/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/lib/External/isl/isl_affine_hull.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2008-2009 Katholieke Universiteit Leuven |
3 | | * Copyright 2010 INRIA Saclay |
4 | | * Copyright 2012 Ecole Normale Superieure |
5 | | * |
6 | | * Use of this software is governed by the MIT license |
7 | | * |
8 | | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
9 | | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
10 | | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
11 | | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
12 | | * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France |
13 | | */ |
14 | | |
15 | | #include <isl_ctx_private.h> |
16 | | #include <isl_map_private.h> |
17 | | #include <isl_seq.h> |
18 | | #include <isl/set.h> |
19 | | #include <isl/lp.h> |
20 | | #include <isl/map.h> |
21 | | #include "isl_equalities.h" |
22 | | #include "isl_sample.h" |
23 | | #include "isl_tab.h" |
24 | | #include <isl_mat_private.h> |
25 | | #include <isl_vec_private.h> |
26 | | |
27 | | #include <bset_to_bmap.c> |
28 | | #include <bset_from_bmap.c> |
29 | | #include <set_to_map.c> |
30 | | #include <set_from_map.c> |
31 | | |
32 | | __isl_give isl_basic_map *isl_basic_map_implicit_equalities( |
33 | | __isl_take isl_basic_map *bmap) |
34 | 379k | { |
35 | 379k | struct isl_tab *tab; |
36 | 379k | |
37 | 379k | if (!bmap) |
38 | 0 | return bmap; |
39 | 379k | |
40 | 379k | bmap = isl_basic_map_gauss(bmap, NULL); |
41 | 379k | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
42 | 379k | return bmap785 ; |
43 | 378k | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT)) |
44 | 378k | return bmap5.13k ; |
45 | 373k | if (bmap->n_ineq <= 1) |
46 | 31.9k | return bmap; |
47 | 341k | |
48 | 341k | tab = isl_tab_from_basic_map(bmap, 0); |
49 | 341k | if (isl_tab_detect_implicit_equalities(tab) < 0) |
50 | 0 | goto error; |
51 | 341k | bmap = isl_basic_map_update_from_tab(bmap, tab); |
52 | 341k | isl_tab_free(tab); |
53 | 341k | bmap = isl_basic_map_gauss(bmap, NULL); |
54 | 341k | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); |
55 | 341k | return bmap; |
56 | 0 | error: |
57 | 0 | isl_tab_free(tab); |
58 | 0 | isl_basic_map_free(bmap); |
59 | 0 | return NULL; |
60 | 341k | } |
61 | | |
62 | | struct isl_basic_set *isl_basic_set_implicit_equalities( |
63 | | struct isl_basic_set *bset) |
64 | 361k | { |
65 | 361k | return bset_from_bmap( |
66 | 361k | isl_basic_map_implicit_equalities(bset_to_bmap(bset))); |
67 | 361k | } |
68 | | |
69 | | /* Make eq[row][col] of both bmaps equal so we can add the row |
70 | | * add the column to the common matrix. |
71 | | * Note that because of the echelon form, the columns of row row |
72 | | * after column col are zero. |
73 | | */ |
74 | | static void set_common_multiple( |
75 | | struct isl_basic_set *bset1, struct isl_basic_set *bset2, |
76 | | unsigned row, unsigned col) |
77 | 1.60M | { |
78 | 1.60M | isl_int m, c; |
79 | 1.60M | |
80 | 1.60M | if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col])) |
81 | 1.60M | return1.45M ; |
82 | 144k | |
83 | 144k | isl_int_init(c); |
84 | 144k | isl_int_init(m); |
85 | 144k | isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]); |
86 | 144k | isl_int_divexact(c, m, bset1->eq[row][col]); |
87 | 144k | isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1); |
88 | 144k | isl_int_divexact(c, m, bset2->eq[row][col]); |
89 | 144k | isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1); |
90 | 144k | isl_int_clear(c); |
91 | 144k | isl_int_clear(m); |
92 | 144k | } |
93 | | |
94 | | /* Delete a given equality, moving all the following equalities one up. |
95 | | */ |
96 | | static void delete_row(struct isl_basic_set *bset, unsigned row) |
97 | 2.25M | { |
98 | 2.25M | isl_int *t; |
99 | 2.25M | int r; |
100 | 2.25M | |
101 | 2.25M | t = bset->eq[row]; |
102 | 2.25M | bset->n_eq--; |
103 | 4.12M | for (r = row; r < bset->n_eq; ++r1.86M ) |
104 | 1.86M | bset->eq[r] = bset->eq[r+1]; |
105 | 2.25M | bset->eq[bset->n_eq] = t; |
106 | 2.25M | } |
107 | | |
108 | | /* Make first row entries in column col of bset1 identical to |
109 | | * those of bset2, using the fact that entry bset1->eq[row][col]=a |
110 | | * is non-zero. Initially, these elements of bset1 are all zero. |
111 | | * For each row i < row, we set |
112 | | * A[i] = a * A[i] + B[i][col] * A[row] |
113 | | * B[i] = a * B[i] |
114 | | * so that |
115 | | * A[i][col] = B[i][col] = a * old(B[i][col]) |
116 | | */ |
117 | | static void construct_column( |
118 | | struct isl_basic_set *bset1, struct isl_basic_set *bset2, |
119 | | unsigned row, unsigned col) |
120 | 1.13M | { |
121 | 1.13M | int r; |
122 | 1.13M | isl_int a; |
123 | 1.13M | isl_int b; |
124 | 1.13M | unsigned total; |
125 | 1.13M | |
126 | 1.13M | isl_int_init(a); |
127 | 1.13M | isl_int_init(b); |
128 | 1.13M | total = 1 + isl_basic_set_n_dim(bset1); |
129 | 3.02M | for (r = 0; r < row; ++r1.89M ) { |
130 | 1.89M | if (isl_int_is_zero(bset2->eq[r][col])) |
131 | 1.89M | continue1.85M ; |
132 | 36.3k | isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]); |
133 | 36.3k | isl_int_divexact(a, bset1->eq[row][col], b); |
134 | 36.3k | isl_int_divexact(b, bset2->eq[r][col], b); |
135 | 36.3k | isl_seq_combine(bset1->eq[r], a, bset1->eq[r], |
136 | 36.3k | b, bset1->eq[row], total); |
137 | 36.3k | isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total); |
138 | 36.3k | } |
139 | 1.13M | isl_int_clear(a); |
140 | 1.13M | isl_int_clear(b); |
141 | 1.13M | delete_row(bset1, row); |
142 | 1.13M | } |
143 | | |
144 | | /* Make first row entries in column col of bset1 identical to |
145 | | * those of bset2, using only these entries of the two matrices. |
146 | | * Let t be the last row with different entries. |
147 | | * For each row i < t, we set |
148 | | * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t] |
149 | | * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t] |
150 | | * so that |
151 | | * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col]) |
152 | | */ |
153 | | static int transform_column( |
154 | | struct isl_basic_set *bset1, struct isl_basic_set *bset2, |
155 | | unsigned row, unsigned col) |
156 | 1.23M | { |
157 | 1.23M | int i, t; |
158 | 1.23M | isl_int a, b, g; |
159 | 1.23M | unsigned total; |
160 | 1.23M | |
161 | 1.91M | for (t = row-1; t >= 0; --t678k ) |
162 | 1.23M | if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col])) |
163 | 1.23M | break557k ; |
164 | 1.23M | if (t < 0) |
165 | 674k | return 0; |
166 | 557k | |
167 | 557k | total = 1 + isl_basic_set_n_dim(bset1); |
168 | 557k | isl_int_init(a); |
169 | 557k | isl_int_init(b); |
170 | 557k | isl_int_init(g); |
171 | 557k | isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]); |
172 | 1.40M | for (i = 0; i < t; ++i850k ) { |
173 | 850k | isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]); |
174 | 850k | isl_int_gcd(g, a, b); |
175 | 850k | isl_int_divexact(a, a, g); |
176 | 850k | isl_int_divexact(g, b, g); |
177 | 850k | isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t], |
178 | 850k | total); |
179 | 850k | isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t], |
180 | 850k | total); |
181 | 850k | } |
182 | 557k | isl_int_clear(a); |
183 | 557k | isl_int_clear(b); |
184 | 557k | isl_int_clear(g); |
185 | 557k | delete_row(bset1, t); |
186 | 557k | delete_row(bset2, t); |
187 | 557k | return 1; |
188 | 557k | } |
189 | | |
190 | | /* The implementation is based on Section 5.2 of Michael Karr, |
191 | | * "Affine Relationships Among Variables of a Program", |
192 | | * except that the echelon form we use starts from the last column |
193 | | * and that we are dealing with integer coefficients. |
194 | | */ |
195 | | static struct isl_basic_set *affine_hull( |
196 | | struct isl_basic_set *bset1, struct isl_basic_set *bset2) |
197 | 666k | { |
198 | 666k | unsigned total; |
199 | 666k | int col; |
200 | 666k | int row; |
201 | 666k | |
202 | 666k | if (!bset1 || !bset2) |
203 | 0 | goto error; |
204 | 666k | |
205 | 666k | total = 1 + isl_basic_set_n_dim(bset1); |
206 | 666k | |
207 | 666k | row = 0; |
208 | 4.63M | for (col = total-1; col >= 0; --col3.97M ) { |
209 | 3.97M | int is_zero1 = row >= bset1->n_eq || |
210 | 3.97M | isl_int_is_zero1.93M (bset1->eq[row][col]); |
211 | 3.97M | int is_zero2 = row >= bset2->n_eq || |
212 | 3.97M | isl_int_is_zero3.03M (bset2->eq[row][col]); |
213 | 3.97M | if (!is_zero1 && !is_zero21.60M ) { |
214 | 1.60M | set_common_multiple(bset1, bset2, row, col); |
215 | 1.60M | ++row; |
216 | 2.36M | } else if (!is_zero1 && is_zero21.55k ) { |
217 | 1.55k | construct_column(bset1, bset2, row, col); |
218 | 2.36M | } else if (is_zero1 && !is_zero2) { |
219 | 1.13M | construct_column(bset2, bset1, row, col); |
220 | 1.23M | } else { |
221 | 1.23M | if (transform_column(bset1, bset2, row, col)) |
222 | 557k | --row; |
223 | 1.23M | } |
224 | 3.97M | } |
225 | 666k | isl_assert(bset1->ctx, row == bset1->n_eq, goto error); |
226 | 666k | isl_basic_set_free(bset2); |
227 | 666k | bset1 = isl_basic_set_normalize_constraints(bset1); |
228 | 666k | return bset1; |
229 | 0 | error: |
230 | 0 | isl_basic_set_free(bset1); |
231 | 0 | isl_basic_set_free(bset2); |
232 | 0 | return NULL; |
233 | 666k | } |
234 | | |
235 | | /* Find an integer point in the set represented by "tab" |
236 | | * that lies outside of the equality "eq" e(x) = 0. |
237 | | * If "up" is true, look for a point satisfying e(x) - 1 >= 0. |
238 | | * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1). |
239 | | * The point, if found, is returned. |
240 | | * If no point can be found, a zero-length vector is returned. |
241 | | * |
242 | | * Before solving an ILP problem, we first check if simply |
243 | | * adding the normal of the constraint to one of the known |
244 | | * integer points in the basic set represented by "tab" |
245 | | * yields another point inside the basic set. |
246 | | * |
247 | | * The caller of this function ensures that the tableau is bounded or |
248 | | * that tab->basis and tab->n_unbounded have been set appropriately. |
249 | | */ |
250 | | static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up) |
251 | 35.6k | { |
252 | 35.6k | struct isl_ctx *ctx; |
253 | 35.6k | struct isl_vec *sample = NULL; |
254 | 35.6k | struct isl_tab_undo *snap; |
255 | 35.6k | unsigned dim; |
256 | 35.6k | |
257 | 35.6k | if (!tab) |
258 | 0 | return NULL; |
259 | 35.6k | ctx = tab->mat->ctx; |
260 | 35.6k | |
261 | 35.6k | dim = tab->n_var; |
262 | 35.6k | sample = isl_vec_alloc(ctx, 1 + dim); |
263 | 35.6k | if (!sample) |
264 | 0 | return NULL; |
265 | 35.6k | isl_int_set_si(sample->el[0], 1); |
266 | 35.6k | isl_seq_combine(sample->el + 1, |
267 | 35.6k | ctx->one, tab->bmap->sample->el + 1, |
268 | 35.6k | up ? ctx->one27.6k : ctx->negone8.00k , eq + 1, dim); |
269 | 35.6k | if (isl_basic_map_contains(tab->bmap, sample)) |
270 | 54 | return sample; |
271 | 35.5k | isl_vec_free(sample); |
272 | 35.5k | sample = NULL; |
273 | 35.5k | |
274 | 35.5k | snap = isl_tab_snap(tab); |
275 | 35.5k | |
276 | 35.5k | if (!up) |
277 | 7.97k | isl_seq_neg(eq, eq, 1 + dim); |
278 | 35.5k | isl_int_sub_ui(eq[0], eq[0], 1); |
279 | 35.5k | |
280 | 35.5k | if (isl_tab_extend_cons(tab, 1) < 0) |
281 | 0 | goto error; |
282 | 35.5k | if (isl_tab_add_ineq(tab, eq) < 0) |
283 | 0 | goto error; |
284 | 35.5k | |
285 | 35.5k | sample = isl_tab_sample(tab); |
286 | 35.5k | |
287 | 35.5k | isl_int_add_ui(eq[0], eq[0], 1); |
288 | 35.5k | if (!up) |
289 | 7.97k | isl_seq_neg(eq, eq, 1 + dim); |
290 | 35.5k | |
291 | 35.5k | if (sample && isl_tab_rollback(tab, snap) < 0) |
292 | 0 | goto error; |
293 | 35.5k | |
294 | 35.5k | return sample; |
295 | 0 | error: |
296 | 0 | isl_vec_free(sample); |
297 | 0 | return NULL; |
298 | 35.5k | } |
299 | | |
300 | | __isl_give isl_basic_set *isl_basic_set_recession_cone( |
301 | | __isl_take isl_basic_set *bset) |
302 | 361k | { |
303 | 361k | int i; |
304 | 361k | |
305 | 361k | bset = isl_basic_set_cow(bset); |
306 | 361k | if (!bset) |
307 | 0 | return NULL; |
308 | 361k | isl_assert(bset->ctx, bset->n_div == 0, goto error); |
309 | 361k | |
310 | 361k | for (i = 0; 361k i < bset->n_eq; ++i522 ) |
311 | 361k | isl_int_set_si522 (bset->eq[i][0], 0); |
312 | 361k | |
313 | 2.86M | for (i = 0; i < bset->n_ineq; ++i2.50M ) |
314 | 2.50M | isl_int_set_si(bset->ineq[i][0], 0); |
315 | 361k | |
316 | 361k | ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT); |
317 | 361k | return isl_basic_set_implicit_equalities(bset); |
318 | 0 | error: |
319 | 0 | isl_basic_set_free(bset); |
320 | 0 | return NULL; |
321 | 361k | } |
322 | | |
323 | | /* Move "sample" to a point that is one up (or down) from the original |
324 | | * point in dimension "pos". |
325 | | */ |
326 | | static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up) |
327 | 2.60M | { |
328 | 2.60M | if (up) |
329 | 2.60M | isl_int_add_ui1.30M (sample->el[1 + pos], sample->el[1 + pos], 1); |
330 | 2.60M | else |
331 | 2.60M | isl_int_sub_ui1.30M (sample->el[1 + pos], sample->el[1 + pos], 1); |
332 | 2.60M | } |
333 | | |
334 | | /* Check if any points that are adjacent to "sample" also belong to "bset". |
335 | | * If so, add them to "hull" and return the updated hull. |
336 | | * |
337 | | * Before checking whether and adjacent point belongs to "bset", we first |
338 | | * check whether it already belongs to "hull" as this test is typically |
339 | | * much cheaper. |
340 | | */ |
341 | | static __isl_give isl_basic_set *add_adjacent_points( |
342 | | __isl_take isl_basic_set *hull, __isl_take isl_vec *sample, |
343 | | __isl_keep isl_basic_set *bset) |
344 | 185k | { |
345 | 185k | int i, up; |
346 | 185k | int dim; |
347 | 185k | |
348 | 185k | if (!sample) |
349 | 0 | goto error; |
350 | 185k | |
351 | 185k | dim = isl_basic_set_dim(hull, isl_dim_set); |
352 | 185k | |
353 | 872k | for (i = 0; i < dim; ++i686k ) { |
354 | 1.43M | for (up = 0; up <= 1; ++up751k ) { |
355 | 1.30M | int contains; |
356 | 1.30M | isl_basic_set *point; |
357 | 1.30M | |
358 | 1.30M | adjacent_point(sample, i, up); |
359 | 1.30M | contains = isl_basic_set_contains(hull, sample); |
360 | 1.30M | if (contains < 0) |
361 | 0 | goto error; |
362 | 1.30M | if (contains) { |
363 | 162k | adjacent_point(sample, i, !up); |
364 | 162k | continue; |
365 | 162k | } |
366 | 1.14M | contains = isl_basic_set_contains(bset, sample); |
367 | 1.14M | if (contains < 0) |
368 | 0 | goto error; |
369 | 1.14M | if (contains) { |
370 | 553k | point = isl_basic_set_from_vec( |
371 | 553k | isl_vec_copy(sample)); |
372 | 553k | hull = affine_hull(hull, point); |
373 | 553k | } |
374 | 1.14M | adjacent_point(sample, i, !up); |
375 | 1.14M | if (contains) |
376 | 553k | break; |
377 | 1.14M | } |
378 | 686k | } |
379 | 185k | |
380 | 185k | isl_vec_free(sample); |
381 | 185k | |
382 | 185k | return hull; |
383 | 0 | error: |
384 | 0 | isl_vec_free(sample); |
385 | 0 | isl_basic_set_free(hull); |
386 | 0 | return NULL; |
387 | 185k | } |
388 | | |
389 | | /* Extend an initial (under-)approximation of the affine hull of basic |
390 | | * set represented by the tableau "tab" |
391 | | * by looking for points that do not satisfy one of the equalities |
392 | | * in the current approximation and adding them to that approximation |
393 | | * until no such points can be found any more. |
394 | | * |
395 | | * The caller of this function ensures that "tab" is bounded or |
396 | | * that tab->basis and tab->n_unbounded have been set appropriately. |
397 | | * |
398 | | * "bset" may be either NULL or the basic set represented by "tab". |
399 | | * If "bset" is not NULL, we check for any point we find if any |
400 | | * of its adjacent points also belong to "bset". |
401 | | */ |
402 | | static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab, |
403 | | __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset) |
404 | 165k | { |
405 | 165k | int i, j; |
406 | 165k | unsigned dim; |
407 | 165k | |
408 | 165k | if (!tab || !hull) |
409 | 0 | goto error; |
410 | 165k | |
411 | 165k | dim = tab->n_var; |
412 | 165k | |
413 | 165k | if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0) |
414 | 0 | goto error; |
415 | 165k | |
416 | 187k | for (i = 0; 165k i < dim; ++i21.8k ) { |
417 | 187k | struct isl_vec *sample; |
418 | 187k | struct isl_basic_set *point; |
419 | 193k | for (j = 0; j < hull->n_eq; ++j5.82k ) { |
420 | 27.6k | sample = outside_point(tab, hull->eq[j], 1); |
421 | 27.6k | if (!sample) |
422 | 0 | goto error; |
423 | 27.6k | if (sample->size > 0) |
424 | 19.6k | break; |
425 | 8.00k | isl_vec_free(sample); |
426 | 8.00k | sample = outside_point(tab, hull->eq[j], 0); |
427 | 8.00k | if (!sample) |
428 | 0 | goto error; |
429 | 8.00k | if (sample->size > 0) |
430 | 2.18k | break; |
431 | 5.82k | isl_vec_free(sample); |
432 | 5.82k | |
433 | 5.82k | if (isl_tab_add_eq(tab, hull->eq[j]) < 0) |
434 | 0 | goto error; |
435 | 5.82k | } |
436 | 187k | if (j == hull->n_eq) |
437 | 165k | break; |
438 | 21.8k | if (tab->samples && |
439 | 21.8k | isl_tab_add_sample(tab, isl_vec_copy(sample)) < 01.31k ) |
440 | 0 | hull = isl_basic_set_free(hull); |
441 | 21.8k | if (bset) |
442 | 20.4k | hull = add_adjacent_points(hull, isl_vec_copy(sample), |
443 | 20.4k | bset); |
444 | 21.8k | point = isl_basic_set_from_vec(sample); |
445 | 21.8k | hull = affine_hull(hull, point); |
446 | 21.8k | if (!hull) |
447 | 0 | return NULL; |
448 | 21.8k | } |
449 | 165k | |
450 | 165k | return hull; |
451 | 0 | error: |
452 | 0 | isl_basic_set_free(hull); |
453 | 0 | return NULL; |
454 | 165k | } |
455 | | |
456 | | /* Construct an initial underapproximation of the hull of "bset" |
457 | | * from "sample" and any of its adjacent points that also belong to "bset". |
458 | | */ |
459 | | static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset, |
460 | | __isl_take isl_vec *sample) |
461 | 165k | { |
462 | 165k | isl_basic_set *hull; |
463 | 165k | |
464 | 165k | hull = isl_basic_set_from_vec(isl_vec_copy(sample)); |
465 | 165k | hull = add_adjacent_points(hull, sample, bset); |
466 | 165k | |
467 | 165k | return hull; |
468 | 165k | } |
469 | | |
470 | | /* Look for all equalities satisfied by the integer points in bset, |
471 | | * which is assumed to be bounded. |
472 | | * |
473 | | * The equalities are obtained by successively looking for |
474 | | * a point that is affinely independent of the points found so far. |
475 | | * In particular, for each equality satisfied by the points so far, |
476 | | * we check if there is any point on a hyperplane parallel to the |
477 | | * corresponding hyperplane shifted by at least one (in either direction). |
478 | | */ |
479 | | static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset) |
480 | 165k | { |
481 | 165k | struct isl_vec *sample = NULL; |
482 | 165k | struct isl_basic_set *hull; |
483 | 165k | struct isl_tab *tab = NULL; |
484 | 165k | unsigned dim; |
485 | 165k | |
486 | 165k | if (isl_basic_set_plain_is_empty(bset)) |
487 | 0 | return bset; |
488 | 165k | |
489 | 165k | dim = isl_basic_set_n_dim(bset); |
490 | 165k | |
491 | 165k | if (bset->sample && bset->sample->size == 1 + dim93.4k ) { |
492 | 22.7k | int contains = isl_basic_set_contains(bset, bset->sample); |
493 | 22.7k | if (contains < 0) |
494 | 0 | goto error; |
495 | 22.7k | if (contains) { |
496 | 22.4k | if (dim == 0) |
497 | 0 | return bset; |
498 | 22.4k | sample = isl_vec_copy(bset->sample); |
499 | 22.4k | } else { |
500 | 385 | isl_vec_free(bset->sample); |
501 | 385 | bset->sample = NULL; |
502 | 385 | } |
503 | 22.7k | } |
504 | 165k | |
505 | 165k | tab = isl_tab_from_basic_set(bset, 1); |
506 | 165k | if (!tab) |
507 | 0 | goto error; |
508 | 165k | if (tab->empty) { |
509 | 107 | isl_tab_free(tab); |
510 | 107 | isl_vec_free(sample); |
511 | 107 | return isl_basic_set_set_to_empty(bset); |
512 | 107 | } |
513 | 165k | |
514 | 165k | if (!sample) { |
515 | 142k | struct isl_tab_undo *snap; |
516 | 142k | snap = isl_tab_snap(tab); |
517 | 142k | sample = isl_tab_sample(tab); |
518 | 142k | if (isl_tab_rollback(tab, snap) < 0) |
519 | 0 | goto error; |
520 | 142k | isl_vec_free(tab->bmap->sample); |
521 | 142k | tab->bmap->sample = isl_vec_copy(sample); |
522 | 142k | } |
523 | 165k | |
524 | 165k | if (!sample) |
525 | 0 | goto error; |
526 | 165k | if (sample->size == 0) { |
527 | 27 | isl_tab_free(tab); |
528 | 27 | isl_vec_free(sample); |
529 | 27 | return isl_basic_set_set_to_empty(bset); |
530 | 27 | } |
531 | 165k | |
532 | 165k | hull = initialize_hull(bset, sample); |
533 | 165k | |
534 | 165k | hull = extend_affine_hull(tab, hull, bset); |
535 | 165k | isl_basic_set_free(bset); |
536 | 165k | isl_tab_free(tab); |
537 | 165k | |
538 | 165k | return hull; |
539 | 0 | error: |
540 | 0 | isl_vec_free(sample); |
541 | 0 | isl_tab_free(tab); |
542 | 0 | isl_basic_set_free(bset); |
543 | 0 | return NULL; |
544 | 165k | } |
545 | | |
546 | | /* Given an unbounded tableau and an integer point satisfying the tableau, |
547 | | * construct an initial affine hull containing the recession cone |
548 | | * shifted to the given point. |
549 | | * |
550 | | * The unbounded directions are taken from the last rows of the basis, |
551 | | * which is assumed to have been initialized appropriately. |
552 | | */ |
553 | | static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab, |
554 | | __isl_take isl_vec *vec) |
555 | 545 | { |
556 | 545 | int i; |
557 | 545 | int k; |
558 | 545 | struct isl_basic_set *bset = NULL; |
559 | 545 | struct isl_ctx *ctx; |
560 | 545 | unsigned dim; |
561 | 545 | |
562 | 545 | if (!vec || !tab) |
563 | 0 | return NULL; |
564 | 545 | ctx = vec->ctx; |
565 | 545 | isl_assert(ctx, vec->size != 0, goto error); |
566 | 545 | |
567 | 545 | bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0); |
568 | 545 | if (!bset) |
569 | 0 | goto error; |
570 | 545 | dim = isl_basic_set_n_dim(bset) - tab->n_unbounded; |
571 | 2.36k | for (i = 0; i < dim; ++i1.81k ) { |
572 | 1.81k | k = isl_basic_set_alloc_equality(bset); |
573 | 1.81k | if (k < 0) |
574 | 0 | goto error; |
575 | 1.81k | isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1, |
576 | 1.81k | vec->size - 1); |
577 | 1.81k | isl_seq_inner_product(bset->eq[k] + 1, vec->el +1, |
578 | 1.81k | vec->size - 1, &bset->eq[k][0]); |
579 | 1.81k | isl_int_neg(bset->eq[k][0], bset->eq[k][0]); |
580 | 1.81k | } |
581 | 545 | bset->sample = vec; |
582 | 545 | bset = isl_basic_set_gauss(bset, NULL); |
583 | 545 | |
584 | 545 | return bset; |
585 | 0 | error: |
586 | 0 | isl_basic_set_free(bset); |
587 | 0 | isl_vec_free(vec); |
588 | 0 | return NULL; |
589 | 545 | } |
590 | | |
591 | | /* Given a tableau of a set and a tableau of the corresponding |
592 | | * recession cone, detect and add all equalities to the tableau. |
593 | | * If the tableau is bounded, then we can simply keep the |
594 | | * tableau in its state after the return from extend_affine_hull. |
595 | | * However, if the tableau is unbounded, then |
596 | | * isl_tab_set_initial_basis_with_cone will add some additional |
597 | | * constraints to the tableau that have to be removed again. |
598 | | * In this case, we therefore rollback to the state before |
599 | | * any constraints were added and then add the equalities back in. |
600 | | */ |
601 | | struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab, |
602 | | struct isl_tab *tab_cone) |
603 | 692 | { |
604 | 692 | int j; |
605 | 692 | struct isl_vec *sample; |
606 | 692 | struct isl_basic_set *hull = NULL; |
607 | 692 | struct isl_tab_undo *snap; |
608 | 692 | |
609 | 692 | if (!tab || !tab_cone) |
610 | 0 | goto error; |
611 | 692 | |
612 | 692 | snap = isl_tab_snap(tab); |
613 | 692 | |
614 | 692 | isl_mat_free(tab->basis); |
615 | 692 | tab->basis = NULL; |
616 | 692 | |
617 | 692 | isl_assert(tab->mat->ctx, tab->bmap, goto error); |
618 | 692 | isl_assert(tab->mat->ctx, tab->samples, goto error); |
619 | 692 | isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error); |
620 | 692 | isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error); |
621 | 692 | |
622 | 692 | if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0) |
623 | 0 | goto error; |
624 | 692 | |
625 | 692 | sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); |
626 | 692 | if (!sample) |
627 | 0 | goto error; |
628 | 692 | |
629 | 692 | isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size); |
630 | 692 | |
631 | 692 | isl_vec_free(tab->bmap->sample); |
632 | 692 | tab->bmap->sample = isl_vec_copy(sample); |
633 | 692 | |
634 | 692 | if (tab->n_unbounded == 0) |
635 | 147 | hull = isl_basic_set_from_vec(isl_vec_copy(sample)); |
636 | 545 | else |
637 | 545 | hull = initial_hull(tab, isl_vec_copy(sample)); |
638 | 692 | |
639 | 1.25k | for (j = tab->n_outside + 1; j < tab->n_sample; ++j562 ) { |
640 | 562 | isl_seq_cpy(sample->el, tab->samples->row[j], sample->size); |
641 | 562 | hull = affine_hull(hull, |
642 | 562 | isl_basic_set_from_vec(isl_vec_copy(sample))); |
643 | 562 | } |
644 | 692 | |
645 | 692 | isl_vec_free(sample); |
646 | 692 | |
647 | 692 | hull = extend_affine_hull(tab, hull, NULL); |
648 | 692 | if (!hull) |
649 | 0 | goto error; |
650 | 692 | |
651 | 692 | if (tab->n_unbounded == 0) { |
652 | 147 | isl_basic_set_free(hull); |
653 | 147 | return tab; |
654 | 147 | } |
655 | 545 | |
656 | 545 | if (isl_tab_rollback(tab, snap) < 0) |
657 | 0 | goto error; |
658 | 545 | |
659 | 545 | if (hull->n_eq > tab->n_zero) { |
660 | 284 | for (j = 0; j < hull->n_eq; ++j188 ) { |
661 | 188 | isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var); |
662 | 188 | if (isl_tab_add_eq(tab, hull->eq[j]) < 0) |
663 | 0 | goto error; |
664 | 188 | } |
665 | 96 | } |
666 | 545 | |
667 | 545 | isl_basic_set_free(hull); |
668 | 545 | |
669 | 545 | return tab; |
670 | 0 | error: |
671 | 0 | isl_basic_set_free(hull); |
672 | 0 | isl_tab_free(tab); |
673 | 0 | return NULL; |
674 | 545 | } |
675 | | |
676 | | /* Compute the affine hull of "bset", where "cone" is the recession cone |
677 | | * of "bset". |
678 | | * |
679 | | * We first compute a unimodular transformation that puts the unbounded |
680 | | * directions in the last dimensions. In particular, we take a transformation |
681 | | * that maps all equalities to equalities (in HNF) on the first dimensions. |
682 | | * Let x be the original dimensions and y the transformed, with y_1 bounded |
683 | | * and y_2 unbounded. |
684 | | * |
685 | | * [ y_1 ] [ y_1 ] [ Q_1 ] |
686 | | * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x |
687 | | * |
688 | | * Let's call the input basic set S. We compute S' = preimage(S, U) |
689 | | * and drop the final dimensions including any constraints involving them. |
690 | | * This results in set S''. |
691 | | * Then we compute the affine hull A'' of S''. |
692 | | * Let F y_1 >= g be the constraint system of A''. In the transformed |
693 | | * space the y_2 are unbounded, so we can add them back without any constraints, |
694 | | * resulting in |
695 | | * |
696 | | * [ y_1 ] |
697 | | * [ F 0 ] [ y_2 ] >= g |
698 | | * or |
699 | | * [ Q_1 ] |
700 | | * [ F 0 ] [ Q_2 ] x >= g |
701 | | * or |
702 | | * F Q_1 x >= g |
703 | | * |
704 | | * The affine hull in the original space is then obtained as |
705 | | * A = preimage(A'', Q_1). |
706 | | */ |
707 | | static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset, |
708 | | struct isl_basic_set *cone) |
709 | 152k | { |
710 | 152k | unsigned total; |
711 | 152k | unsigned cone_dim; |
712 | 152k | struct isl_basic_set *hull; |
713 | 152k | struct isl_mat *M, *U, *Q; |
714 | 152k | |
715 | 152k | if (!bset || !cone) |
716 | 0 | goto error; |
717 | 152k | |
718 | 152k | total = isl_basic_set_total_dim(cone); |
719 | 152k | cone_dim = total - cone->n_eq; |
720 | 152k | |
721 | 152k | M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total); |
722 | 152k | M = isl_mat_left_hermite(M, 0, &U, &Q); |
723 | 152k | if (!M) |
724 | 0 | goto error; |
725 | 152k | isl_mat_free(M); |
726 | 152k | |
727 | 152k | U = isl_mat_lin_to_aff(U); |
728 | 152k | bset = isl_basic_set_preimage(bset, isl_mat_copy(U)); |
729 | 152k | |
730 | 152k | bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim, |
731 | 152k | cone_dim); |
732 | 152k | bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim); |
733 | 152k | |
734 | 152k | Q = isl_mat_lin_to_aff(Q); |
735 | 152k | Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim); |
736 | 152k | |
737 | 152k | if (bset && bset->sample && bset->sample->size == 1 + total83.9k ) |
738 | 18.4k | bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample); |
739 | 152k | |
740 | 152k | hull = uset_affine_hull_bounded(bset); |
741 | 152k | |
742 | 152k | if (!hull) { |
743 | 0 | isl_mat_free(Q); |
744 | 0 | isl_mat_free(U); |
745 | 152k | } else { |
746 | 152k | struct isl_vec *sample = isl_vec_copy(hull->sample); |
747 | 152k | U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim); |
748 | 152k | if (sample && sample->size > 0152k ) |
749 | 152k | sample = isl_mat_vec_product(U, sample); |
750 | 14 | else |
751 | 14 | isl_mat_free(U); |
752 | 152k | hull = isl_basic_set_preimage(hull, Q); |
753 | 152k | if (hull) { |
754 | 152k | isl_vec_free(hull->sample); |
755 | 152k | hull->sample = sample; |
756 | 152k | } else |
757 | 0 | isl_vec_free(sample); |
758 | 152k | } |
759 | 152k | |
760 | 152k | isl_basic_set_free(cone); |
761 | 152k | |
762 | 152k | return hull; |
763 | 0 | error: |
764 | 0 | isl_basic_set_free(bset); |
765 | 0 | isl_basic_set_free(cone); |
766 | 0 | return NULL; |
767 | 152k | } |
768 | | |
769 | | /* Look for all equalities satisfied by the integer points in bset, |
770 | | * which is assumed not to have any explicit equalities. |
771 | | * |
772 | | * The equalities are obtained by successively looking for |
773 | | * a point that is affinely independent of the points found so far. |
774 | | * In particular, for each equality satisfied by the points so far, |
775 | | * we check if there is any point on a hyperplane parallel to the |
776 | | * corresponding hyperplane shifted by at least one (in either direction). |
777 | | * |
778 | | * Before looking for any outside points, we first compute the recession |
779 | | * cone. The directions of this recession cone will always be part |
780 | | * of the affine hull, so there is no need for looking for any points |
781 | | * in these directions. |
782 | | * In particular, if the recession cone is full-dimensional, then |
783 | | * the affine hull is simply the whole universe. |
784 | | */ |
785 | | static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset) |
786 | 187k | { |
787 | 187k | struct isl_basic_set *cone; |
788 | 187k | |
789 | 187k | if (isl_basic_set_plain_is_empty(bset)) |
790 | 4 | return bset; |
791 | 187k | |
792 | 187k | cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset)); |
793 | 187k | if (!cone) |
794 | 0 | goto error; |
795 | 187k | if (cone->n_eq == 0) { |
796 | 22.1k | isl_space *space; |
797 | 22.1k | space = isl_basic_set_get_space(bset); |
798 | 22.1k | isl_basic_set_free(cone); |
799 | 22.1k | isl_basic_set_free(bset); |
800 | 22.1k | return isl_basic_set_universe(space); |
801 | 22.1k | } |
802 | 165k | |
803 | 165k | if (cone->n_eq < isl_basic_set_total_dim(cone)) |
804 | 152k | return affine_hull_with_cone(bset, cone); |
805 | 12.9k | |
806 | 12.9k | isl_basic_set_free(cone); |
807 | 12.9k | return uset_affine_hull_bounded(bset); |
808 | 0 | error: |
809 | 0 | isl_basic_set_free(bset); |
810 | 0 | return NULL; |
811 | 12.9k | } |
812 | | |
813 | | /* Look for all equalities satisfied by the integer points in bmap |
814 | | * that are independent of the equalities already explicitly available |
815 | | * in bmap. |
816 | | * |
817 | | * We first remove all equalities already explicitly available, |
818 | | * then look for additional equalities in the reduced space |
819 | | * and then transform the result to the original space. |
820 | | * The original equalities are _not_ added to this set. This is |
821 | | * the responsibility of the calling function. |
822 | | * The resulting basic set has all meaning about the dimensions removed. |
823 | | * In particular, dimensions that correspond to existential variables |
824 | | * in bmap and that are found to be fixed are not removed. |
825 | | */ |
826 | | static struct isl_basic_set *equalities_in_underlying_set( |
827 | | struct isl_basic_map *bmap) |
828 | 187k | { |
829 | 187k | struct isl_mat *T1 = NULL; |
830 | 187k | struct isl_mat *T2 = NULL; |
831 | 187k | struct isl_basic_set *bset = NULL; |
832 | 187k | struct isl_basic_set *hull = NULL; |
833 | 187k | |
834 | 187k | bset = isl_basic_map_underlying_set(bmap); |
835 | 187k | if (!bset) |
836 | 0 | return NULL; |
837 | 187k | if (bset->n_eq) |
838 | 123k | bset = isl_basic_set_remove_equalities(bset, &T1, &T2); |
839 | 187k | if (!bset) |
840 | 0 | goto error; |
841 | 187k | |
842 | 187k | hull = uset_affine_hull(bset); |
843 | 187k | if (!T2) |
844 | 64.1k | return hull; |
845 | 123k | |
846 | 123k | if (!hull) { |
847 | 0 | isl_mat_free(T1); |
848 | 0 | isl_mat_free(T2); |
849 | 123k | } else { |
850 | 123k | struct isl_vec *sample = isl_vec_copy(hull->sample); |
851 | 123k | if (sample && sample->size > 0117k ) |
852 | 117k | sample = isl_mat_vec_product(T1, sample); |
853 | 5.62k | else |
854 | 5.62k | isl_mat_free(T1); |
855 | 123k | hull = isl_basic_set_preimage(hull, T2); |
856 | 123k | if (hull) { |
857 | 123k | isl_vec_free(hull->sample); |
858 | 123k | hull->sample = sample; |
859 | 123k | } else |
860 | 0 | isl_vec_free(sample); |
861 | 123k | } |
862 | 123k | |
863 | 123k | return hull; |
864 | 0 | error: |
865 | 0 | isl_mat_free(T1); |
866 | 0 | isl_mat_free(T2); |
867 | 0 | isl_basic_set_free(bset); |
868 | 0 | isl_basic_set_free(hull); |
869 | 0 | return NULL; |
870 | 123k | } |
871 | | |
872 | | /* Detect and make explicit all equalities satisfied by the (integer) |
873 | | * points in bmap. |
874 | | */ |
875 | | __isl_give isl_basic_map *isl_basic_map_detect_equalities( |
876 | | __isl_take isl_basic_map *bmap) |
877 | 1.02M | { |
878 | 1.02M | int i, j; |
879 | 1.02M | struct isl_basic_set *hull = NULL; |
880 | 1.02M | |
881 | 1.02M | if (!bmap) |
882 | 0 | return NULL; |
883 | 1.02M | if (bmap->n_ineq == 0) |
884 | 529k | return bmap; |
885 | 497k | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) |
886 | 497k | return bmap0 ; |
887 | 497k | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES)) |
888 | 497k | return bmap291k ; |
889 | 205k | if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) |
890 | 205k | return isl_basic_map_implicit_equalities(bmap)18.1k ; |
891 | 187k | |
892 | 187k | hull = equalities_in_underlying_set(isl_basic_map_copy(bmap)); |
893 | 187k | if (!hull) |
894 | 0 | goto error; |
895 | 187k | if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) { |
896 | 138 | isl_basic_set_free(hull); |
897 | 138 | return isl_basic_map_set_to_empty(bmap); |
898 | 138 | } |
899 | 187k | bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0, |
900 | 187k | hull->n_eq, 0); |
901 | 191k | for (i = 0; i < hull->n_eq; ++i4.54k ) { |
902 | 4.54k | j = isl_basic_map_alloc_equality(bmap); |
903 | 4.54k | if (j < 0) |
904 | 0 | goto error; |
905 | 4.54k | isl_seq_cpy(bmap->eq[j], hull->eq[i], |
906 | 4.54k | 1 + isl_basic_set_total_dim(hull)); |
907 | 4.54k | } |
908 | 187k | isl_vec_free(bmap->sample); |
909 | 187k | bmap->sample = isl_vec_copy(hull->sample); |
910 | 187k | isl_basic_set_free(hull); |
911 | 187k | ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES); |
912 | 187k | bmap = isl_basic_map_simplify(bmap); |
913 | 187k | return isl_basic_map_finalize(bmap); |
914 | 0 | error: |
915 | 0 | isl_basic_set_free(hull); |
916 | 0 | isl_basic_map_free(bmap); |
917 | 0 | return NULL; |
918 | 187k | } |
919 | | |
920 | | __isl_give isl_basic_set *isl_basic_set_detect_equalities( |
921 | | __isl_take isl_basic_set *bset) |
922 | 45.4k | { |
923 | 45.4k | return bset_from_bmap( |
924 | 45.4k | isl_basic_map_detect_equalities(bset_to_bmap(bset))); |
925 | 45.4k | } |
926 | | |
927 | | __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map) |
928 | 210k | { |
929 | 210k | return isl_map_inline_foreach_basic_map(map, |
930 | 210k | &isl_basic_map_detect_equalities); |
931 | 210k | } |
932 | | |
933 | | __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set) |
934 | 18.9k | { |
935 | 18.9k | return set_from_map(isl_map_detect_equalities(set_to_map(set))); |
936 | 18.9k | } |
937 | | |
938 | | /* Return the superset of "bmap" described by the equalities |
939 | | * satisfied by "bmap" that are already known. |
940 | | */ |
941 | | __isl_give isl_basic_map *isl_basic_map_plain_affine_hull( |
942 | | __isl_take isl_basic_map *bmap) |
943 | 676k | { |
944 | 676k | bmap = isl_basic_map_cow(bmap); |
945 | 676k | if (bmap) |
946 | 676k | isl_basic_map_free_inequality(bmap, bmap->n_ineq); |
947 | 676k | bmap = isl_basic_map_finalize(bmap); |
948 | 676k | return bmap; |
949 | 676k | } |
950 | | |
951 | | /* Return the superset of "bset" described by the equalities |
952 | | * satisfied by "bset" that are already known. |
953 | | */ |
954 | | __isl_give isl_basic_set *isl_basic_set_plain_affine_hull( |
955 | | __isl_take isl_basic_set *bset) |
956 | 45.4k | { |
957 | 45.4k | return isl_basic_map_plain_affine_hull(bset); |
958 | 45.4k | } |
959 | | |
960 | | /* After computing the rational affine hull (by detecting the implicit |
961 | | * equalities), we compute the additional equalities satisfied by |
962 | | * the integer points (if any) and add the original equalities back in. |
963 | | */ |
964 | | __isl_give isl_basic_map *isl_basic_map_affine_hull( |
965 | | __isl_take isl_basic_map *bmap) |
966 | 543k | { |
967 | 543k | bmap = isl_basic_map_detect_equalities(bmap); |
968 | 543k | bmap = isl_basic_map_plain_affine_hull(bmap); |
969 | 543k | return bmap; |
970 | 543k | } |
971 | | |
972 | | struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset) |
973 | 11.8k | { |
974 | 11.8k | return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset))); |
975 | 11.8k | } |
976 | | |
977 | | /* Given a rational affine matrix "M", add stride constraints to "bmap" |
978 | | * that ensure that |
979 | | * |
980 | | * M(x) |
981 | | * |
982 | | * is an integer vector. The variables x include all the variables |
983 | | * of "bmap" except the unknown divs. |
984 | | * |
985 | | * If d is the common denominator of M, then we need to impose that |
986 | | * |
987 | | * d M(x) = 0 mod d |
988 | | * |
989 | | * or |
990 | | * |
991 | | * exists alpha : d M(x) = d alpha |
992 | | * |
993 | | * This function is similar to add_strides in isl_morph.c |
994 | | */ |
995 | | static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap, |
996 | | __isl_keep isl_mat *M, int n_known) |
997 | 0 | { |
998 | 0 | int i, div, k; |
999 | 0 | isl_int gcd; |
1000 | 0 |
|
1001 | 0 | if (isl_int_is_one(M->row[0][0])) |
1002 | 0 | return bmap; |
1003 | 0 | |
1004 | 0 | bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), |
1005 | 0 | M->n_row - 1, M->n_row - 1, 0); |
1006 | 0 |
|
1007 | 0 | isl_int_init(gcd); |
1008 | 0 | for (i = 1; i < M->n_row; ++i) { |
1009 | 0 | isl_seq_gcd(M->row[i], M->n_col, &gcd); |
1010 | 0 | if (isl_int_is_divisible_by(gcd, M->row[0][0])) |
1011 | 0 | continue; |
1012 | 0 | div = isl_basic_map_alloc_div(bmap); |
1013 | 0 | if (div < 0) |
1014 | 0 | goto error; |
1015 | 0 | isl_int_set_si(bmap->div[div][0], 0); |
1016 | 0 | k = isl_basic_map_alloc_equality(bmap); |
1017 | 0 | if (k < 0) |
1018 | 0 | goto error; |
1019 | 0 | isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col); |
1020 | 0 | isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known); |
1021 | 0 | isl_int_set(bmap->eq[k][M->n_col - n_known + div], |
1022 | 0 | M->row[0][0]); |
1023 | 0 | } |
1024 | 0 | isl_int_clear(gcd); |
1025 | 0 |
|
1026 | 0 | return bmap; |
1027 | 0 | error: |
1028 | 0 | isl_int_clear(gcd); |
1029 | 0 | isl_basic_map_free(bmap); |
1030 | 0 | return NULL; |
1031 | 0 | } |
1032 | | |
1033 | | /* If there are any equalities that involve (multiple) unknown divs, |
1034 | | * then extract the stride information encoded by those equalities |
1035 | | * and make it explicitly available in "bmap". |
1036 | | * |
1037 | | * We first sort the divs so that the unknown divs appear last and |
1038 | | * then we count how many equalities involve these divs. |
1039 | | * |
1040 | | * Let these equalities be of the form |
1041 | | * |
1042 | | * A(x) + B y = 0 |
1043 | | * |
1044 | | * where y represents the unknown divs and x the remaining variables. |
1045 | | * Let [H 0] be the Hermite Normal Form of B, i.e., |
1046 | | * |
1047 | | * B = [H 0] Q |
1048 | | * |
1049 | | * Then x is a solution of the equalities iff |
1050 | | * |
1051 | | * H^-1 A(x) (= - [I 0] Q y) |
1052 | | * |
1053 | | * is an integer vector. Let d be the common denominator of H^-1. |
1054 | | * We impose |
1055 | | * |
1056 | | * d H^-1 A(x) = d alpha |
1057 | | * |
1058 | | * in add_strides, with alpha fresh existentially quantified variables. |
1059 | | */ |
1060 | | static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit( |
1061 | | __isl_take isl_basic_map *bmap) |
1062 | 531k | { |
1063 | 531k | int known; |
1064 | 531k | int n_known; |
1065 | 531k | int n, n_col; |
1066 | 531k | int total; |
1067 | 531k | isl_ctx *ctx; |
1068 | 531k | isl_mat *A, *B, *M; |
1069 | 531k | |
1070 | 531k | known = isl_basic_map_divs_known(bmap); |
1071 | 531k | if (known < 0) |
1072 | 0 | return isl_basic_map_free(bmap); |
1073 | 531k | if (known) |
1074 | 531k | return bmap; |
1075 | 0 | bmap = isl_basic_map_sort_divs(bmap); |
1076 | 0 | bmap = isl_basic_map_gauss(bmap, NULL); |
1077 | 0 | if (!bmap) |
1078 | 0 | return NULL; |
1079 | 0 | |
1080 | 0 | for (n_known = 0; n_known < bmap->n_div; ++n_known) |
1081 | 0 | if (isl_int_is_zero(bmap->div[n_known][0])) |
1082 | 0 | break; |
1083 | 0 | ctx = isl_basic_map_get_ctx(bmap); |
1084 | 0 | total = isl_space_dim(bmap->dim, isl_dim_all); |
1085 | 0 | for (n = 0; n < bmap->n_eq; ++n) |
1086 | 0 | if (isl_seq_first_non_zero(bmap->eq[n] + 1 + total + n_known, |
1087 | 0 | bmap->n_div - n_known) == -1) |
1088 | 0 | break; |
1089 | 0 | if (n == 0) |
1090 | 0 | return bmap; |
1091 | 0 | B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + total + n_known); |
1092 | 0 | n_col = bmap->n_div - n_known; |
1093 | 0 | A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + total + n_known, n_col); |
1094 | 0 | A = isl_mat_left_hermite(A, 0, NULL, NULL); |
1095 | 0 | A = isl_mat_drop_cols(A, n, n_col - n); |
1096 | 0 | A = isl_mat_lin_to_aff(A); |
1097 | 0 | A = isl_mat_right_inverse(A); |
1098 | 0 | B = isl_mat_insert_zero_rows(B, 0, 1); |
1099 | 0 | B = isl_mat_set_element_si(B, 0, 0, 1); |
1100 | 0 | M = isl_mat_product(A, B); |
1101 | 0 | if (!M) |
1102 | 0 | return isl_basic_map_free(bmap); |
1103 | 0 | bmap = add_strides(bmap, M, n_known); |
1104 | 0 | bmap = isl_basic_map_gauss(bmap, NULL); |
1105 | 0 | isl_mat_free(M); |
1106 | 0 |
|
1107 | 0 | return bmap; |
1108 | 0 | } |
1109 | | |
1110 | | /* Compute the affine hull of each basic map in "map" separately |
1111 | | * and make all stride information explicit so that we can remove |
1112 | | * all unknown divs without losing this information. |
1113 | | * The result is also guaranteed to be gaussed. |
1114 | | * |
1115 | | * In simple cases where a div is determined by an equality, |
1116 | | * calling isl_basic_map_gauss is enough to make the stride information |
1117 | | * explicit, as it will derive an explicit representation for the div |
1118 | | * from the equality. If, however, the stride information |
1119 | | * is encoded through multiple unknown divs then we need to make |
1120 | | * some extra effort in isl_basic_map_make_strides_explicit. |
1121 | | */ |
1122 | | static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map) |
1123 | 348k | { |
1124 | 348k | int i; |
1125 | 348k | |
1126 | 348k | map = isl_map_cow(map); |
1127 | 348k | if (!map) |
1128 | 0 | return NULL; |
1129 | 348k | |
1130 | 880k | for (i = 0; 348k i < map->n; ++i531k ) { |
1131 | 531k | map->p[i] = isl_basic_map_affine_hull(map->p[i]); |
1132 | 531k | map->p[i] = isl_basic_map_gauss(map->p[i], NULL); |
1133 | 531k | map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]); |
1134 | 531k | if (!map->p[i]) |
1135 | 0 | return isl_map_free(map); |
1136 | 531k | } |
1137 | 348k | |
1138 | 348k | return map; |
1139 | 348k | } |
1140 | | |
1141 | | static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set) |
1142 | 174k | { |
1143 | 174k | return isl_map_local_affine_hull(set); |
1144 | 174k | } |
1145 | | |
1146 | | /* Return an empty basic map living in the same space as "map". |
1147 | | */ |
1148 | | static __isl_give isl_basic_map *replace_map_by_empty_basic_map( |
1149 | | __isl_take isl_map *map) |
1150 | 0 | { |
1151 | 0 | isl_space *space; |
1152 | 0 |
|
1153 | 0 | space = isl_map_get_space(map); |
1154 | 0 | isl_map_free(map); |
1155 | 0 | return isl_basic_map_empty(space); |
1156 | 0 | } |
1157 | | |
1158 | | /* Compute the affine hull of "map". |
1159 | | * |
1160 | | * We first compute the affine hull of each basic map separately. |
1161 | | * Then we align the divs and recompute the affine hulls of the basic |
1162 | | * maps since some of them may now have extra divs. |
1163 | | * In order to avoid performing parametric integer programming to |
1164 | | * compute explicit expressions for the divs, possible leading to |
1165 | | * an explosion in the number of basic maps, we first drop all unknown |
1166 | | * divs before aligning the divs. Note that isl_map_local_affine_hull tries |
1167 | | * to make sure that all stride information is explicitly available |
1168 | | * in terms of known divs. This involves calling isl_basic_set_gauss, |
1169 | | * which is also needed because affine_hull assumes its input has been gaussed, |
1170 | | * while isl_map_affine_hull may be called on input that has not been gaussed, |
1171 | | * in particular from initial_facet_constraint. |
1172 | | * Similarly, align_divs may reorder some divs so that we need to |
1173 | | * gauss the result again. |
1174 | | * Finally, we combine the individual affine hulls into a single |
1175 | | * affine hull. |
1176 | | */ |
1177 | | __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map) |
1178 | 174k | { |
1179 | 174k | struct isl_basic_map *model = NULL; |
1180 | 174k | struct isl_basic_map *hull = NULL; |
1181 | 174k | struct isl_set *set; |
1182 | 174k | isl_basic_set *bset; |
1183 | 174k | |
1184 | 174k | map = isl_map_detect_equalities(map); |
1185 | 174k | map = isl_map_local_affine_hull(map); |
1186 | 174k | map = isl_map_remove_empty_parts(map); |
1187 | 174k | map = isl_map_remove_unknown_divs(map); |
1188 | 174k | map = isl_map_align_divs_internal(map); |
1189 | 174k | |
1190 | 174k | if (!map) |
1191 | 0 | return NULL; |
1192 | 174k | |
1193 | 174k | if (map->n == 0) |
1194 | 0 | return replace_map_by_empty_basic_map(map); |
1195 | 174k | |
1196 | 174k | model = isl_basic_map_copy(map->p[0]); |
1197 | 174k | set = isl_map_underlying_set(map); |
1198 | 174k | set = isl_set_cow(set); |
1199 | 174k | set = isl_set_local_affine_hull(set); |
1200 | 174k | if (!set) |
1201 | 0 | goto error; |
1202 | 174k | |
1203 | 265k | while (174k set->n > 1) |
1204 | 91.0k | set->p[0] = affine_hull(set->p[0], set->p[--set->n]); |
1205 | 174k | |
1206 | 174k | bset = isl_basic_set_copy(set->p[0]); |
1207 | 174k | hull = isl_basic_map_overlying_set(bset, model); |
1208 | 174k | isl_set_free(set); |
1209 | 174k | hull = isl_basic_map_simplify(hull); |
1210 | 174k | return isl_basic_map_finalize(hull); |
1211 | 0 | error: |
1212 | 0 | isl_basic_map_free(model); |
1213 | 0 | isl_set_free(set); |
1214 | 0 | return NULL; |
1215 | 174k | } |
1216 | | |
1217 | | struct isl_basic_set *isl_set_affine_hull(struct isl_set *set) |
1218 | 161k | { |
1219 | 161k | return bset_from_bmap(isl_map_affine_hull(set_to_map(set))); |
1220 | 161k | } |