/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/lib/External/isl/isl_ast_codegen.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2012-2014 Ecole Normale Superieure |
3 | | * Copyright 2014 INRIA Rocquencourt |
4 | | * |
5 | | * Use of this software is governed by the MIT license |
6 | | * |
7 | | * Written by Sven Verdoolaege, |
8 | | * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France |
9 | | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
10 | | * B.P. 105 - 78153 Le Chesnay, France |
11 | | */ |
12 | | |
13 | | #include <limits.h> |
14 | | #include <isl/id.h> |
15 | | #include <isl/val.h> |
16 | | #include <isl/space.h> |
17 | | #include <isl/aff.h> |
18 | | #include <isl/constraint.h> |
19 | | #include <isl/set.h> |
20 | | #include <isl/ilp.h> |
21 | | #include <isl/union_set.h> |
22 | | #include <isl/union_map.h> |
23 | | #include <isl/schedule_node.h> |
24 | | #include <isl/options.h> |
25 | | #include <isl_sort.h> |
26 | | #include <isl_tarjan.h> |
27 | | #include <isl_ast_private.h> |
28 | | #include <isl_ast_build_expr.h> |
29 | | #include <isl_ast_build_private.h> |
30 | | #include <isl_ast_graft_private.h> |
31 | | |
32 | | /* Try and reduce the number of disjuncts in the representation of "set", |
33 | | * without dropping explicit representations of local variables. |
34 | | */ |
35 | | static __isl_give isl_set *isl_set_coalesce_preserve(__isl_take isl_set *set) |
36 | 3.19k | { |
37 | 3.19k | isl_ctx *ctx; |
38 | 3.19k | int save_preserve; |
39 | 3.19k | |
40 | 3.19k | if (!set) |
41 | 0 | return NULL; |
42 | 3.19k | |
43 | 3.19k | ctx = isl_set_get_ctx(set); |
44 | 3.19k | save_preserve = isl_options_get_coalesce_preserve_locals(ctx); |
45 | 3.19k | isl_options_set_coalesce_preserve_locals(ctx, 1); |
46 | 3.19k | set = isl_set_coalesce(set); |
47 | 3.19k | isl_options_set_coalesce_preserve_locals(ctx, save_preserve); |
48 | 3.19k | return set; |
49 | 3.19k | } |
50 | | |
51 | | /* Data used in generate_domain. |
52 | | * |
53 | | * "build" is the input build. |
54 | | * "list" collects the results. |
55 | | */ |
56 | | struct isl_generate_domain_data { |
57 | | isl_ast_build *build; |
58 | | |
59 | | isl_ast_graft_list *list; |
60 | | }; |
61 | | |
62 | | static __isl_give isl_ast_graft_list *generate_next_level( |
63 | | __isl_take isl_union_map *executed, |
64 | | __isl_take isl_ast_build *build); |
65 | | static __isl_give isl_ast_graft_list *generate_code( |
66 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, |
67 | | int internal); |
68 | | |
69 | | /* Generate an AST for a single domain based on |
70 | | * the (non single valued) inverse schedule "executed". |
71 | | * |
72 | | * We extend the schedule with the iteration domain |
73 | | * and continue generating through a call to generate_code. |
74 | | * |
75 | | * In particular, if executed has the form |
76 | | * |
77 | | * S -> D |
78 | | * |
79 | | * then we continue generating code on |
80 | | * |
81 | | * [S -> D] -> D |
82 | | * |
83 | | * The extended inverse schedule is clearly single valued |
84 | | * ensuring that the nested generate_code will not reach this function, |
85 | | * but will instead create calls to all elements of D that need |
86 | | * to be executed from the current schedule domain. |
87 | | */ |
88 | | static isl_stat generate_non_single_valued(__isl_take isl_map *executed, |
89 | | struct isl_generate_domain_data *data) |
90 | 22 | { |
91 | 22 | isl_map *identity; |
92 | 22 | isl_ast_build *build; |
93 | 22 | isl_ast_graft_list *list; |
94 | 22 | |
95 | 22 | build = isl_ast_build_copy(data->build); |
96 | 22 | |
97 | 22 | identity = isl_set_identity(isl_map_range(isl_map_copy(executed))); |
98 | 22 | executed = isl_map_domain_product(executed, identity); |
99 | 22 | build = isl_ast_build_set_single_valued(build, 1); |
100 | 22 | |
101 | 22 | list = generate_code(isl_union_map_from_map(executed), build, 1); |
102 | 22 | |
103 | 22 | data->list = isl_ast_graft_list_concat(data->list, list); |
104 | 22 | |
105 | 22 | return isl_stat_ok; |
106 | 22 | } |
107 | | |
108 | | /* Call the at_each_domain callback, if requested by the user, |
109 | | * after recording the current inverse schedule in the build. |
110 | | */ |
111 | | static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft, |
112 | | __isl_keep isl_map *executed, __isl_keep isl_ast_build *build) |
113 | 2.23k | { |
114 | 2.23k | if (!graft || !build) |
115 | 0 | return isl_ast_graft_free(graft); |
116 | 2.23k | if (!build->at_each_domain) |
117 | 10 | return graft; |
118 | 2.22k | |
119 | 2.22k | build = isl_ast_build_copy(build); |
120 | 2.22k | build = isl_ast_build_set_executed(build, |
121 | 2.22k | isl_union_map_from_map(isl_map_copy(executed))); |
122 | 2.22k | if (!build) |
123 | 0 | return isl_ast_graft_free(graft); |
124 | 2.22k | |
125 | 2.22k | graft->node = build->at_each_domain(graft->node, |
126 | 2.22k | build, build->at_each_domain_user); |
127 | 2.22k | isl_ast_build_free(build); |
128 | 2.22k | |
129 | 2.22k | if (!graft->node) |
130 | 0 | graft = isl_ast_graft_free(graft); |
131 | 2.22k | |
132 | 2.22k | return graft; |
133 | 2.22k | } |
134 | | |
135 | | /* Generate a call expression for the single executed |
136 | | * domain element "map" and put a guard around it based its (simplified) |
137 | | * domain. "executed" is the original inverse schedule from which "map" |
138 | | * has been derived. In particular, "map" is either identical to "executed" |
139 | | * or it is the result of gisting "executed" with respect to the build domain. |
140 | | * "executed" is only used if there is an at_each_domain callback. |
141 | | * |
142 | | * At this stage, any pending constraints in the build can no longer |
143 | | * be simplified with respect to any enforced constraints since |
144 | | * the call node does not have any enforced constraints. |
145 | | * Since all pending constraints not covered by any enforced constraints |
146 | | * will be added as a guard to the graft in create_node_scaled, |
147 | | * even in the eliminated case, the pending constraints |
148 | | * can be considered to have been generated by outer constructs. |
149 | | * |
150 | | * If the user has set an at_each_domain callback, it is called |
151 | | * on the constructed call expression node. |
152 | | */ |
153 | | static isl_stat add_domain(__isl_take isl_map *executed, |
154 | | __isl_take isl_map *map, struct isl_generate_domain_data *data) |
155 | 2.23k | { |
156 | 2.23k | isl_ast_build *build; |
157 | 2.23k | isl_ast_graft *graft; |
158 | 2.23k | isl_ast_graft_list *list; |
159 | 2.23k | isl_set *guard, *pending; |
160 | 2.23k | |
161 | 2.23k | build = isl_ast_build_copy(data->build); |
162 | 2.23k | pending = isl_ast_build_get_pending(build); |
163 | 2.23k | build = isl_ast_build_replace_pending_by_guard(build, pending); |
164 | 2.23k | |
165 | 2.23k | guard = isl_map_domain(isl_map_copy(map)); |
166 | 2.23k | guard = isl_set_compute_divs(guard); |
167 | 2.23k | guard = isl_set_coalesce_preserve(guard); |
168 | 2.23k | guard = isl_set_gist(guard, isl_ast_build_get_generated(build)); |
169 | 2.23k | guard = isl_ast_build_specialize(build, guard); |
170 | 2.23k | |
171 | 2.23k | graft = isl_ast_graft_alloc_domain(map, build); |
172 | 2.23k | graft = at_each_domain(graft, executed, build); |
173 | 2.23k | isl_ast_build_free(build); |
174 | 2.23k | isl_map_free(executed); |
175 | 2.23k | graft = isl_ast_graft_add_guard(graft, guard, data->build); |
176 | 2.23k | |
177 | 2.23k | list = isl_ast_graft_list_from_ast_graft(graft); |
178 | 2.23k | data->list = isl_ast_graft_list_concat(data->list, list); |
179 | 2.23k | |
180 | 2.23k | return isl_stat_ok; |
181 | 2.23k | } |
182 | | |
183 | | /* Generate an AST for a single domain based on |
184 | | * the inverse schedule "executed" and add it to data->list. |
185 | | * |
186 | | * If there is more than one domain element associated to the current |
187 | | * schedule "time", then we need to continue the generation process |
188 | | * in generate_non_single_valued. |
189 | | * Note that the inverse schedule being single-valued may depend |
190 | | * on constraints that are only available in the original context |
191 | | * domain specified by the user. We therefore first introduce |
192 | | * some of the constraints of data->build->domain. In particular, |
193 | | * we intersect with a single-disjunct approximation of this set. |
194 | | * We perform this approximation to avoid further splitting up |
195 | | * the executed relation, possibly introducing a disjunctive guard |
196 | | * on the statement. |
197 | | * |
198 | | * On the other hand, we only perform the test after having taken the gist |
199 | | * of the domain as the resulting map is the one from which the call |
200 | | * expression is constructed. Using this map to construct the call |
201 | | * expression usually yields simpler results in cases where the original |
202 | | * map is not obviously single-valued. |
203 | | * If the original map is obviously single-valued, then the gist |
204 | | * operation is skipped. |
205 | | * |
206 | | * Because we perform the single-valuedness test on the gisted map, |
207 | | * we may in rare cases fail to recognize that the inverse schedule |
208 | | * is single-valued. This becomes problematic if this happens |
209 | | * from the recursive call through generate_non_single_valued |
210 | | * as we would then end up in an infinite recursion. |
211 | | * We therefore check if we are inside a call to generate_non_single_valued |
212 | | * and revert to the ungisted map if the gisted map turns out not to be |
213 | | * single-valued. |
214 | | * |
215 | | * Otherwise, call add_domain to generate a call expression (with guard) and |
216 | | * to call the at_each_domain callback, if any. |
217 | | */ |
218 | | static isl_stat generate_domain(__isl_take isl_map *executed, void *user) |
219 | 2.26k | { |
220 | 2.26k | struct isl_generate_domain_data *data = user; |
221 | 2.26k | isl_set *domain; |
222 | 2.26k | isl_map *map = NULL; |
223 | 2.26k | int empty, sv; |
224 | 2.26k | |
225 | 2.26k | domain = isl_ast_build_get_domain(data->build); |
226 | 2.26k | domain = isl_set_from_basic_set(isl_set_simple_hull(domain)); |
227 | 2.26k | executed = isl_map_intersect_domain(executed, domain); |
228 | 2.26k | empty = isl_map_is_empty(executed); |
229 | 2.26k | if (empty < 0) |
230 | 0 | goto error; |
231 | 2.26k | if (empty) { |
232 | 0 | isl_map_free(executed); |
233 | 0 | return isl_stat_ok; |
234 | 0 | } |
235 | 2.26k | |
236 | 2.26k | sv = isl_map_plain_is_single_valued(executed); |
237 | 2.26k | if (sv < 0) |
238 | 0 | goto error; |
239 | 2.26k | if (sv) |
240 | 899 | return add_domain(executed, isl_map_copy(executed), data); |
241 | 1.36k | |
242 | 1.36k | executed = isl_map_coalesce(executed); |
243 | 1.36k | map = isl_map_copy(executed); |
244 | 1.36k | map = isl_ast_build_compute_gist_map_domain(data->build, map); |
245 | 1.36k | sv = isl_map_is_single_valued(map); |
246 | 1.36k | if (sv < 0) |
247 | 0 | goto error; |
248 | 1.36k | if (!sv) { |
249 | 22 | isl_map_free(map); |
250 | 22 | if (data->build->single_valued) |
251 | 0 | map = isl_map_copy(executed); |
252 | 22 | else |
253 | 22 | return generate_non_single_valued(executed, data); |
254 | 1.33k | } |
255 | 1.33k | |
256 | 1.33k | return add_domain(executed, map, data); |
257 | 0 | error: |
258 | 0 | isl_map_free(map); |
259 | 0 | isl_map_free(executed); |
260 | 0 | return isl_stat_error; |
261 | 1.33k | } |
262 | | |
263 | | /* Call build->create_leaf to a create "leaf" node in the AST, |
264 | | * encapsulate the result in an isl_ast_graft and return the result |
265 | | * as a 1-element list. |
266 | | * |
267 | | * Note that the node returned by the user may be an entire tree. |
268 | | * |
269 | | * Since the node itself cannot enforce any constraints, we turn |
270 | | * all pending constraints into guards and add them to the resulting |
271 | | * graft to ensure that they will be generated. |
272 | | * |
273 | | * Before we pass control to the user, we first clear some information |
274 | | * from the build that is (presumbably) only meaningful |
275 | | * for the current code generation. |
276 | | * This includes the create_leaf callback itself, so we make a copy |
277 | | * of the build first. |
278 | | */ |
279 | | static __isl_give isl_ast_graft_list *call_create_leaf( |
280 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
281 | 3 | { |
282 | 3 | isl_set *guard; |
283 | 3 | isl_ast_node *node; |
284 | 3 | isl_ast_graft *graft; |
285 | 3 | isl_ast_build *user_build; |
286 | 3 | |
287 | 3 | guard = isl_ast_build_get_pending(build); |
288 | 3 | user_build = isl_ast_build_copy(build); |
289 | 3 | user_build = isl_ast_build_replace_pending_by_guard(user_build, |
290 | 3 | isl_set_copy(guard)); |
291 | 3 | user_build = isl_ast_build_set_executed(user_build, executed); |
292 | 3 | user_build = isl_ast_build_clear_local_info(user_build); |
293 | 3 | if (!user_build) |
294 | 0 | node = NULL; |
295 | 3 | else |
296 | 3 | node = build->create_leaf(user_build, build->create_leaf_user); |
297 | 3 | graft = isl_ast_graft_alloc(node, build); |
298 | 3 | graft = isl_ast_graft_add_guard(graft, guard, build); |
299 | 3 | isl_ast_build_free(build); |
300 | 3 | return isl_ast_graft_list_from_ast_graft(graft); |
301 | 3 | } |
302 | | |
303 | | static __isl_give isl_ast_graft_list *build_ast_from_child( |
304 | | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
305 | | __isl_take isl_union_map *executed); |
306 | | |
307 | | /* Generate an AST after having handled the complete schedule |
308 | | * of this call to the code generator or the complete band |
309 | | * if we are generating an AST from a schedule tree. |
310 | | * |
311 | | * If we are inside a band node, then move on to the child of the band. |
312 | | * |
313 | | * If the user has specified a create_leaf callback, control |
314 | | * is passed to the user in call_create_leaf. |
315 | | * |
316 | | * Otherwise, we generate one or more calls for each individual |
317 | | * domain in generate_domain. |
318 | | */ |
319 | | static __isl_give isl_ast_graft_list *generate_inner_level( |
320 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
321 | 4.47k | { |
322 | 4.47k | isl_ctx *ctx; |
323 | 4.47k | struct isl_generate_domain_data data = { build }; |
324 | 4.47k | |
325 | 4.47k | if (!build || !executed) |
326 | 0 | goto error; |
327 | 4.47k | |
328 | 4.47k | if (isl_ast_build_has_schedule_node(build)) { |
329 | 2.20k | isl_schedule_node *node; |
330 | 2.20k | node = isl_ast_build_get_schedule_node(build); |
331 | 2.20k | build = isl_ast_build_reset_schedule_node(build); |
332 | 2.20k | return build_ast_from_child(build, node, executed); |
333 | 2.20k | } |
334 | 2.26k | |
335 | 2.26k | if (build->create_leaf) |
336 | 3 | return call_create_leaf(executed, build); |
337 | 2.26k | |
338 | 2.26k | ctx = isl_union_map_get_ctx(executed); |
339 | 2.26k | data.list = isl_ast_graft_list_alloc(ctx, 0); |
340 | 2.26k | if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0) |
341 | 0 | data.list = isl_ast_graft_list_free(data.list); |
342 | 2.26k | |
343 | 2.26k | if (0) |
344 | 0 | error: data.list = NULL; |
345 | 2.26k | isl_ast_build_free(build); |
346 | 2.26k | isl_union_map_free(executed); |
347 | 2.26k | return data.list; |
348 | 2.26k | } |
349 | | |
350 | | /* Call the before_each_for callback, if requested by the user. |
351 | | */ |
352 | | static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node, |
353 | | __isl_keep isl_ast_build *build) |
354 | 749 | { |
355 | 749 | isl_id *id; |
356 | 749 | |
357 | 749 | if (!node || !build) |
358 | 0 | return isl_ast_node_free(node); |
359 | 749 | if (!build->before_each_for) |
360 | 472 | return node; |
361 | 277 | id = build->before_each_for(build, build->before_each_for_user); |
362 | 277 | node = isl_ast_node_set_annotation(node, id); |
363 | 277 | return node; |
364 | 277 | } |
365 | | |
366 | | /* Call the after_each_for callback, if requested by the user. |
367 | | */ |
368 | | static __isl_give isl_ast_graft *after_each_for(__isl_take isl_ast_graft *graft, |
369 | | __isl_keep isl_ast_build *build) |
370 | 749 | { |
371 | 749 | if (!graft || !build) |
372 | 0 | return isl_ast_graft_free(graft); |
373 | 749 | if (!build->after_each_for) |
374 | 472 | return graft; |
375 | 277 | graft->node = build->after_each_for(graft->node, build, |
376 | 277 | build->after_each_for_user); |
377 | 277 | if (!graft->node) |
378 | 0 | return isl_ast_graft_free(graft); |
379 | 277 | return graft; |
380 | 277 | } |
381 | | |
382 | | /* Plug in all the know values of the current and outer dimensions |
383 | | * in the domain of "executed". In principle, we only need to plug |
384 | | * in the known value of the current dimension since the values of |
385 | | * outer dimensions have been plugged in already. |
386 | | * However, it turns out to be easier to just plug in all known values. |
387 | | */ |
388 | | static __isl_give isl_union_map *plug_in_values( |
389 | | __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build) |
390 | 3.31k | { |
391 | 3.31k | return isl_ast_build_substitute_values_union_map_domain(build, |
392 | 3.31k | executed); |
393 | 3.31k | } |
394 | | |
395 | | /* Check if the constraint "c" is a lower bound on dimension "pos", |
396 | | * an upper bound, or independent of dimension "pos". |
397 | | */ |
398 | | static int constraint_type(isl_constraint *c, int pos) |
399 | 2.05k | { |
400 | 2.05k | if (isl_constraint_is_lower_bound(c, isl_dim_set, pos)) |
401 | 898 | return 1; |
402 | 1.16k | if (isl_constraint_is_upper_bound(c, isl_dim_set, pos)) |
403 | 1.04k | return 2; |
404 | 119 | return 0; |
405 | 119 | } |
406 | | |
407 | | /* Compare the types of the constraints "a" and "b", |
408 | | * resulting in constraints that are independent of "depth" |
409 | | * to be sorted before the lower bounds on "depth", which in |
410 | | * turn are sorted before the upper bounds on "depth". |
411 | | */ |
412 | | static int cmp_constraint(__isl_keep isl_constraint *a, |
413 | | __isl_keep isl_constraint *b, void *user) |
414 | 1.02k | { |
415 | 1.02k | int *depth = user; |
416 | 1.02k | int t1 = constraint_type(a, *depth); |
417 | 1.02k | int t2 = constraint_type(b, *depth); |
418 | 1.02k | |
419 | 1.02k | return t1 - t2; |
420 | 1.02k | } |
421 | | |
422 | | /* Extract a lower bound on dimension "pos" from constraint "c". |
423 | | * |
424 | | * If the constraint is of the form |
425 | | * |
426 | | * a x + f(...) >= 0 |
427 | | * |
428 | | * then we essentially return |
429 | | * |
430 | | * l = ceil(-f(...)/a) |
431 | | * |
432 | | * However, if the current dimension is strided, then we need to make |
433 | | * sure that the lower bound we construct is of the form |
434 | | * |
435 | | * f + s a |
436 | | * |
437 | | * with f the offset and s the stride. |
438 | | * We therefore compute |
439 | | * |
440 | | * f + s * ceil((l - f)/s) |
441 | | */ |
442 | | static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c, |
443 | | int pos, __isl_keep isl_ast_build *build) |
444 | 764 | { |
445 | 764 | isl_aff *aff; |
446 | 764 | |
447 | 764 | aff = isl_constraint_get_bound(c, isl_dim_set, pos); |
448 | 764 | aff = isl_aff_ceil(aff); |
449 | 764 | |
450 | 764 | if (isl_ast_build_has_stride(build, pos)) { |
451 | 12 | isl_aff *offset; |
452 | 12 | isl_val *stride; |
453 | 12 | |
454 | 12 | offset = isl_ast_build_get_offset(build, pos); |
455 | 12 | stride = isl_ast_build_get_stride(build, pos); |
456 | 12 | |
457 | 12 | aff = isl_aff_sub(aff, isl_aff_copy(offset)); |
458 | 12 | aff = isl_aff_scale_down_val(aff, isl_val_copy(stride)); |
459 | 12 | aff = isl_aff_ceil(aff); |
460 | 12 | aff = isl_aff_scale_val(aff, stride); |
461 | 12 | aff = isl_aff_add(aff, offset); |
462 | 12 | } |
463 | 764 | |
464 | 764 | aff = isl_ast_build_compute_gist_aff(build, aff); |
465 | 764 | |
466 | 764 | return aff; |
467 | 764 | } |
468 | | |
469 | | /* Return the exact lower bound (or upper bound if "upper" is set) |
470 | | * of "domain" as a piecewise affine expression. |
471 | | * |
472 | | * If we are computing a lower bound (of a strided dimension), then |
473 | | * we need to make sure it is of the form |
474 | | * |
475 | | * f + s a |
476 | | * |
477 | | * where f is the offset and s is the stride. |
478 | | * We therefore need to include the stride constraint before computing |
479 | | * the minimum. |
480 | | */ |
481 | | static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain, |
482 | | __isl_keep isl_ast_build *build, int upper) |
483 | 0 | { |
484 | 0 | isl_set *stride; |
485 | 0 | isl_map *it_map; |
486 | 0 | isl_pw_aff *pa; |
487 | 0 | isl_pw_multi_aff *pma; |
488 | 0 |
|
489 | 0 | domain = isl_set_copy(domain); |
490 | 0 | if (!upper) { |
491 | 0 | stride = isl_ast_build_get_stride_constraint(build); |
492 | 0 | domain = isl_set_intersect(domain, stride); |
493 | 0 | } |
494 | 0 | it_map = isl_ast_build_map_to_iterator(build, domain); |
495 | 0 | if (upper) |
496 | 0 | pma = isl_map_lexmax_pw_multi_aff(it_map); |
497 | 0 | else |
498 | 0 | pma = isl_map_lexmin_pw_multi_aff(it_map); |
499 | 0 | pa = isl_pw_multi_aff_get_pw_aff(pma, 0); |
500 | 0 | isl_pw_multi_aff_free(pma); |
501 | 0 | pa = isl_ast_build_compute_gist_pw_aff(build, pa); |
502 | 0 | pa = isl_pw_aff_coalesce(pa); |
503 | 0 |
|
504 | 0 | return pa; |
505 | 0 | } |
506 | | |
507 | | /* Callback for sorting the isl_pw_aff_list passed to reduce_list and |
508 | | * remove_redundant_lower_bounds. |
509 | | */ |
510 | | static int reduce_list_cmp(__isl_keep isl_pw_aff *a, __isl_keep isl_pw_aff *b, |
511 | | void *user) |
512 | 100 | { |
513 | 100 | return isl_pw_aff_plain_cmp(a, b); |
514 | 100 | } |
515 | | |
516 | | /* Given a list of lower bounds "list", remove those that are redundant |
517 | | * with respect to the other bounds in "list" and the domain of "build". |
518 | | * |
519 | | * We first sort the bounds in the same way as they would be sorted |
520 | | * by set_for_node_expressions so that we can try and remove the last |
521 | | * bounds first. |
522 | | * |
523 | | * For a lower bound to be effective, there needs to be at least |
524 | | * one domain element for which it is larger than all other lower bounds. |
525 | | * For each lower bound we therefore intersect the domain with |
526 | | * the conditions that it is larger than all other bounds and |
527 | | * check whether the result is empty. If so, the bound can be removed. |
528 | | */ |
529 | | static __isl_give isl_pw_aff_list *remove_redundant_lower_bounds( |
530 | | __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build) |
531 | 12 | { |
532 | 12 | int i, j, n; |
533 | 12 | isl_set *domain; |
534 | 12 | |
535 | 12 | list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL); |
536 | 12 | if (!list) |
537 | 0 | return NULL; |
538 | 12 | |
539 | 12 | n = isl_pw_aff_list_n_pw_aff(list); |
540 | 12 | if (n <= 1) |
541 | 12 | return list; |
542 | 0 | |
543 | 0 | domain = isl_ast_build_get_domain(build); |
544 | 0 |
|
545 | 0 | for (i = n - 1; i >= 0; --i) { |
546 | 0 | isl_pw_aff *pa_i; |
547 | 0 | isl_set *domain_i; |
548 | 0 | int empty; |
549 | 0 |
|
550 | 0 | domain_i = isl_set_copy(domain); |
551 | 0 | pa_i = isl_pw_aff_list_get_pw_aff(list, i); |
552 | 0 |
|
553 | 0 | for (j = 0; j < n; ++j) { |
554 | 0 | isl_pw_aff *pa_j; |
555 | 0 | isl_set *better; |
556 | 0 |
|
557 | 0 | if (j == i) |
558 | 0 | continue; |
559 | 0 | |
560 | 0 | pa_j = isl_pw_aff_list_get_pw_aff(list, j); |
561 | 0 | better = isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i), pa_j); |
562 | 0 | domain_i = isl_set_intersect(domain_i, better); |
563 | 0 | } |
564 | 0 |
|
565 | 0 | empty = isl_set_is_empty(domain_i); |
566 | 0 |
|
567 | 0 | isl_set_free(domain_i); |
568 | 0 | isl_pw_aff_free(pa_i); |
569 | 0 |
|
570 | 0 | if (empty < 0) |
571 | 0 | goto error; |
572 | 0 | if (!empty) |
573 | 0 | continue; |
574 | 0 | list = isl_pw_aff_list_drop(list, i, 1); |
575 | 0 | n--; |
576 | 0 | } |
577 | 0 |
|
578 | 0 | isl_set_free(domain); |
579 | 0 |
|
580 | 0 | return list; |
581 | 0 | error: |
582 | 0 | isl_set_free(domain); |
583 | 0 | return isl_pw_aff_list_free(list); |
584 | 0 | } |
585 | | |
586 | | /* Extract a lower bound on dimension "pos" from each constraint |
587 | | * in "constraints" and return the list of lower bounds. |
588 | | * If "constraints" has zero elements, then we extract a lower bound |
589 | | * from "domain" instead. |
590 | | * |
591 | | * If the current dimension is strided, then the lower bound |
592 | | * is adjusted by lower_bound to match the stride information. |
593 | | * This modification may make one or more lower bounds redundant |
594 | | * with respect to the other lower bounds. We therefore check |
595 | | * for this condition and remove the redundant lower bounds. |
596 | | */ |
597 | | static __isl_give isl_pw_aff_list *lower_bounds( |
598 | | __isl_keep isl_constraint_list *constraints, int pos, |
599 | | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
600 | 749 | { |
601 | 749 | isl_ctx *ctx; |
602 | 749 | isl_pw_aff_list *list; |
603 | 749 | int i, n; |
604 | 749 | |
605 | 749 | if (!build) |
606 | 0 | return NULL; |
607 | 749 | |
608 | 749 | n = isl_constraint_list_n_constraint(constraints); |
609 | 749 | if (n == 0) { |
610 | 0 | isl_pw_aff *pa; |
611 | 0 | pa = exact_bound(domain, build, 0); |
612 | 0 | return isl_pw_aff_list_from_pw_aff(pa); |
613 | 0 | } |
614 | 749 | |
615 | 749 | ctx = isl_ast_build_get_ctx(build); |
616 | 749 | list = isl_pw_aff_list_alloc(ctx,n); |
617 | 749 | |
618 | 1.51k | for (i = 0; i < n; ++i764 ) { |
619 | 764 | isl_aff *aff; |
620 | 764 | isl_constraint *c; |
621 | 764 | |
622 | 764 | c = isl_constraint_list_get_constraint(constraints, i); |
623 | 764 | aff = lower_bound(c, pos, build); |
624 | 764 | isl_constraint_free(c); |
625 | 764 | list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff)); |
626 | 764 | } |
627 | 749 | |
628 | 749 | if (isl_ast_build_has_stride(build, pos)) |
629 | 12 | list = remove_redundant_lower_bounds(list, build); |
630 | 749 | |
631 | 749 | return list; |
632 | 749 | } |
633 | | |
634 | | /* Extract an upper bound on dimension "pos" from each constraint |
635 | | * in "constraints" and return the list of upper bounds. |
636 | | * If "constraints" has zero elements, then we extract an upper bound |
637 | | * from "domain" instead. |
638 | | */ |
639 | | static __isl_give isl_pw_aff_list *upper_bounds( |
640 | | __isl_keep isl_constraint_list *constraints, int pos, |
641 | | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
642 | 749 | { |
643 | 749 | isl_ctx *ctx; |
644 | 749 | isl_pw_aff_list *list; |
645 | 749 | int i, n; |
646 | 749 | |
647 | 749 | n = isl_constraint_list_n_constraint(constraints); |
648 | 749 | if (n == 0) { |
649 | 0 | isl_pw_aff *pa; |
650 | 0 | pa = exact_bound(domain, build, 1); |
651 | 0 | return isl_pw_aff_list_from_pw_aff(pa); |
652 | 0 | } |
653 | 749 | |
654 | 749 | ctx = isl_ast_build_get_ctx(build); |
655 | 749 | list = isl_pw_aff_list_alloc(ctx,n); |
656 | 749 | |
657 | 1.58k | for (i = 0; i < n; ++i832 ) { |
658 | 832 | isl_aff *aff; |
659 | 832 | isl_constraint *c; |
660 | 832 | |
661 | 832 | c = isl_constraint_list_get_constraint(constraints, i); |
662 | 832 | aff = isl_constraint_get_bound(c, isl_dim_set, pos); |
663 | 832 | isl_constraint_free(c); |
664 | 832 | aff = isl_aff_floor(aff); |
665 | 832 | list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff)); |
666 | 832 | } |
667 | 749 | |
668 | 749 | return list; |
669 | 749 | } |
670 | | |
671 | | /* Return an isl_ast_expr that performs the reduction of type "type" |
672 | | * on AST expressions corresponding to the elements in "list". |
673 | | * |
674 | | * The list is assumed to contain at least one element. |
675 | | * If the list contains exactly one element, then the returned isl_ast_expr |
676 | | * simply computes that affine expression. |
677 | | * If the list contains more than one element, then we sort it |
678 | | * using a fairly abitrary but hopefully reasonably stable order. |
679 | | */ |
680 | | static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type, |
681 | | __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build) |
682 | 1.49k | { |
683 | 1.49k | int i, n; |
684 | 1.49k | isl_ctx *ctx; |
685 | 1.49k | isl_ast_expr *expr; |
686 | 1.49k | |
687 | 1.49k | if (!list) |
688 | 0 | return NULL; |
689 | 1.49k | |
690 | 1.49k | n = isl_pw_aff_list_n_pw_aff(list); |
691 | 1.49k | |
692 | 1.49k | if (n == 1) |
693 | 1.40k | return isl_ast_build_expr_from_pw_aff_internal(build, |
694 | 1.40k | isl_pw_aff_list_get_pw_aff(list, 0)); |
695 | 95 | |
696 | 95 | ctx = isl_pw_aff_list_get_ctx(list); |
697 | 95 | expr = isl_ast_expr_alloc_op(ctx, type, n); |
698 | 95 | if (!expr) |
699 | 0 | return NULL; |
700 | 95 | |
701 | 95 | list = isl_pw_aff_list_copy(list); |
702 | 95 | list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL); |
703 | 95 | if (!list) |
704 | 0 | return isl_ast_expr_free(expr); |
705 | 95 | |
706 | 288 | for (i = 0; 95 i < n; ++i193 ) { |
707 | 193 | isl_ast_expr *expr_i; |
708 | 193 | |
709 | 193 | expr_i = isl_ast_build_expr_from_pw_aff_internal(build, |
710 | 193 | isl_pw_aff_list_get_pw_aff(list, i)); |
711 | 193 | if (!expr_i) |
712 | 0 | goto error; |
713 | 193 | expr->u.op.args[i] = expr_i; |
714 | 193 | } |
715 | 95 | |
716 | 95 | isl_pw_aff_list_free(list); |
717 | 95 | return expr; |
718 | 0 | error: |
719 | 0 | isl_pw_aff_list_free(list); |
720 | 0 | isl_ast_expr_free(expr); |
721 | 0 | return NULL; |
722 | 95 | } |
723 | | |
724 | | /* Add guards implied by the "generated constraints", |
725 | | * but not (necessarily) enforced by the generated AST to "guard". |
726 | | * In particular, if there is any stride constraints, |
727 | | * then add the guard implied by those constraints. |
728 | | * If we have generated a degenerate loop, then add the guard |
729 | | * implied by "bounds" on the outer dimensions, i.e., the guard |
730 | | * that ensures that the single value actually exists. |
731 | | * Since there may also be guards implied by a combination |
732 | | * of these constraints, we first combine them before |
733 | | * deriving the implied constraints. |
734 | | */ |
735 | | static __isl_give isl_set *add_implied_guards(__isl_take isl_set *guard, |
736 | | int degenerate, __isl_keep isl_basic_set *bounds, |
737 | | __isl_keep isl_ast_build *build) |
738 | 749 | { |
739 | 749 | int depth, has_stride; |
740 | 749 | isl_space *space; |
741 | 749 | isl_set *dom, *set; |
742 | 749 | |
743 | 749 | depth = isl_ast_build_get_depth(build); |
744 | 749 | has_stride = isl_ast_build_has_stride(build, depth); |
745 | 749 | if (!has_stride && !degenerate737 ) |
746 | 737 | return guard; |
747 | 12 | |
748 | 12 | space = isl_basic_set_get_space(bounds); |
749 | 12 | dom = isl_set_universe(space); |
750 | 12 | |
751 | 12 | if (degenerate) { |
752 | 0 | bounds = isl_basic_set_copy(bounds); |
753 | 0 | bounds = isl_basic_set_drop_constraints_not_involving_dims( |
754 | 0 | bounds, isl_dim_set, depth, 1); |
755 | 0 | set = isl_set_from_basic_set(bounds); |
756 | 0 | dom = isl_set_intersect(dom, set); |
757 | 0 | } |
758 | 12 | |
759 | 12 | if (has_stride) { |
760 | 12 | set = isl_ast_build_get_stride_constraint(build); |
761 | 12 | dom = isl_set_intersect(dom, set); |
762 | 12 | } |
763 | 12 | |
764 | 12 | dom = isl_set_eliminate(dom, isl_dim_set, depth, 1); |
765 | 12 | dom = isl_ast_build_compute_gist(build, dom); |
766 | 12 | guard = isl_set_intersect(guard, dom); |
767 | 12 | |
768 | 12 | return guard; |
769 | 12 | } |
770 | | |
771 | | /* Update "graft" based on "sub_build" for the degenerate case. |
772 | | * |
773 | | * "build" is the build in which graft->node was created |
774 | | * "sub_build" contains information about the current level itself, |
775 | | * including the single value attained. |
776 | | * |
777 | | * We set the initialization part of the for loop to the single |
778 | | * value attained by the current dimension. |
779 | | * The increment and condition are not strictly needed as the are known |
780 | | * to be "1" and "iterator <= value" respectively. |
781 | | */ |
782 | | static __isl_give isl_ast_graft *refine_degenerate( |
783 | | __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build, |
784 | | __isl_keep isl_ast_build *sub_build) |
785 | 0 | { |
786 | 0 | isl_pw_aff *value; |
787 | 0 |
|
788 | 0 | if (!graft || !sub_build) |
789 | 0 | return isl_ast_graft_free(graft); |
790 | 0 | |
791 | 0 | value = isl_pw_aff_copy(sub_build->value); |
792 | 0 |
|
793 | 0 | graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build, |
794 | 0 | value); |
795 | 0 | if (!graft->node->u.f.init) |
796 | 0 | return isl_ast_graft_free(graft); |
797 | 0 | |
798 | 0 | return graft; |
799 | 0 | } |
800 | | |
801 | | /* Return the intersection of constraints in "list" as a set. |
802 | | */ |
803 | | static __isl_give isl_set *intersect_constraints( |
804 | | __isl_keep isl_constraint_list *list) |
805 | 0 | { |
806 | 0 | int i, n; |
807 | 0 | isl_basic_set *bset; |
808 | 0 |
|
809 | 0 | n = isl_constraint_list_n_constraint(list); |
810 | 0 | if (n < 1) |
811 | 0 | isl_die(isl_constraint_list_get_ctx(list), isl_error_internal, |
812 | 0 | "expecting at least one constraint", return NULL); |
813 | 0 |
|
814 | 0 | bset = isl_basic_set_from_constraint( |
815 | 0 | isl_constraint_list_get_constraint(list, 0)); |
816 | 0 | for (i = 1; i < n; ++i) { |
817 | 0 | isl_basic_set *bset_i; |
818 | 0 |
|
819 | 0 | bset_i = isl_basic_set_from_constraint( |
820 | 0 | isl_constraint_list_get_constraint(list, i)); |
821 | 0 | bset = isl_basic_set_intersect(bset, bset_i); |
822 | 0 | } |
823 | 0 |
|
824 | 0 | return isl_set_from_basic_set(bset); |
825 | 0 | } |
826 | | |
827 | | /* Compute the constraints on the outer dimensions enforced by |
828 | | * graft->node and add those constraints to graft->enforced, |
829 | | * in case the upper bound is expressed as a set "upper". |
830 | | * |
831 | | * In particular, if l(...) is a lower bound in "lower", and |
832 | | * |
833 | | * -a i + f(...) >= 0 or a i <= f(...) |
834 | | * |
835 | | * is an upper bound ocnstraint on the current dimension i, |
836 | | * then the for loop enforces the constraint |
837 | | * |
838 | | * -a l(...) + f(...) >= 0 or a l(...) <= f(...) |
839 | | * |
840 | | * We therefore simply take each lower bound in turn, plug it into |
841 | | * the upper bounds and compute the intersection over all lower bounds. |
842 | | * |
843 | | * If a lower bound is a rational expression, then |
844 | | * isl_basic_set_preimage_multi_aff will force this rational |
845 | | * expression to have only integer values. However, the loop |
846 | | * itself does not enforce this integrality constraint. We therefore |
847 | | * use the ceil of the lower bounds instead of the lower bounds themselves. |
848 | | * Other constraints will make sure that the for loop is only executed |
849 | | * when each of the lower bounds attains an integral value. |
850 | | * In particular, potentially rational values only occur in |
851 | | * lower_bound if the offset is a (seemingly) rational expression, |
852 | | * but then outer conditions will make sure that this rational expression |
853 | | * only attains integer values. |
854 | | */ |
855 | | static __isl_give isl_ast_graft *set_enforced_from_set( |
856 | | __isl_take isl_ast_graft *graft, |
857 | | __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper) |
858 | 0 | { |
859 | 0 | isl_space *space; |
860 | 0 | isl_basic_set *enforced; |
861 | 0 | isl_pw_multi_aff *pma; |
862 | 0 | int i, n; |
863 | 0 |
|
864 | 0 | if (!graft || !lower) |
865 | 0 | return isl_ast_graft_free(graft); |
866 | 0 | |
867 | 0 | space = isl_set_get_space(upper); |
868 | 0 | enforced = isl_basic_set_universe(isl_space_copy(space)); |
869 | 0 |
|
870 | 0 | space = isl_space_map_from_set(space); |
871 | 0 | pma = isl_pw_multi_aff_identity(space); |
872 | 0 |
|
873 | 0 | n = isl_pw_aff_list_n_pw_aff(lower); |
874 | 0 | for (i = 0; i < n; ++i) { |
875 | 0 | isl_pw_aff *pa; |
876 | 0 | isl_set *enforced_i; |
877 | 0 | isl_basic_set *hull; |
878 | 0 | isl_pw_multi_aff *pma_i; |
879 | 0 |
|
880 | 0 | pa = isl_pw_aff_list_get_pw_aff(lower, i); |
881 | 0 | pa = isl_pw_aff_ceil(pa); |
882 | 0 | pma_i = isl_pw_multi_aff_copy(pma); |
883 | 0 | pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa); |
884 | 0 | enforced_i = isl_set_copy(upper); |
885 | 0 | enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i); |
886 | 0 | hull = isl_set_simple_hull(enforced_i); |
887 | 0 | enforced = isl_basic_set_intersect(enforced, hull); |
888 | 0 | } |
889 | 0 |
|
890 | 0 | isl_pw_multi_aff_free(pma); |
891 | 0 |
|
892 | 0 | graft = isl_ast_graft_enforce(graft, enforced); |
893 | 0 |
|
894 | 0 | return graft; |
895 | 0 | } |
896 | | |
897 | | /* Compute the constraints on the outer dimensions enforced by |
898 | | * graft->node and add those constraints to graft->enforced, |
899 | | * in case the upper bound is expressed as |
900 | | * a list of affine expressions "upper". |
901 | | * |
902 | | * The enforced condition is that each lower bound expression is less |
903 | | * than or equal to each upper bound expression. |
904 | | */ |
905 | | static __isl_give isl_ast_graft *set_enforced_from_list( |
906 | | __isl_take isl_ast_graft *graft, |
907 | | __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper) |
908 | 749 | { |
909 | 749 | isl_set *cond; |
910 | 749 | isl_basic_set *enforced; |
911 | 749 | |
912 | 749 | lower = isl_pw_aff_list_copy(lower); |
913 | 749 | upper = isl_pw_aff_list_copy(upper); |
914 | 749 | cond = isl_pw_aff_list_le_set(lower, upper); |
915 | 749 | enforced = isl_set_simple_hull(cond); |
916 | 749 | graft = isl_ast_graft_enforce(graft, enforced); |
917 | 749 | |
918 | 749 | return graft; |
919 | 749 | } |
920 | | |
921 | | /* Does "aff" have a negative constant term? |
922 | | */ |
923 | | static isl_stat aff_constant_is_negative(__isl_take isl_set *set, |
924 | | __isl_take isl_aff *aff, void *user) |
925 | 764 | { |
926 | 764 | int *neg = user; |
927 | 764 | isl_val *v; |
928 | 764 | |
929 | 764 | v = isl_aff_get_constant_val(aff); |
930 | 764 | *neg = isl_val_is_neg(v); |
931 | 764 | isl_val_free(v); |
932 | 764 | isl_set_free(set); |
933 | 764 | isl_aff_free(aff); |
934 | 764 | |
935 | 764 | return *neg ? isl_stat_ok187 : isl_stat_error577 ; |
936 | 764 | } |
937 | | |
938 | | /* Does "pa" have a negative constant term over its entire domain? |
939 | | */ |
940 | | static isl_stat pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, |
941 | | void *user) |
942 | 764 | { |
943 | 764 | isl_stat r; |
944 | 764 | int *neg = user; |
945 | 764 | |
946 | 764 | r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user); |
947 | 764 | isl_pw_aff_free(pa); |
948 | 764 | |
949 | 764 | return (*neg && r >= 0187 ) ? isl_stat_ok187 : isl_stat_error577 ; |
950 | 764 | } |
951 | | |
952 | | /* Does each element in "list" have a negative constant term? |
953 | | * |
954 | | * The callback terminates the iteration as soon an element has been |
955 | | * found that does not have a negative constant term. |
956 | | */ |
957 | | static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list) |
958 | 749 | { |
959 | 749 | int neg = 1; |
960 | 749 | |
961 | 749 | if (isl_pw_aff_list_foreach(list, |
962 | 749 | &pw_aff_constant_is_negative, &neg) < 0 && neg577 ) |
963 | 0 | return -1; |
964 | 749 | |
965 | 749 | return neg; |
966 | 749 | } |
967 | | |
968 | | /* Add 1 to each of the elements in "list", where each of these elements |
969 | | * is defined over the internal schedule space of "build". |
970 | | */ |
971 | | static __isl_give isl_pw_aff_list *list_add_one( |
972 | | __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build) |
973 | 172 | { |
974 | 172 | int i, n; |
975 | 172 | isl_space *space; |
976 | 172 | isl_aff *aff; |
977 | 172 | isl_pw_aff *one; |
978 | 172 | |
979 | 172 | space = isl_ast_build_get_space(build, 1); |
980 | 172 | aff = isl_aff_zero_on_domain(isl_local_space_from_space(space)); |
981 | 172 | aff = isl_aff_add_constant_si(aff, 1); |
982 | 172 | one = isl_pw_aff_from_aff(aff); |
983 | 172 | |
984 | 172 | n = isl_pw_aff_list_n_pw_aff(list); |
985 | 344 | for (i = 0; i < n; ++i172 ) { |
986 | 172 | isl_pw_aff *pa; |
987 | 172 | pa = isl_pw_aff_list_get_pw_aff(list, i); |
988 | 172 | pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one)); |
989 | 172 | list = isl_pw_aff_list_set_pw_aff(list, i, pa); |
990 | 172 | } |
991 | 172 | |
992 | 172 | isl_pw_aff_free(one); |
993 | 172 | |
994 | 172 | return list; |
995 | 172 | } |
996 | | |
997 | | /* Set the condition part of the for node graft->node in case |
998 | | * the upper bound is represented as a list of piecewise affine expressions. |
999 | | * |
1000 | | * In particular, set the condition to |
1001 | | * |
1002 | | * iterator <= min(list of upper bounds) |
1003 | | * |
1004 | | * If each of the upper bounds has a negative constant term, then |
1005 | | * set the condition to |
1006 | | * |
1007 | | * iterator < min(list of (upper bound + 1)s) |
1008 | | * |
1009 | | */ |
1010 | | static __isl_give isl_ast_graft *set_for_cond_from_list( |
1011 | | __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list, |
1012 | | __isl_keep isl_ast_build *build) |
1013 | 749 | { |
1014 | 749 | int neg; |
1015 | 749 | isl_ast_expr *bound, *iterator, *cond; |
1016 | 749 | enum isl_ast_op_type type = isl_ast_op_le; |
1017 | 749 | |
1018 | 749 | if (!graft || !list) |
1019 | 0 | return isl_ast_graft_free(graft); |
1020 | 749 | |
1021 | 749 | neg = list_constant_is_negative(list); |
1022 | 749 | if (neg < 0) |
1023 | 0 | return isl_ast_graft_free(graft); |
1024 | 749 | list = isl_pw_aff_list_copy(list); |
1025 | 749 | if (neg) { |
1026 | 172 | list = list_add_one(list, build); |
1027 | 172 | type = isl_ast_op_lt; |
1028 | 172 | } |
1029 | 749 | |
1030 | 749 | bound = reduce_list(isl_ast_op_min, list, build); |
1031 | 749 | iterator = isl_ast_expr_copy(graft->node->u.f.iterator); |
1032 | 749 | cond = isl_ast_expr_alloc_binary(type, iterator, bound); |
1033 | 749 | graft->node->u.f.cond = cond; |
1034 | 749 | |
1035 | 749 | isl_pw_aff_list_free(list); |
1036 | 749 | if (!graft->node->u.f.cond) |
1037 | 0 | return isl_ast_graft_free(graft); |
1038 | 749 | return graft; |
1039 | 749 | } |
1040 | | |
1041 | | /* Set the condition part of the for node graft->node in case |
1042 | | * the upper bound is represented as a set. |
1043 | | */ |
1044 | | static __isl_give isl_ast_graft *set_for_cond_from_set( |
1045 | | __isl_take isl_ast_graft *graft, __isl_keep isl_set *set, |
1046 | | __isl_keep isl_ast_build *build) |
1047 | 0 | { |
1048 | 0 | isl_ast_expr *cond; |
1049 | 0 |
|
1050 | 0 | if (!graft) |
1051 | 0 | return NULL; |
1052 | 0 | |
1053 | 0 | cond = isl_ast_build_expr_from_set_internal(build, isl_set_copy(set)); |
1054 | 0 | graft->node->u.f.cond = cond; |
1055 | 0 | if (!graft->node->u.f.cond) |
1056 | 0 | return isl_ast_graft_free(graft); |
1057 | 0 | return graft; |
1058 | 0 | } |
1059 | | |
1060 | | /* Construct an isl_ast_expr for the increment (i.e., stride) of |
1061 | | * the current dimension. |
1062 | | */ |
1063 | | static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build) |
1064 | 749 | { |
1065 | 749 | int depth; |
1066 | 749 | isl_val *v; |
1067 | 749 | isl_ctx *ctx; |
1068 | 749 | |
1069 | 749 | if (!build) |
1070 | 0 | return NULL; |
1071 | 749 | ctx = isl_ast_build_get_ctx(build); |
1072 | 749 | depth = isl_ast_build_get_depth(build); |
1073 | 749 | |
1074 | 749 | if (!isl_ast_build_has_stride(build, depth)) |
1075 | 737 | return isl_ast_expr_alloc_int_si(ctx, 1); |
1076 | 12 | |
1077 | 12 | v = isl_ast_build_get_stride(build, depth); |
1078 | 12 | return isl_ast_expr_from_val(v); |
1079 | 12 | } |
1080 | | |
1081 | | /* Should we express the loop condition as |
1082 | | * |
1083 | | * iterator <= min(list of upper bounds) |
1084 | | * |
1085 | | * or as a conjunction of constraints? |
1086 | | * |
1087 | | * The first is constructed from a list of upper bounds. |
1088 | | * The second is constructed from a set. |
1089 | | * |
1090 | | * If there are no upper bounds in "constraints", then this could mean |
1091 | | * that "domain" simply doesn't have an upper bound or that we didn't |
1092 | | * pick any upper bound. In the first case, we want to generate the |
1093 | | * loop condition as a(n empty) conjunction of constraints |
1094 | | * In the second case, we will compute |
1095 | | * a single upper bound from "domain" and so we use the list form. |
1096 | | * |
1097 | | * If there are upper bounds in "constraints", |
1098 | | * then we use the list form iff the atomic_upper_bound option is set. |
1099 | | */ |
1100 | | static int use_upper_bound_list(isl_ctx *ctx, int n_upper, |
1101 | | __isl_keep isl_set *domain, int depth) |
1102 | 749 | { |
1103 | 749 | if (n_upper > 0) |
1104 | 749 | return isl_options_get_ast_build_atomic_upper_bound(ctx); |
1105 | 0 | else |
1106 | 0 | return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth); |
1107 | 749 | } |
1108 | | |
1109 | | /* Fill in the expressions of the for node in graft->node. |
1110 | | * |
1111 | | * In particular, |
1112 | | * - set the initialization part of the loop to the maximum of the lower bounds |
1113 | | * - extract the increment from the stride of the current dimension |
1114 | | * - construct the for condition either based on a list of upper bounds |
1115 | | * or on a set of upper bound constraints. |
1116 | | */ |
1117 | | static __isl_give isl_ast_graft *set_for_node_expressions( |
1118 | | __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower, |
1119 | | int use_list, __isl_keep isl_pw_aff_list *upper_list, |
1120 | | __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build) |
1121 | 749 | { |
1122 | 749 | isl_ast_node *node; |
1123 | 749 | |
1124 | 749 | if (!graft) |
1125 | 0 | return NULL; |
1126 | 749 | |
1127 | 749 | build = isl_ast_build_copy(build); |
1128 | 749 | |
1129 | 749 | node = graft->node; |
1130 | 749 | node->u.f.init = reduce_list(isl_ast_op_max, lower, build); |
1131 | 749 | node->u.f.inc = for_inc(build); |
1132 | 749 | |
1133 | 749 | if (!node->u.f.init || !node->u.f.inc) |
1134 | 0 | graft = isl_ast_graft_free(graft); |
1135 | 749 | |
1136 | 749 | if (use_list) |
1137 | 749 | graft = set_for_cond_from_list(graft, upper_list, build); |
1138 | 0 | else |
1139 | 0 | graft = set_for_cond_from_set(graft, upper_set, build); |
1140 | 749 | |
1141 | 749 | isl_ast_build_free(build); |
1142 | 749 | |
1143 | 749 | return graft; |
1144 | 749 | } |
1145 | | |
1146 | | /* Update "graft" based on "bounds" and "domain" for the generic, |
1147 | | * non-degenerate, case. |
1148 | | * |
1149 | | * "c_lower" and "c_upper" contain the lower and upper bounds |
1150 | | * that the loop node should express. |
1151 | | * "domain" is the subset of the intersection of the constraints |
1152 | | * for which some code is executed. |
1153 | | * |
1154 | | * There may be zero lower bounds or zero upper bounds in "constraints" |
1155 | | * in case the list of constraints was created |
1156 | | * based on the atomic option or based on separation with explicit bounds. |
1157 | | * In that case, we use "domain" to derive lower and/or upper bounds. |
1158 | | * |
1159 | | * We first compute a list of one or more lower bounds. |
1160 | | * |
1161 | | * Then we decide if we want to express the condition as |
1162 | | * |
1163 | | * iterator <= min(list of upper bounds) |
1164 | | * |
1165 | | * or as a conjunction of constraints. |
1166 | | * |
1167 | | * The set of enforced constraints is then computed either based on |
1168 | | * a list of upper bounds or on a set of upper bound constraints. |
1169 | | * We do not compute any enforced constraints if we were forced |
1170 | | * to compute a lower or upper bound using exact_bound. The domains |
1171 | | * of the resulting expressions may imply some bounds on outer dimensions |
1172 | | * that we do not want to appear in the enforced constraints since |
1173 | | * they are not actually enforced by the corresponding code. |
1174 | | * |
1175 | | * Finally, we fill in the expressions of the for node. |
1176 | | */ |
1177 | | static __isl_give isl_ast_graft *refine_generic_bounds( |
1178 | | __isl_take isl_ast_graft *graft, |
1179 | | __isl_take isl_constraint_list *c_lower, |
1180 | | __isl_take isl_constraint_list *c_upper, |
1181 | | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
1182 | 749 | { |
1183 | 749 | int depth; |
1184 | 749 | isl_ctx *ctx; |
1185 | 749 | isl_pw_aff_list *lower; |
1186 | 749 | int use_list; |
1187 | 749 | isl_set *upper_set = NULL; |
1188 | 749 | isl_pw_aff_list *upper_list = NULL; |
1189 | 749 | int n_lower, n_upper; |
1190 | 749 | |
1191 | 749 | if (!graft || !c_lower || !c_upper || !build) |
1192 | 0 | goto error; |
1193 | 749 | |
1194 | 749 | depth = isl_ast_build_get_depth(build); |
1195 | 749 | ctx = isl_ast_graft_get_ctx(graft); |
1196 | 749 | |
1197 | 749 | n_lower = isl_constraint_list_n_constraint(c_lower); |
1198 | 749 | n_upper = isl_constraint_list_n_constraint(c_upper); |
1199 | 749 | |
1200 | 749 | use_list = use_upper_bound_list(ctx, n_upper, domain, depth); |
1201 | 749 | |
1202 | 749 | lower = lower_bounds(c_lower, depth, domain, build); |
1203 | 749 | |
1204 | 749 | if (use_list) |
1205 | 749 | upper_list = upper_bounds(c_upper, depth, domain, build); |
1206 | 0 | else if (n_upper > 0) |
1207 | 0 | upper_set = intersect_constraints(c_upper); |
1208 | 0 | else |
1209 | 0 | upper_set = isl_set_universe(isl_set_get_space(domain)); |
1210 | 749 | |
1211 | 749 | if (n_lower == 0 || n_upper == 0) |
1212 | 0 | ; |
1213 | 749 | else if (use_list) |
1214 | 749 | graft = set_enforced_from_list(graft, lower, upper_list); |
1215 | 0 | else |
1216 | 0 | graft = set_enforced_from_set(graft, lower, depth, upper_set); |
1217 | 749 | |
1218 | 749 | graft = set_for_node_expressions(graft, lower, use_list, upper_list, |
1219 | 749 | upper_set, build); |
1220 | 749 | |
1221 | 749 | isl_pw_aff_list_free(lower); |
1222 | 749 | isl_pw_aff_list_free(upper_list); |
1223 | 749 | isl_set_free(upper_set); |
1224 | 749 | isl_constraint_list_free(c_lower); |
1225 | 749 | isl_constraint_list_free(c_upper); |
1226 | 749 | |
1227 | 749 | return graft; |
1228 | 0 | error: |
1229 | 0 | isl_constraint_list_free(c_lower); |
1230 | 0 | isl_constraint_list_free(c_upper); |
1231 | 0 | return isl_ast_graft_free(graft); |
1232 | 749 | } |
1233 | | |
1234 | | /* Internal data structure used inside count_constraints to keep |
1235 | | * track of the number of constraints that are independent of dimension "pos", |
1236 | | * the lower bounds in "pos" and the upper bounds in "pos". |
1237 | | */ |
1238 | | struct isl_ast_count_constraints_data { |
1239 | | int pos; |
1240 | | |
1241 | | int n_indep; |
1242 | | int n_lower; |
1243 | | int n_upper; |
1244 | | }; |
1245 | | |
1246 | | /* Increment data->n_indep, data->lower or data->upper depending |
1247 | | * on whether "c" is independenct of dimensions data->pos, |
1248 | | * a lower bound or an upper bound. |
1249 | | */ |
1250 | | static isl_stat count_constraints(__isl_take isl_constraint *c, void *user) |
1251 | 1.65k | { |
1252 | 1.65k | struct isl_ast_count_constraints_data *data = user; |
1253 | 1.65k | |
1254 | 1.65k | if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos)) |
1255 | 764 | data->n_lower++; |
1256 | 888 | else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos)) |
1257 | 832 | data->n_upper++; |
1258 | 56 | else |
1259 | 56 | data->n_indep++; |
1260 | 1.65k | |
1261 | 1.65k | isl_constraint_free(c); |
1262 | 1.65k | |
1263 | 1.65k | return isl_stat_ok; |
1264 | 1.65k | } |
1265 | | |
1266 | | /* Update "graft" based on "bounds" and "domain" for the generic, |
1267 | | * non-degenerate, case. |
1268 | | * |
1269 | | * "list" respresent the list of bounds that need to be encoded by |
1270 | | * the for loop. Only the constraints that involve the iterator |
1271 | | * are relevant here. The other constraints are taken care of by |
1272 | | * the caller and are included in the generated constraints of "build". |
1273 | | * "domain" is the subset of the intersection of the constraints |
1274 | | * for which some code is executed. |
1275 | | * "build" is the build in which graft->node was created. |
1276 | | * |
1277 | | * We separate lower bounds, upper bounds and constraints that |
1278 | | * are independent of the loop iterator. |
1279 | | * |
1280 | | * The actual for loop bounds are generated in refine_generic_bounds. |
1281 | | */ |
1282 | | static __isl_give isl_ast_graft *refine_generic_split( |
1283 | | __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list, |
1284 | | __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) |
1285 | 749 | { |
1286 | 749 | struct isl_ast_count_constraints_data data; |
1287 | 749 | isl_constraint_list *lower; |
1288 | 749 | isl_constraint_list *upper; |
1289 | 749 | |
1290 | 749 | if (!list) |
1291 | 0 | return isl_ast_graft_free(graft); |
1292 | 749 | |
1293 | 749 | data.pos = isl_ast_build_get_depth(build); |
1294 | 749 | |
1295 | 749 | list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos); |
1296 | 749 | if (!list) |
1297 | 0 | return isl_ast_graft_free(graft); |
1298 | 749 | |
1299 | 749 | data.n_indep = data.n_lower = data.n_upper = 0; |
1300 | 749 | if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) { |
1301 | 0 | isl_constraint_list_free(list); |
1302 | 0 | return isl_ast_graft_free(graft); |
1303 | 0 | } |
1304 | 749 | |
1305 | 749 | lower = isl_constraint_list_drop(list, 0, data.n_indep); |
1306 | 749 | upper = isl_constraint_list_copy(lower); |
1307 | 749 | lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper); |
1308 | 749 | upper = isl_constraint_list_drop(upper, 0, data.n_lower); |
1309 | 749 | |
1310 | 749 | return refine_generic_bounds(graft, lower, upper, domain, build); |
1311 | 749 | } |
1312 | | |
1313 | | /* Update "graft" based on "bounds" and "domain" for the generic, |
1314 | | * non-degenerate, case. |
1315 | | * |
1316 | | * "bounds" respresent the bounds that need to be encoded by |
1317 | | * the for loop (or a guard around the for loop). |
1318 | | * "domain" is the subset of "bounds" for which some code is executed. |
1319 | | * "build" is the build in which graft->node was created. |
1320 | | * |
1321 | | * We break up "bounds" into a list of constraints and continue with |
1322 | | * refine_generic_split. |
1323 | | */ |
1324 | | static __isl_give isl_ast_graft *refine_generic( |
1325 | | __isl_take isl_ast_graft *graft, |
1326 | | __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain, |
1327 | | __isl_keep isl_ast_build *build) |
1328 | 749 | { |
1329 | 749 | isl_constraint_list *list; |
1330 | 749 | |
1331 | 749 | if (!build || !graft) |
1332 | 0 | return isl_ast_graft_free(graft); |
1333 | 749 | |
1334 | 749 | list = isl_basic_set_get_constraint_list(bounds); |
1335 | 749 | |
1336 | 749 | graft = refine_generic_split(graft, list, domain, build); |
1337 | 749 | |
1338 | 749 | return graft; |
1339 | 749 | } |
1340 | | |
1341 | | /* Create a for node for the current level. |
1342 | | * |
1343 | | * Mark the for node degenerate if "degenerate" is set. |
1344 | | */ |
1345 | | static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build, |
1346 | | int degenerate) |
1347 | 749 | { |
1348 | 749 | int depth; |
1349 | 749 | isl_id *id; |
1350 | 749 | isl_ast_node *node; |
1351 | 749 | |
1352 | 749 | if (!build) |
1353 | 0 | return NULL; |
1354 | 749 | |
1355 | 749 | depth = isl_ast_build_get_depth(build); |
1356 | 749 | id = isl_ast_build_get_iterator_id(build, depth); |
1357 | 749 | node = isl_ast_node_alloc_for(id); |
1358 | 749 | if (degenerate) |
1359 | 0 | node = isl_ast_node_for_mark_degenerate(node); |
1360 | 749 | |
1361 | 749 | return node; |
1362 | 749 | } |
1363 | | |
1364 | | /* If the ast_build_exploit_nested_bounds option is set, then return |
1365 | | * the constraints enforced by all elements in "list". |
1366 | | * Otherwise, return the universe. |
1367 | | */ |
1368 | | static __isl_give isl_basic_set *extract_shared_enforced( |
1369 | | __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build) |
1370 | 4.06k | { |
1371 | 4.06k | isl_ctx *ctx; |
1372 | 4.06k | isl_space *space; |
1373 | 4.06k | |
1374 | 4.06k | if (!list) |
1375 | 0 | return NULL; |
1376 | 4.06k | |
1377 | 4.06k | ctx = isl_ast_graft_list_get_ctx(list); |
1378 | 4.06k | if (isl_options_get_ast_build_exploit_nested_bounds(ctx)) |
1379 | 4.06k | return isl_ast_graft_list_extract_shared_enforced(list, build); |
1380 | 2 | |
1381 | 2 | space = isl_ast_build_get_space(build, 1); |
1382 | 2 | return isl_basic_set_universe(space); |
1383 | 2 | } |
1384 | | |
1385 | | /* Return the pending constraints of "build" that are not already taken |
1386 | | * care of (by a combination of "enforced" and the generated constraints |
1387 | | * of "build"). |
1388 | | */ |
1389 | | static __isl_give isl_set *extract_pending(__isl_keep isl_ast_build *build, |
1390 | | __isl_keep isl_basic_set *enforced) |
1391 | 4.06k | { |
1392 | 4.06k | isl_set *guard, *context; |
1393 | 4.06k | |
1394 | 4.06k | guard = isl_ast_build_get_pending(build); |
1395 | 4.06k | context = isl_set_from_basic_set(isl_basic_set_copy(enforced)); |
1396 | 4.06k | context = isl_set_intersect(context, |
1397 | 4.06k | isl_ast_build_get_generated(build)); |
1398 | 4.06k | return isl_set_gist(guard, context); |
1399 | 4.06k | } |
1400 | | |
1401 | | /* Create an AST node for the current dimension based on |
1402 | | * the schedule domain "bounds" and return the node encapsulated |
1403 | | * in an isl_ast_graft. |
1404 | | * |
1405 | | * "executed" is the current inverse schedule, taking into account |
1406 | | * the bounds in "bounds" |
1407 | | * "domain" is the domain of "executed", with inner dimensions projected out. |
1408 | | * It may be a strict subset of "bounds" in case "bounds" was created |
1409 | | * based on the atomic option or based on separation with explicit bounds. |
1410 | | * |
1411 | | * "domain" may satisfy additional equalities that result |
1412 | | * from intersecting "executed" with "bounds" in add_node. |
1413 | | * It may also satisfy some global constraints that were dropped out because |
1414 | | * we performed separation with explicit bounds. |
1415 | | * The very first step is then to copy these constraints to "bounds". |
1416 | | * |
1417 | | * Since we may be calling before_each_for and after_each_for |
1418 | | * callbacks, we record the current inverse schedule in the build. |
1419 | | * |
1420 | | * We consider three builds, |
1421 | | * "build" is the one in which the current level is created, |
1422 | | * "body_build" is the build in which the next level is created, |
1423 | | * "sub_build" is essentially the same as "body_build", except that |
1424 | | * the depth has not been increased yet. |
1425 | | * |
1426 | | * "build" already contains information (in strides and offsets) |
1427 | | * about the strides at the current level, but this information is not |
1428 | | * reflected in the build->domain. |
1429 | | * We first add this information and the "bounds" to the sub_build->domain. |
1430 | | * isl_ast_build_set_loop_bounds adds the stride information and |
1431 | | * checks whether the current dimension attains |
1432 | | * only a single value and whether this single value can be represented using |
1433 | | * a single affine expression. |
1434 | | * In the first case, the current level is considered "degenerate". |
1435 | | * In the second, sub-case, the current level is considered "eliminated". |
1436 | | * Eliminated levels don't need to be reflected in the AST since we can |
1437 | | * simply plug in the affine expression. For degenerate, but non-eliminated, |
1438 | | * levels, we do introduce a for node, but mark is as degenerate so that |
1439 | | * it can be printed as an assignment of the single value to the loop |
1440 | | * "iterator". |
1441 | | * |
1442 | | * If the current level is eliminated, we explicitly plug in the value |
1443 | | * for the current level found by isl_ast_build_set_loop_bounds in the |
1444 | | * inverse schedule. This ensures that if we are working on a slice |
1445 | | * of the domain based on information available in the inverse schedule |
1446 | | * and the build domain, that then this information is also reflected |
1447 | | * in the inverse schedule. This operation also eliminates the current |
1448 | | * dimension from the inverse schedule making sure no inner dimensions depend |
1449 | | * on the current dimension. Otherwise, we create a for node, marking |
1450 | | * it degenerate if appropriate. The initial for node is still incomplete |
1451 | | * and will be completed in either refine_degenerate or refine_generic. |
1452 | | * |
1453 | | * We then generate a sequence of grafts for the next level, |
1454 | | * create a surrounding graft for the current level and insert |
1455 | | * the for node we created (if the current level is not eliminated). |
1456 | | * Before creating a graft for the current level, we first extract |
1457 | | * hoistable constraints from the child guards and combine them |
1458 | | * with the pending constraints in the build. These constraints |
1459 | | * are used to simplify the child guards and then added to the guard |
1460 | | * of the current graft to ensure that they will be generated. |
1461 | | * If the hoisted guard is a disjunction, then we use it directly |
1462 | | * to gist the guards on the children before intersect it with the |
1463 | | * pending constraints. We do so because this disjunction is typically |
1464 | | * identical to the guards on the children such that these guards |
1465 | | * can be effectively removed completely. After the intersection, |
1466 | | * the gist operation would have a harder time figuring this out. |
1467 | | * |
1468 | | * Finally, we set the bounds of the for loop in either |
1469 | | * refine_degenerate or refine_generic. |
1470 | | * We do so in a context where the pending constraints of the build |
1471 | | * have been replaced by the guard of the current graft. |
1472 | | */ |
1473 | | static __isl_give isl_ast_graft *create_node_scaled( |
1474 | | __isl_take isl_union_map *executed, |
1475 | | __isl_take isl_basic_set *bounds, __isl_take isl_set *domain, |
1476 | | __isl_take isl_ast_build *build) |
1477 | 4.06k | { |
1478 | 4.06k | int depth; |
1479 | 4.06k | int degenerate; |
1480 | 4.06k | isl_bool eliminated; |
1481 | 4.06k | isl_basic_set *hull; |
1482 | 4.06k | isl_basic_set *enforced; |
1483 | 4.06k | isl_set *guard, *hoisted; |
1484 | 4.06k | isl_ast_node *node = NULL; |
1485 | 4.06k | isl_ast_graft *graft; |
1486 | 4.06k | isl_ast_graft_list *children; |
1487 | 4.06k | isl_ast_build *sub_build; |
1488 | 4.06k | isl_ast_build *body_build; |
1489 | 4.06k | |
1490 | 4.06k | domain = isl_ast_build_eliminate_divs(build, domain); |
1491 | 4.06k | domain = isl_set_detect_equalities(domain); |
1492 | 4.06k | hull = isl_set_unshifted_simple_hull(isl_set_copy(domain)); |
1493 | 4.06k | bounds = isl_basic_set_intersect(bounds, hull); |
1494 | 4.06k | build = isl_ast_build_set_executed(build, isl_union_map_copy(executed)); |
1495 | 4.06k | |
1496 | 4.06k | depth = isl_ast_build_get_depth(build); |
1497 | 4.06k | sub_build = isl_ast_build_copy(build); |
1498 | 4.06k | bounds = isl_basic_set_remove_redundancies(bounds); |
1499 | 4.06k | bounds = isl_ast_build_specialize_basic_set(sub_build, bounds); |
1500 | 4.06k | sub_build = isl_ast_build_set_loop_bounds(sub_build, |
1501 | 4.06k | isl_basic_set_copy(bounds)); |
1502 | 4.06k | degenerate = isl_ast_build_has_value(sub_build); |
1503 | 4.06k | eliminated = isl_ast_build_has_affine_value(sub_build, depth); |
1504 | 4.06k | if (degenerate < 0 || eliminated < 0) |
1505 | 0 | executed = isl_union_map_free(executed); |
1506 | 4.06k | if (!degenerate) |
1507 | 749 | bounds = isl_ast_build_compute_gist_basic_set(build, bounds); |
1508 | 4.06k | sub_build = isl_ast_build_set_pending_generated(sub_build, |
1509 | 4.06k | isl_basic_set_copy(bounds)); |
1510 | 4.06k | if (eliminated) |
1511 | 3.31k | executed = plug_in_values(executed, sub_build); |
1512 | 749 | else |
1513 | 749 | node = create_for(build, degenerate); |
1514 | 4.06k | |
1515 | 4.06k | body_build = isl_ast_build_copy(sub_build); |
1516 | 4.06k | body_build = isl_ast_build_increase_depth(body_build); |
1517 | 4.06k | if (!eliminated) |
1518 | 749 | node = before_each_for(node, body_build); |
1519 | 4.06k | children = generate_next_level(executed, |
1520 | 4.06k | isl_ast_build_copy(body_build)); |
1521 | 4.06k | |
1522 | 4.06k | enforced = extract_shared_enforced(children, build); |
1523 | 4.06k | guard = extract_pending(sub_build, enforced); |
1524 | 4.06k | hoisted = isl_ast_graft_list_extract_hoistable_guard(children, build); |
1525 | 4.06k | if (isl_set_n_basic_set(hoisted) > 1) |
1526 | 7 | children = isl_ast_graft_list_gist_guards(children, |
1527 | 7 | isl_set_copy(hoisted)); |
1528 | 4.06k | guard = isl_set_intersect(guard, hoisted); |
1529 | 4.06k | if (!eliminated) |
1530 | 749 | guard = add_implied_guards(guard, degenerate, bounds, build); |
1531 | 4.06k | |
1532 | 4.06k | graft = isl_ast_graft_alloc_from_children(children, |
1533 | 4.06k | isl_set_copy(guard), enforced, build, sub_build); |
1534 | 4.06k | |
1535 | 4.06k | if (!eliminated) { |
1536 | 749 | isl_ast_build *for_build; |
1537 | 749 | |
1538 | 749 | graft = isl_ast_graft_insert_for(graft, node); |
1539 | 749 | for_build = isl_ast_build_copy(build); |
1540 | 749 | for_build = isl_ast_build_replace_pending_by_guard(for_build, |
1541 | 749 | isl_set_copy(guard)); |
1542 | 749 | if (degenerate) |
1543 | 0 | graft = refine_degenerate(graft, for_build, sub_build); |
1544 | 749 | else |
1545 | 749 | graft = refine_generic(graft, bounds, |
1546 | 749 | domain, for_build); |
1547 | 749 | isl_ast_build_free(for_build); |
1548 | 749 | } |
1549 | 4.06k | isl_set_free(guard); |
1550 | 4.06k | if (!eliminated) |
1551 | 749 | graft = after_each_for(graft, body_build); |
1552 | 4.06k | |
1553 | 4.06k | isl_ast_build_free(body_build); |
1554 | 4.06k | isl_ast_build_free(sub_build); |
1555 | 4.06k | isl_ast_build_free(build); |
1556 | 4.06k | isl_basic_set_free(bounds); |
1557 | 4.06k | isl_set_free(domain); |
1558 | 4.06k | |
1559 | 4.06k | return graft; |
1560 | 4.06k | } |
1561 | | |
1562 | | /* Internal data structure for checking if all constraints involving |
1563 | | * the input dimension "depth" are such that the other coefficients |
1564 | | * are multiples of "m", reducing "m" if they are not. |
1565 | | * If "m" is reduced all the way down to "1", then the check has failed |
1566 | | * and we break out of the iteration. |
1567 | | */ |
1568 | | struct isl_check_scaled_data { |
1569 | | int depth; |
1570 | | isl_val *m; |
1571 | | }; |
1572 | | |
1573 | | /* If constraint "c" involves the input dimension data->depth, |
1574 | | * then make sure that all the other coefficients are multiples of data->m, |
1575 | | * reducing data->m if needed. |
1576 | | * Break out of the iteration if data->m has become equal to "1". |
1577 | | */ |
1578 | | static isl_stat constraint_check_scaled(__isl_take isl_constraint *c, |
1579 | | void *user) |
1580 | 26 | { |
1581 | 26 | struct isl_check_scaled_data *data = user; |
1582 | 26 | int i, j, n; |
1583 | 26 | enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out, |
1584 | 26 | isl_dim_div }; |
1585 | 26 | |
1586 | 26 | if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) { |
1587 | 12 | isl_constraint_free(c); |
1588 | 12 | return isl_stat_ok; |
1589 | 12 | } |
1590 | 14 | |
1591 | 52 | for (i = 0; 14 i < 4; ++i38 ) { |
1592 | 45 | n = isl_constraint_dim(c, t[i]); |
1593 | 91 | for (j = 0; j < n; ++j46 ) { |
1594 | 53 | isl_val *d; |
1595 | 53 | |
1596 | 53 | if (t[i] == isl_dim_in && j == data->depth30 ) |
1597 | 14 | continue; |
1598 | 39 | if (!isl_constraint_involves_dims(c, t[i], j, 1)) |
1599 | 25 | continue; |
1600 | 14 | d = isl_constraint_get_coefficient_val(c, t[i], j); |
1601 | 14 | data->m = isl_val_gcd(data->m, d); |
1602 | 14 | if (isl_val_is_one(data->m)) |
1603 | 7 | break; |
1604 | 14 | } |
1605 | 45 | if (j < n) |
1606 | 7 | break; |
1607 | 45 | } |
1608 | 14 | |
1609 | 14 | isl_constraint_free(c); |
1610 | 14 | |
1611 | 14 | return i < 4 ? isl_stat_error7 : isl_stat_ok7 ; |
1612 | 14 | } |
1613 | | |
1614 | | /* For each constraint of "bmap" that involves the input dimension data->depth, |
1615 | | * make sure that all the other coefficients are multiples of data->m, |
1616 | | * reducing data->m if needed. |
1617 | | * Break out of the iteration if data->m has become equal to "1". |
1618 | | */ |
1619 | | static isl_stat basic_map_check_scaled(__isl_take isl_basic_map *bmap, |
1620 | | void *user) |
1621 | 7 | { |
1622 | 7 | isl_stat r; |
1623 | 7 | |
1624 | 7 | r = isl_basic_map_foreach_constraint(bmap, |
1625 | 7 | &constraint_check_scaled, user); |
1626 | 7 | isl_basic_map_free(bmap); |
1627 | 7 | |
1628 | 7 | return r; |
1629 | 7 | } |
1630 | | |
1631 | | /* For each constraint of "map" that involves the input dimension data->depth, |
1632 | | * make sure that all the other coefficients are multiples of data->m, |
1633 | | * reducing data->m if needed. |
1634 | | * Break out of the iteration if data->m has become equal to "1". |
1635 | | */ |
1636 | | static isl_stat map_check_scaled(__isl_take isl_map *map, void *user) |
1637 | 7 | { |
1638 | 7 | isl_stat r; |
1639 | 7 | |
1640 | 7 | r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user); |
1641 | 7 | isl_map_free(map); |
1642 | 7 | |
1643 | 7 | return r; |
1644 | 7 | } |
1645 | | |
1646 | | /* Create an AST node for the current dimension based on |
1647 | | * the schedule domain "bounds" and return the node encapsulated |
1648 | | * in an isl_ast_graft. |
1649 | | * |
1650 | | * "executed" is the current inverse schedule, taking into account |
1651 | | * the bounds in "bounds" |
1652 | | * "domain" is the domain of "executed", with inner dimensions projected out. |
1653 | | * |
1654 | | * |
1655 | | * Before moving on to the actual AST node construction in create_node_scaled, |
1656 | | * we first check if the current dimension is strided and if we can scale |
1657 | | * down this stride. Note that we only do this if the ast_build_scale_strides |
1658 | | * option is set. |
1659 | | * |
1660 | | * In particular, let the current dimension take on values |
1661 | | * |
1662 | | * f + s a |
1663 | | * |
1664 | | * with a an integer. We check if we can find an integer m that (obviously) |
1665 | | * divides both f and s. |
1666 | | * |
1667 | | * If so, we check if the current dimension only appears in constraints |
1668 | | * where the coefficients of the other variables are multiples of m. |
1669 | | * We perform this extra check to avoid the risk of introducing |
1670 | | * divisions by scaling down the current dimension. |
1671 | | * |
1672 | | * If so, we scale the current dimension down by a factor of m. |
1673 | | * That is, we plug in |
1674 | | * |
1675 | | * i = m i' (1) |
1676 | | * |
1677 | | * Note that in principle we could always scale down strided loops |
1678 | | * by plugging in |
1679 | | * |
1680 | | * i = f + s i' |
1681 | | * |
1682 | | * but this may result in i' taking on larger values than the original i, |
1683 | | * due to the shift by "f". |
1684 | | * By constrast, the scaling in (1) can only reduce the (absolute) value "i". |
1685 | | */ |
1686 | | static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed, |
1687 | | __isl_take isl_basic_set *bounds, __isl_take isl_set *domain, |
1688 | | __isl_take isl_ast_build *build) |
1689 | 4.06k | { |
1690 | 4.06k | struct isl_check_scaled_data data; |
1691 | 4.06k | isl_ctx *ctx; |
1692 | 4.06k | isl_aff *offset; |
1693 | 4.06k | isl_val *d; |
1694 | 4.06k | |
1695 | 4.06k | ctx = isl_ast_build_get_ctx(build); |
1696 | 4.06k | if (!isl_options_get_ast_build_scale_strides(ctx)) |
1697 | 0 | return create_node_scaled(executed, bounds, domain, build); |
1698 | 4.06k | |
1699 | 4.06k | data.depth = isl_ast_build_get_depth(build); |
1700 | 4.06k | if (!isl_ast_build_has_stride(build, data.depth)) |
1701 | 4.05k | return create_node_scaled(executed, bounds, domain, build); |
1702 | 15 | |
1703 | 15 | offset = isl_ast_build_get_offset(build, data.depth); |
1704 | 15 | data.m = isl_ast_build_get_stride(build, data.depth); |
1705 | 15 | if (!data.m) |
1706 | 0 | offset = isl_aff_free(offset); |
1707 | 15 | offset = isl_aff_scale_down_val(offset, isl_val_copy(data.m)); |
1708 | 15 | d = isl_aff_get_denominator_val(offset); |
1709 | 15 | if (!d) |
1710 | 0 | executed = isl_union_map_free(executed); |
1711 | 15 | |
1712 | 15 | if (executed && isl_val_is_divisible_by(data.m, d)) |
1713 | 13 | data.m = isl_val_div(data.m, d); |
1714 | 2 | else { |
1715 | 2 | data.m = isl_val_set_si(data.m, 1); |
1716 | 2 | isl_val_free(d); |
1717 | 2 | } |
1718 | 15 | |
1719 | 15 | if (!isl_val_is_one(data.m)) { |
1720 | 7 | if (isl_union_map_foreach_map(executed, &map_check_scaled, |
1721 | 7 | &data) < 0 && |
1722 | 7 | !isl_val_is_one(data.m)) |
1723 | 0 | executed = isl_union_map_free(executed); |
1724 | 7 | } |
1725 | 15 | |
1726 | 15 | if (!isl_val_is_one(data.m)) { |
1727 | 0 | isl_space *space; |
1728 | 0 | isl_multi_aff *ma; |
1729 | 0 | isl_aff *aff; |
1730 | 0 | isl_map *map; |
1731 | 0 | isl_union_map *umap; |
1732 | 0 |
|
1733 | 0 | space = isl_ast_build_get_space(build, 1); |
1734 | 0 | space = isl_space_map_from_set(space); |
1735 | 0 | ma = isl_multi_aff_identity(space); |
1736 | 0 | aff = isl_multi_aff_get_aff(ma, data.depth); |
1737 | 0 | aff = isl_aff_scale_val(aff, isl_val_copy(data.m)); |
1738 | 0 | ma = isl_multi_aff_set_aff(ma, data.depth, aff); |
1739 | 0 |
|
1740 | 0 | bounds = isl_basic_set_preimage_multi_aff(bounds, |
1741 | 0 | isl_multi_aff_copy(ma)); |
1742 | 0 | domain = isl_set_preimage_multi_aff(domain, |
1743 | 0 | isl_multi_aff_copy(ma)); |
1744 | 0 | map = isl_map_reverse(isl_map_from_multi_aff(ma)); |
1745 | 0 | umap = isl_union_map_from_map(map); |
1746 | 0 | executed = isl_union_map_apply_domain(executed, |
1747 | 0 | isl_union_map_copy(umap)); |
1748 | 0 | build = isl_ast_build_scale_down(build, isl_val_copy(data.m), |
1749 | 0 | umap); |
1750 | 0 | } |
1751 | 15 | isl_aff_free(offset); |
1752 | 15 | isl_val_free(data.m); |
1753 | 15 | |
1754 | 15 | return create_node_scaled(executed, bounds, domain, build); |
1755 | 15 | } |
1756 | | |
1757 | | /* Add the basic set to the list that "user" points to. |
1758 | | */ |
1759 | | static isl_stat collect_basic_set(__isl_take isl_basic_set *bset, void *user) |
1760 | 1.02k | { |
1761 | 1.02k | isl_basic_set_list **list = user; |
1762 | 1.02k | |
1763 | 1.02k | *list = isl_basic_set_list_add(*list, bset); |
1764 | 1.02k | |
1765 | 1.02k | return isl_stat_ok; |
1766 | 1.02k | } |
1767 | | |
1768 | | /* Extract the basic sets of "set" and collect them in an isl_basic_set_list. |
1769 | | */ |
1770 | | static __isl_give isl_basic_set_list *isl_basic_set_list_from_set( |
1771 | | __isl_take isl_set *set) |
1772 | 965 | { |
1773 | 965 | int n; |
1774 | 965 | isl_ctx *ctx; |
1775 | 965 | isl_basic_set_list *list; |
1776 | 965 | |
1777 | 965 | if (!set) |
1778 | 0 | return NULL; |
1779 | 965 | |
1780 | 965 | ctx = isl_set_get_ctx(set); |
1781 | 965 | |
1782 | 965 | n = isl_set_n_basic_set(set); |
1783 | 965 | list = isl_basic_set_list_alloc(ctx, n); |
1784 | 965 | if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0) |
1785 | 0 | list = isl_basic_set_list_free(list); |
1786 | 965 | |
1787 | 965 | isl_set_free(set); |
1788 | 965 | return list; |
1789 | 965 | } |
1790 | | |
1791 | | /* Generate code for the schedule domain "bounds" |
1792 | | * and add the result to "list". |
1793 | | * |
1794 | | * We mainly detect strides here and check if the bounds do not |
1795 | | * conflict with the current build domain |
1796 | | * and then pass over control to create_node. |
1797 | | * |
1798 | | * "bounds" reflects the bounds on the current dimension and possibly |
1799 | | * some extra conditions on outer dimensions. |
1800 | | * It does not, however, include any divs involving the current dimension, |
1801 | | * so it does not capture any stride constraints. |
1802 | | * We therefore need to compute that part of the schedule domain that |
1803 | | * intersects with "bounds" and derive the strides from the result. |
1804 | | */ |
1805 | | static __isl_give isl_ast_graft_list *add_node( |
1806 | | __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed, |
1807 | | __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build) |
1808 | 5.56k | { |
1809 | 5.56k | isl_ast_graft *graft; |
1810 | 5.56k | isl_set *domain = NULL; |
1811 | 5.56k | isl_union_set *uset; |
1812 | 5.56k | int empty, disjoint; |
1813 | 5.56k | |
1814 | 5.56k | uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds)); |
1815 | 5.56k | executed = isl_union_map_intersect_domain(executed, uset); |
1816 | 5.56k | empty = isl_union_map_is_empty(executed); |
1817 | 5.56k | if (empty < 0) |
1818 | 0 | goto error; |
1819 | 5.56k | if (empty) |
1820 | 0 | goto done; |
1821 | 5.56k | |
1822 | 5.56k | uset = isl_union_map_domain(isl_union_map_copy(executed)); |
1823 | 5.56k | domain = isl_set_from_union_set(uset); |
1824 | 5.56k | domain = isl_ast_build_specialize(build, domain); |
1825 | 5.56k | |
1826 | 5.56k | domain = isl_set_compute_divs(domain); |
1827 | 5.56k | domain = isl_ast_build_eliminate_inner(build, domain); |
1828 | 5.56k | disjoint = isl_set_is_disjoint(domain, build->domain); |
1829 | 5.56k | if (disjoint < 0) |
1830 | 0 | goto error; |
1831 | 5.56k | if (disjoint) |
1832 | 1.49k | goto done; |
1833 | 4.06k | |
1834 | 4.06k | build = isl_ast_build_detect_strides(build, isl_set_copy(domain)); |
1835 | 4.06k | |
1836 | 4.06k | graft = create_node(executed, bounds, domain, |
1837 | 4.06k | isl_ast_build_copy(build)); |
1838 | 4.06k | list = isl_ast_graft_list_add(list, graft); |
1839 | 4.06k | isl_ast_build_free(build); |
1840 | 4.06k | return list; |
1841 | 0 | error: |
1842 | 0 | list = isl_ast_graft_list_free(list); |
1843 | 1.49k | done: |
1844 | 1.49k | isl_set_free(domain); |
1845 | 1.49k | isl_basic_set_free(bounds); |
1846 | 1.49k | isl_union_map_free(executed); |
1847 | 1.49k | isl_ast_build_free(build); |
1848 | 1.49k | return list; |
1849 | 0 | } |
1850 | | |
1851 | | /* Does any element of i follow or coincide with any element of j |
1852 | | * at the current depth for equal values of the outer dimensions? |
1853 | | */ |
1854 | | static isl_bool domain_follows_at_depth(__isl_keep isl_basic_set *i, |
1855 | | __isl_keep isl_basic_set *j, void *user) |
1856 | 43 | { |
1857 | 43 | int depth = *(int *) user; |
1858 | 43 | isl_basic_map *test; |
1859 | 43 | isl_bool empty; |
1860 | 43 | int l; |
1861 | 43 | |
1862 | 43 | test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i), |
1863 | 43 | isl_basic_set_copy(j)); |
1864 | 107 | for (l = 0; l < depth; ++l64 ) |
1865 | 64 | test = isl_basic_map_equate(test, isl_dim_in, l, |
1866 | 64 | isl_dim_out, l); |
1867 | 43 | test = isl_basic_map_order_ge(test, isl_dim_in, depth, |
1868 | 43 | isl_dim_out, depth); |
1869 | 43 | empty = isl_basic_map_is_empty(test); |
1870 | 43 | isl_basic_map_free(test); |
1871 | 43 | |
1872 | 43 | return empty < 0 ? isl_bool_error0 : !empty; |
1873 | 43 | } |
1874 | | |
1875 | | /* Split up each element of "list" into a part that is related to "bset" |
1876 | | * according to "gt" and a part that is not. |
1877 | | * Return a list that consist of "bset" and all the pieces. |
1878 | | */ |
1879 | | static __isl_give isl_basic_set_list *add_split_on( |
1880 | | __isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset, |
1881 | | __isl_keep isl_basic_map *gt) |
1882 | 0 | { |
1883 | 0 | int i, n; |
1884 | 0 | isl_basic_set_list *res; |
1885 | 0 |
|
1886 | 0 | if (!list) |
1887 | 0 | bset = isl_basic_set_free(bset); |
1888 | 0 |
|
1889 | 0 | gt = isl_basic_map_copy(gt); |
1890 | 0 | gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset)); |
1891 | 0 | n = isl_basic_set_list_n_basic_set(list); |
1892 | 0 | res = isl_basic_set_list_from_basic_set(bset); |
1893 | 0 | for (i = 0; res && i < n; ++i) { |
1894 | 0 | isl_basic_set *bset; |
1895 | 0 | isl_set *set1, *set2; |
1896 | 0 | isl_basic_map *bmap; |
1897 | 0 | int empty; |
1898 | 0 |
|
1899 | 0 | bset = isl_basic_set_list_get_basic_set(list, i); |
1900 | 0 | bmap = isl_basic_map_copy(gt); |
1901 | 0 | bmap = isl_basic_map_intersect_range(bmap, bset); |
1902 | 0 | bset = isl_basic_map_range(bmap); |
1903 | 0 | empty = isl_basic_set_is_empty(bset); |
1904 | 0 | if (empty < 0) |
1905 | 0 | res = isl_basic_set_list_free(res); |
1906 | 0 | if (empty) { |
1907 | 0 | isl_basic_set_free(bset); |
1908 | 0 | bset = isl_basic_set_list_get_basic_set(list, i); |
1909 | 0 | res = isl_basic_set_list_add(res, bset); |
1910 | 0 | continue; |
1911 | 0 | } |
1912 | 0 | |
1913 | 0 | res = isl_basic_set_list_add(res, isl_basic_set_copy(bset)); |
1914 | 0 | set1 = isl_set_from_basic_set(bset); |
1915 | 0 | bset = isl_basic_set_list_get_basic_set(list, i); |
1916 | 0 | set2 = isl_set_from_basic_set(bset); |
1917 | 0 | set1 = isl_set_subtract(set2, set1); |
1918 | 0 | set1 = isl_set_make_disjoint(set1); |
1919 | 0 |
|
1920 | 0 | res = isl_basic_set_list_concat(res, |
1921 | 0 | isl_basic_set_list_from_set(set1)); |
1922 | 0 | } |
1923 | 0 | isl_basic_map_free(gt); |
1924 | 0 | isl_basic_set_list_free(list); |
1925 | 0 | return res; |
1926 | 0 | } |
1927 | | |
1928 | | static __isl_give isl_ast_graft_list *generate_sorted_domains( |
1929 | | __isl_keep isl_basic_set_list *domain_list, |
1930 | | __isl_keep isl_union_map *executed, |
1931 | | __isl_keep isl_ast_build *build); |
1932 | | |
1933 | | /* Internal data structure for add_nodes. |
1934 | | * |
1935 | | * "executed" and "build" are extra arguments to be passed to add_node. |
1936 | | * "list" collects the results. |
1937 | | */ |
1938 | | struct isl_add_nodes_data { |
1939 | | isl_union_map *executed; |
1940 | | isl_ast_build *build; |
1941 | | |
1942 | | isl_ast_graft_list *list; |
1943 | | }; |
1944 | | |
1945 | | /* Generate code for the schedule domains in "scc" |
1946 | | * and add the results to "list". |
1947 | | * |
1948 | | * The domains in "scc" form a strongly connected component in the ordering. |
1949 | | * If the number of domains in "scc" is larger than 1, then this means |
1950 | | * that we cannot determine a valid ordering for the domains in the component. |
1951 | | * This should be fairly rare because the individual domains |
1952 | | * have been made disjoint first. |
1953 | | * The problem is that the domains may be integrally disjoint but not |
1954 | | * rationally disjoint. For example, we may have domains |
1955 | | * |
1956 | | * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 } |
1957 | | * |
1958 | | * These two domains have an empty intersection, but their rational |
1959 | | * relaxations do intersect. It is impossible to order these domains |
1960 | | * in the second dimension because the first should be ordered before |
1961 | | * the second for outer dimension equal to 0, while it should be ordered |
1962 | | * after for outer dimension equal to 1. |
1963 | | * |
1964 | | * This may happen in particular in case of unrolling since the domain |
1965 | | * of each slice is replaced by its simple hull. |
1966 | | * |
1967 | | * For each basic set i in "scc" and for each of the following basic sets j, |
1968 | | * we split off that part of the basic set i that shares the outer dimensions |
1969 | | * with j and lies before j in the current dimension. |
1970 | | * We collect all the pieces in a new list that replaces "scc". |
1971 | | * |
1972 | | * While the elements in "scc" should be disjoint, we double-check |
1973 | | * this property to avoid running into an infinite recursion in case |
1974 | | * they intersect due to some internal error. |
1975 | | */ |
1976 | | static isl_stat add_nodes(__isl_take isl_basic_set_list *scc, void *user) |
1977 | 48 | { |
1978 | 48 | struct isl_add_nodes_data *data = user; |
1979 | 48 | int i, n, depth; |
1980 | 48 | isl_basic_set *bset, *first; |
1981 | 48 | isl_basic_set_list *list; |
1982 | 48 | isl_space *space; |
1983 | 48 | isl_basic_map *gt; |
1984 | 48 | |
1985 | 48 | n = isl_basic_set_list_n_basic_set(scc); |
1986 | 48 | bset = isl_basic_set_list_get_basic_set(scc, 0); |
1987 | 48 | if (n == 1) { |
1988 | 48 | isl_basic_set_list_free(scc); |
1989 | 48 | data->list = add_node(data->list, |
1990 | 48 | isl_union_map_copy(data->executed), bset, |
1991 | 48 | isl_ast_build_copy(data->build)); |
1992 | 48 | return data->list ? isl_stat_ok : isl_stat_error0 ; |
1993 | 48 | } |
1994 | 0 | |
1995 | 0 | depth = isl_ast_build_get_depth(data->build); |
1996 | 0 | space = isl_basic_set_get_space(bset); |
1997 | 0 | space = isl_space_map_from_set(space); |
1998 | 0 | gt = isl_basic_map_universe(space); |
1999 | 0 | for (i = 0; i < depth; ++i) |
2000 | 0 | gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i); |
2001 | 0 | gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth); |
2002 | 0 |
|
2003 | 0 | first = isl_basic_set_copy(bset); |
2004 | 0 | list = isl_basic_set_list_from_basic_set(bset); |
2005 | 0 | for (i = 1; i < n; ++i) { |
2006 | 0 | int disjoint; |
2007 | 0 |
|
2008 | 0 | bset = isl_basic_set_list_get_basic_set(scc, i); |
2009 | 0 |
|
2010 | 0 | disjoint = isl_basic_set_is_disjoint(bset, first); |
2011 | 0 | if (disjoint < 0) |
2012 | 0 | list = isl_basic_set_list_free(list); |
2013 | 0 | else if (!disjoint) |
2014 | 0 | isl_die(isl_basic_set_list_get_ctx(scc), |
2015 | 0 | isl_error_internal, |
2016 | 0 | "basic sets in scc are assumed to be disjoint", |
2017 | 0 | list = isl_basic_set_list_free(list)); |
2018 | 0 |
|
2019 | 0 | list = add_split_on(list, bset, gt); |
2020 | 0 | } |
2021 | 0 | isl_basic_set_free(first); |
2022 | 0 | isl_basic_map_free(gt); |
2023 | 0 | isl_basic_set_list_free(scc); |
2024 | 0 | scc = list; |
2025 | 0 | data->list = isl_ast_graft_list_concat(data->list, |
2026 | 0 | generate_sorted_domains(scc, data->executed, data->build)); |
2027 | 0 | isl_basic_set_list_free(scc); |
2028 | 0 |
|
2029 | 0 | return data->list ? isl_stat_ok : isl_stat_error; |
2030 | 0 | } |
2031 | | |
2032 | | /* Sort the domains in "domain_list" according to the execution order |
2033 | | * at the current depth (for equal values of the outer dimensions), |
2034 | | * generate code for each of them, collecting the results in a list. |
2035 | | * If no code is generated (because the intersection of the inverse schedule |
2036 | | * with the domains turns out to be empty), then an empty list is returned. |
2037 | | * |
2038 | | * The caller is responsible for ensuring that the basic sets in "domain_list" |
2039 | | * are pair-wise disjoint. It can, however, in principle happen that |
2040 | | * two basic sets should be ordered one way for one value of the outer |
2041 | | * dimensions and the other way for some other value of the outer dimensions. |
2042 | | * We therefore play safe and look for strongly connected components. |
2043 | | * The function add_nodes takes care of handling non-trivial components. |
2044 | | */ |
2045 | | static __isl_give isl_ast_graft_list *generate_sorted_domains( |
2046 | | __isl_keep isl_basic_set_list *domain_list, |
2047 | | __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) |
2048 | 1.02k | { |
2049 | 1.02k | isl_ctx *ctx; |
2050 | 1.02k | struct isl_add_nodes_data data; |
2051 | 1.02k | int depth; |
2052 | 1.02k | int n; |
2053 | 1.02k | |
2054 | 1.02k | if (!domain_list) |
2055 | 0 | return NULL; |
2056 | 1.02k | |
2057 | 1.02k | ctx = isl_basic_set_list_get_ctx(domain_list); |
2058 | 1.02k | n = isl_basic_set_list_n_basic_set(domain_list); |
2059 | 1.02k | data.list = isl_ast_graft_list_alloc(ctx, n); |
2060 | 1.02k | if (n == 0) |
2061 | 0 | return data.list; |
2062 | 1.02k | if (n == 1) |
2063 | 999 | return add_node(data.list, isl_union_map_copy(executed), |
2064 | 999 | isl_basic_set_list_get_basic_set(domain_list, 0), |
2065 | 999 | isl_ast_build_copy(build)); |
2066 | 21 | |
2067 | 21 | depth = isl_ast_build_get_depth(build); |
2068 | 21 | data.executed = executed; |
2069 | 21 | data.build = build; |
2070 | 21 | if (isl_basic_set_list_foreach_scc(domain_list, |
2071 | 21 | &domain_follows_at_depth, &depth, |
2072 | 21 | &add_nodes, &data) < 0) |
2073 | 0 | data.list = isl_ast_graft_list_free(data.list); |
2074 | 21 | |
2075 | 21 | return data.list; |
2076 | 21 | } |
2077 | | |
2078 | | /* Do i and j share any values for the outer dimensions? |
2079 | | */ |
2080 | | static isl_bool shared_outer(__isl_keep isl_basic_set *i, |
2081 | | __isl_keep isl_basic_set *j, void *user) |
2082 | 109 | { |
2083 | 109 | int depth = *(int *) user; |
2084 | 109 | isl_basic_map *test; |
2085 | 109 | isl_bool empty; |
2086 | 109 | int l; |
2087 | 109 | |
2088 | 109 | test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i), |
2089 | 109 | isl_basic_set_copy(j)); |
2090 | 297 | for (l = 0; l < depth; ++l188 ) |
2091 | 188 | test = isl_basic_map_equate(test, isl_dim_in, l, |
2092 | 188 | isl_dim_out, l); |
2093 | 109 | empty = isl_basic_map_is_empty(test); |
2094 | 109 | isl_basic_map_free(test); |
2095 | 109 | |
2096 | 109 | return empty < 0 ? isl_bool_error0 : !empty; |
2097 | 109 | } |
2098 | | |
2099 | | /* Internal data structure for generate_sorted_domains_wrap. |
2100 | | * |
2101 | | * "n" is the total number of basic sets |
2102 | | * "executed" and "build" are extra arguments to be passed |
2103 | | * to generate_sorted_domains. |
2104 | | * |
2105 | | * "single" is set to 1 by generate_sorted_domains_wrap if there |
2106 | | * is only a single component. |
2107 | | * "list" collects the results. |
2108 | | */ |
2109 | | struct isl_ast_generate_parallel_domains_data { |
2110 | | int n; |
2111 | | isl_union_map *executed; |
2112 | | isl_ast_build *build; |
2113 | | |
2114 | | int single; |
2115 | | isl_ast_graft_list *list; |
2116 | | }; |
2117 | | |
2118 | | /* Call generate_sorted_domains on "scc", fuse the result into a list |
2119 | | * with either zero or one graft and collect the these single element |
2120 | | * lists into data->list. |
2121 | | * |
2122 | | * If there is only one component, i.e., if the number of basic sets |
2123 | | * in the current component is equal to the total number of basic sets, |
2124 | | * then data->single is set to 1 and the result of generate_sorted_domains |
2125 | | * is not fused. |
2126 | | */ |
2127 | | static isl_stat generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc, |
2128 | | void *user) |
2129 | 96 | { |
2130 | 96 | struct isl_ast_generate_parallel_domains_data *data = user; |
2131 | 96 | isl_ast_graft_list *list; |
2132 | 96 | |
2133 | 96 | list = generate_sorted_domains(scc, data->executed, data->build); |
2134 | 96 | data->single = isl_basic_set_list_n_basic_set(scc) == data->n; |
2135 | 96 | if (!data->single) |
2136 | 75 | list = isl_ast_graft_list_fuse(list, data->build); |
2137 | 96 | if (!data->list) |
2138 | 57 | data->list = list; |
2139 | 39 | else |
2140 | 39 | data->list = isl_ast_graft_list_concat(data->list, list); |
2141 | 96 | |
2142 | 96 | isl_basic_set_list_free(scc); |
2143 | 96 | if (!data->list) |
2144 | 0 | return isl_stat_error; |
2145 | 96 | |
2146 | 96 | return isl_stat_ok; |
2147 | 96 | } |
2148 | | |
2149 | | /* Look for any (weakly connected) components in the "domain_list" |
2150 | | * of domains that share some values of the outer dimensions. |
2151 | | * That is, domains in different components do not share any values |
2152 | | * of the outer dimensions. This means that these components |
2153 | | * can be freely reordered. |
2154 | | * Within each of the components, we sort the domains according |
2155 | | * to the execution order at the current depth. |
2156 | | * |
2157 | | * If there is more than one component, then generate_sorted_domains_wrap |
2158 | | * fuses the result of each call to generate_sorted_domains |
2159 | | * into a list with either zero or one graft and collects these (at most) |
2160 | | * single element lists into a bigger list. This means that the elements of the |
2161 | | * final list can be freely reordered. In particular, we sort them |
2162 | | * according to an arbitrary but fixed ordering to ease merging of |
2163 | | * graft lists from different components. |
2164 | | */ |
2165 | | static __isl_give isl_ast_graft_list *generate_parallel_domains( |
2166 | | __isl_keep isl_basic_set_list *domain_list, |
2167 | | __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) |
2168 | 981 | { |
2169 | 981 | int depth; |
2170 | 981 | struct isl_ast_generate_parallel_domains_data data; |
2171 | 981 | |
2172 | 981 | if (!domain_list) |
2173 | 0 | return NULL; |
2174 | 981 | |
2175 | 981 | data.n = isl_basic_set_list_n_basic_set(domain_list); |
2176 | 981 | if (data.n <= 1) |
2177 | 924 | return generate_sorted_domains(domain_list, executed, build); |
2178 | 57 | |
2179 | 57 | depth = isl_ast_build_get_depth(build); |
2180 | 57 | data.list = NULL; |
2181 | 57 | data.executed = executed; |
2182 | 57 | data.build = build; |
2183 | 57 | data.single = 0; |
2184 | 57 | if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth, |
2185 | 57 | &generate_sorted_domains_wrap, |
2186 | 57 | &data) < 0) |
2187 | 0 | data.list = isl_ast_graft_list_free(data.list); |
2188 | 57 | |
2189 | 57 | if (!data.single) |
2190 | 36 | data.list = isl_ast_graft_list_sort_guard(data.list); |
2191 | 57 | |
2192 | 57 | return data.list; |
2193 | 57 | } |
2194 | | |
2195 | | /* Internal data for separate_domain. |
2196 | | * |
2197 | | * "explicit" is set if we only want to use explicit bounds. |
2198 | | * |
2199 | | * "domain" collects the separated domains. |
2200 | | */ |
2201 | | struct isl_separate_domain_data { |
2202 | | isl_ast_build *build; |
2203 | | int explicit; |
2204 | | isl_set *domain; |
2205 | | }; |
2206 | | |
2207 | | /* Extract implicit bounds on the current dimension for the executed "map". |
2208 | | * |
2209 | | * The domain of "map" may involve inner dimensions, so we |
2210 | | * need to eliminate them. |
2211 | | */ |
2212 | | static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map, |
2213 | | __isl_keep isl_ast_build *build) |
2214 | 0 | { |
2215 | 0 | isl_set *domain; |
2216 | 0 |
|
2217 | 0 | domain = isl_map_domain(map); |
2218 | 0 | domain = isl_ast_build_eliminate(build, domain); |
2219 | 0 |
|
2220 | 0 | return domain; |
2221 | 0 | } |
2222 | | |
2223 | | /* Extract explicit bounds on the current dimension for the executed "map". |
2224 | | * |
2225 | | * Rather than eliminating the inner dimensions as in implicit_bounds, |
2226 | | * we simply drop any constraints involving those inner dimensions. |
2227 | | * The idea is that most bounds that are implied by constraints on the |
2228 | | * inner dimensions will be enforced by for loops and not by explicit guards. |
2229 | | * There is then no need to separate along those bounds. |
2230 | | */ |
2231 | | static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map, |
2232 | | __isl_keep isl_ast_build *build) |
2233 | 27 | { |
2234 | 27 | isl_set *domain; |
2235 | 27 | int depth, dim; |
2236 | 27 | |
2237 | 27 | dim = isl_map_dim(map, isl_dim_out); |
2238 | 27 | map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim); |
2239 | 27 | |
2240 | 27 | domain = isl_map_domain(map); |
2241 | 27 | depth = isl_ast_build_get_depth(build); |
2242 | 27 | dim = isl_set_dim(domain, isl_dim_set); |
2243 | 27 | domain = isl_set_detect_equalities(domain); |
2244 | 27 | domain = isl_set_drop_constraints_involving_dims(domain, |
2245 | 27 | isl_dim_set, depth + 1, dim - (depth + 1)); |
2246 | 27 | domain = isl_set_remove_divs_involving_dims(domain, |
2247 | 27 | isl_dim_set, depth, 1); |
2248 | 27 | domain = isl_set_remove_unknown_divs(domain); |
2249 | 27 | |
2250 | 27 | return domain; |
2251 | 27 | } |
2252 | | |
2253 | | /* Split data->domain into pieces that intersect with the range of "map" |
2254 | | * and pieces that do not intersect with the range of "map" |
2255 | | * and then add that part of the range of "map" that does not intersect |
2256 | | * with data->domain. |
2257 | | */ |
2258 | | static isl_stat separate_domain(__isl_take isl_map *map, void *user) |
2259 | 27 | { |
2260 | 27 | struct isl_separate_domain_data *data = user; |
2261 | 27 | isl_set *domain; |
2262 | 27 | isl_set *d1, *d2; |
2263 | 27 | |
2264 | 27 | if (data->explicit) |
2265 | 27 | domain = explicit_bounds(map, data->build); |
2266 | 0 | else |
2267 | 0 | domain = implicit_bounds(map, data->build); |
2268 | 27 | |
2269 | 27 | domain = isl_set_coalesce(domain); |
2270 | 27 | domain = isl_set_make_disjoint(domain); |
2271 | 27 | d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain)); |
2272 | 27 | d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain)); |
2273 | 27 | data->domain = isl_set_intersect(data->domain, domain); |
2274 | 27 | data->domain = isl_set_union(data->domain, d1); |
2275 | 27 | data->domain = isl_set_union(data->domain, d2); |
2276 | 27 | |
2277 | 27 | return isl_stat_ok; |
2278 | 27 | } |
2279 | | |
2280 | | /* Separate the schedule domains of "executed". |
2281 | | * |
2282 | | * That is, break up the domain of "executed" into basic sets, |
2283 | | * such that for each basic set S, every element in S is associated with |
2284 | | * the same domain spaces. |
2285 | | * |
2286 | | * "space" is the (single) domain space of "executed". |
2287 | | */ |
2288 | | static __isl_give isl_set *separate_schedule_domains( |
2289 | | __isl_take isl_space *space, __isl_take isl_union_map *executed, |
2290 | | __isl_keep isl_ast_build *build) |
2291 | 27 | { |
2292 | 27 | struct isl_separate_domain_data data = { build }; |
2293 | 27 | isl_ctx *ctx; |
2294 | 27 | |
2295 | 27 | ctx = isl_ast_build_get_ctx(build); |
2296 | 27 | data.explicit = isl_options_get_ast_build_separation_bounds(ctx) == |
2297 | 27 | ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT; |
2298 | 27 | data.domain = isl_set_empty(space); |
2299 | 27 | if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0) |
2300 | 0 | data.domain = isl_set_free(data.domain); |
2301 | 27 | |
2302 | 27 | isl_union_map_free(executed); |
2303 | 27 | return data.domain; |
2304 | 27 | } |
2305 | | |
2306 | | /* Temporary data used during the search for a lower bound for unrolling. |
2307 | | * |
2308 | | * "build" is the build in which the unrolling will be performed |
2309 | | * "domain" is the original set for which to find a lower bound |
2310 | | * "depth" is the dimension for which to find a lower boudn |
2311 | | * "expansion" is the expansion that needs to be applied to "domain" |
2312 | | * in the unrolling that will be performed |
2313 | | * |
2314 | | * "lower" is the best lower bound found so far. It is NULL if we have not |
2315 | | * found any yet. |
2316 | | * "n" is the corresponding size. If lower is NULL, then the value of n |
2317 | | * is undefined. |
2318 | | * "n_div" is the maximal number of integer divisions in the first |
2319 | | * unrolled iteration (after expansion). It is set to -1 if it hasn't |
2320 | | * been computed yet. |
2321 | | */ |
2322 | | struct isl_find_unroll_data { |
2323 | | isl_ast_build *build; |
2324 | | isl_set *domain; |
2325 | | int depth; |
2326 | | isl_basic_map *expansion; |
2327 | | |
2328 | | isl_aff *lower; |
2329 | | int *n; |
2330 | | int n_div; |
2331 | | }; |
2332 | | |
2333 | | /* Return the constraint |
2334 | | * |
2335 | | * i_"depth" = aff + offset |
2336 | | */ |
2337 | | static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff, |
2338 | | int offset) |
2339 | 4.52k | { |
2340 | 4.52k | aff = isl_aff_copy(aff); |
2341 | 4.52k | aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1); |
2342 | 4.52k | aff = isl_aff_add_constant_si(aff, offset); |
2343 | 4.52k | return isl_equality_from_aff(aff); |
2344 | 4.52k | } |
2345 | | |
2346 | | /* Update *user to the number of integer divsions in the first element |
2347 | | * of "ma", if it is larger than the current value. |
2348 | | */ |
2349 | | static isl_stat update_n_div(__isl_take isl_set *set, |
2350 | | __isl_take isl_multi_aff *ma, void *user) |
2351 | 2 | { |
2352 | 2 | isl_aff *aff; |
2353 | 2 | int *n = user; |
2354 | 2 | int n_div; |
2355 | 2 | |
2356 | 2 | aff = isl_multi_aff_get_aff(ma, 0); |
2357 | 2 | n_div = isl_aff_dim(aff, isl_dim_div); |
2358 | 2 | isl_aff_free(aff); |
2359 | 2 | isl_multi_aff_free(ma); |
2360 | 2 | isl_set_free(set); |
2361 | 2 | |
2362 | 2 | if (n_div > *n) |
2363 | 2 | *n = n_div; |
2364 | 2 | |
2365 | 2 | return aff ? isl_stat_ok : isl_stat_error0 ; |
2366 | 2 | } |
2367 | | |
2368 | | /* Get the number of integer divisions in the expression for the iterator |
2369 | | * value at the first slice in the unrolling based on lower bound "lower", |
2370 | | * taking into account the expansion that needs to be performed on this slice. |
2371 | | */ |
2372 | | static int get_expanded_n_div(struct isl_find_unroll_data *data, |
2373 | | __isl_keep isl_aff *lower) |
2374 | 2 | { |
2375 | 2 | isl_constraint *c; |
2376 | 2 | isl_set *set; |
2377 | 2 | isl_map *it_map, *expansion; |
2378 | 2 | isl_pw_multi_aff *pma; |
2379 | 2 | int n; |
2380 | 2 | |
2381 | 2 | c = at_offset(data->depth, lower, 0); |
2382 | 2 | set = isl_set_copy(data->domain); |
2383 | 2 | set = isl_set_add_constraint(set, c); |
2384 | 2 | expansion = isl_map_from_basic_map(isl_basic_map_copy(data->expansion)); |
2385 | 2 | set = isl_set_apply(set, expansion); |
2386 | 2 | it_map = isl_ast_build_map_to_iterator(data->build, set); |
2387 | 2 | pma = isl_pw_multi_aff_from_map(it_map); |
2388 | 2 | n = 0; |
2389 | 2 | if (isl_pw_multi_aff_foreach_piece(pma, &update_n_div, &n) < 0) |
2390 | 0 | n = -1; |
2391 | 2 | isl_pw_multi_aff_free(pma); |
2392 | 2 | |
2393 | 2 | return n; |
2394 | 2 | } |
2395 | | |
2396 | | /* Is the lower bound "lower" with corresponding iteration count "n" |
2397 | | * better than the one stored in "data"? |
2398 | | * If there is no upper bound on the iteration count ("n" is infinity) or |
2399 | | * if the count is too large, then we cannot use this lower bound. |
2400 | | * Otherwise, if there was no previous lower bound or |
2401 | | * if the iteration count of the new lower bound is smaller than |
2402 | | * the iteration count of the previous lower bound, then we consider |
2403 | | * the new lower bound to be better. |
2404 | | * If the iteration count is the same, then compare the number |
2405 | | * of integer divisions that would be needed to express |
2406 | | * the iterator value at the first slice in the unrolling |
2407 | | * according to the lower bound. If we end up computing this |
2408 | | * number, then store the lowest value in data->n_div. |
2409 | | */ |
2410 | | static int is_better_lower_bound(struct isl_find_unroll_data *data, |
2411 | | __isl_keep isl_aff *lower, __isl_keep isl_val *n) |
2412 | 2.38k | { |
2413 | 2.38k | int cmp; |
2414 | 2.38k | int n_div; |
2415 | 2.38k | |
2416 | 2.38k | if (!n) |
2417 | 0 | return -1; |
2418 | 2.38k | if (isl_val_is_infty(n)) |
2419 | 0 | return 0; |
2420 | 2.38k | if (isl_val_cmp_si(n, INT_MAX) > 0) |
2421 | 0 | return 0; |
2422 | 2.38k | if (!data->lower) |
2423 | 2.37k | return 1; |
2424 | 7 | cmp = isl_val_cmp_si(n, *data->n); |
2425 | 7 | if (cmp < 0) |
2426 | 2 | return 1; |
2427 | 5 | if (cmp > 0) |
2428 | 4 | return 0; |
2429 | 1 | if (data->n_div < 0) |
2430 | 1 | data->n_div = get_expanded_n_div(data, data->lower); |
2431 | 1 | if (data->n_div < 0) |
2432 | 0 | return -1; |
2433 | 1 | if (data->n_div == 0) |
2434 | 0 | return 0; |
2435 | 1 | n_div = get_expanded_n_div(data, lower); |
2436 | 1 | if (n_div < 0) |
2437 | 0 | return -1; |
2438 | 1 | if (n_div >= data->n_div) |
2439 | 0 | return 0; |
2440 | 1 | data->n_div = n_div; |
2441 | 1 | |
2442 | 1 | return 1; |
2443 | 1 | } |
2444 | | |
2445 | | /* Check if we can use "c" as a lower bound and if it is better than |
2446 | | * any previously found lower bound. |
2447 | | * |
2448 | | * If "c" does not involve the dimension at the current depth, |
2449 | | * then we cannot use it. |
2450 | | * Otherwise, let "c" be of the form |
2451 | | * |
2452 | | * i >= f(j)/a |
2453 | | * |
2454 | | * We compute the maximal value of |
2455 | | * |
2456 | | * -ceil(f(j)/a)) + i + 1 |
2457 | | * |
2458 | | * over the domain. If there is such a value "n", then we know |
2459 | | * |
2460 | | * -ceil(f(j)/a)) + i + 1 <= n |
2461 | | * |
2462 | | * or |
2463 | | * |
2464 | | * i < ceil(f(j)/a)) + n |
2465 | | * |
2466 | | * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling. |
2467 | | * We just need to check if we have found any lower bound before and |
2468 | | * if the new lower bound is better (smaller n or fewer integer divisions) |
2469 | | * than the previously found lower bounds. |
2470 | | */ |
2471 | | static isl_stat update_unrolling_lower_bound(struct isl_find_unroll_data *data, |
2472 | | __isl_keep isl_constraint *c) |
2473 | 26.4k | { |
2474 | 26.4k | isl_aff *aff, *lower; |
2475 | 26.4k | isl_val *max; |
2476 | 26.4k | int better; |
2477 | 26.4k | |
2478 | 26.4k | if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth)) |
2479 | 24.0k | return isl_stat_ok; |
2480 | 2.38k | |
2481 | 2.38k | lower = isl_constraint_get_bound(c, isl_dim_set, data->depth); |
2482 | 2.38k | lower = isl_aff_ceil(lower); |
2483 | 2.38k | aff = isl_aff_copy(lower); |
2484 | 2.38k | aff = isl_aff_neg(aff); |
2485 | 2.38k | aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1); |
2486 | 2.38k | aff = isl_aff_add_constant_si(aff, 1); |
2487 | 2.38k | max = isl_set_max_val(data->domain, aff); |
2488 | 2.38k | isl_aff_free(aff); |
2489 | 2.38k | |
2490 | 2.38k | better = is_better_lower_bound(data, lower, max); |
2491 | 2.38k | if (better < 0 || !better) { |
2492 | 4 | isl_val_free(max); |
2493 | 4 | isl_aff_free(lower); |
2494 | 4 | return better < 0 ? isl_stat_error0 : isl_stat_ok; |
2495 | 4 | } |
2496 | 2.37k | |
2497 | 2.37k | isl_aff_free(data->lower); |
2498 | 2.37k | data->lower = lower; |
2499 | 2.37k | *data->n = isl_val_get_num_si(max); |
2500 | 2.37k | isl_val_free(max); |
2501 | 2.37k | |
2502 | 2.37k | return isl_stat_ok; |
2503 | 2.37k | } |
2504 | | |
2505 | | /* Check if we can use "c" as a lower bound and if it is better than |
2506 | | * any previously found lower bound. |
2507 | | */ |
2508 | | static isl_stat constraint_find_unroll(__isl_take isl_constraint *c, void *user) |
2509 | 26.4k | { |
2510 | 26.4k | struct isl_find_unroll_data *data; |
2511 | 26.4k | isl_stat r; |
2512 | 26.4k | |
2513 | 26.4k | data = (struct isl_find_unroll_data *) user; |
2514 | 26.4k | r = update_unrolling_lower_bound(data, c); |
2515 | 26.4k | isl_constraint_free(c); |
2516 | 26.4k | |
2517 | 26.4k | return r; |
2518 | 26.4k | } |
2519 | | |
2520 | | /* Look for a lower bound l(i) on the dimension at "depth" |
2521 | | * and a size n such that "domain" is a subset of |
2522 | | * |
2523 | | * { [i] : l(i) <= i_d < l(i) + n } |
2524 | | * |
2525 | | * where d is "depth" and l(i) depends only on earlier dimensions. |
2526 | | * Furthermore, try and find a lower bound such that n is as small as possible. |
2527 | | * In particular, "n" needs to be finite. |
2528 | | * "build" is the build in which the unrolling will be performed. |
2529 | | * "expansion" is the expansion that needs to be applied to "domain" |
2530 | | * in the unrolling that will be performed. |
2531 | | * |
2532 | | * Inner dimensions have been eliminated from "domain" by the caller. |
2533 | | * |
2534 | | * We first construct a collection of lower bounds on the input set |
2535 | | * by computing its simple hull. We then iterate through them, |
2536 | | * discarding those that we cannot use (either because they do not |
2537 | | * involve the dimension at "depth" or because they have no corresponding |
2538 | | * upper bound, meaning that "n" would be unbounded) and pick out the |
2539 | | * best from the remaining ones. |
2540 | | * |
2541 | | * If we cannot find a suitable lower bound, then we consider that |
2542 | | * to be an error. |
2543 | | */ |
2544 | | static __isl_give isl_aff *find_unroll_lower_bound( |
2545 | | __isl_keep isl_ast_build *build, __isl_keep isl_set *domain, |
2546 | | int depth, __isl_keep isl_basic_map *expansion, int *n) |
2547 | 2.37k | { |
2548 | 2.37k | struct isl_find_unroll_data data = |
2549 | 2.37k | { build, domain, depth, expansion, NULL, n, -1 }; |
2550 | 2.37k | isl_basic_set *hull; |
2551 | 2.37k | |
2552 | 2.37k | hull = isl_set_simple_hull(isl_set_copy(domain)); |
2553 | 2.37k | |
2554 | 2.37k | if (isl_basic_set_foreach_constraint(hull, |
2555 | 2.37k | &constraint_find_unroll, &data) < 0) |
2556 | 0 | goto error; |
2557 | 2.37k | |
2558 | 2.37k | isl_basic_set_free(hull); |
2559 | 2.37k | |
2560 | 2.37k | if (!data.lower) |
2561 | 2.37k | isl_die0 (isl_set_get_ctx(domain), isl_error_invalid, |
2562 | 2.37k | "cannot find lower bound for unrolling", return NULL); |
2563 | 2.37k | |
2564 | 2.37k | return data.lower; |
2565 | 0 | error: |
2566 | 0 | isl_basic_set_free(hull); |
2567 | 0 | return isl_aff_free(data.lower); |
2568 | 2.37k | } |
2569 | | |
2570 | | /* Call "fn" on each iteration of the current dimension of "domain". |
2571 | | * If "init" is not NULL, then it is called with the number of |
2572 | | * iterations before any call to "fn". |
2573 | | * Return -1 on failure. |
2574 | | * |
2575 | | * Since we are going to be iterating over the individual values, |
2576 | | * we first check if there are any strides on the current dimension. |
2577 | | * If there is, we rewrite the current dimension i as |
2578 | | * |
2579 | | * i = stride i' + offset |
2580 | | * |
2581 | | * and then iterate over individual values of i' instead. |
2582 | | * |
2583 | | * We then look for a lower bound on i' and a size such that the domain |
2584 | | * is a subset of |
2585 | | * |
2586 | | * { [j,i'] : l(j) <= i' < l(j) + n } |
2587 | | * |
2588 | | * and then take slices of the domain at values of i' |
2589 | | * between l(j) and l(j) + n - 1. |
2590 | | * |
2591 | | * We compute the unshifted simple hull of each slice to ensure that |
2592 | | * we have a single basic set per offset. The slicing constraint |
2593 | | * may get simplified away before the unshifted simple hull is taken |
2594 | | * and may therefore in some rare cases disappear from the result. |
2595 | | * We therefore explicitly add the constraint back after computing |
2596 | | * the unshifted simple hull to ensure that the basic sets |
2597 | | * remain disjoint. The constraints that are dropped by taking the hull |
2598 | | * will be taken into account at the next level, as in the case of the |
2599 | | * atomic option. |
2600 | | * |
2601 | | * Finally, we map i' back to i and call "fn". |
2602 | | */ |
2603 | | static int foreach_iteration(__isl_take isl_set *domain, |
2604 | | __isl_keep isl_ast_build *build, int (*init)(int n, void *user), |
2605 | | int (*fn)(__isl_take isl_basic_set *bset, void *user), void *user) |
2606 | 2.37k | { |
2607 | 2.37k | int i, n; |
2608 | 2.37k | int empty; |
2609 | 2.37k | int depth; |
2610 | 2.37k | isl_multi_aff *expansion; |
2611 | 2.37k | isl_basic_map *bmap; |
2612 | 2.37k | isl_aff *lower = NULL; |
2613 | 2.37k | isl_ast_build *stride_build; |
2614 | 2.37k | |
2615 | 2.37k | depth = isl_ast_build_get_depth(build); |
2616 | 2.37k | |
2617 | 2.37k | domain = isl_ast_build_eliminate_inner(build, domain); |
2618 | 2.37k | domain = isl_set_intersect(domain, isl_ast_build_get_domain(build)); |
2619 | 2.37k | stride_build = isl_ast_build_copy(build); |
2620 | 2.37k | stride_build = isl_ast_build_detect_strides(stride_build, |
2621 | 2.37k | isl_set_copy(domain)); |
2622 | 2.37k | expansion = isl_ast_build_get_stride_expansion(stride_build); |
2623 | 2.37k | |
2624 | 2.37k | domain = isl_set_preimage_multi_aff(domain, |
2625 | 2.37k | isl_multi_aff_copy(expansion)); |
2626 | 2.37k | domain = isl_ast_build_eliminate_divs(stride_build, domain); |
2627 | 2.37k | isl_ast_build_free(stride_build); |
2628 | 2.37k | |
2629 | 2.37k | bmap = isl_basic_map_from_multi_aff(expansion); |
2630 | 2.37k | |
2631 | 2.37k | empty = isl_set_is_empty(domain); |
2632 | 2.37k | if (empty < 0) { |
2633 | 0 | n = -1; |
2634 | 2.37k | } else if (empty) { |
2635 | 0 | n = 0; |
2636 | 2.37k | } else { |
2637 | 2.37k | lower = find_unroll_lower_bound(build, domain, depth, bmap, &n); |
2638 | 2.37k | if (!lower) |
2639 | 0 | n = -1; |
2640 | 2.37k | } |
2641 | 2.37k | if (n >= 0 && init && init(n, user) < 02.37k ) |
2642 | 0 | n = -1; |
2643 | 6.89k | for (i = 0; i < n; ++i4.52k ) { |
2644 | 4.52k | isl_set *set; |
2645 | 4.52k | isl_basic_set *bset; |
2646 | 4.52k | isl_constraint *slice; |
2647 | 4.52k | |
2648 | 4.52k | slice = at_offset(depth, lower, i); |
2649 | 4.52k | set = isl_set_copy(domain); |
2650 | 4.52k | set = isl_set_add_constraint(set, isl_constraint_copy(slice)); |
2651 | 4.52k | bset = isl_set_unshifted_simple_hull(set); |
2652 | 4.52k | bset = isl_basic_set_add_constraint(bset, slice); |
2653 | 4.52k | bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap)); |
2654 | 4.52k | |
2655 | 4.52k | if (fn(bset, user) < 0) |
2656 | 0 | break; |
2657 | 4.52k | } |
2658 | 2.37k | |
2659 | 2.37k | isl_aff_free(lower); |
2660 | 2.37k | isl_set_free(domain); |
2661 | 2.37k | isl_basic_map_free(bmap); |
2662 | 2.37k | |
2663 | 2.37k | return n < 0 || i < n ? -10 : 0; |
2664 | 2.37k | } |
2665 | | |
2666 | | /* Data structure for storing the results and the intermediate objects |
2667 | | * of compute_domains. |
2668 | | * |
2669 | | * "list" is the main result of the function and contains a list |
2670 | | * of disjoint basic sets for which code should be generated. |
2671 | | * |
2672 | | * "executed" and "build" are inputs to compute_domains. |
2673 | | * "schedule_domain" is the domain of "executed". |
2674 | | * |
2675 | | * "option" contains the domains at the current depth that should by |
2676 | | * atomic, separated or unrolled. These domains are as specified by |
2677 | | * the user, except that inner dimensions have been eliminated and |
2678 | | * that they have been made pair-wise disjoint. |
2679 | | * |
2680 | | * "sep_class" contains the user-specified split into separation classes |
2681 | | * specialized to the current depth. |
2682 | | * "done" contains the union of the separation domains that have already |
2683 | | * been handled. |
2684 | | */ |
2685 | | struct isl_codegen_domains { |
2686 | | isl_basic_set_list *list; |
2687 | | |
2688 | | isl_union_map *executed; |
2689 | | isl_ast_build *build; |
2690 | | isl_set *schedule_domain; |
2691 | | |
2692 | | isl_set *option[4]; |
2693 | | |
2694 | | isl_map *sep_class; |
2695 | | isl_set *done; |
2696 | | }; |
2697 | | |
2698 | | /* Internal data structure for do_unroll. |
2699 | | * |
2700 | | * "domains" stores the results of compute_domains. |
2701 | | * "class_domain" is the original class domain passed to do_unroll. |
2702 | | * "unroll_domain" collects the unrolled iterations. |
2703 | | */ |
2704 | | struct isl_ast_unroll_data { |
2705 | | struct isl_codegen_domains *domains; |
2706 | | isl_set *class_domain; |
2707 | | isl_set *unroll_domain; |
2708 | | }; |
2709 | | |
2710 | | /* Given an iteration of an unrolled domain represented by "bset", |
2711 | | * add it to data->domains->list. |
2712 | | * Since we may have dropped some constraints, we intersect with |
2713 | | * the class domain again to ensure that each element in the list |
2714 | | * is disjoint from the other class domains. |
2715 | | */ |
2716 | | static int do_unroll_iteration(__isl_take isl_basic_set *bset, void *user) |
2717 | 8 | { |
2718 | 8 | struct isl_ast_unroll_data *data = user; |
2719 | 8 | isl_set *set; |
2720 | 8 | isl_basic_set_list *list; |
2721 | 8 | |
2722 | 8 | set = isl_set_from_basic_set(bset); |
2723 | 8 | data->unroll_domain = isl_set_union(data->unroll_domain, |
2724 | 8 | isl_set_copy(set)); |
2725 | 8 | set = isl_set_intersect(set, isl_set_copy(data->class_domain)); |
2726 | 8 | set = isl_set_make_disjoint(set); |
2727 | 8 | list = isl_basic_set_list_from_set(set); |
2728 | 8 | data->domains->list = isl_basic_set_list_concat(data->domains->list, |
2729 | 8 | list); |
2730 | 8 | |
2731 | 8 | return 0; |
2732 | 8 | } |
2733 | | |
2734 | | /* Extend domains->list with a list of basic sets, one for each value |
2735 | | * of the current dimension in "domain" and remove the corresponding |
2736 | | * sets from the class domain. Return the updated class domain. |
2737 | | * The divs that involve the current dimension have not been projected out |
2738 | | * from this domain. |
2739 | | * |
2740 | | * We call foreach_iteration to iterate over the individual values and |
2741 | | * in do_unroll_iteration we collect the individual basic sets in |
2742 | | * domains->list and their union in data->unroll_domain, which is then |
2743 | | * used to update the class domain. |
2744 | | */ |
2745 | | static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains, |
2746 | | __isl_take isl_set *domain, __isl_take isl_set *class_domain) |
2747 | 3 | { |
2748 | 3 | struct isl_ast_unroll_data data; |
2749 | 3 | |
2750 | 3 | if (!domain) |
2751 | 0 | return isl_set_free(class_domain); |
2752 | 3 | if (!class_domain) |
2753 | 0 | return isl_set_free(domain); |
2754 | 3 | |
2755 | 3 | data.domains = domains; |
2756 | 3 | data.class_domain = class_domain; |
2757 | 3 | data.unroll_domain = isl_set_empty(isl_set_get_space(domain)); |
2758 | 3 | |
2759 | 3 | if (foreach_iteration(domain, domains->build, NULL, |
2760 | 3 | &do_unroll_iteration, &data) < 0) |
2761 | 0 | data.unroll_domain = isl_set_free(data.unroll_domain); |
2762 | 3 | |
2763 | 3 | class_domain = isl_set_subtract(class_domain, data.unroll_domain); |
2764 | 3 | |
2765 | 3 | return class_domain; |
2766 | 3 | } |
2767 | | |
2768 | | /* Add domains to domains->list for each individual value of the current |
2769 | | * dimension, for that part of the schedule domain that lies in the |
2770 | | * intersection of the option domain and the class domain. |
2771 | | * Remove the corresponding sets from the class domain and |
2772 | | * return the updated class domain. |
2773 | | * |
2774 | | * We first break up the unroll option domain into individual pieces |
2775 | | * and then handle each of them separately. The unroll option domain |
2776 | | * has been made disjoint in compute_domains_init_options, |
2777 | | * |
2778 | | * Note that we actively want to combine different pieces of the |
2779 | | * schedule domain that have the same value at the current dimension. |
2780 | | * We therefore need to break up the unroll option domain before |
2781 | | * intersecting with class and schedule domain, hoping that the |
2782 | | * unroll option domain specified by the user is relatively simple. |
2783 | | */ |
2784 | | static __isl_give isl_set *compute_unroll_domains( |
2785 | | struct isl_codegen_domains *domains, __isl_take isl_set *class_domain) |
2786 | 84 | { |
2787 | 84 | isl_set *unroll_domain; |
2788 | 84 | isl_basic_set_list *unroll_list; |
2789 | 84 | int i, n; |
2790 | 84 | int empty; |
2791 | 84 | |
2792 | 84 | empty = isl_set_is_empty(domains->option[isl_ast_loop_unroll]); |
2793 | 84 | if (empty < 0) |
2794 | 0 | return isl_set_free(class_domain); |
2795 | 84 | if (empty) |
2796 | 81 | return class_domain; |
2797 | 3 | |
2798 | 3 | unroll_domain = isl_set_copy(domains->option[isl_ast_loop_unroll]); |
2799 | 3 | unroll_list = isl_basic_set_list_from_set(unroll_domain); |
2800 | 3 | |
2801 | 3 | n = isl_basic_set_list_n_basic_set(unroll_list); |
2802 | 6 | for (i = 0; i < n; ++i3 ) { |
2803 | 3 | isl_basic_set *bset; |
2804 | 3 | |
2805 | 3 | bset = isl_basic_set_list_get_basic_set(unroll_list, i); |
2806 | 3 | unroll_domain = isl_set_from_basic_set(bset); |
2807 | 3 | unroll_domain = isl_set_intersect(unroll_domain, |
2808 | 3 | isl_set_copy(class_domain)); |
2809 | 3 | unroll_domain = isl_set_intersect(unroll_domain, |
2810 | 3 | isl_set_copy(domains->schedule_domain)); |
2811 | 3 | |
2812 | 3 | empty = isl_set_is_empty(unroll_domain); |
2813 | 3 | if (empty >= 0 && empty) { |
2814 | 0 | isl_set_free(unroll_domain); |
2815 | 0 | continue; |
2816 | 0 | } |
2817 | 3 | |
2818 | 3 | class_domain = do_unroll(domains, unroll_domain, class_domain); |
2819 | 3 | } |
2820 | 3 | |
2821 | 3 | isl_basic_set_list_free(unroll_list); |
2822 | 3 | |
2823 | 3 | return class_domain; |
2824 | 3 | } |
2825 | | |
2826 | | /* Try and construct a single basic set that includes the intersection of |
2827 | | * the schedule domain, the atomic option domain and the class domain. |
2828 | | * Add the resulting basic set(s) to domains->list and remove them |
2829 | | * from class_domain. Return the updated class domain. |
2830 | | * |
2831 | | * We construct a single domain rather than trying to combine |
2832 | | * the schedule domains of individual domains because we are working |
2833 | | * within a single component so that non-overlapping schedule domains |
2834 | | * should already have been separated. |
2835 | | * We do however need to make sure that this single domains is a subset |
2836 | | * of the class domain so that it would not intersect with any other |
2837 | | * class domains. This means that we may end up splitting up the atomic |
2838 | | * domain in case separation classes are being used. |
2839 | | * |
2840 | | * "domain" is the intersection of the schedule domain and the class domain, |
2841 | | * with inner dimensions projected out. |
2842 | | */ |
2843 | | static __isl_give isl_set *compute_atomic_domain( |
2844 | | struct isl_codegen_domains *domains, __isl_take isl_set *class_domain) |
2845 | 84 | { |
2846 | 84 | isl_basic_set *bset; |
2847 | 84 | isl_basic_set_list *list; |
2848 | 84 | isl_set *domain, *atomic_domain; |
2849 | 84 | int empty; |
2850 | 84 | |
2851 | 84 | domain = isl_set_copy(domains->option[isl_ast_loop_atomic]); |
2852 | 84 | domain = isl_set_intersect(domain, isl_set_copy(class_domain)); |
2853 | 84 | domain = isl_set_intersect(domain, |
2854 | 84 | isl_set_copy(domains->schedule_domain)); |
2855 | 84 | empty = isl_set_is_empty(domain); |
2856 | 84 | if (empty < 0) |
2857 | 0 | class_domain = isl_set_free(class_domain); |
2858 | 84 | if (empty) { |
2859 | 83 | isl_set_free(domain); |
2860 | 83 | return class_domain; |
2861 | 83 | } |
2862 | 1 | |
2863 | 1 | domain = isl_ast_build_eliminate(domains->build, domain); |
2864 | 1 | domain = isl_set_coalesce_preserve(domain); |
2865 | 1 | bset = isl_set_unshifted_simple_hull(domain); |
2866 | 1 | domain = isl_set_from_basic_set(bset); |
2867 | 1 | atomic_domain = isl_set_copy(domain); |
2868 | 1 | domain = isl_set_intersect(domain, isl_set_copy(class_domain)); |
2869 | 1 | class_domain = isl_set_subtract(class_domain, atomic_domain); |
2870 | 1 | domain = isl_set_make_disjoint(domain); |
2871 | 1 | list = isl_basic_set_list_from_set(domain); |
2872 | 1 | domains->list = isl_basic_set_list_concat(domains->list, list); |
2873 | 1 | |
2874 | 1 | return class_domain; |
2875 | 1 | } |
2876 | | |
2877 | | /* Split up the schedule domain into uniform basic sets, |
2878 | | * in the sense that each element in a basic set is associated to |
2879 | | * elements of the same domains, and add the result to domains->list. |
2880 | | * Do this for that part of the schedule domain that lies in the |
2881 | | * intersection of "class_domain" and the separate option domain. |
2882 | | * |
2883 | | * "class_domain" may or may not include the constraints |
2884 | | * of the schedule domain, but this does not make a difference |
2885 | | * since we are going to intersect it with the domain of the inverse schedule. |
2886 | | * If it includes schedule domain constraints, then they may involve |
2887 | | * inner dimensions, but we will eliminate them in separation_domain. |
2888 | | */ |
2889 | | static int compute_separate_domain(struct isl_codegen_domains *domains, |
2890 | | __isl_keep isl_set *class_domain) |
2891 | 84 | { |
2892 | 84 | isl_space *space; |
2893 | 84 | isl_set *domain; |
2894 | 84 | isl_union_map *executed; |
2895 | 84 | isl_basic_set_list *list; |
2896 | 84 | int empty; |
2897 | 84 | |
2898 | 84 | domain = isl_set_copy(domains->option[isl_ast_loop_separate]); |
2899 | 84 | domain = isl_set_intersect(domain, isl_set_copy(class_domain)); |
2900 | 84 | executed = isl_union_map_copy(domains->executed); |
2901 | 84 | executed = isl_union_map_intersect_domain(executed, |
2902 | 84 | isl_union_set_from_set(domain)); |
2903 | 84 | empty = isl_union_map_is_empty(executed); |
2904 | 84 | if (empty < 0 || empty) { |
2905 | 84 | isl_union_map_free(executed); |
2906 | 84 | return empty < 0 ? -10 : 0; |
2907 | 84 | } |
2908 | 0 | |
2909 | 0 | space = isl_set_get_space(class_domain); |
2910 | 0 | domain = separate_schedule_domains(space, executed, domains->build); |
2911 | 0 |
|
2912 | 0 | list = isl_basic_set_list_from_set(domain); |
2913 | 0 | domains->list = isl_basic_set_list_concat(domains->list, list); |
2914 | 0 |
|
2915 | 0 | return 0; |
2916 | 0 | } |
2917 | | |
2918 | | /* Split up the domain at the current depth into disjoint |
2919 | | * basic sets for which code should be generated separately |
2920 | | * for the given separation class domain. |
2921 | | * |
2922 | | * If any separation classes have been defined, then "class_domain" |
2923 | | * is the domain of the current class and does not refer to inner dimensions. |
2924 | | * Otherwise, "class_domain" is the universe domain. |
2925 | | * |
2926 | | * We first make sure that the class domain is disjoint from |
2927 | | * previously considered class domains. |
2928 | | * |
2929 | | * The separate domains can be computed directly from the "class_domain". |
2930 | | * |
2931 | | * The unroll, atomic and remainder domains need the constraints |
2932 | | * from the schedule domain. |
2933 | | * |
2934 | | * For unrolling, the actual schedule domain is needed (with divs that |
2935 | | * may refer to the current dimension) so that stride detection can be |
2936 | | * performed. |
2937 | | * |
2938 | | * For atomic and remainder domains, inner dimensions and divs involving |
2939 | | * the current dimensions should be eliminated. |
2940 | | * In case we are working within a separation class, we need to intersect |
2941 | | * the result with the current "class_domain" to ensure that the domains |
2942 | | * are disjoint from those generated from other class domains. |
2943 | | * |
2944 | | * The domain that has been made atomic may be larger than specified |
2945 | | * by the user since it needs to be representable as a single basic set. |
2946 | | * This possibly larger domain is removed from class_domain by |
2947 | | * compute_atomic_domain. It is computed first so that the extended domain |
2948 | | * would not overlap with any domains computed before. |
2949 | | * Similary, the unrolled domains may have some constraints removed and |
2950 | | * may therefore also be larger than specified by the user. |
2951 | | * |
2952 | | * If anything is left after handling separate, unroll and atomic, |
2953 | | * we split it up into basic sets and append the basic sets to domains->list. |
2954 | | */ |
2955 | | static isl_stat compute_partial_domains(struct isl_codegen_domains *domains, |
2956 | | __isl_take isl_set *class_domain) |
2957 | 84 | { |
2958 | 84 | isl_basic_set_list *list; |
2959 | 84 | isl_set *domain; |
2960 | 84 | |
2961 | 84 | class_domain = isl_set_subtract(class_domain, |
2962 | 84 | isl_set_copy(domains->done)); |
2963 | 84 | domains->done = isl_set_union(domains->done, |
2964 | 84 | isl_set_copy(class_domain)); |
2965 | 84 | |
2966 | 84 | class_domain = compute_atomic_domain(domains, class_domain); |
2967 | 84 | class_domain = compute_unroll_domains(domains, class_domain); |
2968 | 84 | |
2969 | 84 | domain = isl_set_copy(class_domain); |
2970 | 84 | |
2971 | 84 | if (compute_separate_domain(domains, domain) < 0) |
2972 | 0 | goto error; |
2973 | 84 | domain = isl_set_subtract(domain, |
2974 | 84 | isl_set_copy(domains->option[isl_ast_loop_separate])); |
2975 | 84 | |
2976 | 84 | domain = isl_set_intersect(domain, |
2977 | 84 | isl_set_copy(domains->schedule_domain)); |
2978 | 84 | |
2979 | 84 | domain = isl_ast_build_eliminate(domains->build, domain); |
2980 | 84 | domain = isl_set_intersect(domain, isl_set_copy(class_domain)); |
2981 | 84 | |
2982 | 84 | domain = isl_set_coalesce_preserve(domain); |
2983 | 84 | domain = isl_set_make_disjoint(domain); |
2984 | 84 | |
2985 | 84 | list = isl_basic_set_list_from_set(domain); |
2986 | 84 | domains->list = isl_basic_set_list_concat(domains->list, list); |
2987 | 84 | |
2988 | 84 | isl_set_free(class_domain); |
2989 | 84 | |
2990 | 84 | return isl_stat_ok; |
2991 | 0 | error: |
2992 | 0 | isl_set_free(domain); |
2993 | 0 | isl_set_free(class_domain); |
2994 | 0 | return isl_stat_error; |
2995 | 84 | } |
2996 | | |
2997 | | /* Split up the domain at the current depth into disjoint |
2998 | | * basic sets for which code should be generated separately |
2999 | | * for the separation class identified by "pnt". |
3000 | | * |
3001 | | * We extract the corresponding class domain from domains->sep_class, |
3002 | | * eliminate inner dimensions and pass control to compute_partial_domains. |
3003 | | */ |
3004 | | static isl_stat compute_class_domains(__isl_take isl_point *pnt, void *user) |
3005 | 0 | { |
3006 | 0 | struct isl_codegen_domains *domains = user; |
3007 | 0 | isl_set *class_set; |
3008 | 0 | isl_set *domain; |
3009 | 0 | int disjoint; |
3010 | 0 |
|
3011 | 0 | class_set = isl_set_from_point(pnt); |
3012 | 0 | domain = isl_map_domain(isl_map_intersect_range( |
3013 | 0 | isl_map_copy(domains->sep_class), class_set)); |
3014 | 0 | domain = isl_ast_build_compute_gist(domains->build, domain); |
3015 | 0 | domain = isl_ast_build_eliminate(domains->build, domain); |
3016 | 0 |
|
3017 | 0 | disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain); |
3018 | 0 | if (disjoint < 0) |
3019 | 0 | return isl_stat_error; |
3020 | 0 | if (disjoint) { |
3021 | 0 | isl_set_free(domain); |
3022 | 0 | return isl_stat_ok; |
3023 | 0 | } |
3024 | 0 | |
3025 | 0 | return compute_partial_domains(domains, domain); |
3026 | 0 | } |
3027 | | |
3028 | | /* Extract the domains at the current depth that should be atomic, |
3029 | | * separated or unrolled and store them in option. |
3030 | | * |
3031 | | * The domains specified by the user might overlap, so we make |
3032 | | * them disjoint by subtracting earlier domains from later domains. |
3033 | | */ |
3034 | | static void compute_domains_init_options(isl_set *option[4], |
3035 | | __isl_keep isl_ast_build *build) |
3036 | 84 | { |
3037 | 84 | enum isl_ast_loop_type type, type2; |
3038 | 84 | isl_set *unroll; |
3039 | 84 | |
3040 | 84 | for (type = isl_ast_loop_atomic; |
3041 | 336 | type <= isl_ast_loop_separate; ++type252 ) { |
3042 | 252 | option[type] = isl_ast_build_get_option_domain(build, type); |
3043 | 504 | for (type2 = isl_ast_loop_atomic; type2 < type; ++type2252 ) |
3044 | 252 | option[type] = isl_set_subtract(option[type], |
3045 | 252 | isl_set_copy(option[type2])); |
3046 | 252 | } |
3047 | 84 | |
3048 | 84 | unroll = option[isl_ast_loop_unroll]; |
3049 | 84 | unroll = isl_set_coalesce(unroll); |
3050 | 84 | unroll = isl_set_make_disjoint(unroll); |
3051 | 84 | option[isl_ast_loop_unroll] = unroll; |
3052 | 84 | } |
3053 | | |
3054 | | /* Split up the domain at the current depth into disjoint |
3055 | | * basic sets for which code should be generated separately, |
3056 | | * based on the user-specified options. |
3057 | | * Return the list of disjoint basic sets. |
3058 | | * |
3059 | | * There are three kinds of domains that we need to keep track of. |
3060 | | * - the "schedule domain" is the domain of "executed" |
3061 | | * - the "class domain" is the domain corresponding to the currrent |
3062 | | * separation class |
3063 | | * - the "option domain" is the domain corresponding to one of the options |
3064 | | * atomic, unroll or separate |
3065 | | * |
3066 | | * We first consider the individial values of the separation classes |
3067 | | * and split up the domain for each of them separately. |
3068 | | * Finally, we consider the remainder. If no separation classes were |
3069 | | * specified, then we call compute_partial_domains with the universe |
3070 | | * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain", |
3071 | | * with inner dimensions removed. We do this because we want to |
3072 | | * avoid computing the complement of the class domains (i.e., the difference |
3073 | | * between the universe and domains->done). |
3074 | | */ |
3075 | | static __isl_give isl_basic_set_list *compute_domains( |
3076 | | __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) |
3077 | 84 | { |
3078 | 84 | struct isl_codegen_domains domains; |
3079 | 84 | isl_ctx *ctx; |
3080 | 84 | isl_set *domain; |
3081 | 84 | isl_union_set *schedule_domain; |
3082 | 84 | isl_set *classes; |
3083 | 84 | isl_space *space; |
3084 | 84 | int n_param; |
3085 | 84 | enum isl_ast_loop_type type; |
3086 | 84 | int empty; |
3087 | 84 | |
3088 | 84 | if (!executed) |
3089 | 0 | return NULL; |
3090 | 84 | |
3091 | 84 | ctx = isl_union_map_get_ctx(executed); |
3092 | 84 | domains.list = isl_basic_set_list_alloc(ctx, 0); |
3093 | 84 | |
3094 | 84 | schedule_domain = isl_union_map_domain(isl_union_map_copy(executed)); |
3095 | 84 | domain = isl_set_from_union_set(schedule_domain); |
3096 | 84 | |
3097 | 84 | compute_domains_init_options(domains.option, build); |
3098 | 84 | |
3099 | 84 | domains.sep_class = isl_ast_build_get_separation_class(build); |
3100 | 84 | classes = isl_map_range(isl_map_copy(domains.sep_class)); |
3101 | 84 | n_param = isl_set_dim(classes, isl_dim_param); |
3102 | 84 | classes = isl_set_project_out(classes, isl_dim_param, 0, n_param); |
3103 | 84 | |
3104 | 84 | space = isl_set_get_space(domain); |
3105 | 84 | domains.build = build; |
3106 | 84 | domains.schedule_domain = isl_set_copy(domain); |
3107 | 84 | domains.executed = executed; |
3108 | 84 | domains.done = isl_set_empty(space); |
3109 | 84 | |
3110 | 84 | if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0) |
3111 | 0 | domains.list = isl_basic_set_list_free(domains.list); |
3112 | 84 | isl_set_free(classes); |
3113 | 84 | |
3114 | 84 | empty = isl_set_is_empty(domains.done); |
3115 | 84 | if (empty < 0) { |
3116 | 0 | domains.list = isl_basic_set_list_free(domains.list); |
3117 | 0 | domain = isl_set_free(domain); |
3118 | 84 | } else if (empty) { |
3119 | 84 | isl_set_free(domain); |
3120 | 84 | domain = isl_set_universe(isl_set_get_space(domains.done)); |
3121 | 84 | } else { |
3122 | 0 | domain = isl_ast_build_eliminate(build, domain); |
3123 | 0 | } |
3124 | 84 | if (compute_partial_domains(&domains, domain) < 0) |
3125 | 0 | domains.list = isl_basic_set_list_free(domains.list); |
3126 | 84 | |
3127 | 84 | isl_set_free(domains.schedule_domain); |
3128 | 84 | isl_set_free(domains.done); |
3129 | 84 | isl_map_free(domains.sep_class); |
3130 | 336 | for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type252 ) |
3131 | 252 | isl_set_free(domains.option[type]); |
3132 | 84 | |
3133 | 84 | return domains.list; |
3134 | 84 | } |
3135 | | |
3136 | | /* Generate code for a single component, after shifting (if any) |
3137 | | * has been applied, in case the schedule was specified as a union map. |
3138 | | * |
3139 | | * We first split up the domain at the current depth into disjoint |
3140 | | * basic sets based on the user-specified options. |
3141 | | * Then we generated code for each of them and concatenate the results. |
3142 | | */ |
3143 | | static __isl_give isl_ast_graft_list *generate_shifted_component_flat( |
3144 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
3145 | 84 | { |
3146 | 84 | isl_basic_set_list *domain_list; |
3147 | 84 | isl_ast_graft_list *list = NULL; |
3148 | 84 | |
3149 | 84 | domain_list = compute_domains(executed, build); |
3150 | 84 | list = generate_parallel_domains(domain_list, executed, build); |
3151 | 84 | |
3152 | 84 | isl_basic_set_list_free(domain_list); |
3153 | 84 | isl_union_map_free(executed); |
3154 | 84 | isl_ast_build_free(build); |
3155 | 84 | |
3156 | 84 | return list; |
3157 | 84 | } |
3158 | | |
3159 | | /* Generate code for a single component, after shifting (if any) |
3160 | | * has been applied, in case the schedule was specified as a schedule tree |
3161 | | * and the separate option was specified. |
3162 | | * |
3163 | | * We perform separation on the domain of "executed" and then generate |
3164 | | * an AST for each of the resulting disjoint basic sets. |
3165 | | */ |
3166 | | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_separate( |
3167 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
3168 | 27 | { |
3169 | 27 | isl_space *space; |
3170 | 27 | isl_set *domain; |
3171 | 27 | isl_basic_set_list *domain_list; |
3172 | 27 | isl_ast_graft_list *list; |
3173 | 27 | |
3174 | 27 | space = isl_ast_build_get_space(build, 1); |
3175 | 27 | domain = separate_schedule_domains(space, |
3176 | 27 | isl_union_map_copy(executed), build); |
3177 | 27 | domain_list = isl_basic_set_list_from_set(domain); |
3178 | 27 | |
3179 | 27 | list = generate_parallel_domains(domain_list, executed, build); |
3180 | 27 | |
3181 | 27 | isl_basic_set_list_free(domain_list); |
3182 | 27 | isl_union_map_free(executed); |
3183 | 27 | isl_ast_build_free(build); |
3184 | 27 | |
3185 | 27 | return list; |
3186 | 27 | } |
3187 | | |
3188 | | /* Internal data structure for generate_shifted_component_tree_unroll. |
3189 | | * |
3190 | | * "executed" and "build" are inputs to generate_shifted_component_tree_unroll. |
3191 | | * "list" collects the constructs grafts. |
3192 | | */ |
3193 | | struct isl_ast_unroll_tree_data { |
3194 | | isl_union_map *executed; |
3195 | | isl_ast_build *build; |
3196 | | isl_ast_graft_list *list; |
3197 | | }; |
3198 | | |
3199 | | /* Initialize data->list to a list of "n" elements. |
3200 | | */ |
3201 | | static int init_unroll_tree(int n, void *user) |
3202 | 2.37k | { |
3203 | 2.37k | struct isl_ast_unroll_tree_data *data = user; |
3204 | 2.37k | isl_ctx *ctx; |
3205 | 2.37k | |
3206 | 2.37k | ctx = isl_ast_build_get_ctx(data->build); |
3207 | 2.37k | data->list = isl_ast_graft_list_alloc(ctx, n); |
3208 | 2.37k | |
3209 | 2.37k | return 0; |
3210 | 2.37k | } |
3211 | | |
3212 | | /* Given an iteration of an unrolled domain represented by "bset", |
3213 | | * generate the corresponding AST and add the result to data->list. |
3214 | | */ |
3215 | | static int do_unroll_tree_iteration(__isl_take isl_basic_set *bset, void *user) |
3216 | 4.51k | { |
3217 | 4.51k | struct isl_ast_unroll_tree_data *data = user; |
3218 | 4.51k | |
3219 | 4.51k | data->list = add_node(data->list, isl_union_map_copy(data->executed), |
3220 | 4.51k | bset, isl_ast_build_copy(data->build)); |
3221 | 4.51k | |
3222 | 4.51k | return 0; |
3223 | 4.51k | } |
3224 | | |
3225 | | /* Generate code for a single component, after shifting (if any) |
3226 | | * has been applied, in case the schedule was specified as a schedule tree |
3227 | | * and the unroll option was specified. |
3228 | | * |
3229 | | * We call foreach_iteration to iterate over the individual values and |
3230 | | * construct and collect the corresponding grafts in do_unroll_tree_iteration. |
3231 | | */ |
3232 | | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_unroll( |
3233 | | __isl_take isl_union_map *executed, __isl_take isl_set *domain, |
3234 | | __isl_take isl_ast_build *build) |
3235 | 2.37k | { |
3236 | 2.37k | struct isl_ast_unroll_tree_data data = { executed, build, NULL }; |
3237 | 2.37k | |
3238 | 2.37k | if (foreach_iteration(domain, build, &init_unroll_tree, |
3239 | 2.37k | &do_unroll_tree_iteration, &data) < 0) |
3240 | 0 | data.list = isl_ast_graft_list_free(data.list); |
3241 | 2.37k | |
3242 | 2.37k | isl_union_map_free(executed); |
3243 | 2.37k | isl_ast_build_free(build); |
3244 | 2.37k | |
3245 | 2.37k | return data.list; |
3246 | 2.37k | } |
3247 | | |
3248 | | /* Does "domain" involve a disjunction that is purely based on |
3249 | | * constraints involving only outer dimension? |
3250 | | * |
3251 | | * In particular, is there a disjunction such that the constraints |
3252 | | * involving the current and later dimensions are the same over |
3253 | | * all the disjuncts? |
3254 | | */ |
3255 | | static isl_bool has_pure_outer_disjunction(__isl_keep isl_set *domain, |
3256 | | __isl_keep isl_ast_build *build) |
3257 | 870 | { |
3258 | 870 | isl_basic_set *hull; |
3259 | 870 | isl_set *shared, *inner; |
3260 | 870 | isl_bool equal; |
3261 | 870 | int depth, dim; |
3262 | 870 | |
3263 | 870 | if (isl_set_n_basic_set(domain) <= 1) |
3264 | 804 | return isl_bool_false; |
3265 | 66 | |
3266 | 66 | inner = isl_set_copy(domain); |
3267 | 66 | depth = isl_ast_build_get_depth(build); |
3268 | 66 | dim = isl_set_dim(inner, isl_dim_set); |
3269 | 66 | inner = isl_set_drop_constraints_not_involving_dims(inner, |
3270 | 66 | isl_dim_set, depth, dim - depth); |
3271 | 66 | hull = isl_set_plain_unshifted_simple_hull(isl_set_copy(inner)); |
3272 | 66 | shared = isl_set_from_basic_set(hull); |
3273 | 66 | equal = isl_set_plain_is_equal(inner, shared); |
3274 | 66 | isl_set_free(inner); |
3275 | 66 | isl_set_free(shared); |
3276 | 66 | |
3277 | 66 | return equal; |
3278 | 66 | } |
3279 | | |
3280 | | /* Generate code for a single component, after shifting (if any) |
3281 | | * has been applied, in case the schedule was specified as a schedule tree. |
3282 | | * In particular, handle the base case where there is either no isolated |
3283 | | * set or we are within the isolated set (in which case "isolated" is set) |
3284 | | * or the iterations that precede or follow the isolated set. |
3285 | | * |
3286 | | * The schedule domain is broken up or combined into basic sets |
3287 | | * according to the AST generation option specified in the current |
3288 | | * schedule node, which may be either atomic, separate, unroll or |
3289 | | * unspecified. If the option is unspecified, then we currently simply |
3290 | | * split the schedule domain into disjoint basic sets. |
3291 | | * |
3292 | | * In case the separate option is specified, the AST generation is |
3293 | | * handled by generate_shifted_component_tree_separate. |
3294 | | * In the other cases, we need the global schedule domain. |
3295 | | * In the unroll case, the AST generation is then handled by |
3296 | | * generate_shifted_component_tree_unroll which needs the actual |
3297 | | * schedule domain (with divs that may refer to the current dimension) |
3298 | | * so that stride detection can be performed. |
3299 | | * In the atomic or unspecified case, inner dimensions and divs involving |
3300 | | * the current dimensions should be eliminated. |
3301 | | * The result is then either combined into a single basic set or |
3302 | | * split up into disjoint basic sets. |
3303 | | * Finally an AST is generated for each basic set and the results are |
3304 | | * concatenated. |
3305 | | * |
3306 | | * If the schedule domain involves a disjunction that is purely based on |
3307 | | * constraints involving only outer dimension, then it is treated as |
3308 | | * if atomic was specified. This ensures that only a single loop |
3309 | | * is generated instead of a sequence of identical loops with |
3310 | | * different guards. |
3311 | | */ |
3312 | | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_base( |
3313 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, |
3314 | | int isolated) |
3315 | 3.26k | { |
3316 | 3.26k | isl_bool outer_disjunction; |
3317 | 3.26k | isl_union_set *schedule_domain; |
3318 | 3.26k | isl_set *domain; |
3319 | 3.26k | isl_basic_set_list *domain_list; |
3320 | 3.26k | isl_ast_graft_list *list; |
3321 | 3.26k | enum isl_ast_loop_type type; |
3322 | 3.26k | |
3323 | 3.26k | type = isl_ast_build_get_loop_type(build, isolated); |
3324 | 3.26k | if (type < 0) |
3325 | 0 | goto error; |
3326 | 3.26k | |
3327 | 3.26k | if (type == isl_ast_loop_separate) |
3328 | 27 | return generate_shifted_component_tree_separate(executed, |
3329 | 27 | build); |
3330 | 3.24k | |
3331 | 3.24k | schedule_domain = isl_union_map_domain(isl_union_map_copy(executed)); |
3332 | 3.24k | domain = isl_set_from_union_set(schedule_domain); |
3333 | 3.24k | |
3334 | 3.24k | if (type == isl_ast_loop_unroll) |
3335 | 2.37k | return generate_shifted_component_tree_unroll(executed, domain, |
3336 | 2.37k | build); |
3337 | 870 | |
3338 | 870 | domain = isl_ast_build_eliminate(build, domain); |
3339 | 870 | domain = isl_set_coalesce_preserve(domain); |
3340 | 870 | |
3341 | 870 | outer_disjunction = has_pure_outer_disjunction(domain, build); |
3342 | 870 | if (outer_disjunction < 0) |
3343 | 0 | domain = isl_set_free(domain); |
3344 | 870 | |
3345 | 870 | if (outer_disjunction || type == isl_ast_loop_atomic851 ) { |
3346 | 28 | isl_basic_set *hull; |
3347 | 28 | hull = isl_set_unshifted_simple_hull(domain); |
3348 | 28 | domain_list = isl_basic_set_list_from_basic_set(hull); |
3349 | 842 | } else { |
3350 | 842 | domain = isl_set_make_disjoint(domain); |
3351 | 842 | domain_list = isl_basic_set_list_from_set(domain); |
3352 | 842 | } |
3353 | 870 | |
3354 | 870 | list = generate_parallel_domains(domain_list, executed, build); |
3355 | 870 | |
3356 | 870 | isl_basic_set_list_free(domain_list); |
3357 | 870 | isl_union_map_free(executed); |
3358 | 870 | isl_ast_build_free(build); |
3359 | 870 | |
3360 | 870 | return list; |
3361 | 0 | error: |
3362 | 0 | isl_union_map_free(executed); |
3363 | 0 | isl_ast_build_free(build); |
3364 | 0 | return NULL; |
3365 | 870 | } |
3366 | | |
3367 | | /* Extract out the disjunction imposed by "domain" on the outer |
3368 | | * schedule dimensions. |
3369 | | * |
3370 | | * In particular, remove all inner dimensions from "domain" (including |
3371 | | * the current dimension) and then remove the constraints that are shared |
3372 | | * by all disjuncts in the result. |
3373 | | */ |
3374 | | static __isl_give isl_set *extract_disjunction(__isl_take isl_set *domain, |
3375 | | __isl_keep isl_ast_build *build) |
3376 | 800 | { |
3377 | 800 | isl_set *hull; |
3378 | 800 | int depth, dim; |
3379 | 800 | |
3380 | 800 | domain = isl_ast_build_specialize(build, domain); |
3381 | 800 | depth = isl_ast_build_get_depth(build); |
3382 | 800 | dim = isl_set_dim(domain, isl_dim_set); |
3383 | 800 | domain = isl_set_eliminate(domain, isl_dim_set, depth, dim - depth); |
3384 | 800 | domain = isl_set_remove_unknown_divs(domain); |
3385 | 800 | hull = isl_set_copy(domain); |
3386 | 800 | hull = isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull)); |
3387 | 800 | domain = isl_set_gist(domain, hull); |
3388 | 800 | |
3389 | 800 | return domain; |
3390 | 800 | } |
3391 | | |
3392 | | /* Add "guard" to the grafts in "list". |
3393 | | * "build" is the outer AST build, while "sub_build" includes "guard" |
3394 | | * in its generated domain. |
3395 | | * |
3396 | | * First combine the grafts into a single graft and then add the guard. |
3397 | | * If the list is empty, or if some error occurred, then simply return |
3398 | | * the list. |
3399 | | */ |
3400 | | static __isl_give isl_ast_graft_list *list_add_guard( |
3401 | | __isl_take isl_ast_graft_list *list, __isl_keep isl_set *guard, |
3402 | | __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build) |
3403 | 800 | { |
3404 | 800 | isl_ast_graft *graft; |
3405 | 800 | |
3406 | 800 | list = isl_ast_graft_list_fuse(list, sub_build); |
3407 | 800 | |
3408 | 800 | if (isl_ast_graft_list_n_ast_graft(list) != 1) |
3409 | 789 | return list; |
3410 | 11 | |
3411 | 11 | graft = isl_ast_graft_list_get_ast_graft(list, 0); |
3412 | 11 | graft = isl_ast_graft_add_guard(graft, isl_set_copy(guard), build); |
3413 | 11 | list = isl_ast_graft_list_set_ast_graft(list, 0, graft); |
3414 | 11 | |
3415 | 11 | return list; |
3416 | 11 | } |
3417 | | |
3418 | | /* Generate code for a single component, after shifting (if any) |
3419 | | * has been applied, in case the schedule was specified as a schedule tree. |
3420 | | * In particular, do so for the specified subset of the schedule domain. |
3421 | | * |
3422 | | * If we are outside of the isolated part, then "domain" may include |
3423 | | * a disjunction. Explicitly generate this disjunction at this point |
3424 | | * instead of relying on the disjunction getting hoisted back up |
3425 | | * to this level. |
3426 | | */ |
3427 | | static __isl_give isl_ast_graft_list *generate_shifted_component_tree_part( |
3428 | | __isl_keep isl_union_map *executed, __isl_take isl_set *domain, |
3429 | | __isl_keep isl_ast_build *build, int isolated) |
3430 | 3.66k | { |
3431 | 3.66k | isl_union_set *uset; |
3432 | 3.66k | isl_ast_graft_list *list; |
3433 | 3.66k | isl_ast_build *sub_build; |
3434 | 3.66k | int empty; |
3435 | 3.66k | |
3436 | 3.66k | uset = isl_union_set_from_set(isl_set_copy(domain)); |
3437 | 3.66k | executed = isl_union_map_copy(executed); |
3438 | 3.66k | executed = isl_union_map_intersect_domain(executed, uset); |
3439 | 3.66k | empty = isl_union_map_is_empty(executed); |
3440 | 3.66k | if (empty < 0) |
3441 | 0 | goto error; |
3442 | 3.66k | if (empty) { |
3443 | 1.95k | isl_ctx *ctx; |
3444 | 1.95k | isl_union_map_free(executed); |
3445 | 1.95k | isl_set_free(domain); |
3446 | 1.95k | ctx = isl_ast_build_get_ctx(build); |
3447 | 1.95k | return isl_ast_graft_list_alloc(ctx, 0); |
3448 | 1.95k | } |
3449 | 1.71k | |
3450 | 1.71k | sub_build = isl_ast_build_copy(build); |
3451 | 1.71k | if (!isolated) { |
3452 | 800 | domain = extract_disjunction(domain, build); |
3453 | 800 | sub_build = isl_ast_build_restrict_generated(sub_build, |
3454 | 800 | isl_set_copy(domain)); |
3455 | 800 | } |
3456 | 1.71k | list = generate_shifted_component_tree_base(executed, |
3457 | 1.71k | isl_ast_build_copy(sub_build), isolated); |
3458 | 1.71k | if (!isolated) |
3459 | 800 | list = list_add_guard(list, domain, build, sub_build); |
3460 | 1.71k | isl_ast_build_free(sub_build); |
3461 | 1.71k | isl_set_free(domain); |
3462 | 1.71k | return list; |
3463 | 0 | error: |
3464 | 0 | isl_union_map_free(executed); |
3465 | 0 | isl_set_free(domain); |
3466 | 0 | return NULL; |
3467 | 1.71k | } |
3468 | | |
3469 | | /* Generate code for a single component, after shifting (if any) |
3470 | | * has been applied, in case the schedule was specified as a schedule tree. |
3471 | | * In particular, do so for the specified sequence of subsets |
3472 | | * of the schedule domain, "before", "isolated", "after" and "other", |
3473 | | * where only the "isolated" part is considered to be isolated. |
3474 | | */ |
3475 | | static __isl_give isl_ast_graft_list *generate_shifted_component_parts( |
3476 | | __isl_take isl_union_map *executed, __isl_take isl_set *before, |
3477 | | __isl_take isl_set *isolated, __isl_take isl_set *after, |
3478 | | __isl_take isl_set *other, __isl_take isl_ast_build *build) |
3479 | 917 | { |
3480 | 917 | isl_ast_graft_list *list, *res; |
3481 | 917 | |
3482 | 917 | res = generate_shifted_component_tree_part(executed, before, build, 0); |
3483 | 917 | list = generate_shifted_component_tree_part(executed, isolated, |
3484 | 917 | build, 1); |
3485 | 917 | res = isl_ast_graft_list_concat(res, list); |
3486 | 917 | list = generate_shifted_component_tree_part(executed, after, build, 0); |
3487 | 917 | res = isl_ast_graft_list_concat(res, list); |
3488 | 917 | list = generate_shifted_component_tree_part(executed, other, build, 0); |
3489 | 917 | res = isl_ast_graft_list_concat(res, list); |
3490 | 917 | |
3491 | 917 | isl_union_map_free(executed); |
3492 | 917 | isl_ast_build_free(build); |
3493 | 917 | |
3494 | 917 | return res; |
3495 | 917 | } |
3496 | | |
3497 | | /* Does "set" intersect "first", but not "second"? |
3498 | | */ |
3499 | | static isl_bool only_intersects_first(__isl_keep isl_set *set, |
3500 | | __isl_keep isl_set *first, __isl_keep isl_set *second) |
3501 | 917 | { |
3502 | 917 | isl_bool disjoint; |
3503 | 917 | |
3504 | 917 | disjoint = isl_set_is_disjoint(set, first); |
3505 | 917 | if (disjoint < 0) |
3506 | 0 | return isl_bool_error; |
3507 | 917 | if (disjoint) |
3508 | 906 | return isl_bool_false; |
3509 | 11 | |
3510 | 11 | return isl_set_is_disjoint(set, second); |
3511 | 11 | } |
3512 | | |
3513 | | /* Generate code for a single component, after shifting (if any) |
3514 | | * has been applied, in case the schedule was specified as a schedule tree. |
3515 | | * In particular, do so in case of isolation where there is |
3516 | | * only an "isolated" part and an "after" part. |
3517 | | * "dead1" and "dead2" are freed by this function in order to simplify |
3518 | | * the caller. |
3519 | | * |
3520 | | * The "before" and "other" parts are set to empty sets. |
3521 | | */ |
3522 | | static __isl_give isl_ast_graft_list *generate_shifted_component_only_after( |
3523 | | __isl_take isl_union_map *executed, __isl_take isl_set *isolated, |
3524 | | __isl_take isl_set *after, __isl_take isl_ast_build *build, |
3525 | | __isl_take isl_set *dead1, __isl_take isl_set *dead2) |
3526 | 11 | { |
3527 | 11 | isl_set *empty; |
3528 | 11 | |
3529 | 11 | empty = isl_set_empty(isl_set_get_space(after)); |
3530 | 11 | isl_set_free(dead1); |
3531 | 11 | isl_set_free(dead2); |
3532 | 11 | return generate_shifted_component_parts(executed, isl_set_copy(empty), |
3533 | 11 | isolated, after, empty, build); |
3534 | 11 | } |
3535 | | |
3536 | | /* Generate code for a single component, after shifting (if any) |
3537 | | * has been applied, in case the schedule was specified as a schedule tree. |
3538 | | * |
3539 | | * We first check if the user has specified an isolated schedule domain |
3540 | | * and that we are not already outside of this isolated schedule domain. |
3541 | | * If so, we break up the schedule domain into iterations that |
3542 | | * precede the isolated domain, the isolated domain itself, |
3543 | | * the iterations that follow the isolated domain and |
3544 | | * the remaining iterations (those that are incomparable |
3545 | | * to the isolated domain). |
3546 | | * We generate an AST for each piece and concatenate the results. |
3547 | | * |
3548 | | * If the isolated domain is not convex, then it is replaced |
3549 | | * by a convex superset to ensure that the sets of preceding and |
3550 | | * following iterations are properly defined and, in particular, |
3551 | | * that there are no intermediate iterations that do not belong |
3552 | | * to the isolated domain. |
3553 | | * |
3554 | | * In the special case where at least one element of the schedule |
3555 | | * domain that does not belong to the isolated domain needs |
3556 | | * to be scheduled after this isolated domain, but none of those |
3557 | | * elements need to be scheduled before, break up the schedule domain |
3558 | | * in only two parts, the isolated domain, and a part that will be |
3559 | | * scheduled after the isolated domain. |
3560 | | * |
3561 | | * If no isolated set has been specified, then we generate an |
3562 | | * AST for the entire inverse schedule. |
3563 | | */ |
3564 | | static __isl_give isl_ast_graft_list *generate_shifted_component_tree( |
3565 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
3566 | 2.46k | { |
3567 | 2.46k | int i, depth; |
3568 | 2.46k | int empty, has_isolate; |
3569 | 2.46k | isl_space *space; |
3570 | 2.46k | isl_union_set *schedule_domain; |
3571 | 2.46k | isl_set *domain; |
3572 | 2.46k | isl_basic_set *hull; |
3573 | 2.46k | isl_set *isolated, *before, *after, *test; |
3574 | 2.46k | isl_map *gt, *lt; |
3575 | 2.46k | isl_bool pure; |
3576 | 2.46k | |
3577 | 2.46k | build = isl_ast_build_extract_isolated(build); |
3578 | 2.46k | has_isolate = isl_ast_build_has_isolated(build); |
3579 | 2.46k | if (has_isolate < 0) |
3580 | 0 | executed = isl_union_map_free(executed); |
3581 | 2.46k | else if (!has_isolate) |
3582 | 979 | return generate_shifted_component_tree_base(executed, build, 0); |
3583 | 1.48k | |
3584 | 1.48k | schedule_domain = isl_union_map_domain(isl_union_map_copy(executed)); |
3585 | 1.48k | domain = isl_set_from_union_set(schedule_domain); |
3586 | 1.48k | |
3587 | 1.48k | isolated = isl_ast_build_get_isolated(build); |
3588 | 1.48k | isolated = isl_set_intersect(isolated, isl_set_copy(domain)); |
3589 | 1.48k | test = isl_ast_build_specialize(build, isl_set_copy(isolated)); |
3590 | 1.48k | empty = isl_set_is_empty(test); |
3591 | 1.48k | isl_set_free(test); |
3592 | 1.48k | if (empty < 0) |
3593 | 0 | goto error; |
3594 | 1.48k | if (empty) { |
3595 | 572 | isl_set_free(isolated); |
3596 | 572 | isl_set_free(domain); |
3597 | 572 | return generate_shifted_component_tree_base(executed, build, 0); |
3598 | 572 | } |
3599 | 917 | isolated = isl_ast_build_eliminate(build, isolated); |
3600 | 917 | hull = isl_set_unshifted_simple_hull(isolated); |
3601 | 917 | isolated = isl_set_from_basic_set(hull); |
3602 | 917 | |
3603 | 917 | depth = isl_ast_build_get_depth(build); |
3604 | 917 | space = isl_space_map_from_set(isl_set_get_space(isolated)); |
3605 | 917 | gt = isl_map_universe(space); |
3606 | 7.97k | for (i = 0; i < depth; ++i7.05k ) |
3607 | 7.05k | gt = isl_map_equate(gt, isl_dim_in, i, isl_dim_out, i); |
3608 | 917 | gt = isl_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth); |
3609 | 917 | lt = isl_map_reverse(isl_map_copy(gt)); |
3610 | 917 | before = isl_set_apply(isl_set_copy(isolated), gt); |
3611 | 917 | after = isl_set_apply(isl_set_copy(isolated), lt); |
3612 | 917 | |
3613 | 917 | domain = isl_set_subtract(domain, isl_set_copy(isolated)); |
3614 | 917 | pure = only_intersects_first(domain, after, before); |
3615 | 917 | if (pure < 0) |
3616 | 0 | executed = isl_union_map_free(executed); |
3617 | 917 | else if (pure) |
3618 | 11 | return generate_shifted_component_only_after(executed, isolated, |
3619 | 11 | domain, build, before, after); |
3620 | 906 | domain = isl_set_subtract(domain, isl_set_copy(before)); |
3621 | 906 | domain = isl_set_subtract(domain, isl_set_copy(after)); |
3622 | 906 | after = isl_set_subtract(after, isl_set_copy(isolated)); |
3623 | 906 | after = isl_set_subtract(after, isl_set_copy(before)); |
3624 | 906 | before = isl_set_subtract(before, isl_set_copy(isolated)); |
3625 | 906 | |
3626 | 906 | return generate_shifted_component_parts(executed, before, isolated, |
3627 | 906 | after, domain, build); |
3628 | 0 | error: |
3629 | 0 | isl_set_free(domain); |
3630 | 0 | isl_set_free(isolated); |
3631 | 0 | isl_union_map_free(executed); |
3632 | 0 | isl_ast_build_free(build); |
3633 | 0 | return NULL; |
3634 | 906 | } |
3635 | | |
3636 | | /* Generate code for a single component, after shifting (if any) |
3637 | | * has been applied. |
3638 | | * |
3639 | | * Call generate_shifted_component_tree or generate_shifted_component_flat |
3640 | | * depending on whether the schedule was specified as a schedule tree. |
3641 | | */ |
3642 | | static __isl_give isl_ast_graft_list *generate_shifted_component( |
3643 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
3644 | 2.55k | { |
3645 | 2.55k | if (isl_ast_build_has_schedule_node(build)) |
3646 | 2.46k | return generate_shifted_component_tree(executed, build); |
3647 | 84 | else |
3648 | 84 | return generate_shifted_component_flat(executed, build); |
3649 | 2.55k | } |
3650 | | |
3651 | | struct isl_set_map_pair { |
3652 | | isl_set *set; |
3653 | | isl_map *map; |
3654 | | }; |
3655 | | |
3656 | | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
3657 | | * of indices into the "domain" array, |
3658 | | * return the union of the "map" fields of the elements |
3659 | | * indexed by the first "n" elements of "order". |
3660 | | */ |
3661 | | static __isl_give isl_union_map *construct_component_executed( |
3662 | | struct isl_set_map_pair *domain, int *order, int n) |
3663 | 200 | { |
3664 | 200 | int i; |
3665 | 200 | isl_map *map; |
3666 | 200 | isl_union_map *executed; |
3667 | 200 | |
3668 | 200 | map = isl_map_copy(domain[order[0]].map); |
3669 | 200 | executed = isl_union_map_from_map(map); |
3670 | 403 | for (i = 1; i < n; ++i203 ) { |
3671 | 203 | map = isl_map_copy(domain[order[i]].map); |
3672 | 203 | executed = isl_union_map_add_map(executed, map); |
3673 | 203 | } |
3674 | 200 | |
3675 | 200 | return executed; |
3676 | 200 | } |
3677 | | |
3678 | | /* Generate code for a single component, after shifting (if any) |
3679 | | * has been applied. |
3680 | | * |
3681 | | * The component inverse schedule is specified as the "map" fields |
3682 | | * of the elements of "domain" indexed by the first "n" elements of "order". |
3683 | | */ |
3684 | | static __isl_give isl_ast_graft_list *generate_shifted_component_from_list( |
3685 | | struct isl_set_map_pair *domain, int *order, int n, |
3686 | | __isl_take isl_ast_build *build) |
3687 | 200 | { |
3688 | 200 | isl_union_map *executed; |
3689 | 200 | |
3690 | 200 | executed = construct_component_executed(domain, order, n); |
3691 | 200 | return generate_shifted_component(executed, build); |
3692 | 200 | } |
3693 | | |
3694 | | /* Does set dimension "pos" of "set" have an obviously fixed value? |
3695 | | */ |
3696 | | static int dim_is_fixed(__isl_keep isl_set *set, int pos) |
3697 | 486 | { |
3698 | 486 | int fixed; |
3699 | 486 | isl_val *v; |
3700 | 486 | |
3701 | 486 | v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, pos); |
3702 | 486 | if (!v) |
3703 | 0 | return -1; |
3704 | 486 | fixed = !isl_val_is_nan(v); |
3705 | 486 | isl_val_free(v); |
3706 | 486 | |
3707 | 486 | return fixed; |
3708 | 486 | } |
3709 | | |
3710 | | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
3711 | | * of indices into the "domain" array, |
3712 | | * do all (except for at most one) of the "set" field of the elements |
3713 | | * indexed by the first "n" elements of "order" have a fixed value |
3714 | | * at position "depth"? |
3715 | | */ |
3716 | | static int at_most_one_non_fixed(struct isl_set_map_pair *domain, |
3717 | | int *order, int n, int depth) |
3718 | 119 | { |
3719 | 119 | int i; |
3720 | 119 | int non_fixed = -1; |
3721 | 119 | |
3722 | 269 | for (i = 0; i < n; ++i150 ) { |
3723 | 253 | int f; |
3724 | 253 | |
3725 | 253 | f = dim_is_fixed(domain[order[i]].set, depth); |
3726 | 253 | if (f < 0) |
3727 | 0 | return -1; |
3728 | 253 | if (f) |
3729 | 42 | continue; |
3730 | 211 | if (non_fixed >= 0) |
3731 | 103 | return 0; |
3732 | 108 | non_fixed = i; |
3733 | 108 | } |
3734 | 119 | |
3735 | 119 | return 116 ; |
3736 | 119 | } |
3737 | | |
3738 | | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
3739 | | * of indices into the "domain" array, |
3740 | | * eliminate the inner dimensions from the "set" field of the elements |
3741 | | * indexed by the first "n" elements of "order", provided the current |
3742 | | * dimension does not have a fixed value. |
3743 | | * |
3744 | | * Return the index of the first element in "order" with a corresponding |
3745 | | * "set" field that does not have an (obviously) fixed value. |
3746 | | */ |
3747 | | static int eliminate_non_fixed(struct isl_set_map_pair *domain, |
3748 | | int *order, int n, int depth, __isl_keep isl_ast_build *build) |
3749 | 78 | { |
3750 | 78 | int i; |
3751 | 78 | int base = -1; |
3752 | 78 | |
3753 | 298 | for (i = n - 1; i >= 0; --i220 ) { |
3754 | 220 | int f; |
3755 | 220 | f = dim_is_fixed(domain[order[i]].set, depth); |
3756 | 220 | if (f < 0) |
3757 | 0 | return -1; |
3758 | 220 | if (f) |
3759 | 1 | continue; |
3760 | 219 | domain[order[i]].set = isl_ast_build_eliminate_inner(build, |
3761 | 219 | domain[order[i]].set); |
3762 | 219 | base = i; |
3763 | 219 | } |
3764 | 78 | |
3765 | 78 | return base; |
3766 | 78 | } |
3767 | | |
3768 | | /* Given an array "domain" of isl_set_map_pairs and an array "order" |
3769 | | * of indices into the "domain" array, |
3770 | | * find the element of "domain" (amongst those indexed by the first "n" |
3771 | | * elements of "order") with the "set" field that has the smallest |
3772 | | * value for the current iterator. |
3773 | | * |
3774 | | * Note that the domain with the smallest value may depend on the parameters |
3775 | | * and/or outer loop dimension. Since the result of this function is only |
3776 | | * used as heuristic, we only make a reasonable attempt at finding the best |
3777 | | * domain, one that should work in case a single domain provides the smallest |
3778 | | * value for the current dimension over all values of the parameters |
3779 | | * and outer dimensions. |
3780 | | * |
3781 | | * In particular, we compute the smallest value of the first domain |
3782 | | * and replace it by that of any later domain if that later domain |
3783 | | * has a smallest value that is smaller for at least some value |
3784 | | * of the parameters and outer dimensions. |
3785 | | */ |
3786 | | static int first_offset(struct isl_set_map_pair *domain, int *order, int n, |
3787 | | __isl_keep isl_ast_build *build) |
3788 | 3 | { |
3789 | 3 | int i; |
3790 | 3 | isl_map *min_first; |
3791 | 3 | int first = 0; |
3792 | 3 | |
3793 | 3 | min_first = isl_ast_build_map_to_iterator(build, |
3794 | 3 | isl_set_copy(domain[order[0]].set)); |
3795 | 3 | min_first = isl_map_lexmin(min_first); |
3796 | 3 | |
3797 | 9 | for (i = 1; i < n; ++i6 ) { |
3798 | 6 | isl_map *min, *test; |
3799 | 6 | int empty; |
3800 | 6 | |
3801 | 6 | min = isl_ast_build_map_to_iterator(build, |
3802 | 6 | isl_set_copy(domain[order[i]].set)); |
3803 | 6 | min = isl_map_lexmin(min); |
3804 | 6 | test = isl_map_copy(min); |
3805 | 6 | test = isl_map_apply_domain(isl_map_copy(min_first), test); |
3806 | 6 | test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0); |
3807 | 6 | empty = isl_map_is_empty(test); |
3808 | 6 | isl_map_free(test); |
3809 | 6 | if (empty >= 0 && !empty) { |
3810 | 1 | isl_map_free(min_first); |
3811 | 1 | first = i; |
3812 | 1 | min_first = min; |
3813 | 1 | } else |
3814 | 5 | isl_map_free(min); |
3815 | 6 | |
3816 | 6 | if (empty < 0) |
3817 | 0 | break; |
3818 | 6 | } |
3819 | 3 | |
3820 | 3 | isl_map_free(min_first); |
3821 | 3 | |
3822 | 3 | return i < n ? -10 : first; |
3823 | 3 | } |
3824 | | |
3825 | | /* Construct a shifted inverse schedule based on the original inverse schedule, |
3826 | | * the stride and the offset. |
3827 | | * |
3828 | | * The original inverse schedule is specified as the "map" fields |
3829 | | * of the elements of "domain" indexed by the first "n" elements of "order". |
3830 | | * |
3831 | | * "stride" and "offset" are such that the difference |
3832 | | * between the values of the current dimension of domain "i" |
3833 | | * and the values of the current dimension for some reference domain are |
3834 | | * equal to |
3835 | | * |
3836 | | * stride * integer + offset[i] |
3837 | | * |
3838 | | * Moreover, 0 <= offset[i] < stride. |
3839 | | * |
3840 | | * For each domain, we create a map |
3841 | | * |
3842 | | * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] } |
3843 | | * |
3844 | | * where j refers to the current dimension and the other dimensions are |
3845 | | * unchanged, and apply this map to the original schedule domain. |
3846 | | * |
3847 | | * For example, for the original schedule |
3848 | | * |
3849 | | * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 } |
3850 | | * |
3851 | | * and assuming the offset is 0 for the A domain and 1 for the B domain, |
3852 | | * we apply the mapping |
3853 | | * |
3854 | | * { [j] -> [j, 0] } |
3855 | | * |
3856 | | * to the schedule of the "A" domain and the mapping |
3857 | | * |
3858 | | * { [j - 1] -> [j, 1] } |
3859 | | * |
3860 | | * to the schedule of the "B" domain. |
3861 | | * |
3862 | | * |
3863 | | * Note that after the transformation, the differences between pairs |
3864 | | * of values of the current dimension over all domains are multiples |
3865 | | * of stride and that we have therefore exposed the stride. |
3866 | | * |
3867 | | * |
3868 | | * To see that the mapping preserves the lexicographic order, |
3869 | | * first note that each of the individual maps above preserves the order. |
3870 | | * If the value of the current iterator is j1 in one domain and j2 in another, |
3871 | | * then if j1 = j2, we know that the same map is applied to both domains |
3872 | | * and the order is preserved. |
3873 | | * Otherwise, let us assume, without loss of generality, that j1 < j2. |
3874 | | * If c1 >= c2 (with c1 and c2 the corresponding offsets), then |
3875 | | * |
3876 | | * j1 - c1 < j2 - c2 |
3877 | | * |
3878 | | * and the order is preserved. |
3879 | | * If c1 < c2, then we know |
3880 | | * |
3881 | | * 0 <= c2 - c1 < s |
3882 | | * |
3883 | | * We also have |
3884 | | * |
3885 | | * j2 - j1 = n * s + r |
3886 | | * |
3887 | | * with n >= 0 and 0 <= r < s. |
3888 | | * In other words, r = c2 - c1. |
3889 | | * If n > 0, then |
3890 | | * |
3891 | | * j1 - c1 < j2 - c2 |
3892 | | * |
3893 | | * If n = 0, then |
3894 | | * |
3895 | | * j1 - c1 = j2 - c2 |
3896 | | * |
3897 | | * and so |
3898 | | * |
3899 | | * (j1 - c1, c1) << (j2 - c2, c2) |
3900 | | * |
3901 | | * with "<<" the lexicographic order, proving that the order is preserved |
3902 | | * in all cases. |
3903 | | */ |
3904 | | static __isl_give isl_union_map *construct_shifted_executed( |
3905 | | struct isl_set_map_pair *domain, int *order, int n, |
3906 | | __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset, |
3907 | | __isl_take isl_ast_build *build) |
3908 | 3 | { |
3909 | 3 | int i; |
3910 | 3 | isl_union_map *executed; |
3911 | 3 | isl_space *space; |
3912 | 3 | isl_map *map; |
3913 | 3 | int depth; |
3914 | 3 | isl_constraint *c; |
3915 | 3 | |
3916 | 3 | depth = isl_ast_build_get_depth(build); |
3917 | 3 | space = isl_ast_build_get_space(build, 1); |
3918 | 3 | executed = isl_union_map_empty(isl_space_copy(space)); |
3919 | 3 | space = isl_space_map_from_set(space); |
3920 | 3 | map = isl_map_identity(isl_space_copy(space)); |
3921 | 3 | map = isl_map_eliminate(map, isl_dim_out, depth, 1); |
3922 | 3 | map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1); |
3923 | 3 | space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1); |
3924 | 3 | |
3925 | 3 | c = isl_constraint_alloc_equality(isl_local_space_from_space(space)); |
3926 | 3 | c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1); |
3927 | 3 | c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1); |
3928 | 3 | |
3929 | 12 | for (i = 0; i < n; ++i9 ) { |
3930 | 9 | isl_map *map_i; |
3931 | 9 | isl_val *v; |
3932 | 9 | |
3933 | 9 | v = isl_multi_val_get_val(offset, i); |
3934 | 9 | if (!v) |
3935 | 0 | break; |
3936 | 9 | map_i = isl_map_copy(map); |
3937 | 9 | map_i = isl_map_fix_val(map_i, isl_dim_out, depth + 1, |
3938 | 9 | isl_val_copy(v)); |
3939 | 9 | v = isl_val_neg(v); |
3940 | 9 | c = isl_constraint_set_constant_val(c, v); |
3941 | 9 | map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c)); |
3942 | 9 | |
3943 | 9 | map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map), |
3944 | 9 | map_i); |
3945 | 9 | executed = isl_union_map_add_map(executed, map_i); |
3946 | 9 | } |
3947 | 3 | |
3948 | 3 | isl_constraint_free(c); |
3949 | 3 | isl_map_free(map); |
3950 | 3 | |
3951 | 3 | if (i < n) |
3952 | 0 | executed = isl_union_map_free(executed); |
3953 | 3 | |
3954 | 3 | return executed; |
3955 | 3 | } |
3956 | | |
3957 | | /* Generate code for a single component, after exposing the stride, |
3958 | | * given that the schedule domain is "shifted strided". |
3959 | | * |
3960 | | * The component inverse schedule is specified as the "map" fields |
3961 | | * of the elements of "domain" indexed by the first "n" elements of "order". |
3962 | | * |
3963 | | * The schedule domain being "shifted strided" means that the differences |
3964 | | * between the values of the current dimension of domain "i" |
3965 | | * and the values of the current dimension for some reference domain are |
3966 | | * equal to |
3967 | | * |
3968 | | * stride * integer + offset[i] |
3969 | | * |
3970 | | * We first look for the domain with the "smallest" value for the current |
3971 | | * dimension and adjust the offsets such that the offset of the "smallest" |
3972 | | * domain is equal to zero. The other offsets are reduced modulo stride. |
3973 | | * |
3974 | | * Based on this information, we construct a new inverse schedule in |
3975 | | * construct_shifted_executed that exposes the stride. |
3976 | | * Since this involves the introduction of a new schedule dimension, |
3977 | | * the build needs to be changed accordingly. |
3978 | | * After computing the AST, the newly introduced dimension needs |
3979 | | * to be removed again from the list of grafts. We do this by plugging |
3980 | | * in a mapping that represents the new schedule domain in terms of the |
3981 | | * old schedule domain. |
3982 | | */ |
3983 | | static __isl_give isl_ast_graft_list *generate_shift_component( |
3984 | | struct isl_set_map_pair *domain, int *order, int n, |
3985 | | __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset, |
3986 | | __isl_take isl_ast_build *build) |
3987 | 3 | { |
3988 | 3 | isl_ast_graft_list *list; |
3989 | 3 | int first; |
3990 | 3 | int depth; |
3991 | 3 | isl_val *val; |
3992 | 3 | isl_multi_val *mv; |
3993 | 3 | isl_space *space; |
3994 | 3 | isl_multi_aff *ma, *zero; |
3995 | 3 | isl_union_map *executed; |
3996 | 3 | |
3997 | 3 | depth = isl_ast_build_get_depth(build); |
3998 | 3 | |
3999 | 3 | first = first_offset(domain, order, n, build); |
4000 | 3 | if (first < 0) |
4001 | 0 | goto error; |
4002 | 3 | |
4003 | 3 | mv = isl_multi_val_copy(offset); |
4004 | 3 | val = isl_multi_val_get_val(offset, first); |
4005 | 3 | val = isl_val_neg(val); |
4006 | 3 | mv = isl_multi_val_add_val(mv, val); |
4007 | 3 | mv = isl_multi_val_mod_val(mv, isl_val_copy(stride)); |
4008 | 3 | |
4009 | 3 | executed = construct_shifted_executed(domain, order, n, stride, mv, |
4010 | 3 | build); |
4011 | 3 | space = isl_ast_build_get_space(build, 1); |
4012 | 3 | space = isl_space_map_from_set(space); |
4013 | 3 | ma = isl_multi_aff_identity(isl_space_copy(space)); |
4014 | 3 | space = isl_space_from_domain(isl_space_domain(space)); |
4015 | 3 | space = isl_space_add_dims(space, isl_dim_out, 1); |
4016 | 3 | zero = isl_multi_aff_zero(space); |
4017 | 3 | ma = isl_multi_aff_range_splice(ma, depth + 1, zero); |
4018 | 3 | build = isl_ast_build_insert_dim(build, depth + 1); |
4019 | 3 | list = generate_shifted_component(executed, build); |
4020 | 3 | |
4021 | 3 | list = isl_ast_graft_list_preimage_multi_aff(list, ma); |
4022 | 3 | |
4023 | 3 | isl_multi_val_free(mv); |
4024 | 3 | |
4025 | 3 | return list; |
4026 | 0 | error: |
4027 | 0 | isl_ast_build_free(build); |
4028 | 0 | return NULL; |
4029 | 3 | } |
4030 | | |
4031 | | /* Does any node in the schedule tree rooted at the current schedule node |
4032 | | * of "build" depend on outer schedule nodes? |
4033 | | */ |
4034 | | static int has_anchored_subtree(__isl_keep isl_ast_build *build) |
4035 | 102 | { |
4036 | 102 | isl_schedule_node *node; |
4037 | 102 | int dependent = 0; |
4038 | 102 | |
4039 | 102 | node = isl_ast_build_get_schedule_node(build); |
4040 | 102 | dependent = isl_schedule_node_is_subtree_anchored(node); |
4041 | 102 | isl_schedule_node_free(node); |
4042 | 102 | |
4043 | 102 | return dependent; |
4044 | 102 | } |
4045 | | |
4046 | | /* Generate code for a single component. |
4047 | | * |
4048 | | * The component inverse schedule is specified as the "map" fields |
4049 | | * of the elements of "domain" indexed by the first "n" elements of "order". |
4050 | | * |
4051 | | * This function may modify the "set" fields of "domain". |
4052 | | * |
4053 | | * Before proceeding with the actual code generation for the component, |
4054 | | * we first check if there are any "shifted" strides, meaning that |
4055 | | * the schedule domains of the individual domains are all strided, |
4056 | | * but that they have different offsets, resulting in the union |
4057 | | * of schedule domains not being strided anymore. |
4058 | | * |
4059 | | * The simplest example is the schedule |
4060 | | * |
4061 | | * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 } |
4062 | | * |
4063 | | * Both schedule domains are strided, but their union is not. |
4064 | | * This function detects such cases and then rewrites the schedule to |
4065 | | * |
4066 | | * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 } |
4067 | | * |
4068 | | * In the new schedule, the schedule domains have the same offset (modulo |
4069 | | * the stride), ensuring that the union of schedule domains is also strided. |
4070 | | * |
4071 | | * |
4072 | | * If there is only a single domain in the component, then there is |
4073 | | * nothing to do. Similarly, if the current schedule dimension has |
4074 | | * a fixed value for almost all domains then there is nothing to be done. |
4075 | | * In particular, we need at least two domains where the current schedule |
4076 | | * dimension does not have a fixed value. |
4077 | | * Finally, in case of a schedule map input, |
4078 | | * if any of the options refer to the current schedule dimension, |
4079 | | * then we bail out as well. It would be possible to reformulate the options |
4080 | | * in terms of the new schedule domain, but that would introduce constraints |
4081 | | * that separate the domains in the options and that is something we would |
4082 | | * like to avoid. |
4083 | | * In the case of a schedule tree input, we bail out if any of |
4084 | | * the descendants of the current schedule node refer to outer |
4085 | | * schedule nodes in any way. |
4086 | | * |
4087 | | * |
4088 | | * To see if there is any shifted stride, we look at the differences |
4089 | | * between the values of the current dimension in pairs of domains |
4090 | | * for equal values of outer dimensions. These differences should be |
4091 | | * of the form |
4092 | | * |
4093 | | * m x + r |
4094 | | * |
4095 | | * with "m" the stride and "r" a constant. Note that we cannot perform |
4096 | | * this analysis on individual domains as the lower bound in each domain |
4097 | | * may depend on parameters or outer dimensions and so the current dimension |
4098 | | * itself may not have a fixed remainder on division by the stride. |
4099 | | * |
4100 | | * In particular, we compare the first domain that does not have an |
4101 | | * obviously fixed value for the current dimension to itself and all |
4102 | | * other domains and collect the offsets and the gcd of the strides. |
4103 | | * If the gcd becomes one, then we failed to find shifted strides. |
4104 | | * If the gcd is zero, then the differences were all fixed, meaning |
4105 | | * that some domains had non-obviously fixed values for the current dimension. |
4106 | | * If all the offsets are the same (for those domains that do not have |
4107 | | * an obviously fixed value for the current dimension), then we do not |
4108 | | * apply the transformation. |
4109 | | * If none of the domains were skipped, then there is nothing to do. |
4110 | | * If some of them were skipped, then if we apply separation, the schedule |
4111 | | * domain should get split in pieces with a (non-shifted) stride. |
4112 | | * |
4113 | | * Otherwise, we apply a shift to expose the stride in |
4114 | | * generate_shift_component. |
4115 | | */ |
4116 | | static __isl_give isl_ast_graft_list *generate_component( |
4117 | | struct isl_set_map_pair *domain, int *order, int n, |
4118 | | __isl_take isl_ast_build *build) |
4119 | 203 | { |
4120 | 203 | int i, d; |
4121 | 203 | int depth; |
4122 | 203 | isl_ctx *ctx; |
4123 | 203 | isl_map *map; |
4124 | 203 | isl_set *deltas; |
4125 | 203 | isl_val *gcd = NULL; |
4126 | 203 | isl_multi_val *mv; |
4127 | 203 | int fixed, skip; |
4128 | 203 | int base; |
4129 | 203 | isl_ast_graft_list *list; |
4130 | 203 | int res = 0; |
4131 | 203 | |
4132 | 203 | depth = isl_ast_build_get_depth(build); |
4133 | 203 | |
4134 | 203 | skip = n == 1; |
4135 | 203 | if (skip >= 0 && !skip) |
4136 | 119 | skip = at_most_one_non_fixed(domain, order, n, depth); |
4137 | 203 | if (skip >= 0 && !skip) { |
4138 | 103 | if (isl_ast_build_has_schedule_node(build)) |
4139 | 102 | skip = has_anchored_subtree(build); |
4140 | 1 | else |
4141 | 1 | skip = isl_ast_build_options_involve_depth(build); |
4142 | 103 | } |
4143 | 203 | if (skip < 0) |
4144 | 0 | goto error; |
4145 | 203 | if (skip) |
4146 | 125 | return generate_shifted_component_from_list(domain, |
4147 | 125 | order, n, build); |
4148 | 78 | |
4149 | 78 | base = eliminate_non_fixed(domain, order, n, depth, build); |
4150 | 78 | if (base < 0) |
4151 | 0 | goto error; |
4152 | 78 | |
4153 | 78 | ctx = isl_ast_build_get_ctx(build); |
4154 | 78 | |
4155 | 78 | mv = isl_multi_val_zero(isl_space_set_alloc(ctx, 0, n)); |
4156 | 78 | |
4157 | 78 | fixed = 1; |
4158 | 91 | for (i = 0; i < n; ++i13 ) { |
4159 | 88 | isl_val *r, *m; |
4160 | 88 | |
4161 | 88 | map = isl_map_from_domain_and_range( |
4162 | 88 | isl_set_copy(domain[order[base]].set), |
4163 | 88 | isl_set_copy(domain[order[i]].set)); |
4164 | 111 | for (d = 0; d < depth; ++d23 ) |
4165 | 23 | map = isl_map_equate(map, isl_dim_in, d, |
4166 | 23 | isl_dim_out, d); |
4167 | 88 | deltas = isl_map_deltas(map); |
4168 | 88 | res = isl_set_dim_residue_class_val(deltas, depth, &m, &r); |
4169 | 88 | isl_set_free(deltas); |
4170 | 88 | if (res < 0) |
4171 | 0 | break; |
4172 | 88 | |
4173 | 88 | if (i == 0) |
4174 | 78 | gcd = m; |
4175 | 10 | else |
4176 | 10 | gcd = isl_val_gcd(gcd, m); |
4177 | 88 | if (isl_val_is_one(gcd)) { |
4178 | 75 | isl_val_free(r); |
4179 | 75 | break; |
4180 | 75 | } |
4181 | 13 | mv = isl_multi_val_set_val(mv, i, r); |
4182 | 13 | |
4183 | 13 | res = dim_is_fixed(domain[order[i]].set, depth); |
4184 | 13 | if (res < 0) |
4185 | 0 | break; |
4186 | 13 | if (res) |
4187 | 0 | continue; |
4188 | 13 | |
4189 | 13 | if (fixed && i > base10 ) { |
4190 | 5 | isl_val *a, *b; |
4191 | 5 | a = isl_multi_val_get_val(mv, i); |
4192 | 5 | b = isl_multi_val_get_val(mv, base); |
4193 | 5 | if (isl_val_ne(a, b)) |
4194 | 4 | fixed = 0; |
4195 | 5 | isl_val_free(a); |
4196 | 5 | isl_val_free(b); |
4197 | 5 | } |
4198 | 13 | } |
4199 | 78 | |
4200 | 78 | if (res < 0 || !gcd) { |
4201 | 0 | isl_ast_build_free(build); |
4202 | 0 | list = NULL; |
4203 | 78 | } else if (i < n || fixed3 || isl_val_is_zero(gcd)3 ) { |
4204 | 75 | list = generate_shifted_component_from_list(domain, |
4205 | 75 | order, n, build); |
4206 | 75 | } else { |
4207 | 3 | list = generate_shift_component(domain, order, n, gcd, mv, |
4208 | 3 | build); |
4209 | 3 | } |
4210 | 78 | |
4211 | 78 | isl_val_free(gcd); |
4212 | 78 | isl_multi_val_free(mv); |
4213 | 78 | |
4214 | 78 | return list; |
4215 | 0 | error: |
4216 | 0 | isl_ast_build_free(build); |
4217 | 0 | return NULL; |
4218 | 78 | } |
4219 | | |
4220 | | /* Store both "map" itself and its domain in the |
4221 | | * structure pointed to by *next and advance to the next array element. |
4222 | | */ |
4223 | | static isl_stat extract_domain(__isl_take isl_map *map, void *user) |
4224 | 412 | { |
4225 | 412 | struct isl_set_map_pair **next = user; |
4226 | 412 | |
4227 | 412 | (*next)->map = isl_map_copy(map); |
4228 | 412 | (*next)->set = isl_map_domain(map); |
4229 | 412 | (*next)++; |
4230 | 412 | |
4231 | 412 | return isl_stat_ok; |
4232 | 412 | } |
4233 | | |
4234 | | static int after_in_tree(__isl_keep isl_union_map *umap, |
4235 | | __isl_keep isl_schedule_node *node); |
4236 | | |
4237 | | /* Is any domain element of "umap" scheduled after any of |
4238 | | * the corresponding image elements by the tree rooted at |
4239 | | * the child of "node"? |
4240 | | */ |
4241 | | static int after_in_child(__isl_keep isl_union_map *umap, |
4242 | | __isl_keep isl_schedule_node *node) |
4243 | 41 | { |
4244 | 41 | isl_schedule_node *child; |
4245 | 41 | int after; |
4246 | 41 | |
4247 | 41 | child = isl_schedule_node_get_child(node, 0); |
4248 | 41 | after = after_in_tree(umap, child); |
4249 | 41 | isl_schedule_node_free(child); |
4250 | 41 | |
4251 | 41 | return after; |
4252 | 41 | } |
4253 | | |
4254 | | /* Is any domain element of "umap" scheduled after any of |
4255 | | * the corresponding image elements by the tree rooted at |
4256 | | * the band node "node"? |
4257 | | * |
4258 | | * We first check if any domain element is scheduled after any |
4259 | | * of the corresponding image elements by the band node itself. |
4260 | | * If not, we restrict "map" to those pairs of element that |
4261 | | * are scheduled together by the band node and continue with |
4262 | | * the child of the band node. |
4263 | | * If there are no such pairs then the map passed to after_in_child |
4264 | | * will be empty causing it to return 0. |
4265 | | */ |
4266 | | static int after_in_band(__isl_keep isl_union_map *umap, |
4267 | | __isl_keep isl_schedule_node *node) |
4268 | 0 | { |
4269 | 0 | isl_multi_union_pw_aff *mupa; |
4270 | 0 | isl_union_map *partial, *test, *gt, *universe, *umap1, *umap2; |
4271 | 0 | isl_union_set *domain, *range; |
4272 | 0 | isl_space *space; |
4273 | 0 | int empty; |
4274 | 0 | int after; |
4275 | 0 |
|
4276 | 0 | if (isl_schedule_node_band_n_member(node) == 0) |
4277 | 0 | return after_in_child(umap, node); |
4278 | 0 | |
4279 | 0 | mupa = isl_schedule_node_band_get_partial_schedule(node); |
4280 | 0 | space = isl_multi_union_pw_aff_get_space(mupa); |
4281 | 0 | partial = isl_union_map_from_multi_union_pw_aff(mupa); |
4282 | 0 | test = isl_union_map_copy(umap); |
4283 | 0 | test = isl_union_map_apply_domain(test, isl_union_map_copy(partial)); |
4284 | 0 | test = isl_union_map_apply_range(test, isl_union_map_copy(partial)); |
4285 | 0 | gt = isl_union_map_from_map(isl_map_lex_gt(space)); |
4286 | 0 | test = isl_union_map_intersect(test, gt); |
4287 | 0 | empty = isl_union_map_is_empty(test); |
4288 | 0 | isl_union_map_free(test); |
4289 | 0 |
|
4290 | 0 | if (empty < 0 || !empty) { |
4291 | 0 | isl_union_map_free(partial); |
4292 | 0 | return empty < 0 ? -1 : 1; |
4293 | 0 | } |
4294 | 0 |
|
4295 | 0 | universe = isl_union_map_universe(isl_union_map_copy(umap)); |
4296 | 0 | domain = isl_union_map_domain(isl_union_map_copy(universe)); |
4297 | 0 | range = isl_union_map_range(universe); |
4298 | 0 | umap1 = isl_union_map_copy(partial); |
4299 | 0 | umap1 = isl_union_map_intersect_domain(umap1, domain); |
4300 | 0 | umap2 = isl_union_map_intersect_domain(partial, range); |
4301 | 0 | test = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2)); |
4302 | 0 | test = isl_union_map_intersect(test, isl_union_map_copy(umap)); |
4303 | 0 | after = after_in_child(test, node); |
4304 | 0 | isl_union_map_free(test); |
4305 | 0 | return after; |
4306 | 0 | } |
4307 | | |
4308 | | /* Is any domain element of "umap" scheduled after any of |
4309 | | * the corresponding image elements by the tree rooted at |
4310 | | * the context node "node"? |
4311 | | * |
4312 | | * The context constraints apply to the schedule domain, |
4313 | | * so we cannot apply them directly to "umap", which contains |
4314 | | * pairs of statement instances. Instead, we add them |
4315 | | * to the range of the prefix schedule for both domain and |
4316 | | * range of "umap". |
4317 | | */ |
4318 | | static int after_in_context(__isl_keep isl_union_map *umap, |
4319 | | __isl_keep isl_schedule_node *node) |
4320 | 0 | { |
4321 | 0 | isl_union_map *prefix, *universe, *umap1, *umap2; |
4322 | 0 | isl_union_set *domain, *range; |
4323 | 0 | isl_set *context; |
4324 | 0 | int after; |
4325 | 0 |
|
4326 | 0 | umap = isl_union_map_copy(umap); |
4327 | 0 | context = isl_schedule_node_context_get_context(node); |
4328 | 0 | prefix = isl_schedule_node_get_prefix_schedule_union_map(node); |
4329 | 0 | universe = isl_union_map_universe(isl_union_map_copy(umap)); |
4330 | 0 | domain = isl_union_map_domain(isl_union_map_copy(universe)); |
4331 | 0 | range = isl_union_map_range(universe); |
4332 | 0 | umap1 = isl_union_map_copy(prefix); |
4333 | 0 | umap1 = isl_union_map_intersect_domain(umap1, domain); |
4334 | 0 | umap2 = isl_union_map_intersect_domain(prefix, range); |
4335 | 0 | umap1 = isl_union_map_intersect_range(umap1, |
4336 | 0 | isl_union_set_from_set(context)); |
4337 | 0 | umap1 = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2)); |
4338 | 0 | umap = isl_union_map_intersect(umap, umap1); |
4339 | 0 |
|
4340 | 0 | after = after_in_child(umap, node); |
4341 | 0 |
|
4342 | 0 | isl_union_map_free(umap); |
4343 | 0 |
|
4344 | 0 | return after; |
4345 | 0 | } |
4346 | | |
4347 | | /* Is any domain element of "umap" scheduled after any of |
4348 | | * the corresponding image elements by the tree rooted at |
4349 | | * the expansion node "node"? |
4350 | | * |
4351 | | * We apply the expansion to domain and range of "umap" and |
4352 | | * continue with its child. |
4353 | | */ |
4354 | | static int after_in_expansion(__isl_keep isl_union_map *umap, |
4355 | | __isl_keep isl_schedule_node *node) |
4356 | 0 | { |
4357 | 0 | isl_union_map *expansion; |
4358 | 0 | int after; |
4359 | 0 |
|
4360 | 0 | expansion = isl_schedule_node_expansion_get_expansion(node); |
4361 | 0 | umap = isl_union_map_copy(umap); |
4362 | 0 | umap = isl_union_map_apply_domain(umap, isl_union_map_copy(expansion)); |
4363 | 0 | umap = isl_union_map_apply_range(umap, expansion); |
4364 | 0 |
|
4365 | 0 | after = after_in_child(umap, node); |
4366 | 0 |
|
4367 | 0 | isl_union_map_free(umap); |
4368 | 0 |
|
4369 | 0 | return after; |
4370 | 0 | } |
4371 | | |
4372 | | /* Is any domain element of "umap" scheduled after any of |
4373 | | * the corresponding image elements by the tree rooted at |
4374 | | * the extension node "node"? |
4375 | | * |
4376 | | * Since the extension node may add statement instances before or |
4377 | | * after the pairs of statement instances in "umap", we return 1 |
4378 | | * to ensure that these pairs are not broken up. |
4379 | | */ |
4380 | | static int after_in_extension(__isl_keep isl_union_map *umap, |
4381 | | __isl_keep isl_schedule_node *node) |
4382 | 0 | { |
4383 | 0 | return 1; |
4384 | 0 | } |
4385 | | |
4386 | | /* Is any domain element of "umap" scheduled after any of |
4387 | | * the corresponding image elements by the tree rooted at |
4388 | | * the filter node "node"? |
4389 | | * |
4390 | | * We intersect domain and range of "umap" with the filter and |
4391 | | * continue with its child. |
4392 | | */ |
4393 | | static int after_in_filter(__isl_keep isl_union_map *umap, |
4394 | | __isl_keep isl_schedule_node *node) |
4395 | 41 | { |
4396 | 41 | isl_union_set *filter; |
4397 | 41 | int after; |
4398 | 41 | |
4399 | 41 | umap = isl_union_map_copy(umap); |
4400 | 41 | filter = isl_schedule_node_filter_get_filter(node); |
4401 | 41 | umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(filter)); |
4402 | 41 | umap = isl_union_map_intersect_range(umap, filter); |
4403 | 41 | |
4404 | 41 | after = after_in_child(umap, node); |
4405 | 41 | |
4406 | 41 | isl_union_map_free(umap); |
4407 | 41 | |
4408 | 41 | return after; |
4409 | 41 | } |
4410 | | |
4411 | | /* Is any domain element of "umap" scheduled after any of |
4412 | | * the corresponding image elements by the tree rooted at |
4413 | | * the set node "node"? |
4414 | | * |
4415 | | * This is only the case if this condition holds in any |
4416 | | * of the (filter) children of the set node. |
4417 | | * In particular, if the domain and the range of "umap" |
4418 | | * are contained in different children, then the condition |
4419 | | * does not hold. |
4420 | | */ |
4421 | | static int after_in_set(__isl_keep isl_union_map *umap, |
4422 | | __isl_keep isl_schedule_node *node) |
4423 | 16 | { |
4424 | 16 | int i, n; |
4425 | 16 | |
4426 | 16 | n = isl_schedule_node_n_children(node); |
4427 | 57 | for (i = 0; i < n; ++i41 ) { |
4428 | 41 | isl_schedule_node *child; |
4429 | 41 | int after; |
4430 | 41 | |
4431 | 41 | child = isl_schedule_node_get_child(node, i); |
4432 | 41 | after = after_in_tree(umap, child); |
4433 | 41 | isl_schedule_node_free(child); |
4434 | 41 | |
4435 | 41 | if (after < 0 || after) |
4436 | 0 | return after; |
4437 | 41 | } |
4438 | 16 | |
4439 | 16 | return 0; |
4440 | 16 | } |
4441 | | |
4442 | | /* Return the filter of child "i" of "node". |
4443 | | */ |
4444 | | static __isl_give isl_union_set *child_filter( |
4445 | | __isl_keep isl_schedule_node *node, int i) |
4446 | 36 | { |
4447 | 36 | isl_schedule_node *child; |
4448 | 36 | isl_union_set *filter; |
4449 | 36 | |
4450 | 36 | child = isl_schedule_node_get_child(node, i); |
4451 | 36 | filter = isl_schedule_node_filter_get_filter(child); |
4452 | 36 | isl_schedule_node_free(child); |
4453 | 36 | |
4454 | 36 | return filter; |
4455 | 36 | } |
4456 | | |
4457 | | /* Is any domain element of "umap" scheduled after any of |
4458 | | * the corresponding image elements by the tree rooted at |
4459 | | * the sequence node "node"? |
4460 | | * |
4461 | | * This happens in particular if any domain element is |
4462 | | * contained in a later child than one containing a range element or |
4463 | | * if the condition holds within a given child in the sequence. |
4464 | | * The later part of the condition is checked by after_in_set. |
4465 | | */ |
4466 | | static int after_in_sequence(__isl_keep isl_union_map *umap, |
4467 | | __isl_keep isl_schedule_node *node) |
4468 | 19 | { |
4469 | 19 | int i, j, n; |
4470 | 19 | isl_union_map *umap_i; |
4471 | 19 | int empty, after = 0; |
4472 | 19 | |
4473 | 19 | n = isl_schedule_node_n_children(node); |
4474 | 45 | for (i = 1; i < n; ++i26 ) { |
4475 | 29 | isl_union_set *filter_i; |
4476 | 29 | |
4477 | 29 | umap_i = isl_union_map_copy(umap); |
4478 | 29 | filter_i = child_filter(node, i); |
4479 | 29 | umap_i = isl_union_map_intersect_domain(umap_i, filter_i); |
4480 | 29 | empty = isl_union_map_is_empty(umap_i); |
4481 | 29 | if (empty < 0) |
4482 | 0 | goto error; |
4483 | 29 | if (empty) { |
4484 | 23 | isl_union_map_free(umap_i); |
4485 | 23 | continue; |
4486 | 23 | } |
4487 | 6 | |
4488 | 10 | for (j = 0; 6 j < i; ++j4 ) { |
4489 | 7 | isl_union_set *filter_j; |
4490 | 7 | isl_union_map *umap_ij; |
4491 | 7 | |
4492 | 7 | umap_ij = isl_union_map_copy(umap_i); |
4493 | 7 | filter_j = child_filter(node, j); |
4494 | 7 | umap_ij = isl_union_map_intersect_range(umap_ij, |
4495 | 7 | filter_j); |
4496 | 7 | empty = isl_union_map_is_empty(umap_ij); |
4497 | 7 | isl_union_map_free(umap_ij); |
4498 | 7 | |
4499 | 7 | if (empty < 0) |
4500 | 0 | goto error; |
4501 | 7 | if (!empty) |
4502 | 3 | after = 1; |
4503 | 7 | if (after) |
4504 | 3 | break; |
4505 | 7 | } |
4506 | 6 | |
4507 | 6 | isl_union_map_free(umap_i); |
4508 | 6 | if (after) |
4509 | 3 | break; |
4510 | 6 | } |
4511 | 19 | |
4512 | 19 | if (after < 0 || after) |
4513 | 3 | return after; |
4514 | 16 | |
4515 | 16 | return after_in_set(umap, node); |
4516 | 0 | error: |
4517 | 0 | isl_union_map_free(umap_i); |
4518 | 0 | return -1; |
4519 | 16 | } |
4520 | | |
4521 | | /* Is any domain element of "umap" scheduled after any of |
4522 | | * the corresponding image elements by the tree rooted at "node"? |
4523 | | * |
4524 | | * If "umap" is empty, then clearly there is no such element. |
4525 | | * Otherwise, consider the different types of nodes separately. |
4526 | | */ |
4527 | | static int after_in_tree(__isl_keep isl_union_map *umap, |
4528 | | __isl_keep isl_schedule_node *node) |
4529 | 101 | { |
4530 | 101 | int empty; |
4531 | 101 | enum isl_schedule_node_type type; |
4532 | 101 | |
4533 | 101 | empty = isl_union_map_is_empty(umap); |
4534 | 101 | if (empty < 0) |
4535 | 0 | return -1; |
4536 | 101 | if (empty) |
4537 | 41 | return 0; |
4538 | 60 | if (!node) |
4539 | 0 | return -1; |
4540 | 60 | |
4541 | 60 | type = isl_schedule_node_get_type(node); |
4542 | 60 | switch (type) { |
4543 | 60 | case isl_schedule_node_error: |
4544 | 0 | return -1; |
4545 | 60 | case isl_schedule_node_leaf: |
4546 | 0 | return 0; |
4547 | 60 | case isl_schedule_node_band: |
4548 | 0 | return after_in_band(umap, node); |
4549 | 60 | case isl_schedule_node_domain: |
4550 | 0 | isl_die(isl_schedule_node_get_ctx(node), isl_error_internal, |
4551 | 0 | "unexpected internal domain node", return -1); |
4552 | 0 | case isl_schedule_node_context: |
4553 | 0 | return after_in_context(umap, node); |
4554 | 0 | case isl_schedule_node_expansion: |
4555 | 0 | return after_in_expansion(umap, node); |
4556 | 0 | case isl_schedule_node_extension: |
4557 | 0 | return after_in_extension(umap, node); |
4558 | 41 | case isl_schedule_node_filter: |
4559 | 41 | return after_in_filter(umap, node); |
4560 | 0 | case isl_schedule_node_guard: |
4561 | 0 | case isl_schedule_node_mark: |
4562 | 0 | return after_in_child(umap, node); |
4563 | 0 | case isl_schedule_node_set: |
4564 | 0 | return after_in_set(umap, node); |
4565 | 19 | case isl_schedule_node_sequence: |
4566 | 19 | return after_in_sequence(umap, node); |
4567 | 0 | } |
4568 | 0 | |
4569 | 0 | return 1; |
4570 | 0 | } |
4571 | | |
4572 | | /* Is any domain element of "map1" scheduled after any domain |
4573 | | * element of "map2" by the subtree underneath the current band node, |
4574 | | * while at the same time being scheduled together by the current |
4575 | | * band node, i.e., by "map1" and "map2? |
4576 | | * |
4577 | | * If the child of the current band node is a leaf, then |
4578 | | * no element can be scheduled after any other element. |
4579 | | * |
4580 | | * Otherwise, we construct a relation between domain elements |
4581 | | * of "map1" and domain elements of "map2" that are scheduled |
4582 | | * together and then check if the subtree underneath the current |
4583 | | * band node determines their relative order. |
4584 | | */ |
4585 | | static int after_in_subtree(__isl_keep isl_ast_build *build, |
4586 | | __isl_keep isl_map *map1, __isl_keep isl_map *map2) |
4587 | 19 | { |
4588 | 19 | isl_schedule_node *node; |
4589 | 19 | isl_map *map; |
4590 | 19 | isl_union_map *umap; |
4591 | 19 | int after; |
4592 | 19 | |
4593 | 19 | node = isl_ast_build_get_schedule_node(build); |
4594 | 19 | if (!node) |
4595 | 0 | return -1; |
4596 | 19 | node = isl_schedule_node_child(node, 0); |
4597 | 19 | if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) { |
4598 | 0 | isl_schedule_node_free(node); |
4599 | 0 | return 0; |
4600 | 0 | } |
4601 | 19 | map = isl_map_copy(map2); |
4602 | 19 | map = isl_map_apply_domain(map, isl_map_copy(map1)); |
4603 | 19 | umap = isl_union_map_from_map(map); |
4604 | 19 | after = after_in_tree(umap, node); |
4605 | 19 | isl_union_map_free(umap); |
4606 | 19 | isl_schedule_node_free(node); |
4607 | 19 | return after; |
4608 | 19 | } |
4609 | | |
4610 | | /* Internal data for any_scheduled_after. |
4611 | | * |
4612 | | * "build" is the build in which the AST is constructed. |
4613 | | * "depth" is the number of loops that have already been generated |
4614 | | * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled |
4615 | | * "domain" is an array of set-map pairs corresponding to the different |
4616 | | * iteration domains. The set is the schedule domain, i.e., the domain |
4617 | | * of the inverse schedule, while the map is the inverse schedule itself. |
4618 | | */ |
4619 | | struct isl_any_scheduled_after_data { |
4620 | | isl_ast_build *build; |
4621 | | int depth; |
4622 | | int group_coscheduled; |
4623 | | struct isl_set_map_pair *domain; |
4624 | | }; |
4625 | | |
4626 | | /* Is any element of domain "i" scheduled after any element of domain "j" |
4627 | | * (for a common iteration of the first data->depth loops)? |
4628 | | * |
4629 | | * data->domain[i].set contains the domain of the inverse schedule |
4630 | | * for domain "i", i.e., elements in the schedule domain. |
4631 | | * |
4632 | | * If we are inside a band of a schedule tree and there is a pair |
4633 | | * of elements in the two domains that is schedule together by |
4634 | | * the current band, then we check if any element of "i" may be schedule |
4635 | | * after element of "j" by the descendants of the band node. |
4636 | | * |
4637 | | * If data->group_coscheduled is set, then we also return 1 if there |
4638 | | * is any pair of elements in the two domains that are scheduled together. |
4639 | | */ |
4640 | | static isl_bool any_scheduled_after(int i, int j, void *user) |
4641 | 519 | { |
4642 | 519 | struct isl_any_scheduled_after_data *data = user; |
4643 | 519 | int dim = isl_set_dim(data->domain[i].set, isl_dim_set); |
4644 | 519 | int pos; |
4645 | 519 | |
4646 | 595 | for (pos = data->depth; pos < dim; ++pos76 ) { |
4647 | 576 | int follows; |
4648 | 576 | |
4649 | 576 | follows = isl_set_follows_at(data->domain[i].set, |
4650 | 576 | data->domain[j].set, pos); |
4651 | 576 | |
4652 | 576 | if (follows < -1) |
4653 | 0 | return isl_bool_error; |
4654 | 576 | if (follows > 0) |
4655 | 437 | return isl_bool_true; |
4656 | 139 | if (follows < 0) |
4657 | 63 | return isl_bool_false; |
4658 | 139 | } |
4659 | 519 | |
4660 | 519 | if (19 isl_ast_build_has_schedule_node(data->build)19 ) { |
4661 | 19 | int after; |
4662 | 19 | |
4663 | 19 | after = after_in_subtree(data->build, data->domain[i].map, |
4664 | 19 | data->domain[j].map); |
4665 | 19 | if (after < 0 || after) |
4666 | 3 | return after; |
4667 | 16 | } |
4668 | 16 | |
4669 | 16 | return data->group_coscheduled; |
4670 | 16 | } |
4671 | | |
4672 | | /* Look for independent components at the current depth and generate code |
4673 | | * for each component separately. The resulting lists of grafts are |
4674 | | * merged in an attempt to combine grafts with identical guards. |
4675 | | * |
4676 | | * Code for two domains can be generated separately if all the elements |
4677 | | * of one domain are scheduled before (or together with) all the elements |
4678 | | * of the other domain. We therefore consider the graph with as nodes |
4679 | | * the domains and an edge between two nodes if any element of the first |
4680 | | * node is scheduled after any element of the second node. |
4681 | | * If the ast_build_group_coscheduled is set, then we also add an edge if |
4682 | | * there is any pair of elements in the two domains that are scheduled |
4683 | | * together. |
4684 | | * Code is then generated (by generate_component) |
4685 | | * for each of the strongly connected components in this graph |
4686 | | * in their topological order. |
4687 | | * |
4688 | | * Since the test is performed on the domain of the inverse schedules of |
4689 | | * the different domains, we precompute these domains and store |
4690 | | * them in data.domain. |
4691 | | */ |
4692 | | static __isl_give isl_ast_graft_list *generate_components( |
4693 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
4694 | 153 | { |
4695 | 153 | int i; |
4696 | 153 | isl_ctx *ctx = isl_ast_build_get_ctx(build); |
4697 | 153 | int n = isl_union_map_n_map(executed); |
4698 | 153 | struct isl_any_scheduled_after_data data; |
4699 | 153 | struct isl_set_map_pair *next; |
4700 | 153 | struct isl_tarjan_graph *g = NULL; |
4701 | 153 | isl_ast_graft_list *list = NULL; |
4702 | 153 | int n_domain = 0; |
4703 | 153 | |
4704 | 153 | data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n); |
4705 | 153 | if (!data.domain) |
4706 | 0 | goto error; |
4707 | 153 | n_domain = n; |
4708 | 153 | |
4709 | 153 | next = data.domain; |
4710 | 153 | if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0) |
4711 | 0 | goto error; |
4712 | 153 | |
4713 | 153 | if (!build) |
4714 | 0 | goto error; |
4715 | 153 | data.build = build; |
4716 | 153 | data.depth = isl_ast_build_get_depth(build); |
4717 | 153 | data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx); |
4718 | 153 | g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data); |
4719 | 153 | if (!g) |
4720 | 0 | goto error; |
4721 | 153 | |
4722 | 153 | list = isl_ast_graft_list_alloc(ctx, 0); |
4723 | 153 | |
4724 | 153 | i = 0; |
4725 | 356 | while (list && n) { |
4726 | 203 | isl_ast_graft_list *list_c; |
4727 | 203 | int first = i; |
4728 | 203 | |
4729 | 203 | if (g->order[i] == -1) |
4730 | 203 | isl_die0 (ctx, isl_error_internal, "cannot happen", |
4731 | 203 | goto error); |
4732 | 203 | ++i; --n; |
4733 | 412 | while (g->order[i] != -1) { |
4734 | 209 | ++i; --n; |
4735 | 209 | } |
4736 | 203 | |
4737 | 203 | list_c = generate_component(data.domain, |
4738 | 203 | g->order + first, i - first, |
4739 | 203 | isl_ast_build_copy(build)); |
4740 | 203 | list = isl_ast_graft_list_merge(list, list_c, build); |
4741 | 203 | |
4742 | 203 | ++i; |
4743 | 203 | } |
4744 | 153 | |
4745 | 153 | if (0) |
4746 | 0 | error: list = isl_ast_graft_list_free(list); |
4747 | 153 | isl_tarjan_graph_free(g); |
4748 | 565 | for (i = 0; i < n_domain; ++i412 ) { |
4749 | 412 | isl_map_free(data.domain[i].map); |
4750 | 412 | isl_set_free(data.domain[i].set); |
4751 | 412 | } |
4752 | 153 | free(data.domain); |
4753 | 153 | isl_union_map_free(executed); |
4754 | 153 | isl_ast_build_free(build); |
4755 | 153 | |
4756 | 153 | return list; |
4757 | 153 | } |
4758 | | |
4759 | | /* Generate code for the next level (and all inner levels). |
4760 | | * |
4761 | | * If "executed" is empty, i.e., no code needs to be generated, |
4762 | | * then we return an empty list. |
4763 | | * |
4764 | | * If we have already generated code for all loop levels, then we pass |
4765 | | * control to generate_inner_level. |
4766 | | * |
4767 | | * If "executed" lives in a single space, i.e., if code needs to be |
4768 | | * generated for a single domain, then there can only be a single |
4769 | | * component and we go directly to generate_shifted_component. |
4770 | | * Otherwise, we call generate_components to detect the components |
4771 | | * and to call generate_component on each of them separately. |
4772 | | */ |
4773 | | static __isl_give isl_ast_graft_list *generate_next_level( |
4774 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) |
4775 | 4.74k | { |
4776 | 4.74k | int depth; |
4777 | 4.74k | |
4778 | 4.74k | if (!build || !executed) |
4779 | 0 | goto error; |
4780 | 4.74k | |
4781 | 4.74k | if (isl_union_map_is_empty(executed)) { |
4782 | 0 | isl_ctx *ctx = isl_ast_build_get_ctx(build); |
4783 | 0 | isl_union_map_free(executed); |
4784 | 0 | isl_ast_build_free(build); |
4785 | 0 | return isl_ast_graft_list_alloc(ctx, 0); |
4786 | 0 | } |
4787 | 4.74k | |
4788 | 4.74k | depth = isl_ast_build_get_depth(build); |
4789 | 4.74k | if (depth >= isl_ast_build_dim(build, isl_dim_set)) |
4790 | 2.24k | return generate_inner_level(executed, build); |
4791 | 2.50k | |
4792 | 2.50k | if (isl_union_map_n_map(executed) == 1) |
4793 | 2.34k | return generate_shifted_component(executed, build); |
4794 | 153 | |
4795 | 153 | return generate_components(executed, build); |
4796 | 0 | error: |
4797 | 0 | isl_union_map_free(executed); |
4798 | 0 | isl_ast_build_free(build); |
4799 | 0 | return NULL; |
4800 | 153 | } |
4801 | | |
4802 | | /* Internal data structure used by isl_ast_build_node_from_schedule_map. |
4803 | | * internal, executed and build are the inputs to generate_code. |
4804 | | * list collects the output. |
4805 | | */ |
4806 | | struct isl_generate_code_data { |
4807 | | int internal; |
4808 | | isl_union_map *executed; |
4809 | | isl_ast_build *build; |
4810 | | |
4811 | | isl_ast_graft_list *list; |
4812 | | }; |
4813 | | |
4814 | | /* Given an inverse schedule in terms of the external build schedule, i.e., |
4815 | | * |
4816 | | * [E -> S] -> D |
4817 | | * |
4818 | | * with E the external build schedule and S the additional schedule "space", |
4819 | | * reformulate the inverse schedule in terms of the internal schedule domain, |
4820 | | * i.e., return |
4821 | | * |
4822 | | * [I -> S] -> D |
4823 | | * |
4824 | | * We first obtain a mapping |
4825 | | * |
4826 | | * I -> E |
4827 | | * |
4828 | | * take the inverse and the product with S -> S, resulting in |
4829 | | * |
4830 | | * [I -> S] -> [E -> S] |
4831 | | * |
4832 | | * Applying the map to the input produces the desired result. |
4833 | | */ |
4834 | | static __isl_give isl_union_map *internal_executed( |
4835 | | __isl_take isl_union_map *executed, __isl_keep isl_space *space, |
4836 | | __isl_keep isl_ast_build *build) |
4837 | 3 | { |
4838 | 3 | isl_map *id, *proj; |
4839 | 3 | |
4840 | 3 | proj = isl_ast_build_get_schedule_map(build); |
4841 | 3 | proj = isl_map_reverse(proj); |
4842 | 3 | space = isl_space_map_from_set(isl_space_copy(space)); |
4843 | 3 | id = isl_map_identity(space); |
4844 | 3 | proj = isl_map_product(proj, id); |
4845 | 3 | executed = isl_union_map_apply_domain(executed, |
4846 | 3 | isl_union_map_from_map(proj)); |
4847 | 3 | return executed; |
4848 | 3 | } |
4849 | | |
4850 | | /* Generate an AST that visits the elements in the range of data->executed |
4851 | | * in the relative order specified by the corresponding domain element(s) |
4852 | | * for those domain elements that belong to "set". |
4853 | | * Add the result to data->list. |
4854 | | * |
4855 | | * The caller ensures that "set" is a universe domain. |
4856 | | * "space" is the space of the additional part of the schedule. |
4857 | | * It is equal to the space of "set" if build->domain is parametric. |
4858 | | * Otherwise, it is equal to the range of the wrapped space of "set". |
4859 | | * |
4860 | | * If the build space is not parametric and |
4861 | | * if isl_ast_build_node_from_schedule_map |
4862 | | * was called from an outside user (data->internal not set), then |
4863 | | * the (inverse) schedule refers to the external build domain and needs to |
4864 | | * be transformed to refer to the internal build domain. |
4865 | | * |
4866 | | * If the build space is parametric, then we add some of the parameter |
4867 | | * constraints to the executed relation. Adding these constraints |
4868 | | * allows for an earlier detection of conflicts in some cases. |
4869 | | * However, we do not want to divide the executed relation into |
4870 | | * more disjuncts than necessary. We therefore approximate |
4871 | | * the constraints on the parameters by a single disjunct set. |
4872 | | * |
4873 | | * The build is extended to include the additional part of the schedule. |
4874 | | * If the original build space was not parametric, then the options |
4875 | | * in data->build refer only to the additional part of the schedule |
4876 | | * and they need to be adjusted to refer to the complete AST build |
4877 | | * domain. |
4878 | | * |
4879 | | * After having adjusted inverse schedule and build, we start generating |
4880 | | * code with the outer loop of the current code generation |
4881 | | * in generate_next_level. |
4882 | | * |
4883 | | * If the original build space was not parametric, we undo the embedding |
4884 | | * on the resulting isl_ast_node_list so that it can be used within |
4885 | | * the outer AST build. |
4886 | | */ |
4887 | | static isl_stat generate_code_in_space(struct isl_generate_code_data *data, |
4888 | | __isl_take isl_set *set, __isl_take isl_space *space) |
4889 | 31 | { |
4890 | 31 | isl_union_map *executed; |
4891 | 31 | isl_ast_build *build; |
4892 | 31 | isl_ast_graft_list *list; |
4893 | 31 | int embed; |
4894 | 31 | |
4895 | 31 | executed = isl_union_map_copy(data->executed); |
4896 | 31 | executed = isl_union_map_intersect_domain(executed, |
4897 | 31 | isl_union_set_from_set(set)); |
4898 | 31 | |
4899 | 31 | embed = !isl_set_is_params(data->build->domain); |
4900 | 31 | if (embed && !data->internal25 ) |
4901 | 3 | executed = internal_executed(executed, space, data->build); |
4902 | 31 | if (!embed) { |
4903 | 6 | isl_set *domain; |
4904 | 6 | domain = isl_ast_build_get_domain(data->build); |
4905 | 6 | domain = isl_set_from_basic_set(isl_set_simple_hull(domain)); |
4906 | 6 | executed = isl_union_map_intersect_params(executed, domain); |
4907 | 6 | } |
4908 | 31 | |
4909 | 31 | build = isl_ast_build_copy(data->build); |
4910 | 31 | build = isl_ast_build_product(build, space); |
4911 | 31 | |
4912 | 31 | list = generate_next_level(executed, build); |
4913 | 31 | |
4914 | 31 | list = isl_ast_graft_list_unembed(list, embed); |
4915 | 31 | |
4916 | 31 | data->list = isl_ast_graft_list_concat(data->list, list); |
4917 | 31 | |
4918 | 31 | return isl_stat_ok; |
4919 | 31 | } |
4920 | | |
4921 | | /* Generate an AST that visits the elements in the range of data->executed |
4922 | | * in the relative order specified by the corresponding domain element(s) |
4923 | | * for those domain elements that belong to "set". |
4924 | | * Add the result to data->list. |
4925 | | * |
4926 | | * The caller ensures that "set" is a universe domain. |
4927 | | * |
4928 | | * If the build space S is not parametric, then the space of "set" |
4929 | | * need to be a wrapped relation with S as domain. That is, it needs |
4930 | | * to be of the form |
4931 | | * |
4932 | | * [S -> T] |
4933 | | * |
4934 | | * Check this property and pass control to generate_code_in_space |
4935 | | * passing along T. |
4936 | | * If the build space is not parametric, then T is the space of "set". |
4937 | | */ |
4938 | | static isl_stat generate_code_set(__isl_take isl_set *set, void *user) |
4939 | 31 | { |
4940 | 31 | struct isl_generate_code_data *data = user; |
4941 | 31 | isl_space *space, *build_space; |
4942 | 31 | int is_domain; |
4943 | 31 | |
4944 | 31 | space = isl_set_get_space(set); |
4945 | 31 | |
4946 | 31 | if (isl_set_is_params(data->build->domain)) |
4947 | 6 | return generate_code_in_space(data, set, space); |
4948 | 25 | |
4949 | 25 | build_space = isl_ast_build_get_space(data->build, data->internal); |
4950 | 25 | space = isl_space_unwrap(space); |
4951 | 25 | is_domain = isl_space_is_domain(build_space, space); |
4952 | 25 | isl_space_free(build_space); |
4953 | 25 | space = isl_space_range(space); |
4954 | 25 | |
4955 | 25 | if (is_domain < 0) |
4956 | 0 | goto error; |
4957 | 25 | if (!is_domain) |
4958 | 25 | isl_die0 (isl_set_get_ctx(set), isl_error_invalid, |
4959 | 25 | "invalid nested schedule space", goto error); |
4960 | 25 | |
4961 | 25 | return generate_code_in_space(data, set, space); |
4962 | 0 | error: |
4963 | 0 | isl_set_free(set); |
4964 | 0 | isl_space_free(space); |
4965 | 0 | return isl_stat_error; |
4966 | 25 | } |
4967 | | |
4968 | | /* Generate an AST that visits the elements in the range of "executed" |
4969 | | * in the relative order specified by the corresponding domain element(s). |
4970 | | * |
4971 | | * "build" is an isl_ast_build that has either been constructed by |
4972 | | * isl_ast_build_from_context or passed to a callback set by |
4973 | | * isl_ast_build_set_create_leaf. |
4974 | | * In the first case, the space of the isl_ast_build is typically |
4975 | | * a parametric space, although this is currently not enforced. |
4976 | | * In the second case, the space is never a parametric space. |
4977 | | * If the space S is not parametric, then the domain space(s) of "executed" |
4978 | | * need to be wrapped relations with S as domain. |
4979 | | * |
4980 | | * If the domain of "executed" consists of several spaces, then an AST |
4981 | | * is generated for each of them (in arbitrary order) and the results |
4982 | | * are concatenated. |
4983 | | * |
4984 | | * If "internal" is set, then the domain "S" above refers to the internal |
4985 | | * schedule domain representation. Otherwise, it refers to the external |
4986 | | * representation, as returned by isl_ast_build_get_schedule_space. |
4987 | | * |
4988 | | * We essentially run over all the spaces in the domain of "executed" |
4989 | | * and call generate_code_set on each of them. |
4990 | | */ |
4991 | | static __isl_give isl_ast_graft_list *generate_code( |
4992 | | __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, |
4993 | | int internal) |
4994 | 31 | { |
4995 | 31 | isl_ctx *ctx; |
4996 | 31 | struct isl_generate_code_data data = { 0 }; |
4997 | 31 | isl_space *space; |
4998 | 31 | isl_union_set *schedule_domain; |
4999 | 31 | isl_union_map *universe; |
5000 | 31 | |
5001 | 31 | if (!build) |
5002 | 0 | goto error; |
5003 | 31 | space = isl_ast_build_get_space(build, 1); |
5004 | 31 | space = isl_space_align_params(space, |
5005 | 31 | isl_union_map_get_space(executed)); |
5006 | 31 | space = isl_space_align_params(space, |
5007 | 31 | isl_union_map_get_space(build->options)); |
5008 | 31 | build = isl_ast_build_align_params(build, isl_space_copy(space)); |
5009 | 31 | executed = isl_union_map_align_params(executed, space); |
5010 | 31 | if (!executed || !build) |
5011 | 0 | goto error; |
5012 | 31 | |
5013 | 31 | ctx = isl_ast_build_get_ctx(build); |
5014 | 31 | |
5015 | 31 | data.internal = internal; |
5016 | 31 | data.executed = executed; |
5017 | 31 | data.build = build; |
5018 | 31 | data.list = isl_ast_graft_list_alloc(ctx, 0); |
5019 | 31 | |
5020 | 31 | universe = isl_union_map_universe(isl_union_map_copy(executed)); |
5021 | 31 | schedule_domain = isl_union_map_domain(universe); |
5022 | 31 | if (isl_union_set_foreach_set(schedule_domain, &generate_code_set, |
5023 | 31 | &data) < 0) |
5024 | 0 | data.list = isl_ast_graft_list_free(data.list); |
5025 | 31 | |
5026 | 31 | isl_union_set_free(schedule_domain); |
5027 | 31 | isl_union_map_free(executed); |
5028 | 31 | |
5029 | 31 | isl_ast_build_free(build); |
5030 | 31 | return data.list; |
5031 | 0 | error: |
5032 | 0 | isl_union_map_free(executed); |
5033 | 0 | isl_ast_build_free(build); |
5034 | 0 | return NULL; |
5035 | 31 | } |
5036 | | |
5037 | | /* Generate an AST that visits the elements in the domain of "schedule" |
5038 | | * in the relative order specified by the corresponding image element(s). |
5039 | | * |
5040 | | * "build" is an isl_ast_build that has either been constructed by |
5041 | | * isl_ast_build_from_context or passed to a callback set by |
5042 | | * isl_ast_build_set_create_leaf. |
5043 | | * In the first case, the space of the isl_ast_build is typically |
5044 | | * a parametric space, although this is currently not enforced. |
5045 | | * In the second case, the space is never a parametric space. |
5046 | | * If the space S is not parametric, then the range space(s) of "schedule" |
5047 | | * need to be wrapped relations with S as domain. |
5048 | | * |
5049 | | * If the range of "schedule" consists of several spaces, then an AST |
5050 | | * is generated for each of them (in arbitrary order) and the results |
5051 | | * are concatenated. |
5052 | | * |
5053 | | * We first initialize the local copies of the relevant options. |
5054 | | * We do this here rather than when the isl_ast_build is created |
5055 | | * because the options may have changed between the construction |
5056 | | * of the isl_ast_build and the call to isl_generate_code. |
5057 | | * |
5058 | | * The main computation is performed on an inverse schedule (with |
5059 | | * the schedule domain in the domain and the elements to be executed |
5060 | | * in the range) called "executed". |
5061 | | */ |
5062 | | __isl_give isl_ast_node *isl_ast_build_node_from_schedule_map( |
5063 | | __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule) |
5064 | 9 | { |
5065 | 9 | isl_ast_graft_list *list; |
5066 | 9 | isl_ast_node *node; |
5067 | 9 | isl_union_map *executed; |
5068 | 9 | |
5069 | 9 | build = isl_ast_build_copy(build); |
5070 | 9 | build = isl_ast_build_set_single_valued(build, 0); |
5071 | 9 | schedule = isl_union_map_coalesce(schedule); |
5072 | 9 | schedule = isl_union_map_remove_redundancies(schedule); |
5073 | 9 | executed = isl_union_map_reverse(schedule); |
5074 | 9 | list = generate_code(executed, isl_ast_build_copy(build), 0); |
5075 | 9 | node = isl_ast_node_from_graft_list(list, build); |
5076 | 9 | isl_ast_build_free(build); |
5077 | 9 | |
5078 | 9 | return node; |
5079 | 9 | } |
5080 | | |
5081 | | /* The old name for isl_ast_build_node_from_schedule_map. |
5082 | | * It is being kept for backward compatibility, but |
5083 | | * it will be removed in the future. |
5084 | | */ |
5085 | | __isl_give isl_ast_node *isl_ast_build_ast_from_schedule( |
5086 | | __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule) |
5087 | 0 | { |
5088 | 0 | return isl_ast_build_node_from_schedule_map(build, schedule); |
5089 | 0 | } |
5090 | | |
5091 | | /* Generate an AST that visits the elements in the domain of "executed" |
5092 | | * in the relative order specified by the band node "node" and its descendants. |
5093 | | * |
5094 | | * The relation "executed" maps the outer generated loop iterators |
5095 | | * to the domain elements executed by those iterations. |
5096 | | * |
5097 | | * If the band is empty, we continue with its descendants. |
5098 | | * Otherwise, we extend the build and the inverse schedule with |
5099 | | * the additional space/partial schedule and continue generating |
5100 | | * an AST in generate_next_level. |
5101 | | * As soon as we have extended the inverse schedule with the additional |
5102 | | * partial schedule, we look for equalities that may exists between |
5103 | | * the old and the new part. |
5104 | | */ |
5105 | | static __isl_give isl_ast_graft_list *build_ast_from_band( |
5106 | | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5107 | | __isl_take isl_union_map *executed) |
5108 | 653 | { |
5109 | 653 | isl_space *space; |
5110 | 653 | isl_multi_union_pw_aff *extra; |
5111 | 653 | isl_union_map *extra_umap; |
5112 | 653 | isl_ast_graft_list *list; |
5113 | 653 | unsigned n1, n2; |
5114 | 653 | |
5115 | 653 | if (!build || !node || !executed) |
5116 | 0 | goto error; |
5117 | 653 | |
5118 | 653 | if (isl_schedule_node_band_n_member(node) == 0) |
5119 | 0 | return build_ast_from_child(build, node, executed); |
5120 | 653 | |
5121 | 653 | extra = isl_schedule_node_band_get_partial_schedule(node); |
5122 | 653 | extra = isl_multi_union_pw_aff_align_params(extra, |
5123 | 653 | isl_ast_build_get_space(build, 1)); |
5124 | 653 | space = isl_multi_union_pw_aff_get_space(extra); |
5125 | 653 | |
5126 | 653 | extra_umap = isl_union_map_from_multi_union_pw_aff(extra); |
5127 | 653 | extra_umap = isl_union_map_reverse(extra_umap); |
5128 | 653 | |
5129 | 653 | executed = isl_union_map_domain_product(executed, extra_umap); |
5130 | 653 | executed = isl_union_map_detect_equalities(executed); |
5131 | 653 | |
5132 | 653 | n1 = isl_ast_build_dim(build, isl_dim_param); |
5133 | 653 | build = isl_ast_build_product(build, space); |
5134 | 653 | n2 = isl_ast_build_dim(build, isl_dim_param); |
5135 | 653 | if (n2 > n1) |
5136 | 653 | isl_die0 (isl_ast_build_get_ctx(build), isl_error_invalid, |
5137 | 653 | "band node is not allowed to introduce new parameters", |
5138 | 653 | build = isl_ast_build_free(build)); |
5139 | 653 | build = isl_ast_build_set_schedule_node(build, node); |
5140 | 653 | |
5141 | 653 | list = generate_next_level(executed, build); |
5142 | 653 | |
5143 | 653 | list = isl_ast_graft_list_unembed(list, 1); |
5144 | 653 | |
5145 | 653 | return list; |
5146 | 0 | error: |
5147 | 0 | isl_schedule_node_free(node); |
5148 | 0 | isl_union_map_free(executed); |
5149 | 0 | isl_ast_build_free(build); |
5150 | 0 | return NULL; |
5151 | 653 | } |
5152 | | |
5153 | | /* Hoist a list of grafts (in practice containing a single graft) |
5154 | | * from "sub_build" (which includes extra context information) |
5155 | | * to "build". |
5156 | | * |
5157 | | * In particular, project out all additional parameters introduced |
5158 | | * by the context node from the enforced constraints and the guard |
5159 | | * of the single graft. |
5160 | | */ |
5161 | | static __isl_give isl_ast_graft_list *hoist_out_of_context( |
5162 | | __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build, |
5163 | | __isl_keep isl_ast_build *sub_build) |
5164 | 0 | { |
5165 | 0 | isl_ast_graft *graft; |
5166 | 0 | isl_basic_set *enforced; |
5167 | 0 | isl_set *guard; |
5168 | 0 | unsigned n_param, extra_param; |
5169 | 0 |
|
5170 | 0 | if (!build || !sub_build) |
5171 | 0 | return isl_ast_graft_list_free(list); |
5172 | 0 | |
5173 | 0 | n_param = isl_ast_build_dim(build, isl_dim_param); |
5174 | 0 | extra_param = isl_ast_build_dim(sub_build, isl_dim_param); |
5175 | 0 |
|
5176 | 0 | if (extra_param == n_param) |
5177 | 0 | return list; |
5178 | 0 | |
5179 | 0 | extra_param -= n_param; |
5180 | 0 | enforced = isl_ast_graft_list_extract_shared_enforced(list, sub_build); |
5181 | 0 | enforced = isl_basic_set_project_out(enforced, isl_dim_param, |
5182 | 0 | n_param, extra_param); |
5183 | 0 | enforced = isl_basic_set_remove_unknown_divs(enforced); |
5184 | 0 | guard = isl_ast_graft_list_extract_hoistable_guard(list, sub_build); |
5185 | 0 | guard = isl_set_remove_divs_involving_dims(guard, isl_dim_param, |
5186 | 0 | n_param, extra_param); |
5187 | 0 | guard = isl_set_project_out(guard, isl_dim_param, n_param, extra_param); |
5188 | 0 | guard = isl_set_compute_divs(guard); |
5189 | 0 | graft = isl_ast_graft_alloc_from_children(list, guard, enforced, |
5190 | 0 | build, sub_build); |
5191 | 0 | list = isl_ast_graft_list_from_ast_graft(graft); |
5192 | 0 |
|
5193 | 0 | return list; |
5194 | 0 | } |
5195 | | |
5196 | | /* Generate an AST that visits the elements in the domain of "executed" |
5197 | | * in the relative order specified by the context node "node" |
5198 | | * and its descendants. |
5199 | | * |
5200 | | * The relation "executed" maps the outer generated loop iterators |
5201 | | * to the domain elements executed by those iterations. |
5202 | | * |
5203 | | * The context node may introduce additional parameters as well as |
5204 | | * constraints on the outer schedule dimensions or original parameters. |
5205 | | * |
5206 | | * We add the extra parameters to a new build and the context |
5207 | | * constraints to both the build and (as a single disjunct) |
5208 | | * to the domain of "executed". Since the context constraints |
5209 | | * are specified in terms of the input schedule, we first need |
5210 | | * to map them to the internal schedule domain. |
5211 | | * |
5212 | | * After constructing the AST from the descendants of "node", |
5213 | | * we combine the list of grafts into a single graft within |
5214 | | * the new build, in order to be able to exploit the additional |
5215 | | * context constraints during this combination. |
5216 | | * |
5217 | | * Additionally, if the current node is the outermost node in |
5218 | | * the schedule tree (apart from the root domain node), we generate |
5219 | | * all pending guards, again to be able to exploit the additional |
5220 | | * context constraints. We currently do not do this for internal |
5221 | | * context nodes since we may still want to hoist conditions |
5222 | | * to outer AST nodes. |
5223 | | * |
5224 | | * If the context node introduced any new parameters, then they |
5225 | | * are removed from the set of enforced constraints and guard |
5226 | | * in hoist_out_of_context. |
5227 | | */ |
5228 | | static __isl_give isl_ast_graft_list *build_ast_from_context( |
5229 | | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5230 | | __isl_take isl_union_map *executed) |
5231 | 0 | { |
5232 | 0 | isl_set *context; |
5233 | 0 | isl_space *space; |
5234 | 0 | isl_multi_aff *internal2input; |
5235 | 0 | isl_ast_build *sub_build; |
5236 | 0 | isl_ast_graft_list *list; |
5237 | 0 | int n, depth; |
5238 | 0 |
|
5239 | 0 | depth = isl_schedule_node_get_tree_depth(node); |
5240 | 0 | space = isl_ast_build_get_space(build, 1); |
5241 | 0 | context = isl_schedule_node_context_get_context(node); |
5242 | 0 | context = isl_set_align_params(context, space); |
5243 | 0 | sub_build = isl_ast_build_copy(build); |
5244 | 0 | space = isl_set_get_space(context); |
5245 | 0 | sub_build = isl_ast_build_align_params(sub_build, space); |
5246 | 0 | internal2input = isl_ast_build_get_internal2input(sub_build); |
5247 | 0 | context = isl_set_preimage_multi_aff(context, internal2input); |
5248 | 0 | sub_build = isl_ast_build_restrict_generated(sub_build, |
5249 | 0 | isl_set_copy(context)); |
5250 | 0 | context = isl_set_from_basic_set(isl_set_simple_hull(context)); |
5251 | 0 | executed = isl_union_map_intersect_domain(executed, |
5252 | 0 | isl_union_set_from_set(context)); |
5253 | 0 |
|
5254 | 0 | list = build_ast_from_child(isl_ast_build_copy(sub_build), |
5255 | 0 | node, executed); |
5256 | 0 | n = isl_ast_graft_list_n_ast_graft(list); |
5257 | 0 | if (n < 0) |
5258 | 0 | list = isl_ast_graft_list_free(list); |
5259 | 0 |
|
5260 | 0 | list = isl_ast_graft_list_fuse(list, sub_build); |
5261 | 0 | if (depth == 1) |
5262 | 0 | list = isl_ast_graft_list_insert_pending_guard_nodes(list, |
5263 | 0 | sub_build); |
5264 | 0 | if (n >= 1) |
5265 | 0 | list = hoist_out_of_context(list, build, sub_build); |
5266 | 0 |
|
5267 | 0 | isl_ast_build_free(build); |
5268 | 0 | isl_ast_build_free(sub_build); |
5269 | 0 |
|
5270 | 0 | return list; |
5271 | 0 | } |
5272 | | |
5273 | | /* Generate an AST that visits the elements in the domain of "executed" |
5274 | | * in the relative order specified by the expansion node "node" and |
5275 | | * its descendants. |
5276 | | * |
5277 | | * The relation "executed" maps the outer generated loop iterators |
5278 | | * to the domain elements executed by those iterations. |
5279 | | * |
5280 | | * We expand the domain elements by the expansion and |
5281 | | * continue with the descendants of the node. |
5282 | | */ |
5283 | | static __isl_give isl_ast_graft_list *build_ast_from_expansion( |
5284 | | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5285 | | __isl_take isl_union_map *executed) |
5286 | 0 | { |
5287 | 0 | isl_union_map *expansion; |
5288 | 0 | unsigned n1, n2; |
5289 | 0 |
|
5290 | 0 | expansion = isl_schedule_node_expansion_get_expansion(node); |
5291 | 0 | expansion = isl_union_map_align_params(expansion, |
5292 | 0 | isl_union_map_get_space(executed)); |
5293 | 0 |
|
5294 | 0 | n1 = isl_union_map_dim(executed, isl_dim_param); |
5295 | 0 | executed = isl_union_map_apply_range(executed, expansion); |
5296 | 0 | n2 = isl_union_map_dim(executed, isl_dim_param); |
5297 | 0 | if (n2 > n1) |
5298 | 0 | isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, |
5299 | 0 | "expansion node is not allowed to introduce " |
5300 | 0 | "new parameters", goto error); |
5301 | 0 |
|
5302 | 0 | return build_ast_from_child(build, node, executed); |
5303 | 0 | error: |
5304 | 0 | isl_ast_build_free(build); |
5305 | 0 | isl_schedule_node_free(node); |
5306 | 0 | isl_union_map_free(executed); |
5307 | 0 | return NULL; |
5308 | 0 | } |
5309 | | |
5310 | | /* Generate an AST that visits the elements in the domain of "executed" |
5311 | | * in the relative order specified by the extension node "node" and |
5312 | | * its descendants. |
5313 | | * |
5314 | | * The relation "executed" maps the outer generated loop iterators |
5315 | | * to the domain elements executed by those iterations. |
5316 | | * |
5317 | | * Extend the inverse schedule with the extension applied to current |
5318 | | * set of generated constraints. Since the extension if formulated |
5319 | | * in terms of the input schedule, it first needs to be transformed |
5320 | | * to refer to the internal schedule. |
5321 | | */ |
5322 | | static __isl_give isl_ast_graft_list *build_ast_from_extension( |
5323 | | __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, |
5324 | | __isl_take isl_union_map *executed) |
5325 | 0 | { |
5326 | 0 | isl_union_set *schedule_domain; |
5327 | 0 | isl_union_map *extension; |
5328 | 0 | isl_set *set; |
5329 | 0 |
|
5330 | 0 | set = isl_ast_build_get_generated(build); |
5331 | 0 | set = isl_set_from_basic_set(isl_set_simple_hull(set)); |
5332 | 0 | schedule_domain = isl_union_set_from_set(set); |
5333 | 0 |
|
5334 | 0 | extension = isl_schedule_node_extension_get_extension(node); |
5335 | 0 |
|
5336
|