Coverage Report

Created: 2019-07-24 05:18

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/lib/External/isl/isl_bernstein.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2006-2007 Universiteit Leiden
3
 * Copyright 2008-2009 Katholieke Universiteit Leuven
4
 * Copyright 2010      INRIA Saclay
5
 *
6
 * Use of this software is governed by the MIT license
7
 *
8
 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9
 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10
 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11
 * B-3001 Leuven, Belgium
12
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14
 */
15
16
#include <isl_ctx_private.h>
17
#include <isl_map_private.h>
18
#include <isl/set.h>
19
#include <isl_seq.h>
20
#include <isl_morph.h>
21
#include <isl_factorization.h>
22
#include <isl_vertices_private.h>
23
#include <isl_polynomial_private.h>
24
#include <isl_options_private.h>
25
#include <isl_vec_private.h>
26
#include <isl_bernstein.h>
27
28
struct bernstein_data {
29
  enum isl_fold type;
30
  isl_qpolynomial *poly;
31
  int check_tight;
32
33
  isl_cell *cell;
34
35
  isl_qpolynomial_fold *fold;
36
  isl_qpolynomial_fold *fold_tight;
37
  isl_pw_qpolynomial_fold *pwf;
38
  isl_pw_qpolynomial_fold *pwf_tight;
39
};
40
41
static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
42
0
{
43
0
  unsigned nvar;
44
0
  unsigned nparam;
45
0
  int i;
46
0
47
0
  nvar = isl_basic_set_dim(vertex, isl_dim_set);
48
0
  nparam = isl_basic_set_dim(vertex, isl_dim_param);
49
0
  for (i = 0; i < nvar; ++i) {
50
0
    int r = nvar - 1 - i;
51
0
    if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
52
0
        !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
53
0
      return 0;
54
0
  }
55
0
56
0
  return 1;
57
0
}
58
59
static __isl_give isl_qpolynomial *vertex_coordinate(
60
  __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *dim)
61
0
{
62
0
  unsigned nvar;
63
0
  unsigned nparam;
64
0
  int r;
65
0
  isl_int denom;
66
0
  isl_qpolynomial *v;
67
0
68
0
  nvar = isl_basic_set_dim(vertex, isl_dim_set);
69
0
  nparam = isl_basic_set_dim(vertex, isl_dim_param);
70
0
  r = nvar - 1 - i;
71
0
72
0
  isl_int_init(denom);
73
0
  isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
74
0
  isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
75
0
76
0
  if (isl_int_is_pos(denom))
77
0
    isl_seq_neg(vertex->eq[r], vertex->eq[r],
78
0
        1 + isl_basic_set_total_dim(vertex));
79
0
  else
80
0
    isl_int_neg(denom, denom);
81
0
82
0
  v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
83
0
  isl_int_clear(denom);
84
0
85
0
  return v;
86
0
error:
87
0
  isl_space_free(dim);
88
0
  isl_int_clear(denom);
89
0
  return NULL;
90
0
}
91
92
/* Check whether the bound associated to the selection "k" is tight,
93
 * which is the case if we select exactly one vertex and if that vertex
94
 * is integral for all values of the parameters.
95
 */
96
static int is_tight(int *k, int n, int d, isl_cell *cell)
97
0
{
98
0
  int i;
99
0
100
0
  for (i = 0; i < n; ++i) {
101
0
    int v;
102
0
    if (k[i] != d) {
103
0
      if (k[i])
104
0
        return 0;
105
0
      continue;
106
0
    }
107
0
    v = cell->ids[n - 1 - i];
108
0
    return vertex_is_integral(cell->vertices->v[v].vertex);
109
0
  }
110
0
111
0
  return 0;
112
0
}
113
114
static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
115
  int *k, int n, int d, struct bernstein_data *data)
116
0
{
117
0
  isl_qpolynomial_fold *fold;
118
0
119
0
  fold = isl_qpolynomial_fold_alloc(data->type, b);
120
0
121
0
  if (data->check_tight && is_tight(k, n, d, data->cell))
122
0
    data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
123
0
              data->fold_tight, fold);
124
0
  else
125
0
    data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
126
0
              data->fold, fold);
127
0
}
128
129
/* Extract the coefficients of the Bernstein base polynomials and store
130
 * them in data->fold and data->fold_tight.
131
 *
132
 * In particular, the coefficient of each monomial
133
 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
134
 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
135
 *
136
 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
137
 * multinom[i] contains the partial multinomial coefficient.
138
 */
139
static void extract_coefficients(isl_qpolynomial *poly,
140
  __isl_keep isl_set *dom, struct bernstein_data *data)
141
0
{
142
0
  int i;
143
0
  int d;
144
0
  int n;
145
0
  isl_ctx *ctx;
146
0
  isl_qpolynomial **c = NULL;
147
0
  int *k = NULL;
148
0
  int *left = NULL;
149
0
  isl_vec *multinom = NULL;
150
0
151
0
  if (!poly)
152
0
    return;
153
0
154
0
  ctx = isl_qpolynomial_get_ctx(poly);
155
0
  n = isl_qpolynomial_dim(poly, isl_dim_in);
156
0
  d = isl_qpolynomial_degree(poly);
157
0
  isl_assert(ctx, n >= 2, return);
158
0
159
0
  c = isl_calloc_array(ctx, isl_qpolynomial *, n);
160
0
  k = isl_alloc_array(ctx, int, n);
161
0
  left = isl_alloc_array(ctx, int, n);
162
0
  multinom = isl_vec_alloc(ctx, n);
163
0
  if (!c || !k || !left || !multinom)
164
0
    goto error;
165
0
166
0
  isl_int_set_si(multinom->el[0], 1);
167
0
  for (k[0] = d; k[0] >= 0; --k[0]) {
168
0
    int i = 1;
169
0
    isl_qpolynomial_free(c[0]);
170
0
    c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
171
0
    left[0] = d - k[0];
172
0
    k[1] = -1;
173
0
    isl_int_set(multinom->el[1], multinom->el[0]);
174
0
    while (i > 0) {
175
0
      if (i == n - 1) {
176
0
        int j;
177
0
        isl_space *dim;
178
0
        isl_qpolynomial *b;
179
0
        isl_qpolynomial *f;
180
0
        for (j = 2; j <= left[i - 1]; ++j)
181
0
          isl_int_divexact_ui(multinom->el[i],
182
0
            multinom->el[i], j);
183
0
        b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
184
0
          n - 1 - i, left[i - 1]);
185
0
        b = isl_qpolynomial_project_domain_on_params(b);
186
0
        dim = isl_qpolynomial_get_domain_space(b);
187
0
        f = isl_qpolynomial_rat_cst_on_domain(dim, ctx->one,
188
0
          multinom->el[i]);
189
0
        b = isl_qpolynomial_mul(b, f);
190
0
        k[n - 1] = left[n - 2];
191
0
        add_fold(b, dom, k, n, d, data);
192
0
        --i;
193
0
        continue;
194
0
      }
195
0
      if (k[i] >= left[i - 1]) {
196
0
        --i;
197
0
        continue;
198
0
      }
199
0
      ++k[i];
200
0
      if (k[i])
201
0
        isl_int_divexact_ui(multinom->el[i],
202
0
          multinom->el[i], k[i]);
203
0
      isl_qpolynomial_free(c[i]);
204
0
      c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
205
0
          n - 1 - i, k[i]);
206
0
      left[i] = left[i - 1] - k[i];
207
0
      k[i + 1] = -1;
208
0
      isl_int_set(multinom->el[i + 1], multinom->el[i]);
209
0
      ++i;
210
0
    }
211
0
    isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
212
0
  }
213
0
214
0
  for (i = 0; i < n; ++i)
215
0
    isl_qpolynomial_free(c[i]);
216
0
217
0
  isl_vec_free(multinom);
218
0
  free(left);
219
0
  free(k);
220
0
  free(c);
221
0
  return;
222
0
error:
223
0
  isl_vec_free(multinom);
224
0
  free(left);
225
0
  free(k);
226
0
  if (c)
227
0
    for (i = 0; i < n; ++i)
228
0
      isl_qpolynomial_free(c[i]);
229
0
  free(c);
230
0
  return;
231
0
}
232
233
/* Perform bernstein expansion on the parametric vertices that are active
234
 * on "cell".
235
 *
236
 * data->poly has been homogenized in the calling function.
237
 *
238
 * We plug in the barycentric coordinates for the set variables
239
 *
240
 *    \vec x = \sum_i \alpha_i v_i(\vec p)
241
 *
242
 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
243
 * Next, we extract the coefficients of the Bernstein base polynomials.
244
 */
245
static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell,
246
  void *user)
247
0
{
248
0
  int i, j;
249
0
  struct bernstein_data *data = (struct bernstein_data *)user;
250
0
  isl_space *dim_param;
251
0
  isl_space *dim_dst;
252
0
  isl_qpolynomial *poly = data->poly;
253
0
  unsigned nvar;
254
0
  int n_vertices;
255
0
  isl_qpolynomial **subs;
256
0
  isl_pw_qpolynomial_fold *pwf;
257
0
  isl_set *dom;
258
0
  isl_ctx *ctx;
259
0
260
0
  if (!poly)
261
0
    goto error;
262
0
263
0
  nvar = isl_qpolynomial_dim(poly, isl_dim_in) - 1;
264
0
  n_vertices = cell->n_vertices;
265
0
266
0
  ctx = isl_qpolynomial_get_ctx(poly);
267
0
  if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
268
0
    return isl_cell_foreach_simplex(cell,
269
0
              &bernstein_coefficients_cell, user);
270
0
271
0
  subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
272
0
  if (!subs)
273
0
    goto error;
274
0
275
0
  dim_param = isl_basic_set_get_space(cell->dom);
276
0
  dim_dst = isl_qpolynomial_get_domain_space(poly);
277
0
  dim_dst = isl_space_add_dims(dim_dst, isl_dim_set, n_vertices);
278
0
279
0
  for (i = 0; i < 1 + nvar; ++i)
280
0
    subs[i] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst));
281
0
282
0
  for (i = 0; i < n_vertices; ++i) {
283
0
    isl_qpolynomial *c;
284
0
    c = isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst), isl_dim_set,
285
0
          1 + nvar + i);
286
0
    for (j = 0; j < nvar; ++j) {
287
0
      int k = cell->ids[i];
288
0
      isl_qpolynomial *v;
289
0
      v = vertex_coordinate(cell->vertices->v[k].vertex, j,
290
0
            isl_space_copy(dim_param));
291
0
      v = isl_qpolynomial_add_dims(v, isl_dim_in,
292
0
              1 + nvar + n_vertices);
293
0
      v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
294
0
      subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
295
0
    }
296
0
    subs[0] = isl_qpolynomial_add(subs[0], c);
297
0
  }
298
0
  isl_space_free(dim_dst);
299
0
300
0
  poly = isl_qpolynomial_copy(poly);
301
0
302
0
  poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
303
0
  poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
304
0
  poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
305
0
306
0
  data->cell = cell;
307
0
  dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
308
0
  data->fold = isl_qpolynomial_fold_empty(data->type, isl_space_copy(dim_param));
309
0
  data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
310
0
  extract_coefficients(poly, dom, data);
311
0
312
0
  pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
313
0
              data->fold);
314
0
  data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
315
0
  pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
316
0
  data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
317
0
318
0
  isl_qpolynomial_free(poly);
319
0
  isl_cell_free(cell);
320
0
  for (i = 0; i < 1 + nvar; ++i)
321
0
    isl_qpolynomial_free(subs[i]);
322
0
  free(subs);
323
0
  return isl_stat_ok;
324
0
error:
325
0
  isl_cell_free(cell);
326
0
  return isl_stat_error;
327
0
}
328
329
/* Base case of applying bernstein expansion.
330
 *
331
 * We compute the chamber decomposition of the parametric polytope "bset"
332
 * and then perform bernstein expansion on the parametric vertices
333
 * that are active on each chamber.
334
 */
335
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
336
  __isl_take isl_basic_set *bset,
337
  __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
338
1
{
339
1
  unsigned nvar;
340
1
  isl_space *dim;
341
1
  isl_pw_qpolynomial_fold *pwf;
342
1
  isl_vertices *vertices;
343
1
  int covers;
344
1
345
1
  nvar = isl_basic_set_dim(bset, isl_dim_set);
346
1
  if (nvar == 0) {
347
1
    isl_set *dom;
348
1
    isl_qpolynomial_fold *fold;
349
1
350
1
    fold = isl_qpolynomial_fold_alloc(data->type, poly);
351
1
    dom = isl_set_from_basic_set(bset);
352
1
    if (tight)
353
0
      *tight = 1;
354
1
    pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
355
1
    return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
356
1
  }
357
0
358
0
  if (isl_qpolynomial_is_zero(poly)) {
359
0
    isl_set *dom;
360
0
    isl_qpolynomial_fold *fold;
361
0
    fold = isl_qpolynomial_fold_alloc(data->type, poly);
362
0
    dom = isl_set_from_basic_set(bset);
363
0
    pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
364
0
    if (tight)
365
0
      *tight = 1;
366
0
    return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
367
0
  }
368
0
369
0
  dim = isl_basic_set_get_space(bset);
370
0
  dim = isl_space_params(dim);
371
0
  dim = isl_space_from_domain(dim);
372
0
  dim = isl_space_add_dims(dim, isl_dim_set, 1);
373
0
  data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), data->type);
374
0
  data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
375
0
  data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
376
0
  vertices = isl_basic_set_compute_vertices(bset);
377
0
  if (isl_vertices_foreach_disjoint_cell(vertices,
378
0
          &bernstein_coefficients_cell, data) < 0)
379
0
    data->pwf = isl_pw_qpolynomial_fold_free(data->pwf);
380
0
  isl_vertices_free(vertices);
381
0
  isl_qpolynomial_free(data->poly);
382
0
383
0
  isl_basic_set_free(bset);
384
0
  isl_qpolynomial_free(poly);
385
0
386
0
  covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
387
0
  if (covers < 0)
388
0
    goto error;
389
0
390
0
  if (tight)
391
0
    *tight = covers;
392
0
393
0
  if (covers) {
394
0
    isl_pw_qpolynomial_fold_free(data->pwf);
395
0
    return data->pwf_tight;
396
0
  }
397
0
398
0
  data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
399
0
400
0
  return data->pwf;
401
0
error:
402
0
  isl_pw_qpolynomial_fold_free(data->pwf_tight);
403
0
  isl_pw_qpolynomial_fold_free(data->pwf);
404
0
  return NULL;
405
0
}
406
407
/* Apply bernstein expansion recursively by working in on len[i]
408
 * set variables at a time, with i ranging from n_group - 1 to 0.
409
 */
410
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
411
  __isl_take isl_pw_qpolynomial *pwqp,
412
  int n_group, int *len, struct bernstein_data *data, int *tight)
413
0
{
414
0
  int i;
415
0
  unsigned nparam;
416
0
  unsigned nvar;
417
0
  isl_pw_qpolynomial_fold *pwf;
418
0
419
0
  if (!pwqp)
420
0
    return NULL;
421
0
422
0
  nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
423
0
  nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
424
0
425
0
  pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
426
0
          isl_dim_in, 0, nvar - len[n_group - 1]);
427
0
  pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
428
0
429
0
  for (i = n_group - 2; i >= 0; --i) {
430
0
    nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
431
0
    pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
432
0
        isl_dim_param, nparam - len[i], len[i]);
433
0
    if (tight && !*tight)
434
0
      tight = NULL;
435
0
    pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
436
0
  }
437
0
438
0
  return pwf;
439
0
}
440
441
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
442
  __isl_take isl_basic_set *bset,
443
  __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
444
1
{
445
1
  isl_factorizer *f;
446
1
  isl_set *set;
447
1
  isl_pw_qpolynomial *pwqp;
448
1
  isl_pw_qpolynomial_fold *pwf;
449
1
450
1
  f = isl_basic_set_factorizer(bset);
451
1
  if (!f)
452
0
    goto error;
453
1
  if (f->n_group == 0) {
454
1
    isl_factorizer_free(f);
455
1
    return  bernstein_coefficients_base(bset, poly, data, tight);
456
1
  }
457
0
458
0
  set = isl_set_from_basic_set(bset);
459
0
  pwqp = isl_pw_qpolynomial_alloc(set, poly);
460
0
  pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
461
0
462
0
  pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
463
0
            tight);
464
0
465
0
  isl_factorizer_free(f);
466
0
467
0
  return pwf;
468
0
error:
469
0
  isl_basic_set_free(bset);
470
0
  isl_qpolynomial_free(poly);
471
0
  return NULL;
472
0
}
473
474
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
475
  __isl_take isl_basic_set *bset,
476
  __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
477
0
{
478
0
  int i;
479
0
  int *len;
480
0
  unsigned nvar;
481
0
  isl_pw_qpolynomial_fold *pwf;
482
0
  isl_set *set;
483
0
  isl_pw_qpolynomial *pwqp;
484
0
485
0
  if (!bset || !poly)
486
0
    goto error;
487
0
488
0
  nvar = isl_basic_set_dim(bset, isl_dim_set);
489
0
  
490
0
  len = isl_alloc_array(bset->ctx, int, nvar);
491
0
  if (nvar && !len)
492
0
    goto error;
493
0
494
0
  for (i = 0; i < nvar; ++i)
495
0
    len[i] = 1;
496
0
497
0
  set = isl_set_from_basic_set(bset);
498
0
  pwqp = isl_pw_qpolynomial_alloc(set, poly);
499
0
500
0
  pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
501
0
502
0
  free(len);
503
0
504
0
  return pwf;
505
0
error:
506
0
  isl_basic_set_free(bset);
507
0
  isl_qpolynomial_free(poly);
508
0
  return NULL;
509
0
}
510
511
/* Compute a bound on the polynomial defined over the parametric polytope
512
 * using bernstein expansion and store the result
513
 * in bound->pwf and bound->pwf_tight.
514
 *
515
 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
516
 * the polytope can be factorized and apply bernstein expansion recursively
517
 * on the factors.
518
 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
519
 * bernstein expansion recursively on each dimension.
520
 * Otherwise, we apply bernstein expansion on the entire polytope.
521
 */
522
isl_stat isl_qpolynomial_bound_on_domain_bernstein(
523
  __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
524
  struct isl_bound *bound)
525
1
{
526
1
  struct bernstein_data data;
527
1
  isl_pw_qpolynomial_fold *pwf;
528
1
  unsigned nvar;
529
1
  int tight = 0;
530
1
  int *tp = bound->check_tight ? 
&tight0
: NULL;
531
1
532
1
  if (!bset || !poly)
533
0
    goto error;
534
1
535
1
  data.type = bound->type;
536
1
  data.check_tight = bound->check_tight;
537
1
538
1
  nvar = isl_basic_set_dim(bset, isl_dim_set);
539
1
540
1
  if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
541
1
    pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
542
0
  else if (nvar > 1 &&
543
0
      (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
544
0
    pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
545
0
  else
546
0
    pwf = bernstein_coefficients_base(bset, poly, &data, tp);
547
1
548
1
  if (tight)
549
0
    bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
550
1
  else
551
1
    bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
552
1
553
1
  return isl_stat_ok;
554
0
error:
555
0
  isl_basic_set_free(bset);
556
0
  isl_qpolynomial_free(poly);
557
0
  return isl_stat_error;
558
1
}