/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/lib/External/isl/isl_coalesce.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2008-2009 Katholieke Universiteit Leuven |
3 | | * Copyright 2010 INRIA Saclay |
4 | | * Copyright 2012-2013 Ecole Normale Superieure |
5 | | * Copyright 2014 INRIA Rocquencourt |
6 | | * Copyright 2016 INRIA Paris |
7 | | * |
8 | | * Use of this software is governed by the MIT license |
9 | | * |
10 | | * Written by Sven Verdoolaege, K.U.Leuven, Departement |
11 | | * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium |
12 | | * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, |
13 | | * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France |
14 | | * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France |
15 | | * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, |
16 | | * B.P. 105 - 78153 Le Chesnay, France |
17 | | * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12, |
18 | | * CS 42112, 75589 Paris Cedex 12, France |
19 | | */ |
20 | | |
21 | | #include <isl_ctx_private.h> |
22 | | #include "isl_map_private.h" |
23 | | #include <isl_seq.h> |
24 | | #include <isl/options.h> |
25 | | #include "isl_tab.h" |
26 | | #include <isl_mat_private.h> |
27 | | #include <isl_local_space_private.h> |
28 | | #include <isl_val_private.h> |
29 | | #include <isl_vec_private.h> |
30 | | #include <isl_aff_private.h> |
31 | | #include <isl_equalities.h> |
32 | | #include <isl_constraint_private.h> |
33 | | |
34 | | #include <set_to_map.c> |
35 | | #include <set_from_map.c> |
36 | | |
37 | 884k | #define STATUS_ERROR -1 |
38 | 501k | #define STATUS_REDUNDANT 1 |
39 | 1.17M | #define STATUS_VALID 2 |
40 | 674k | #define STATUS_SEPARATE 3 |
41 | 290k | #define STATUS_CUT 4 |
42 | 165k | #define STATUS_ADJ_EQ 5 |
43 | 209k | #define STATUS_ADJ_INEQ 6 |
44 | | |
45 | | static int status_in(isl_int *ineq, struct isl_tab *tab) |
46 | 763k | { |
47 | 763k | enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq); |
48 | 763k | switch (type) { |
49 | 763k | default: |
50 | 0 | case isl_ineq_error: return STATUS_ERROR; |
51 | 528k | case isl_ineq_redundant: return STATUS_VALID; |
52 | 37.4k | case isl_ineq_separate: return STATUS_SEPARATE; |
53 | 129k | case isl_ineq_cut: return STATUS_CUT; |
54 | 21.4k | case isl_ineq_adj_eq: return STATUS_ADJ_EQ; |
55 | 46.8k | case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ; |
56 | 763k | } |
57 | 763k | } |
58 | | |
59 | | /* Compute the position of the equalities of basic map "bmap_i" |
60 | | * with respect to the basic map represented by "tab_j". |
61 | | * The resulting array has twice as many entries as the number |
62 | | * of equalities corresponding to the two inequalities to which |
63 | | * each equality corresponds. |
64 | | */ |
65 | | static int *eq_status_in(__isl_keep isl_basic_map *bmap_i, |
66 | | struct isl_tab *tab_j) |
67 | 99.1k | { |
68 | 99.1k | int k, l; |
69 | 99.1k | int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq); |
70 | 99.1k | unsigned dim; |
71 | 99.1k | |
72 | 99.1k | if (!eq) |
73 | 0 | return NULL; |
74 | 99.1k | |
75 | 99.1k | dim = isl_basic_map_total_dim(bmap_i); |
76 | 220k | for (k = 0; k < bmap_i->n_eq; ++k121k ) { |
77 | 363k | for (l = 0; l < 2; ++l242k ) { |
78 | 242k | isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim); |
79 | 242k | eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j); |
80 | 242k | if (eq[2 * k + l] == STATUS_ERROR) |
81 | 242k | goto error0 ; |
82 | 242k | } |
83 | 121k | } |
84 | 99.1k | |
85 | 99.1k | return eq; |
86 | 0 | error: |
87 | 0 | free(eq); |
88 | 0 | return NULL; |
89 | 99.1k | } |
90 | | |
91 | | /* Compute the position of the inequalities of basic map "bmap_i" |
92 | | * (also represented by "tab_i", if not NULL) with respect to the basic map |
93 | | * represented by "tab_j". |
94 | | */ |
95 | | static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i, |
96 | | struct isl_tab *tab_i, struct isl_tab *tab_j) |
97 | 126k | { |
98 | 126k | int k; |
99 | 126k | unsigned n_eq = bmap_i->n_eq; |
100 | 126k | int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq); |
101 | 126k | |
102 | 126k | if (!ineq) |
103 | 0 | return NULL; |
104 | 126k | |
105 | 570k | for (k = 0; 126k k < bmap_i->n_ineq; ++k444k ) { |
106 | 470k | if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)450k ) { |
107 | 58.0k | ineq[k] = STATUS_REDUNDANT; |
108 | 58.0k | continue; |
109 | 58.0k | } |
110 | 412k | ineq[k] = status_in(bmap_i->ineq[k], tab_j); |
111 | 412k | if (ineq[k] == STATUS_ERROR) |
112 | 412k | goto error0 ; |
113 | 412k | if (ineq[k] == STATUS_SEPARATE) |
114 | 412k | break25.7k ; |
115 | 412k | } |
116 | 126k | |
117 | 126k | return ineq; |
118 | 0 | error: |
119 | 0 | free(ineq); |
120 | 0 | return NULL; |
121 | 126k | } |
122 | | |
123 | | static int any(int *con, unsigned len, int status) |
124 | 870k | { |
125 | 870k | int i; |
126 | 870k | |
127 | 3.29M | for (i = 0; i < len ; ++i2.42M ) |
128 | 2.50M | if (con[i] == status) |
129 | 86.0k | return 1; |
130 | 870k | return 0784k ; |
131 | 870k | } |
132 | | |
133 | | /* Return the first position of "status" in the list "con" of length "len". |
134 | | * Return -1 if there is no such entry. |
135 | | */ |
136 | | static int find(int *con, unsigned len, int status) |
137 | 12.8k | { |
138 | 12.8k | int i; |
139 | 12.8k | |
140 | 68.6k | for (i = 0; i < len ; ++i55.8k ) |
141 | 68.6k | if (con[i] == status) |
142 | 12.8k | return i; |
143 | 12.8k | return -10 ; |
144 | 12.8k | } |
145 | | |
146 | | static int count(int *con, unsigned len, int status) |
147 | 81.8k | { |
148 | 81.8k | int i; |
149 | 81.8k | int c = 0; |
150 | 81.8k | |
151 | 431k | for (i = 0; i < len ; ++i350k ) |
152 | 350k | if (con[i] == status) |
153 | 64.1k | c++; |
154 | 81.8k | return c; |
155 | 81.8k | } |
156 | | |
157 | | static int all(int *con, unsigned len, int status) |
158 | 147k | { |
159 | 147k | int i; |
160 | 147k | |
161 | 333k | for (i = 0; i < len ; ++i185k ) { |
162 | 267k | if (con[i] == STATUS_REDUNDANT) |
163 | 267k | continue15.4k ; |
164 | 252k | if (con[i] != status) |
165 | 81.6k | return 0; |
166 | 252k | } |
167 | 147k | return 165.5k ; |
168 | 147k | } |
169 | | |
170 | | /* Internal information associated to a basic map in a map |
171 | | * that is to be coalesced by isl_map_coalesce. |
172 | | * |
173 | | * "bmap" is the basic map itself (or NULL if "removed" is set) |
174 | | * "tab" is the corresponding tableau (or NULL if "removed" is set) |
175 | | * "hull_hash" identifies the affine space in which "bmap" lives. |
176 | | * "removed" is set if this basic map has been removed from the map |
177 | | * "simplify" is set if this basic map may have some unknown integer |
178 | | * divisions that were not present in the input basic maps. The basic |
179 | | * map should then be simplified such that we may be able to find |
180 | | * a definition among the constraints. |
181 | | * |
182 | | * "eq" and "ineq" are only set if we are currently trying to coalesce |
183 | | * this basic map with another basic map, in which case they represent |
184 | | * the position of the inequalities of this basic map with respect to |
185 | | * the other basic map. The number of elements in the "eq" array |
186 | | * is twice the number of equalities in the "bmap", corresponding |
187 | | * to the two inequalities that make up each equality. |
188 | | */ |
189 | | struct isl_coalesce_info { |
190 | | isl_basic_map *bmap; |
191 | | struct isl_tab *tab; |
192 | | uint32_t hull_hash; |
193 | | int removed; |
194 | | int simplify; |
195 | | int *eq; |
196 | | int *ineq; |
197 | | }; |
198 | | |
199 | | /* Is there any (half of an) equality constraint in the description |
200 | | * of the basic map represented by "info" that |
201 | | * has position "status" with respect to the other basic map? |
202 | | */ |
203 | | static int any_eq(struct isl_coalesce_info *info, int status) |
204 | 402k | { |
205 | 402k | unsigned n_eq; |
206 | 402k | |
207 | 402k | n_eq = isl_basic_map_n_equality(info->bmap); |
208 | 402k | return any(info->eq, 2 * n_eq, status); |
209 | 402k | } |
210 | | |
211 | | /* Is there any inequality constraint in the description |
212 | | * of the basic map represented by "info" that |
213 | | * has position "status" with respect to the other basic map? |
214 | | */ |
215 | | static int any_ineq(struct isl_coalesce_info *info, int status) |
216 | 375k | { |
217 | 375k | unsigned n_ineq; |
218 | 375k | |
219 | 375k | n_ineq = isl_basic_map_n_inequality(info->bmap); |
220 | 375k | return any(info->ineq, n_ineq, status); |
221 | 375k | } |
222 | | |
223 | | /* Return the position of the first half on an equality constraint |
224 | | * in the description of the basic map represented by "info" that |
225 | | * has position "status" with respect to the other basic map. |
226 | | * The returned value is twice the position of the equality constraint |
227 | | * plus zero for the negative half and plus one for the positive half. |
228 | | * Return -1 if there is no such entry. |
229 | | */ |
230 | | static int find_eq(struct isl_coalesce_info *info, int status) |
231 | 2.95k | { |
232 | 2.95k | unsigned n_eq; |
233 | 2.95k | |
234 | 2.95k | n_eq = isl_basic_map_n_equality(info->bmap); |
235 | 2.95k | return find(info->eq, 2 * n_eq, status); |
236 | 2.95k | } |
237 | | |
238 | | /* Return the position of the first inequality constraint in the description |
239 | | * of the basic map represented by "info" that |
240 | | * has position "status" with respect to the other basic map. |
241 | | * Return -1 if there is no such entry. |
242 | | */ |
243 | | static int find_ineq(struct isl_coalesce_info *info, int status) |
244 | 9.86k | { |
245 | 9.86k | unsigned n_ineq; |
246 | 9.86k | |
247 | 9.86k | n_ineq = isl_basic_map_n_inequality(info->bmap); |
248 | 9.86k | return find(info->ineq, n_ineq, status); |
249 | 9.86k | } |
250 | | |
251 | | /* Return the number of (halves of) equality constraints in the description |
252 | | * of the basic map represented by "info" that |
253 | | * have position "status" with respect to the other basic map. |
254 | | */ |
255 | | static int count_eq(struct isl_coalesce_info *info, int status) |
256 | 24.4k | { |
257 | 24.4k | unsigned n_eq; |
258 | 24.4k | |
259 | 24.4k | n_eq = isl_basic_map_n_equality(info->bmap); |
260 | 24.4k | return count(info->eq, 2 * n_eq, status); |
261 | 24.4k | } |
262 | | |
263 | | /* Return the number of inequality constraints in the description |
264 | | * of the basic map represented by "info" that |
265 | | * have position "status" with respect to the other basic map. |
266 | | */ |
267 | | static int count_ineq(struct isl_coalesce_info *info, int status) |
268 | 57.3k | { |
269 | 57.3k | unsigned n_ineq; |
270 | 57.3k | |
271 | 57.3k | n_ineq = isl_basic_map_n_inequality(info->bmap); |
272 | 57.3k | return count(info->ineq, n_ineq, status); |
273 | 57.3k | } |
274 | | |
275 | | /* Are all non-redundant constraints of the basic map represented by "info" |
276 | | * either valid or cut constraints with respect to the other basic map? |
277 | | */ |
278 | | static int all_valid_or_cut(struct isl_coalesce_info *info) |
279 | 577 | { |
280 | 577 | int i; |
281 | 577 | |
282 | 3.01k | for (i = 0; i < 2 * info->bmap->n_eq; ++i2.43k ) { |
283 | 2.43k | if (info->eq[i] == STATUS_REDUNDANT) |
284 | 2.43k | continue0 ; |
285 | 2.43k | if (info->eq[i] == STATUS_VALID) |
286 | 2.43k | continue1.70k ; |
287 | 728 | if (info->eq[i] == STATUS_CUT) |
288 | 728 | continue; |
289 | 0 | return 0; |
290 | 0 | } |
291 | 577 | |
292 | 1.27k | for (i = 0; 577 i < info->bmap->n_ineq; ++i696 ) { |
293 | 1.23k | if (info->ineq[i] == STATUS_REDUNDANT) |
294 | 1.23k | continue24 ; |
295 | 1.20k | if (info->ineq[i] == STATUS_VALID) |
296 | 1.20k | continue599 ; |
297 | 610 | if (info->ineq[i] == STATUS_CUT) |
298 | 610 | continue73 ; |
299 | 537 | return 0; |
300 | 537 | } |
301 | 577 | |
302 | 577 | return 140 ; |
303 | 577 | } |
304 | | |
305 | | /* Compute the hash of the (apparent) affine hull of info->bmap (with |
306 | | * the existentially quantified variables removed) and store it |
307 | | * in info->hash. |
308 | | */ |
309 | | static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info) |
310 | 67.6k | { |
311 | 67.6k | isl_basic_map *hull; |
312 | 67.6k | unsigned n_div; |
313 | 67.6k | |
314 | 67.6k | hull = isl_basic_map_copy(info->bmap); |
315 | 67.6k | hull = isl_basic_map_plain_affine_hull(hull); |
316 | 67.6k | n_div = isl_basic_map_dim(hull, isl_dim_div); |
317 | 67.6k | hull = isl_basic_map_drop_constraints_involving_dims(hull, |
318 | 67.6k | isl_dim_div, 0, n_div); |
319 | 67.6k | info->hull_hash = isl_basic_map_get_hash(hull); |
320 | 67.6k | isl_basic_map_free(hull); |
321 | 67.6k | |
322 | 67.6k | return hull ? 0 : -10 ; |
323 | 67.6k | } |
324 | | |
325 | | /* Free all the allocated memory in an array |
326 | | * of "n" isl_coalesce_info elements. |
327 | | */ |
328 | | static void clear_coalesce_info(int n, struct isl_coalesce_info *info) |
329 | 26.7k | { |
330 | 26.7k | int i; |
331 | 26.7k | |
332 | 26.7k | if (!info) |
333 | 0 | return; |
334 | 26.7k | |
335 | 94.4k | for (i = 0; 26.7k i < n; ++i67.6k ) { |
336 | 67.6k | isl_basic_map_free(info[i].bmap); |
337 | 67.6k | isl_tab_free(info[i].tab); |
338 | 67.6k | } |
339 | 26.7k | |
340 | 26.7k | free(info); |
341 | 26.7k | } |
342 | | |
343 | | /* Drop the basic map represented by "info". |
344 | | * That is, clear the memory associated to the entry and |
345 | | * mark it as having been removed. |
346 | | */ |
347 | | static void drop(struct isl_coalesce_info *info) |
348 | 15.9k | { |
349 | 15.9k | info->bmap = isl_basic_map_free(info->bmap); |
350 | 15.9k | isl_tab_free(info->tab); |
351 | 15.9k | info->tab = NULL; |
352 | 15.9k | info->removed = 1; |
353 | 15.9k | } |
354 | | |
355 | | /* Exchange the information in "info1" with that in "info2". |
356 | | */ |
357 | | static void exchange(struct isl_coalesce_info *info1, |
358 | | struct isl_coalesce_info *info2) |
359 | 1.80k | { |
360 | 1.80k | struct isl_coalesce_info info; |
361 | 1.80k | |
362 | 1.80k | info = *info1; |
363 | 1.80k | *info1 = *info2; |
364 | 1.80k | *info2 = info; |
365 | 1.80k | } |
366 | | |
367 | | /* This type represents the kind of change that has been performed |
368 | | * while trying to coalesce two basic maps. |
369 | | * |
370 | | * isl_change_none: nothing was changed |
371 | | * isl_change_drop_first: the first basic map was removed |
372 | | * isl_change_drop_second: the second basic map was removed |
373 | | * isl_change_fuse: the two basic maps were replaced by a new basic map. |
374 | | */ |
375 | | enum isl_change { |
376 | | isl_change_error = -1, |
377 | | isl_change_none = 0, |
378 | | isl_change_drop_first, |
379 | | isl_change_drop_second, |
380 | | isl_change_fuse, |
381 | | }; |
382 | | |
383 | | /* Update "change" based on an interchange of the first and the second |
384 | | * basic map. That is, interchange isl_change_drop_first and |
385 | | * isl_change_drop_second. |
386 | | */ |
387 | | static enum isl_change invert_change(enum isl_change change) |
388 | 76 | { |
389 | 76 | switch (change) { |
390 | 76 | case isl_change_error: |
391 | 0 | return isl_change_error; |
392 | 76 | case isl_change_none: |
393 | 0 | return isl_change_none; |
394 | 76 | case isl_change_drop_first: |
395 | 4 | return isl_change_drop_second; |
396 | 76 | case isl_change_drop_second: |
397 | 17 | return isl_change_drop_first; |
398 | 76 | case isl_change_fuse: |
399 | 55 | return isl_change_fuse; |
400 | 0 | } |
401 | 0 | |
402 | 0 | return isl_change_error; |
403 | 0 | } |
404 | | |
405 | | /* Add the valid constraints of the basic map represented by "info" |
406 | | * to "bmap". "len" is the size of the constraints. |
407 | | * If only one of the pair of inequalities that make up an equality |
408 | | * is valid, then add that inequality. |
409 | | */ |
410 | | static __isl_give isl_basic_map *add_valid_constraints( |
411 | | __isl_take isl_basic_map *bmap, struct isl_coalesce_info *info, |
412 | | unsigned len) |
413 | 3.92k | { |
414 | 3.92k | int k, l; |
415 | 3.92k | |
416 | 3.92k | if (!bmap) |
417 | 0 | return NULL; |
418 | 3.92k | |
419 | 10.5k | for (k = 0; 3.92k k < info->bmap->n_eq; ++k6.64k ) { |
420 | 6.64k | if (info->eq[2 * k] == STATUS_VALID && |
421 | 6.64k | info->eq[2 * k + 1] == 4.57k STATUS_VALID4.57k ) { |
422 | 3.03k | l = isl_basic_map_alloc_equality(bmap); |
423 | 3.03k | if (l < 0) |
424 | 0 | return isl_basic_map_free(bmap); |
425 | 3.03k | isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len); |
426 | 3.60k | } else if (info->eq[2 * k] == STATUS_VALID) { |
427 | 1.54k | l = isl_basic_map_alloc_inequality(bmap); |
428 | 1.54k | if (l < 0) |
429 | 0 | return isl_basic_map_free(bmap); |
430 | 1.54k | isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len); |
431 | 2.06k | } else if (info->eq[2 * k + 1] == STATUS_VALID) { |
432 | 2.05k | l = isl_basic_map_alloc_inequality(bmap); |
433 | 2.05k | if (l < 0) |
434 | 0 | return isl_basic_map_free(bmap); |
435 | 2.05k | isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len); |
436 | 2.05k | } |
437 | 6.64k | } |
438 | 3.92k | |
439 | 27.4k | for (k = 0; 3.92k k < info->bmap->n_ineq; ++k23.5k ) { |
440 | 23.5k | if (info->ineq[k] != STATUS_VALID) |
441 | 23.5k | continue4.62k ; |
442 | 18.8k | l = isl_basic_map_alloc_inequality(bmap); |
443 | 18.8k | if (l < 0) |
444 | 0 | return isl_basic_map_free(bmap); |
445 | 18.8k | isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len); |
446 | 18.8k | } |
447 | 3.92k | |
448 | 3.92k | return bmap; |
449 | 3.92k | } |
450 | | |
451 | | /* Is "bmap" defined by a number of (non-redundant) constraints that |
452 | | * is greater than the number of constraints of basic maps i and j combined? |
453 | | * Equalities are counted as two inequalities. |
454 | | */ |
455 | | static int number_of_constraints_increases(int i, int j, |
456 | | struct isl_coalesce_info *info, |
457 | | __isl_keep isl_basic_map *bmap, struct isl_tab *tab) |
458 | 32 | { |
459 | 32 | int k, n_old, n_new; |
460 | 32 | |
461 | 32 | n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq; |
462 | 32 | n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq; |
463 | 32 | |
464 | 32 | n_new = 2 * bmap->n_eq; |
465 | 290 | for (k = 0; k < bmap->n_ineq; ++k258 ) |
466 | 258 | if (!isl_tab_is_redundant(tab, bmap->n_eq + k)) |
467 | 141 | ++n_new; |
468 | 32 | |
469 | 32 | return n_new > n_old; |
470 | 32 | } |
471 | | |
472 | | /* Replace the pair of basic maps i and j by the basic map bounded |
473 | | * by the valid constraints in both basic maps and the constraints |
474 | | * in extra (if not NULL). |
475 | | * Place the fused basic map in the position that is the smallest of i and j. |
476 | | * |
477 | | * If "detect_equalities" is set, then look for equalities encoded |
478 | | * as pairs of inequalities. |
479 | | * If "check_number" is set, then the original basic maps are only |
480 | | * replaced if the total number of constraints does not increase. |
481 | | * While the number of integer divisions in the two basic maps |
482 | | * is assumed to be the same, the actual definitions may be different. |
483 | | * We only copy the definition from one of the basic map if it is |
484 | | * the same as that of the other basic map. Otherwise, we mark |
485 | | * the integer division as unknown and simplify the basic map |
486 | | * in an attempt to recover the integer division definition. |
487 | | */ |
488 | | static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info, |
489 | | __isl_keep isl_mat *extra, int detect_equalities, int check_number) |
490 | 2.09k | { |
491 | 2.09k | int k, l; |
492 | 2.09k | struct isl_basic_map *fused = NULL; |
493 | 2.09k | struct isl_tab *fused_tab = NULL; |
494 | 2.09k | unsigned total = isl_basic_map_total_dim(info[i].bmap); |
495 | 2.09k | unsigned extra_rows = extra ? extra->n_row1.33k : 0761 ; |
496 | 2.09k | unsigned n_eq, n_ineq; |
497 | 2.09k | int simplify = 0; |
498 | 2.09k | |
499 | 2.09k | if (j < i) |
500 | 133 | return fuse(j, i, info, extra, detect_equalities, check_number); |
501 | 1.96k | |
502 | 1.96k | n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq; |
503 | 1.96k | n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq; |
504 | 1.96k | fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim), |
505 | 1.96k | info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows); |
506 | 1.96k | fused = add_valid_constraints(fused, &info[i], 1 + total); |
507 | 1.96k | fused = add_valid_constraints(fused, &info[j], 1 + total); |
508 | 1.96k | if (!fused) |
509 | 0 | goto error; |
510 | 1.96k | if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) && |
511 | 1.96k | ISL_F_ISSET0 (info[j].bmap, ISL_BASIC_MAP_RATIONAL)) |
512 | 1.96k | ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL); |
513 | 1.96k | |
514 | 2.14k | for (k = 0; k < info[i].bmap->n_div; ++k189 ) { |
515 | 189 | int l = isl_basic_map_alloc_div(fused); |
516 | 189 | if (l < 0) |
517 | 0 | goto error; |
518 | 189 | if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k], |
519 | 189 | 1 + 1 + total)) { |
520 | 189 | isl_seq_cpy(fused->div[l], info[i].bmap->div[k], |
521 | 189 | 1 + 1 + total); |
522 | 189 | } else { |
523 | 0 | isl_int_set_si(fused->div[l][0], 0); |
524 | 0 | simplify = 1; |
525 | 0 | } |
526 | 189 | } |
527 | 1.96k | |
528 | 6.20k | for (k = 0; 1.96k k < extra_rows; ++k4.24k ) { |
529 | 4.24k | l = isl_basic_map_alloc_inequality(fused); |
530 | 4.24k | if (l < 0) |
531 | 0 | goto error; |
532 | 4.24k | isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total); |
533 | 4.24k | } |
534 | 1.96k | |
535 | 1.96k | if (detect_equalities) |
536 | 405 | fused = isl_basic_map_detect_inequality_pairs(fused, NULL); |
537 | 1.96k | fused = isl_basic_map_gauss(fused, NULL); |
538 | 1.96k | if (simplify || info[j].simplify) { |
539 | 0 | fused = isl_basic_map_simplify(fused); |
540 | 0 | info[i].simplify = 0; |
541 | 0 | } |
542 | 1.96k | fused = isl_basic_map_finalize(fused); |
543 | 1.96k | |
544 | 1.96k | fused_tab = isl_tab_from_basic_map(fused, 0); |
545 | 1.96k | if (isl_tab_detect_redundant(fused_tab) < 0) |
546 | 0 | goto error; |
547 | 1.96k | |
548 | 1.96k | if (check_number && |
549 | 1.96k | number_of_constraints_increases(i, j, info, fused, fused_tab)32 ) { |
550 | 0 | isl_tab_free(fused_tab); |
551 | 0 | isl_basic_map_free(fused); |
552 | 0 | return isl_change_none; |
553 | 0 | } |
554 | 1.96k | |
555 | 1.96k | isl_basic_map_free(info[i].bmap); |
556 | 1.96k | info[i].bmap = fused; |
557 | 1.96k | isl_tab_free(info[i].tab); |
558 | 1.96k | info[i].tab = fused_tab; |
559 | 1.96k | drop(&info[j]); |
560 | 1.96k | |
561 | 1.96k | return isl_change_fuse; |
562 | 0 | error: |
563 | 0 | isl_tab_free(fused_tab); |
564 | 0 | isl_basic_map_free(fused); |
565 | 0 | return isl_change_error; |
566 | 1.96k | } |
567 | | |
568 | | /* Given a pair of basic maps i and j such that all constraints are either |
569 | | * "valid" or "cut", check if the facets corresponding to the "cut" |
570 | | * constraints of i lie entirely within basic map j. |
571 | | * If so, replace the pair by the basic map consisting of the valid |
572 | | * constraints in both basic maps. |
573 | | * Checking whether the facet lies entirely within basic map j |
574 | | * is performed by checking whether the constraints of basic map j |
575 | | * are valid for the facet. These tests are performed on a rational |
576 | | * tableau to avoid the theoretical possibility that a constraint |
577 | | * that was considered to be a cut constraint for the entire basic map i |
578 | | * happens to be considered to be a valid constraint for the facet, |
579 | | * even though it cuts off the same rational points. |
580 | | * |
581 | | * To see that we are not introducing any extra points, call the |
582 | | * two basic maps A and B and the resulting map U and let x |
583 | | * be an element of U \setminus ( A \cup B ). |
584 | | * A line connecting x with an element of A \cup B meets a facet F |
585 | | * of either A or B. Assume it is a facet of B and let c_1 be |
586 | | * the corresponding facet constraint. We have c_1(x) < 0 and |
587 | | * so c_1 is a cut constraint. This implies that there is some |
588 | | * (possibly rational) point x' satisfying the constraints of A |
589 | | * and the opposite of c_1 as otherwise c_1 would have been marked |
590 | | * valid for A. The line connecting x and x' meets a facet of A |
591 | | * in a (possibly rational) point that also violates c_1, but this |
592 | | * is impossible since all cut constraints of B are valid for all |
593 | | * cut facets of A. |
594 | | * In case F is a facet of A rather than B, then we can apply the |
595 | | * above reasoning to find a facet of B separating x from A \cup B first. |
596 | | */ |
597 | | static enum isl_change check_facets(int i, int j, |
598 | | struct isl_coalesce_info *info) |
599 | 9.26k | { |
600 | 9.26k | int k, l; |
601 | 9.26k | struct isl_tab_undo *snap, *snap2; |
602 | 9.26k | unsigned n_eq = info[i].bmap->n_eq; |
603 | 9.26k | |
604 | 9.26k | snap = isl_tab_snap(info[i].tab); |
605 | 9.26k | if (isl_tab_mark_rational(info[i].tab) < 0) |
606 | 0 | return isl_change_error; |
607 | 9.26k | snap2 = isl_tab_snap(info[i].tab); |
608 | 9.26k | |
609 | 10.4k | for (k = 0; k < info[i].bmap->n_ineq; ++k1.17k ) { |
610 | 10.4k | if (info[i].ineq[k] != STATUS_CUT) |
611 | 10.4k | continue1.13k ; |
612 | 9.27k | if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0) |
613 | 0 | return isl_change_error; |
614 | 10.4k | for (l = 0; 9.27k l < info[j].bmap->n_ineq; ++l1.22k ) { |
615 | 10.4k | int stat; |
616 | 10.4k | if (info[j].ineq[l] != STATUS_CUT) |
617 | 10.4k | continue1.17k ; |
618 | 9.28k | stat = status_in(info[j].bmap->ineq[l], info[i].tab); |
619 | 9.28k | if (stat < 0) |
620 | 0 | return isl_change_error; |
621 | 9.28k | if (stat != STATUS_VALID) |
622 | 9.28k | break9.23k ; |
623 | 9.28k | } |
624 | 9.27k | if (isl_tab_rollback(info[i].tab, snap2) < 0) |
625 | 0 | return isl_change_error; |
626 | 9.27k | if (l < info[j].bmap->n_ineq) |
627 | 9.23k | break; |
628 | 9.27k | } |
629 | 9.26k | |
630 | 9.26k | if (k < info[i].bmap->n_ineq) { |
631 | 9.23k | if (isl_tab_rollback(info[i].tab, snap) < 0) |
632 | 0 | return isl_change_error; |
633 | 9.23k | return isl_change_none; |
634 | 9.23k | } |
635 | 37 | return fuse(i, j, info, NULL, 0, 0); |
636 | 37 | } |
637 | | |
638 | | /* Check if info->bmap contains the basic map represented |
639 | | * by the tableau "tab". |
640 | | * For each equality, we check both the constraint itself |
641 | | * (as an inequality) and its negation. Make sure the |
642 | | * equality is returned to its original state before returning. |
643 | | */ |
644 | | static isl_bool contains(struct isl_coalesce_info *info, struct isl_tab *tab) |
645 | 9.40k | { |
646 | 9.40k | int k; |
647 | 9.40k | unsigned dim; |
648 | 9.40k | isl_basic_map *bmap = info->bmap; |
649 | 9.40k | |
650 | 9.40k | dim = isl_basic_map_total_dim(bmap); |
651 | 36.9k | for (k = 0; k < bmap->n_eq; ++k27.5k ) { |
652 | 30.0k | int stat; |
653 | 30.0k | isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim); |
654 | 30.0k | stat = status_in(bmap->eq[k], tab); |
655 | 30.0k | isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim); |
656 | 30.0k | if (stat < 0) |
657 | 0 | return isl_bool_error; |
658 | 30.0k | if (stat != STATUS_VALID) |
659 | 30.0k | return isl_bool_false2.41k ; |
660 | 27.5k | stat = status_in(bmap->eq[k], tab); |
661 | 27.5k | if (stat < 0) |
662 | 0 | return isl_bool_error; |
663 | 27.5k | if (stat != STATUS_VALID) |
664 | 27.5k | return isl_bool_false70 ; |
665 | 27.5k | } |
666 | 9.40k | |
667 | 59.8k | for (k = 0; 6.92k k < bmap->n_ineq; ++k52.9k ) { |
668 | 54.2k | int stat; |
669 | 54.2k | if (info->ineq[k] == STATUS_REDUNDANT) |
670 | 54.2k | continue12.2k ; |
671 | 42.0k | stat = status_in(bmap->ineq[k], tab); |
672 | 42.0k | if (stat < 0) |
673 | 0 | return isl_bool_error; |
674 | 42.0k | if (stat != STATUS_VALID) |
675 | 42.0k | return isl_bool_false1.35k ; |
676 | 42.0k | } |
677 | 6.92k | return isl_bool_true5.56k ; |
678 | 6.92k | } |
679 | | |
680 | | /* Basic map "i" has an inequality (say "k") that is adjacent |
681 | | * to some inequality of basic map "j". All the other inequalities |
682 | | * are valid for "j". |
683 | | * Check if basic map "j" forms an extension of basic map "i". |
684 | | * |
685 | | * Note that this function is only called if some of the equalities or |
686 | | * inequalities of basic map "j" do cut basic map "i". The function is |
687 | | * correct even if there are no such cut constraints, but in that case |
688 | | * the additional checks performed by this function are overkill. |
689 | | * |
690 | | * In particular, we replace constraint k, say f >= 0, by constraint |
691 | | * f <= -1, add the inequalities of "j" that are valid for "i" |
692 | | * and check if the result is a subset of basic map "j". |
693 | | * To improve the chances of the subset relation being detected, |
694 | | * any variable that only attains a single integer value |
695 | | * in the tableau of "i" is first fixed to that value. |
696 | | * If the result is a subset, then we know that this result is exactly equal |
697 | | * to basic map "j" since all its constraints are valid for basic map "j". |
698 | | * By combining the valid constraints of "i" (all equalities and all |
699 | | * inequalities except "k") and the valid constraints of "j" we therefore |
700 | | * obtain a basic map that is equal to their union. |
701 | | * In this case, there is no need to perform a rollback of the tableau |
702 | | * since it is going to be destroyed in fuse(). |
703 | | * |
704 | | * |
705 | | * |\__ |\__ |
706 | | * | \__ | \__ |
707 | | * | \_ => | \__ |
708 | | * |_______| _ |_________\ |
709 | | * |
710 | | * |
711 | | * |\ |\ |
712 | | * | \ | \ |
713 | | * | \ | \ |
714 | | * | | | \ |
715 | | * | ||\ => | \ |
716 | | * | || \ | \ |
717 | | * | || | | | |
718 | | * |__||_/ |_____/ |
719 | | */ |
720 | | static enum isl_change is_adj_ineq_extension(int i, int j, |
721 | | struct isl_coalesce_info *info) |
722 | 977 | { |
723 | 977 | int k; |
724 | 977 | struct isl_tab_undo *snap; |
725 | 977 | unsigned n_eq = info[i].bmap->n_eq; |
726 | 977 | unsigned total = isl_basic_map_total_dim(info[i].bmap); |
727 | 977 | isl_stat r; |
728 | 977 | isl_bool super; |
729 | 977 | |
730 | 977 | if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0) |
731 | 0 | return isl_change_error; |
732 | 977 | |
733 | 977 | k = find_ineq(&info[i], STATUS_ADJ_INEQ); |
734 | 977 | if (k < 0) |
735 | 977 | isl_die0 (isl_basic_map_get_ctx(info[i].bmap), isl_error_internal, |
736 | 977 | "info[i].ineq should have exactly one STATUS_ADJ_INEQ", |
737 | 977 | return isl_change_error); |
738 | 977 | |
739 | 977 | snap = isl_tab_snap(info[i].tab); |
740 | 977 | |
741 | 977 | if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0) |
742 | 0 | return isl_change_error; |
743 | 977 | |
744 | 977 | isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total); |
745 | 977 | isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1); |
746 | 977 | r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]); |
747 | 977 | isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total); |
748 | 977 | isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1); |
749 | 977 | if (r < 0) |
750 | 0 | return isl_change_error; |
751 | 977 | |
752 | 6.26k | for (k = 0; 977 k < info[j].bmap->n_ineq; ++k5.29k ) { |
753 | 5.29k | if (info[j].ineq[k] != STATUS_VALID) |
754 | 5.29k | continue2.07k ; |
755 | 3.21k | if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0) |
756 | 0 | return isl_change_error; |
757 | 3.21k | } |
758 | 977 | if (isl_tab_detect_constants(info[i].tab) < 0) |
759 | 0 | return isl_change_error; |
760 | 977 | |
761 | 977 | super = contains(&info[j], info[i].tab); |
762 | 977 | if (super < 0) |
763 | 0 | return isl_change_error; |
764 | 977 | if (super) |
765 | 126 | return fuse(i, j, info, NULL, 0, 0); |
766 | 851 | |
767 | 851 | if (isl_tab_rollback(info[i].tab, snap) < 0) |
768 | 0 | return isl_change_error; |
769 | 851 | |
770 | 851 | return isl_change_none; |
771 | 851 | } |
772 | | |
773 | | |
774 | | /* Both basic maps have at least one inequality with and adjacent |
775 | | * (but opposite) inequality in the other basic map. |
776 | | * Check that there are no cut constraints and that there is only |
777 | | * a single pair of adjacent inequalities. |
778 | | * If so, we can replace the pair by a single basic map described |
779 | | * by all but the pair of adjacent inequalities. |
780 | | * Any additional points introduced lie strictly between the two |
781 | | * adjacent hyperplanes and can therefore be integral. |
782 | | * |
783 | | * ____ _____ |
784 | | * / ||\ / \ |
785 | | * / || \ / \ |
786 | | * \ || \ => \ \ |
787 | | * \ || / \ / |
788 | | * \___||_/ \_____/ |
789 | | * |
790 | | * The test for a single pair of adjancent inequalities is important |
791 | | * for avoiding the combination of two basic maps like the following |
792 | | * |
793 | | * /| |
794 | | * / | |
795 | | * /__| |
796 | | * _____ |
797 | | * | | |
798 | | * | | |
799 | | * |___| |
800 | | * |
801 | | * If there are some cut constraints on one side, then we may |
802 | | * still be able to fuse the two basic maps, but we need to perform |
803 | | * some additional checks in is_adj_ineq_extension. |
804 | | */ |
805 | | static enum isl_change check_adj_ineq(int i, int j, |
806 | | struct isl_coalesce_info *info) |
807 | 8.59k | { |
808 | 8.59k | int count_i, count_j; |
809 | 8.59k | int cut_i, cut_j; |
810 | 8.59k | |
811 | 8.59k | count_i = count_ineq(&info[i], STATUS_ADJ_INEQ); |
812 | 8.59k | count_j = count_ineq(&info[j], STATUS_ADJ_INEQ); |
813 | 8.59k | |
814 | 8.59k | if (count_i != 1 && count_j != 11.92k ) |
815 | 1.82k | return isl_change_none; |
816 | 6.76k | |
817 | 6.76k | cut_i = any_eq(&info[i], STATUS_CUT) || any_ineq(&info[i], 6.56k STATUS_CUT6.56k ); |
818 | 6.76k | cut_j = any_eq(&info[j], STATUS_CUT) || any_ineq(&info[j], 6.24k STATUS_CUT6.24k ); |
819 | 6.76k | |
820 | 6.76k | if (!cut_i && !cut_j1.36k && count_i == 1584 && count_j == 1584 ) |
821 | 584 | return fuse(i, j, info, NULL, 0, 0); |
822 | 6.18k | |
823 | 6.18k | if (count_i == 1 && !cut_i6.08k ) |
824 | 772 | return is_adj_ineq_extension(i, j, info); |
825 | 5.40k | |
826 | 5.40k | if (count_j == 1 && !cut_j5.38k ) |
827 | 190 | return is_adj_ineq_extension(j, i, info); |
828 | 5.21k | |
829 | 5.21k | return isl_change_none; |
830 | 5.21k | } |
831 | | |
832 | | /* Given an affine transformation matrix "T", does row "row" represent |
833 | | * anything other than a unit vector (possibly shifted by a constant) |
834 | | * that is not involved in any of the other rows? |
835 | | * |
836 | | * That is, if a constraint involves the variable corresponding to |
837 | | * the row, then could its preimage by "T" have any coefficients |
838 | | * that are different from those in the original constraint? |
839 | | */ |
840 | | static int not_unique_unit_row(__isl_keep isl_mat *T, int row) |
841 | 87.9k | { |
842 | 87.9k | int i, j; |
843 | 87.9k | int len = T->n_col - 1; |
844 | 87.9k | |
845 | 87.9k | i = isl_seq_first_non_zero(T->row[row] + 1, len); |
846 | 87.9k | if (i < 0) |
847 | 7.89k | return 1; |
848 | 80.0k | if (!isl_int_is_one(T->row[row][1 + i]) && |
849 | 80.0k | !165 isl_int_is_negone165 (T->row[row][1 + i])) |
850 | 80.0k | return 1148 ; |
851 | 79.8k | |
852 | 79.8k | j = isl_seq_first_non_zero(T->row[row] + 1 + i + 1, len - (i + 1)); |
853 | 79.8k | if (j >= 0) |
854 | 8 | return 1; |
855 | 79.8k | |
856 | 993k | for (j = 1; 79.8k j < T->n_row; ++j913k ) { |
857 | 914k | if (j == row) |
858 | 79.3k | continue; |
859 | 835k | if (!isl_int_is_zero(T->row[j][1 + i])) |
860 | 835k | return 1943 ; |
861 | 835k | } |
862 | 79.8k | |
863 | 79.8k | return 078.9k ; |
864 | 79.8k | } |
865 | | |
866 | | /* Does inequality constraint "ineq" of "bmap" involve any of |
867 | | * the variables marked in "affected"? |
868 | | * "total" is the total number of variables, i.e., the number |
869 | | * of entries in "affected". |
870 | | */ |
871 | | static isl_bool is_affected(__isl_keep isl_basic_map *bmap, int ineq, |
872 | | int *affected, int total) |
873 | 60.2k | { |
874 | 60.2k | int i; |
875 | 60.2k | |
876 | 668k | for (i = 0; i < total; ++i608k ) { |
877 | 620k | if (!affected[i]) |
878 | 559k | continue; |
879 | 61.2k | if (!isl_int_is_zero(bmap->ineq[ineq][1 + i])) |
880 | 61.2k | return isl_bool_true12.1k ; |
881 | 61.2k | } |
882 | 60.2k | |
883 | 60.2k | return isl_bool_false48.0k ; |
884 | 60.2k | } |
885 | | |
886 | | /* Given the compressed version of inequality constraint "ineq" |
887 | | * of info->bmap in "v", check if the constraint can be tightened, |
888 | | * where the compression is based on an equality constraint valid |
889 | | * for info->tab. |
890 | | * If so, add the tightened version of the inequality constraint |
891 | | * to info->tab. "v" may be modified by this function. |
892 | | * |
893 | | * That is, if the compressed constraint is of the form |
894 | | * |
895 | | * m f() + c >= 0 |
896 | | * |
897 | | * with 0 < c < m, then it is equivalent to |
898 | | * |
899 | | * f() >= 0 |
900 | | * |
901 | | * This means that c can also be subtracted from the original, |
902 | | * uncompressed constraint without affecting the integer points |
903 | | * in info->tab. Add this tightened constraint as an extra row |
904 | | * to info->tab to make this information explicitly available. |
905 | | */ |
906 | | static __isl_give isl_vec *try_tightening(struct isl_coalesce_info *info, |
907 | | int ineq, __isl_take isl_vec *v) |
908 | 12.1k | { |
909 | 12.1k | isl_ctx *ctx; |
910 | 12.1k | isl_stat r; |
911 | 12.1k | |
912 | 12.1k | if (!v) |
913 | 0 | return NULL; |
914 | 12.1k | |
915 | 12.1k | ctx = isl_vec_get_ctx(v); |
916 | 12.1k | isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd); |
917 | 12.1k | if (isl_int_is_zero(ctx->normalize_gcd) || |
918 | 12.1k | isl_int_is_one5.32k (ctx->normalize_gcd)) { |
919 | 8.12k | return v; |
920 | 8.12k | } |
921 | 4.00k | |
922 | 4.00k | v = isl_vec_cow(v); |
923 | 4.00k | if (!v) |
924 | 0 | return NULL; |
925 | 4.00k | |
926 | 4.00k | isl_int_fdiv_r(v->el[0], v->el[0], ctx->normalize_gcd); |
927 | 4.00k | if (isl_int_is_zero(v->el[0])) |
928 | 4.00k | return v242 ; |
929 | 3.76k | |
930 | 3.76k | if (isl_tab_extend_cons(info->tab, 1) < 0) |
931 | 0 | return isl_vec_free(v); |
932 | 3.76k | |
933 | 3.76k | isl_int_sub(info->bmap->ineq[ineq][0], |
934 | 3.76k | info->bmap->ineq[ineq][0], v->el[0]); |
935 | 3.76k | r = isl_tab_add_ineq(info->tab, info->bmap->ineq[ineq]); |
936 | 3.76k | isl_int_add(info->bmap->ineq[ineq][0], |
937 | 3.76k | info->bmap->ineq[ineq][0], v->el[0]); |
938 | 3.76k | |
939 | 3.76k | if (r < 0) |
940 | 0 | return isl_vec_free(v); |
941 | 3.76k | |
942 | 3.76k | return v; |
943 | 3.76k | } |
944 | | |
945 | | /* Tighten the (non-redundant) constraints on the facet represented |
946 | | * by info->tab. |
947 | | * In particular, on input, info->tab represents the result |
948 | | * of relaxing the "n" inequality constraints of info->bmap in "relaxed" |
949 | | * by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then |
950 | | * replacing the one at index "l" by the corresponding equality, |
951 | | * i.e., f_k + 1 = 0, with k = relaxed[l]. |
952 | | * |
953 | | * Compute a variable compression from the equality constraint f_k + 1 = 0 |
954 | | * and use it to tighten the other constraints of info->bmap |
955 | | * (that is, all constraints that have not been relaxed), |
956 | | * updating info->tab (and leaving info->bmap untouched). |
957 | | * The compression handles essentially two cases, one where a variable |
958 | | * is assigned a fixed value and can therefore be eliminated, and one |
959 | | * where one variable is a shifted multiple of some other variable and |
960 | | * can therefore be replaced by that multiple. |
961 | | * Gaussian elimination would also work for the first case, but for |
962 | | * the second case, the effectiveness would depend on the order |
963 | | * of the variables. |
964 | | * After compression, some of the constraints may have coefficients |
965 | | * with a common divisor. If this divisor does not divide the constant |
966 | | * term, then the constraint can be tightened. |
967 | | * The tightening is performed on the tableau info->tab by introducing |
968 | | * extra (temporary) constraints. |
969 | | * |
970 | | * Only constraints that are possibly affected by the compression are |
971 | | * considered. In particular, if the constraint only involves variables |
972 | | * that are directly mapped to a distinct set of other variables, then |
973 | | * no common divisor can be introduced and no tightening can occur. |
974 | | * |
975 | | * It is important to only consider the non-redundant constraints |
976 | | * since the facet constraint has been relaxed prior to the call |
977 | | * to this function, meaning that the constraints that were redundant |
978 | | * prior to the relaxation may no longer be redundant. |
979 | | * These constraints will be ignored in the fused result, so |
980 | | * the fusion detection should not exploit them. |
981 | | */ |
982 | | static isl_stat tighten_on_relaxed_facet(struct isl_coalesce_info *info, |
983 | | int n, int *relaxed, int l) |
984 | 8.43k | { |
985 | 8.43k | unsigned total; |
986 | 8.43k | isl_ctx *ctx; |
987 | 8.43k | isl_vec *v = NULL; |
988 | 8.43k | isl_mat *T; |
989 | 8.43k | int i; |
990 | 8.43k | int k; |
991 | 8.43k | int *affected; |
992 | 8.43k | |
993 | 8.43k | k = relaxed[l]; |
994 | 8.43k | ctx = isl_basic_map_get_ctx(info->bmap); |
995 | 8.43k | total = isl_basic_map_total_dim(info->bmap); |
996 | 8.43k | isl_int_add_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1); |
997 | 8.43k | T = isl_mat_sub_alloc6(ctx, info->bmap->ineq, k, 1, 0, 1 + total); |
998 | 8.43k | T = isl_mat_variable_compression(T, NULL); |
999 | 8.43k | isl_int_sub_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1); |
1000 | 8.43k | if (!T) |
1001 | 0 | return isl_stat_error; |
1002 | 8.43k | if (T->n_col == 0) { |
1003 | 0 | isl_mat_free(T); |
1004 | 0 | return isl_stat_ok; |
1005 | 0 | } |
1006 | 8.43k | |
1007 | 8.43k | affected = isl_alloc_array(ctx, int, total); |
1008 | 8.43k | if (!affected) |
1009 | 0 | goto error; |
1010 | 8.43k | |
1011 | 96.3k | for (i = 0; 8.43k i < total; ++i87.9k ) |
1012 | 87.9k | affected[i] = not_unique_unit_row(T, 1 + i); |
1013 | 8.43k | |
1014 | 101k | for (i = 0; i < info->bmap->n_ineq; ++i92.7k ) { |
1015 | 92.7k | isl_bool handle; |
1016 | 92.7k | if (any(relaxed, n, i)) |
1017 | 8.46k | continue; |
1018 | 84.2k | if (info->ineq[i] == STATUS_REDUNDANT) |
1019 | 84.2k | continue24.0k ; |
1020 | 60.2k | handle = is_affected(info->bmap, i, affected, total); |
1021 | 60.2k | if (handle < 0) |
1022 | 0 | goto error; |
1023 | 60.2k | if (!handle) |
1024 | 48.0k | continue; |
1025 | 12.1k | v = isl_vec_alloc(ctx, 1 + total); |
1026 | 12.1k | if (!v) |
1027 | 0 | goto error; |
1028 | 12.1k | isl_seq_cpy(v->el, info->bmap->ineq[i], 1 + total); |
1029 | 12.1k | v = isl_vec_mat_product(v, isl_mat_copy(T)); |
1030 | 12.1k | v = try_tightening(info, i, v); |
1031 | 12.1k | isl_vec_free(v); |
1032 | 12.1k | if (!v) |
1033 | 0 | goto error; |
1034 | 12.1k | } |
1035 | 8.43k | |
1036 | 8.43k | isl_mat_free(T); |
1037 | 8.43k | free(affected); |
1038 | 8.43k | return isl_stat_ok; |
1039 | 0 | error: |
1040 | 0 | isl_mat_free(T); |
1041 | 0 | free(affected); |
1042 | 0 | return isl_stat_error; |
1043 | 8.43k | } |
1044 | | |
1045 | | /* Replace the basic maps "i" and "j" by an extension of "i" |
1046 | | * along the "n" inequality constraints in "relax" by one. |
1047 | | * The tableau info[i].tab has already been extended. |
1048 | | * Extend info[i].bmap accordingly by relaxing all constraints in "relax" |
1049 | | * by one. |
1050 | | * Each integer division that does not have exactly the same |
1051 | | * definition in "i" and "j" is marked unknown and the basic map |
1052 | | * is scheduled to be simplified in an attempt to recover |
1053 | | * the integer division definition. |
1054 | | * Place the extension in the position that is the smallest of i and j. |
1055 | | */ |
1056 | | static enum isl_change extend(int i, int j, int n, int *relax, |
1057 | | struct isl_coalesce_info *info) |
1058 | 5.43k | { |
1059 | 5.43k | int l; |
1060 | 5.43k | unsigned total; |
1061 | 5.43k | |
1062 | 5.43k | info[i].bmap = isl_basic_map_cow(info[i].bmap); |
1063 | 5.43k | if (!info[i].bmap) |
1064 | 0 | return isl_change_error; |
1065 | 5.43k | total = isl_basic_map_total_dim(info[i].bmap); |
1066 | 5.66k | for (l = 0; l < info[i].bmap->n_div; ++l230 ) |
1067 | 230 | if (!isl_seq_eq(info[i].bmap->div[l], |
1068 | 230 | info[j].bmap->div[l], 1 + 1 + total)) { |
1069 | 35 | isl_int_set_si(info[i].bmap->div[l][0], 0); |
1070 | 35 | info[i].simplify = 1; |
1071 | 35 | } |
1072 | 10.8k | for (l = 0; l < n; ++l5.43k ) |
1073 | 5.43k | isl_int_add_ui(info[i].bmap->ineq[relax[l]][0], |
1074 | 5.43k | info[i].bmap->ineq[relax[l]][0], 1); |
1075 | 5.43k | ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL); |
1076 | 5.43k | drop(&info[j]); |
1077 | 5.43k | if (j < i) |
1078 | 1.80k | exchange(&info[i], &info[j]); |
1079 | 5.43k | return isl_change_fuse; |
1080 | 5.43k | } |
1081 | | |
1082 | | /* Basic map "i" has "n" inequality constraints (collected in "relax") |
1083 | | * that are such that they include basic map "j" if they are relaxed |
1084 | | * by one. All the other inequalities are valid for "j". |
1085 | | * Check if basic map "j" forms an extension of basic map "i". |
1086 | | * |
1087 | | * In particular, relax the constraints in "relax", compute the corresponding |
1088 | | * facets one by one and check whether each of these is included |
1089 | | * in the other basic map. |
1090 | | * Before testing for inclusion, the constraints on each facet |
1091 | | * are tightened to increase the chance of an inclusion being detected. |
1092 | | * (Adding the valid constraints of "j" to the tableau of "i", as is done |
1093 | | * in is_adj_ineq_extension, may further increase those chances, but this |
1094 | | * is not currently done.) |
1095 | | * If each facet is included, we know that relaxing the constraints extends |
1096 | | * the basic map with exactly the other basic map (we already know that this |
1097 | | * other basic map is included in the extension, because all other |
1098 | | * inequality constraints are valid of "j") and we can replace the |
1099 | | * two basic maps by this extension. |
1100 | | * |
1101 | | * If any of the relaxed constraints turn out to be redundant, then bail out. |
1102 | | * isl_tab_select_facet refuses to handle such constraints. It may be |
1103 | | * possible to handle them anyway by making a distinction between |
1104 | | * redundant constraints with a corresponding facet that still intersects |
1105 | | * the set (allowing isl_tab_select_facet to handle them) and |
1106 | | * those where the facet does not intersect the set (which can be ignored |
1107 | | * because the empty facet is trivially included in the other disjunct). |
1108 | | * However, relaxed constraints that turn out to be redundant should |
1109 | | * be fairly rare and no such instance has been reported where |
1110 | | * coalescing would be successful. |
1111 | | * ____ _____ |
1112 | | * / || / | |
1113 | | * / || / | |
1114 | | * \ || => \ | |
1115 | | * \ || \ | |
1116 | | * \___|| \____| |
1117 | | * |
1118 | | * |
1119 | | * \ |\ |
1120 | | * |\\ | \ |
1121 | | * | \\ | \ |
1122 | | * | | => | / |
1123 | | * | / | / |
1124 | | * |/ |/ |
1125 | | */ |
1126 | | static enum isl_change is_relaxed_extension(int i, int j, int n, int *relax, |
1127 | | struct isl_coalesce_info *info) |
1128 | 8.41k | { |
1129 | 8.41k | int l; |
1130 | 8.41k | isl_bool super; |
1131 | 8.41k | struct isl_tab_undo *snap, *snap2; |
1132 | 8.41k | unsigned n_eq = info[i].bmap->n_eq; |
1133 | 8.41k | |
1134 | 16.8k | for (l = 0; l < n; ++l8.44k ) |
1135 | 8.44k | if (isl_tab_is_equality(info[i].tab, n_eq + relax[l])) |
1136 | 0 | return isl_change_none; |
1137 | 8.41k | |
1138 | 8.41k | snap = isl_tab_snap(info[i].tab); |
1139 | 16.8k | for (l = 0; l < n; ++l8.44k ) |
1140 | 8.44k | if (isl_tab_relax(info[i].tab, n_eq + relax[l]) < 0) |
1141 | 0 | return isl_change_error; |
1142 | 16.8k | for (l = 0; 8.41k l < n; ++l8.44k ) { |
1143 | 8.44k | if (!isl_tab_is_redundant(info[i].tab, n_eq + relax[l])) |
1144 | 8.44k | continue; |
1145 | 0 | if (isl_tab_rollback(info[i].tab, snap) < 0) |
1146 | 0 | return isl_change_error; |
1147 | 0 | return isl_change_none; |
1148 | 0 | } |
1149 | 8.41k | snap2 = isl_tab_snap(info[i].tab); |
1150 | 13.8k | for (l = 0; l < n; ++l5.44k ) { |
1151 | 8.43k | if (isl_tab_rollback(info[i].tab, snap2) < 0) |
1152 | 0 | return isl_change_error; |
1153 | 8.43k | if (isl_tab_select_facet(info[i].tab, n_eq + relax[l]) < 0) |
1154 | 0 | return isl_change_error; |
1155 | 8.43k | if (tighten_on_relaxed_facet(&info[i], n, relax, l) < 0) |
1156 | 0 | return isl_change_error; |
1157 | 8.43k | super = contains(&info[j], info[i].tab); |
1158 | 8.43k | if (super < 0) |
1159 | 0 | return isl_change_error; |
1160 | 8.43k | if (super) |
1161 | 5.44k | continue; |
1162 | 2.98k | if (isl_tab_rollback(info[i].tab, snap) < 0) |
1163 | 0 | return isl_change_error; |
1164 | 2.98k | return isl_change_none; |
1165 | 2.98k | } |
1166 | 8.41k | |
1167 | 8.41k | if (5.43k isl_tab_rollback(info[i].tab, snap2) < 05.43k ) |
1168 | 0 | return isl_change_error; |
1169 | 5.43k | return extend(i, j, n, relax, info); |
1170 | 5.43k | } |
1171 | | |
1172 | | /* Data structure that keeps track of the wrapping constraints |
1173 | | * and of information to bound the coefficients of those constraints. |
1174 | | * |
1175 | | * bound is set if we want to apply a bound on the coefficients |
1176 | | * mat contains the wrapping constraints |
1177 | | * max is the bound on the coefficients (if bound is set) |
1178 | | */ |
1179 | | struct isl_wraps { |
1180 | | int bound; |
1181 | | isl_mat *mat; |
1182 | | isl_int max; |
1183 | | }; |
1184 | | |
1185 | | /* Update wraps->max to be greater than or equal to the coefficients |
1186 | | * in the equalities and inequalities of info->bmap that can be removed |
1187 | | * if we end up applying wrapping. |
1188 | | */ |
1189 | | static isl_stat wraps_update_max(struct isl_wraps *wraps, |
1190 | | struct isl_coalesce_info *info) |
1191 | 13.1k | { |
1192 | 13.1k | int k; |
1193 | 13.1k | isl_int max_k; |
1194 | 13.1k | unsigned total = isl_basic_map_total_dim(info->bmap); |
1195 | 13.1k | |
1196 | 13.1k | isl_int_init(max_k); |
1197 | 13.1k | |
1198 | 49.8k | for (k = 0; k < info->bmap->n_eq; ++k36.7k ) { |
1199 | 36.7k | if (info->eq[2 * k] == STATUS_VALID && |
1200 | 36.7k | info->eq[2 * k + 1] == 22.7k STATUS_VALID22.7k ) |
1201 | 36.7k | continue17.0k ; |
1202 | 19.6k | isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k); |
1203 | 19.6k | if (isl_int_abs_gt(max_k, wraps->max)) |
1204 | 19.6k | isl_int_set4.63k (wraps->max, max_k); |
1205 | 19.6k | } |
1206 | 13.1k | |
1207 | 90.0k | for (k = 0; k < info->bmap->n_ineq; ++k76.8k ) { |
1208 | 76.8k | if (info->ineq[k] == STATUS_VALID || |
1209 | 76.8k | info->ineq[k] == 24.1k STATUS_REDUNDANT24.1k ) |
1210 | 76.8k | continue66.5k ; |
1211 | 10.2k | isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k); |
1212 | 10.2k | if (isl_int_abs_gt(max_k, wraps->max)) |
1213 | 10.2k | isl_int_set4.10k (wraps->max, max_k); |
1214 | 10.2k | } |
1215 | 13.1k | |
1216 | 13.1k | isl_int_clear(max_k); |
1217 | 13.1k | |
1218 | 13.1k | return isl_stat_ok; |
1219 | 13.1k | } |
1220 | | |
1221 | | /* Initialize the isl_wraps data structure. |
1222 | | * If we want to bound the coefficients of the wrapping constraints, |
1223 | | * we set wraps->max to the largest coefficient |
1224 | | * in the equalities and inequalities that can be removed if we end up |
1225 | | * applying wrapping. |
1226 | | */ |
1227 | | static isl_stat wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat, |
1228 | | struct isl_coalesce_info *info, int i, int j) |
1229 | 6.57k | { |
1230 | 6.57k | isl_ctx *ctx; |
1231 | 6.57k | |
1232 | 6.57k | wraps->bound = 0; |
1233 | 6.57k | wraps->mat = mat; |
1234 | 6.57k | if (!mat) |
1235 | 0 | return isl_stat_error; |
1236 | 6.57k | ctx = isl_mat_get_ctx(mat); |
1237 | 6.57k | wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx); |
1238 | 6.57k | if (!wraps->bound) |
1239 | 5 | return isl_stat_ok; |
1240 | 6.57k | isl_int_init(wraps->max); |
1241 | 6.57k | isl_int_set_si(wraps->max, 0); |
1242 | 6.57k | if (wraps_update_max(wraps, &info[i]) < 0) |
1243 | 0 | return isl_stat_error; |
1244 | 6.57k | if (wraps_update_max(wraps, &info[j]) < 0) |
1245 | 0 | return isl_stat_error; |
1246 | 6.57k | |
1247 | 6.57k | return isl_stat_ok; |
1248 | 6.57k | } |
1249 | | |
1250 | | /* Free the contents of the isl_wraps data structure. |
1251 | | */ |
1252 | | static void wraps_free(struct isl_wraps *wraps) |
1253 | 6.57k | { |
1254 | 6.57k | isl_mat_free(wraps->mat); |
1255 | 6.57k | if (wraps->bound) |
1256 | 6.57k | isl_int_clear6.57k (wraps->max); |
1257 | 6.57k | } |
1258 | | |
1259 | | /* Is the wrapping constraint in row "row" allowed? |
1260 | | * |
1261 | | * If wraps->bound is set, we check that none of the coefficients |
1262 | | * is greater than wraps->max. |
1263 | | */ |
1264 | | static int allow_wrap(struct isl_wraps *wraps, int row) |
1265 | 5.22k | { |
1266 | 5.22k | int i; |
1267 | 5.22k | |
1268 | 5.22k | if (!wraps->bound) |
1269 | 13 | return 1; |
1270 | 5.21k | |
1271 | 35.0k | for (i = 1; 5.21k i < wraps->mat->n_col; ++i29.8k ) |
1272 | 31.9k | if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max)) |
1273 | 31.9k | return 02.14k ; |
1274 | 5.21k | |
1275 | 5.21k | return 13.06k ; |
1276 | 5.21k | } |
1277 | | |
1278 | | /* Wrap "ineq" (or its opposite if "negate" is set) around "bound" |
1279 | | * to include "set" and add the result in position "w" of "wraps". |
1280 | | * "len" is the total number of coefficients in "bound" and "ineq". |
1281 | | * Return 1 on success, 0 on failure and -1 on error. |
1282 | | * Wrapping can fail if the result of wrapping is equal to "bound" |
1283 | | * or if we want to bound the sizes of the coefficients and |
1284 | | * the wrapped constraint does not satisfy this bound. |
1285 | | */ |
1286 | | static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound, |
1287 | | isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate) |
1288 | 8.43k | { |
1289 | 8.43k | isl_seq_cpy(wraps->mat->row[w], bound, len); |
1290 | 8.43k | if (negate) { |
1291 | 2.98k | isl_seq_neg(wraps->mat->row[w + 1], ineq, len); |
1292 | 2.98k | ineq = wraps->mat->row[w + 1]; |
1293 | 2.98k | } |
1294 | 8.43k | if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq)) |
1295 | 0 | return -1; |
1296 | 8.43k | if (isl_seq_eq(wraps->mat->row[w], bound, len)) |
1297 | 3.21k | return 0; |
1298 | 5.22k | if (!allow_wrap(wraps, w)) |
1299 | 2.14k | return 0; |
1300 | 3.07k | return 1; |
1301 | 3.07k | } |
1302 | | |
1303 | | /* For each constraint in info->bmap that is not redundant (as determined |
1304 | | * by info->tab) and that is not a valid constraint for the other basic map, |
1305 | | * wrap the constraint around "bound" such that it includes the whole |
1306 | | * set "set" and append the resulting constraint to "wraps". |
1307 | | * Note that the constraints that are valid for the other basic map |
1308 | | * will be added to the combined basic map by default, so there is |
1309 | | * no need to wrap them. |
1310 | | * The caller wrap_in_facets even relies on this function not wrapping |
1311 | | * any constraints that are already valid. |
1312 | | * "wraps" is assumed to have been pre-allocated to the appropriate size. |
1313 | | * wraps->n_row is the number of actual wrapped constraints that have |
1314 | | * been added. |
1315 | | * If any of the wrapping problems results in a constraint that is |
1316 | | * identical to "bound", then this means that "set" is unbounded in such |
1317 | | * way that no wrapping is possible. If this happens then wraps->n_row |
1318 | | * is reset to zero. |
1319 | | * Similarly, if we want to bound the coefficients of the wrapping |
1320 | | * constraints and a newly added wrapping constraint does not |
1321 | | * satisfy the bound, then wraps->n_row is also reset to zero. |
1322 | | */ |
1323 | | static isl_stat add_wraps(struct isl_wraps *wraps, |
1324 | | struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set) |
1325 | 8.34k | { |
1326 | 8.34k | int l, m; |
1327 | 8.34k | int w; |
1328 | 8.34k | int added; |
1329 | 8.34k | isl_basic_map *bmap = info->bmap; |
1330 | 8.34k | unsigned len = 1 + isl_basic_map_total_dim(bmap); |
1331 | 8.34k | |
1332 | 8.34k | w = wraps->mat->n_row; |
1333 | 8.34k | |
1334 | 42.1k | for (l = 0; l < bmap->n_ineq; ++l33.8k ) { |
1335 | 37.0k | if (info->ineq[l] == STATUS_VALID || |
1336 | 37.0k | info->ineq[l] == 9.25k STATUS_REDUNDANT9.25k ) |
1337 | 37.0k | continue32.3k ; |
1338 | 4.69k | if (isl_seq_is_neg(bound, bmap->ineq[l], len)) |
1339 | 270 | continue; |
1340 | 4.42k | if (isl_seq_eq(bound, bmap->ineq[l], len)) |
1341 | 0 | continue; |
1342 | 4.42k | if (isl_tab_is_redundant(info->tab, bmap->n_eq + l)) |
1343 | 26 | continue; |
1344 | 4.39k | |
1345 | 4.39k | added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0); |
1346 | 4.39k | if (added < 0) |
1347 | 0 | return isl_stat_error; |
1348 | 4.39k | if (!added) |
1349 | 3.21k | goto unbounded; |
1350 | 1.18k | ++w; |
1351 | 1.18k | } |
1352 | 13.7k | for (l = 0; 5.12k l < bmap->n_eq; ++l8.64k ) { |
1353 | 10.7k | if (isl_seq_is_neg(bound, bmap->eq[l], len)) |
1354 | 1.12k | continue; |
1355 | 9.66k | if (isl_seq_eq(bound, bmap->eq[l], len)) |
1356 | 1.82k | continue; |
1357 | 7.83k | |
1358 | 19.5k | for (m = 0; 7.83k m < 2; ++m11.6k ) { |
1359 | 13.8k | if (info->eq[2 * l + m] == STATUS_VALID) |
1360 | 13.8k | continue9.78k ; |
1361 | 4.03k | added = add_wrap(wraps, w, bound, bmap->eq[l], len, |
1362 | 4.03k | set, !m); |
1363 | 4.03k | if (added < 0) |
1364 | 0 | return isl_stat_error; |
1365 | 4.03k | if (!added) |
1366 | 2.14k | goto unbounded; |
1367 | 1.89k | ++w; |
1368 | 1.89k | } |
1369 | 7.83k | } |
1370 | 5.12k | |
1371 | 5.12k | wraps->mat->n_row = w; |
1372 | 2.98k | return isl_stat_ok; |
1373 | 5.35k | unbounded: |
1374 | 5.35k | wraps->mat->n_row = 0; |
1375 | 5.35k | return isl_stat_ok; |
1376 | 5.12k | } |
1377 | | |
1378 | | /* Check if the constraints in "wraps" from "first" until the last |
1379 | | * are all valid for the basic set represented by "tab". |
1380 | | * If not, wraps->n_row is set to zero. |
1381 | | */ |
1382 | | static int check_wraps(__isl_keep isl_mat *wraps, int first, |
1383 | | struct isl_tab *tab) |
1384 | 300 | { |
1385 | 300 | int i; |
1386 | 300 | |
1387 | 301 | for (i = first; i < wraps->n_row; ++i1 ) { |
1388 | 7 | enum isl_ineq_type type; |
1389 | 7 | type = isl_tab_ineq_type(tab, wraps->row[i]); |
1390 | 7 | if (type == isl_ineq_error) |
1391 | 0 | return -1; |
1392 | 7 | if (type == isl_ineq_redundant) |
1393 | 1 | continue; |
1394 | 6 | wraps->n_row = 0; |
1395 | 6 | return 0; |
1396 | 6 | } |
1397 | 300 | |
1398 | 300 | return 0294 ; |
1399 | 300 | } |
1400 | | |
1401 | | /* Return a set that corresponds to the non-redundant constraints |
1402 | | * (as recorded in tab) of bmap. |
1403 | | * |
1404 | | * It's important to remove the redundant constraints as some |
1405 | | * of the other constraints may have been modified after the |
1406 | | * constraints were marked redundant. |
1407 | | * In particular, a constraint may have been relaxed. |
1408 | | * Redundant constraints are ignored when a constraint is relaxed |
1409 | | * and should therefore continue to be ignored ever after. |
1410 | | * Otherwise, the relaxation might be thwarted by some of |
1411 | | * these constraints. |
1412 | | * |
1413 | | * Update the underlying set to ensure that the dimension doesn't change. |
1414 | | * Otherwise the integer divisions could get dropped if the tab |
1415 | | * turns out to be empty. |
1416 | | */ |
1417 | | static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap, |
1418 | | struct isl_tab *tab) |
1419 | 12.9k | { |
1420 | 12.9k | isl_basic_set *bset; |
1421 | 12.9k | |
1422 | 12.9k | bmap = isl_basic_map_copy(bmap); |
1423 | 12.9k | bset = isl_basic_map_underlying_set(bmap); |
1424 | 12.9k | bset = isl_basic_set_cow(bset); |
1425 | 12.9k | bset = isl_basic_set_update_from_tab(bset, tab); |
1426 | 12.9k | return isl_set_from_basic_set(bset); |
1427 | 12.9k | } |
1428 | | |
1429 | | /* Wrap the constraints of info->bmap that bound the facet defined |
1430 | | * by inequality "k" around (the opposite of) this inequality to |
1431 | | * include "set". "bound" may be used to store the negated inequality. |
1432 | | * Since the wrapped constraints are not guaranteed to contain the whole |
1433 | | * of info->bmap, we check them in check_wraps. |
1434 | | * If any of the wrapped constraints turn out to be invalid, then |
1435 | | * check_wraps will reset wrap->n_row to zero. |
1436 | | */ |
1437 | | static isl_stat add_wraps_around_facet(struct isl_wraps *wraps, |
1438 | | struct isl_coalesce_info *info, int k, isl_int *bound, |
1439 | | __isl_keep isl_set *set) |
1440 | 300 | { |
1441 | 300 | struct isl_tab_undo *snap; |
1442 | 300 | int n; |
1443 | 300 | unsigned total = isl_basic_map_total_dim(info->bmap); |
1444 | 300 | |
1445 | 300 | snap = isl_tab_snap(info->tab); |
1446 | 300 | |
1447 | 300 | if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0) |
1448 | 0 | return isl_stat_error; |
1449 | 300 | if (isl_tab_detect_redundant(info->tab) < 0) |
1450 | 0 | return isl_stat_error; |
1451 | 300 | |
1452 | 300 | isl_seq_neg(bound, info->bmap->ineq[k], 1 + total); |
1453 | 300 | |
1454 | 300 | n = wraps->mat->n_row; |
1455 | 300 | if (add_wraps(wraps, info, bound, set) < 0) |
1456 | 0 | return isl_stat_error; |
1457 | 300 | |
1458 | 300 | if (isl_tab_rollback(info->tab, snap) < 0) |
1459 | 0 | return isl_stat_error; |
1460 | 300 | if (check_wraps(wraps->mat, n, info->tab) < 0) |
1461 | 0 | return isl_stat_error; |
1462 | 300 | |
1463 | 300 | return isl_stat_ok; |
1464 | 300 | } |
1465 | | |
1466 | | /* Given a basic set i with a constraint k that is adjacent to |
1467 | | * basic set j, check if we can wrap |
1468 | | * both the facet corresponding to k (if "wrap_facet" is set) and basic map j |
1469 | | * (always) around their ridges to include the other set. |
1470 | | * If so, replace the pair of basic sets by their union. |
1471 | | * |
1472 | | * All constraints of i (except k) are assumed to be valid or |
1473 | | * cut constraints for j. |
1474 | | * Wrapping the cut constraints to include basic map j may result |
1475 | | * in constraints that are no longer valid of basic map i |
1476 | | * we have to check that the resulting wrapping constraints are valid for i. |
1477 | | * If "wrap_facet" is not set, then all constraints of i (except k) |
1478 | | * are assumed to be valid for j. |
1479 | | * ____ _____ |
1480 | | * / | / \ |
1481 | | * / || / | |
1482 | | * \ || => \ | |
1483 | | * \ || \ | |
1484 | | * \___|| \____| |
1485 | | * |
1486 | | */ |
1487 | | static enum isl_change can_wrap_in_facet(int i, int j, int k, |
1488 | | struct isl_coalesce_info *info, int wrap_facet) |
1489 | 3.45k | { |
1490 | 3.45k | enum isl_change change = isl_change_none; |
1491 | 3.45k | struct isl_wraps wraps; |
1492 | 3.45k | isl_ctx *ctx; |
1493 | 3.45k | isl_mat *mat; |
1494 | 3.45k | struct isl_set *set_i = NULL; |
1495 | 3.45k | struct isl_set *set_j = NULL; |
1496 | 3.45k | struct isl_vec *bound = NULL; |
1497 | 3.45k | unsigned total = isl_basic_map_total_dim(info[i].bmap); |
1498 | 3.45k | |
1499 | 3.45k | set_i = set_from_updated_bmap(info[i].bmap, info[i].tab); |
1500 | 3.45k | set_j = set_from_updated_bmap(info[j].bmap, info[j].tab); |
1501 | 3.45k | ctx = isl_basic_map_get_ctx(info[i].bmap); |
1502 | 3.45k | mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) + |
1503 | 3.45k | info[i].bmap->n_ineq + info[j].bmap->n_ineq, |
1504 | 3.45k | 1 + total); |
1505 | 3.45k | if (wraps_init(&wraps, mat, info, i, j) < 0) |
1506 | 0 | goto error; |
1507 | 3.45k | bound = isl_vec_alloc(ctx, 1 + total); |
1508 | 3.45k | if (!set_i || !set_j || !bound) |
1509 | 0 | goto error; |
1510 | 3.45k | |
1511 | 3.45k | isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total); |
1512 | 3.45k | isl_int_add_ui(bound->el[0], bound->el[0], 1); |
1513 | 3.45k | isl_seq_normalize(ctx, bound->el, 1 + total); |
1514 | 3.45k | |
1515 | 3.45k | isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total); |
1516 | 3.45k | wraps.mat->n_row = 1; |
1517 | 3.45k | |
1518 | 3.45k | if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0) |
1519 | 0 | goto error; |
1520 | 3.45k | if (!wraps.mat->n_row) |
1521 | 2.93k | goto unbounded; |
1522 | 518 | |
1523 | 518 | if (wrap_facet) { |
1524 | 300 | if (add_wraps_around_facet(&wraps, &info[i], k, |
1525 | 300 | bound->el, set_j) < 0) |
1526 | 0 | goto error; |
1527 | 300 | if (!wraps.mat->n_row) |
1528 | 299 | goto unbounded; |
1529 | 219 | } |
1530 | 219 | |
1531 | 219 | change = fuse(i, j, info, wraps.mat, 0, 0); |
1532 | 219 | |
1533 | 3.45k | unbounded: |
1534 | 3.45k | wraps_free(&wraps); |
1535 | 3.45k | |
1536 | 3.45k | isl_set_free(set_i); |
1537 | 3.45k | isl_set_free(set_j); |
1538 | 3.45k | |
1539 | 3.45k | isl_vec_free(bound); |
1540 | 3.45k | |
1541 | 3.45k | return change; |
1542 | 0 | error: |
1543 | 0 | wraps_free(&wraps); |
1544 | 0 | isl_vec_free(bound); |
1545 | 0 | isl_set_free(set_i); |
1546 | 0 | isl_set_free(set_j); |
1547 | 0 | return isl_change_error; |
1548 | 219 | } |
1549 | | |
1550 | | /* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w" |
1551 | | * of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and |
1552 | | * add wrapping constraints to wrap.mat for all constraints |
1553 | | * of basic map j that bound the part of basic map j that sticks out |
1554 | | * of the cut constraint. |
1555 | | * "set_i" is the underlying set of basic map i. |
1556 | | * If any wrapping fails, then wraps->mat.n_row is reset to zero. |
1557 | | * |
1558 | | * In particular, we first intersect basic map j with t(x) + 1 = 0. |
1559 | | * If the result is empty, then t(x) >= 0 was actually a valid constraint |
1560 | | * (with respect to the integer points), so we add t(x) >= 0 instead. |
1561 | | * Otherwise, we wrap the constraints of basic map j that are not |
1562 | | * redundant in this intersection and that are not already valid |
1563 | | * for basic map i over basic map i. |
1564 | | * Note that it is sufficient to wrap the constraints to include |
1565 | | * basic map i, because we will only wrap the constraints that do |
1566 | | * not include basic map i already. The wrapped constraint will |
1567 | | * therefore be more relaxed compared to the original constraint. |
1568 | | * Since the original constraint is valid for basic map j, so is |
1569 | | * the wrapped constraint. |
1570 | | */ |
1571 | | static isl_stat wrap_in_facet(struct isl_wraps *wraps, int w, |
1572 | | struct isl_coalesce_info *info_j, __isl_keep isl_set *set_i, |
1573 | | struct isl_tab_undo *snap) |
1574 | 167 | { |
1575 | 167 | isl_int_add_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1); |
1576 | 167 | if (isl_tab_add_eq(info_j->tab, wraps->mat->row[w]) < 0) |
1577 | 0 | return isl_stat_error; |
1578 | 167 | if (isl_tab_detect_redundant(info_j->tab) < 0) |
1579 | 0 | return isl_stat_error; |
1580 | 167 | |
1581 | 167 | if (info_j->tab->empty) |
1582 | 167 | isl_int_sub_ui0 (wraps->mat->row[w][0], wraps->mat->row[w][0], 1); |
1583 | 167 | else if (add_wraps(wraps, info_j, wraps->mat->row[w], set_i) < 0) |
1584 | 0 | return isl_stat_error; |
1585 | 167 | |
1586 | 167 | if (isl_tab_rollback(info_j->tab, snap) < 0) |
1587 | 0 | return isl_stat_error; |
1588 | 167 | |
1589 | 167 | return isl_stat_ok; |
1590 | 167 | } |
1591 | | |
1592 | | /* Given a pair of basic maps i and j such that j sticks out |
1593 | | * of i at n cut constraints, each time by at most one, |
1594 | | * try to compute wrapping constraints and replace the two |
1595 | | * basic maps by a single basic map. |
1596 | | * The other constraints of i are assumed to be valid for j. |
1597 | | * "set_i" is the underlying set of basic map i. |
1598 | | * "wraps" has been initialized to be of the right size. |
1599 | | * |
1600 | | * For each cut constraint t(x) >= 0 of i, we add the relaxed version |
1601 | | * t(x) + 1 >= 0, along with wrapping constraints for all constraints |
1602 | | * of basic map j that bound the part of basic map j that sticks out |
1603 | | * of the cut constraint. |
1604 | | * |
1605 | | * If any wrapping fails, i.e., if we cannot wrap to touch |
1606 | | * the union, then we give up. |
1607 | | * Otherwise, the pair of basic maps is replaced by their union. |
1608 | | */ |
1609 | | static enum isl_change try_wrap_in_facets(int i, int j, |
1610 | | struct isl_coalesce_info *info, struct isl_wraps *wraps, |
1611 | | __isl_keep isl_set *set_i) |
1612 | 161 | { |
1613 | 161 | int k, l, w; |
1614 | 161 | unsigned total; |
1615 | 161 | struct isl_tab_undo *snap; |
1616 | 161 | |
1617 | 161 | total = isl_basic_map_total_dim(info[i].bmap); |
1618 | 161 | |
1619 | 161 | snap = isl_tab_snap(info[j].tab); |
1620 | 161 | |
1621 | 161 | wraps->mat->n_row = 0; |
1622 | 161 | |
1623 | 202 | for (k = 0; k < info[i].bmap->n_eq; ++k41 ) { |
1624 | 155 | for (l = 0; l < 2; ++l89 ) { |
1625 | 114 | if (info[i].eq[2 * k + l] != STATUS_CUT) |
1626 | 114 | continue79 ; |
1627 | 35 | w = wraps->mat->n_row++; |
1628 | 35 | if (l == 0) |
1629 | 22 | isl_seq_neg(wraps->mat->row[w], |
1630 | 22 | info[i].bmap->eq[k], 1 + total); |
1631 | 13 | else |
1632 | 13 | isl_seq_cpy(wraps->mat->row[w], |
1633 | 13 | info[i].bmap->eq[k], 1 + total); |
1634 | 35 | if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0) |
1635 | 0 | return isl_change_error; |
1636 | 35 | |
1637 | 35 | if (!wraps->mat->n_row) |
1638 | 25 | return isl_change_none; |
1639 | 35 | } |
1640 | 66 | } |
1641 | 161 | |
1642 | 917 | for (k = 0; 136 k < info[i].bmap->n_ineq; ++k781 ) { |
1643 | 885 | if (info[i].ineq[k] != STATUS_CUT) |
1644 | 885 | continue753 ; |
1645 | 132 | w = wraps->mat->n_row++; |
1646 | 132 | isl_seq_cpy(wraps->mat->row[w], |
1647 | 132 | info[i].bmap->ineq[k], 1 + total); |
1648 | 132 | if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0) |
1649 | 0 | return isl_change_error; |
1650 | 132 | |
1651 | 132 | if (!wraps->mat->n_row) |
1652 | 104 | return isl_change_none; |
1653 | 132 | } |
1654 | 136 | |
1655 | 136 | return fuse(i, j, info, wraps->mat, 0, 1)32 ; |
1656 | 136 | } |
1657 | | |
1658 | | /* Given a pair of basic maps i and j such that j sticks out |
1659 | | * of i at n cut constraints, each time by at most one, |
1660 | | * try to compute wrapping constraints and replace the two |
1661 | | * basic maps by a single basic map. |
1662 | | * The other constraints of i are assumed to be valid for j. |
1663 | | * |
1664 | | * The core computation is performed by try_wrap_in_facets. |
1665 | | * This function simply extracts an underlying set representation |
1666 | | * of basic map i and initializes the data structure for keeping |
1667 | | * track of wrapping constraints. |
1668 | | */ |
1669 | | static enum isl_change wrap_in_facets(int i, int j, int n, |
1670 | | struct isl_coalesce_info *info) |
1671 | 161 | { |
1672 | 161 | enum isl_change change = isl_change_none; |
1673 | 161 | struct isl_wraps wraps; |
1674 | 161 | isl_ctx *ctx; |
1675 | 161 | isl_mat *mat; |
1676 | 161 | isl_set *set_i = NULL; |
1677 | 161 | unsigned total = isl_basic_map_total_dim(info[i].bmap); |
1678 | 161 | int max_wrap; |
1679 | 161 | |
1680 | 161 | if (isl_tab_extend_cons(info[j].tab, 1) < 0) |
1681 | 0 | return isl_change_error; |
1682 | 161 | |
1683 | 161 | max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq; |
1684 | 161 | max_wrap *= n; |
1685 | 161 | |
1686 | 161 | set_i = set_from_updated_bmap(info[i].bmap, info[i].tab); |
1687 | 161 | ctx = isl_basic_map_get_ctx(info[i].bmap); |
1688 | 161 | mat = isl_mat_alloc(ctx, max_wrap, 1 + total); |
1689 | 161 | if (wraps_init(&wraps, mat, info, i, j) < 0) |
1690 | 0 | goto error; |
1691 | 161 | if (!set_i) |
1692 | 0 | goto error; |
1693 | 161 | |
1694 | 161 | change = try_wrap_in_facets(i, j, info, &wraps, set_i); |
1695 | 161 | |
1696 | 161 | wraps_free(&wraps); |
1697 | 161 | isl_set_free(set_i); |
1698 | 161 | |
1699 | 161 | return change; |
1700 | 0 | error: |
1701 | 0 | wraps_free(&wraps); |
1702 | 0 | isl_set_free(set_i); |
1703 | 0 | return isl_change_error; |
1704 | 161 | } |
1705 | | |
1706 | | /* Return the effect of inequality "ineq" on the tableau "tab", |
1707 | | * after relaxing the constant term of "ineq" by one. |
1708 | | */ |
1709 | | static enum isl_ineq_type type_of_relaxed(struct isl_tab *tab, isl_int *ineq) |
1710 | 21.9k | { |
1711 | 21.9k | enum isl_ineq_type type; |
1712 | 21.9k | |
1713 | 21.9k | isl_int_add_ui(ineq[0], ineq[0], 1); |
1714 | 21.9k | type = isl_tab_ineq_type(tab, ineq); |
1715 | 21.9k | isl_int_sub_ui(ineq[0], ineq[0], 1); |
1716 | 21.9k | |
1717 | 21.9k | return type; |
1718 | 21.9k | } |
1719 | | |
1720 | | /* Given two basic sets i and j, |
1721 | | * check if relaxing all the cut constraints of i by one turns |
1722 | | * them into valid constraint for j and check if we can wrap in |
1723 | | * the bits that are sticking out. |
1724 | | * If so, replace the pair by their union. |
1725 | | * |
1726 | | * We first check if all relaxed cut inequalities of i are valid for j |
1727 | | * and then try to wrap in the intersections of the relaxed cut inequalities |
1728 | | * with j. |
1729 | | * |
1730 | | * During this wrapping, we consider the points of j that lie at a distance |
1731 | | * of exactly 1 from i. In particular, we ignore the points that lie in |
1732 | | * between this lower-dimensional space and the basic map i. |
1733 | | * We can therefore only apply this to integer maps. |
1734 | | * ____ _____ |
1735 | | * / ___|_ / \ |
1736 | | * / | | / | |
1737 | | * \ | | => \ | |
1738 | | * \|____| \ | |
1739 | | * \___| \____/ |
1740 | | * |
1741 | | * _____ ______ |
1742 | | * | ____|_ | \ |
1743 | | * | | | | | |
1744 | | * | | | => | | |
1745 | | * |_| | | | |
1746 | | * |_____| \______| |
1747 | | * |
1748 | | * _______ |
1749 | | * | | |
1750 | | * | |\ | |
1751 | | * | | \ | |
1752 | | * | | \ | |
1753 | | * | | \| |
1754 | | * | | \ |
1755 | | * | |_____\ |
1756 | | * | | |
1757 | | * |_______| |
1758 | | * |
1759 | | * Wrapping can fail if the result of wrapping one of the facets |
1760 | | * around its edges does not produce any new facet constraint. |
1761 | | * In particular, this happens when we try to wrap in unbounded sets. |
1762 | | * |
1763 | | * _______________________________________________________________________ |
1764 | | * | |
1765 | | * | ___ |
1766 | | * | | | |
1767 | | * |_| |_________________________________________________________________ |
1768 | | * |___| |
1769 | | * |
1770 | | * The following is not an acceptable result of coalescing the above two |
1771 | | * sets as it includes extra integer points. |
1772 | | * _______________________________________________________________________ |
1773 | | * | |
1774 | | * | |
1775 | | * | |
1776 | | * | |
1777 | | * \______________________________________________________________________ |
1778 | | */ |
1779 | | static enum isl_change can_wrap_in_set(int i, int j, |
1780 | | struct isl_coalesce_info *info) |
1781 | 26.3k | { |
1782 | 26.3k | int k, l; |
1783 | 26.3k | int n; |
1784 | 26.3k | unsigned total; |
1785 | 26.3k | |
1786 | 26.3k | if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) || |
1787 | 26.3k | ISL_F_ISSET21.5k (info[j].bmap, ISL_BASIC_MAP_RATIONAL)) |
1788 | 26.3k | return isl_change_none4.79k ; |
1789 | 21.5k | |
1790 | 21.5k | n = count_eq(&info[i], STATUS_CUT) + count_ineq(&info[i], STATUS_CUT); |
1791 | 21.5k | if (n == 0) |
1792 | 0 | return isl_change_none; |
1793 | 21.5k | |
1794 | 21.5k | total = isl_basic_map_total_dim(info[i].bmap); |
1795 | 21.8k | for (k = 0; k < info[i].bmap->n_eq; ++k321 ) { |
1796 | 3.75k | for (l = 0; l < 2; ++l813 ) { |
1797 | 3.43k | enum isl_ineq_type type; |
1798 | 3.43k | |
1799 | 3.43k | if (info[i].eq[2 * k + l] != STATUS_CUT) |
1800 | 3.43k | continue729 ; |
1801 | 2.70k | |
1802 | 2.70k | if (l == 0) |
1803 | 2.50k | isl_seq_neg(info[i].bmap->eq[k], |
1804 | 2.50k | info[i].bmap->eq[k], 1 + total); |
1805 | 2.70k | type = type_of_relaxed(info[j].tab, |
1806 | 2.70k | info[i].bmap->eq[k]); |
1807 | 2.70k | if (l == 0) |
1808 | 2.50k | isl_seq_neg(info[i].bmap->eq[k], |
1809 | 2.50k | info[i].bmap->eq[k], 1 + total); |
1810 | 2.70k | if (type == isl_ineq_error) |
1811 | 0 | return isl_change_error; |
1812 | 2.70k | if (type != isl_ineq_redundant) |
1813 | 2.62k | return isl_change_none; |
1814 | 2.70k | } |
1815 | 2.94k | } |
1816 | 21.5k | |
1817 | 22.4k | for (k = 0; 18.9k k < info[i].bmap->n_ineq; ++k3.50k ) { |
1818 | 22.2k | enum isl_ineq_type type; |
1819 | 22.2k | |
1820 | 22.2k | if (info[i].ineq[k] != STATUS_CUT) |
1821 | 22.2k | continue3.32k ; |
1822 | 18.9k | |
1823 | 18.9k | type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[k]); |
1824 | 18.9k | if (type == isl_ineq_error) |
1825 | 0 | return isl_change_error; |
1826 | 18.9k | if (type != isl_ineq_redundant) |
1827 | 18.7k | return isl_change_none; |
1828 | 18.9k | } |
1829 | 18.9k | |
1830 | 18.9k | return wrap_in_facets(i, j, n, info)161 ; |
1831 | 18.9k | } |
1832 | | |
1833 | | /* Check if either i or j has only cut constraints that can |
1834 | | * be used to wrap in (a facet of) the other basic set. |
1835 | | * if so, replace the pair by their union. |
1836 | | */ |
1837 | | static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info) |
1838 | 13.1k | { |
1839 | 13.1k | enum isl_change change = isl_change_none; |
1840 | 13.1k | |
1841 | 13.1k | change = can_wrap_in_set(i, j, info); |
1842 | 13.1k | if (change != isl_change_none) |
1843 | 27 | return change; |
1844 | 13.1k | |
1845 | 13.1k | change = can_wrap_in_set(j, i, info); |
1846 | 13.1k | return change; |
1847 | 13.1k | } |
1848 | | |
1849 | | /* Check if all inequality constraints of "i" that cut "j" cease |
1850 | | * to be cut constraints if they are relaxed by one. |
1851 | | * If so, collect the cut constraints in "list". |
1852 | | * The caller is responsible for allocating "list". |
1853 | | */ |
1854 | | static isl_bool all_cut_by_one(int i, int j, struct isl_coalesce_info *info, |
1855 | | int *list) |
1856 | 331 | { |
1857 | 331 | int l, n; |
1858 | 331 | |
1859 | 331 | n = 0; |
1860 | 1.32k | for (l = 0; l < info[i].bmap->n_ineq; ++l990 ) { |
1861 | 1.30k | enum isl_ineq_type type; |
1862 | 1.30k | |
1863 | 1.30k | if (info[i].ineq[l] != STATUS_CUT) |
1864 | 1.30k | continue966 ; |
1865 | 334 | type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[l]); |
1866 | 334 | if (type == isl_ineq_error) |
1867 | 0 | return isl_bool_error; |
1868 | 334 | if (type != isl_ineq_redundant) |
1869 | 310 | return isl_bool_false; |
1870 | 24 | list[n++] = l; |
1871 | 24 | } |
1872 | 331 | |
1873 | 331 | return isl_bool_true21 ; |
1874 | 331 | } |
1875 | | |
1876 | | /* Given two basic maps such that "j" has at least one equality constraint |
1877 | | * that is adjacent to an inequality constraint of "i" and such that "i" has |
1878 | | * exactly one inequality constraint that is adjacent to an equality |
1879 | | * constraint of "j", check whether "i" can be extended to include "j" or |
1880 | | * whether "j" can be wrapped into "i". |
1881 | | * All remaining constraints of "i" and "j" are assumed to be valid |
1882 | | * or cut constraints of the other basic map. |
1883 | | * However, none of the equality constraints of "i" are cut constraints. |
1884 | | * |
1885 | | * If "i" has any "cut" inequality constraints, then check if relaxing |
1886 | | * each of them by one is sufficient for them to become valid. |
1887 | | * If so, check if the inequality constraint adjacent to an equality |
1888 | | * constraint of "j" along with all these cut constraints |
1889 | | * can be relaxed by one to contain exactly "j". |
1890 | | * Otherwise, or if this fails, check if "j" can be wrapped into "i". |
1891 | | */ |
1892 | | static enum isl_change check_single_adj_eq(int i, int j, |
1893 | | struct isl_coalesce_info *info) |
1894 | 8.72k | { |
1895 | 8.72k | enum isl_change change = isl_change_none; |
1896 | 8.72k | int k; |
1897 | 8.72k | int n_cut; |
1898 | 8.72k | int *relax; |
1899 | 8.72k | isl_ctx *ctx; |
1900 | 8.72k | isl_bool try_relax; |
1901 | 8.72k | |
1902 | 8.72k | n_cut = count_ineq(&info[i], STATUS_CUT); |
1903 | 8.72k | |
1904 | 8.72k | k = find_ineq(&info[i], STATUS_ADJ_EQ); |
1905 | 8.72k | |
1906 | 8.72k | if (n_cut > 0) { |
1907 | 331 | ctx = isl_basic_map_get_ctx(info[i].bmap); |
1908 | 331 | relax = isl_calloc_array(ctx, int, 1 + n_cut); |
1909 | 331 | if (!relax) |
1910 | 0 | return isl_change_error; |
1911 | 331 | relax[0] = k; |
1912 | 331 | try_relax = all_cut_by_one(i, j, info, relax + 1); |
1913 | 331 | if (try_relax < 0) |
1914 | 0 | change = isl_change_error; |
1915 | 8.39k | } else { |
1916 | 8.39k | try_relax = isl_bool_true; |
1917 | 8.39k | relax = &k; |
1918 | 8.39k | } |
1919 | 8.72k | if (try_relax && change == isl_change_none8.41k ) |
1920 | 8.41k | change = is_relaxed_extension(i, j, 1 + n_cut, relax, info); |
1921 | 8.72k | if (n_cut > 0) |
1922 | 331 | free(relax); |
1923 | 8.72k | if (change != isl_change_none) |
1924 | 5.43k | return change; |
1925 | 3.29k | |
1926 | 3.29k | change = can_wrap_in_facet(i, j, k, info, n_cut > 0); |
1927 | 3.29k | |
1928 | 3.29k | return change; |
1929 | 3.29k | } |
1930 | | |
1931 | | /* At least one of the basic maps has an equality that is adjacent |
1932 | | * to an inequality. Make sure that only one of the basic maps has |
1933 | | * such an equality and that the other basic map has exactly one |
1934 | | * inequality adjacent to an equality. |
1935 | | * If the other basic map does not have such an inequality, then |
1936 | | * check if all its constraints are either valid or cut constraints |
1937 | | * and, if so, try wrapping in the first map into the second. |
1938 | | * Otherwise, try to extend one basic map with the other or |
1939 | | * wrap one basic map in the other. |
1940 | | */ |
1941 | | static enum isl_change check_adj_eq(int i, int j, |
1942 | | struct isl_coalesce_info *info) |
1943 | 13.7k | { |
1944 | 13.7k | if (any_eq(&info[i], STATUS_ADJ_INEQ) && |
1945 | 13.7k | any_eq(&info[j], 4.04k STATUS_ADJ_INEQ4.04k )) |
1946 | 137 | /* ADJ EQ TOO MANY */ |
1947 | 137 | return isl_change_none; |
1948 | 13.6k | |
1949 | 13.6k | if (any_eq(&info[i], STATUS_ADJ_INEQ)) |
1950 | 3.90k | return check_adj_eq(j, i, info); |
1951 | 9.75k | |
1952 | 9.75k | /* j has an equality adjacent to an inequality in i */ |
1953 | 9.75k | |
1954 | 9.75k | if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1) { |
1955 | 577 | if (all_valid_or_cut(&info[i])) |
1956 | 40 | return can_wrap_in_set(i, j, info); |
1957 | 537 | return isl_change_none; |
1958 | 537 | } |
1959 | 9.17k | if (any_eq(&info[i], STATUS_CUT)) |
1960 | 403 | return isl_change_none; |
1961 | 8.77k | if (any_ineq(&info[j], STATUS_ADJ_EQ) || |
1962 | 8.77k | any_ineq(&info[i], STATUS_ADJ_INEQ) || |
1963 | 8.77k | any_ineq(&info[j], 8.75k STATUS_ADJ_INEQ8.75k )) |
1964 | 41 | /* ADJ EQ TOO MANY */ |
1965 | 41 | return isl_change_none; |
1966 | 8.72k | |
1967 | 8.72k | return check_single_adj_eq(i, j, info); |
1968 | 8.72k | } |
1969 | | |
1970 | | /* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i". |
1971 | | * In particular, disjunct "i" has an inequality constraint that is adjacent |
1972 | | * to a (combination of) equality constraint(s) of disjunct "j", |
1973 | | * but disjunct "j" has no explicit equality constraint adjacent |
1974 | | * to an inequality constraint of disjunct "i". |
1975 | | * |
1976 | | * Disjunct "i" is already known not to have any equality constraints |
1977 | | * that are adjacent to an equality or inequality constraint. |
1978 | | * Check that, other than the inequality constraint mentioned above, |
1979 | | * all other constraints of disjunct "i" are valid for disjunct "j". |
1980 | | * If so, try and wrap in disjunct "j". |
1981 | | */ |
1982 | | static enum isl_change check_ineq_adj_eq(int i, int j, |
1983 | | struct isl_coalesce_info *info) |
1984 | 222 | { |
1985 | 222 | int k; |
1986 | 222 | |
1987 | 222 | if (any_eq(&info[i], STATUS_CUT)) |
1988 | 52 | return isl_change_none; |
1989 | 170 | if (any_ineq(&info[i], STATUS_CUT)) |
1990 | 12 | return isl_change_none; |
1991 | 158 | if (any_ineq(&info[i], STATUS_ADJ_INEQ)) |
1992 | 0 | return isl_change_none; |
1993 | 158 | if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1) |
1994 | 0 | return isl_change_none; |
1995 | 158 | |
1996 | 158 | k = find_ineq(&info[i], STATUS_ADJ_EQ); |
1997 | 158 | |
1998 | 158 | return can_wrap_in_facet(i, j, k, info, 0); |
1999 | 158 | } |
2000 | | |
2001 | | /* The two basic maps lie on adjacent hyperplanes. In particular, |
2002 | | * basic map "i" has an equality that lies parallel to basic map "j". |
2003 | | * Check if we can wrap the facets around the parallel hyperplanes |
2004 | | * to include the other set. |
2005 | | * |
2006 | | * We perform basically the same operations as can_wrap_in_facet, |
2007 | | * except that we don't need to select a facet of one of the sets. |
2008 | | * _ |
2009 | | * \\ \\ |
2010 | | * \\ => \\ |
2011 | | * \ \| |
2012 | | * |
2013 | | * If there is more than one equality of "i" adjacent to an equality of "j", |
2014 | | * then the result will satisfy one or more equalities that are a linear |
2015 | | * combination of these equalities. These will be encoded as pairs |
2016 | | * of inequalities in the wrapping constraints and need to be made |
2017 | | * explicit. |
2018 | | */ |
2019 | | static enum isl_change check_eq_adj_eq(int i, int j, |
2020 | | struct isl_coalesce_info *info) |
2021 | 2.95k | { |
2022 | 2.95k | int k; |
2023 | 2.95k | enum isl_change change = isl_change_none; |
2024 | 2.95k | int detect_equalities = 0; |
2025 | 2.95k | struct isl_wraps wraps; |
2026 | 2.95k | isl_ctx *ctx; |
2027 | 2.95k | isl_mat *mat; |
2028 | 2.95k | struct isl_set *set_i = NULL; |
2029 | 2.95k | struct isl_set *set_j = NULL; |
2030 | 2.95k | struct isl_vec *bound = NULL; |
2031 | 2.95k | unsigned total = isl_basic_map_total_dim(info[i].bmap); |
2032 | 2.95k | |
2033 | 2.95k | if (count_eq(&info[i], STATUS_ADJ_EQ) != 1) |
2034 | 629 | detect_equalities = 1; |
2035 | 2.95k | |
2036 | 2.95k | k = find_eq(&info[i], STATUS_ADJ_EQ); |
2037 | 2.95k | |
2038 | 2.95k | set_i = set_from_updated_bmap(info[i].bmap, info[i].tab); |
2039 | 2.95k | set_j = set_from_updated_bmap(info[j].bmap, info[j].tab); |
2040 | 2.95k | ctx = isl_basic_map_get_ctx(info[i].bmap); |
2041 | 2.95k | mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) + |
2042 | 2.95k | info[i].bmap->n_ineq + info[j].bmap->n_ineq, |
2043 | 2.95k | 1 + total); |
2044 | 2.95k | if (wraps_init(&wraps, mat, info, i, j) < 0) |
2045 | 0 | goto error; |
2046 | 2.95k | bound = isl_vec_alloc(ctx, 1 + total); |
2047 | 2.95k | if (!set_i || !set_j || !bound) |
2048 | 0 | goto error; |
2049 | 2.95k | |
2050 | 2.95k | if (k % 2 == 0) |
2051 | 1.27k | isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total); |
2052 | 1.68k | else |
2053 | 1.68k | isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total); |
2054 | 2.95k | isl_int_add_ui(bound->el[0], bound->el[0], 1); |
2055 | 2.95k | |
2056 | 2.95k | isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total); |
2057 | 2.95k | wraps.mat->n_row = 1; |
2058 | 2.95k | |
2059 | 2.95k | if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0) |
2060 | 0 | goto error; |
2061 | 2.95k | if (!wraps.mat->n_row) |
2062 | 1.49k | goto unbounded; |
2063 | 1.46k | |
2064 | 1.46k | isl_int_sub_ui(bound->el[0], bound->el[0], 1); |
2065 | 1.46k | isl_seq_neg(bound->el, bound->el, 1 + total); |
2066 | 1.46k | |
2067 | 1.46k | isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total); |
2068 | 1.46k | wraps.mat->n_row++; |
2069 | 1.46k | |
2070 | 1.46k | if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0) |
2071 | 0 | goto error; |
2072 | 1.46k | if (!wraps.mat->n_row) |
2073 | 501 | goto unbounded; |
2074 | 962 | |
2075 | 962 | change = fuse(i, j, info, wraps.mat, detect_equalities, 0); |
2076 | 962 | |
2077 | 962 | if (0) { |
2078 | 0 | error: change = isl_change_error; |
2079 | 0 | } |
2080 | 2.95k | unbounded: |
2081 | 2.95k | |
2082 | 2.95k | wraps_free(&wraps); |
2083 | 2.95k | isl_set_free(set_i); |
2084 | 2.95k | isl_set_free(set_j); |
2085 | 2.95k | isl_vec_free(bound); |
2086 | 2.95k | |
2087 | 2.95k | return change; |
2088 | 962 | } |
2089 | | |
2090 | | /* Initialize the "eq" and "ineq" fields of "info". |
2091 | | */ |
2092 | | static void init_status(struct isl_coalesce_info *info) |
2093 | 146k | { |
2094 | 146k | info->eq = info->ineq = NULL; |
2095 | 146k | } |
2096 | | |
2097 | | /* Set info->eq to the positions of the equalities of info->bmap |
2098 | | * with respect to the basic map represented by "tab". |
2099 | | * If info->eq has already been computed, then do not compute it again. |
2100 | | */ |
2101 | | static void set_eq_status_in(struct isl_coalesce_info *info, |
2102 | | struct isl_tab *tab) |
2103 | 93.5k | { |
2104 | 93.5k | if (info->eq) |
2105 | 2.57k | return; |
2106 | 90.9k | info->eq = eq_status_in(info->bmap, tab); |
2107 | 90.9k | } |
2108 | | |
2109 | | /* Set info->ineq to the positions of the inequalities of info->bmap |
2110 | | * with respect to the basic map represented by "tab". |
2111 | | * If info->ineq has already been computed, then do not compute it again. |
2112 | | */ |
2113 | | static void set_ineq_status_in(struct isl_coalesce_info *info, |
2114 | | struct isl_tab *tab) |
2115 | 120k | { |
2116 | 120k | if (info->ineq) |
2117 | 2.60k | return; |
2118 | 118k | info->ineq = ineq_status_in(info->bmap, info->tab, tab); |
2119 | 118k | } |
2120 | | |
2121 | | /* Free the memory allocated by the "eq" and "ineq" fields of "info". |
2122 | | * This function assumes that init_status has been called on "info" first, |
2123 | | * after which the "eq" and "ineq" fields may or may not have been |
2124 | | * assigned a newly allocated array. |
2125 | | */ |
2126 | | static void clear_status(struct isl_coalesce_info *info) |
2127 | 146k | { |
2128 | 146k | free(info->eq); |
2129 | 146k | free(info->ineq); |
2130 | 146k | } |
2131 | | |
2132 | | /* Are all inequality constraints of the basic map represented by "info" |
2133 | | * valid for the other basic map, except for a single constraint |
2134 | | * that is adjacent to an inequality constraint of the other basic map? |
2135 | | */ |
2136 | | static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info *info) |
2137 | 136 | { |
2138 | 136 | int i; |
2139 | 136 | int k = -1; |
2140 | 136 | |
2141 | 521 | for (i = 0; i < info->bmap->n_ineq; ++i385 ) { |
2142 | 506 | if (info->ineq[i] == STATUS_REDUNDANT) |
2143 | 506 | continue81 ; |
2144 | 425 | if (info->ineq[i] == STATUS_VALID) |
2145 | 425 | continue262 ; |
2146 | 163 | if (info->ineq[i] != STATUS_ADJ_INEQ) |
2147 | 163 | return 0120 ; |
2148 | 43 | if (k != -1) |
2149 | 1 | return 0; |
2150 | 42 | k = i; |
2151 | 42 | } |
2152 | 136 | |
2153 | 136 | return k != -115 ; |
2154 | 136 | } |
2155 | | |
2156 | | /* Basic map "i" has one or more equality constraints that separate it |
2157 | | * from basic map "j". Check if it happens to be an extension |
2158 | | * of basic map "j". |
2159 | | * In particular, check that all constraints of "j" are valid for "i", |
2160 | | * except for one inequality constraint that is adjacent |
2161 | | * to an inequality constraints of "i". |
2162 | | * If so, check for "i" being an extension of "j" by calling |
2163 | | * is_adj_ineq_extension. |
2164 | | * |
2165 | | * Clean up the memory allocated for keeping track of the status |
2166 | | * of the constraints before returning. |
2167 | | */ |
2168 | | static enum isl_change separating_equality(int i, int j, |
2169 | | struct isl_coalesce_info *info) |
2170 | 5.89k | { |
2171 | 5.89k | enum isl_change change = isl_change_none; |
2172 | 5.89k | |
2173 | 5.89k | if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) && |
2174 | 5.89k | all_ineq_valid_or_single_adj_ineq(&info[j])136 ) |
2175 | 15 | change = is_adj_ineq_extension(j, i, info); |
2176 | 5.89k | |
2177 | 5.89k | clear_status(&info[i]); |
2178 | 5.89k | clear_status(&info[j]); |
2179 | 5.89k | return change; |
2180 | 5.89k | } |
2181 | | |
2182 | | /* Check if the union of the given pair of basic maps |
2183 | | * can be represented by a single basic map. |
2184 | | * If so, replace the pair by the single basic map and return |
2185 | | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
2186 | | * Otherwise, return isl_change_none. |
2187 | | * The two basic maps are assumed to live in the same local space. |
2188 | | * The "eq" and "ineq" fields of info[i] and info[j] are assumed |
2189 | | * to have been initialized by the caller, either to NULL or |
2190 | | * to valid information. |
2191 | | * |
2192 | | * We first check the effect of each constraint of one basic map |
2193 | | * on the other basic map. |
2194 | | * The constraint may be |
2195 | | * redundant the constraint is redundant in its own |
2196 | | * basic map and should be ignore and removed |
2197 | | * in the end |
2198 | | * valid all (integer) points of the other basic map |
2199 | | * satisfy the constraint |
2200 | | * separate no (integer) point of the other basic map |
2201 | | * satisfies the constraint |
2202 | | * cut some but not all points of the other basic map |
2203 | | * satisfy the constraint |
2204 | | * adj_eq the given constraint is adjacent (on the outside) |
2205 | | * to an equality of the other basic map |
2206 | | * adj_ineq the given constraint is adjacent (on the outside) |
2207 | | * to an inequality of the other basic map |
2208 | | * |
2209 | | * We consider seven cases in which we can replace the pair by a single |
2210 | | * basic map. We ignore all "redundant" constraints. |
2211 | | * |
2212 | | * 1. all constraints of one basic map are valid |
2213 | | * => the other basic map is a subset and can be removed |
2214 | | * |
2215 | | * 2. all constraints of both basic maps are either "valid" or "cut" |
2216 | | * and the facets corresponding to the "cut" constraints |
2217 | | * of one of the basic maps lies entirely inside the other basic map |
2218 | | * => the pair can be replaced by a basic map consisting |
2219 | | * of the valid constraints in both basic maps |
2220 | | * |
2221 | | * 3. there is a single pair of adjacent inequalities |
2222 | | * (all other constraints are "valid") |
2223 | | * => the pair can be replaced by a basic map consisting |
2224 | | * of the valid constraints in both basic maps |
2225 | | * |
2226 | | * 4. one basic map has a single adjacent inequality, while the other |
2227 | | * constraints are "valid". The other basic map has some |
2228 | | * "cut" constraints, but replacing the adjacent inequality by |
2229 | | * its opposite and adding the valid constraints of the other |
2230 | | * basic map results in a subset of the other basic map |
2231 | | * => the pair can be replaced by a basic map consisting |
2232 | | * of the valid constraints in both basic maps |
2233 | | * |
2234 | | * 5. there is a single adjacent pair of an inequality and an equality, |
2235 | | * the other constraints of the basic map containing the inequality are |
2236 | | * "valid". Moreover, if the inequality the basic map is relaxed |
2237 | | * and then turned into an equality, then resulting facet lies |
2238 | | * entirely inside the other basic map |
2239 | | * => the pair can be replaced by the basic map containing |
2240 | | * the inequality, with the inequality relaxed. |
2241 | | * |
2242 | | * 6. there is a single inequality adjacent to an equality, |
2243 | | * the other constraints of the basic map containing the inequality are |
2244 | | * "valid". Moreover, the facets corresponding to both |
2245 | | * the inequality and the equality can be wrapped around their |
2246 | | * ridges to include the other basic map |
2247 | | * => the pair can be replaced by a basic map consisting |
2248 | | * of the valid constraints in both basic maps together |
2249 | | * with all wrapping constraints |
2250 | | * |
2251 | | * 7. one of the basic maps extends beyond the other by at most one. |
2252 | | * Moreover, the facets corresponding to the cut constraints and |
2253 | | * the pieces of the other basic map at offset one from these cut |
2254 | | * constraints can be wrapped around their ridges to include |
2255 | | * the union of the two basic maps |
2256 | | * => the pair can be replaced by a basic map consisting |
2257 | | * of the valid constraints in both basic maps together |
2258 | | * with all wrapping constraints |
2259 | | * |
2260 | | * 8. the two basic maps live in adjacent hyperplanes. In principle |
2261 | | * such sets can always be combined through wrapping, but we impose |
2262 | | * that there is only one such pair, to avoid overeager coalescing. |
2263 | | * |
2264 | | * Throughout the computation, we maintain a collection of tableaus |
2265 | | * corresponding to the basic maps. When the basic maps are dropped |
2266 | | * or combined, the tableaus are modified accordingly. |
2267 | | */ |
2268 | | static enum isl_change coalesce_local_pair_reuse(int i, int j, |
2269 | | struct isl_coalesce_info *info) |
2270 | 70.2k | { |
2271 | 70.2k | enum isl_change change = isl_change_none; |
2272 | 70.2k | |
2273 | 70.2k | set_ineq_status_in(&info[i], info[j].tab); |
2274 | 70.2k | if (info[i].bmap->n_ineq && !info[i].ineq63.4k ) |
2275 | 0 | goto error; |
2276 | 70.2k | if (any_ineq(&info[i], STATUS_ERROR)) |
2277 | 0 | goto error; |
2278 | 70.2k | if (any_ineq(&info[i], STATUS_SEPARATE)) |
2279 | 19.5k | goto done; |
2280 | 50.6k | |
2281 | 50.6k | set_ineq_status_in(&info[j], info[i].tab); |
2282 | 50.6k | if (info[j].bmap->n_ineq && !info[j].ineq43.9k ) |
2283 | 0 | goto error; |
2284 | 50.6k | if (any_ineq(&info[j], STATUS_ERROR)) |
2285 | 0 | goto error; |
2286 | 50.6k | if (any_ineq(&info[j], STATUS_SEPARATE)) |
2287 | 3.91k | goto done; |
2288 | 46.7k | |
2289 | 46.7k | set_eq_status_in(&info[i], info[j].tab); |
2290 | 46.7k | if (info[i].bmap->n_eq && !info[i].eq25.1k ) |
2291 | 0 | goto error; |
2292 | 46.7k | if (any_eq(&info[i], STATUS_ERROR)) |
2293 | 0 | goto error; |
2294 | 46.7k | |
2295 | 46.7k | set_eq_status_in(&info[j], info[i].tab); |
2296 | 46.7k | if (info[j].bmap->n_eq && !info[j].eq25.6k ) |
2297 | 0 | goto error; |
2298 | 46.7k | if (any_eq(&info[j], STATUS_ERROR)) |
2299 | 0 | goto error; |
2300 | 46.7k | |
2301 | 46.7k | if (any_eq(&info[i], STATUS_SEPARATE)) |
2302 | 5.34k | return separating_equality(i, j, info); |
2303 | 41.4k | if (any_eq(&info[j], STATUS_SEPARATE)) |
2304 | 552 | return separating_equality(j, i, info); |
2305 | 40.8k | |
2306 | 40.8k | if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) && |
2307 | 40.8k | all(info[i].ineq, info[i].bmap->n_ineq, 27.2k STATUS_VALID27.2k )) { |
2308 | 2.90k | drop(&info[j]); |
2309 | 2.90k | change = isl_change_drop_second; |
2310 | 37.9k | } else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) && |
2311 | 37.9k | all(info[j].ineq, info[j].bmap->n_ineq, 24.8k STATUS_VALID24.8k )) { |
2312 | 3.12k | drop(&info[i]); |
2313 | 3.12k | change = isl_change_drop_first; |
2314 | 34.8k | } else if (any_eq(&info[i], STATUS_ADJ_EQ)) { |
2315 | 2.64k | change = check_eq_adj_eq(i, j, info); |
2316 | 32.2k | } else if (any_eq(&info[j], STATUS_ADJ_EQ)) { |
2317 | 313 | change = check_eq_adj_eq(j, i, info); |
2318 | 31.8k | } else if (any_eq(&info[i], STATUS_ADJ_INEQ) || |
2319 | 31.8k | any_eq(&info[j], 27.8k STATUS_ADJ_INEQ27.8k )) { |
2320 | 9.88k | change = check_adj_eq(i, j, info); |
2321 | 22.0k | } else if (any_ineq(&info[i], STATUS_ADJ_EQ)) { |
2322 | 97 | change = check_ineq_adj_eq(i, j, info); |
2323 | 21.9k | } else if (any_ineq(&info[j], STATUS_ADJ_EQ)) { |
2324 | 125 | change = check_ineq_adj_eq(j, i, info); |
2325 | 21.7k | } else if (any_ineq(&info[i], STATUS_ADJ_INEQ) || |
2326 | 21.7k | any_ineq(&info[j], 13.2k STATUS_ADJ_INEQ13.2k )) { |
2327 | 8.59k | change = check_adj_ineq(i, j, info); |
2328 | 13.1k | } else { |
2329 | 13.1k | if (!any_eq(&info[i], STATUS_CUT) && |
2330 | 13.1k | !any_eq(&info[j], 9.62k STATUS_CUT9.62k )) |
2331 | 9.26k | change = check_facets(i, j, info); |
2332 | 13.1k | if (change == isl_change_none) |
2333 | 13.1k | change = check_wrap(i, j, info); |
2334 | 13.1k | } |
2335 | 40.8k | |
2336 | 64.3k | done: |
2337 | 64.3k | clear_status(&info[i]); |
2338 | 64.3k | clear_status(&info[j]); |
2339 | 64.3k | return change; |
2340 | 0 | error: |
2341 | 0 | clear_status(&info[i]); |
2342 | 0 | clear_status(&info[j]); |
2343 | 0 | return isl_change_error; |
2344 | 40.8k | } |
2345 | | |
2346 | | /* Check if the union of the given pair of basic maps |
2347 | | * can be represented by a single basic map. |
2348 | | * If so, replace the pair by the single basic map and return |
2349 | | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
2350 | | * Otherwise, return isl_change_none. |
2351 | | * The two basic maps are assumed to live in the same local space. |
2352 | | */ |
2353 | | static enum isl_change coalesce_local_pair(int i, int j, |
2354 | | struct isl_coalesce_info *info) |
2355 | 67.5k | { |
2356 | 67.5k | init_status(&info[i]); |
2357 | 67.5k | init_status(&info[j]); |
2358 | 67.5k | return coalesce_local_pair_reuse(i, j, info); |
2359 | 67.5k | } |
2360 | | |
2361 | | /* Shift the integer division at position "div" of the basic map |
2362 | | * represented by "info" by "shift". |
2363 | | * |
2364 | | * That is, if the integer division has the form |
2365 | | * |
2366 | | * floor(f(x)/d) |
2367 | | * |
2368 | | * then replace it by |
2369 | | * |
2370 | | * floor((f(x) + shift * d)/d) - shift |
2371 | | */ |
2372 | | static isl_stat shift_div(struct isl_coalesce_info *info, int div, |
2373 | | isl_int shift) |
2374 | 176 | { |
2375 | 176 | unsigned total; |
2376 | 176 | |
2377 | 176 | info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift); |
2378 | 176 | if (!info->bmap) |
2379 | 0 | return isl_stat_error; |
2380 | 176 | |
2381 | 176 | total = isl_basic_map_dim(info->bmap, isl_dim_all); |
2382 | 176 | total -= isl_basic_map_dim(info->bmap, isl_dim_div); |
2383 | 176 | if (isl_tab_shift_var(info->tab, total + div, shift) < 0) |
2384 | 0 | return isl_stat_error; |
2385 | 176 | |
2386 | 176 | return isl_stat_ok; |
2387 | 176 | } |
2388 | | |
2389 | | /* If the integer division at position "div" is defined by an equality, |
2390 | | * i.e., a stride constraint, then change the integer division expression |
2391 | | * to have a constant term equal to zero. |
2392 | | * |
2393 | | * Let the equality constraint be |
2394 | | * |
2395 | | * c + f + m a = 0 |
2396 | | * |
2397 | | * The integer division expression is then typically of the form |
2398 | | * |
2399 | | * a = floor((-f - c')/m) |
2400 | | * |
2401 | | * The integer division is first shifted by t = floor(c/m), |
2402 | | * turning the equality constraint into |
2403 | | * |
2404 | | * c - m floor(c/m) + f + m a' = 0 |
2405 | | * |
2406 | | * i.e., |
2407 | | * |
2408 | | * (c mod m) + f + m a' = 0 |
2409 | | * |
2410 | | * That is, |
2411 | | * |
2412 | | * a' = (-f - (c mod m))/m = floor((-f)/m) |
2413 | | * |
2414 | | * because a' is an integer and 0 <= (c mod m) < m. |
2415 | | * The constant term of a' can therefore be zeroed out, |
2416 | | * but only if the integer division expression is of the expected form. |
2417 | | */ |
2418 | | static isl_stat normalize_stride_div(struct isl_coalesce_info *info, int div) |
2419 | 592 | { |
2420 | 592 | isl_bool defined, valid; |
2421 | 592 | isl_stat r; |
2422 | 592 | isl_constraint *c; |
2423 | 592 | isl_int shift, stride; |
2424 | 592 | |
2425 | 592 | defined = isl_basic_map_has_defining_equality(info->bmap, isl_dim_div, |
2426 | 592 | div, &c); |
2427 | 592 | if (defined < 0) |
2428 | 0 | return isl_stat_error; |
2429 | 592 | if (!defined) |
2430 | 420 | return isl_stat_ok; |
2431 | 172 | if (!c) |
2432 | 0 | return isl_stat_error; |
2433 | 172 | valid = isl_constraint_is_div_equality(c, div); |
2434 | 172 | isl_int_init(shift); |
2435 | 172 | isl_int_init(stride); |
2436 | 172 | isl_constraint_get_constant(c, &shift); |
2437 | 172 | isl_constraint_get_coefficient(c, isl_dim_div, div, &stride); |
2438 | 172 | isl_int_fdiv_q(shift, shift, stride); |
2439 | 172 | r = shift_div(info, div, shift); |
2440 | 172 | isl_int_clear(stride); |
2441 | 172 | isl_int_clear(shift); |
2442 | 172 | isl_constraint_free(c); |
2443 | 172 | if (r < 0 || valid < 0) |
2444 | 0 | return isl_stat_error; |
2445 | 172 | if (!valid) |
2446 | 2 | return isl_stat_ok; |
2447 | 170 | info->bmap = isl_basic_map_set_div_expr_constant_num_si_inplace( |
2448 | 170 | info->bmap, div, 0); |
2449 | 170 | if (!info->bmap) |
2450 | 0 | return isl_stat_error; |
2451 | 170 | return isl_stat_ok; |
2452 | 170 | } |
2453 | | |
2454 | | /* The basic maps represented by "info1" and "info2" are known |
2455 | | * to have the same number of integer divisions. |
2456 | | * Check if pairs of integer divisions are equal to each other |
2457 | | * despite the fact that they differ by a rational constant. |
2458 | | * |
2459 | | * In particular, look for any pair of integer divisions that |
2460 | | * only differ in their constant terms. |
2461 | | * If either of these integer divisions is defined |
2462 | | * by stride constraints, then modify it to have a zero constant term. |
2463 | | * If both are defined by stride constraints then in the end they will have |
2464 | | * the same (zero) constant term. |
2465 | | */ |
2466 | | static isl_stat harmonize_stride_divs(struct isl_coalesce_info *info1, |
2467 | | struct isl_coalesce_info *info2) |
2468 | 4.60k | { |
2469 | 4.60k | int i, n; |
2470 | 4.60k | |
2471 | 4.60k | n = isl_basic_map_dim(info1->bmap, isl_dim_div); |
2472 | 9.72k | for (i = 0; i < n; ++i5.11k ) { |
2473 | 5.11k | isl_bool known, harmonize; |
2474 | 5.11k | |
2475 | 5.11k | known = isl_basic_map_div_is_known(info1->bmap, i); |
2476 | 5.11k | if (known >= 0 && known) |
2477 | 5.08k | known = isl_basic_map_div_is_known(info2->bmap, i); |
2478 | 5.11k | if (known < 0) |
2479 | 0 | return isl_stat_error; |
2480 | 5.11k | if (!known) |
2481 | 27 | continue; |
2482 | 5.08k | harmonize = isl_basic_map_equal_div_expr_except_constant( |
2483 | 5.08k | info1->bmap, i, info2->bmap, i); |
2484 | 5.08k | if (harmonize < 0) |
2485 | 0 | return isl_stat_error; |
2486 | 5.08k | if (!harmonize) |
2487 | 4.79k | continue; |
2488 | 296 | if (normalize_stride_div(info1, i) < 0) |
2489 | 0 | return isl_stat_error; |
2490 | 296 | if (normalize_stride_div(info2, i) < 0) |
2491 | 0 | return isl_stat_error; |
2492 | 296 | } |
2493 | 4.60k | |
2494 | 4.60k | return isl_stat_ok; |
2495 | 4.60k | } |
2496 | | |
2497 | | /* If "shift" is an integer constant, then shift the integer division |
2498 | | * at position "div" of the basic map represented by "info" by "shift". |
2499 | | * If "shift" is not an integer constant, then do nothing. |
2500 | | * If "shift" is equal to zero, then no shift needs to be performed either. |
2501 | | * |
2502 | | * That is, if the integer division has the form |
2503 | | * |
2504 | | * floor(f(x)/d) |
2505 | | * |
2506 | | * then replace it by |
2507 | | * |
2508 | | * floor((f(x) + shift * d)/d) - shift |
2509 | | */ |
2510 | | static isl_stat shift_if_cst_int(struct isl_coalesce_info *info, int div, |
2511 | | __isl_keep isl_aff *shift) |
2512 | 44 | { |
2513 | 44 | isl_bool cst; |
2514 | 44 | isl_stat r; |
2515 | 44 | isl_int d; |
2516 | 44 | isl_val *c; |
2517 | 44 | |
2518 | 44 | cst = isl_aff_is_cst(shift); |
2519 | 44 | if (cst < 0 || !cst) |
2520 | 19 | return cst < 0 ? isl_stat_error0 : isl_stat_ok; |
2521 | 25 | |
2522 | 25 | c = isl_aff_get_constant_val(shift); |
2523 | 25 | cst = isl_val_is_int(c); |
2524 | 25 | if (cst >= 0 && cst) |
2525 | 12 | cst = isl_bool_not(isl_val_is_zero(c)); |
2526 | 25 | if (cst < 0 || !cst) { |
2527 | 21 | isl_val_free(c); |
2528 | 21 | return cst < 0 ? isl_stat_error0 : isl_stat_ok; |
2529 | 21 | } |
2530 | 4 | |
2531 | 4 | isl_int_init(d); |
2532 | 4 | r = isl_val_get_num_isl_int(c, &d); |
2533 | 4 | if (r >= 0) |
2534 | 4 | r = shift_div(info, div, d); |
2535 | 4 | isl_int_clear(d); |
2536 | 4 | |
2537 | 4 | isl_val_free(c); |
2538 | 4 | |
2539 | 4 | return r; |
2540 | 4 | } |
2541 | | |
2542 | | /* Check if some of the divs in the basic map represented by "info1" |
2543 | | * are shifts of the corresponding divs in the basic map represented |
2544 | | * by "info2", taking into account the equality constraints "eq1" of "info1" |
2545 | | * and "eq2" of "info2". If so, align them with those of "info2". |
2546 | | * "info1" and "info2" are assumed to have the same number |
2547 | | * of integer divisions. |
2548 | | * |
2549 | | * An integer division is considered to be a shift of another integer |
2550 | | * division if, after simplification with respect to the equality |
2551 | | * constraints of the other basic map, one is equal to the other |
2552 | | * plus a constant. |
2553 | | * |
2554 | | * In particular, for each pair of integer divisions, if both are known, |
2555 | | * have the same denominator and are not already equal to each other, |
2556 | | * simplify each with respect to the equality constraints |
2557 | | * of the other basic map. If the difference is an integer constant, |
2558 | | * then move this difference outside. |
2559 | | * That is, if, after simplification, one integer division is of the form |
2560 | | * |
2561 | | * floor((f(x) + c_1)/d) |
2562 | | * |
2563 | | * while the other is of the form |
2564 | | * |
2565 | | * floor((f(x) + c_2)/d) |
2566 | | * |
2567 | | * and n = (c_2 - c_1)/d is an integer, then replace the first |
2568 | | * integer division by |
2569 | | * |
2570 | | * floor((f_1(x) + c_1 + n * d)/d) - n, |
2571 | | * |
2572 | | * where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d) |
2573 | | * after simplification with respect to the equality constraints. |
2574 | | */ |
2575 | | static isl_stat harmonize_divs_with_hulls(struct isl_coalesce_info *info1, |
2576 | | struct isl_coalesce_info *info2, __isl_keep isl_basic_set *eq1, |
2577 | | __isl_keep isl_basic_set *eq2) |
2578 | 431 | { |
2579 | 431 | int i; |
2580 | 431 | int total; |
2581 | 431 | isl_local_space *ls1, *ls2; |
2582 | 431 | |
2583 | 431 | total = isl_basic_map_total_dim(info1->bmap); |
2584 | 431 | ls1 = isl_local_space_wrap(isl_basic_map_get_local_space(info1->bmap)); |
2585 | 431 | ls2 = isl_local_space_wrap(isl_basic_map_get_local_space(info2->bmap)); |
2586 | 1.12k | for (i = 0; i < info1->bmap->n_div; ++i696 ) { |
2587 | 696 | isl_stat r; |
2588 | 696 | isl_aff *div1, *div2; |
2589 | 696 | |
2590 | 696 | if (!isl_local_space_div_is_known(ls1, i) || |
2591 | 696 | !isl_local_space_div_is_known(ls2, i)670 ) |
2592 | 27 | continue; |
2593 | 669 | if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0])) |
2594 | 669 | continue42 ; |
2595 | 627 | if (isl_seq_eq(info1->bmap->div[i] + 1, |
2596 | 627 | info2->bmap->div[i] + 1, 1 + total)) |
2597 | 583 | continue; |
2598 | 44 | div1 = isl_local_space_get_div(ls1, i); |
2599 | 44 | div2 = isl_local_space_get_div(ls2, i); |
2600 | 44 | div1 = isl_aff_substitute_equalities(div1, |
2601 | 44 | isl_basic_set_copy(eq2)); |
2602 | 44 | div2 = isl_aff_substitute_equalities(div2, |
2603 | 44 | isl_basic_set_copy(eq1)); |
2604 | 44 | div2 = isl_aff_sub(div2, div1); |
2605 | 44 | r = shift_if_cst_int(info1, i, div2); |
2606 | 44 | isl_aff_free(div2); |
2607 | 44 | if (r < 0) |
2608 | 0 | break; |
2609 | 44 | } |
2610 | 431 | isl_local_space_free(ls1); |
2611 | 431 | isl_local_space_free(ls2); |
2612 | 431 | |
2613 | 431 | if (i < info1->bmap->n_div) |
2614 | 0 | return isl_stat_error; |
2615 | 431 | return isl_stat_ok; |
2616 | 431 | } |
2617 | | |
2618 | | /* Check if some of the divs in the basic map represented by "info1" |
2619 | | * are shifts of the corresponding divs in the basic map represented |
2620 | | * by "info2". If so, align them with those of "info2". |
2621 | | * Only do this if "info1" and "info2" have the same number |
2622 | | * of integer divisions. |
2623 | | * |
2624 | | * An integer division is considered to be a shift of another integer |
2625 | | * division if, after simplification with respect to the equality |
2626 | | * constraints of the other basic map, one is equal to the other |
2627 | | * plus a constant. |
2628 | | * |
2629 | | * First check if pairs of integer divisions are equal to each other |
2630 | | * despite the fact that they differ by a rational constant. |
2631 | | * If so, try and arrange for them to have the same constant term. |
2632 | | * |
2633 | | * Then, extract the equality constraints and continue with |
2634 | | * harmonize_divs_with_hulls. |
2635 | | * |
2636 | | * If the equality constraints of both basic maps are the same, |
2637 | | * then there is no need to perform any shifting since |
2638 | | * the coefficients of the integer divisions should have been |
2639 | | * reduced in the same way. |
2640 | | */ |
2641 | | static isl_stat harmonize_divs(struct isl_coalesce_info *info1, |
2642 | | struct isl_coalesce_info *info2) |
2643 | 75.1k | { |
2644 | 75.1k | isl_bool equal; |
2645 | 75.1k | isl_basic_map *bmap1, *bmap2; |
2646 | 75.1k | isl_basic_set *eq1, *eq2; |
2647 | 75.1k | isl_stat r; |
2648 | 75.1k | |
2649 | 75.1k | if (!info1->bmap || !info2->bmap) |
2650 | 0 | return isl_stat_error; |
2651 | 75.1k | |
2652 | 75.1k | if (info1->bmap->n_div != info2->bmap->n_div) |
2653 | 7.87k | return isl_stat_ok; |
2654 | 67.3k | if (info1->bmap->n_div == 0) |
2655 | 62.7k | return isl_stat_ok; |
2656 | 4.60k | |
2657 | 4.60k | if (harmonize_stride_divs(info1, info2) < 0) |
2658 | 0 | return isl_stat_error; |
2659 | 4.60k | |
2660 | 4.60k | bmap1 = isl_basic_map_copy(info1->bmap); |
2661 | 4.60k | bmap2 = isl_basic_map_copy(info2->bmap); |
2662 | 4.60k | eq1 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap1)); |
2663 | 4.60k | eq2 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap2)); |
2664 | 4.60k | equal = isl_basic_set_plain_is_equal(eq1, eq2); |
2665 | 4.60k | if (equal < 0) |
2666 | 0 | r = isl_stat_error; |
2667 | 4.60k | else if (equal) |
2668 | 4.17k | r = isl_stat_ok; |
2669 | 431 | else |
2670 | 431 | r = harmonize_divs_with_hulls(info1, info2, eq1, eq2); |
2671 | 4.60k | isl_basic_set_free(eq1); |
2672 | 4.60k | isl_basic_set_free(eq2); |
2673 | 4.60k | |
2674 | 4.60k | return r; |
2675 | 4.60k | } |
2676 | | |
2677 | | /* Do the two basic maps live in the same local space, i.e., |
2678 | | * do they have the same (known) divs? |
2679 | | * If either basic map has any unknown divs, then we can only assume |
2680 | | * that they do not live in the same local space. |
2681 | | */ |
2682 | | static isl_bool same_divs(__isl_keep isl_basic_map *bmap1, |
2683 | | __isl_keep isl_basic_map *bmap2) |
2684 | 75.1k | { |
2685 | 75.1k | int i; |
2686 | 75.1k | isl_bool known; |
2687 | 75.1k | int total; |
2688 | 75.1k | |
2689 | 75.1k | if (!bmap1 || !bmap2) |
2690 | 0 | return isl_bool_error; |
2691 | 75.1k | if (bmap1->n_div != bmap2->n_div) |
2692 | 7.87k | return isl_bool_false; |
2693 | 67.3k | |
2694 | 67.3k | if (bmap1->n_div == 0) |
2695 | 62.7k | return isl_bool_true; |
2696 | 4.60k | |
2697 | 4.60k | known = isl_basic_map_divs_known(bmap1); |
2698 | 4.60k | if (known < 0 || !known) |
2699 | 26 | return known; |
2700 | 4.58k | known = isl_basic_map_divs_known(bmap2); |
2701 | 4.58k | if (known < 0 || !known) |
2702 | 1 | return known; |
2703 | 4.57k | |
2704 | 4.57k | total = isl_basic_map_total_dim(bmap1); |
2705 | 9.30k | for (i = 0; i < bmap1->n_div; ++i4.72k ) |
2706 | 4.97k | if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total)) |
2707 | 253 | return isl_bool_false; |
2708 | 4.57k | |
2709 | 4.57k | return isl_bool_true4.32k ; |
2710 | 4.57k | } |
2711 | | |
2712 | | /* Assuming that "tab" contains the equality constraints and |
2713 | | * the initial inequality constraints of "bmap", copy the remaining |
2714 | | * inequality constraints of "bmap" to "Tab". |
2715 | | */ |
2716 | | static isl_stat copy_ineq(struct isl_tab *tab, __isl_keep isl_basic_map *bmap) |
2717 | 2.89k | { |
2718 | 2.89k | int i, n_ineq; |
2719 | 2.89k | |
2720 | 2.89k | if (!bmap) |
2721 | 0 | return isl_stat_error; |
2722 | 2.89k | |
2723 | 2.89k | n_ineq = tab->n_con - tab->n_eq; |
2724 | 8.81k | for (i = n_ineq; i < bmap->n_ineq; ++i5.92k ) |
2725 | 5.92k | if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0) |
2726 | 0 | return isl_stat_error; |
2727 | 2.89k | |
2728 | 2.89k | return isl_stat_ok; |
2729 | 2.89k | } |
2730 | | |
2731 | | /* Description of an integer division that is added |
2732 | | * during an expansion. |
2733 | | * "pos" is the position of the corresponding variable. |
2734 | | * "cst" indicates whether this integer division has a fixed value. |
2735 | | * "val" contains the fixed value, if the value is fixed. |
2736 | | */ |
2737 | | struct isl_expanded { |
2738 | | int pos; |
2739 | | isl_bool cst; |
2740 | | isl_int val; |
2741 | | }; |
2742 | | |
2743 | | /* For each of the "n" integer division variables "expanded", |
2744 | | * if the variable has a fixed value, then add two inequality |
2745 | | * constraints expressing the fixed value. |
2746 | | * Otherwise, add the corresponding div constraints. |
2747 | | * The caller is responsible for removing the div constraints |
2748 | | * that it added for all these "n" integer divisions. |
2749 | | * |
2750 | | * The div constraints and the pair of inequality constraints |
2751 | | * forcing the fixed value cannot both be added for a given variable |
2752 | | * as the combination may render some of the original constraints redundant. |
2753 | | * These would then be ignored during the coalescing detection, |
2754 | | * while they could remain in the fused result. |
2755 | | * |
2756 | | * The two added inequality constraints are |
2757 | | * |
2758 | | * -a + v >= 0 |
2759 | | * a - v >= 0 |
2760 | | * |
2761 | | * with "a" the variable and "v" its fixed value. |
2762 | | * The facet corresponding to one of these two constraints is selected |
2763 | | * in the tableau to ensure that the pair of inequality constraints |
2764 | | * is treated as an equality constraint. |
2765 | | * |
2766 | | * The information in info->ineq is thrown away because it was |
2767 | | * computed in terms of div constraints, while some of those |
2768 | | * have now been replaced by these pairs of inequality constraints. |
2769 | | */ |
2770 | | static isl_stat fix_constant_divs(struct isl_coalesce_info *info, |
2771 | | int n, struct isl_expanded *expanded) |
2772 | 121 | { |
2773 | 121 | unsigned o_div; |
2774 | 121 | int i; |
2775 | 121 | isl_vec *ineq; |
2776 | 121 | |
2777 | 121 | o_div = isl_basic_map_offset(info->bmap, isl_dim_div) - 1; |
2778 | 121 | ineq = isl_vec_alloc(isl_tab_get_ctx(info->tab), 1 + info->tab->n_var); |
2779 | 121 | if (!ineq) |
2780 | 0 | return isl_stat_error; |
2781 | 121 | isl_seq_clr(ineq->el + 1, info->tab->n_var); |
2782 | 121 | |
2783 | 292 | for (i = 0; i < n; ++i171 ) { |
2784 | 171 | if (!expanded[i].cst) { |
2785 | 17 | info->bmap = isl_basic_map_extend_constraints( |
2786 | 17 | info->bmap, 0, 2); |
2787 | 17 | if (isl_basic_map_add_div_constraints(info->bmap, |
2788 | 17 | expanded[i].pos - o_div) < 0) |
2789 | 0 | break; |
2790 | 154 | } else { |
2791 | 154 | isl_int_set_si(ineq->el[1 + expanded[i].pos], -1); |
2792 | 154 | isl_int_set(ineq->el[0], expanded[i].val); |
2793 | 154 | info->bmap = isl_basic_map_add_ineq(info->bmap, |
2794 | 154 | ineq->el); |
2795 | 154 | isl_int_set_si(ineq->el[1 + expanded[i].pos], 1); |
2796 | 154 | isl_int_neg(ineq->el[0], expanded[i].val); |
2797 | 154 | info->bmap = isl_basic_map_add_ineq(info->bmap, |
2798 | 154 | ineq->el); |
2799 | 154 | isl_int_set_si(ineq->el[1 + expanded[i].pos], 0); |
2800 | 154 | } |
2801 | 171 | if (copy_ineq(info->tab, info->bmap) < 0) |
2802 | 0 | break; |
2803 | 171 | if (expanded[i].cst && |
2804 | 171 | isl_tab_select_facet(info->tab, info->tab->n_con - 1) < 0154 ) |
2805 | 0 | break; |
2806 | 171 | } |
2807 | 121 | |
2808 | 121 | isl_vec_free(ineq); |
2809 | 121 | |
2810 | 121 | clear_status(info); |
2811 | 121 | init_status(info); |
2812 | 121 | |
2813 | 121 | return i < n ? isl_stat_error0 : isl_stat_ok; |
2814 | 121 | } |
2815 | | |
2816 | | /* Insert the "n" integer division variables "expanded" |
2817 | | * into info->tab and info->bmap and |
2818 | | * update info->ineq with respect to the redundant constraints |
2819 | | * in the resulting tableau. |
2820 | | * "bmap" contains the result of this insertion in info->bmap, |
2821 | | * while info->bmap is the original version |
2822 | | * of "bmap", i.e., the one that corresponds to the current |
2823 | | * state of info->tab. The number of constraints in info->bmap |
2824 | | * is assumed to be the same as the number of constraints |
2825 | | * in info->tab. This is required to be able to detect |
2826 | | * the extra constraints in "bmap". |
2827 | | * |
2828 | | * In particular, introduce extra variables corresponding |
2829 | | * to the extra integer divisions and add the div constraints |
2830 | | * that were added to "bmap" after info->tab was created |
2831 | | * from info->bmap. |
2832 | | * Furthermore, check if these extra integer divisions happen |
2833 | | * to attain a fixed integer value in info->tab. |
2834 | | * If so, replace the corresponding div constraints by pairs |
2835 | | * of inequality constraints that fix these |
2836 | | * integer divisions to their single integer values. |
2837 | | * Replace info->bmap by "bmap" to match the changes to info->tab. |
2838 | | * info->ineq was computed without a tableau and therefore |
2839 | | * does not take into account the redundant constraints |
2840 | | * in the tableau. Mark them here. |
2841 | | * There is no need to check the newly added div constraints |
2842 | | * since they cannot be redundant. |
2843 | | * The redundancy check is not performed when constants have been discovered |
2844 | | * since info->ineq is completely thrown away in this case. |
2845 | | */ |
2846 | | static isl_stat tab_insert_divs(struct isl_coalesce_info *info, |
2847 | | int n, struct isl_expanded *expanded, __isl_take isl_basic_map *bmap) |
2848 | 2.72k | { |
2849 | 2.72k | int i, n_ineq; |
2850 | 2.72k | unsigned n_eq; |
2851 | 2.72k | struct isl_tab_undo *snap; |
2852 | 2.72k | int any; |
2853 | 2.72k | |
2854 | 2.72k | if (!bmap) |
2855 | 0 | return isl_stat_error; |
2856 | 2.72k | if (info->bmap->n_eq + info->bmap->n_ineq != info->tab->n_con) |
2857 | 2.72k | isl_die0 (isl_basic_map_get_ctx(bmap), isl_error_internal, |
2858 | 2.72k | "original tableau does not correspond " |
2859 | 2.72k | "to original basic map", goto error); |
2860 | 2.72k | |
2861 | 2.72k | if (isl_tab_extend_vars(info->tab, n) < 0) |
2862 | 0 | goto error; |
2863 | 2.72k | if (isl_tab_extend_cons(info->tab, 2 * n) < 0) |
2864 | 0 | goto error; |
2865 | 2.72k | |
2866 | 5.51k | for (i = 0; 2.72k i < n; ++i2.78k ) { |
2867 | 2.78k | if (isl_tab_insert_var(info->tab, expanded[i].pos) < 0) |
2868 | 0 | goto error; |
2869 | 2.78k | } |
2870 | 2.72k | |
2871 | 2.72k | snap = isl_tab_snap(info->tab); |
2872 | 2.72k | |
2873 | 2.72k | n_ineq = info->tab->n_con - info->tab->n_eq; |
2874 | 2.72k | if (copy_ineq(info->tab, bmap) < 0) |
2875 | 0 | goto error; |
2876 | 2.72k | |
2877 | 2.72k | isl_basic_map_free(info->bmap); |
2878 | 2.72k | info->bmap = bmap; |
2879 | 2.72k | |
2880 | 2.72k | any = 0; |
2881 | 5.51k | for (i = 0; i < n; ++i2.78k ) { |
2882 | 2.78k | expanded[i].cst = isl_tab_is_constant(info->tab, |
2883 | 2.78k | expanded[i].pos, &expanded[i].val); |
2884 | 2.78k | if (expanded[i].cst < 0) |
2885 | 0 | return isl_stat_error; |
2886 | 2.78k | if (expanded[i].cst) |
2887 | 154 | any = 1; |
2888 | 2.78k | } |
2889 | 2.72k | |
2890 | 2.72k | if (any) { |
2891 | 121 | if (isl_tab_rollback(info->tab, snap) < 0) |
2892 | 0 | return isl_stat_error; |
2893 | 121 | info->bmap = isl_basic_map_cow(info->bmap); |
2894 | 121 | if (isl_basic_map_free_inequality(info->bmap, 2 * n) < 0) |
2895 | 0 | return isl_stat_error; |
2896 | 121 | |
2897 | 121 | return fix_constant_divs(info, n, expanded); |
2898 | 121 | } |
2899 | 2.60k | |
2900 | 2.60k | n_eq = info->bmap->n_eq; |
2901 | 6.64k | for (i = 0; i < n_ineq; ++i4.04k ) { |
2902 | 4.04k | if (isl_tab_is_redundant(info->tab, n_eq + i)) |
2903 | 110 | info->ineq[i] = STATUS_REDUNDANT; |
2904 | 4.04k | } |
2905 | 2.60k | |
2906 | 2.60k | return isl_stat_ok; |
2907 | 0 | error: |
2908 | 0 | isl_basic_map_free(bmap); |
2909 | 0 | return isl_stat_error; |
2910 | 2.60k | } |
2911 | | |
2912 | | /* Expand info->tab and info->bmap in the same way "bmap" was expanded |
2913 | | * in isl_basic_map_expand_divs using the expansion "exp" and |
2914 | | * update info->ineq with respect to the redundant constraints |
2915 | | * in the resulting tableau. info->bmap is the original version |
2916 | | * of "bmap", i.e., the one that corresponds to the current |
2917 | | * state of info->tab. The number of constraints in info->bmap |
2918 | | * is assumed to be the same as the number of constraints |
2919 | | * in info->tab. This is required to be able to detect |
2920 | | * the extra constraints in "bmap". |
2921 | | * |
2922 | | * Extract the positions where extra local variables are introduced |
2923 | | * from "exp" and call tab_insert_divs. |
2924 | | */ |
2925 | | static isl_stat expand_tab(struct isl_coalesce_info *info, int *exp, |
2926 | | __isl_take isl_basic_map *bmap) |
2927 | 2.72k | { |
2928 | 2.72k | isl_ctx *ctx; |
2929 | 2.72k | struct isl_expanded *expanded; |
2930 | 2.72k | int i, j, k, n; |
2931 | 2.72k | int extra_var; |
2932 | 2.72k | unsigned total, pos, n_div; |
2933 | 2.72k | isl_stat r; |
2934 | 2.72k | |
2935 | 2.72k | total = isl_basic_map_dim(bmap, isl_dim_all); |
2936 | 2.72k | n_div = isl_basic_map_dim(bmap, isl_dim_div); |
2937 | 2.72k | pos = total - n_div; |
2938 | 2.72k | extra_var = total - info->tab->n_var; |
2939 | 2.72k | n = n_div - extra_var; |
2940 | 2.72k | |
2941 | 2.72k | ctx = isl_basic_map_get_ctx(bmap); |
2942 | 2.72k | expanded = isl_calloc_array(ctx, struct isl_expanded, extra_var); |
2943 | 2.72k | if (extra_var && !expanded) |
2944 | 0 | goto error; |
2945 | 2.72k | |
2946 | 2.72k | i = 0; |
2947 | 2.72k | k = 0; |
2948 | 5.62k | for (j = 0; j < n_div; ++j2.90k ) { |
2949 | 2.90k | if (i < n && exp[i] == j195 ) { |
2950 | 112 | ++i; |
2951 | 112 | continue; |
2952 | 112 | } |
2953 | 2.78k | expanded[k++].pos = pos + j; |
2954 | 2.78k | } |
2955 | 2.72k | |
2956 | 5.51k | for (k = 0; k < extra_var; ++k2.78k ) |
2957 | 2.78k | isl_int_init(expanded[k].val); |
2958 | 2.72k | |
2959 | 2.72k | r = tab_insert_divs(info, extra_var, expanded, bmap); |
2960 | 2.72k | |
2961 | 5.51k | for (k = 0; k < extra_var; ++k2.78k ) |
2962 | 2.78k | isl_int_clear(expanded[k].val); |
2963 | 2.72k | free(expanded); |
2964 | 2.72k | |
2965 | 2.72k | return r; |
2966 | 0 | error: |
2967 | 0 | isl_basic_map_free(bmap); |
2968 | 0 | return isl_stat_error; |
2969 | 2.72k | } |
2970 | | |
2971 | | /* Check if the union of the basic maps represented by info[i] and info[j] |
2972 | | * can be represented by a single basic map, |
2973 | | * after expanding the divs of info[i] to match those of info[j]. |
2974 | | * If so, replace the pair by the single basic map and return |
2975 | | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
2976 | | * Otherwise, return isl_change_none. |
2977 | | * |
2978 | | * The caller has already checked for info[j] being a subset of info[i]. |
2979 | | * If some of the divs of info[j] are unknown, then the expanded info[i] |
2980 | | * will not have the corresponding div constraints. The other patterns |
2981 | | * therefore cannot apply. Skip the computation in this case. |
2982 | | * |
2983 | | * The expansion is performed using the divs "div" and expansion "exp" |
2984 | | * computed by the caller. |
2985 | | * info[i].bmap has already been expanded and the result is passed in |
2986 | | * as "bmap". |
2987 | | * The "eq" and "ineq" fields of info[i] reflect the status of |
2988 | | * the constraints of the expanded "bmap" with respect to info[j].tab. |
2989 | | * However, inequality constraints that are redundant in info[i].tab |
2990 | | * have not yet been marked as such because no tableau was available. |
2991 | | * |
2992 | | * Replace info[i].bmap by "bmap" and expand info[i].tab as well, |
2993 | | * updating info[i].ineq with respect to the redundant constraints. |
2994 | | * Then try and coalesce the expanded info[i] with info[j], |
2995 | | * reusing the information in info[i].eq and info[i].ineq. |
2996 | | * If this does not result in any coalescing or if it results in info[j] |
2997 | | * getting dropped (which should not happen in practice, since the case |
2998 | | * of info[j] being a subset of info[i] has already been checked by |
2999 | | * the caller), then revert info[i] to its original state. |
3000 | | */ |
3001 | | static enum isl_change coalesce_expand_tab_divs(__isl_take isl_basic_map *bmap, |
3002 | | int i, int j, struct isl_coalesce_info *info, __isl_keep isl_mat *div, |
3003 | | int *exp) |
3004 | 2.73k | { |
3005 | 2.73k | isl_bool known; |
3006 | 2.73k | isl_basic_map *bmap_i; |
3007 | 2.73k | struct isl_tab_undo *snap; |
3008 | 2.73k | enum isl_change change = isl_change_none; |
3009 | 2.73k | |
3010 | 2.73k | known = isl_basic_map_divs_known(info[j].bmap); |
3011 | 2.73k | if (known < 0 || !known) { |
3012 | 11 | clear_status(&info[i]); |
3013 | 11 | isl_basic_map_free(bmap); |
3014 | 11 | return known < 0 ? isl_change_error0 : isl_change_none; |
3015 | 11 | } |
3016 | 2.72k | |
3017 | 2.72k | bmap_i = isl_basic_map_copy(info[i].bmap); |
3018 | 2.72k | snap = isl_tab_snap(info[i].tab); |
3019 | 2.72k | if (expand_tab(&info[i], exp, bmap) < 0) |
3020 | 0 | change = isl_change_error; |
3021 | 2.72k | |
3022 | 2.72k | init_status(&info[j]); |
3023 | 2.72k | if (change == isl_change_none) |
3024 | 2.72k | change = coalesce_local_pair_reuse(i, j, info); |
3025 | 0 | else |
3026 | 0 | clear_status(&info[i]); |
3027 | 2.72k | if (change != isl_change_none && change != isl_change_drop_second717 ) { |
3028 | 717 | isl_basic_map_free(bmap_i); |
3029 | 2.00k | } else { |
3030 | 2.00k | isl_basic_map_free(info[i].bmap); |
3031 | 2.00k | info[i].bmap = bmap_i; |
3032 | 2.00k | |
3033 | 2.00k | if (isl_tab_rollback(info[i].tab, snap) < 0) |
3034 | 0 | change = isl_change_error; |
3035 | 2.00k | } |
3036 | 2.72k | |
3037 | 2.72k | return change; |
3038 | 2.72k | } |
3039 | | |
3040 | | /* Check if the union of "bmap" and the basic map represented by info[j] |
3041 | | * can be represented by a single basic map, |
3042 | | * after expanding the divs of "bmap" to match those of info[j]. |
3043 | | * If so, replace the pair by the single basic map and return |
3044 | | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
3045 | | * Otherwise, return isl_change_none. |
3046 | | * |
3047 | | * In particular, check if the expanded "bmap" contains the basic map |
3048 | | * represented by the tableau info[j].tab. |
3049 | | * The expansion is performed using the divs "div" and expansion "exp" |
3050 | | * computed by the caller. |
3051 | | * Then we check if all constraints of the expanded "bmap" are valid for |
3052 | | * info[j].tab. |
3053 | | * |
3054 | | * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap. |
3055 | | * In this case, the positions of the constraints of info[i].bmap |
3056 | | * with respect to the basic map represented by info[j] are stored |
3057 | | * in info[i]. |
3058 | | * |
3059 | | * If the expanded "bmap" does not contain the basic map |
3060 | | * represented by the tableau info[j].tab and if "i" is not -1, |
3061 | | * i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab |
3062 | | * as well and check if that results in coalescing. |
3063 | | */ |
3064 | | static enum isl_change coalesce_with_expanded_divs( |
3065 | | __isl_keep isl_basic_map *bmap, int i, int j, |
3066 | | struct isl_coalesce_info *info, __isl_keep isl_mat *div, int *exp) |
3067 | 8.15k | { |
3068 | 8.15k | enum isl_change change = isl_change_none; |
3069 | 8.15k | struct isl_coalesce_info info_local, *info_i; |
3070 | 8.15k | |
3071 | 8.15k | info_i = i >= 0 ? &info[i]7.79k : &info_local359 ; |
3072 | 8.15k | init_status(info_i); |
3073 | 8.15k | bmap = isl_basic_map_copy(bmap); |
3074 | 8.15k | bmap = isl_basic_map_expand_divs(bmap, isl_mat_copy(div), exp); |
3075 | 8.15k | bmap = isl_basic_map_mark_final(bmap); |
3076 | 8.15k | |
3077 | 8.15k | if (!bmap) |
3078 | 0 | goto error; |
3079 | 8.15k | |
3080 | 8.15k | info_local.bmap = bmap; |
3081 | 8.15k | info_i->eq = eq_status_in(bmap, info[j].tab); |
3082 | 8.15k | if (bmap->n_eq && !info_i->eq1.17k ) |
3083 | 0 | goto error; |
3084 | 8.15k | if (any_eq(info_i, STATUS_ERROR)) |
3085 | 0 | goto error; |
3086 | 8.15k | if (any_eq(info_i, STATUS_SEPARATE)) |
3087 | 429 | goto done; |
3088 | 7.72k | |
3089 | 7.72k | info_i->ineq = ineq_status_in(bmap, NULL, info[j].tab); |
3090 | 7.72k | if (bmap->n_ineq && !info_i->ineq7.43k ) |
3091 | 0 | goto error; |
3092 | 7.72k | if (any_ineq(info_i, STATUS_ERROR)) |
3093 | 0 | goto error; |
3094 | 7.72k | if (any_ineq(info_i, STATUS_SEPARATE)) |
3095 | 2.21k | goto done; |
3096 | 5.50k | |
3097 | 5.50k | if (all(info_i->eq, 2 * bmap->n_eq, STATUS_VALID) && |
3098 | 5.50k | all(info_i->ineq, bmap->n_ineq, 4.94k STATUS_VALID4.94k )) { |
3099 | 2.42k | drop(&info[j]); |
3100 | 2.42k | change = isl_change_drop_second; |
3101 | 2.42k | } |
3102 | 5.50k | |
3103 | 5.50k | if (change == isl_change_none && i != -13.08k ) |
3104 | 2.73k | return coalesce_expand_tab_divs(bmap, i, j, info, div, exp); |
3105 | 5.41k | |
3106 | 5.41k | done: |
3107 | 5.41k | isl_basic_map_free(bmap); |
3108 | 5.41k | clear_status(info_i); |
3109 | 5.41k | return change; |
3110 | 0 | error: |
3111 | 0 | isl_basic_map_free(bmap); |
3112 | 0 | clear_status(info_i); |
3113 | 0 | return isl_change_error; |
3114 | 5.50k | } |
3115 | | |
3116 | | /* Check if the union of "bmap_i" and the basic map represented by info[j] |
3117 | | * can be represented by a single basic map, |
3118 | | * after aligning the divs of "bmap_i" to match those of info[j]. |
3119 | | * If so, replace the pair by the single basic map and return |
3120 | | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
3121 | | * Otherwise, return isl_change_none. |
3122 | | * |
3123 | | * In particular, check if "bmap_i" contains the basic map represented by |
3124 | | * info[j] after aligning the divs of "bmap_i" to those of info[j]. |
3125 | | * Note that this can only succeed if the number of divs of "bmap_i" |
3126 | | * is smaller than (or equal to) the number of divs of info[j]. |
3127 | | * |
3128 | | * We first check if the divs of "bmap_i" are all known and form a subset |
3129 | | * of those of info[j].bmap. If so, we pass control over to |
3130 | | * coalesce_with_expanded_divs. |
3131 | | * |
3132 | | * If "i" is not equal to -1, then "bmap" is equal to info[i].bmap. |
3133 | | */ |
3134 | | static enum isl_change coalesce_after_aligning_divs( |
3135 | | __isl_keep isl_basic_map *bmap_i, int i, int j, |
3136 | | struct isl_coalesce_info *info) |
3137 | 8.31k | { |
3138 | 8.31k | isl_bool known; |
3139 | 8.31k | isl_mat *div_i, *div_j, *div; |
3140 | 8.31k | int *exp1 = NULL; |
3141 | 8.31k | int *exp2 = NULL; |
3142 | 8.31k | isl_ctx *ctx; |
3143 | 8.31k | enum isl_change change; |
3144 | 8.31k | |
3145 | 8.31k | known = isl_basic_map_divs_known(bmap_i); |
3146 | 8.31k | if (known < 0) |
3147 | 0 | return isl_change_error; |
3148 | 8.31k | if (!known) |
3149 | 0 | return isl_change_none; |
3150 | 8.31k | |
3151 | 8.31k | ctx = isl_basic_map_get_ctx(bmap_i); |
3152 | 8.31k | |
3153 | 8.31k | div_i = isl_basic_map_get_divs(bmap_i); |
3154 | 8.31k | div_j = isl_basic_map_get_divs(info[j].bmap); |
3155 | 8.31k | |
3156 | 8.31k | if (!div_i || !div_j) |
3157 | 0 | goto error; |
3158 | 8.31k | |
3159 | 8.31k | exp1 = isl_alloc_array(ctx, int, div_i->n_row); |
3160 | 8.31k | exp2 = isl_alloc_array(ctx, int, div_j->n_row); |
3161 | 8.31k | if ((div_i->n_row && !exp1343 ) || (div_j->n_row && !exp28.02k )) |
3162 | 0 | goto error; |
3163 | 8.31k | |
3164 | 8.31k | div = isl_merge_divs(div_i, div_j, exp1, exp2); |
3165 | 8.31k | if (!div) |
3166 | 0 | goto error; |
3167 | 8.31k | |
3168 | 8.31k | if (div->n_row == div_j->n_row) |
3169 | 8.15k | change = coalesce_with_expanded_divs(bmap_i, |
3170 | 8.15k | i, j, info, div, exp1); |
3171 | 158 | else |
3172 | 158 | change = isl_change_none; |
3173 | 8.31k | |
3174 | 8.31k | isl_mat_free(div); |
3175 | 8.31k | |
3176 | 8.31k | isl_mat_free(div_i); |
3177 | 8.31k | isl_mat_free(div_j); |
3178 | 8.31k | |
3179 | 8.31k | free(exp2); |
3180 | 8.31k | free(exp1); |
3181 | 8.31k | |
3182 | 8.31k | return change; |
3183 | 0 | error: |
3184 | 0 | isl_mat_free(div_i); |
3185 | 0 | isl_mat_free(div_j); |
3186 | 0 | free(exp1); |
3187 | 0 | free(exp2); |
3188 | 0 | return isl_change_error; |
3189 | 8.31k | } |
3190 | | |
3191 | | /* Check if basic map "j" is a subset of basic map "i" after |
3192 | | * exploiting the extra equalities of "j" to simplify the divs of "i". |
3193 | | * If so, remove basic map "j" and return isl_change_drop_second. |
3194 | | * |
3195 | | * If "j" does not have any equalities or if they are the same |
3196 | | * as those of "i", then we cannot exploit them to simplify the divs. |
3197 | | * Similarly, if there are no divs in "i", then they cannot be simplified. |
3198 | | * If, on the other hand, the affine hulls of "i" and "j" do not intersect, |
3199 | | * then "j" cannot be a subset of "i". |
3200 | | * |
3201 | | * Otherwise, we intersect "i" with the affine hull of "j" and then |
3202 | | * check if "j" is a subset of the result after aligning the divs. |
3203 | | * If so, then "j" is definitely a subset of "i" and can be removed. |
3204 | | * Note that if after intersection with the affine hull of "j". |
3205 | | * "i" still has more divs than "j", then there is no way we can |
3206 | | * align the divs of "i" to those of "j". |
3207 | | */ |
3208 | | static enum isl_change coalesce_subset_with_equalities(int i, int j, |
3209 | | struct isl_coalesce_info *info) |
3210 | 10.0k | { |
3211 | 10.0k | isl_basic_map *hull_i, *hull_j, *bmap_i; |
3212 | 10.0k | int equal, empty; |
3213 | 10.0k | enum isl_change change; |
3214 | 10.0k | |
3215 | 10.0k | if (info[j].bmap->n_eq == 0) |
3216 | 8.26k | return isl_change_none; |
3217 | 1.74k | if (info[i].bmap->n_div == 0) |
3218 | 596 | return isl_change_none; |
3219 | 1.15k | |
3220 | 1.15k | hull_i = isl_basic_map_copy(info[i].bmap); |
3221 | 1.15k | hull_i = isl_basic_map_plain_affine_hull(hull_i); |
3222 | 1.15k | hull_j = isl_basic_map_copy(info[j].bmap); |
3223 | 1.15k | hull_j = isl_basic_map_plain_affine_hull(hull_j); |
3224 | 1.15k | |
3225 | 1.15k | hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i)); |
3226 | 1.15k | equal = isl_basic_map_plain_is_equal(hull_i, hull_j); |
3227 | 1.15k | empty = isl_basic_map_plain_is_empty(hull_j); |
3228 | 1.15k | isl_basic_map_free(hull_i); |
3229 | 1.15k | |
3230 | 1.15k | if (equal < 0 || equal || empty < 0951 || empty951 ) { |
3231 | 587 | isl_basic_map_free(hull_j); |
3232 | 587 | if (equal < 0 || empty < 0) |
3233 | 0 | return isl_change_error; |
3234 | 587 | return isl_change_none; |
3235 | 587 | } |
3236 | 564 | |
3237 | 564 | bmap_i = isl_basic_map_copy(info[i].bmap); |
3238 | 564 | bmap_i = isl_basic_map_intersect(bmap_i, hull_j); |
3239 | 564 | if (!bmap_i) |
3240 | 0 | return isl_change_error; |
3241 | 564 | |
3242 | 564 | if (bmap_i->n_div > info[j].bmap->n_div) { |
3243 | 125 | isl_basic_map_free(bmap_i); |
3244 | 125 | return isl_change_none; |
3245 | 125 | } |
3246 | 439 | |
3247 | 439 | change = coalesce_after_aligning_divs(bmap_i, -1, j, info); |
3248 | 439 | |
3249 | 439 | isl_basic_map_free(bmap_i); |
3250 | 439 | |
3251 | 439 | return change; |
3252 | 439 | } |
3253 | | |
3254 | | /* Check if the union of and the basic maps represented by info[i] and info[j] |
3255 | | * can be represented by a single basic map, by aligning or equating |
3256 | | * their integer divisions. |
3257 | | * If so, replace the pair by the single basic map and return |
3258 | | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
3259 | | * Otherwise, return isl_change_none. |
3260 | | * |
3261 | | * Note that we only perform any test if the number of divs is different |
3262 | | * in the two basic maps. In case the number of divs is the same, |
3263 | | * we have already established that the divs are different |
3264 | | * in the two basic maps. |
3265 | | * In particular, if the number of divs of basic map i is smaller than |
3266 | | * the number of divs of basic map j, then we check if j is a subset of i |
3267 | | * and vice versa. |
3268 | | */ |
3269 | | static enum isl_change coalesce_divs(int i, int j, |
3270 | | struct isl_coalesce_info *info) |
3271 | 8.14k | { |
3272 | 8.14k | enum isl_change change = isl_change_none; |
3273 | 8.14k | |
3274 | 8.14k | if (info[i].bmap->n_div < info[j].bmap->n_div) |
3275 | 7.19k | change = coalesce_after_aligning_divs(info[i].bmap, i, j, info); |
3276 | 8.14k | if (change != isl_change_none) |
3277 | 3.08k | return change; |
3278 | 5.06k | |
3279 | 5.06k | if (info[j].bmap->n_div < info[i].bmap->n_div) |
3280 | 672 | change = coalesce_after_aligning_divs(info[j].bmap, j, i, info); |
3281 | 5.06k | if (change != isl_change_none) |
3282 | 52 | return invert_change(change); |
3283 | 5.00k | |
3284 | 5.00k | change = coalesce_subset_with_equalities(i, j, info); |
3285 | 5.00k | if (change != isl_change_none) |
3286 | 3 | return change; |
3287 | 5.00k | |
3288 | 5.00k | change = coalesce_subset_with_equalities(j, i, info); |
3289 | 5.00k | if (change != isl_change_none) |
3290 | 0 | return invert_change(change); |
3291 | 5.00k | |
3292 | 5.00k | return isl_change_none; |
3293 | 5.00k | } |
3294 | | |
3295 | | /* Does "bmap" involve any divs that themselves refer to divs? |
3296 | | */ |
3297 | | static isl_bool has_nested_div(__isl_keep isl_basic_map *bmap) |
3298 | 9.87k | { |
3299 | 9.87k | int i; |
3300 | 9.87k | unsigned total; |
3301 | 9.87k | unsigned n_div; |
3302 | 9.87k | |
3303 | 9.87k | total = isl_basic_map_dim(bmap, isl_dim_all); |
3304 | 9.87k | n_div = isl_basic_map_dim(bmap, isl_dim_div); |
3305 | 9.87k | total -= n_div; |
3306 | 9.87k | |
3307 | 16.2k | for (i = 0; i < n_div; ++i6.33k ) |
3308 | 6.36k | if (isl_seq_first_non_zero(bmap->div[i] + 2 + total, |
3309 | 6.36k | n_div) != -1) |
3310 | 28 | return isl_bool_true; |
3311 | 9.87k | |
3312 | 9.87k | return isl_bool_false9.84k ; |
3313 | 9.87k | } |
3314 | | |
3315 | | /* Return a list of affine expressions, one for each integer division |
3316 | | * in "bmap_i". For each integer division that also appears in "bmap_j", |
3317 | | * the affine expression is set to NaN. The number of NaNs in the list |
3318 | | * is equal to the number of integer divisions in "bmap_j". |
3319 | | * For the other integer divisions of "bmap_i", the corresponding |
3320 | | * element in the list is a purely affine expression equal to the integer |
3321 | | * division in "hull". |
3322 | | * If no such list can be constructed, then the number of elements |
3323 | | * in the returned list is smaller than the number of integer divisions |
3324 | | * in "bmap_i". |
3325 | | */ |
3326 | | static __isl_give isl_aff_list *set_up_substitutions( |
3327 | | __isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j, |
3328 | | __isl_take isl_basic_map *hull) |
3329 | 401 | { |
3330 | 401 | unsigned n_div_i, n_div_j, total; |
3331 | 401 | isl_ctx *ctx; |
3332 | 401 | isl_local_space *ls; |
3333 | 401 | isl_basic_set *wrap_hull; |
3334 | 401 | isl_aff *aff_nan; |
3335 | 401 | isl_aff_list *list; |
3336 | 401 | int i, j; |
3337 | 401 | |
3338 | 401 | if (!hull) |
3339 | 0 | return NULL; |
3340 | 401 | |
3341 | 401 | ctx = isl_basic_map_get_ctx(hull); |
3342 | 401 | |
3343 | 401 | n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div); |
3344 | 401 | n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div); |
3345 | 401 | total = isl_basic_map_total_dim(bmap_i) - n_div_i; |
3346 | 401 | |
3347 | 401 | ls = isl_basic_map_get_local_space(bmap_i); |
3348 | 401 | ls = isl_local_space_wrap(ls); |
3349 | 401 | wrap_hull = isl_basic_map_wrap(hull); |
3350 | 401 | |
3351 | 401 | aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls)); |
3352 | 401 | list = isl_aff_list_alloc(ctx, n_div_i); |
3353 | 401 | |
3354 | 401 | j = 0; |
3355 | 705 | for (i = 0; i < n_div_i; ++i304 ) { |
3356 | 473 | isl_aff *aff; |
3357 | 473 | |
3358 | 473 | if (j < n_div_j && |
3359 | 473 | isl_basic_map_equal_div_expr_part(bmap_i, i, bmap_j, j, |
3360 | 50 | 0, 2 + total)) { |
3361 | 28 | ++j; |
3362 | 28 | list = isl_aff_list_add(list, isl_aff_copy(aff_nan)); |
3363 | 28 | continue; |
3364 | 28 | } |
3365 | 445 | if (n_div_i - i <= n_div_j - j) |
3366 | 0 | break; |
3367 | 445 | |
3368 | 445 | aff = isl_local_space_get_div(ls, i); |
3369 | 445 | aff = isl_aff_substitute_equalities(aff, |
3370 | 445 | isl_basic_set_copy(wrap_hull)); |
3371 | 445 | aff = isl_aff_floor(aff); |
3372 | 445 | if (!aff) |
3373 | 0 | goto error; |
3374 | 445 | if (isl_aff_dim(aff, isl_dim_div) != 0) { |
3375 | 169 | isl_aff_free(aff); |
3376 | 169 | break; |
3377 | 169 | } |
3378 | 276 | |
3379 | 276 | list = isl_aff_list_add(list, aff); |
3380 | 276 | } |
3381 | 401 | |
3382 | 401 | isl_aff_free(aff_nan); |
3383 | 401 | isl_local_space_free(ls); |
3384 | 401 | isl_basic_set_free(wrap_hull); |
3385 | 401 | |
3386 | 401 | return list; |
3387 | 0 | error: |
3388 | 0 | isl_aff_free(aff_nan); |
3389 | 0 | isl_local_space_free(ls); |
3390 | 0 | isl_basic_set_free(wrap_hull); |
3391 | 0 | isl_aff_list_free(list); |
3392 | 0 | return NULL; |
3393 | 401 | } |
3394 | | |
3395 | | /* Add variables to info->bmap and info->tab corresponding to the elements |
3396 | | * in "list" that are not set to NaN. |
3397 | | * "extra_var" is the number of these elements. |
3398 | | * "dim" is the offset in the variables of "tab" where we should |
3399 | | * start considering the elements in "list". |
3400 | | * When this function returns, the total number of variables in "tab" |
3401 | | * is equal to "dim" plus the number of elements in "list". |
3402 | | * |
3403 | | * The newly added existentially quantified variables are not given |
3404 | | * an explicit representation because the corresponding div constraints |
3405 | | * do not appear in info->bmap. These constraints are not added |
3406 | | * to info->bmap because for internal consistency, they would need to |
3407 | | * be added to info->tab as well, where they could combine with the equality |
3408 | | * that is added later to result in constraints that do not hold |
3409 | | * in the original input. |
3410 | | */ |
3411 | | static isl_stat add_sub_vars(struct isl_coalesce_info *info, |
3412 | | __isl_keep isl_aff_list *list, int dim, int extra_var) |
3413 | 232 | { |
3414 | 232 | int i, j, n, d; |
3415 | 232 | isl_space *space; |
3416 | 232 | |
3417 | 232 | space = isl_basic_map_get_space(info->bmap); |
3418 | 232 | info->bmap = isl_basic_map_cow(info->bmap); |
3419 | 232 | info->bmap = isl_basic_map_extend_space(info->bmap, space, |
3420 | 232 | extra_var, 0, 0); |
3421 | 232 | if (!info->bmap) |
3422 | 0 | return isl_stat_error; |
3423 | 232 | n = isl_aff_list_n_aff(list); |
3424 | 517 | for (i = 0; i < n; ++i285 ) { |
3425 | 285 | int is_nan; |
3426 | 285 | isl_aff *aff; |
3427 | 285 | |
3428 | 285 | aff = isl_aff_list_get_aff(list, i); |
3429 | 285 | is_nan = isl_aff_is_nan(aff); |
3430 | 285 | isl_aff_free(aff); |
3431 | 285 | if (is_nan < 0) |
3432 | 0 | return isl_stat_error; |
3433 | 285 | if (is_nan) |
3434 | 15 | continue; |
3435 | 270 | |
3436 | 270 | if (isl_tab_insert_var(info->tab, dim + i) < 0) |
3437 | 0 | return isl_stat_error; |
3438 | 270 | d = isl_basic_map_alloc_div(info->bmap); |
3439 | 270 | if (d < 0) |
3440 | 0 | return isl_stat_error; |
3441 | 270 | info->bmap = isl_basic_map_mark_div_unknown(info->bmap, d); |
3442 | 270 | if (!info->bmap) |
3443 | 0 | return isl_stat_error; |
3444 | 284 | for (j = d; 270 j > i; --j14 ) |
3445 | 14 | isl_basic_map_swap_div(info->bmap, j - 1, j); |
3446 | 270 | } |
3447 | 232 | |
3448 | 232 | return isl_stat_ok; |
3449 | 232 | } |
3450 | | |
3451 | | /* For each element in "list" that is not set to NaN, fix the corresponding |
3452 | | * variable in "tab" to the purely affine expression defined by the element. |
3453 | | * "dim" is the offset in the variables of "tab" where we should |
3454 | | * start considering the elements in "list". |
3455 | | * |
3456 | | * This function assumes that a sufficient number of rows and |
3457 | | * elements in the constraint array are available in the tableau. |
3458 | | */ |
3459 | | static int add_sub_equalities(struct isl_tab *tab, |
3460 | | __isl_keep isl_aff_list *list, int dim) |
3461 | 232 | { |
3462 | 232 | int i, n; |
3463 | 232 | isl_ctx *ctx; |
3464 | 232 | isl_vec *sub; |
3465 | 232 | isl_aff *aff; |
3466 | 232 | |
3467 | 232 | n = isl_aff_list_n_aff(list); |
3468 | 232 | |
3469 | 232 | ctx = isl_tab_get_ctx(tab); |
3470 | 232 | sub = isl_vec_alloc(ctx, 1 + dim + n); |
3471 | 232 | if (!sub) |
3472 | 0 | return -1; |
3473 | 232 | isl_seq_clr(sub->el + 1 + dim, n); |
3474 | 232 | |
3475 | 517 | for (i = 0; i < n; ++i285 ) { |
3476 | 285 | aff = isl_aff_list_get_aff(list, i); |
3477 | 285 | if (!aff) |
3478 | 0 | goto error; |
3479 | 285 | if (isl_aff_is_nan(aff)) { |
3480 | 15 | isl_aff_free(aff); |
3481 | 15 | continue; |
3482 | 15 | } |
3483 | 270 | isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim); |
3484 | 270 | isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]); |
3485 | 270 | if (isl_tab_add_eq(tab, sub->el) < 0) |
3486 | 0 | goto error; |
3487 | 270 | isl_int_set_si(sub->el[1 + dim + i], 0); |
3488 | 270 | isl_aff_free(aff); |
3489 | 270 | } |
3490 | 232 | |
3491 | 232 | isl_vec_free(sub); |
3492 | 232 | return 0; |
3493 | 0 | error: |
3494 | 0 | isl_aff_free(aff); |
3495 | 0 | isl_vec_free(sub); |
3496 | 0 | return -1; |
3497 | 232 | } |
3498 | | |
3499 | | /* Add variables to info->tab and info->bmap corresponding to the elements |
3500 | | * in "list" that are not set to NaN. The value of the added variable |
3501 | | * in info->tab is fixed to the purely affine expression defined by the element. |
3502 | | * "dim" is the offset in the variables of info->tab where we should |
3503 | | * start considering the elements in "list". |
3504 | | * When this function returns, the total number of variables in info->tab |
3505 | | * is equal to "dim" plus the number of elements in "list". |
3506 | | */ |
3507 | | static int add_subs(struct isl_coalesce_info *info, |
3508 | | __isl_keep isl_aff_list *list, int dim) |
3509 | 232 | { |
3510 | 232 | int extra_var; |
3511 | 232 | int n; |
3512 | 232 | |
3513 | 232 | if (!list) |
3514 | 0 | return -1; |
3515 | 232 | |
3516 | 232 | n = isl_aff_list_n_aff(list); |
3517 | 232 | extra_var = n - (info->tab->n_var - dim); |
3518 | 232 | |
3519 | 232 | if (isl_tab_extend_vars(info->tab, extra_var) < 0) |
3520 | 0 | return -1; |
3521 | 232 | if (isl_tab_extend_cons(info->tab, 2 * extra_var) < 0) |
3522 | 0 | return -1; |
3523 | 232 | if (add_sub_vars(info, list, dim, extra_var) < 0) |
3524 | 0 | return -1; |
3525 | 232 | |
3526 | 232 | return add_sub_equalities(info->tab, list, dim); |
3527 | 232 | } |
3528 | | |
3529 | | /* Coalesce basic map "j" into basic map "i" after adding the extra integer |
3530 | | * divisions in "i" but not in "j" to basic map "j", with values |
3531 | | * specified by "list". The total number of elements in "list" |
3532 | | * is equal to the number of integer divisions in "i", while the number |
3533 | | * of NaN elements in the list is equal to the number of integer divisions |
3534 | | * in "j". |
3535 | | * |
3536 | | * If no coalescing can be performed, then we need to revert basic map "j" |
3537 | | * to its original state. We do the same if basic map "i" gets dropped |
3538 | | * during the coalescing, even though this should not happen in practice |
3539 | | * since we have already checked for "j" being a subset of "i" |
3540 | | * before we reach this stage. |
3541 | | */ |
3542 | | static enum isl_change coalesce_with_subs(int i, int j, |
3543 | | struct isl_coalesce_info *info, __isl_keep isl_aff_list *list) |
3544 | 232 | { |
3545 | 232 | isl_basic_map *bmap_j; |
3546 | 232 | struct isl_tab_undo *snap; |
3547 | 232 | unsigned dim; |
3548 | 232 | enum isl_change change; |
3549 | 232 | |
3550 | 232 | bmap_j = isl_basic_map_copy(info[j].bmap); |
3551 | 232 | snap = isl_tab_snap(info[j].tab); |
3552 | 232 | |
3553 | 232 | dim = isl_basic_map_dim(bmap_j, isl_dim_all); |
3554 | 232 | dim -= isl_basic_map_dim(bmap_j, isl_dim_div); |
3555 | 232 | if (add_subs(&info[j], list, dim) < 0) |
3556 | 0 | goto error; |
3557 | 232 | |
3558 | 232 | change = coalesce_local_pair(i, j, info); |
3559 | 232 | if (change != isl_change_none && change != isl_change_drop_first31 ) { |
3560 | 31 | isl_basic_map_free(bmap_j); |
3561 | 201 | } else { |
3562 | 201 | isl_basic_map_free(info[j].bmap); |
3563 | 201 | info[j].bmap = bmap_j; |
3564 | 201 | |
3565 | 201 | if (isl_tab_rollback(info[j].tab, snap) < 0) |
3566 | 0 | return isl_change_error; |
3567 | 232 | } |
3568 | 232 | |
3569 | 232 | return change; |
3570 | 0 | error: |
3571 | 0 | isl_basic_map_free(bmap_j); |
3572 | 0 | return isl_change_error; |
3573 | 232 | } |
3574 | | |
3575 | | /* Check if we can coalesce basic map "j" into basic map "i" after copying |
3576 | | * those extra integer divisions in "i" that can be simplified away |
3577 | | * using the extra equalities in "j". |
3578 | | * All divs are assumed to be known and not contain any nested divs. |
3579 | | * |
3580 | | * We first check if there are any extra equalities in "j" that we |
3581 | | * can exploit. Then we check if every integer division in "i" |
3582 | | * either already appears in "j" or can be simplified using the |
3583 | | * extra equalities to a purely affine expression. |
3584 | | * If these tests succeed, then we try to coalesce the two basic maps |
3585 | | * by introducing extra dimensions in "j" corresponding to |
3586 | | * the extra integer divsisions "i" fixed to the corresponding |
3587 | | * purely affine expression. |
3588 | | */ |
3589 | | static enum isl_change check_coalesce_into_eq(int i, int j, |
3590 | | struct isl_coalesce_info *info) |
3591 | 9.81k | { |
3592 | 9.81k | unsigned n_div_i, n_div_j; |
3593 | 9.81k | isl_basic_map *hull_i, *hull_j; |
3594 | 9.81k | int equal, empty; |
3595 | 9.81k | isl_aff_list *list; |
3596 | 9.81k | enum isl_change change; |
3597 | 9.81k | |
3598 | 9.81k | n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div); |
3599 | 9.81k | n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div); |
3600 | 9.81k | if (n_div_i <= n_div_j) |
3601 | 5.15k | return isl_change_none; |
3602 | 4.66k | if (info[j].bmap->n_eq == 0) |
3603 | 3.93k | return isl_change_none; |
3604 | 728 | |
3605 | 728 | hull_i = isl_basic_map_copy(info[i].bmap); |
3606 | 728 | hull_i = isl_basic_map_plain_affine_hull(hull_i); |
3607 | 728 | hull_j = isl_basic_map_copy(info[j].bmap); |
3608 | 728 | hull_j = isl_basic_map_plain_affine_hull(hull_j); |
3609 | 728 | |
3610 | 728 | hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i)); |
3611 | 728 | equal = isl_basic_map_plain_is_equal(hull_i, hull_j); |
3612 | 728 | empty = isl_basic_map_plain_is_empty(hull_j); |
3613 | 728 | isl_basic_map_free(hull_i); |
3614 | 728 | |
3615 | 728 | if (equal < 0 || empty < 0) |
3616 | 0 | goto error; |
3617 | 728 | if (equal || empty633 ) { |
3618 | 327 | isl_basic_map_free(hull_j); |
3619 | 327 | return isl_change_none; |
3620 | 327 | } |
3621 | 401 | |
3622 | 401 | list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j); |
3623 | 401 | if (!list) |
3624 | 0 | return isl_change_error; |
3625 | 401 | if (isl_aff_list_n_aff(list) < n_div_i) |
3626 | 169 | change = isl_change_none; |
3627 | 232 | else |
3628 | 232 | change = coalesce_with_subs(i, j, info, list); |
3629 | 401 | |
3630 | 401 | isl_aff_list_free(list); |
3631 | 401 | |
3632 | 401 | return change; |
3633 | 0 | error: |
3634 | 0 | isl_basic_map_free(hull_j); |
3635 | 0 | return isl_change_error; |
3636 | 401 | } |
3637 | | |
3638 | | /* Check if we can coalesce basic maps "i" and "j" after copying |
3639 | | * those extra integer divisions in one of the basic maps that can |
3640 | | * be simplified away using the extra equalities in the other basic map. |
3641 | | * We require all divs to be known in both basic maps. |
3642 | | * Furthermore, to simplify the comparison of div expressions, |
3643 | | * we do not allow any nested integer divisions. |
3644 | | */ |
3645 | | static enum isl_change check_coalesce_eq(int i, int j, |
3646 | | struct isl_coalesce_info *info) |
3647 | 5.00k | { |
3648 | 5.00k | isl_bool known, nested; |
3649 | 5.00k | enum isl_change change; |
3650 | 5.00k | |
3651 | 5.00k | known = isl_basic_map_divs_known(info[i].bmap); |
3652 | 5.00k | if (known < 0 || !known) |
3653 | 48 | return known < 0 ? isl_change_error0 : isl_change_none; |
3654 | 4.95k | known = isl_basic_map_divs_known(info[j].bmap); |
3655 | 4.95k | if (known < 0 || !known) |
3656 | 20 | return known < 0 ? isl_change_error0 : isl_change_none; |
3657 | 4.93k | nested = has_nested_div(info[i].bmap); |
3658 | 4.93k | if (nested < 0 || nested) |
3659 | 3 | return nested < 0 ? isl_change_error0 : isl_change_none; |
3660 | 4.93k | nested = has_nested_div(info[j].bmap); |
3661 | 4.93k | if (nested < 0 || nested) |
3662 | 25 | return nested < 0 ? isl_change_error0 : isl_change_none; |
3663 | 4.90k | |
3664 | 4.90k | change = check_coalesce_into_eq(i, j, info); |
3665 | 4.90k | if (change != isl_change_none) |
3666 | 7 | return change; |
3667 | 4.90k | change = check_coalesce_into_eq(j, i, info); |
3668 | 4.90k | if (change != isl_change_none) |
3669 | 24 | return invert_change(change); |
3670 | 4.87k | |
3671 | 4.87k | return isl_change_none; |
3672 | 4.87k | } |
3673 | | |
3674 | | /* Check if the union of the given pair of basic maps |
3675 | | * can be represented by a single basic map. |
3676 | | * If so, replace the pair by the single basic map and return |
3677 | | * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. |
3678 | | * Otherwise, return isl_change_none. |
3679 | | * |
3680 | | * We first check if the two basic maps live in the same local space, |
3681 | | * after aligning the divs that differ by only an integer constant. |
3682 | | * If so, we do the complete check. Otherwise, we check if they have |
3683 | | * the same number of integer divisions and can be coalesced, if one is |
3684 | | * an obvious subset of the other or if the extra integer divisions |
3685 | | * of one basic map can be simplified away using the extra equalities |
3686 | | * of the other basic map. |
3687 | | * |
3688 | | * Note that trying to coalesce pairs of disjuncts with the same |
3689 | | * number, but different local variables may drop the explicit |
3690 | | * representation of some of these local variables. |
3691 | | * This operation is therefore not performed when |
3692 | | * the "coalesce_preserve_locals" option is set. |
3693 | | */ |
3694 | | static enum isl_change coalesce_pair(int i, int j, |
3695 | | struct isl_coalesce_info *info) |
3696 | 75.1k | { |
3697 | 75.1k | int preserve; |
3698 | 75.1k | isl_bool same; |
3699 | 75.1k | enum isl_change change; |
3700 | 75.1k | isl_ctx *ctx; |
3701 | 75.1k | |
3702 | 75.1k | if (harmonize_divs(&info[i], &info[j]) < 0) |
3703 | 0 | return isl_change_error; |
3704 | 75.1k | same = same_divs(info[i].bmap, info[j].bmap); |
3705 | 75.1k | if (same < 0) |
3706 | 0 | return isl_change_error; |
3707 | 75.1k | if (same) |
3708 | 67.0k | return coalesce_local_pair(i, j, info); |
3709 | 8.15k | |
3710 | 8.15k | ctx = isl_basic_map_get_ctx(info[i].bmap); |
3711 | 8.15k | preserve = isl_options_get_coalesce_preserve_locals(ctx); |
3712 | 8.15k | if (!preserve && info[i].bmap->n_div == info[j].bmap->n_div8.14k ) { |
3713 | 280 | change = coalesce_local_pair(i, j, info); |
3714 | 280 | if (change != isl_change_none) |
3715 | 4 | return change; |
3716 | 8.14k | } |
3717 | 8.14k | |
3718 | 8.14k | change = coalesce_divs(i, j, info); |
3719 | 8.14k | if (change != isl_change_none) |
3720 | 3.14k | return change; |
3721 | 5.00k | |
3722 | 5.00k | return check_coalesce_eq(i, j, info); |
3723 | 5.00k | } |
3724 | | |
3725 | | /* Return the maximum of "a" and "b". |
3726 | | */ |
3727 | | static int isl_max(int a, int b) |
3728 | 130k | { |
3729 | 130k | return a > b ? a67.6k : b63.1k ; |
3730 | 130k | } |
3731 | | |
3732 | | /* Pairwise coalesce the basic maps in the range [start1, end1[ of "info" |
3733 | | * with those in the range [start2, end2[, skipping basic maps |
3734 | | * that have been removed (either before or within this function). |
3735 | | * |
3736 | | * For each basic map i in the first range, we check if it can be coalesced |
3737 | | * with respect to any previously considered basic map j in the second range. |
3738 | | * If i gets dropped (because it was a subset of some j), then |
3739 | | * we can move on to the next basic map. |
3740 | | * If j gets dropped, we need to continue checking against the other |
3741 | | * previously considered basic maps. |
3742 | | * If the two basic maps got fused, then we recheck the fused basic map |
3743 | | * against the previously considered basic maps, starting at i + 1 |
3744 | | * (even if start2 is greater than i + 1). |
3745 | | */ |
3746 | | static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info, |
3747 | | int start1, int end1, int start2, int end2) |
3748 | 100k | { |
3749 | 100k | int i, j; |
3750 | 100k | |
3751 | 236k | for (i = end1 - 1; i >= start1; --i135k ) { |
3752 | 135k | if (info[i].removed) |
3753 | 4.62k | continue; |
3754 | 234k | for (j = isl_max(i + 1, start2); 130k j < end2; ++j104k ) { |
3755 | 104k | enum isl_change changed; |
3756 | 104k | |
3757 | 104k | if (info[j].removed) |
3758 | 28.9k | continue; |
3759 | 75.1k | if (info[i].removed) |
3760 | 75.1k | isl_die0 (ctx, isl_error_internal, |
3761 | 75.1k | "basic map unexpectedly removed", |
3762 | 75.1k | return -1); |
3763 | 75.1k | changed = coalesce_pair(i, j, info); |
3764 | 75.1k | switch (changed) { |
3765 | 75.1k | case isl_change_error: |
3766 | 0 | return -1; |
3767 | 75.1k | case isl_change_none: |
3768 | 64.6k | case isl_change_drop_second: |
3769 | 64.6k | continue; |
3770 | 64.6k | case isl_change_drop_first: |
3771 | 3.14k | j = end2; |
3772 | 3.14k | break; |
3773 | 64.6k | case isl_change_fuse: |
3774 | 7.39k | j = i; |
3775 | 7.39k | break; |
3776 | 75.1k | } |
3777 | 75.1k | } |
3778 | 130k | } |
3779 | 100k | |
3780 | 100k | return 0; |
3781 | 100k | } |
3782 | | |
3783 | | /* Pairwise coalesce the basic maps described by the "n" elements of "info". |
3784 | | * |
3785 | | * We consider groups of basic maps that live in the same apparent |
3786 | | * affine hull and we first coalesce within such a group before we |
3787 | | * coalesce the elements in the group with elements of previously |
3788 | | * considered groups. If a fuse happens during the second phase, |
3789 | | * then we also reconsider the elements within the group. |
3790 | | */ |
3791 | | static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info) |
3792 | 26.7k | { |
3793 | 26.7k | int start, end; |
3794 | 26.7k | |
3795 | 77.0k | for (end = n; end > 0; end = start50.3k ) { |
3796 | 50.3k | start = end - 1; |
3797 | 67.6k | while (start >= 1 && |
3798 | 67.6k | info[start - 1].hull_hash == info[start].hull_hash40.9k ) |
3799 | 17.3k | start--; |
3800 | 50.3k | if (coalesce_range(ctx, info, start, end, start, end) < 0) |
3801 | 0 | return -1; |
3802 | 50.3k | if (coalesce_range(ctx, info, start, end, end, n) < 0) |
3803 | 0 | return -1; |
3804 | 50.3k | } |
3805 | 26.7k | |
3806 | 26.7k | return 0; |
3807 | 26.7k | } |
3808 | | |
3809 | | /* Update the basic maps in "map" based on the information in "info". |
3810 | | * In particular, remove the basic maps that have been marked removed and |
3811 | | * update the others based on the information in the corresponding tableau. |
3812 | | * Since we detected implicit equalities without calling |
3813 | | * isl_basic_map_gauss, we need to do it now. |
3814 | | * Also call isl_basic_map_simplify if we may have lost the definition |
3815 | | * of one or more integer divisions. |
3816 | | */ |
3817 | | static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map, |
3818 | | int n, struct isl_coalesce_info *info) |
3819 | 26.7k | { |
3820 | 26.7k | int i; |
3821 | 26.7k | |
3822 | 26.7k | if (!map) |
3823 | 0 | return NULL; |
3824 | 26.7k | |
3825 | 94.4k | for (i = n - 1; 26.7k i >= 0; --i67.6k ) { |
3826 | 67.6k | if (info[i].removed) { |
3827 | 15.9k | isl_basic_map_free(map->p[i]); |
3828 | 15.9k | if (i != map->n - 1) |
3829 | 4.09k | map->p[i] = map->p[map->n - 1]; |
3830 | 15.9k | map->n--; |
3831 | 15.9k | continue; |
3832 | 15.9k | } |
3833 | 51.7k | |
3834 | 51.7k | info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap, |
3835 | 51.7k | info[i].tab); |
3836 | 51.7k | info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL); |
3837 | 51.7k | if (info[i].simplify) |
3838 | 35 | info[i].bmap = isl_basic_map_simplify(info[i].bmap); |
3839 | 51.7k | info[i].bmap = isl_basic_map_finalize(info[i].bmap); |
3840 | 51.7k | if (!info[i].bmap) |
3841 | 0 | return isl_map_free(map); |
3842 | 51.7k | ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT); |
3843 | 51.7k | ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT); |
3844 | 51.7k | isl_basic_map_free(map->p[i]); |
3845 | 51.7k | map->p[i] = info[i].bmap; |
3846 | 51.7k | info[i].bmap = NULL; |
3847 | 51.7k | } |
3848 | 26.7k | |
3849 | 26.7k | return map; |
3850 | 26.7k | } |
3851 | | |
3852 | | /* For each pair of basic maps in the map, check if the union of the two |
3853 | | * can be represented by a single basic map. |
3854 | | * If so, replace the pair by the single basic map and start over. |
3855 | | * |
3856 | | * We factor out any (hidden) common factor from the constraint |
3857 | | * coefficients to improve the detection of adjacent constraints. |
3858 | | * |
3859 | | * Since we are constructing the tableaus of the basic maps anyway, |
3860 | | * we exploit them to detect implicit equalities and redundant constraints. |
3861 | | * This also helps the coalescing as it can ignore the redundant constraints. |
3862 | | * In order to avoid confusion, we make all implicit equalities explicit |
3863 | | * in the basic maps. We don't call isl_basic_map_gauss, though, |
3864 | | * as that may affect the number of constraints. |
3865 | | * This means that we have to call isl_basic_map_gauss at the end |
3866 | | * of the computation (in update_basic_maps) to ensure that |
3867 | | * the basic maps are not left in an unexpected state. |
3868 | | * For each basic map, we also compute the hash of the apparent affine hull |
3869 | | * for use in coalesce. |
3870 | | */ |
3871 | | __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map) |
3872 | 113k | { |
3873 | 113k | int i; |
3874 | 113k | unsigned n; |
3875 | 113k | isl_ctx *ctx; |
3876 | 113k | struct isl_coalesce_info *info = NULL; |
3877 | 113k | |
3878 | 113k | map = isl_map_remove_empty_parts(map); |
3879 | 113k | if (!map) |
3880 | 0 | return NULL; |
3881 | 113k | |
3882 | 113k | if (map->n <= 1) |
3883 | 86.8k | return map; |
3884 | 26.7k | |
3885 | 26.7k | ctx = isl_map_get_ctx(map); |
3886 | 26.7k | map = isl_map_sort_divs(map); |
3887 | 26.7k | map = isl_map_cow(map); |
3888 | 26.7k | |
3889 | 26.7k | if (!map) |
3890 | 0 | return NULL; |
3891 | 26.7k | |
3892 | 26.7k | n = map->n; |
3893 | 26.7k | |
3894 | 26.7k | info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n); |
3895 | 26.7k | if (!info) |
3896 | 0 | goto error; |
3897 | 26.7k | |
3898 | 94.4k | for (i = 0; 26.7k i < map->n; ++i67.6k ) { |
3899 | 67.6k | map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]); |
3900 | 67.6k | if (!map->p[i]) |
3901 | 0 | goto error; |
3902 | 67.6k | info[i].bmap = isl_basic_map_copy(map->p[i]); |
3903 | 67.6k | info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0); |
3904 | 67.6k | if (!info[i].tab) |
3905 | 0 | goto error; |
3906 | 67.6k | if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT)) |
3907 | 67.6k | if (40.6k isl_tab_detect_implicit_equalities(info[i].tab) < 040.6k ) |
3908 | 0 | goto error; |
3909 | 67.6k | info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab, |
3910 | 67.6k | info[i].bmap); |
3911 | 67.6k | if (!info[i].bmap) |
3912 | 0 | goto error; |
3913 | 67.6k | if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT)) |
3914 | 67.6k | if (43.8k isl_tab_detect_redundant(info[i].tab) < 043.8k ) |
3915 | 0 | goto error; |
3916 | 67.6k | if (coalesce_info_set_hull_hash(&info[i]) < 0) |
3917 | 0 | goto error; |
3918 | 67.6k | } |
3919 | 94.4k | for (i = map->n - 1; 26.7k i >= 0; --i67.6k ) |
3920 | 67.6k | if (info[i].tab->empty) |
3921 | 80 | drop(&info[i]); |
3922 | 26.7k | |
3923 | 26.7k | if (coalesce(ctx, n, info) < 0) |
3924 | 0 | goto error; |
3925 | 26.7k | |
3926 | 26.7k | map = update_basic_maps(map, n, info); |
3927 | 26.7k | |
3928 | 26.7k | clear_coalesce_info(n, info); |
3929 | 26.7k | |
3930 | 26.7k | return map; |
3931 | 0 | error: |
3932 | 0 | clear_coalesce_info(n, info); |
3933 | 0 | isl_map_free(map); |
3934 | 0 | return NULL; |
3935 | 26.7k | } |
3936 | | |
3937 | | /* For each pair of basic sets in the set, check if the union of the two |
3938 | | * can be represented by a single basic set. |
3939 | | * If so, replace the pair by the single basic set and start over. |
3940 | | */ |
3941 | | struct isl_set *isl_set_coalesce(struct isl_set *set) |
3942 | 97.8k | { |
3943 | 97.8k | return set_from_map(isl_map_coalesce(set_to_map(set))); |
3944 | 97.8k | } |