1945
2.73k
1946
2.73k
  return bytes;
1947
2.73k
}
1948
1949
const char *mp_error_string(mp_result res)
1950
0
{
1951
0
  int ix;
1952
0
  if (res > 0)
1953
0
    return s_unknown_err;
1954
0
1955
0
  res = -res;
1956
0
  for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
1957
0
    ;
1958
0
1959
0
  if (s_error_msg[ix] != NULL)
1960
0
    return s_error_msg[ix];
1961
0
  else
1962
0
    return s_unknown_err;
1963
0
}
1964
1965
/*------------------------------------------------------------------------*/
1966
/* Private functions for internal use.  These make assumptions.           */
1967
1968
STATIC mp_digit *s_alloc(mp_size num)
1969
24.7M
{
1970
24.7M
  mp_digit *out = malloc(num * sizeof(mp_digit));
1971
24.7M
1972
24.7M
  assert(out != NULL); /* for debugging */
1973
#if DEBUG > 1
1974
  {
1975
    mp_digit v = (mp_digit) 0xdeadbeef;
1976
    int      ix;
1977
1978
    for (ix = 0; ix < num; ++ix)
1979
      out[ix] = v;
1980
  }
1981
#endif
1982
1983
24.7M
  return out;
1984
24.7M
}
1985
1986
STATIC mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
1987
664k
{
1988
#if DEBUG > 1
1989
  mp_digit *new = s_alloc(nsize);
1990
  int       ix;
1991
1992
  for (ix = 0; ix < nsize; ++ix)
1993
    new[ix] = (mp_digit) 0xdeadbeef;
1994
1995
  memcpy(new, old, osize * sizeof(mp_digit));
1996
#else
1997
  mp_digit *new = realloc(old, nsize * sizeof(mp_digit));
1998
664k
1999
664k
  assert(new != NULL); /* for debugging */
2000
664k
#endif
2001
664k
  return new;
2002
664k
}
2003
2004
STATIC void s_free(void *ptr)
2005
24.7M
{
2006
24.7M
  free(ptr);
2007
24.7M
}
2008
2009
STATIC int      s_pad(mp_int z, mp_size min)
2010
241M
{
2011
241M
  if (MP_ALLOC(z) < min) {
2012
16.5M
    mp_size nsize = ROUND_PREC(min);
2013
16.5M
    mp_digit *tmp;
2014
16.5M
2015
16.5M
    if ((void *)z->digits == (void *)z) {
2016
15.8M
      if ((tmp = s_alloc(nsize)) == NULL)
2017
15.8M
        
return 00
;
2018
15.8M
2019
15.8M
      COPY(MP_DIGITS(z), tmp, MP_USED(z));
2020
15.8M
    }
2021
664k
    else if ((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL)
2022
664k
      
return 00
;
2023
16.5M
2024
16.5M
    MP_DIGITS(z) = tmp;
2025
16.5M
    MP_ALLOC(z) = nsize;
2026
16.5M
  }
2027
241M
2028
241M
  return 1;
2029
241M
}
2030
2031
/* Note: This will not work correctly when value == MP_SMALL_MIN */
2032
STATIC void      s_fake(mp_int z, mp_small value, mp_digit vbuf[])
2033
1.38M
{
2034
1.38M
  mp_usmall uv = (mp_usmall) (value < 0) ? 
-value9.07k
:
value1.37M
;
2035
1.38M
  s_ufake(z, uv, vbuf);
2036
1.38M
  if (value < 0)
2037
9.07k
    z->sign = MP_NEG;
2038
1.38M
}
2039
2040
STATIC void      s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[])
2041
57.1M
{
2042
57.1M
  mp_size ndig = (mp_size) s_uvpack(value, vbuf);
2043
57.1M
2044
57.1M
  z->used = ndig;
2045
57.1M
  z->alloc = MP_VALUE_DIGITS(value);
2046
57.1M
  z->sign = MP_ZPOS;
2047
57.1M
  z->digits = vbuf;
2048
57.1M
}
2049
2050
STATIC int      s_cdig(mp_digit *da, mp_digit *db, mp_size len)
2051
75.8M
{
2052
75.8M
  mp_digit *dat = da + len - 1, *dbt = db + len - 1;
2053
75.8M
2054
97.1M
  for (/* */; len != 0; 
--len, --dat, --dbt21.2M
) {
2055
87.5M
    if (*dat > *dbt)
2056
17.6M
      return 1;
2057
69.8M
    else if (*dat < *dbt)
2058
48.5M
      return -1;
2059
87.5M
  }
2060
75.8M
2061
75.8M
  
return 09.57M
;
2062
75.8M
}
2063
2064
STATIC int       s_uvpack(mp_usmall uv, mp_digit t[])
2065
57.1M
{
2066
57.1M
  int ndig = 0;
2067
57.1M
2068
57.1M
  if (uv == 0)
2069
1.08M
    t[ndig++] = 0;
2070
56.0M
  else {
2071
163M
    while (uv != 0) {
2072
107M
      t[ndig++] = (mp_digit) uv;
2073
107M
      uv >>= MP_DIGIT_BIT/2;
2074
107M
      uv >>= MP_DIGIT_BIT/2;
2075
107M
    }
2076
56.0M
  }
2077
57.1M
2078
57.1M
  return ndig;
2079
57.1M
}
2080
2081
STATIC int      s_ucmp(mp_int a, mp_int b)
2082
168M
{
2083
168M
  mp_size  ua = MP_USED(a), ub = MP_USED(b);
2084
168M
2085
168M
  if (ua > ub)
2086
18.9M
    return 1;
2087
149M
  else if (ub > ua)
2088
74.0M
    return -1;
2089
75.8M
  else
2090
75.8M
    return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
2091
168M
}
2092
2093
STATIC int      s_vcmp(mp_int a, mp_small v)
2094
55.0M
{
2095
55.0M
  mp_usmall uv = (v < 0) ? 
-(mp_usmall) v9.30M
:
(mp_usmall) v45.7M
;
2096
55.0M
  return s_uvcmp(a, uv);
2097
55.0M
}
2098
2099
STATIC int      s_uvcmp(mp_int a, mp_usmall uv)
2100
55.0M
{
2101
55.0M
  mpz_t vtmp;
2102
55.0M
  mp_digit vdig[MP_VALUE_DIGITS(uv)];
2103
55.0M
2104
55.0M
  s_ufake(&vtmp, uv, vdig);
2105
55.0M
  return s_ucmp(a, &vtmp);
2106
55.0M
}
2107
2108
STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
2109
           mp_size size_a, mp_size size_b)
2110
9.39M
{
2111
9.39M
  mp_size pos;
2112
9.39M
  mp_word w = 0;
2113
9.39M
2114
9.39M
  /* Insure that da is the longer of the two to simplify later code */
2115
9.39M
  if (size_b > size_a) {
2116
1.05M
    SWAP(mp_digit *, da, db);
2117
1.05M
    SWAP(mp_size, size_a, size_b);
2118
1.05M
  }
2119
9.39M
2120
9.39M
  /* Add corresponding digits until the shorter number runs out */
2121
20.2M
  for (pos = 0; pos < size_b; 
++pos, ++da, ++db, ++dc10.8M
) {
2122
10.8M
    w = w + (mp_word) *da + (mp_word) *db;
2123
10.8M
    *dc = LOWER_HALF(w);
2124
10.8M
    w = UPPER_HALF(w);
2125
10.8M
  }
2126
9.39M
2127
9.39M
  /* Propagate carries as far as necessary */
2128
15.3M
  for (/* */; pos < size_a; 
++pos, ++da, ++dc5.97M
) {
2129
5.97M
    w = w + *da;
2130
5.97M
2131
5.97M
    *dc = LOWER_HALF(w);
2132
5.97M
    w = UPPER_HALF(w);
2133
5.97M
  }
2134
9.39M
2135
9.39M
  /* Return carry out */
2136
9.39M
  return (mp_digit)w;
2137
9.39M
}
2138
2139
STATIC void     s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
2140
           mp_size size_a, mp_size size_b)
2141
103M
{
2142
103M
  mp_size pos;
2143
103M
  mp_word w = 0;
2144
103M
2145
103M
  /* We assume that |a| >= |b| so this should definitely hold */
2146
103M
  assert(size_a >= size_b);
2147
103M
2148
103M
  /* Subtract corresponding digits and propagate borrow */
2149
261M
  for (pos = 0; pos < size_b; 
++pos, ++da, ++db, ++dc158M
) {
2150
158M
    w = ((mp_word)MP_DIGIT_MAX + 1 +  /* MP_RADIX */
2151
158M
   (mp_word)*da) - w - (mp_word)*db;
2152
158M
2153
158M
    *dc = LOWER_HALF(w);
2154
158M
    w = (UPPER_HALF(w) == 0);
2155
158M
  }
2156
103M
2157
103M
  /* Finish the subtraction for remaining upper digits of da */
2158
190M
  for (/* */; pos < size_a; 
++pos, ++da, ++dc86.8M
) {
2159
86.8M
    w = ((mp_word)MP_DIGIT_MAX + 1 +  /* MP_RADIX */
2160
86.8M
   (mp_word)*da) - w;
2161
86.8M
2162
86.8M
    *dc = LOWER_HALF(w);
2163
86.8M
    w = (UPPER_HALF(w) == 0);
2164
86.8M
  }
2165
103M
2166
103M
  /* If there is a borrow out at the end, it violates the precondition */
2167
103M
  assert(w == 0);
2168
103M
}
2169
2170
STATIC int       s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
2171
      mp_size size_a, mp_size size_b)
2172
8.64M
{
2173
8.64M
  mp_size  bot_size;
2174
8.64M
2175
8.64M
  /* Make sure b is the smaller of the two input values */
2176
8.64M
  if (size_b > size_a) {
2177
3.26M
    SWAP(mp_digit *, da, db);
2178
3.26M
    SWAP(mp_size, size_a, size_b);
2179
3.26M
  }
2180
8.64M
2181
8.64M
  /* Insure that the bottom is the larger half in an odd-length split; the code
2182
8.64M
     below relies on this being true.
2183
8.64M
   */
2184
8.64M
  bot_size = (size_a + 1) / 2;
2185
8.64M
2186
8.64M
  /* If the values are big enough to bother with recursion, use the Karatsuba
2187
8.64M
     algorithm to compute the product; otherwise use the normal multiplication
2188
8.64M
     algorithm
2189
8.64M
   */
2190
8.64M
  if (multiply_threshold &&
2191
8.64M
      size_a >= multiply_threshold &&
2192
8.64M
      
size_b > bot_size2.41k
) {
2193
36
2194
36
    mp_digit *t1, *t2, *t3, carry;
2195
36
2196
36
    mp_digit *a_top = da + bot_size;
2197
36
    mp_digit *b_top = db + bot_size;
2198
36
2199
36
    mp_size  at_size = size_a - bot_size;
2200
36
    mp_size  bt_size = size_b - bot_size;
2201
36
    mp_size  buf_size = 2 * bot_size;
2202
36
2203
36
    /* Do a single allocation for all three temporary buffers needed; each
2204
36
       buffer must be big enough to hold the product of two bottom halves, and
2205
36
       one buffer needs space for the completed product; twice the space is
2206
36
       plenty.
2207
36
     */
2208
36
    if ((t1 = s_alloc(4 * buf_size)) == NULL) 
return 00
;
2209
36
    t2 = t1 + buf_size;
2210
36
    t3 = t2 + buf_size;
2211
36
    ZERO(t1, 4 * buf_size);
2212
36
2213
36
    /* t1 and t2 are initially used as temporaries to compute the inner product
2214
36
       (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
2215
36
     */
2216
36
    carry = s_uadd(da, a_top, t1, bot_size, at_size);      /* t1 = a1 + a0 */
2217
36
    t1[bot_size] = carry;
2218
36
2219
36
    carry = s_uadd(db, b_top, t2, bot_size, bt_size);      /* t2 = b1 + b0 */
2220
36
    t2[bot_size] = carry;
2221
36
2222
36
    (void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1); /* t3 = t1 * t2 */
2223
36
2224
36
    /* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that
2225
36
       we're left with only the pieces we want:  t3 = a1b0 + a0b1
2226
36
     */
2227
36
    ZERO(t1, buf_size);
2228
36
    ZERO(t2, buf_size);
2229
36
    (void) s_kmul(da, db, t1, bot_size, bot_size);     /* t1 = a0 * b0 */
2230
36
    (void) s_kmul(a_top, b_top, t2, at_size, bt_size); /* t2 = a1 * b1 */
2231
36
2232
36
    /* Subtract out t1 and t2 to get the inner product */
2233
36
    s_usub(t3, t1, t3, buf_size + 2, buf_size);
2234
36
    s_usub(t3, t2, t3, buf_size + 2, buf_size);
2235
36
2236
36
    /* Assemble the output value */
2237
36
    COPY(t1, dc, buf_size);
2238
36
    carry = s_uadd(t3, dc + bot_size, dc + bot_size,
2239
36
       buf_size + 1, buf_size);
2240
36
    assert(carry == 0);
2241
36
2242
36
    carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
2243
36
       buf_size, buf_size);
2244
36
    assert(carry == 0);
2245
36
2246
36
    s_free(t1); /* note t2 and t3 are just internal pointers to t1 */
2247
36
  }
2248
8.64M
  else {
2249
8.64M
    s_umul(da, db, dc, size_a, size_b);
2250
8.64M
  }
2251
8.64M
2252
8.64M
  return 1;
2253
8.64M
}
2254
2255
STATIC void     s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
2256
           mp_size size_a, mp_size size_b)
2257
8.64M
{
2258
8.64M
  mp_size a, b;
2259
8.64M
  mp_word w;
2260
8.64M
2261
28.6M
  for (a = 0; a < size_a; 
++a, ++dc, ++da19.9M
) {
2262
19.9M
    mp_digit *dct = dc;
2263
19.9M
    mp_digit *dbt = db;
2264
19.9M
2265
19.9M
    if (*da == 0)
2266
1.31M
      continue;
2267
18.6M
2268
18.6M
    w = 0;
2269
43.7M
    for (b = 0; b < size_b; 
++b, ++dbt, ++dct25.0M
) {
2270
25.0M
      w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct;
2271
25.0M
2272
25.0M
      *dct = LOWER_HALF(w);
2273
25.0M
      w = UPPER_HALF(w);
2274
25.0M
    }
2275
18.6M
2276
18.6M
    *dct = (mp_digit)w;
2277
18.6M
  }
2278
8.64M
}
2279
2280
STATIC int       s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
2281
0
{
2282
0
  if (multiply_threshold && size_a > multiply_threshold) {
2283
0
    mp_size  bot_size = (size_a + 1) / 2;
2284
0
    mp_digit *a_top = da + bot_size;
2285
0
    mp_digit *t1, *t2, *t3, carry;
2286
0
    mp_size  at_size = size_a - bot_size;
2287
0
    mp_size  buf_size = 2 * bot_size;
2288
0
2289
0
    if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
2290
0
    t2 = t1 + buf_size;
2291
0
    t3 = t2 + buf_size;
2292
0
    ZERO(t1, 4 * buf_size);
2293
0
2294
0
    (void) s_ksqr(da, t1, bot_size);    /* t1 = a0 ^ 2 */
2295
0
    (void) s_ksqr(a_top, t2, at_size);  /* t2 = a1 ^ 2 */
2296
0
2297
0
    (void) s_kmul(da, a_top, t3, bot_size, at_size);  /* t3 = a0 * a1 */
2298
0
2299
0
    /* Quick multiply t3 by 2, shifting left (can't overflow) */
2300
0
    {
2301
0
      int i, top = bot_size + at_size;
2302
0
      mp_word w, save = 0;
2303
0
2304
0
      for (i = 0; i < top; ++i) {
2305
0
  w = t3[i];
2306
0
  w = (w << 1) | save;
2307
0
  t3[i] = LOWER_HALF(w);
2308
0
  save = UPPER_HALF(w);
2309
0
      }
2310
0
      t3[i] = LOWER_HALF(save);
2311
0
    }
2312
0
2313
0
    /* Assemble the output value */
2314
0
    COPY(t1, dc, 2 * bot_size);
2315
0
    carry = s_uadd(t3, dc + bot_size, dc + bot_size,
2316
0
       buf_size + 1, buf_size);
2317
0
    assert(carry == 0);
2318
0
2319
0
    carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
2320
0
       buf_size, buf_size);
2321
0
    assert(carry == 0);
2322
0
2323
0
    s_free(t1); /* note that t2 and t2 are internal pointers only */
2324
0
2325
0
  } 
2326
0
  else {
2327
0
    s_usqr(da, dc, size_a);
2328
0
  }
2329
0
2330
0
  return 1;
2331
0
}
2332
2333
STATIC void      s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
2334
0
{
2335
0
  mp_size i, j;
2336
0
  mp_word w;
2337
0
2338
0
  for (i = 0; i < size_a; ++i, dc += 2, ++da) {
2339
0
    mp_digit  *dct = dc, *dat = da;
2340
0
2341
0
    if (*da == 0)
2342
0
      continue;
2343
0
2344
0
    /* Take care of the first digit, no rollover */
2345
0
    w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct;
2346
0
    *dct = LOWER_HALF(w);
2347
0
    w = UPPER_HALF(w);
2348
0
    ++dat; ++dct;
2349
0
2350
0
    for (j = i + 1; j < size_a; ++j, ++dat, ++dct) {
2351
0
      mp_word  t = (mp_word)*da * (mp_word)*dat;
2352
0
      mp_word  u = w + (mp_word)*dct, ov = 0;
2353
0
2354
0
      /* Check if doubling t will overflow a word */
2355
0
      if (HIGH_BIT_SET(t))
2356
0
  ov = 1;
2357
0
2358
0
      w = t + t;
2359
0
2360
0
      /* Check if adding u to w will overflow a word */
2361
0
      if (ADD_WILL_OVERFLOW(w, u))
2362
0
  ov = 1;
2363
0
2364
0
      w += u;
2365
0
2366
0
      *dct = LOWER_HALF(w);
2367
0
      w = UPPER_HALF(w);
2368
0
      if (ov) {
2369
0
  w += MP_DIGIT_MAX; /* MP_RADIX */
2370
0
  ++w;
2371
0
      }
2372
0
    }
2373
0
2374
0
    w = w + *dct;
2375
0
    *dct = (mp_digit)w;
2376
0
    while ((w = UPPER_HALF(w)) != 0) {
2377
0
      ++dct; w = w + *dct;
2378
0
      *dct = LOWER_HALF(w);
2379
0
    }
2380
0
2381
0
    assert(w == 0);
2382
0
  }
2383
0
}
2384
2385
STATIC void      s_dadd(mp_int a, mp_digit b)
2386
1.85k
{
2387
1.85k
  mp_word w = 0;
2388
1.85k
  mp_digit *da = MP_DIGITS(a);
2389
1.85k
  mp_size ua = MP_USED(a);
2390
1.85k
2391
1.85k
  w = (mp_word)*da + b;
2392
1.85k
  *da++ = LOWER_HALF(w);
2393
1.85k
  w = UPPER_HALF(w);
2394
1.85k
2395
2.08k
  for (ua -= 1; ua > 0; 
--ua, ++da229
) {
2396
229
    w = (mp_word)*da + w;
2397
229
2398
229
    *da = LOWER_HALF(w);
2399
229
    w = UPPER_HALF(w);
2400
229
  }
2401
1.85k
2402
1.85k
  if (w) {
2403
2
    *da = (mp_digit)w;
2404
2
    MP_USED(a) += 1;
2405
2
  }
2406
1.85k
}
2407
2408
STATIC void      s_dmul(mp_int a, mp_digit b)
2409
1.85k
{
2410
1.85k
  mp_word w = 0;
2411
1.85k
  mp_digit *da = MP_DIGITS(a);
2412
1.85k
  mp_size ua = MP_USED(a);
2413
1.85k
2414
3.92k
  while (ua > 0) {
2415
2.06k
    w = (mp_word)*da * b + w;
2416
2.06k
    *da++ = LOWER_HALF(w);
2417
2.06k
    w = UPPER_HALF(w);
2418
2.06k
    --ua;
2419
2.06k
  }
2420
1.85k
2421
1.85k
  if (w) {
2422
23
    *da = (mp_digit)w;
2423
23
    MP_USED(a) += 1;
2424
23
  }
2425
1.85k
}
2426
2427
STATIC void      s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
2428
2.12M
{
2429
2.12M
  mp_word  w = 0;
2430
2.12M
2431
10.7M
  while (size_a > 0) {
2432
8.67M
    w = (mp_word)*da++ * (mp_word)b + w;
2433
8.67M
2434
8.67M
    *dc++ = LOWER_HALF(w);
2435
8.67M
    w = UPPER_HALF(w);
2436
8.67M
    --size_a;
2437
8.67M
  }
2438
2.12M
2439
2.12M
  if (w)
2440
0
    *dc = LOWER_HALF(w);
2441
2.12M
}
2442
2443
STATIC mp_digit  s_ddiv(mp_int a, mp_digit b)
2444
1.13M
{
2445
1.13M
  mp_word w = 0, qdigit;
2446
1.13M
  mp_size ua = MP_USED(a);
2447
1.13M
  mp_digit *da = MP_DIGITS(a) + ua - 1;
2448
1.13M
2449
3.72M
  for (/* */; ua > 0; 
--ua, --da2.59M
) {
2450
2.59M
    w = (w << MP_DIGIT_BIT) | *da;
2451
2.59M
2452
2.59M
    if (w >= b) {
2453
1.87M
      qdigit = w / b;
2454
1.87M
      w = w % b;
2455
1.87M
    }
2456
720k
    else {
2457
720k
      qdigit = 0;
2458
720k
    }
2459
2.59M
2460
2.59M
    *da = (mp_digit)qdigit;
2461
2.59M
  }
2462
1.13M
2463
1.13M
  CLAMP(a);
2464
1.13M
  return (mp_digit)w;
2465
1.13M
}
2466
2467
STATIC void     s_qdiv(mp_int z, mp_size p2)
2468
104M
{
2469
104M
  mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT;
2470
104M
  mp_size uz = MP_USED(z);
2471
104M
2472
104M
  if (ndig) {
2473
267k
    mp_size  mark;
2474
267k
    mp_digit *to, *from;
2475
267k
2476
267k
    if (ndig >= uz) {
2477
0
      mp_int_zero(z);
2478
0
      return;
2479
0
    }
2480
267k
2481
267k
    to = MP_DIGITS(z); from = to + ndig;
2482
267k
2483
617k
    for (mark = ndig; mark < uz; 
++mark349k
)
2484
349k
      *to++ = *from++;
2485
267k
2486
267k
    MP_USED(z) = uz - ndig;
2487
267k
  }
2488
104M
2489
104M
  if (nbits) {
2490
98.9M
    mp_digit d = 0, *dz, save;
2491
98.9M
    mp_size  up = MP_DIGIT_BIT - nbits;
2492
98.9M
2493
98.9M
    uz = MP_USED(z);
2494
98.9M
    dz = MP_DIGITS(z) + uz - 1;
2495
98.9M
2496
333M
    for (/* */; uz > 0; 
--uz, --dz234M
) {
2497
234M
      save = *dz;
2498
234M
2499
234M
      *dz = (*dz >> nbits) | (d << up);
2500
234M
      d = save;
2501
234M
    }
2502
98.9M
2503
98.9M
    CLAMP(z);
2504
98.9M
  }
2505
104M
2506
104M
  if (MP_USED(z) == 1 && 
z->digits[0] == 050.3M
)
2507
104M
    
MP_SIGN806k
(z) = MP_ZPOS806k
;
2508
104M
}
2509
2510
STATIC void     s_qmod(mp_int z, mp_size p2)
2511
165k
{
2512
165k
  mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT;
2513
165k
  mp_size uz = MP_USED(z);
2514
165k
  mp_digit mask = (1u << rest) - 1;
2515
165k
2516
165k
  if (start <= uz) {
2517
165k
    MP_USED(z) = start;
2518
165k
    z->digits[start - 1] &= mask;
2519
165k
    CLAMP(z);
2520
165k
  }
2521
165k
}
2522
2523
STATIC int      s_qmul(mp_int z, mp_size p2)
2524
5.32M
{
2525
5.32M
  mp_size   uz, need, rest, extra, i;
2526
5.32M
  mp_digit *from, *to, d;
2527
5.32M
2528
5.32M
  if (p2 == 0)
2529
1.80M
    return 1;
2530
3.51M
2531
3.51M
  uz = MP_USED(z); 
2532
3.51M
  need = p2 / MP_DIGIT_BIT; rest = p2 % MP_DIGIT_BIT;
2533
3.51M
2534
3.51M
  /* Figure out if we need an extra digit at the top end; this occurs if the
2535
3.51M
     topmost `rest' bits of the high-order digit of z are not zero, meaning
2536
3.51M
     they will be shifted off the end if not preserved */
2537
3.51M
  extra = 0;
2538
3.51M
  if (rest != 0) {
2539
3.45M
    mp_digit *dz = MP_DIGITS(z) + uz - 1;
2540
3.45M
2541
3.45M
    if ((*dz >> (MP_DIGIT_BIT - rest)) != 0)
2542
611k
      extra = 1;
2543
3.45M
  }
2544
3.51M
2545
3.51M
  if (!s_pad(z, uz + need + extra))
2546
0
    return 0;
2547
3.51M
2548
3.51M
  /* If we need to shift by whole digits, do that in one pass, then
2549
3.51M
     to back and shift by partial digits.
2550
3.51M
   */
2551
3.51M
  if (need > 0) {
2552
88.7k
    from = MP_DIGITS(z) + uz - 1;
2553
88.7k
    to = from + need;
2554
88.7k
2555
177k
    for (i = 0; i < uz; 
++i88.8k
)
2556
88.8k
      *to-- = *from--;
2557
88.7k
2558
88.7k
    ZERO(MP_DIGITS(z), need);
2559
88.7k
    uz += need;
2560
88.7k
  }
2561
3.51M
2562
3.51M
  if (rest) {
2563
3.45M
    d = 0;
2564
11.6M
    for (i = need, from = 
MP_DIGITS3.45M
(z) + need; i < uz;
++i, ++from8.21M
) {
2565
8.21M
      mp_digit save = *from;
2566
8.21M
      
2567
8.21M
      *from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
2568
8.21M
      d = save;
2569
8.21M
    }
2570
3.45M
2571
3.45M
    d >>= (MP_DIGIT_BIT - rest);
2572
3.45M
    if (d != 0) {
2573
611k
      *from = d;
2574
611k
      uz += extra;
2575
611k
    }
2576
3.45M
  }
2577
3.51M
2578
3.51M
  MP_USED(z) = uz;
2579
3.51M
  CLAMP(z);
2580
3.51M
2581
3.51M
  return 1;
2582
3.51M
}
2583
2584
/* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
2585
   The sign of the result is always zero/positive.
2586
 */
2587
STATIC int       s_qsub(mp_int z, mp_size p2)
2588
0
{
2589
0
  mp_digit hi = (1 << (p2 % MP_DIGIT_BIT)), *zp;
2590
0
  mp_size  tdig = (p2 / MP_DIGIT_BIT), pos;
2591
0
  mp_word  w = 0;
2592
0
2593
0
  if (!s_pad(z, tdig + 1))
2594
0
    return 0;
2595
0
2596
0
  for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp) {
2597
0
    w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word)*zp;
2598
0
2599
0
    *zp = LOWER_HALF(w);
2600
0
    w = UPPER_HALF(w) ? 0 : 1;
2601
0
  }
2602
0
2603
0
  w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp;
2604
0
  *zp = LOWER_HALF(w);
2605
0
2606
0
  assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
2607
0
2608
0
  MP_SIGN(z) = MP_ZPOS;
2609
0
  CLAMP(z);
2610
0
2611
0
  return 1;
2612
0
}
2613
2614
STATIC int      s_dp2k(mp_int z)
2615
102M
{
2616
102M
  int       k = 0;
2617
102M
  mp_digit *dp = MP_DIGITS(z), d;
2618
102M
2619
102M
  if (MP_USED(z) == 1 && 
*dp == 046.1M
)
2620
0
    return 1;
2621
102M
2622
103M
  
while (102M
*dp == 0) {
2623
454k
    k += MP_DIGIT_BIT;
2624
454k
    ++dp;
2625
454k
  }
2626
102M
2627
102M
  d = *dp;
2628
290M
  while ((d & 1) == 0) {
2629
188M
    d >>= 1;
2630
188M
    ++k;
2631
188M
  }
2632
102M
2633
102M
  return k;
2634
102M
}
2635
2636
STATIC int       s_isp2(mp_int z)
2637
3.36M
{
2638
3.36M
  mp_size uz = MP_USED(z), k = 0;
2639
3.36M
  mp_digit *dz = MP_DIGITS(z), d;
2640
3.36M
2641
3.42M
  while (uz > 1) {
2642
927k
    if (*dz++ != 0)
2643
868k
      return -1;
2644
59.0k
    k += MP_DIGIT_BIT;
2645
59.0k
    --uz;
2646
59.0k
  }
2647
3.36M
2648
3.36M
  d = *dz;
2649
8.48M
  while (d > 1) {
2650
7.09M
    if (d & 1)
2651
1.10M
      return -1;
2652
5.99M
    ++k; d >>= 1;
2653
5.99M
  }
2654
2.49M
2655
2.49M
  
return (int) k1.39M
;
2656
2.49M
}
2657
2658
STATIC int       s_2expt(mp_int z, mp_small k)
2659
0
{
2660
0
  mp_size  ndig, rest;
2661
0
  mp_digit *dz;
2662
0
2663
0
  ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
2664
0
  rest = k % MP_DIGIT_BIT;
2665
0
2666
0
  if (!s_pad(z, ndig))
2667
0
    return 0;
2668
0
2669
0
  dz = MP_DIGITS(z);
2670
0
  ZERO(dz, ndig);
2671
0
  *(dz + ndig - 1) = (1 << rest);
2672
0
  MP_USED(z) = ndig;
2673
0
2674
0
  return 1;
2675
0
}
2676
2677
STATIC int      s_norm(mp_int a, mp_int b)
2678
869k
{
2679
869k
  mp_digit d = b->digits[MP_USED(b) - 1];
2680
869k
  int k = 0;
2681
869k
2682
15.5M
  while (d < (1u << (mp_digit)(MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */
2683
14.7M
    d <<= 1;
2684
14.7M
    ++k;
2685
14.7M
  }
2686
869k
2687
869k
  /* These multiplications can't fail */
2688
869k
  if (k != 0) {
2689
854k
    (void) s_qmul(a, (mp_size) k);
2690
854k
    (void) s_qmul(b, (mp_size) k);
2691
854k
  }
2692
869k
2693
869k
  return k;
2694
869k
}
2695
2696
STATIC mp_result s_brmu(mp_int z, mp_int m)
2697
0
{
2698
0
  mp_size um = MP_USED(m) * 2;
2699
0
2700
0
  if (!s_pad(z, um))
2701
0
    return MP_MEMORY;
2702
0
2703
0
  s_2expt(z, MP_DIGIT_BIT * um);
2704
0
  return mp_int_div(z, m, z, NULL);
2705
0
}
2706
2707
STATIC int       s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
2708
0
{
2709
0
  mp_size   um = MP_USED(m), umb_p1, umb_m1;
2710
0
2711
0
  umb_p1 = (um + 1) * MP_DIGIT_BIT;
2712
0
  umb_m1 = (um - 1) * MP_DIGIT_BIT;
2713
0
2714
0
  if (mp_int_copy(x, q1) != MP_OK)
2715
0
    return 0;
2716
0
2717
0
  /* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
2718
0
  s_qdiv(q1, umb_m1);
2719
0
  UMUL(q1, mu, q2);
2720
0
  s_qdiv(q2, umb_p1);
2721
0
2722
0
  /* Set x = x mod b^(k+1) */
2723
0
  s_qmod(x, umb_p1);
2724
0
2725
0
  /* Now, q is a guess for the quotient a / m.
2726
0
     Compute x - q * m mod b^(k+1), replacing x.  This may be off
2727
0
     by a factor of 2m, but no more than that.
2728
0
   */
2729
0
  UMUL(q2, m, q1);
2730
0
  s_qmod(q1, umb_p1);
2731
0
  (void) mp_int_sub(x, q1, x); /* can't fail */
2732
0
2733
0
  /* The result may be < 0; if it is, add b^(k+1) to pin it in the proper
2734
0
     range. */
2735
0
  if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
2736
0
    return 0;
2737
0
2738
0
  /* If x > m, we need to back it off until it is in range.  This will be
2739
0
     required at most twice.  */
2740
0
  if (mp_int_compare(x, m) >= 0) {
2741
0
    (void) mp_int_sub(x, m, x);
2742
0
    if (mp_int_compare(x, m) >= 0)
2743
0
      (void) mp_int_sub(x, m, x);
2744
0
  }
2745
0
2746
0
  /* At this point, x has been properly reduced. */
2747
0
  return 1;
2748
0
}
2749
2750
/* Perform modular exponentiation using Barrett's method, where mu is the
2751
   reduction constant for m.  Assumes a < m, b > 0. */
2752
STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
2753
0
{
2754
0
  mp_digit  *db, *dbt, umu, d;
2755
0
  mp_result res;
2756
0
  DECLARE_TEMP(3);
2757
0
2758
0
  umu = MP_USED(mu); db = MP_DIGITS(b); dbt = db + MP_USED(b) - 1;
2759
0
2760
0
  while (last__ < 3) {
2761
0
    SETUP(mp_int_init_size(LAST_TEMP(), 4 * umu));
2762
0
    ZERO(MP_DIGITS(TEMP(last__ - 1)), MP_ALLOC(TEMP(last__ - 1)));
2763
0
  }
2764
0
2765
0
  (void) mp_int_set_value(c, 1);
2766
0
2767
0
  /* Take care of low-order digits */
2768
0
  while (db < dbt) {
2769
0
    int      i;
2770
0
2771
0
    for (d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) {
2772
0
      if (d & 1) {
2773
0
  /* The use of a second temporary avoids allocation */
2774
0
  UMUL(c, a, TEMP(0));
2775
0
  if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
2776
0
    res = MP_MEMORY; goto CLEANUP;
2777
0
  }
2778
0
  mp_int_copy(TEMP(0), c);
2779
0
      }
2780
0
2781
0
2782
0
      USQR(a, TEMP(0));
2783
0
      assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
2784
0
      if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
2785
0
  res = MP_MEMORY; goto CLEANUP;
2786
0
      }
2787
0
      assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
2788
0
      mp_int_copy(TEMP(0), a);
2789
0
    }
2790
0
2791
0
    ++db;
2792
0
  }
2793
0
2794
0
  /* Take care of highest-order digit */
2795
0
  d = *dbt;
2796
0
  for (;;) {
2797
0
    if (d & 1) {
2798
0
      UMUL(c, a, TEMP(0));
2799
0
      if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
2800
0
  res = MP_MEMORY; goto CLEANUP;
2801
0
      }
2802
0
      mp_int_copy(TEMP(0), c);
2803
0
    }
2804
0
2805
0
    d >>= 1;
2806
0
    if (!d) break;
2807
0
2808
0
    USQR(a, TEMP(0));
2809
0
    if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
2810
0
      res = MP_MEMORY; goto CLEANUP;
2811
0
    }
2812
0
    (void) mp_int_copy(TEMP(0), a);
2813
0
  }
2814
0
2815
0
  CLEANUP_TEMP();
2816
0
  return res;
2817
0
}
2818
2819
/* Division of nonnegative integers
2820
2821
   This function implements division algorithm for unsigned multi-precision
2822
   integers. The algorithm is based on Algorithm D from Knuth's "The Art of
2823
   Computer Programming", 3rd ed. 1998, pg 272-273.
2824
2825
   We diverge from Knuth's algorithm in that we do not perform the subtraction
2826
   from the remainder until we have determined that we have the correct
2827
   quotient digit. This makes our algorithm less efficient that Knuth because
2828
   we might have to perform multiple multiplication and comparison steps before
2829
   the subtraction. The advantage is that it is easy to implement and ensure
2830
   correctness without worrying about underflow from the subtraction.
2831
2832
   inputs: u   a n+m digit integer in base b (b is 2^MP_DIGIT_BIT)
2833
           v   a n   digit integer in base b (b is 2^MP_DIGIT_BIT)
2834
           n >= 1
2835
           m >= 0
2836
  outputs: u / v stored in u
2837
           u % v stored in v
2838
 */
2839
1.97M
STATIC mp_result s_udiv_knuth(mp_int u, mp_int v) {
2840
1.97M
  mpz_t q, r, t;
2841
1.97M
  mp_result
2842
1.97M
  res = MP_OK;
2843
1.97M
  int k,j;
2844
1.97M
  mp_size m,n;
2845
1.97M
2846
1.97M
  /* Force signs to positive */
2847
1.97M
  MP_SIGN(u) = MP_ZPOS;
2848
1.97M
  MP_SIGN(v) = MP_ZPOS;
2849
1.97M
2850
1.97M
  /* Use simple division algorithm when v is only one digit long */
2851
1.97M
  if (MP_USED(v) == 1) {
2852
1.10M
    mp_digit d, rem;
2853
1.10M
    d   = v->digits[0];
2854
1.10M
    rem = s_ddiv(u, d);
2855
1.10M
    mp_int_set_value(v, rem);
2856
1.10M
    return MP_OK;
2857
1.10M
  }
2858
869k
2859
869k
  /* Algorithm D
2860
869k
2861
869k
     The n and m variables are defined as used by Knuth.
2862
869k
     u is an n digit number with digits u_{n-1}..u_0.
2863
869k
     v is an n+m digit number with digits from v_{m+n-1}..v_0.
2864
869k
     We require that n > 1 and m >= 0
2865
869k
   */
2866
869k
  n = MP_USED(v);
2867
869k
  m = MP_USED(u) - n;
2868
869k
  assert(n > 1);
2869
869k
  assert(m >= 0);
2870
869k
2871
869k
  /* D1: Normalize.
2872
869k
     The normalization step provides the necessary condition for Theorem B,
2873
869k
     which states that the quotient estimate for q_j, call it qhat
2874
869k
2875
869k
       qhat = u_{j+n}u_{j+n-1} / v_{n-1}
2876
869k
2877
869k
     is bounded by
2878
869k
2879
869k
      qhat - 2 <= q_j <= qhat.
2880
869k
2881
869k
     That is, qhat is always greater than the actual quotient digit q,
2882
869k
     and it is never more than two larger than the actual quotient digit.
2883
869k
   */
2884
869k
  k = s_norm(u, v);
2885
869k
2886
869k
  /* Extend size of u by one if needed.
2887
869k
2888
869k
     The algorithm begins with a value of u that has one more digit of input.
2889
869k
     The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0. If the
2890
869k
     multiplication did not increase the number of digits of u, we need to add
2891
869k
     a leading zero here.
2892
869k
   */
2893
869k
  if (k == 0 || 
MP_USED854k
(u) != m + n + 1854k
) {
2894
328k
    if (!s_pad(u, m+n+1))
2895
0
      return MP_MEMORY;
2896
328k
    u->digits[m+n] = 0;
2897
328k
    u->used = m+n+1;
2898
328k
  }
2899
869k
2900
869k
  /* Add a leading 0 to v.
2901
869k
2902
869k
     The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0.  We need to
2903
869k
     add the leading zero to v here to ensure that the multiplication will
2904
869k
     produce the full n+1 digit result.
2905
869k
   */
2906
869k
  if (!s_pad(v, n+1)) 
return MP_MEMORY0
; v->digits[n] = 0;
2907
869k
2908
869k
  /* Initialize temporary variables q and t.
2909
869k
     q allocates space for m+1 digits to store the quotient digits
2910
869k
     t allocates space for n+1 digits to hold the result of q_j*v
2911
869k
   */
2912
869k
  if ((res = mp_int_init_size(&q, m + 1)) != MP_OK) 
return res0
;
2913
869k
  if ((res = mp_int_init_size(&t, n + 1)) != MP_OK) 
goto CLEANUP0
;
2914
869k
2915
869k
  /* D2: Initialize j */
2916
869k
  j = m;
2917
869k
  r.digits = MP_DIGITS(u) + j;  /* The contents of r are shared with u */
2918
869k
  r.used   = n + 1;
2919
869k
  r.sign   = MP_ZPOS;
2920
869k
  r.alloc  = MP_ALLOC(u);
2921
869k
  ZERO(t.digits, t.alloc);
2922
869k
2923
869k
  /* Calculate the m+1 digits of the quotient result */
2924
2.83M
  for (; j >= 0; 
j--1.96M
) {
2925
1.96M
    /* D3: Calculate q' */
2926
1.96M
    /* r->digits is aligned to position j of the number u */
2927
1.96M
    mp_word pfx, qhat;
2928
1.96M
    pfx   = r.digits[n];
2929
1.96M
    pfx <<= MP_DIGIT_BIT / 2;
2930
1.96M
    pfx <<= MP_DIGIT_BIT / 2;
2931
1.96M
    pfx |= r.digits[n-1]; /* pfx = u_{j+n}{j+n-1} */
2932
1.96M
2933
1.96M
    qhat = pfx / v->digits[n-1];
2934
1.96M
    /* Check to see if qhat > b, and decrease qhat if so.
2935
1.96M
       Theorem B guarantess that qhat is at most 2 larger than the
2936
1.96M
       actual value, so it is possible that qhat is greater than
2937
1.96M
       the maximum value that will fit in a digit */
2938
1.96M
    if (qhat > MP_DIGIT_MAX)
2939
1.96M
      
qhat = 87
MP_DIGIT_MAX87
;
2940
1.96M
2941
1.96M
    /* D4,D5,D6: Multiply qhat * v and test for a correct value of q
2942
1.96M
2943
1.96M
       We proceed a bit different than the way described by Knuth. This way is
2944
1.96M
       simpler but less efficent. Instead of doing the multiply and subtract
2945
1.96M
       then checking for underflow, we first do the multiply of qhat * v and
2946
1.96M
       see if it is larger than the current remainder r. If it is larger, we
2947
1.96M
       decrease qhat by one and try again. We may need to decrease qhat one
2948
1.96M
       more time before we get a value that is smaller than r.
2949
1.96M
2950
1.96M
       This way is less efficent than Knuth becuase we do more multiplies, but
2951
1.96M
       we do not need to worry about underflow this way.
2952
1.96M
     */
2953
1.96M
    /* t = qhat * v */
2954
1.96M
    s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1); t.used = n + 1;
2955
1.96M
    CLAMP(&t);
2956
1.96M
2957
1.96M
    /* Clamp r for the comparison. Comparisons do not like leading zeros. */
2958
1.96M
    CLAMP(&r);
2959
1.96M
    if (s_ucmp(&t, &r) > 0) {   /* would the remainder be negative? */
2960
158k
      qhat -= 1;   /* try a smaller q */
2961
158k
      s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1);
2962
158k
      t.used = n + 1; CLAMP(&t);
2963
158k
      if (s_ucmp(&t, &r) > 0) { /* would the remainder be negative? */
2964
4.43k
        assert(qhat > 0);
2965
4.43k
        qhat -= 1; /* try a smaller q */
2966
4.43k
        s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1);
2967
4.43k
        t.used = n + 1; CLAMP(&t);
2968
4.43k
      }
2969
158k
      assert(s_ucmp(&t, &r) <=  0 && "The mathematics failed us.");
2970
158k
    }
2971
1.96M
    /* Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be n+1
2972
1.96M
       digits long. */
2973
1.96M
    r.used = n + 1;
2974
1.96M
2975
1.96M
    /* D4: Multiply and subtract
2976
1.96M
2977
1.96M
       Note: The multiply was completed above so we only need to subtract here.
2978
1.96M
     */
2979
1.96M
    s_usub(r.digits, t.digits, r.digits, r.used, t.used);
2980
1.96M
2981
1.96M
    /* D5: Test remainder
2982
1.96M
2983
1.96M
       Note: Not needed because we always check that qhat is the correct value
2984
1.96M
             before performing the subtract.  Value cast to mp_digit to prevent
2985
1.96M
             warning, qhat has been clamped to MP_DIGIT_MAX
2986
1.96M
     */
2987
1.96M
    q.digits[j] = (mp_digit)qhat;
2988
1.96M
2989
1.96M
    /* D6: Add back
2990
1.96M
       Note: Not needed because we always check that qhat is the correct value
2991
1.96M
             before performing the subtract.
2992
1.96M
     */
2993
1.96M
2994
1.96M
    /* D7: Loop on j */
2995
1.96M
    r.digits--;
2996
1.96M
    ZERO(t.digits, t.alloc);
2997
1.96M
  }
2998
869k
2999
869k
  /* Get rid of leading zeros in q */
3000
869k
  q.used = m + 1;
3001
869k
  CLAMP(&q);
3002
869k
3003
869k
  /* Denormalize the remainder */
3004
869k
  CLAMP(u); /* use u here because the r.digits pointer is off-by-one */
3005
869k
  if (k != 0)
3006
854k
    s_qdiv(u, k);
3007
869k
3008
869k
  mp_int_copy(u, v);  /* ok:  0 <= r < v */
3009
869k
  mp_int_copy(&q, u); /* ok:  q <= u     */
3010
869k
3011
869k
  mp_int_clear(&t);
3012
869k
 CLEANUP:
3013
869k
  mp_int_clear(&q);
3014
869k
  return res;
3015
869k
}
3016
3017
STATIC int       s_outlen(mp_int z, mp_size r)
3018
1.57k
{
3019
1.57k
  mp_result bits;
3020
1.57k
  double raw;
3021
1.57k
3022
1.57k
  assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX);
3023
1.57k
3024
1.57k
  bits = mp_int_count_bits(z);
3025
1.57k
  raw = (double)bits * s_log2[r];
3026
1.57k
3027
1.57k
  return (int)(raw + 0.999999);
3028
1.57k
}
3029
3030
STATIC mp_size   s_inlen(int len, mp_size r)
3031
165
{
3032
165
  double  raw = (double)len / s_log2[r];
3033
165
  mp_size bits = (mp_size)(raw + 0.5);
3034
165
3035
165
  return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1;
3036
165
}
3037
3038
STATIC int       s_ch2val(char c, int r)
3039
2.02k
{
3040
2.02k
  int out;
3041
2.02k
3042
2.02k
  if (isdigit((unsigned char) c))
3043
2.02k
    out = c - '0';
3044
0
  else if (r > 10 && isalpha((unsigned char) c))
3045
0
    out = toupper(c) - 'A' + 10;
3046
0
  else
3047
0
    return -1;
3048
2.02k
3049
2.02k
  return (out >= r) ? 
-10
: out;
3050
2.02k
}
3051
3052
STATIC char      s_val2ch(int v, int caps)
3053
26.4k
{
3054
26.4k
  assert(v >= 0);
3055
26.4k
3056
26.4k
  if (v < 10)
3057
26.4k
    return v + '0';
3058
0
  else {
3059
0
    char out = (v - 10) + 'a';
3060
0
3061
0
    if (caps)
3062
0
      return toupper(out);
3063
0
    else
3064
0
      return out;
3065
0
  }
3066
26.4k
}
3067
3068
STATIC void      s_2comp(unsigned char *buf, int len)
3069
0
{
3070
0
  int i;
3071
0
  unsigned short s = 1;
3072
0
3073
0
  for (i = len - 1; i >= 0; --i) {
3074
0
    unsigned char c = ~buf[i];
3075
0
3076
0
    s = c + s;
3077
0
    c = s & UCHAR_MAX;
3078
0
    s >>= CHAR_BIT;
3079
0
3080
0
    buf[i] = c;
3081
0
  }
3082
0
3083
0
  /* last carry out is ignored */
3084
0
}
3085
3086
STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
3087
0
{
3088
0
  mp_size uz;
3089
0
  mp_digit *dz;
3090
0
  int pos = 0, limit = *limpos;
3091
0
3092
0
  uz = MP_USED(z); dz = MP_DIGITS(z);
3093
0
  while (uz > 0 && pos < limit) {
3094
0
    mp_digit d = *dz++;
3095
0
    int i;
3096
0
3097
0
    for (i = sizeof(mp_digit); i > 0 && pos < limit; --i) {
3098
0
      buf[pos++] = (unsigned char)d;
3099
0
      d >>= CHAR_BIT;
3100
0
3101
0
      /* Don't write leading zeroes */
3102
0
      if (d == 0 && uz == 1)
3103
0
  i = 0; /* exit loop without signaling truncation */
3104
0
    }
3105
0
3106
0
    /* Detect truncation (loop exited with pos >= limit) */
3107
0
    if (i > 0) break;
3108
0
3109
0
    --uz;
3110
0
  }
3111
0
3112
0
  if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) {
3113
0
    if (pos < limit)
3114
0
      buf[pos++] = 0;
3115
0
    else
3116
0
      uz = 1;
3117
0
  }
3118
0
3119
0
  /* Digits are in reverse order, fix that */
3120
0
  REV(unsigned char, buf, pos);
3121
0
3122
0
  /* Return the number of bytes actually written */
3123
0
  *limpos = pos;
3124
0
3125
0
  return (uz == 0) ? MP_OK : MP_TRUNC;
3126
0
}
3127
3128
#if DEBUG
3129
void      s_print(char *tag, mp_int z)
3130
{
3131
  int  i;
3132
3133
  fprintf(stderr, "%s: %c ", tag,
3134
    (MP_SIGN(z) == MP_NEG) ? '-' : '+');
3135
3136
  for (i = MP_USED(z) - 1; i >= 0; --i)
3137
    fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), z->digits[i]);
3138
3139
  fputc('\n', stderr);
3140
3141
}
3142
3143
void      s_print_buf(char *tag, mp_digit *buf, mp_size num)
3144
{
3145
  int i;
3146
3147
  fprintf(stderr, "%s: ", tag);
3148
3149
  for (i = num - 1; i >= 0; --i)
3150
    fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), buf[i]);
3151
3152
  fputc('\n', stderr);
3153
}
3154
#endif
3155
3156
/* Here there be dragons */