/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/lib/External/isl/isl_range.c
Line | Count | Source (jump to first uncovered line) |
1 | | #include <isl_ctx_private.h> |
2 | | #include <isl/val.h> |
3 | | #include <isl_constraint_private.h> |
4 | | #include <isl/set.h> |
5 | | #include <isl_polynomial_private.h> |
6 | | #include <isl_morph.h> |
7 | | #include <isl_range.h> |
8 | | |
9 | | struct range_data { |
10 | | struct isl_bound *bound; |
11 | | int *signs; |
12 | | int sign; |
13 | | int test_monotonicity; |
14 | | int monotonicity; |
15 | | int tight; |
16 | | isl_qpolynomial *poly; |
17 | | isl_pw_qpolynomial_fold *pwf; |
18 | | isl_pw_qpolynomial_fold *pwf_tight; |
19 | | }; |
20 | | |
21 | | static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, |
22 | | __isl_take isl_qpolynomial *poly, struct range_data *data); |
23 | | |
24 | | /* Check whether the polynomial "poly" has sign "sign" over "bset", |
25 | | * i.e., if sign == 1, check that the lower bound on the polynomial |
26 | | * is non-negative and if sign == -1, check that the upper bound on |
27 | | * the polynomial is non-positive. |
28 | | */ |
29 | | static int has_sign(__isl_keep isl_basic_set *bset, |
30 | | __isl_keep isl_qpolynomial *poly, int sign, int *signs) |
31 | 7 | { |
32 | 7 | struct range_data data_m; |
33 | 7 | unsigned nparam; |
34 | 7 | isl_space *dim; |
35 | 7 | isl_val *opt; |
36 | 7 | int r; |
37 | 7 | enum isl_fold type; |
38 | 7 | |
39 | 7 | nparam = isl_basic_set_dim(bset, isl_dim_param); |
40 | 7 | |
41 | 7 | bset = isl_basic_set_copy(bset); |
42 | 7 | poly = isl_qpolynomial_copy(poly); |
43 | 7 | |
44 | 7 | bset = isl_basic_set_move_dims(bset, isl_dim_set, 0, |
45 | 7 | isl_dim_param, 0, nparam); |
46 | 7 | poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0, |
47 | 7 | isl_dim_param, 0, nparam); |
48 | 7 | |
49 | 7 | dim = isl_qpolynomial_get_space(poly); |
50 | 7 | dim = isl_space_params(dim); |
51 | 7 | dim = isl_space_from_domain(dim); |
52 | 7 | dim = isl_space_add_dims(dim, isl_dim_out, 1); |
53 | 7 | |
54 | 7 | data_m.test_monotonicity = 0; |
55 | 7 | data_m.signs = signs; |
56 | 7 | data_m.sign = -sign; |
57 | 7 | type = data_m.sign < 0 ? isl_fold_min5 : isl_fold_max2 ; |
58 | 7 | data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type); |
59 | 7 | data_m.tight = 0; |
60 | 7 | data_m.pwf_tight = NULL; |
61 | 7 | |
62 | 7 | if (propagate_on_domain(bset, poly, &data_m) < 0) |
63 | 0 | goto error; |
64 | 7 | |
65 | 7 | if (sign > 0) |
66 | 5 | opt = isl_pw_qpolynomial_fold_min(data_m.pwf); |
67 | 2 | else |
68 | 2 | opt = isl_pw_qpolynomial_fold_max(data_m.pwf); |
69 | 7 | |
70 | 7 | if (!opt) |
71 | 0 | r = -1; |
72 | 7 | else if (isl_val_is_nan(opt) || |
73 | 7 | isl_val_is_infty(opt) || |
74 | 7 | isl_val_is_neginfty(opt)) |
75 | 2 | r = 0; |
76 | 5 | else |
77 | 5 | r = sign * isl_val_sgn(opt) >= 0; |
78 | 7 | |
79 | 7 | isl_val_free(opt); |
80 | 7 | |
81 | 7 | return r; |
82 | 0 | error: |
83 | 0 | isl_pw_qpolynomial_fold_free(data_m.pwf); |
84 | 0 | return -1; |
85 | 7 | } |
86 | | |
87 | | /* Return 1 if poly is monotonically increasing in the last set variable, |
88 | | * -1 if poly is monotonically decreasing in the last set variable, |
89 | | * 0 if no conclusion, |
90 | | * -2 on error. |
91 | | * |
92 | | * We simply check the sign of p(x+1)-p(x) |
93 | | */ |
94 | | static int monotonicity(__isl_keep isl_basic_set *bset, |
95 | | __isl_keep isl_qpolynomial *poly, struct range_data *data) |
96 | 5 | { |
97 | 5 | isl_ctx *ctx; |
98 | 5 | isl_space *dim; |
99 | 5 | isl_qpolynomial *sub = NULL; |
100 | 5 | isl_qpolynomial *diff = NULL; |
101 | 5 | int result = 0; |
102 | 5 | int s; |
103 | 5 | unsigned nvar; |
104 | 5 | |
105 | 5 | ctx = isl_qpolynomial_get_ctx(poly); |
106 | 5 | dim = isl_qpolynomial_get_domain_space(poly); |
107 | 5 | |
108 | 5 | nvar = isl_basic_set_dim(bset, isl_dim_set); |
109 | 5 | |
110 | 5 | sub = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_set, nvar - 1); |
111 | 5 | sub = isl_qpolynomial_add(sub, |
112 | 5 | isl_qpolynomial_rat_cst_on_domain(dim, ctx->one, ctx->one)); |
113 | 5 | |
114 | 5 | diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly), |
115 | 5 | isl_dim_in, nvar - 1, 1, &sub); |
116 | 5 | diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly)); |
117 | 5 | |
118 | 5 | s = has_sign(bset, diff, 1, data->signs); |
119 | 5 | if (s < 0) |
120 | 0 | goto error; |
121 | 5 | if (s) |
122 | 3 | result = 1; |
123 | 2 | else { |
124 | 2 | s = has_sign(bset, diff, -1, data->signs); |
125 | 2 | if (s < 0) |
126 | 0 | goto error; |
127 | 2 | if (s) |
128 | 2 | result = -1; |
129 | 2 | } |
130 | 5 | |
131 | 5 | isl_qpolynomial_free(diff); |
132 | 5 | isl_qpolynomial_free(sub); |
133 | 5 | |
134 | 5 | return result; |
135 | 0 | error: |
136 | 0 | isl_qpolynomial_free(diff); |
137 | 0 | isl_qpolynomial_free(sub); |
138 | 0 | return -2; |
139 | 5 | } |
140 | | |
141 | | /* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial |
142 | | * with domain space "space". |
143 | | */ |
144 | | static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space, |
145 | | int sign) |
146 | 18 | { |
147 | 18 | if (sign > 0) |
148 | 10 | return isl_qpolynomial_infty_on_domain(space); |
149 | 8 | else |
150 | 8 | return isl_qpolynomial_neginfty_on_domain(space); |
151 | 18 | } |
152 | | |
153 | | static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound, |
154 | | __isl_take isl_space *space, unsigned pos, int sign) |
155 | 29 | { |
156 | 29 | if (!bound) |
157 | 14 | return signed_infty(space, sign); |
158 | 15 | isl_space_free(space); |
159 | 15 | return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos); |
160 | 15 | } |
161 | | |
162 | | static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos) |
163 | 0 | { |
164 | 0 | isl_int c; |
165 | 0 | int is_int; |
166 | 0 |
|
167 | 0 | if (!bound) |
168 | 0 | return 1; |
169 | 0 | |
170 | 0 | isl_int_init(c); |
171 | 0 | isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c); |
172 | 0 | is_int = isl_int_is_one(c) || isl_int_is_negone(c); |
173 | 0 | isl_int_clear(c); |
174 | 0 |
|
175 | 0 | return is_int; |
176 | 0 | } |
177 | | |
178 | | struct isl_fixed_sign_data { |
179 | | int *signs; |
180 | | int sign; |
181 | | isl_qpolynomial *poly; |
182 | | }; |
183 | | |
184 | | /* Add term "term" to data->poly if it has sign data->sign. |
185 | | * The sign is determined based on the signs of the parameters |
186 | | * and variables in data->signs. The integer divisions, if |
187 | | * any, are assumed to be non-negative. |
188 | | */ |
189 | | static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user) |
190 | 24 | { |
191 | 24 | struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user; |
192 | 24 | isl_int n; |
193 | 24 | int i; |
194 | 24 | int sign; |
195 | 24 | unsigned nparam; |
196 | 24 | unsigned nvar; |
197 | 24 | |
198 | 24 | if (!term) |
199 | 0 | return isl_stat_error; |
200 | 24 | |
201 | 24 | nparam = isl_term_dim(term, isl_dim_param); |
202 | 24 | nvar = isl_term_dim(term, isl_dim_set); |
203 | 24 | |
204 | 24 | isl_int_init(n); |
205 | 24 | |
206 | 24 | isl_term_get_num(term, &n); |
207 | 24 | |
208 | 24 | sign = isl_int_sgn(n); |
209 | 24 | for (i = 0; i < nparam; ++i0 ) { |
210 | 0 | if (data->signs[i] > 0) |
211 | 0 | continue; |
212 | 0 | if (isl_term_get_exp(term, isl_dim_param, i) % 2) |
213 | 0 | sign = -sign; |
214 | 0 | } |
215 | 60 | for (i = 0; i < nvar; ++i36 ) { |
216 | 36 | if (data->signs[nparam + i] > 0) |
217 | 22 | continue; |
218 | 14 | if (isl_term_get_exp(term, isl_dim_set, i) % 2) |
219 | 8 | sign = -sign; |
220 | 14 | } |
221 | 24 | |
222 | 24 | if (sign == data->sign) { |
223 | 12 | isl_qpolynomial *t = isl_qpolynomial_from_term(term); |
224 | 12 | |
225 | 12 | data->poly = isl_qpolynomial_add(data->poly, t); |
226 | 12 | } else |
227 | 12 | isl_term_free(term); |
228 | 24 | |
229 | 24 | isl_int_clear(n); |
230 | 24 | |
231 | 24 | return isl_stat_ok; |
232 | 24 | } |
233 | | |
234 | | /* Construct and return a polynomial that consists of the terms |
235 | | * in "poly" that have sign "sign". The integer divisions, if |
236 | | * any, are assumed to be non-negative. |
237 | | */ |
238 | | __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( |
239 | | __isl_keep isl_qpolynomial *poly, int *signs, int sign) |
240 | 24 | { |
241 | 24 | isl_space *space; |
242 | 24 | struct isl_fixed_sign_data data = { signs, sign }; |
243 | 24 | |
244 | 24 | space = isl_qpolynomial_get_domain_space(poly); |
245 | 24 | data.poly = isl_qpolynomial_zero_on_domain(space); |
246 | 24 | |
247 | 24 | if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0) |
248 | 0 | goto error; |
249 | 24 | |
250 | 24 | return data.poly; |
251 | 0 | error: |
252 | 0 | isl_qpolynomial_free(data.poly); |
253 | 0 | return NULL; |
254 | 24 | } |
255 | | |
256 | | /* Helper function to add a guarded polynomial to either pwf_tight or pwf, |
257 | | * depending on whether the result has been determined to be tight. |
258 | | */ |
259 | | static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset, |
260 | | __isl_take isl_qpolynomial *poly, struct range_data *data) |
261 | 11 | { |
262 | 11 | enum isl_fold type = data->sign < 0 ? isl_fold_min5 : isl_fold_max6 ; |
263 | 11 | isl_set *set; |
264 | 11 | isl_qpolynomial_fold *fold; |
265 | 11 | isl_pw_qpolynomial_fold *pwf; |
266 | 11 | |
267 | 11 | bset = isl_basic_set_params(bset); |
268 | 11 | poly = isl_qpolynomial_project_domain_on_params(poly); |
269 | 11 | |
270 | 11 | fold = isl_qpolynomial_fold_alloc(type, poly); |
271 | 11 | set = isl_set_from_basic_set(bset); |
272 | 11 | pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold); |
273 | 11 | if (data->tight) |
274 | 0 | data->pwf_tight = isl_pw_qpolynomial_fold_fold( |
275 | 0 | data->pwf_tight, pwf); |
276 | 11 | else |
277 | 11 | data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf); |
278 | 11 | |
279 | 11 | return isl_stat_ok; |
280 | 11 | } |
281 | | |
282 | | /* Plug in "sub" for the variable at position "pos" in "poly". |
283 | | * |
284 | | * If "sub" is an infinite polynomial and if the variable actually |
285 | | * appears in "poly", then calling isl_qpolynomial_substitute |
286 | | * to perform the substitution may result in a NaN result. |
287 | | * In such cases, return positive or negative infinity instead, |
288 | | * depending on whether an upper bound or a lower bound is being computed, |
289 | | * and mark the result as not being tight. |
290 | | */ |
291 | | static __isl_give isl_qpolynomial *plug_in_at_pos( |
292 | | __isl_take isl_qpolynomial *poly, int pos, |
293 | | __isl_take isl_qpolynomial *sub, struct range_data *data) |
294 | 29 | { |
295 | 29 | isl_bool involves, infty; |
296 | 29 | |
297 | 29 | involves = isl_qpolynomial_involves_dims(poly, isl_dim_in, pos, 1); |
298 | 29 | if (involves < 0) |
299 | 0 | goto error; |
300 | 29 | if (!involves) { |
301 | 18 | isl_qpolynomial_free(sub); |
302 | 18 | return poly; |
303 | 18 | } |
304 | 11 | |
305 | 11 | infty = isl_qpolynomial_is_infty(sub); |
306 | 11 | if (infty >= 0 && !infty) |
307 | 8 | infty = isl_qpolynomial_is_neginfty(sub); |
308 | 11 | if (infty < 0) |
309 | 0 | goto error; |
310 | 11 | if (infty) { |
311 | 4 | isl_space *space = isl_qpolynomial_get_domain_space(poly); |
312 | 4 | data->tight = 0; |
313 | 4 | isl_qpolynomial_free(poly); |
314 | 4 | isl_qpolynomial_free(sub); |
315 | 4 | return signed_infty(space, data->sign); |
316 | 4 | } |
317 | 7 | |
318 | 7 | poly = isl_qpolynomial_substitute(poly, isl_dim_in, pos, 1, &sub); |
319 | 7 | isl_qpolynomial_free(sub); |
320 | 7 | |
321 | 7 | return poly; |
322 | 0 | error: |
323 | 0 | isl_qpolynomial_free(poly); |
324 | 0 | isl_qpolynomial_free(sub); |
325 | 0 | return NULL; |
326 | 7 | } |
327 | | |
328 | | /* Given a lower and upper bound on the final variable and constraints |
329 | | * on the remaining variables where these bounds are active, |
330 | | * eliminate the variable from data->poly based on these bounds. |
331 | | * If the polynomial has been determined to be monotonic |
332 | | * in the variable, then simply plug in the appropriate bound. |
333 | | * If the current polynomial is tight and if this bound is integer, |
334 | | * then the result is still tight. In all other cases, the results |
335 | | * may not be tight. |
336 | | * Otherwise, plug in the largest bound (in absolute value) in |
337 | | * the positive terms (if an upper bound is wanted) or the negative terms |
338 | | * (if a lower bounded is wanted) and the other bound in the other terms. |
339 | | * |
340 | | * If all variables have been eliminated, then record the result. |
341 | | * Ohterwise, recurse on the next variable. |
342 | | */ |
343 | | static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower, |
344 | | __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, |
345 | | void *user) |
346 | 17 | { |
347 | 17 | struct range_data *data = (struct range_data *)user; |
348 | 17 | int save_tight = data->tight; |
349 | 17 | isl_qpolynomial *poly; |
350 | 17 | isl_stat r; |
351 | 17 | unsigned nvar; |
352 | 17 | |
353 | 17 | nvar = isl_basic_set_dim(bset, isl_dim_set); |
354 | 17 | |
355 | 17 | if (data->monotonicity) { |
356 | 5 | isl_qpolynomial *sub; |
357 | 5 | isl_space *dim = isl_qpolynomial_get_domain_space(data->poly); |
358 | 5 | if (data->monotonicity * data->sign > 0) { |
359 | 3 | if (data->tight) |
360 | 0 | data->tight = bound_is_integer(upper, nvar); |
361 | 3 | sub = bound2poly(upper, dim, nvar, 1); |
362 | 3 | isl_constraint_free(lower); |
363 | 3 | } else { |
364 | 2 | if (data->tight) |
365 | 0 | data->tight = bound_is_integer(lower, nvar); |
366 | 2 | sub = bound2poly(lower, dim, nvar, -1); |
367 | 2 | isl_constraint_free(upper); |
368 | 2 | } |
369 | 5 | poly = isl_qpolynomial_copy(data->poly); |
370 | 5 | poly = plug_in_at_pos(poly, nvar, sub, data); |
371 | 5 | poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); |
372 | 12 | } else { |
373 | 12 | isl_qpolynomial *l, *u; |
374 | 12 | isl_qpolynomial *pos, *neg; |
375 | 12 | isl_space *dim = isl_qpolynomial_get_domain_space(data->poly); |
376 | 12 | unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); |
377 | 12 | int sign = data->sign * data->signs[nparam + nvar]; |
378 | 12 | |
379 | 12 | data->tight = 0; |
380 | 12 | |
381 | 12 | u = bound2poly(upper, isl_space_copy(dim), nvar, 1); |
382 | 12 | l = bound2poly(lower, dim, nvar, -1); |
383 | 12 | |
384 | 12 | pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign); |
385 | 12 | neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign); |
386 | 12 | |
387 | 12 | pos = plug_in_at_pos(pos, nvar, u, data); |
388 | 12 | neg = plug_in_at_pos(neg, nvar, l, data); |
389 | 12 | |
390 | 12 | poly = isl_qpolynomial_add(pos, neg); |
391 | 12 | poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); |
392 | 12 | } |
393 | 17 | |
394 | 17 | if (isl_basic_set_dim(bset, isl_dim_set) == 0) |
395 | 7 | r = add_guarded_poly(bset, poly, data); |
396 | 10 | else |
397 | 10 | r = propagate_on_domain(bset, poly, data); |
398 | 17 | |
399 | 17 | data->tight = save_tight; |
400 | 17 | |
401 | 17 | return r; |
402 | 17 | } |
403 | | |
404 | | /* Recursively perform range propagation on the polynomial "poly" |
405 | | * defined over the basic set "bset" and collect the results in "data". |
406 | | */ |
407 | | static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, |
408 | | __isl_take isl_qpolynomial *poly, struct range_data *data) |
409 | 21 | { |
410 | 21 | isl_ctx *ctx; |
411 | 21 | isl_qpolynomial *save_poly = data->poly; |
412 | 21 | int save_monotonicity = data->monotonicity; |
413 | 21 | unsigned d; |
414 | 21 | |
415 | 21 | if (!bset || !poly) |
416 | 0 | goto error; |
417 | 21 | |
418 | 21 | ctx = isl_basic_set_get_ctx(bset); |
419 | 21 | d = isl_basic_set_dim(bset, isl_dim_set); |
420 | 21 | isl_assert(ctx, d >= 1, goto error); |
421 | 21 | |
422 | 21 | if (isl_qpolynomial_is_cst(poly, NULL, NULL)) { |
423 | 4 | bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d); |
424 | 4 | poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d); |
425 | 4 | return add_guarded_poly(bset, poly, data); |
426 | 4 | } |
427 | 17 | |
428 | 17 | if (data->test_monotonicity) |
429 | 5 | data->monotonicity = monotonicity(bset, poly, data); |
430 | 12 | else |
431 | 12 | data->monotonicity = 0; |
432 | 17 | if (data->monotonicity < -1) |
433 | 0 | goto error; |
434 | 17 | |
435 | 17 | data->poly = poly; |
436 | 17 | if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1, |
437 | 17 | &propagate_on_bound_pair, data) < 0) |
438 | 0 | goto error; |
439 | 17 | |
440 | 17 | isl_basic_set_free(bset); |
441 | 17 | isl_qpolynomial_free(poly); |
442 | 17 | data->monotonicity = save_monotonicity; |
443 | 17 | data->poly = save_poly; |
444 | 17 | |
445 | 17 | return isl_stat_ok; |
446 | 0 | error: |
447 | 0 | isl_basic_set_free(bset); |
448 | 0 | isl_qpolynomial_free(poly); |
449 | 0 | data->monotonicity = save_monotonicity; |
450 | 0 | data->poly = save_poly; |
451 | 0 | return isl_stat_error; |
452 | 17 | } |
453 | | |
454 | | static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset, |
455 | | void *user) |
456 | 4 | { |
457 | 4 | struct range_data *data = (struct range_data *)user; |
458 | 4 | isl_ctx *ctx; |
459 | 4 | unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); |
460 | 4 | unsigned dim = isl_basic_set_dim(bset, isl_dim_set); |
461 | 4 | isl_stat r; |
462 | 4 | |
463 | 4 | data->signs = NULL; |
464 | 4 | |
465 | 4 | ctx = isl_basic_set_get_ctx(bset); |
466 | 4 | data->signs = isl_alloc_array(ctx, int, |
467 | 4 | isl_basic_set_dim(bset, isl_dim_all)); |
468 | 4 | |
469 | 4 | if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim, |
470 | 4 | data->signs + nparam) < 0) |
471 | 0 | goto error; |
472 | 4 | if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam, |
473 | 4 | data->signs) < 0) |
474 | 0 | goto error; |
475 | 4 | |
476 | 4 | r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data); |
477 | 4 | |
478 | 4 | free(data->signs); |
479 | 4 | |
480 | 4 | return r; |
481 | 0 | error: |
482 | 0 | free(data->signs); |
483 | 0 | isl_basic_set_free(bset); |
484 | 0 | return isl_stat_error; |
485 | 4 | } |
486 | | |
487 | | static isl_stat qpolynomial_bound_on_domain_range( |
488 | | __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, |
489 | | struct range_data *data) |
490 | 1 | { |
491 | 1 | unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); |
492 | 1 | unsigned nvar = isl_basic_set_dim(bset, isl_dim_set); |
493 | 1 | isl_set *set = NULL; |
494 | 1 | |
495 | 1 | if (!bset) |
496 | 0 | goto error; |
497 | 1 | |
498 | 1 | if (nvar == 0) |
499 | 0 | return add_guarded_poly(bset, poly, data); |
500 | 1 | |
501 | 1 | set = isl_set_from_basic_set(bset); |
502 | 1 | set = isl_set_split_dims(set, isl_dim_param, 0, nparam); |
503 | 1 | set = isl_set_split_dims(set, isl_dim_set, 0, nvar); |
504 | 1 | |
505 | 1 | data->poly = poly; |
506 | 1 | |
507 | 1 | data->test_monotonicity = 1; |
508 | 1 | if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0) |
509 | 0 | goto error; |
510 | 1 | |
511 | 1 | isl_set_free(set); |
512 | 1 | isl_qpolynomial_free(poly); |
513 | 1 | |
514 | 1 | return isl_stat_ok; |
515 | 0 | error: |
516 | 0 | isl_set_free(set); |
517 | 0 | isl_qpolynomial_free(poly); |
518 | 0 | return isl_stat_error; |
519 | 1 | } |
520 | | |
521 | | isl_stat isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, |
522 | | __isl_take isl_qpolynomial *poly, struct isl_bound *bound) |
523 | 1 | { |
524 | 1 | struct range_data data; |
525 | 1 | isl_stat r; |
526 | 1 | |
527 | 1 | data.pwf = bound->pwf; |
528 | 1 | data.pwf_tight = bound->pwf_tight; |
529 | 1 | data.tight = bound->check_tight; |
530 | 1 | if (bound->type == isl_fold_min) |
531 | 0 | data.sign = -1; |
532 | 1 | else |
533 | 1 | data.sign = 1; |
534 | 1 | |
535 | 1 | r = qpolynomial_bound_on_domain_range(bset, poly, &data); |
536 | 1 | |
537 | 1 | bound->pwf = data.pwf; |
538 | 1 | bound->pwf_tight = data.pwf_tight; |
539 | 1 | |
540 | 1 | return r; |
541 | 1 | } |