/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/lib/External/isl/isl_scheduler.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2011 INRIA Saclay |
3 | | * Copyright 2012-2014 Ecole Normale Superieure |
4 | | * Copyright 2015-2016 Sven Verdoolaege |
5 | | * Copyright 2016 INRIA Paris |
6 | | * Copyright 2017 Sven Verdoolaege |
7 | | * |
8 | | * Use of this software is governed by the MIT license |
9 | | * |
10 | | * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, |
11 | | * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, |
12 | | * 91893 Orsay, France |
13 | | * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France |
14 | | * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12, |
15 | | * CS 42112, 75589 Paris Cedex 12, France |
16 | | */ |
17 | | |
18 | | #include <isl_ctx_private.h> |
19 | | #include <isl_map_private.h> |
20 | | #include <isl_space_private.h> |
21 | | #include <isl_aff_private.h> |
22 | | #include <isl/hash.h> |
23 | | #include <isl/id.h> |
24 | | #include <isl/constraint.h> |
25 | | #include <isl/schedule.h> |
26 | | #include <isl_schedule_constraints.h> |
27 | | #include <isl/schedule_node.h> |
28 | | #include <isl_mat_private.h> |
29 | | #include <isl_vec_private.h> |
30 | | #include <isl/set.h> |
31 | | #include <isl_union_set_private.h> |
32 | | #include <isl_seq.h> |
33 | | #include <isl_tab.h> |
34 | | #include <isl_dim_map.h> |
35 | | #include <isl/map_to_basic_set.h> |
36 | | #include <isl_sort.h> |
37 | | #include <isl_options_private.h> |
38 | | #include <isl_tarjan.h> |
39 | | #include <isl_morph.h> |
40 | | #include <isl/ilp.h> |
41 | | #include <isl_val_private.h> |
42 | | |
43 | | /* |
44 | | * The scheduling algorithm implemented in this file was inspired by |
45 | | * Bondhugula et al., "Automatic Transformations for Communication-Minimized |
46 | | * Parallelization and Locality Optimization in the Polyhedral Model". |
47 | | * |
48 | | * For a detailed description of the variant implemented in isl, |
49 | | * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017). |
50 | | */ |
51 | | |
52 | | |
53 | | /* Internal information about a node that is used during the construction |
54 | | * of a schedule. |
55 | | * space represents the original space in which the domain lives; |
56 | | * that is, the space is not affected by compression |
57 | | * sched is a matrix representation of the schedule being constructed |
58 | | * for this node; if compressed is set, then this schedule is |
59 | | * defined over the compressed domain space |
60 | | * sched_map is an isl_map representation of the same (partial) schedule |
61 | | * sched_map may be NULL; if compressed is set, then this map |
62 | | * is defined over the uncompressed domain space |
63 | | * rank is the number of linearly independent rows in the linear part |
64 | | * of sched |
65 | | * the rows of "vmap" represent a change of basis for the node |
66 | | * variables; the first rank rows span the linear part of |
67 | | * the schedule rows; the remaining rows are linearly independent |
68 | | * the rows of "indep" represent linear combinations of the schedule |
69 | | * coefficients that are non-zero when the schedule coefficients are |
70 | | * linearly independent of previously computed schedule rows. |
71 | | * start is the first variable in the LP problem in the sequences that |
72 | | * represents the schedule coefficients of this node |
73 | | * nvar is the dimension of the (compressed) domain |
74 | | * nparam is the number of parameters or 0 if we are not constructing |
75 | | * a parametric schedule |
76 | | * |
77 | | * If compressed is set, then hull represents the constraints |
78 | | * that were used to derive the compression, while compress and |
79 | | * decompress map the original space to the compressed space and |
80 | | * vice versa. |
81 | | * |
82 | | * scc is the index of SCC (or WCC) this node belongs to |
83 | | * |
84 | | * "cluster" is only used inside extract_clusters and identifies |
85 | | * the cluster of SCCs that the node belongs to. |
86 | | * |
87 | | * coincident contains a boolean for each of the rows of the schedule, |
88 | | * indicating whether the corresponding scheduling dimension satisfies |
89 | | * the coincidence constraints in the sense that the corresponding |
90 | | * dependence distances are zero. |
91 | | * |
92 | | * If the schedule_treat_coalescing option is set, then |
93 | | * "sizes" contains the sizes of the (compressed) instance set |
94 | | * in each direction. If there is no fixed size in a given direction, |
95 | | * then the corresponding size value is set to infinity. |
96 | | * If the schedule_treat_coalescing option or the schedule_max_coefficient |
97 | | * option is set, then "max" contains the maximal values for |
98 | | * schedule coefficients of the (compressed) variables. If no bound |
99 | | * needs to be imposed on a particular variable, then the corresponding |
100 | | * value is negative. |
101 | | * If not NULL, then "bounds" contains a non-parametric set |
102 | | * in the compressed space that is bounded by the size in each direction. |
103 | | */ |
104 | | struct isl_sched_node { |
105 | | isl_space *space; |
106 | | int compressed; |
107 | | isl_set *hull; |
108 | | isl_multi_aff *compress; |
109 | | isl_multi_aff *decompress; |
110 | | isl_mat *sched; |
111 | | isl_map *sched_map; |
112 | | int rank; |
113 | | isl_mat *indep; |
114 | | isl_mat *vmap; |
115 | | int start; |
116 | | int nvar; |
117 | | int nparam; |
118 | | |
119 | | int scc; |
120 | | int cluster; |
121 | | |
122 | | int *coincident; |
123 | | |
124 | | isl_multi_val *sizes; |
125 | | isl_basic_set *bounds; |
126 | | isl_vec *max; |
127 | | }; |
128 | | |
129 | | static int node_has_tuples(const void *entry, const void *val) |
130 | 1.71k | { |
131 | 1.71k | struct isl_sched_node *node = (struct isl_sched_node *)entry; |
132 | 1.71k | isl_space *space = (isl_space *) val; |
133 | 1.71k | |
134 | 1.71k | return isl_space_has_equal_tuples(node->space, space); |
135 | 1.71k | } |
136 | | |
137 | | static int node_scc_exactly(struct isl_sched_node *node, int scc) |
138 | 1.11k | { |
139 | 1.11k | return node->scc == scc; |
140 | 1.11k | } |
141 | | |
142 | | static int node_scc_at_most(struct isl_sched_node *node, int scc) |
143 | 18 | { |
144 | 18 | return node->scc <= scc; |
145 | 18 | } |
146 | | |
147 | | static int node_scc_at_least(struct isl_sched_node *node, int scc) |
148 | 18 | { |
149 | 18 | return node->scc >= scc; |
150 | 18 | } |
151 | | |
152 | | /* An edge in the dependence graph. An edge may be used to |
153 | | * ensure validity of the generated schedule, to minimize the dependence |
154 | | * distance or both |
155 | | * |
156 | | * map is the dependence relation, with i -> j in the map if j depends on i |
157 | | * tagged_condition and tagged_validity contain the union of all tagged |
158 | | * condition or conditional validity dependence relations that |
159 | | * specialize the dependence relation "map"; that is, |
160 | | * if (i -> a) -> (j -> b) is an element of "tagged_condition" |
161 | | * or "tagged_validity", then i -> j is an element of "map". |
162 | | * If these fields are NULL, then they represent the empty relation. |
163 | | * src is the source node |
164 | | * dst is the sink node |
165 | | * |
166 | | * types is a bit vector containing the types of this edge. |
167 | | * validity is set if the edge is used to ensure correctness |
168 | | * coincidence is used to enforce zero dependence distances |
169 | | * proximity is set if the edge is used to minimize dependence distances |
170 | | * condition is set if the edge represents a condition |
171 | | * for a conditional validity schedule constraint |
172 | | * local can only be set for condition edges and indicates that |
173 | | * the dependence distance over the edge should be zero |
174 | | * conditional_validity is set if the edge is used to conditionally |
175 | | * ensure correctness |
176 | | * |
177 | | * For validity edges, start and end mark the sequence of inequality |
178 | | * constraints in the LP problem that encode the validity constraint |
179 | | * corresponding to this edge. |
180 | | * |
181 | | * During clustering, an edge may be marked "no_merge" if it should |
182 | | * not be used to merge clusters. |
183 | | * The weight is also only used during clustering and it is |
184 | | * an indication of how many schedule dimensions on either side |
185 | | * of the schedule constraints can be aligned. |
186 | | * If the weight is negative, then this means that this edge was postponed |
187 | | * by has_bounded_distances or any_no_merge. The original weight can |
188 | | * be retrieved by adding 1 + graph->max_weight, with "graph" |
189 | | * the graph containing this edge. |
190 | | */ |
191 | | struct isl_sched_edge { |
192 | | isl_map *map; |
193 | | isl_union_map *tagged_condition; |
194 | | isl_union_map *tagged_validity; |
195 | | |
196 | | struct isl_sched_node *src; |
197 | | struct isl_sched_node *dst; |
198 | | |
199 | | unsigned types; |
200 | | |
201 | | int start; |
202 | | int end; |
203 | | |
204 | | int no_merge; |
205 | | int weight; |
206 | | }; |
207 | | |
208 | | /* Is "edge" marked as being of type "type"? |
209 | | */ |
210 | | static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type) |
211 | 12.7k | { |
212 | 12.7k | return ISL_FL_ISSET(edge->types, 1 << type); |
213 | 12.7k | } |
214 | | |
215 | | /* Mark "edge" as being of type "type". |
216 | | */ |
217 | | static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type) |
218 | 677 | { |
219 | 677 | ISL_FL_SET(edge->types, 1 << type); |
220 | 677 | } |
221 | | |
222 | | /* No longer mark "edge" as being of type "type"? |
223 | | */ |
224 | | static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type) |
225 | 44 | { |
226 | 44 | ISL_FL_CLR(edge->types, 1 << type); |
227 | 44 | } |
228 | | |
229 | | /* Is "edge" marked as a validity edge? |
230 | | */ |
231 | | static int is_validity(struct isl_sched_edge *edge) |
232 | 3.39k | { |
233 | 3.39k | return is_type(edge, isl_edge_validity); |
234 | 3.39k | } |
235 | | |
236 | | /* Mark "edge" as a validity edge. |
237 | | */ |
238 | | static void set_validity(struct isl_sched_edge *edge) |
239 | 2 | { |
240 | 2 | set_type(edge, isl_edge_validity); |
241 | 2 | } |
242 | | |
243 | | /* Is "edge" marked as a proximity edge? |
244 | | */ |
245 | | static int is_proximity(struct isl_sched_edge *edge) |
246 | 1.78k | { |
247 | 1.78k | return is_type(edge, isl_edge_proximity); |
248 | 1.78k | } |
249 | | |
250 | | /* Is "edge" marked as a local edge? |
251 | | */ |
252 | | static int is_local(struct isl_sched_edge *edge) |
253 | 2.21k | { |
254 | 2.21k | return is_type(edge, isl_edge_local); |
255 | 2.21k | } |
256 | | |
257 | | /* Mark "edge" as a local edge. |
258 | | */ |
259 | | static void set_local(struct isl_sched_edge *edge) |
260 | 15 | { |
261 | 15 | set_type(edge, isl_edge_local); |
262 | 15 | } |
263 | | |
264 | | /* No longer mark "edge" as a local edge. |
265 | | */ |
266 | | static void clear_local(struct isl_sched_edge *edge) |
267 | 44 | { |
268 | 44 | clear_type(edge, isl_edge_local); |
269 | 44 | } |
270 | | |
271 | | /* Is "edge" marked as a coincidence edge? |
272 | | */ |
273 | | static int is_coincidence(struct isl_sched_edge *edge) |
274 | 1.02k | { |
275 | 1.02k | return is_type(edge, isl_edge_coincidence); |
276 | 1.02k | } |
277 | | |
278 | | /* Is "edge" marked as a condition edge? |
279 | | */ |
280 | | static int is_condition(struct isl_sched_edge *edge) |
281 | 2.00k | { |
282 | 2.00k | return is_type(edge, isl_edge_condition); |
283 | 2.00k | } |
284 | | |
285 | | /* Is "edge" marked as a conditional validity edge? |
286 | | */ |
287 | | static int is_conditional_validity(struct isl_sched_edge *edge) |
288 | 1.47k | { |
289 | 1.47k | return is_type(edge, isl_edge_conditional_validity); |
290 | 1.47k | } |
291 | | |
292 | | /* Is "edge" of a type that can appear multiple times between |
293 | | * the same pair of nodes? |
294 | | * |
295 | | * Condition edges and conditional validity edges may have tagged |
296 | | * dependence relations, in which case an edge is added for each |
297 | | * pair of tags. |
298 | | */ |
299 | | static int is_multi_edge_type(struct isl_sched_edge *edge) |
300 | 110 | { |
301 | 110 | return is_condition(edge) || is_conditional_validity(edge)87 ; |
302 | 110 | } |
303 | | |
304 | | /* Internal information about the dependence graph used during |
305 | | * the construction of the schedule. |
306 | | * |
307 | | * intra_hmap is a cache, mapping dependence relations to their dual, |
308 | | * for dependences from a node to itself, possibly without |
309 | | * coefficients for the parameters |
310 | | * intra_hmap_param is a cache, mapping dependence relations to their dual, |
311 | | * for dependences from a node to itself, including coefficients |
312 | | * for the parameters |
313 | | * inter_hmap is a cache, mapping dependence relations to their dual, |
314 | | * for dependences between distinct nodes |
315 | | * if compression is involved then the key for these maps |
316 | | * is the original, uncompressed dependence relation, while |
317 | | * the value is the dual of the compressed dependence relation. |
318 | | * |
319 | | * n is the number of nodes |
320 | | * node is the list of nodes |
321 | | * maxvar is the maximal number of variables over all nodes |
322 | | * max_row is the allocated number of rows in the schedule |
323 | | * n_row is the current (maximal) number of linearly independent |
324 | | * rows in the node schedules |
325 | | * n_total_row is the current number of rows in the node schedules |
326 | | * band_start is the starting row in the node schedules of the current band |
327 | | * root is set to the original dependence graph from which this graph |
328 | | * is derived through splitting. If this graph is not the result of |
329 | | * splitting, then the root field points to the graph itself. |
330 | | * |
331 | | * sorted contains a list of node indices sorted according to the |
332 | | * SCC to which a node belongs |
333 | | * |
334 | | * n_edge is the number of edges |
335 | | * edge is the list of edges |
336 | | * max_edge contains the maximal number of edges of each type; |
337 | | * in particular, it contains the number of edges in the inital graph. |
338 | | * edge_table contains pointers into the edge array, hashed on the source |
339 | | * and sink spaces; there is one such table for each type; |
340 | | * a given edge may be referenced from more than one table |
341 | | * if the corresponding relation appears in more than one of the |
342 | | * sets of dependences; however, for each type there is only |
343 | | * a single edge between a given pair of source and sink space |
344 | | * in the entire graph |
345 | | * |
346 | | * node_table contains pointers into the node array, hashed on the space tuples |
347 | | * |
348 | | * region contains a list of variable sequences that should be non-trivial |
349 | | * |
350 | | * lp contains the (I)LP problem used to obtain new schedule rows |
351 | | * |
352 | | * src_scc and dst_scc are the source and sink SCCs of an edge with |
353 | | * conflicting constraints |
354 | | * |
355 | | * scc represents the number of components |
356 | | * weak is set if the components are weakly connected |
357 | | * |
358 | | * max_weight is used during clustering and represents the maximal |
359 | | * weight of the relevant proximity edges. |
360 | | */ |
361 | | struct isl_sched_graph { |
362 | | isl_map_to_basic_set *intra_hmap; |
363 | | isl_map_to_basic_set *intra_hmap_param; |
364 | | isl_map_to_basic_set *inter_hmap; |
365 | | |
366 | | struct isl_sched_node *node; |
367 | | int n; |
368 | | int maxvar; |
369 | | int max_row; |
370 | | int n_row; |
371 | | |
372 | | int *sorted; |
373 | | |
374 | | int n_total_row; |
375 | | int band_start; |
376 | | |
377 | | struct isl_sched_graph *root; |
378 | | |
379 | | struct isl_sched_edge *edge; |
380 | | int n_edge; |
381 | | int max_edge[isl_edge_last + 1]; |
382 | | struct isl_hash_table *edge_table[isl_edge_last + 1]; |
383 | | |
384 | | struct isl_hash_table *node_table; |
385 | | struct isl_trivial_region *region; |
386 | | |
387 | | isl_basic_set *lp; |
388 | | |
389 | | int src_scc; |
390 | | int dst_scc; |
391 | | |
392 | | int scc; |
393 | | int weak; |
394 | | |
395 | | int max_weight; |
396 | | }; |
397 | | |
398 | | /* Initialize node_table based on the list of nodes. |
399 | | */ |
400 | | static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph) |
401 | 349 | { |
402 | 349 | int i; |
403 | 349 | |
404 | 349 | graph->node_table = isl_hash_table_alloc(ctx, graph->n); |
405 | 349 | if (!graph->node_table) |
406 | 0 | return -1; |
407 | 349 | |
408 | 855 | for (i = 0; 349 i < graph->n; ++i506 ) { |
409 | 506 | struct isl_hash_table_entry *entry; |
410 | 506 | uint32_t hash; |
411 | 506 | |
412 | 506 | hash = isl_space_get_tuple_hash(graph->node[i].space); |
413 | 506 | entry = isl_hash_table_find(ctx, graph->node_table, hash, |
414 | 506 | &node_has_tuples, |
415 | 506 | graph->node[i].space, 1); |
416 | 506 | if (!entry) |
417 | 0 | return -1; |
418 | 506 | entry->data = &graph->node[i]; |
419 | 506 | } |
420 | 349 | |
421 | 349 | return 0; |
422 | 349 | } |
423 | | |
424 | | /* Return a pointer to the node that lives within the given space, |
425 | | * an invalid node if there is no such node, or NULL in case of error. |
426 | | */ |
427 | | static struct isl_sched_node *graph_find_node(isl_ctx *ctx, |
428 | | struct isl_sched_graph *graph, __isl_keep isl_space *space) |
429 | 1.74k | { |
430 | 1.74k | struct isl_hash_table_entry *entry; |
431 | 1.74k | uint32_t hash; |
432 | 1.74k | |
433 | 1.74k | if (!space) |
434 | 0 | return NULL; |
435 | 1.74k | |
436 | 1.74k | hash = isl_space_get_tuple_hash(space); |
437 | 1.74k | entry = isl_hash_table_find(ctx, graph->node_table, hash, |
438 | 1.74k | &node_has_tuples, space, 0); |
439 | 1.74k | |
440 | 1.74k | return entry ? entry->data1.71k : graph->node + graph->n24 ; |
441 | 1.74k | } |
442 | | |
443 | | /* Is "node" a node in "graph"? |
444 | | */ |
445 | | static int is_node(struct isl_sched_graph *graph, |
446 | | struct isl_sched_node *node) |
447 | 1.74k | { |
448 | 1.74k | return node && node >= &graph->node[0] && node < &graph->node[graph->n]; |
449 | 1.74k | } |
450 | | |
451 | | static int edge_has_src_and_dst(const void *entry, const void *val) |
452 | 1.21k | { |
453 | 1.21k | const struct isl_sched_edge *edge = entry; |
454 | 1.21k | const struct isl_sched_edge *temp = val; |
455 | 1.21k | |
456 | 1.21k | return edge->src == temp->src && edge->dst == temp->dst; |
457 | 1.21k | } |
458 | | |
459 | | /* Add the given edge to graph->edge_table[type]. |
460 | | */ |
461 | | static isl_stat graph_edge_table_add(isl_ctx *ctx, |
462 | | struct isl_sched_graph *graph, enum isl_edge_type type, |
463 | | struct isl_sched_edge *edge) |
464 | 947 | { |
465 | 947 | struct isl_hash_table_entry *entry; |
466 | 947 | uint32_t hash; |
467 | 947 | |
468 | 947 | hash = isl_hash_init(); |
469 | 947 | hash = isl_hash_builtin(hash, edge->src); |
470 | 947 | hash = isl_hash_builtin(hash, edge->dst); |
471 | 947 | entry = isl_hash_table_find(ctx, graph->edge_table[type], hash, |
472 | 947 | &edge_has_src_and_dst, edge, 1); |
473 | 947 | if (!entry) |
474 | 0 | return isl_stat_error; |
475 | 947 | entry->data = edge; |
476 | 947 | |
477 | 947 | return isl_stat_ok; |
478 | 947 | } |
479 | | |
480 | | /* Add "edge" to all relevant edge tables. |
481 | | * That is, for every type of the edge, add it to the corresponding table. |
482 | | */ |
483 | | static isl_stat graph_edge_tables_add(isl_ctx *ctx, |
484 | | struct isl_sched_graph *graph, struct isl_sched_edge *edge) |
485 | 115 | { |
486 | 115 | enum isl_edge_type t; |
487 | 115 | |
488 | 690 | for (t = isl_edge_first; t <= isl_edge_last; ++t575 ) { |
489 | 575 | if (!is_type(edge, t)) |
490 | 288 | continue; |
491 | 287 | if (graph_edge_table_add(ctx, graph, t, edge) < 0) |
492 | 0 | return isl_stat_error; |
493 | 287 | } |
494 | 115 | |
495 | 115 | return isl_stat_ok; |
496 | 115 | } |
497 | | |
498 | | /* Allocate the edge_tables based on the maximal number of edges of |
499 | | * each type. |
500 | | */ |
501 | | static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph) |
502 | 349 | { |
503 | 349 | int i; |
504 | 349 | |
505 | 2.09k | for (i = 0; i <= isl_edge_last; ++i1.74k ) { |
506 | 1.74k | graph->edge_table[i] = isl_hash_table_alloc(ctx, |
507 | 1.74k | graph->max_edge[i]); |
508 | 1.74k | if (!graph->edge_table[i]) |
509 | 0 | return -1; |
510 | 1.74k | } |
511 | 349 | |
512 | 349 | return 0; |
513 | 349 | } |
514 | | |
515 | | /* If graph->edge_table[type] contains an edge from the given source |
516 | | * to the given destination, then return the hash table entry of this edge. |
517 | | * Otherwise, return NULL. |
518 | | */ |
519 | | static struct isl_hash_table_entry *graph_find_edge_entry( |
520 | | struct isl_sched_graph *graph, |
521 | | enum isl_edge_type type, |
522 | | struct isl_sched_node *src, struct isl_sched_node *dst) |
523 | 4.79k | { |
524 | 4.79k | isl_ctx *ctx = isl_space_get_ctx(src->space); |
525 | 4.79k | uint32_t hash; |
526 | 4.79k | struct isl_sched_edge temp = { .src = src, .dst = dst }; |
527 | 4.79k | |
528 | 4.79k | hash = isl_hash_init(); |
529 | 4.79k | hash = isl_hash_builtin(hash, temp.src); |
530 | 4.79k | hash = isl_hash_builtin(hash, temp.dst); |
531 | 4.79k | return isl_hash_table_find(ctx, graph->edge_table[type], hash, |
532 | 4.79k | &edge_has_src_and_dst, &temp, 0); |
533 | 4.79k | } |
534 | | |
535 | | |
536 | | /* If graph->edge_table[type] contains an edge from the given source |
537 | | * to the given destination, then return this edge. |
538 | | * Otherwise, return NULL. |
539 | | */ |
540 | | static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph, |
541 | | enum isl_edge_type type, |
542 | | struct isl_sched_node *src, struct isl_sched_node *dst) |
543 | 3.95k | { |
544 | 3.95k | struct isl_hash_table_entry *entry; |
545 | 3.95k | |
546 | 3.95k | entry = graph_find_edge_entry(graph, type, src, dst); |
547 | 3.95k | if (!entry) |
548 | 3.14k | return NULL; |
549 | 802 | |
550 | 802 | return entry->data; |
551 | 802 | } |
552 | | |
553 | | /* Check whether the dependence graph has an edge of the given type |
554 | | * between the given two nodes. |
555 | | */ |
556 | | static isl_bool graph_has_edge(struct isl_sched_graph *graph, |
557 | | enum isl_edge_type type, |
558 | | struct isl_sched_node *src, struct isl_sched_node *dst) |
559 | 2.23k | { |
560 | 2.23k | struct isl_sched_edge *edge; |
561 | 2.23k | isl_bool empty; |
562 | 2.23k | |
563 | 2.23k | edge = graph_find_edge(graph, type, src, dst); |
564 | 2.23k | if (!edge) |
565 | 1.84k | return isl_bool_false; |
566 | 389 | |
567 | 389 | empty = isl_map_plain_is_empty(edge->map); |
568 | 389 | if (empty < 0) |
569 | 0 | return isl_bool_error; |
570 | 389 | |
571 | 389 | return !empty; |
572 | 389 | } |
573 | | |
574 | | /* Look for any edge with the same src, dst and map fields as "model". |
575 | | * |
576 | | * Return the matching edge if one can be found. |
577 | | * Return "model" if no matching edge is found. |
578 | | * Return NULL on error. |
579 | | */ |
580 | | static struct isl_sched_edge *graph_find_matching_edge( |
581 | | struct isl_sched_graph *graph, struct isl_sched_edge *model) |
582 | 660 | { |
583 | 660 | enum isl_edge_type i; |
584 | 660 | struct isl_sched_edge *edge; |
585 | 660 | |
586 | 1.98k | for (i = isl_edge_first; i <= isl_edge_last; ++i1.32k ) { |
587 | 1.72k | int is_equal; |
588 | 1.72k | |
589 | 1.72k | edge = graph_find_edge(graph, i, model->src, model->dst); |
590 | 1.72k | if (!edge) |
591 | 1.30k | continue; |
592 | 413 | is_equal = isl_map_plain_is_equal(model->map, edge->map); |
593 | 413 | if (is_equal < 0) |
594 | 0 | return NULL; |
595 | 413 | if (is_equal) |
596 | 395 | return edge; |
597 | 413 | } |
598 | 660 | |
599 | 660 | return model265 ; |
600 | 660 | } |
601 | | |
602 | | /* Remove the given edge from all the edge_tables that refer to it. |
603 | | */ |
604 | | static void graph_remove_edge(struct isl_sched_graph *graph, |
605 | | struct isl_sched_edge *edge) |
606 | 168 | { |
607 | 168 | isl_ctx *ctx = isl_map_get_ctx(edge->map); |
608 | 168 | enum isl_edge_type i; |
609 | 168 | |
610 | 1.00k | for (i = isl_edge_first; i <= isl_edge_last; ++i840 ) { |
611 | 840 | struct isl_hash_table_entry *entry; |
612 | 840 | |
613 | 840 | entry = graph_find_edge_entry(graph, i, edge->src, edge->dst); |
614 | 840 | if (!entry) |
615 | 501 | continue; |
616 | 339 | if (entry->data != edge) |
617 | 9 | continue; |
618 | 330 | isl_hash_table_remove(ctx, graph->edge_table[i], entry); |
619 | 330 | } |
620 | 168 | } |
621 | | |
622 | | /* Check whether the dependence graph has any edge |
623 | | * between the given two nodes. |
624 | | */ |
625 | | static isl_bool graph_has_any_edge(struct isl_sched_graph *graph, |
626 | | struct isl_sched_node *src, struct isl_sched_node *dst) |
627 | 483 | { |
628 | 483 | enum isl_edge_type i; |
629 | 483 | isl_bool r; |
630 | 483 | |
631 | 1.80k | for (i = isl_edge_first; i <= isl_edge_last; ++i1.32k ) { |
632 | 1.56k | r = graph_has_edge(graph, i, src, dst); |
633 | 1.56k | if (r < 0 || r) |
634 | 244 | return r; |
635 | 1.56k | } |
636 | 483 | |
637 | 483 | return r239 ; |
638 | 483 | } |
639 | | |
640 | | /* Check whether the dependence graph has a validity edge |
641 | | * between the given two nodes. |
642 | | * |
643 | | * Conditional validity edges are essentially validity edges that |
644 | | * can be ignored if the corresponding condition edges are iteration private. |
645 | | * Here, we are only checking for the presence of validity |
646 | | * edges, so we need to consider the conditional validity edges too. |
647 | | * In particular, this function is used during the detection |
648 | | * of strongly connected components and we cannot ignore |
649 | | * conditional validity edges during this detection. |
650 | | */ |
651 | | static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph, |
652 | | struct isl_sched_node *src, struct isl_sched_node *dst) |
653 | 395 | { |
654 | 395 | isl_bool r; |
655 | 395 | |
656 | 395 | r = graph_has_edge(graph, isl_edge_validity, src, dst); |
657 | 395 | if (r < 0 || r) |
658 | 126 | return r; |
659 | 269 | |
660 | 269 | return graph_has_edge(graph, isl_edge_conditional_validity, src, dst); |
661 | 269 | } |
662 | | |
663 | | /* Perform all the required memory allocations for a schedule graph "graph" |
664 | | * with "n_node" nodes and "n_edge" edge and initialize the corresponding |
665 | | * fields. |
666 | | */ |
667 | | static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph, |
668 | | int n_node, int n_edge) |
669 | 349 | { |
670 | 349 | int i; |
671 | 349 | |
672 | 349 | graph->n = n_node; |
673 | 349 | graph->n_edge = n_edge; |
674 | 349 | graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n); |
675 | 349 | graph->sorted = isl_calloc_array(ctx, int, graph->n); |
676 | 349 | graph->region = isl_alloc_array(ctx, |
677 | 349 | struct isl_trivial_region, graph->n); |
678 | 349 | graph->edge = isl_calloc_array(ctx, |
679 | 349 | struct isl_sched_edge, graph->n_edge); |
680 | 349 | |
681 | 349 | graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge); |
682 | 349 | graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge); |
683 | 349 | graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge); |
684 | 349 | |
685 | 349 | if (!graph->node || !graph->region || (graph->n_edge && !graph->edge199 ) || |
686 | 349 | !graph->sorted) |
687 | 0 | return isl_stat_error; |
688 | 349 | |
689 | 857 | for(i = 0; 349 i < graph->n; ++i508 ) |
690 | 508 | graph->sorted[i] = i; |
691 | 349 | |
692 | 349 | return isl_stat_ok; |
693 | 349 | } |
694 | | |
695 | | /* Free the memory associated to node "node" in "graph". |
696 | | * The "coincident" field is shared by nodes in a graph and its subgraph. |
697 | | * It therefore only needs to be freed for the original dependence graph, |
698 | | * i.e., one that is not the result of splitting. |
699 | | */ |
700 | | static void clear_node(struct isl_sched_graph *graph, |
701 | | struct isl_sched_node *node) |
702 | 506 | { |
703 | 506 | isl_space_free(node->space); |
704 | 506 | isl_set_free(node->hull); |
705 | 506 | isl_multi_aff_free(node->compress); |
706 | 506 | isl_multi_aff_free(node->decompress); |
707 | 506 | isl_mat_free(node->sched); |
708 | 506 | isl_map_free(node->sched_map); |
709 | 506 | isl_mat_free(node->indep); |
710 | 506 | isl_mat_free(node->vmap); |
711 | 506 | if (graph->root == graph) |
712 | 280 | free(node->coincident); |
713 | 506 | isl_multi_val_free(node->sizes); |
714 | 506 | isl_basic_set_free(node->bounds); |
715 | 506 | isl_vec_free(node->max); |
716 | 506 | } |
717 | | |
718 | | static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph) |
719 | 367 | { |
720 | 367 | int i; |
721 | 367 | |
722 | 367 | isl_map_to_basic_set_free(graph->intra_hmap); |
723 | 367 | isl_map_to_basic_set_free(graph->intra_hmap_param); |
724 | 367 | isl_map_to_basic_set_free(graph->inter_hmap); |
725 | 367 | |
726 | 367 | if (graph->node) |
727 | 855 | for (i = 0; 349 i < graph->n; ++i506 ) |
728 | 506 | clear_node(graph, &graph->node[i]); |
729 | 367 | free(graph->node); |
730 | 367 | free(graph->sorted); |
731 | 367 | if (graph->edge) |
732 | 696 | for (i = 0; 349 i < graph->n_edge; ++i347 ) { |
733 | 347 | isl_map_free(graph->edge[i].map); |
734 | 347 | isl_union_map_free(graph->edge[i].tagged_condition); |
735 | 347 | isl_union_map_free(graph->edge[i].tagged_validity); |
736 | 347 | } |
737 | 367 | free(graph->edge); |
738 | 367 | free(graph->region); |
739 | 2.20k | for (i = 0; i <= isl_edge_last; ++i1.83k ) |
740 | 1.83k | isl_hash_table_free(ctx, graph->edge_table[i]); |
741 | 367 | isl_hash_table_free(ctx, graph->node_table); |
742 | 367 | isl_basic_set_free(graph->lp); |
743 | 367 | } |
744 | | |
745 | | /* For each "set" on which this function is called, increment |
746 | | * graph->n by one and update graph->maxvar. |
747 | | */ |
748 | | static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user) |
749 | 282 | { |
750 | 282 | struct isl_sched_graph *graph = user; |
751 | 282 | int nvar = isl_set_dim(set, isl_dim_set); |
752 | 282 | |
753 | 282 | graph->n++; |
754 | 282 | if (nvar > graph->maxvar) |
755 | 156 | graph->maxvar = nvar; |
756 | 282 | |
757 | 282 | isl_set_free(set); |
758 | 282 | |
759 | 282 | return isl_stat_ok; |
760 | 282 | } |
761 | | |
762 | | /* Compute the number of rows that should be allocated for the schedule. |
763 | | * In particular, we need one row for each variable or one row |
764 | | * for each basic map in the dependences. |
765 | | * Note that it is practically impossible to exhaust both |
766 | | * the number of dependences and the number of variables. |
767 | | */ |
768 | | static isl_stat compute_max_row(struct isl_sched_graph *graph, |
769 | | __isl_keep isl_schedule_constraints *sc) |
770 | 153 | { |
771 | 153 | int n_edge; |
772 | 153 | isl_stat r; |
773 | 153 | isl_union_set *domain; |
774 | 153 | |
775 | 153 | graph->n = 0; |
776 | 153 | graph->maxvar = 0; |
777 | 153 | domain = isl_schedule_constraints_get_domain(sc); |
778 | 153 | r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph); |
779 | 153 | isl_union_set_free(domain); |
780 | 153 | if (r < 0) |
781 | 0 | return isl_stat_error; |
782 | 153 | n_edge = isl_schedule_constraints_n_basic_map(sc); |
783 | 153 | if (n_edge < 0) |
784 | 0 | return isl_stat_error; |
785 | 153 | graph->max_row = n_edge + graph->maxvar; |
786 | 153 | |
787 | 153 | return isl_stat_ok; |
788 | 153 | } |
789 | | |
790 | | /* Does "bset" have any defining equalities for its set variables? |
791 | | */ |
792 | | static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset) |
793 | 280 | { |
794 | 280 | int i, n; |
795 | 280 | |
796 | 280 | if (!bset) |
797 | 0 | return isl_bool_error; |
798 | 280 | |
799 | 280 | n = isl_basic_set_dim(bset, isl_dim_set); |
800 | 653 | for (i = 0; i < n; ++i373 ) { |
801 | 381 | isl_bool has; |
802 | 381 | |
803 | 381 | has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i, |
804 | 381 | NULL); |
805 | 381 | if (has < 0 || has) |
806 | 8 | return has; |
807 | 381 | } |
808 | 280 | |
809 | 280 | return isl_bool_false272 ; |
810 | 280 | } |
811 | | |
812 | | /* Set the entries of node->max to the value of the schedule_max_coefficient |
813 | | * option, if set. |
814 | | */ |
815 | | static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node) |
816 | 4 | { |
817 | 4 | int max; |
818 | 4 | |
819 | 4 | max = isl_options_get_schedule_max_coefficient(ctx); |
820 | 4 | if (max == -1) |
821 | 4 | return isl_stat_ok; |
822 | 0 | |
823 | 0 | node->max = isl_vec_alloc(ctx, node->nvar); |
824 | 0 | node->max = isl_vec_set_si(node->max, max); |
825 | 0 | if (!node->max) |
826 | 0 | return isl_stat_error; |
827 | 0 | |
828 | 0 | return isl_stat_ok; |
829 | 0 | } |
830 | | |
831 | | /* Set the entries of node->max to the minimum of the schedule_max_coefficient |
832 | | * option (if set) and half of the minimum of the sizes in the other |
833 | | * dimensions. Round up when computing the half such that |
834 | | * if the minimum of the sizes is one, half of the size is taken to be one |
835 | | * rather than zero. |
836 | | * If the global minimum is unbounded (i.e., if both |
837 | | * the schedule_max_coefficient is not set and the sizes in the other |
838 | | * dimensions are unbounded), then store a negative value. |
839 | | * If the schedule coefficient is close to the size of the instance set |
840 | | * in another dimension, then the schedule may represent a loop |
841 | | * coalescing transformation (especially if the coefficient |
842 | | * in that other dimension is one). Forcing the coefficient to be |
843 | | * smaller than or equal to half the minimal size should avoid this |
844 | | * situation. |
845 | | */ |
846 | | static isl_stat compute_max_coefficient(isl_ctx *ctx, |
847 | | struct isl_sched_node *node) |
848 | 276 | { |
849 | 276 | int max; |
850 | 276 | int i, j; |
851 | 276 | isl_vec *v; |
852 | 276 | |
853 | 276 | max = isl_options_get_schedule_max_coefficient(ctx); |
854 | 276 | v = isl_vec_alloc(ctx, node->nvar); |
855 | 276 | if (!v) |
856 | 0 | return isl_stat_error; |
857 | 276 | |
858 | 639 | for (i = 0; 276 i < node->nvar; ++i363 ) { |
859 | 363 | isl_int_set_si(v->el[i], max); |
860 | 363 | isl_int_mul_si(v->el[i], v->el[i], 2); |
861 | 363 | } |
862 | 276 | |
863 | 639 | for (i = 0; i < node->nvar; ++i363 ) { |
864 | 363 | isl_val *size; |
865 | 363 | |
866 | 363 | size = isl_multi_val_get_val(node->sizes, i); |
867 | 363 | if (!size) |
868 | 0 | goto error; |
869 | 363 | if (!isl_val_is_int(size)) { |
870 | 207 | isl_val_free(size); |
871 | 207 | continue; |
872 | 207 | } |
873 | 497 | for (j = 0; 156 j < node->nvar; ++j341 ) { |
874 | 341 | if (j == i) |
875 | 156 | continue; |
876 | 185 | if (isl_int_is_neg(v->el[j]) || |
877 | 185 | isl_int_gt163 (v->el[j], size->n)) |
878 | 185 | isl_int_set24 (v->el[j], size->n); |
879 | 185 | } |
880 | 156 | isl_val_free(size); |
881 | 156 | } |
882 | 276 | |
883 | 639 | for (i = 0; 276 i < node->nvar; ++i363 ) |
884 | 363 | isl_int_cdiv_q_ui(v->el[i], v->el[i], 2); |
885 | 276 | |
886 | 276 | node->max = v; |
887 | 276 | return isl_stat_ok; |
888 | 0 | error: |
889 | 0 | isl_vec_free(v); |
890 | 0 | return isl_stat_error; |
891 | 276 | } |
892 | | |
893 | | /* Compute and return the size of "set" in dimension "dim". |
894 | | * The size is taken to be the difference in values for that variable |
895 | | * for fixed values of the other variables. |
896 | | * This assumes that "set" is convex. |
897 | | * In particular, the variable is first isolated from the other variables |
898 | | * in the range of a map |
899 | | * |
900 | | * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim] |
901 | | * |
902 | | * and then duplicated |
903 | | * |
904 | | * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']] |
905 | | * |
906 | | * The shared variables are then projected out and the maximal value |
907 | | * of i_dim' - i_dim is computed. |
908 | | */ |
909 | | static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim) |
910 | 363 | { |
911 | 363 | isl_map *map; |
912 | 363 | isl_local_space *ls; |
913 | 363 | isl_aff *obj; |
914 | 363 | isl_val *v; |
915 | 363 | |
916 | 363 | map = isl_set_project_onto_map(set, isl_dim_set, dim, 1); |
917 | 363 | map = isl_map_project_out(map, isl_dim_in, dim, 1); |
918 | 363 | map = isl_map_range_product(map, isl_map_copy(map)); |
919 | 363 | map = isl_set_unwrap(isl_map_range(map)); |
920 | 363 | set = isl_map_deltas(map); |
921 | 363 | ls = isl_local_space_from_space(isl_set_get_space(set)); |
922 | 363 | obj = isl_aff_var_on_domain(ls, isl_dim_set, 0); |
923 | 363 | v = isl_set_max_val(set, obj); |
924 | 363 | isl_aff_free(obj); |
925 | 363 | isl_set_free(set); |
926 | 363 | |
927 | 363 | return v; |
928 | 363 | } |
929 | | |
930 | | /* Compute the size of the instance set "set" of "node", after compression, |
931 | | * as well as bounds on the corresponding coefficients, if needed. |
932 | | * |
933 | | * The sizes are needed when the schedule_treat_coalescing option is set. |
934 | | * The bounds are needed when the schedule_treat_coalescing option or |
935 | | * the schedule_max_coefficient option is set. |
936 | | * |
937 | | * If the schedule_treat_coalescing option is not set, then at most |
938 | | * the bounds need to be set and this is done in set_max_coefficient. |
939 | | * Otherwise, compress the domain if needed, compute the size |
940 | | * in each direction and store the results in node->size. |
941 | | * If the domain is not convex, then the sizes are computed |
942 | | * on a convex superset in order to avoid picking up sizes |
943 | | * that are valid for the individual disjuncts, but not for |
944 | | * the domain as a whole. |
945 | | * Finally, set the bounds on the coefficients based on the sizes |
946 | | * and the schedule_max_coefficient option in compute_max_coefficient. |
947 | | */ |
948 | | static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node, |
949 | | __isl_take isl_set *set) |
950 | 280 | { |
951 | 280 | int j, n; |
952 | 280 | isl_multi_val *mv; |
953 | 280 | |
954 | 280 | if (!isl_options_get_schedule_treat_coalescing(ctx)) { |
955 | 4 | isl_set_free(set); |
956 | 4 | return set_max_coefficient(ctx, node); |
957 | 4 | } |
958 | 276 | |
959 | 276 | if (node->compressed) |
960 | 8 | set = isl_set_preimage_multi_aff(set, |
961 | 8 | isl_multi_aff_copy(node->decompress)); |
962 | 276 | set = isl_set_from_basic_set(isl_set_simple_hull(set)); |
963 | 276 | mv = isl_multi_val_zero(isl_set_get_space(set)); |
964 | 276 | n = isl_set_dim(set, isl_dim_set); |
965 | 639 | for (j = 0; j < n; ++j363 ) { |
966 | 363 | isl_val *v; |
967 | 363 | |
968 | 363 | v = compute_size(isl_set_copy(set), j); |
969 | 363 | mv = isl_multi_val_set_val(mv, j, v); |
970 | 363 | } |
971 | 276 | node->sizes = mv; |
972 | 276 | isl_set_free(set); |
973 | 276 | if (!node->sizes) |
974 | 0 | return isl_stat_error; |
975 | 276 | return compute_max_coefficient(ctx, node); |
976 | 276 | } |
977 | | |
978 | | /* Add a new node to the graph representing the given instance set. |
979 | | * "nvar" is the (possibly compressed) number of variables and |
980 | | * may be smaller than then number of set variables in "set" |
981 | | * if "compressed" is set. |
982 | | * If "compressed" is set, then "hull" represents the constraints |
983 | | * that were used to derive the compression, while "compress" and |
984 | | * "decompress" map the original space to the compressed space and |
985 | | * vice versa. |
986 | | * If "compressed" is not set, then "hull", "compress" and "decompress" |
987 | | * should be NULL. |
988 | | * |
989 | | * Compute the size of the instance set and bounds on the coefficients, |
990 | | * if needed. |
991 | | */ |
992 | | static isl_stat add_node(struct isl_sched_graph *graph, |
993 | | __isl_take isl_set *set, int nvar, int compressed, |
994 | | __isl_take isl_set *hull, __isl_take isl_multi_aff *compress, |
995 | | __isl_take isl_multi_aff *decompress) |
996 | 280 | { |
997 | 280 | int nparam; |
998 | 280 | isl_ctx *ctx; |
999 | 280 | isl_mat *sched; |
1000 | 280 | isl_space *space; |
1001 | 280 | int *coincident; |
1002 | 280 | struct isl_sched_node *node; |
1003 | 280 | |
1004 | 280 | if (!set) |
1005 | 0 | return isl_stat_error; |
1006 | 280 | |
1007 | 280 | ctx = isl_set_get_ctx(set); |
1008 | 280 | nparam = isl_set_dim(set, isl_dim_param); |
1009 | 280 | if (!ctx->opt->schedule_parametric) |
1010 | 28 | nparam = 0; |
1011 | 280 | sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar); |
1012 | 280 | node = &graph->node[graph->n]; |
1013 | 280 | graph->n++; |
1014 | 280 | space = isl_set_get_space(set); |
1015 | 280 | node->space = space; |
1016 | 280 | node->nvar = nvar; |
1017 | 280 | node->nparam = nparam; |
1018 | 280 | node->sched = sched; |
1019 | 280 | node->sched_map = NULL; |
1020 | 280 | coincident = isl_calloc_array(ctx, int, graph->max_row); |
1021 | 280 | node->coincident = coincident; |
1022 | 280 | node->compressed = compressed; |
1023 | 280 | node->hull = hull; |
1024 | 280 | node->compress = compress; |
1025 | 280 | node->decompress = decompress; |
1026 | 280 | if (compute_sizes_and_max(ctx, node, set) < 0) |
1027 | 0 | return isl_stat_error; |
1028 | 280 | |
1029 | 280 | if (!space || !sched || (graph->max_row && !coincident278 )) |
1030 | 0 | return isl_stat_error; |
1031 | 280 | if (compressed && (8 !hull8 || !compress8 || !decompress8 )) |
1032 | 0 | return isl_stat_error; |
1033 | 280 | |
1034 | 280 | return isl_stat_ok; |
1035 | 280 | } |
1036 | | |
1037 | | /* Construct an identifier for node "node", which will represent "set". |
1038 | | * The name of the identifier is either "compressed" or |
1039 | | * "compressed_<name>", with <name> the name of the space of "set". |
1040 | | * The user pointer of the identifier points to "node". |
1041 | | */ |
1042 | | static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set, |
1043 | | struct isl_sched_node *node) |
1044 | 8 | { |
1045 | 8 | isl_bool has_name; |
1046 | 8 | isl_ctx *ctx; |
1047 | 8 | isl_id *id; |
1048 | 8 | isl_printer *p; |
1049 | 8 | const char *name; |
1050 | 8 | char *id_name; |
1051 | 8 | |
1052 | 8 | has_name = isl_set_has_tuple_name(set); |
1053 | 8 | if (has_name < 0) |
1054 | 0 | return NULL; |
1055 | 8 | |
1056 | 8 | ctx = isl_set_get_ctx(set); |
1057 | 8 | if (!has_name) |
1058 | 0 | return isl_id_alloc(ctx, "compressed", node); |
1059 | 8 | |
1060 | 8 | p = isl_printer_to_str(ctx); |
1061 | 8 | name = isl_set_get_tuple_name(set); |
1062 | 8 | p = isl_printer_print_str(p, "compressed_"); |
1063 | 8 | p = isl_printer_print_str(p, name); |
1064 | 8 | id_name = isl_printer_get_str(p); |
1065 | 8 | isl_printer_free(p); |
1066 | 8 | |
1067 | 8 | id = isl_id_alloc(ctx, id_name, node); |
1068 | 8 | free(id_name); |
1069 | 8 | |
1070 | 8 | return id; |
1071 | 8 | } |
1072 | | |
1073 | | /* Add a new node to the graph representing the given set. |
1074 | | * |
1075 | | * If any of the set variables is defined by an equality, then |
1076 | | * we perform variable compression such that we can perform |
1077 | | * the scheduling on the compressed domain. |
1078 | | * In this case, an identifier is used that references the new node |
1079 | | * such that each compressed space is unique and |
1080 | | * such that the node can be recovered from the compressed space. |
1081 | | */ |
1082 | | static isl_stat extract_node(__isl_take isl_set *set, void *user) |
1083 | 280 | { |
1084 | 280 | int nvar; |
1085 | 280 | isl_bool has_equality; |
1086 | 280 | isl_id *id; |
1087 | 280 | isl_basic_set *hull; |
1088 | 280 | isl_set *hull_set; |
1089 | 280 | isl_morph *morph; |
1090 | 280 | isl_multi_aff *compress, *decompress; |
1091 | 280 | struct isl_sched_graph *graph = user; |
1092 | 280 | |
1093 | 280 | hull = isl_set_affine_hull(isl_set_copy(set)); |
1094 | 280 | hull = isl_basic_set_remove_divs(hull); |
1095 | 280 | nvar = isl_set_dim(set, isl_dim_set); |
1096 | 280 | has_equality = has_any_defining_equality(hull); |
1097 | 280 | |
1098 | 280 | if (has_equality < 0) |
1099 | 0 | goto error; |
1100 | 280 | if (!has_equality) { |
1101 | 272 | isl_basic_set_free(hull); |
1102 | 272 | return add_node(graph, set, nvar, 0, NULL, NULL, NULL); |
1103 | 272 | } |
1104 | 8 | |
1105 | 8 | id = construct_compressed_id(set, &graph->node[graph->n]); |
1106 | 8 | morph = isl_basic_set_variable_compression_with_id(hull, |
1107 | 8 | isl_dim_set, id); |
1108 | 8 | isl_id_free(id); |
1109 | 8 | nvar = isl_morph_ran_dim(morph, isl_dim_set); |
1110 | 8 | compress = isl_morph_get_var_multi_aff(morph); |
1111 | 8 | morph = isl_morph_inverse(morph); |
1112 | 8 | decompress = isl_morph_get_var_multi_aff(morph); |
1113 | 8 | isl_morph_free(morph); |
1114 | 8 | |
1115 | 8 | hull_set = isl_set_from_basic_set(hull); |
1116 | 8 | return add_node(graph, set, nvar, 1, hull_set, compress, decompress); |
1117 | 0 | error: |
1118 | 0 | isl_basic_set_free(hull); |
1119 | 0 | isl_set_free(set); |
1120 | 0 | return isl_stat_error; |
1121 | 8 | } |
1122 | | |
1123 | | struct isl_extract_edge_data { |
1124 | | enum isl_edge_type type; |
1125 | | struct isl_sched_graph *graph; |
1126 | | }; |
1127 | | |
1128 | | /* Merge edge2 into edge1, freeing the contents of edge2. |
1129 | | * Return 0 on success and -1 on failure. |
1130 | | * |
1131 | | * edge1 and edge2 are assumed to have the same value for the map field. |
1132 | | */ |
1133 | | static int merge_edge(struct isl_sched_edge *edge1, |
1134 | | struct isl_sched_edge *edge2) |
1135 | 395 | { |
1136 | 395 | edge1->types |= edge2->types; |
1137 | 395 | isl_map_free(edge2->map); |
1138 | 395 | |
1139 | 395 | if (is_condition(edge2)) { |
1140 | 23 | if (!edge1->tagged_condition) |
1141 | 23 | edge1->tagged_condition = edge2->tagged_condition; |
1142 | 0 | else |
1143 | 0 | edge1->tagged_condition = |
1144 | 0 | isl_union_map_union(edge1->tagged_condition, |
1145 | 0 | edge2->tagged_condition); |
1146 | 23 | } |
1147 | 395 | |
1148 | 395 | if (is_conditional_validity(edge2)) { |
1149 | 3 | if (!edge1->tagged_validity) |
1150 | 3 | edge1->tagged_validity = edge2->tagged_validity; |
1151 | 0 | else |
1152 | 0 | edge1->tagged_validity = |
1153 | 0 | isl_union_map_union(edge1->tagged_validity, |
1154 | 0 | edge2->tagged_validity); |
1155 | 3 | } |
1156 | 395 | |
1157 | 395 | if (is_condition(edge2) && !edge1->tagged_condition23 ) |
1158 | 0 | return -1; |
1159 | 395 | if (is_conditional_validity(edge2) && !edge1->tagged_validity3 ) |
1160 | 0 | return -1; |
1161 | 395 | |
1162 | 395 | return 0; |
1163 | 395 | } |
1164 | | |
1165 | | /* Insert dummy tags in domain and range of "map". |
1166 | | * |
1167 | | * In particular, if "map" is of the form |
1168 | | * |
1169 | | * A -> B |
1170 | | * |
1171 | | * then return |
1172 | | * |
1173 | | * [A -> dummy_tag] -> [B -> dummy_tag] |
1174 | | * |
1175 | | * where the dummy_tags are identical and equal to any dummy tags |
1176 | | * introduced by any other call to this function. |
1177 | | */ |
1178 | | static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map) |
1179 | 12 | { |
1180 | 12 | static char dummy; |
1181 | 12 | isl_ctx *ctx; |
1182 | 12 | isl_id *id; |
1183 | 12 | isl_space *space; |
1184 | 12 | isl_set *domain, *range; |
1185 | 12 | |
1186 | 12 | ctx = isl_map_get_ctx(map); |
1187 | 12 | |
1188 | 12 | id = isl_id_alloc(ctx, NULL, &dummy); |
1189 | 12 | space = isl_space_params(isl_map_get_space(map)); |
1190 | 12 | space = isl_space_set_from_params(space); |
1191 | 12 | space = isl_space_set_tuple_id(space, isl_dim_set, id); |
1192 | 12 | space = isl_space_map_from_set(space); |
1193 | 12 | |
1194 | 12 | domain = isl_map_wrap(map); |
1195 | 12 | range = isl_map_wrap(isl_map_universe(space)); |
1196 | 12 | map = isl_map_from_domain_and_range(domain, range); |
1197 | 12 | map = isl_map_zip(map); |
1198 | 12 | |
1199 | 12 | return map; |
1200 | 12 | } |
1201 | | |
1202 | | /* Given that at least one of "src" or "dst" is compressed, return |
1203 | | * a map between the spaces of these nodes restricted to the affine |
1204 | | * hull that was used in the compression. |
1205 | | */ |
1206 | | static __isl_give isl_map *extract_hull(struct isl_sched_node *src, |
1207 | | struct isl_sched_node *dst) |
1208 | 22 | { |
1209 | 22 | isl_set *dom, *ran; |
1210 | 22 | |
1211 | 22 | if (src->compressed) |
1212 | 14 | dom = isl_set_copy(src->hull); |
1213 | 8 | else |
1214 | 8 | dom = isl_set_universe(isl_space_copy(src->space)); |
1215 | 22 | if (dst->compressed) |
1216 | 14 | ran = isl_set_copy(dst->hull); |
1217 | 8 | else |
1218 | 8 | ran = isl_set_universe(isl_space_copy(dst->space)); |
1219 | 22 | |
1220 | 22 | return isl_map_from_domain_and_range(dom, ran); |
1221 | 22 | } |
1222 | | |
1223 | | /* Intersect the domains of the nested relations in domain and range |
1224 | | * of "tagged" with "map". |
1225 | | */ |
1226 | | static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged, |
1227 | | __isl_keep isl_map *map) |
1228 | 14 | { |
1229 | 14 | isl_set *set; |
1230 | 14 | |
1231 | 14 | tagged = isl_map_zip(tagged); |
1232 | 14 | set = isl_map_wrap(isl_map_copy(map)); |
1233 | 14 | tagged = isl_map_intersect_domain(tagged, set); |
1234 | 14 | tagged = isl_map_zip(tagged); |
1235 | 14 | return tagged; |
1236 | 14 | } |
1237 | | |
1238 | | /* Return a pointer to the node that lives in the domain space of "map", |
1239 | | * an invalid node if there is no such node, or NULL in case of error. |
1240 | | */ |
1241 | | static struct isl_sched_node *find_domain_node(isl_ctx *ctx, |
1242 | | struct isl_sched_graph *graph, __isl_keep isl_map *map) |
1243 | 684 | { |
1244 | 684 | struct isl_sched_node *node; |
1245 | 684 | isl_space *space; |
1246 | 684 | |
1247 | 684 | space = isl_space_domain(isl_map_get_space(map)); |
1248 | 684 | node = graph_find_node(ctx, graph, space); |
1249 | 684 | isl_space_free(space); |
1250 | 684 | |
1251 | 684 | return node; |
1252 | 684 | } |
1253 | | |
1254 | | /* Return a pointer to the node that lives in the range space of "map", |
1255 | | * an invalid node if there is no such node, or NULL in case of error. |
1256 | | */ |
1257 | | static struct isl_sched_node *find_range_node(isl_ctx *ctx, |
1258 | | struct isl_sched_graph *graph, __isl_keep isl_map *map) |
1259 | 684 | { |
1260 | 684 | struct isl_sched_node *node; |
1261 | 684 | isl_space *space; |
1262 | 684 | |
1263 | 684 | space = isl_space_range(isl_map_get_space(map)); |
1264 | 684 | node = graph_find_node(ctx, graph, space); |
1265 | 684 | isl_space_free(space); |
1266 | 684 | |
1267 | 684 | return node; |
1268 | 684 | } |
1269 | | |
1270 | | /* Refrain from adding a new edge based on "map". |
1271 | | * Instead, just free the map. |
1272 | | * "tagged" is either a copy of "map" with additional tags or NULL. |
1273 | | */ |
1274 | | static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged) |
1275 | 24 | { |
1276 | 24 | isl_map_free(map); |
1277 | 24 | isl_map_free(tagged); |
1278 | 24 | |
1279 | 24 | return isl_stat_ok; |
1280 | 24 | } |
1281 | | |
1282 | | /* Add a new edge to the graph based on the given map |
1283 | | * and add it to data->graph->edge_table[data->type]. |
1284 | | * If a dependence relation of a given type happens to be identical |
1285 | | * to one of the dependence relations of a type that was added before, |
1286 | | * then we don't create a new edge, but instead mark the original edge |
1287 | | * as also representing a dependence of the current type. |
1288 | | * |
1289 | | * Edges of type isl_edge_condition or isl_edge_conditional_validity |
1290 | | * may be specified as "tagged" dependence relations. That is, "map" |
1291 | | * may contain elements (i -> a) -> (j -> b), where i -> j denotes |
1292 | | * the dependence on iterations and a and b are tags. |
1293 | | * edge->map is set to the relation containing the elements i -> j, |
1294 | | * while edge->tagged_condition and edge->tagged_validity contain |
1295 | | * the union of all the "map" relations |
1296 | | * for which extract_edge is called that result in the same edge->map. |
1297 | | * |
1298 | | * If the source or the destination node is compressed, then |
1299 | | * intersect both "map" and "tagged" with the constraints that |
1300 | | * were used to construct the compression. |
1301 | | * This ensures that there are no schedule constraints defined |
1302 | | * outside of these domains, while the scheduler no longer has |
1303 | | * any control over those outside parts. |
1304 | | */ |
1305 | | static isl_stat extract_edge(__isl_take isl_map *map, void *user) |
1306 | 684 | { |
1307 | 684 | isl_bool empty; |
1308 | 684 | isl_ctx *ctx = isl_map_get_ctx(map); |
1309 | 684 | struct isl_extract_edge_data *data = user; |
1310 | 684 | struct isl_sched_graph *graph = data->graph; |
1311 | 684 | struct isl_sched_node *src, *dst; |
1312 | 684 | struct isl_sched_edge *edge; |
1313 | 684 | isl_map *tagged = NULL; |
1314 | 684 | |
1315 | 684 | if (data->type == isl_edge_condition || |
1316 | 684 | data->type == isl_edge_conditional_validity655 ) { |
1317 | 61 | if (isl_map_can_zip(map)) { |
1318 | 49 | tagged = isl_map_copy(map); |
1319 | 49 | map = isl_set_unwrap(isl_map_domain(isl_map_zip(map))); |
1320 | 49 | } else { |
1321 | 12 | tagged = insert_dummy_tags(isl_map_copy(map)); |
1322 | 12 | } |
1323 | 61 | } |
1324 | 684 | |
1325 | 684 | src = find_domain_node(ctx, graph, map); |
1326 | 684 | dst = find_range_node(ctx, graph, map); |
1327 | 684 | |
1328 | 684 | if (!src || !dst) |
1329 | 0 | goto error; |
1330 | 684 | if (!is_node(graph, src) || !is_node(graph, dst)) |
1331 | 24 | return skip_edge(map, tagged); |
1332 | 660 | |
1333 | 660 | if (src->compressed || dst->compressed646 ) { |
1334 | 22 | isl_map *hull; |
1335 | 22 | hull = extract_hull(src, dst); |
1336 | 22 | if (tagged) |
1337 | 14 | tagged = map_intersect_domains(tagged, hull); |
1338 | 22 | map = isl_map_intersect(map, hull); |
1339 | 22 | } |
1340 | 660 | |
1341 | 660 | empty = isl_map_plain_is_empty(map); |
1342 | 660 | if (empty < 0) |
1343 | 0 | goto error; |
1344 | 660 | if (empty) |
1345 | 0 | return skip_edge(map, tagged); |
1346 | 660 | |
1347 | 660 | graph->edge[graph->n_edge].src = src; |
1348 | 660 | graph->edge[graph->n_edge].dst = dst; |
1349 | 660 | graph->edge[graph->n_edge].map = map; |
1350 | 660 | graph->edge[graph->n_edge].types = 0; |
1351 | 660 | graph->edge[graph->n_edge].tagged_condition = NULL; |
1352 | 660 | graph->edge[graph->n_edge].tagged_validity = NULL; |
1353 | 660 | set_type(&graph->edge[graph->n_edge], data->type); |
1354 | 660 | if (data->type == isl_edge_condition) |
1355 | 29 | graph->edge[graph->n_edge].tagged_condition = |
1356 | 29 | isl_union_map_from_map(tagged); |
1357 | 660 | if (data->type == isl_edge_conditional_validity) |
1358 | 32 | graph->edge[graph->n_edge].tagged_validity = |
1359 | 32 | isl_union_map_from_map(tagged); |
1360 | 660 | |
1361 | 660 | edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]); |
1362 | 660 | if (!edge) { |
1363 | 0 | graph->n_edge++; |
1364 | 0 | return isl_stat_error; |
1365 | 0 | } |
1366 | 660 | if (edge == &graph->edge[graph->n_edge]) |
1367 | 265 | return graph_edge_table_add(ctx, graph, data->type, |
1368 | 265 | &graph->edge[graph->n_edge++]); |
1369 | 395 | |
1370 | 395 | if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0) |
1371 | 0 | return isl_stat_error; |
1372 | 395 | |
1373 | 395 | return graph_edge_table_add(ctx, graph, data->type, edge); |
1374 | 0 | error: |
1375 | 0 | isl_map_free(map); |
1376 | 0 | isl_map_free(tagged); |
1377 | 0 | return isl_stat_error; |
1378 | 395 | } |
1379 | | |
1380 | | /* Initialize the schedule graph "graph" from the schedule constraints "sc". |
1381 | | * |
1382 | | * The context is included in the domain before the nodes of |
1383 | | * the graphs are extracted in order to be able to exploit |
1384 | | * any possible additional equalities. |
1385 | | * Note that this intersection is only performed locally here. |
1386 | | */ |
1387 | | static isl_stat graph_init(struct isl_sched_graph *graph, |
1388 | | __isl_keep isl_schedule_constraints *sc) |
1389 | 153 | { |
1390 | 153 | isl_ctx *ctx; |
1391 | 153 | isl_union_set *domain; |
1392 | 153 | isl_union_map *c; |
1393 | 153 | struct isl_extract_edge_data data; |
1394 | 153 | enum isl_edge_type i; |
1395 | 153 | isl_stat r; |
1396 | 153 | |
1397 | 153 | if (!sc) |
1398 | 0 | return isl_stat_error; |
1399 | 153 | |
1400 | 153 | ctx = isl_schedule_constraints_get_ctx(sc); |
1401 | 153 | |
1402 | 153 | domain = isl_schedule_constraints_get_domain(sc); |
1403 | 153 | graph->n = isl_union_set_n_set(domain); |
1404 | 153 | isl_union_set_free(domain); |
1405 | 153 | |
1406 | 153 | if (graph_alloc(ctx, graph, graph->n, |
1407 | 153 | isl_schedule_constraints_n_map(sc)) < 0) |
1408 | 0 | return isl_stat_error; |
1409 | 153 | |
1410 | 153 | if (compute_max_row(graph, sc) < 0) |
1411 | 0 | return isl_stat_error; |
1412 | 153 | graph->root = graph; |
1413 | 153 | graph->n = 0; |
1414 | 153 | domain = isl_schedule_constraints_get_domain(sc); |
1415 | 153 | domain = isl_union_set_intersect_params(domain, |
1416 | 153 | isl_schedule_constraints_get_context(sc)); |
1417 | 153 | r = isl_union_set_foreach_set(domain, &extract_node, graph); |
1418 | 153 | isl_union_set_free(domain); |
1419 | 153 | if (r < 0) |
1420 | 0 | return isl_stat_error; |
1421 | 153 | if (graph_init_table(ctx, graph) < 0) |
1422 | 0 | return isl_stat_error; |
1423 | 918 | for (i = isl_edge_first; 153 i <= isl_edge_last; ++i765 ) { |
1424 | 765 | c = isl_schedule_constraints_get(sc, i); |
1425 | 765 | graph->max_edge[i] = isl_union_map_n_map(c); |
1426 | 765 | isl_union_map_free(c); |
1427 | 765 | if (!c) |
1428 | 0 | return isl_stat_error; |
1429 | 765 | } |
1430 | 153 | if (graph_init_edge_tables(ctx, graph) < 0) |
1431 | 0 | return isl_stat_error; |
1432 | 153 | graph->n_edge = 0; |
1433 | 153 | data.graph = graph; |
1434 | 918 | for (i = isl_edge_first; i <= isl_edge_last; ++i765 ) { |
1435 | 765 | isl_stat r; |
1436 | 765 | |
1437 | 765 | data.type = i; |
1438 | 765 | c = isl_schedule_constraints_get(sc, i); |
1439 | 765 | r = isl_union_map_foreach_map(c, &extract_edge, &data); |
1440 | 765 | isl_union_map_free(c); |
1441 | 765 | if (r < 0) |
1442 | 0 | return isl_stat_error; |
1443 | 765 | } |
1444 | 153 | |
1445 | 153 | return isl_stat_ok; |
1446 | 153 | } |
1447 | | |
1448 | | /* Check whether there is any dependence from node[j] to node[i] |
1449 | | * or from node[i] to node[j]. |
1450 | | */ |
1451 | | static isl_bool node_follows_weak(int i, int j, void *user) |
1452 | 315 | { |
1453 | 315 | isl_bool f; |
1454 | 315 | struct isl_sched_graph *graph = user; |
1455 | 315 | |
1456 | 315 | f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]); |
1457 | 315 | if (f < 0 || f) |
1458 | 147 | return f; |
1459 | 168 | return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]); |
1460 | 168 | } |
1461 | | |
1462 | | /* Check whether there is a (conditional) validity dependence from node[j] |
1463 | | * to node[i], forcing node[i] to follow node[j]. |
1464 | | */ |
1465 | | static isl_bool node_follows_strong(int i, int j, void *user) |
1466 | 311 | { |
1467 | 311 | struct isl_sched_graph *graph = user; |
1468 | 311 | |
1469 | 311 | return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]); |
1470 | 311 | } |
1471 | | |
1472 | | /* Use Tarjan's algorithm for computing the strongly connected components |
1473 | | * in the dependence graph only considering those edges defined by "follows". |
1474 | | */ |
1475 | | static isl_stat detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, |
1476 | | isl_bool (*follows)(int i, int j, void *user)) |
1477 | 656 | { |
1478 | 656 | int i, n; |
1479 | 656 | struct isl_tarjan_graph *g = NULL; |
1480 | 656 | |
1481 | 656 | g = isl_tarjan_graph_init(ctx, graph->n, follows, graph); |
1482 | 656 | if (!g) |
1483 | 0 | return isl_stat_error; |
1484 | 656 | |
1485 | 656 | graph->scc = 0; |
1486 | 656 | i = 0; |
1487 | 656 | n = graph->n; |
1488 | 1.49k | while (n) { |
1489 | 1.84k | while (g->order[i] != -1) { |
1490 | 1.01k | graph->node[g->order[i]].scc = graph->scc; |
1491 | 1.01k | --n; |
1492 | 1.01k | ++i; |
1493 | 1.01k | } |
1494 | 835 | ++i; |
1495 | 835 | graph->scc++; |
1496 | 835 | } |
1497 | 656 | |
1498 | 656 | isl_tarjan_graph_free(g); |
1499 | 656 | |
1500 | 656 | return isl_stat_ok; |
1501 | 656 | } |
1502 | | |
1503 | | /* Apply Tarjan's algorithm to detect the strongly connected components |
1504 | | * in the dependence graph. |
1505 | | * Only consider the (conditional) validity dependences and clear "weak". |
1506 | | */ |
1507 | | static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph) |
1508 | 432 | { |
1509 | 432 | graph->weak = 0; |
1510 | 432 | return detect_ccs(ctx, graph, &node_follows_strong); |
1511 | 432 | } |
1512 | | |
1513 | | /* Apply Tarjan's algorithm to detect the (weakly) connected components |
1514 | | * in the dependence graph. |
1515 | | * Consider all dependences and set "weak". |
1516 | | */ |
1517 | | static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph) |
1518 | 195 | { |
1519 | 195 | graph->weak = 1; |
1520 | 195 | return detect_ccs(ctx, graph, &node_follows_weak); |
1521 | 195 | } |
1522 | | |
1523 | | static int cmp_scc(const void *a, const void *b, void *data) |
1524 | 123 | { |
1525 | 123 | struct isl_sched_graph *graph = data; |
1526 | 123 | const int *i1 = a; |
1527 | 123 | const int *i2 = b; |
1528 | 123 | |
1529 | 123 | return graph->node[*i1].scc - graph->node[*i2].scc; |
1530 | 123 | } |
1531 | | |
1532 | | /* Sort the elements of graph->sorted according to the corresponding SCCs. |
1533 | | */ |
1534 | | static int sort_sccs(struct isl_sched_graph *graph) |
1535 | 381 | { |
1536 | 381 | return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph); |
1537 | 381 | } |
1538 | | |
1539 | | /* Return a non-parametric set in the compressed space of "node" that is |
1540 | | * bounded by the size in each direction |
1541 | | * |
1542 | | * { [x] : -S_i <= x_i <= S_i } |
1543 | | * |
1544 | | * If S_i is infinity in direction i, then there are no constraints |
1545 | | * in that direction. |
1546 | | * |
1547 | | * Cache the result in node->bounds. |
1548 | | */ |
1549 | | static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node) |
1550 | 121 | { |
1551 | 121 | isl_space *space; |
1552 | 121 | isl_basic_set *bounds; |
1553 | 121 | int i; |
1554 | 121 | unsigned nparam; |
1555 | 121 | |
1556 | 121 | if (node->bounds) |
1557 | 26 | return isl_basic_set_copy(node->bounds); |
1558 | 95 | |
1559 | 95 | if (node->compressed) |
1560 | 0 | space = isl_multi_aff_get_domain_space(node->decompress); |
1561 | 95 | else |
1562 | 95 | space = isl_space_copy(node->space); |
1563 | 95 | nparam = isl_space_dim(space, isl_dim_param); |
1564 | 95 | space = isl_space_drop_dims(space, isl_dim_param, 0, nparam); |
1565 | 95 | bounds = isl_basic_set_universe(space); |
1566 | 95 | |
1567 | 283 | for (i = 0; i < node->nvar; ++i188 ) { |
1568 | 188 | isl_val *size; |
1569 | 188 | |
1570 | 188 | size = isl_multi_val_get_val(node->sizes, i); |
1571 | 188 | if (!size) |
1572 | 0 | return isl_basic_set_free(bounds); |
1573 | 188 | if (!isl_val_is_int(size)) { |
1574 | 125 | isl_val_free(size); |
1575 | 125 | continue; |
1576 | 125 | } |
1577 | 63 | bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i, |
1578 | 63 | isl_val_copy(size)); |
1579 | 63 | bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i, |
1580 | 63 | isl_val_neg(size)); |
1581 | 63 | } |
1582 | 95 | |
1583 | 95 | node->bounds = isl_basic_set_copy(bounds); |
1584 | 95 | return bounds; |
1585 | 95 | } |
1586 | | |
1587 | | /* Drop some constraints from "delta" that could be exploited |
1588 | | * to construct loop coalescing schedules. |
1589 | | * In particular, drop those constraint that bound the difference |
1590 | | * to the size of the domain. |
1591 | | * First project out the parameters to improve the effectiveness. |
1592 | | */ |
1593 | | static __isl_give isl_set *drop_coalescing_constraints( |
1594 | | __isl_take isl_set *delta, struct isl_sched_node *node) |
1595 | 101 | { |
1596 | 101 | unsigned nparam; |
1597 | 101 | isl_basic_set *bounds; |
1598 | 101 | |
1599 | 101 | bounds = get_size_bounds(node); |
1600 | 101 | |
1601 | 101 | nparam = isl_set_dim(delta, isl_dim_param); |
1602 | 101 | delta = isl_set_project_out(delta, isl_dim_param, 0, nparam); |
1603 | 101 | delta = isl_set_remove_divs(delta); |
1604 | 101 | delta = isl_set_plain_gist_basic_set(delta, bounds); |
1605 | 101 | return delta; |
1606 | 101 | } |
1607 | | |
1608 | | /* Given a dependence relation R from "node" to itself, |
1609 | | * construct the set of coefficients of valid constraints for elements |
1610 | | * in that dependence relation. |
1611 | | * In particular, the result contains tuples of coefficients |
1612 | | * c_0, c_n, c_x such that |
1613 | | * |
1614 | | * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R |
1615 | | * |
1616 | | * or, equivalently, |
1617 | | * |
1618 | | * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R } |
1619 | | * |
1620 | | * We choose here to compute the dual of delta R. |
1621 | | * Alternatively, we could have computed the dual of R, resulting |
1622 | | * in a set of tuples c_0, c_n, c_x, c_y, and then |
1623 | | * plugged in (c_0, c_n, c_x, -c_x). |
1624 | | * |
1625 | | * If "need_param" is set, then the resulting coefficients effectively |
1626 | | * include coefficients for the parameters c_n. Otherwise, they may |
1627 | | * have been projected out already. |
1628 | | * Since the constraints may be different for these two cases, |
1629 | | * they are stored in separate caches. |
1630 | | * In particular, if no parameter coefficients are required and |
1631 | | * the schedule_treat_coalescing option is set, then the parameters |
1632 | | * are projected out and some constraints that could be exploited |
1633 | | * to construct coalescing schedules are removed before the dual |
1634 | | * is computed. |
1635 | | * |
1636 | | * If "node" has been compressed, then the dependence relation |
1637 | | * is also compressed before the set of coefficients is computed. |
1638 | | */ |
1639 | | static __isl_give isl_basic_set *intra_coefficients( |
1640 | | struct isl_sched_graph *graph, struct isl_sched_node *node, |
1641 | | __isl_take isl_map *map, int need_param) |
1642 | 993 | { |
1643 | 993 | isl_ctx *ctx; |
1644 | 993 | isl_set *delta; |
1645 | 993 | isl_map *key; |
1646 | 993 | isl_basic_set *coef; |
1647 | 993 | isl_maybe_isl_basic_set m; |
1648 | 993 | isl_map_to_basic_set **hmap = &graph->intra_hmap; |
1649 | 993 | int treat; |
1650 | 993 | |
1651 | 993 | if (!map) |
1652 | 0 | return NULL; |
1653 | 993 | |
1654 | 993 | ctx = isl_map_get_ctx(map); |
1655 | 993 | treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx)707 ; |
1656 | 993 | if (!treat) |
1657 | 318 | hmap = &graph->intra_hmap_param; |
1658 | 993 | m = isl_map_to_basic_set_try_get(*hmap, map); |
1659 | 993 | if (m.valid < 0 || m.valid) { |
1660 | 799 | isl_map_free(map); |
1661 | 799 | return m.value; |
1662 | 799 | } |
1663 | 194 | |
1664 | 194 | key = isl_map_copy(map); |
1665 | 194 | if (node->compressed) { |
1666 | 0 | map = isl_map_preimage_domain_multi_aff(map, |
1667 | 0 | isl_multi_aff_copy(node->decompress)); |
1668 | 0 | map = isl_map_preimage_range_multi_aff(map, |
1669 | 0 | isl_multi_aff_copy(node->decompress)); |
1670 | 0 | } |
1671 | 194 | delta = isl_map_deltas(map); |
1672 | 194 | if (treat) |
1673 | 101 | delta = drop_coalescing_constraints(delta, node); |
1674 | 194 | delta = isl_set_remove_divs(delta); |
1675 | 194 | coef = isl_set_coefficients(delta); |
1676 | 194 | *hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef)); |
1677 | 194 | |
1678 | 194 | return coef; |
1679 | 194 | } |
1680 | | |
1681 | | /* Given a dependence relation R, construct the set of coefficients |
1682 | | * of valid constraints for elements in that dependence relation. |
1683 | | * In particular, the result contains tuples of coefficients |
1684 | | * c_0, c_n, c_x, c_y such that |
1685 | | * |
1686 | | * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R |
1687 | | * |
1688 | | * If the source or destination nodes of "edge" have been compressed, |
1689 | | * then the dependence relation is also compressed before |
1690 | | * the set of coefficients is computed. |
1691 | | */ |
1692 | | static __isl_give isl_basic_set *inter_coefficients( |
1693 | | struct isl_sched_graph *graph, struct isl_sched_edge *edge, |
1694 | | __isl_take isl_map *map) |
1695 | 604 | { |
1696 | 604 | isl_set *set; |
1697 | 604 | isl_map *key; |
1698 | 604 | isl_basic_set *coef; |
1699 | 604 | isl_maybe_isl_basic_set m; |
1700 | 604 | |
1701 | 604 | m = isl_map_to_basic_set_try_get(graph->inter_hmap, map); |
1702 | 604 | if (m.valid < 0 || m.valid) { |
1703 | 519 | isl_map_free(map); |
1704 | 519 | return m.value; |
1705 | 519 | } |
1706 | 85 | |
1707 | 85 | key = isl_map_copy(map); |
1708 | 85 | if (edge->src->compressed) |
1709 | 3 | map = isl_map_preimage_domain_multi_aff(map, |
1710 | 3 | isl_multi_aff_copy(edge->src->decompress)); |
1711 | 85 | if (edge->dst->compressed) |
1712 | 3 | map = isl_map_preimage_range_multi_aff(map, |
1713 | 3 | isl_multi_aff_copy(edge->dst->decompress)); |
1714 | 85 | set = isl_map_wrap(isl_map_remove_divs(map)); |
1715 | 85 | coef = isl_set_coefficients(set); |
1716 | 85 | graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key, |
1717 | 85 | isl_basic_set_copy(coef)); |
1718 | 85 | |
1719 | 85 | return coef; |
1720 | 85 | } |
1721 | | |
1722 | | /* Return the position of the coefficients of the variables in |
1723 | | * the coefficients constraints "coef". |
1724 | | * |
1725 | | * The space of "coef" is of the form |
1726 | | * |
1727 | | * { coefficients[[cst, params] -> S] } |
1728 | | * |
1729 | | * Return the position of S. |
1730 | | */ |
1731 | | static int coef_var_offset(__isl_keep isl_basic_set *coef) |
1732 | 1.02k | { |
1733 | 1.02k | int offset; |
1734 | 1.02k | isl_space *space; |
1735 | 1.02k | |
1736 | 1.02k | space = isl_space_unwrap(isl_basic_set_get_space(coef)); |
1737 | 1.02k | offset = isl_space_dim(space, isl_dim_in); |
1738 | 1.02k | isl_space_free(space); |
1739 | 1.02k | |
1740 | 1.02k | return offset; |
1741 | 1.02k | } |
1742 | | |
1743 | | /* Return the offset of the coefficient of the constant term of "node" |
1744 | | * within the (I)LP. |
1745 | | * |
1746 | | * Within each node, the coefficients have the following order: |
1747 | | * - positive and negative parts of c_i_x |
1748 | | * - c_i_n (if parametric) |
1749 | | * - c_i_0 |
1750 | | */ |
1751 | | static int node_cst_coef_offset(struct isl_sched_node *node) |
1752 | 1.43k | { |
1753 | 1.43k | return node->start + 2 * node->nvar + node->nparam; |
1754 | 1.43k | } |
1755 | | |
1756 | | /* Return the offset of the coefficients of the parameters of "node" |
1757 | | * within the (I)LP. |
1758 | | * |
1759 | | * Within each node, the coefficients have the following order: |
1760 | | * - positive and negative parts of c_i_x |
1761 | | * - c_i_n (if parametric) |
1762 | | * - c_i_0 |
1763 | | */ |
1764 | | static int node_par_coef_offset(struct isl_sched_node *node) |
1765 | 1.91k | { |
1766 | 1.91k | return node->start + 2 * node->nvar; |
1767 | 1.91k | } |
1768 | | |
1769 | | /* Return the offset of the coefficients of the variables of "node" |
1770 | | * within the (I)LP. |
1771 | | * |
1772 | | * Within each node, the coefficients have the following order: |
1773 | | * - positive and negative parts of c_i_x |
1774 | | * - c_i_n (if parametric) |
1775 | | * - c_i_0 |
1776 | | */ |
1777 | | static int node_var_coef_offset(struct isl_sched_node *node) |
1778 | 4.10k | { |
1779 | 4.10k | return node->start; |
1780 | 4.10k | } |
1781 | | |
1782 | | /* Return the position of the pair of variables encoding |
1783 | | * coefficient "i" of "node". |
1784 | | * |
1785 | | * The order of these variable pairs is the opposite of |
1786 | | * that of the coefficients, with 2 variables per coefficient. |
1787 | | */ |
1788 | | static int node_var_coef_pos(struct isl_sched_node *node, int i) |
1789 | 2.42k | { |
1790 | 2.42k | return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i); |
1791 | 2.42k | } |
1792 | | |
1793 | | /* Construct an isl_dim_map for mapping constraints on coefficients |
1794 | | * for "node" to the corresponding positions in graph->lp. |
1795 | | * "offset" is the offset of the coefficients for the variables |
1796 | | * in the input constraints. |
1797 | | * "s" is the sign of the mapping. |
1798 | | * |
1799 | | * The input constraints are given in terms of the coefficients |
1800 | | * (c_0, c_x) or (c_0, c_n, c_x). |
1801 | | * The mapping produced by this function essentially plugs in |
1802 | | * (0, c_i_x^+ - c_i_x^-) if s = 1 and |
1803 | | * (0, -c_i_x^+ + c_i_x^-) if s = -1 or |
1804 | | * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and |
1805 | | * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1. |
1806 | | * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart. |
1807 | | * Furthermore, the order of these pairs is the opposite of that |
1808 | | * of the corresponding coefficients. |
1809 | | * |
1810 | | * The caller can extend the mapping to also map the other coefficients |
1811 | | * (and therefore not plug in 0). |
1812 | | */ |
1813 | | static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx, |
1814 | | struct isl_sched_graph *graph, struct isl_sched_node *node, |
1815 | | int offset, int s) |
1816 | 610 | { |
1817 | 610 | int pos; |
1818 | 610 | unsigned total; |
1819 | 610 | isl_dim_map *dim_map; |
1820 | 610 | |
1821 | 610 | if (!node || !graph->lp) |
1822 | 0 | return NULL; |
1823 | 610 | |
1824 | 610 | total = isl_basic_set_total_dim(graph->lp); |
1825 | 610 | pos = node_var_coef_pos(node, 0); |
1826 | 610 | dim_map = isl_dim_map_alloc(ctx, total); |
1827 | 610 | isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s); |
1828 | 610 | isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s); |
1829 | 610 | |
1830 | 610 | return dim_map; |
1831 | 610 | } |
1832 | | |
1833 | | /* Construct an isl_dim_map for mapping constraints on coefficients |
1834 | | * for "src" (node i) and "dst" (node j) to the corresponding positions |
1835 | | * in graph->lp. |
1836 | | * "offset" is the offset of the coefficients for the variables of "src" |
1837 | | * in the input constraints. |
1838 | | * "s" is the sign of the mapping. |
1839 | | * |
1840 | | * The input constraints are given in terms of the coefficients |
1841 | | * (c_0, c_n, c_x, c_y). |
1842 | | * The mapping produced by this function essentially plugs in |
1843 | | * (c_j_0 - c_i_0, c_j_n - c_i_n, |
1844 | | * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and |
1845 | | * (-c_j_0 + c_i_0, -c_j_n + c_i_n, |
1846 | | * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1. |
1847 | | * In graph->lp, the c_*^- appear before their c_*^+ counterpart. |
1848 | | * Furthermore, the order of these pairs is the opposite of that |
1849 | | * of the corresponding coefficients. |
1850 | | * |
1851 | | * The caller can further extend the mapping. |
1852 | | */ |
1853 | | static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx, |
1854 | | struct isl_sched_graph *graph, struct isl_sched_node *src, |
1855 | | struct isl_sched_node *dst, int offset, int s) |
1856 | 418 | { |
1857 | 418 | int pos; |
1858 | 418 | unsigned total; |
1859 | 418 | isl_dim_map *dim_map; |
1860 | 418 | |
1861 | 418 | if (!src || !dst || !graph->lp) |
1862 | 0 | return NULL; |
1863 | 418 | |
1864 | 418 | total = isl_basic_set_total_dim(graph->lp); |
1865 | 418 | dim_map = isl_dim_map_alloc(ctx, total); |
1866 | 418 | |
1867 | 418 | pos = node_cst_coef_offset(dst); |
1868 | 418 | isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s); |
1869 | 418 | pos = node_par_coef_offset(dst); |
1870 | 418 | isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s); |
1871 | 418 | pos = node_var_coef_pos(dst, 0); |
1872 | 418 | isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1, |
1873 | 418 | dst->nvar, -s); |
1874 | 418 | isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1, |
1875 | 418 | dst->nvar, s); |
1876 | 418 | |
1877 | 418 | pos = node_cst_coef_offset(src); |
1878 | 418 | isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s); |
1879 | 418 | pos = node_par_coef_offset(src); |
1880 | 418 | isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s); |
1881 | 418 | pos = node_var_coef_pos(src, 0); |
1882 | 418 | isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s); |
1883 | 418 | isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s); |
1884 | 418 | |
1885 | 418 | return dim_map; |
1886 | 418 | } |
1887 | | |
1888 | | /* Add the constraints from "src" to "dst" using "dim_map", |
1889 | | * after making sure there is enough room in "dst" for the extra constraints. |
1890 | | */ |
1891 | | static __isl_give isl_basic_set *add_constraints_dim_map( |
1892 | | __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src, |
1893 | | __isl_take isl_dim_map *dim_map) |
1894 | 1.02k | { |
1895 | 1.02k | int n_eq, n_ineq; |
1896 | 1.02k | |
1897 | 1.02k | n_eq = isl_basic_set_n_equality(src); |
1898 | 1.02k | n_ineq = isl_basic_set_n_inequality(src); |
1899 | 1.02k | dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq); |
1900 | 1.02k | dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map); |
1901 | 1.02k | return dst; |
1902 | 1.02k | } |
1903 | | |
1904 | | /* Add constraints to graph->lp that force validity for the given |
1905 | | * dependence from a node i to itself. |
1906 | | * That is, add constraints that enforce |
1907 | | * |
1908 | | * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x) |
1909 | | * = c_i_x (y - x) >= 0 |
1910 | | * |
1911 | | * for each (x,y) in R. |
1912 | | * We obtain general constraints on coefficients (c_0, c_x) |
1913 | | * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-), |
1914 | | * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative. |
1915 | | * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart. |
1916 | | * Note that the result of intra_coefficients may also contain |
1917 | | * parameter coefficients c_n, in which case 0 is plugged in for them as well. |
1918 | | */ |
1919 | | static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph, |
1920 | | struct isl_sched_edge *edge) |
1921 | 284 | { |
1922 | 284 | int offset; |
1923 | 284 | isl_map *map = isl_map_copy(edge->map); |
1924 | 284 | isl_ctx *ctx = isl_map_get_ctx(map); |
1925 | 284 | isl_dim_map *dim_map; |
1926 | 284 | isl_basic_set *coef; |
1927 | 284 | struct isl_sched_node *node = edge->src; |
1928 | 284 | |
1929 | 284 | coef = intra_coefficients(graph, node, map, 0); |
1930 | 284 | |
1931 | 284 | offset = coef_var_offset(coef); |
1932 | 284 | |
1933 | 284 | if (!coef) |
1934 | 0 | return isl_stat_error; |
1935 | 284 | |
1936 | 284 | dim_map = intra_dim_map(ctx, graph, node, offset, 1); |
1937 | 284 | graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map); |
1938 | 284 | |
1939 | 284 | return isl_stat_ok; |
1940 | 284 | } |
1941 | | |
1942 | | /* Add constraints to graph->lp that force validity for the given |
1943 | | * dependence from node i to node j. |
1944 | | * That is, add constraints that enforce |
1945 | | * |
1946 | | * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0 |
1947 | | * |
1948 | | * for each (x,y) in R. |
1949 | | * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y) |
1950 | | * of valid constraints for R and then plug in |
1951 | | * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-), |
1952 | | * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative. |
1953 | | * In graph->lp, the c_*^- appear before their c_*^+ counterpart. |
1954 | | */ |
1955 | | static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph, |
1956 | | struct isl_sched_edge *edge) |
1957 | 195 | { |
1958 | 195 | int offset; |
1959 | 195 | isl_map *map; |
1960 | 195 | isl_ctx *ctx; |
1961 | 195 | isl_dim_map *dim_map; |
1962 | 195 | isl_basic_set *coef; |
1963 | 195 | struct isl_sched_node *src = edge->src; |
1964 | 195 | struct isl_sched_node *dst = edge->dst; |
1965 | 195 | |
1966 | 195 | if (!graph->lp) |
1967 | 0 | return isl_stat_error; |
1968 | 195 | |
1969 | 195 | map = isl_map_copy(edge->map); |
1970 | 195 | ctx = isl_map_get_ctx(map); |
1971 | 195 | coef = inter_coefficients(graph, edge, map); |
1972 | 195 | |
1973 | 195 | offset = coef_var_offset(coef); |
1974 | 195 | |
1975 | 195 | if (!coef) |
1976 | 0 | return isl_stat_error; |
1977 | 195 | |
1978 | 195 | dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1); |
1979 | 195 | |
1980 | 195 | edge->start = graph->lp->n_ineq; |
1981 | 195 | graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map); |
1982 | 195 | if (!graph->lp) |
1983 | 0 | return isl_stat_error; |
1984 | 195 | edge->end = graph->lp->n_ineq; |
1985 | 195 | |
1986 | 195 | return isl_stat_ok; |
1987 | 195 | } |
1988 | | |
1989 | | /* Add constraints to graph->lp that bound the dependence distance for the given |
1990 | | * dependence from a node i to itself. |
1991 | | * If s = 1, we add the constraint |
1992 | | * |
1993 | | * c_i_x (y - x) <= m_0 + m_n n |
1994 | | * |
1995 | | * or |
1996 | | * |
1997 | | * -c_i_x (y - x) + m_0 + m_n n >= 0 |
1998 | | * |
1999 | | * for each (x,y) in R. |
2000 | | * If s = -1, we add the constraint |
2001 | | * |
2002 | | * -c_i_x (y - x) <= m_0 + m_n n |
2003 | | * |
2004 | | * or |
2005 | | * |
2006 | | * c_i_x (y - x) + m_0 + m_n n >= 0 |
2007 | | * |
2008 | | * for each (x,y) in R. |
2009 | | * We obtain general constraints on coefficients (c_0, c_n, c_x) |
2010 | | * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x), |
2011 | | * with each coefficient (except m_0) represented as a pair of non-negative |
2012 | | * coefficients. |
2013 | | * |
2014 | | * |
2015 | | * If "local" is set, then we add constraints |
2016 | | * |
2017 | | * c_i_x (y - x) <= 0 |
2018 | | * |
2019 | | * or |
2020 | | * |
2021 | | * -c_i_x (y - x) <= 0 |
2022 | | * |
2023 | | * instead, forcing the dependence distance to be (less than or) equal to 0. |
2024 | | * That is, we plug in (0, 0, -s * c_i_x), |
2025 | | * intra_coefficients is not required to have c_n in its result when |
2026 | | * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in. |
2027 | | * Note that dependences marked local are treated as validity constraints |
2028 | | * by add_all_validity_constraints and therefore also have |
2029 | | * their distances bounded by 0 from below. |
2030 | | */ |
2031 | | static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph, |
2032 | | struct isl_sched_edge *edge, int s, int local) |
2033 | 286 | { |
2034 | 286 | int offset; |
2035 | 286 | unsigned nparam; |
2036 | 286 | isl_map *map = isl_map_copy(edge->map); |
2037 | 286 | isl_ctx *ctx = isl_map_get_ctx(map); |
2038 | 286 | isl_dim_map *dim_map; |
2039 | 286 | isl_basic_set *coef; |
2040 | 286 | struct isl_sched_node *node = edge->src; |
2041 | 286 | |
2042 | 286 | coef = intra_coefficients(graph, node, map, !local); |
2043 | 286 | |
2044 | 286 | offset = coef_var_offset(coef); |
2045 | 286 | |
2046 | 286 | if (!coef) |
2047 | 0 | return isl_stat_error; |
2048 | 286 | |
2049 | 286 | nparam = isl_space_dim(node->space, isl_dim_param); |
2050 | 286 | dim_map = intra_dim_map(ctx, graph, node, offset, -s); |
2051 | 286 | |
2052 | 286 | if (!local) { |
2053 | 147 | isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1); |
2054 | 147 | isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1); |
2055 | 147 | isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1); |
2056 | 147 | } |
2057 | 286 | graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map); |
2058 | 286 | |
2059 | 286 | return isl_stat_ok; |
2060 | 286 | } |
2061 | | |
2062 | | /* Add constraints to graph->lp that bound the dependence distance for the given |
2063 | | * dependence from node i to node j. |
2064 | | * If s = 1, we add the constraint |
2065 | | * |
2066 | | * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) |
2067 | | * <= m_0 + m_n n |
2068 | | * |
2069 | | * or |
2070 | | * |
2071 | | * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) + |
2072 | | * m_0 + m_n n >= 0 |
2073 | | * |
2074 | | * for each (x,y) in R. |
2075 | | * If s = -1, we add the constraint |
2076 | | * |
2077 | | * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) |
2078 | | * <= m_0 + m_n n |
2079 | | * |
2080 | | * or |
2081 | | * |
2082 | | * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) + |
2083 | | * m_0 + m_n n >= 0 |
2084 | | * |
2085 | | * for each (x,y) in R. |
2086 | | * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y) |
2087 | | * of valid constraints for R and then plug in |
2088 | | * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n, |
2089 | | * s*c_i_x, -s*c_j_x) |
2090 | | * with each coefficient (except m_0, c_*_0 and c_*_n) |
2091 | | * represented as a pair of non-negative coefficients. |
2092 | | * |
2093 | | * |
2094 | | * If "local" is set (and s = 1), then we add constraints |
2095 | | * |
2096 | | * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0 |
2097 | | * |
2098 | | * or |
2099 | | * |
2100 | | * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0 |
2101 | | * |
2102 | | * instead, forcing the dependence distance to be (less than or) equal to 0. |
2103 | | * That is, we plug in |
2104 | | * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x). |
2105 | | * Note that dependences marked local are treated as validity constraints |
2106 | | * by add_all_validity_constraints and therefore also have |
2107 | | * their distances bounded by 0 from below. |
2108 | | */ |
2109 | | static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph, |
2110 | | struct isl_sched_edge *edge, int s, int local) |
2111 | 205 | { |
2112 | 205 | int offset; |
2113 | 205 | unsigned nparam; |
2114 | 205 | isl_map *map = isl_map_copy(edge->map); |
2115 | 205 | isl_ctx *ctx = isl_map_get_ctx(map); |
2116 | 205 | isl_dim_map *dim_map; |
2117 | 205 | isl_basic_set *coef; |
2118 | 205 | struct isl_sched_node *src = edge->src; |
2119 | 205 | struct isl_sched_node *dst = edge->dst; |
2120 | 205 | |
2121 | 205 | coef = inter_coefficients(graph, edge, map); |
2122 | 205 | |
2123 | 205 | offset = coef_var_offset(coef); |
2124 | 205 | |
2125 | 205 | if (!coef) |
2126 | 0 | return isl_stat_error; |
2127 | 205 | |
2128 | 205 | nparam = isl_space_dim(src->space, isl_dim_param); |
2129 | 205 | dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s); |
2130 | 205 | |
2131 | 205 | if (!local) { |
2132 | 121 | isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1); |
2133 | 121 | isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1); |
2134 | 121 | isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1); |
2135 | 121 | } |
2136 | 205 | |
2137 | 205 | graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map); |
2138 | 205 | |
2139 | 205 | return isl_stat_ok; |
2140 | 205 | } |
2141 | | |
2142 | | /* Should the distance over "edge" be forced to zero? |
2143 | | * That is, is it marked as a local edge? |
2144 | | * If "use_coincidence" is set, then coincidence edges are treated |
2145 | | * as local edges. |
2146 | | */ |
2147 | | static int force_zero(struct isl_sched_edge *edge, int use_coincidence) |
2148 | 2.15k | { |
2149 | 2.15k | return is_local(edge) || (2.07k use_coincidence2.07k && is_coincidence(edge)727 ); |
2150 | 2.15k | } |
2151 | | |
2152 | | /* Add all validity constraints to graph->lp. |
2153 | | * |
2154 | | * An edge that is forced to be local needs to have its dependence |
2155 | | * distances equal to zero. We take care of bounding them by 0 from below |
2156 | | * here. add_all_proximity_constraints takes care of bounding them by 0 |
2157 | | * from above. |
2158 | | * |
2159 | | * If "use_coincidence" is set, then we treat coincidence edges as local edges. |
2160 | | * Otherwise, we ignore them. |
2161 | | */ |
2162 | | static int add_all_validity_constraints(struct isl_sched_graph *graph, |
2163 | | int use_coincidence) |
2164 | 405 | { |
2165 | 405 | int i; |
2166 | 405 | |
2167 | 992 | for (i = 0; i < graph->n_edge; ++i587 ) { |
2168 | 587 | struct isl_sched_edge *edge = &graph->edge[i]; |
2169 | 587 | int zero; |
2170 | 587 | |
2171 | 587 | zero = force_zero(edge, use_coincidence); |
2172 | 587 | if (!is_validity(edge) && !zero112 ) |
2173 | 108 | continue; |
2174 | 479 | if (edge->src != edge->dst) |
2175 | 195 | continue; |
2176 | 284 | if (add_intra_validity_constraints(graph, edge) < 0) |
2177 | 0 | return -1; |
2178 | 284 | } |
2179 | 405 | |
2180 | 992 | for (i = 0; 405 i < graph->n_edge; ++i587 ) { |
2181 | 587 | struct isl_sched_edge *edge = &graph->edge[i]; |
2182 | 587 | int zero; |
2183 | 587 | |
2184 | 587 | zero = force_zero(edge, use_coincidence); |
2185 | 587 | if (!is_validity(edge) && !zero112 ) |
2186 | 108 | continue; |
2187 | 479 | if (edge->src == edge->dst) |
2188 | 284 | continue; |
2189 | 195 | if (add_inter_validity_constraints(graph, edge) < 0) |
2190 | 0 | return -1; |
2191 | 195 | } |
2192 | 405 | |
2193 | 405 | return 0; |
2194 | 405 | } |
2195 | | |
2196 | | /* Add constraints to graph->lp that bound the dependence distance |
2197 | | * for all dependence relations. |
2198 | | * If a given proximity dependence is identical to a validity |
2199 | | * dependence, then the dependence distance is already bounded |
2200 | | * from below (by zero), so we only need to bound the distance |
2201 | | * from above. (This includes the case of "local" dependences |
2202 | | * which are treated as validity dependence by add_all_validity_constraints.) |
2203 | | * Otherwise, we need to bound the distance both from above and from below. |
2204 | | * |
2205 | | * If "use_coincidence" is set, then we treat coincidence edges as local edges. |
2206 | | * Otherwise, we ignore them. |
2207 | | */ |
2208 | | static int add_all_proximity_constraints(struct isl_sched_graph *graph, |
2209 | | int use_coincidence) |
2210 | 405 | { |
2211 | 405 | int i; |
2212 | 405 | |
2213 | 992 | for (i = 0; i < graph->n_edge; ++i587 ) { |
2214 | 587 | struct isl_sched_edge *edge = &graph->edge[i]; |
2215 | 587 | int zero; |
2216 | 587 | |
2217 | 587 | zero = force_zero(edge, use_coincidence); |
2218 | 587 | if (!is_proximity(edge) && !zero117 ) |
2219 | 113 | continue; |
2220 | 474 | if (edge->src == edge->dst && |
2221 | 474 | add_intra_proximity_constraints(graph, edge, 1, zero) < 0278 ) |
2222 | 0 | return -1; |
2223 | 474 | if (edge->src != edge->dst && |
2224 | 474 | add_inter_proximity_constraints(graph, edge, 1, zero) < 0196 ) |
2225 | 0 | return -1; |
2226 | 474 | if (is_validity(edge) || zero21 ) |
2227 | 457 | continue; |
2228 | 17 | if (edge->src == edge->dst && |
2229 | 17 | add_intra_proximity_constraints(graph, edge, -1, 0) < 08 ) |
2230 | 0 | return -1; |
2231 | 17 | if (edge->src != edge->dst && |
2232 | 17 | add_inter_proximity_constraints(graph, edge, -1, 0) < 09 ) |
2233 | 0 | return -1; |
2234 | 17 | } |
2235 | 405 | |
2236 | 405 | return 0; |
2237 | 405 | } |
2238 | | |
2239 | | /* Normalize the rows of "indep" such that all rows are lexicographically |
2240 | | * positive and such that each row contains as many final zeros as possible, |
2241 | | * given the choice for the previous rows. |
2242 | | * Do this by performing elementary row operations. |
2243 | | */ |
2244 | | static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep) |
2245 | 1.27k | { |
2246 | 1.27k | indep = isl_mat_reverse_gauss(indep); |
2247 | 1.27k | indep = isl_mat_lexnonneg_rows(indep); |
2248 | 1.27k | return indep; |
2249 | 1.27k | } |
2250 | | |
2251 | | /* Compute a basis for the rows in the linear part of the schedule |
2252 | | * and extend this basis to a full basis. The remaining rows |
2253 | | * can then be used to force linear independence from the rows |
2254 | | * in the schedule. |
2255 | | * |
2256 | | * In particular, given the schedule rows S, we compute |
2257 | | * |
2258 | | * S = H Q |
2259 | | * S U = H |
2260 | | * |
2261 | | * with H the Hermite normal form of S. That is, all but the |
2262 | | * first rank columns of H are zero and so each row in S is |
2263 | | * a linear combination of the first rank rows of Q. |
2264 | | * The matrix Q can be used as a variable transformation |
2265 | | * that isolates the directions of S in the first rank rows. |
2266 | | * Transposing S U = H yields |
2267 | | * |
2268 | | * U^T S^T = H^T |
2269 | | * |
2270 | | * with all but the first rank rows of H^T zero. |
2271 | | * The last rows of U^T are therefore linear combinations |
2272 | | * of schedule coefficients that are all zero on schedule |
2273 | | * coefficients that are linearly dependent on the rows of S. |
2274 | | * At least one of these combinations is non-zero on |
2275 | | * linearly independent schedule coefficients. |
2276 | | * The rows are normalized to involve as few of the last |
2277 | | * coefficients as possible and to have a positive initial value. |
2278 | | */ |
2279 | | static int node_update_vmap(struct isl_sched_node *node) |
2280 | 1.27k | { |
2281 | 1.27k | isl_mat *H, *U, *Q; |
2282 | 1.27k | int n_row = isl_mat_rows(node->sched); |
2283 | 1.27k | |
2284 | 1.27k | H = isl_mat_sub_alloc(node->sched, 0, n_row, |
2285 | 1.27k | 1 + node->nparam, node->nvar); |
2286 | 1.27k | |
2287 | 1.27k | H = isl_mat_left_hermite(H, 0, &U, &Q); |
2288 | 1.27k | isl_mat_free(node->indep); |
2289 | 1.27k | isl_mat_free(node->vmap); |
2290 | 1.27k | node->vmap = Q; |
2291 | 1.27k | node->indep = isl_mat_transpose(U); |
2292 | 1.27k | node->rank = isl_mat_initial_non_zero_cols(H); |
2293 | 1.27k | node->indep = isl_mat_drop_rows(node->indep, 0, node->rank); |
2294 | 1.27k | node->indep = normalize_independent(node->indep); |
2295 | 1.27k | isl_mat_free(H); |
2296 | 1.27k | |
2297 | 1.27k | if (!node->indep || !node->vmap || node->rank < 0) |
2298 | 0 | return -1; |
2299 | 1.27k | return 0; |
2300 | 1.27k | } |
2301 | | |
2302 | | /* Is "edge" marked as a validity or a conditional validity edge? |
2303 | | */ |
2304 | | static int is_any_validity(struct isl_sched_edge *edge) |
2305 | 100 | { |
2306 | 100 | return is_validity(edge) || is_conditional_validity(edge)2 ; |
2307 | 100 | } |
2308 | | |
2309 | | /* How many times should we count the constraints in "edge"? |
2310 | | * |
2311 | | * We count as follows |
2312 | | * validity -> 1 (>= 0) |
2313 | | * validity+proximity -> 2 (>= 0 and upper bound) |
2314 | | * proximity -> 2 (lower and upper bound) |
2315 | | * local(+any) -> 2 (>= 0 and <= 0) |
2316 | | * |
2317 | | * If an edge is only marked conditional_validity then it counts |
2318 | | * as zero since it is only checked afterwards. |
2319 | | * |
2320 | | * If "use_coincidence" is set, then we treat coincidence edges as local edges. |
2321 | | * Otherwise, we ignore them. |
2322 | | */ |
2323 | | static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence) |
2324 | 587 | { |
2325 | 587 | if (is_proximity(edge) || force_zero(edge, use_coincidence)117 ) |
2326 | 474 | return 2; |
2327 | 113 | if (is_validity(edge)) |
2328 | 22 | return 1; |
2329 | 91 | return 0; |
2330 | 91 | } |
2331 | | |
2332 | | /* How many times should the constraints in "edge" be counted |
2333 | | * as a parametric intra-node constraint? |
2334 | | * |
2335 | | * Only proximity edges that are not forced zero need |
2336 | | * coefficient constraints that include coefficients for parameters. |
2337 | | * If the edge is also a validity edge, then only |
2338 | | * an upper bound is introduced. Otherwise, both lower and upper bounds |
2339 | | * are introduced. |
2340 | | */ |
2341 | | static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge, |
2342 | | int use_coincidence) |
2343 | 587 | { |
2344 | 587 | if (edge->src != edge->dst) |
2345 | 266 | return 0; |
2346 | 321 | if (!is_proximity(edge)) |
2347 | 44 | return 0; |
2348 | 277 | if (force_zero(edge, use_coincidence)) |
2349 | 138 | return 0; |
2350 | 139 | if (is_validity(edge)) |
2351 | 131 | return 1; |
2352 | 8 | else |
2353 | 8 | return 2; |
2354 | 139 | } |
2355 | | |
2356 | | /* Add "f" times the number of equality and inequality constraints of "bset" |
2357 | | * to "n_eq" and "n_ineq" and free "bset". |
2358 | | */ |
2359 | | static isl_stat update_count(__isl_take isl_basic_set *bset, |
2360 | | int f, int *n_eq, int *n_ineq) |
2361 | 685 | { |
2362 | 685 | if (!bset) |
2363 | 0 | return isl_stat_error; |
2364 | 685 | |
2365 | 685 | *n_eq += isl_basic_set_n_equality(bset); |
2366 | 685 | *n_ineq += isl_basic_set_n_inequality(bset); |
2367 | 685 | isl_basic_set_free(bset); |
2368 | 685 | |
2369 | 685 | return isl_stat_ok; |
2370 | 685 | } |
2371 | | |
2372 | | /* Count the number of equality and inequality constraints |
2373 | | * that will be added for the given map. |
2374 | | * |
2375 | | * The edges that require parameter coefficients are counted separately. |
2376 | | * |
2377 | | * "use_coincidence" is set if we should take into account coincidence edges. |
2378 | | */ |
2379 | | static isl_stat count_map_constraints(struct isl_sched_graph *graph, |
2380 | | struct isl_sched_edge *edge, __isl_take isl_map *map, |
2381 | | int *n_eq, int *n_ineq, int use_coincidence) |
2382 | 587 | { |
2383 | 587 | isl_map *copy; |
2384 | 587 | isl_basic_set *coef; |
2385 | 587 | int f = edge_multiplicity(edge, use_coincidence); |
2386 | 587 | int fp = parametric_intra_edge_multiplicity(edge, use_coincidence); |
2387 | 587 | |
2388 | 587 | if (f == 0) { |
2389 | 91 | isl_map_free(map); |
2390 | 91 | return isl_stat_ok; |
2391 | 91 | } |
2392 | 496 | |
2393 | 496 | if (edge->src != edge->dst) { |
2394 | 204 | coef = inter_coefficients(graph, edge, map); |
2395 | 204 | return update_count(coef, f, n_eq, n_ineq); |
2396 | 204 | } |
2397 | 292 | |
2398 | 292 | if (fp > 0) { |
2399 | 139 | copy = isl_map_copy(map); |
2400 | 139 | coef = intra_coefficients(graph, edge->src, copy, 1); |
2401 | 139 | if (update_count(coef, fp, n_eq, n_ineq) < 0) |
2402 | 0 | goto error; |
2403 | 292 | } |
2404 | 292 | |
2405 | 292 | if (f > fp) { |
2406 | 284 | copy = isl_map_copy(map); |
2407 | 284 | coef = intra_coefficients(graph, edge->src, copy, 0); |
2408 | 284 | if (update_count(coef, f - fp, n_eq, n_ineq) < 0) |
2409 | 0 | goto error; |
2410 | 292 | } |
2411 | 292 | |
2412 | 292 | isl_map_free(map); |
2413 | 292 | return isl_stat_ok; |
2414 | 0 | error: |
2415 | 0 | isl_map_free(map); |
2416 | 0 | return isl_stat_error; |
2417 | 292 | } |
2418 | | |
2419 | | /* Count the number of equality and inequality constraints |
2420 | | * that will be added to the main lp problem. |
2421 | | * We count as follows |
2422 | | * validity -> 1 (>= 0) |
2423 | | * validity+proximity -> 2 (>= 0 and upper bound) |
2424 | | * proximity -> 2 (lower and upper bound) |
2425 | | * local(+any) -> 2 (>= 0 and <= 0) |
2426 | | * |
2427 | | * If "use_coincidence" is set, then we treat coincidence edges as local edges. |
2428 | | * Otherwise, we ignore them. |
2429 | | */ |
2430 | | static int count_constraints(struct isl_sched_graph *graph, |
2431 | | int *n_eq, int *n_ineq, int use_coincidence) |
2432 | 405 | { |
2433 | 405 | int i; |
2434 | 405 | |
2435 | 405 | *n_eq = *n_ineq = 0; |
2436 | 992 | for (i = 0; i < graph->n_edge; ++i587 ) { |
2437 | 587 | struct isl_sched_edge *edge = &graph->edge[i]; |
2438 | 587 | isl_map *map = isl_map_copy(edge->map); |
2439 | 587 | |
2440 | 587 | if (count_map_constraints(graph, edge, map, n_eq, n_ineq, |
2441 | 587 | use_coincidence) < 0) |
2442 | 0 | return -1; |
2443 | 587 | } |
2444 | 405 | |
2445 | 405 | return 0; |
2446 | 405 | } |
2447 | | |
2448 | | /* Count the number of constraints that will be added by |
2449 | | * add_bound_constant_constraints to bound the values of the constant terms |
2450 | | * and increment *n_eq and *n_ineq accordingly. |
2451 | | * |
2452 | | * In practice, add_bound_constant_constraints only adds inequalities. |
2453 | | */ |
2454 | | static isl_stat count_bound_constant_constraints(isl_ctx *ctx, |
2455 | | struct isl_sched_graph *graph, int *n_eq, int *n_ineq) |
2456 | 405 | { |
2457 | 405 | if (isl_options_get_schedule_max_constant_term(ctx) == -1) |
2458 | 253 | return isl_stat_ok; |
2459 | 152 | |
2460 | 152 | *n_ineq += graph->n; |
2461 | 152 | |
2462 | 152 | return isl_stat_ok; |
2463 | 152 | } |
2464 | | |
2465 | | /* Add constraints to bound the values of the constant terms in the schedule, |
2466 | | * if requested by the user. |
2467 | | * |
2468 | | * The maximal value of the constant terms is defined by the option |
2469 | | * "schedule_max_constant_term". |
2470 | | */ |
2471 | | static isl_stat add_bound_constant_constraints(isl_ctx *ctx, |
2472 | | struct isl_sched_graph *graph) |
2473 | 405 | { |
2474 | 405 | int i, k; |
2475 | 405 | int max; |
2476 | 405 | int total; |
2477 | 405 | |
2478 | 405 | max = isl_options_get_schedule_max_constant_term(ctx); |
2479 | 405 | if (max == -1) |
2480 | 253 | return isl_stat_ok; |
2481 | 152 | |
2482 | 152 | total = isl_basic_set_dim(graph->lp, isl_dim_set); |
2483 | 152 | |
2484 | 314 | for (i = 0; i < graph->n; ++i162 ) { |
2485 | 162 | struct isl_sched_node *node = &graph->node[i]; |
2486 | 162 | int pos; |
2487 | 162 | |
2488 | 162 | k = isl_basic_set_alloc_inequality(graph->lp); |
2489 | 162 | if (k < 0) |
2490 | 0 | return isl_stat_error; |
2491 | 162 | isl_seq_clr(graph->lp->ineq[k], 1 + total); |
2492 | 162 | pos = node_cst_coef_offset(node); |
2493 | 162 | isl_int_set_si(graph->lp->ineq[k][1 + pos], -1); |
2494 | 162 | isl_int_set_si(graph->lp->ineq[k][0], max); |
2495 | 162 | } |
2496 | 152 | |
2497 | 152 | return isl_stat_ok; |
2498 | 152 | } |
2499 | | |
2500 | | /* Count the number of constraints that will be added by |
2501 | | * add_bound_coefficient_constraints and increment *n_eq and *n_ineq |
2502 | | * accordingly. |
2503 | | * |
2504 | | * In practice, add_bound_coefficient_constraints only adds inequalities. |
2505 | | */ |
2506 | | static int count_bound_coefficient_constraints(isl_ctx *ctx, |
2507 | | struct isl_sched_graph *graph, int *n_eq, int *n_ineq) |
2508 | 405 | { |
2509 | 405 | int i; |
2510 | 405 | |
2511 | 405 | if (isl_options_get_schedule_max_coefficient(ctx) == -1 && |
2512 | 405 | !isl_options_get_schedule_treat_coalescing(ctx)255 ) |
2513 | 8 | return 0; |
2514 | 397 | |
2515 | 956 | for (i = 0; 397 i < graph->n; ++i559 ) |
2516 | 559 | *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar; |
2517 | 397 | |
2518 | 397 | return 0; |
2519 | 397 | } |
2520 | | |
2521 | | /* Add constraints to graph->lp that bound the values of |
2522 | | * the parameter schedule coefficients of "node" to "max" and |
2523 | | * the variable schedule coefficients to the corresponding entry |
2524 | | * in node->max. |
2525 | | * In either case, a negative value means that no bound needs to be imposed. |
2526 | | * |
2527 | | * For parameter coefficients, this amounts to adding a constraint |
2528 | | * |
2529 | | * c_n <= max |
2530 | | * |
2531 | | * i.e., |
2532 | | * |
2533 | | * -c_n + max >= 0 |
2534 | | * |
2535 | | * The variables coefficients are, however, not represented directly. |
2536 | | * Instead, the variable coefficients c_x are written as differences |
2537 | | * c_x = c_x^+ - c_x^-. |
2538 | | * That is, |
2539 | | * |
2540 | | * -max_i <= c_x_i <= max_i |
2541 | | * |
2542 | | * is encoded as |
2543 | | * |
2544 | | * -max_i <= c_x_i^+ - c_x_i^- <= max_i |
2545 | | * |
2546 | | * or |
2547 | | * |
2548 | | * -(c_x_i^+ - c_x_i^-) + max_i >= 0 |
2549 | | * c_x_i^+ - c_x_i^- + max_i >= 0 |
2550 | | */ |
2551 | | static isl_stat node_add_coefficient_constraints(isl_ctx *ctx, |
2552 | | struct isl_sched_graph *graph, struct isl_sched_node *node, int max) |
2553 | 559 | { |
2554 | 559 | int i, j, k; |
2555 | 559 | int total; |
2556 | 559 | isl_vec *ineq; |
2557 | 559 | |
2558 | 559 | total = isl_basic_set_dim(graph->lp, isl_dim_set); |
2559 | 559 | |
2560 | 887 | for (j = 0; j < node->nparam; ++j328 ) { |
2561 | 328 | int dim; |
2562 | 328 | |
2563 | 328 | if (max < 0) |
2564 | 245 | continue; |
2565 | 83 | |
2566 | 83 | k = isl_basic_set_alloc_inequality(graph->lp); |
2567 | 83 | if (k < 0) |
2568 | 0 | return isl_stat_error; |
2569 | 83 | dim = 1 + node_par_coef_offset(node) + j; |
2570 | 83 | isl_seq_clr(graph->lp->ineq[k], 1 + total); |
2571 | 83 | isl_int_set_si(graph->lp->ineq[k][dim], -1); |
2572 | 83 | isl_int_set_si(graph->lp->ineq[k][0], max); |
2573 | 83 | } |
2574 | 559 | |
2575 | 559 | ineq = isl_vec_alloc(ctx, 1 + total); |
2576 | 559 | ineq = isl_vec_clr(ineq); |
2577 | 559 | if (!ineq) |
2578 | 0 | return isl_stat_error; |
2579 | 1.53k | for (i = 0; 559 i < node->nvar; ++i974 ) { |
2580 | 974 | int pos = 1 + node_var_coef_pos(node, i); |
2581 | 974 | |
2582 | 974 | if (isl_int_is_neg(node->max->el[i])) |
2583 | 974 | continue526 ; |
2584 | 448 | |
2585 | 448 | isl_int_set_si(ineq->el[pos], 1); |
2586 | 448 | isl_int_set_si(ineq->el[pos + 1], -1); |
2587 | 448 | isl_int_set(ineq->el[0], node->max->el[i]); |
2588 | 448 | |
2589 | 448 | k = isl_basic_set_alloc_inequality(graph->lp); |
2590 | 448 | if (k < 0) |
2591 | 0 | goto error; |
2592 | 448 | isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total); |
2593 | 448 | |
2594 | 448 | isl_seq_neg(ineq->el + pos, ineq->el + pos, 2); |
2595 | 448 | k = isl_basic_set_alloc_inequality(graph->lp); |
2596 | 448 | if (k < 0) |
2597 | 0 | goto error; |
2598 | 448 | isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total); |
2599 | 448 | |
2600 | 448 | isl_seq_clr(ineq->el + pos, 2); |
2601 | 448 | } |
2602 | 559 | isl_vec_free(ineq); |
2603 | 559 | |
2604 | 559 | return isl_stat_ok; |
2605 | 0 | error: |
2606 | 0 | isl_vec_free(ineq); |
2607 | 0 | return isl_stat_error; |
2608 | 559 | } |
2609 | | |
2610 | | /* Add constraints that bound the values of the variable and parameter |
2611 | | * coefficients of the schedule. |
2612 | | * |
2613 | | * The maximal value of the coefficients is defined by the option |
2614 | | * 'schedule_max_coefficient' and the entries in node->max. |
2615 | | * These latter entries are only set if either the schedule_max_coefficient |
2616 | | * option or the schedule_treat_coalescing option is set. |
2617 | | */ |
2618 | | static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx, |
2619 | | struct isl_sched_graph *graph) |
2620 | 405 | { |
2621 | 405 | int i; |
2622 | 405 | int max; |
2623 | 405 | |
2624 | 405 | max = isl_options_get_schedule_max_coefficient(ctx); |
2625 | 405 | |
2626 | 405 | if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx)255 ) |
2627 | 8 | return isl_stat_ok; |
2628 | 397 | |
2629 | 956 | for (i = 0; 397 i < graph->n; ++i559 ) { |
2630 | 559 | struct isl_sched_node *node = &graph->node[i]; |
2631 | 559 | |
2632 | 559 | if (node_add_coefficient_constraints(ctx, graph, node, max) < 0) |
2633 | 0 | return isl_stat_error; |
2634 | 559 | } |
2635 | 397 | |
2636 | 397 | return isl_stat_ok; |
2637 | 397 | } |
2638 | | |
2639 | | /* Add a constraint to graph->lp that equates the value at position |
2640 | | * "sum_pos" to the sum of the "n" values starting at "first". |
2641 | | */ |
2642 | | static isl_stat add_sum_constraint(struct isl_sched_graph *graph, |
2643 | | int sum_pos, int first, int n) |
2644 | 405 | { |
2645 | 405 | int i, k; |
2646 | 405 | int total; |
2647 | 405 | |
2648 | 405 | total = isl_basic_set_dim(graph->lp, isl_dim_set); |
2649 | 405 | |
2650 | 405 | k = isl_basic_set_alloc_equality(graph->lp); |
2651 | 405 | if (k < 0) |
2652 | 0 | return isl_stat_error; |
2653 | 405 | isl_seq_clr(graph->lp->eq[k], 1 + total); |
2654 | 405 | isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1); |
2655 | 957 | for (i = 0; i < n; ++i552 ) |
2656 | 552 | isl_int_set_si(graph->lp->eq[k][1 + first + i], 1); |
2657 | 405 | |
2658 | 405 | return isl_stat_ok; |
2659 | 405 | } |
2660 | | |
2661 | | /* Add a constraint to graph->lp that equates the value at position |
2662 | | * "sum_pos" to the sum of the parameter coefficients of all nodes. |
2663 | | */ |
2664 | | static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph, |
2665 | | int sum_pos) |
2666 | 401 | { |
2667 | 401 | int i, j, k; |
2668 | 401 | int total; |
2669 | 401 | |
2670 | 401 | total = isl_basic_set_dim(graph->lp, isl_dim_set); |
2671 | 401 | |
2672 | 401 | k = isl_basic_set_alloc_equality(graph->lp); |
2673 | 401 | if (k < 0) |
2674 | 0 | return isl_stat_error; |
2675 | 401 | isl_seq_clr(graph->lp->eq[k], 1 + total); |
2676 | 401 | isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1); |
2677 | 954 | for (i = 0; i < graph->n; ++i553 ) { |
2678 | 553 | int pos = 1 + node_par_coef_offset(&graph->node[i]); |
2679 | 553 | |
2680 | 896 | for (j = 0; j < graph->node[i].nparam; ++j343 ) |
2681 | 553 | isl_int_set_si343 (graph->lp->eq[k][pos + j], 1); |
2682 | 553 | } |
2683 | 401 | |
2684 | 401 | return isl_stat_ok; |
2685 | 401 | } |
2686 | | |
2687 | | /* Add a constraint to graph->lp that equates the value at position |
2688 | | * "sum_pos" to the sum of the variable coefficients of all nodes. |
2689 | | */ |
2690 | | static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph, |
2691 | | int sum_pos) |
2692 | 433 | { |
2693 | 433 | int i, j, k; |
2694 | 433 | int total; |
2695 | 433 | |
2696 | 433 | total = isl_basic_set_dim(graph->lp, isl_dim_set); |
2697 | 433 | |
2698 | 433 | k = isl_basic_set_alloc_equality(graph->lp); |
2699 | 433 | if (k < 0) |
2700 | 0 | return isl_stat_error; |
2701 | 433 | isl_seq_clr(graph->lp->eq[k], 1 + total); |
2702 | 433 | isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1); |
2703 | 1.04k | for (i = 0; i < graph->n; ++i615 ) { |
2704 | 615 | struct isl_sched_node *node = &graph->node[i]; |
2705 | 615 | int pos = 1 + node_var_coef_offset(node); |
2706 | 615 | |
2707 | 2.78k | for (j = 0; j < 2 * node->nvar; ++j2.17k ) |
2708 | 2.17k | isl_int_set_si(graph->lp->eq[k][pos + j], 1); |
2709 | 615 | } |
2710 | 433 | |
2711 | 433 | return isl_stat_ok; |
2712 | 433 | } |
2713 | | |
2714 | | /* Construct an ILP problem for finding schedule coefficients |
2715 | | * that result in non-negative, but small dependence distances |
2716 | | * over all dependences. |
2717 | | * In particular, the dependence distances over proximity edges |
2718 | | * are bounded by m_0 + m_n n and we compute schedule coefficients |
2719 | | * with small values (preferably zero) of m_n and m_0. |
2720 | | * |
2721 | | * All variables of the ILP are non-negative. The actual coefficients |
2722 | | * may be negative, so each coefficient is represented as the difference |
2723 | | * of two non-negative variables. The negative part always appears |
2724 | | * immediately before the positive part. |
2725 | | * Other than that, the variables have the following order |
2726 | | * |
2727 | | * - sum of positive and negative parts of m_n coefficients |
2728 | | * - m_0 |
2729 | | * - sum of all c_n coefficients |
2730 | | * (unconstrained when computing non-parametric schedules) |
2731 | | * - sum of positive and negative parts of all c_x coefficients |
2732 | | * - positive and negative parts of m_n coefficients |
2733 | | * - for each node |
2734 | | * - positive and negative parts of c_i_x, in opposite order |
2735 | | * - c_i_n (if parametric) |
2736 | | * - c_i_0 |
2737 | | * |
2738 | | * The constraints are those from the edges plus two or three equalities |
2739 | | * to express the sums. |
2740 | | * |
2741 | | * If "use_coincidence" is set, then we treat coincidence edges as local edges. |
2742 | | * Otherwise, we ignore them. |
2743 | | */ |
2744 | | static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph, |
2745 | | int use_coincidence) |
2746 | 405 | { |
2747 | 405 | int i; |
2748 | 405 | unsigned nparam; |
2749 | 405 | unsigned total; |
2750 | 405 | isl_space *space; |
2751 | 405 | int parametric; |
2752 | 405 | int param_pos; |
2753 | 405 | int n_eq, n_ineq; |
2754 | 405 | |
2755 | 405 | parametric = ctx->opt->schedule_parametric; |
2756 | 405 | nparam = isl_space_dim(graph->node[0].space, isl_dim_param); |
2757 | 405 | param_pos = 4; |
2758 | 405 | total = param_pos + 2 * nparam; |
2759 | 980 | for (i = 0; i < graph->n; ++i575 ) { |
2760 | 575 | struct isl_sched_node *node = &graph->node[graph->sorted[i]]; |
2761 | 575 | if (node_update_vmap(node) < 0) |
2762 | 0 | return isl_stat_error; |
2763 | 575 | node->start = total; |
2764 | 575 | total += 1 + node->nparam + 2 * node->nvar; |
2765 | 575 | } |
2766 | 405 | |
2767 | 405 | if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0) |
2768 | 0 | return isl_stat_error; |
2769 | 405 | if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0) |
2770 | 0 | return isl_stat_error; |
2771 | 405 | if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0) |
2772 | 0 | return isl_stat_error; |
2773 | 405 | |
2774 | 405 | space = isl_space_set_alloc(ctx, 0, total); |
2775 | 405 | isl_basic_set_free(graph->lp); |
2776 | 405 | n_eq += 2 + parametric; |
2777 | 405 | |
2778 | 405 | graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq); |
2779 | 405 | |
2780 | 405 | if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0) |
2781 | 0 | return isl_stat_error; |
2782 | 405 | if (parametric && add_param_sum_constraint(graph, 2) < 0373 ) |
2783 | 0 | return isl_stat_error; |
2784 | 405 | if (add_var_sum_constraint(graph, 3) < 0) |
2785 | 0 | return isl_stat_error; |
2786 | 405 | if (add_bound_constant_constraints(ctx, graph) < 0) |
2787 | 0 | return isl_stat_error; |
2788 | 405 | if (add_bound_coefficient_constraints(ctx, graph) < 0) |
2789 | 0 | return isl_stat_error; |
2790 | 405 | if (add_all_validity_constraints(graph, use_coincidence) < 0) |
2791 | 0 | return isl_stat_error; |
2792 | 405 | if (add_all_proximity_constraints(graph, use_coincidence) < 0) |
2793 | 0 | return isl_stat_error; |
2794 | 405 | |
2795 | 405 | return isl_stat_ok; |
2796 | 405 | } |
2797 | | |
2798 | | /* Analyze the conflicting constraint found by |
2799 | | * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity |
2800 | | * constraint of one of the edges between distinct nodes, living, moreover |
2801 | | * in distinct SCCs, then record the source and sink SCC as this may |
2802 | | * be a good place to cut between SCCs. |
2803 | | */ |
2804 | | static int check_conflict(int con, void *user) |
2805 | 1.14k | { |
2806 | 1.14k | int i; |
2807 | 1.14k | struct isl_sched_graph *graph = user; |
2808 | 1.14k | |
2809 | 1.14k | if (graph->src_scc >= 0) |
2810 | 35 | return 0; |
2811 | 1.11k | |
2812 | 1.11k | con -= graph->lp->n_eq; |
2813 | 1.11k | |
2814 | 1.11k | if (con >= graph->lp->n_ineq) |
2815 | 519 | return 0; |
2816 | 591 | |
2817 | 1.96k | for (i = 0; 591 i < graph->n_edge; ++i1.37k ) { |
2818 | 1.37k | if (!is_validity(&graph->edge[i])) |
2819 | 135 | continue; |
2820 | 1.23k | if (graph->edge[i].src == graph->edge[i].dst) |
2821 | 671 | continue; |
2822 | 568 | if (graph->edge[i].src->scc == graph->edge[i].dst->scc) |
2823 | 497 | continue; |
2824 | 71 | if (graph->edge[i].start > con) |
2825 | 42 | continue; |
2826 | 29 | if (graph->edge[i].end <= con) |
2827 | 21 | continue; |
2828 | 8 | graph->src_scc = graph->edge[i].src->scc; |
2829 | 8 | graph->dst_scc = graph->edge[i].dst->scc; |
2830 | 8 | } |
2831 | 591 | |
2832 | 591 | return 0; |
2833 | 591 | } |
2834 | | |
2835 | | /* Check whether the next schedule row of the given node needs to be |
2836 | | * non-trivial. Lower-dimensional domains may have some trivial rows, |
2837 | | * but as soon as the number of remaining required non-trivial rows |
2838 | | * is as large as the number or remaining rows to be computed, |
2839 | | * all remaining rows need to be non-trivial. |
2840 | | */ |
2841 | | static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node) |
2842 | 607 | { |
2843 | 607 | return node->nvar - node->rank >= graph->maxvar - graph->n_row; |
2844 | 607 | } |
2845 | | |
2846 | | /* Construct a non-triviality region with triviality directions |
2847 | | * corresponding to the rows of "indep". |
2848 | | * The rows of "indep" are expressed in terms of the schedule coefficients c_i, |
2849 | | * while the triviality directions are expressed in terms of |
2850 | | * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing |
2851 | | * before c^+_i. Furthermore, |
2852 | | * the pairs of non-negative variables representing the coefficients |
2853 | | * are stored in the opposite order. |
2854 | | */ |
2855 | | static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep) |
2856 | 471 | { |
2857 | 471 | isl_ctx *ctx; |
2858 | 471 | isl_mat *mat; |
2859 | 471 | int i, j, n, n_var; |
2860 | 471 | |
2861 | 471 | if (!indep) |
2862 | 0 | return NULL; |
2863 | 471 | |
2864 | 471 | ctx = isl_mat_get_ctx(indep); |
2865 | 471 | n = isl_mat_rows(indep); |
2866 | 471 | n_var = isl_mat_cols(indep); |
2867 | 471 | mat = isl_mat_alloc(ctx, n, 2 * n_var); |
2868 | 471 | if (!mat) |
2869 | 0 | return NULL; |
2870 | 1.15k | for (i = 0; 471 i < n; ++i679 ) { |
2871 | 2.16k | for (j = 0; j < n_var; ++j1.48k ) { |
2872 | 1.48k | int nj = n_var - 1 - j; |
2873 | 1.48k | isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]); |
2874 | 1.48k | isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]); |
2875 | 1.48k | } |
2876 | 679 | } |
2877 | 471 | |
2878 | 471 | return mat; |
2879 | 471 | } |
2880 | | |
2881 | | /* Solve the ILP problem constructed in setup_lp. |
2882 | | * For each node such that all the remaining rows of its schedule |
2883 | | * need to be non-trivial, we construct a non-triviality region. |
2884 | | * This region imposes that the next row is independent of previous rows. |
2885 | | * In particular, the non-triviality region enforces that at least |
2886 | | * one of the linear combinations in the rows of node->indep is non-zero. |
2887 | | */ |
2888 | | static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph) |
2889 | 405 | { |
2890 | 405 | int i; |
2891 | 405 | isl_vec *sol; |
2892 | 405 | isl_basic_set *lp; |
2893 | 405 | |
2894 | 980 | for (i = 0; i < graph->n; ++i575 ) { |
2895 | 575 | struct isl_sched_node *node = &graph->node[i]; |
2896 | 575 | isl_mat *trivial; |
2897 | 575 | |
2898 | 575 | graph->region[i].pos = node_var_coef_offset(node); |
2899 | 575 | if (needs_row(graph, node)) |
2900 | 471 | trivial = construct_trivial(node->indep); |
2901 | 104 | else |
2902 | 104 | trivial = isl_mat_zero(ctx, 0, 0); |
2903 | 575 | graph->region[i].trivial = trivial; |
2904 | 575 | } |
2905 | 405 | lp = isl_basic_set_copy(graph->lp); |
2906 | 405 | sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n, |
2907 | 405 | graph->region, &check_conflict, graph); |
2908 | 980 | for (i = 0; i < graph->n; ++i575 ) |
2909 | 575 | isl_mat_free(graph->region[i].trivial); |
2910 | 405 | return sol; |
2911 | 405 | } |
2912 | | |
2913 | | /* Extract the coefficients for the variables of "node" from "sol". |
2914 | | * |
2915 | | * Each schedule coefficient c_i_x is represented as the difference |
2916 | | * between two non-negative variables c_i_x^+ - c_i_x^-. |
2917 | | * The c_i_x^- appear before their c_i_x^+ counterpart. |
2918 | | * Furthermore, the order of these pairs is the opposite of that |
2919 | | * of the corresponding coefficients. |
2920 | | * |
2921 | | * Return c_i_x = c_i_x^+ - c_i_x^- |
2922 | | */ |
2923 | | static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node, |
2924 | | __isl_keep isl_vec *sol) |
2925 | 488 | { |
2926 | 488 | int i; |
2927 | 488 | int pos; |
2928 | 488 | isl_vec *csol; |
2929 | 488 | |
2930 | 488 | if (!sol) |
2931 | 0 | return NULL; |
2932 | 488 | csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar); |
2933 | 488 | if (!csol) |
2934 | 0 | return NULL; |
2935 | 488 | |
2936 | 488 | pos = 1 + node_var_coef_offset(node); |
2937 | 1.40k | for (i = 0; i < node->nvar; ++i917 ) |
2938 | 917 | isl_int_sub(csol->el[node->nvar - 1 - i], |
2939 | 488 | sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]); |
2940 | 488 | |
2941 | 488 | return csol; |
2942 | 488 | } |
2943 | | |
2944 | | /* Update the schedules of all nodes based on the given solution |
2945 | | * of the LP problem. |
2946 | | * The new row is added to the current band. |
2947 | | * All possibly negative coefficients are encoded as a difference |
2948 | | * of two non-negative variables, so we need to perform the subtraction |
2949 | | * here. |
2950 | | * |
2951 | | * If coincident is set, then the caller guarantees that the new |
2952 | | * row satisfies the coincidence constraints. |
2953 | | */ |
2954 | | static int update_schedule(struct isl_sched_graph *graph, |
2955 | | __isl_take isl_vec *sol, int coincident) |
2956 | 324 | { |
2957 | 324 | int i, j; |
2958 | 324 | isl_vec *csol = NULL; |
2959 | 324 | |
2960 | 324 | if (!sol) |
2961 | 0 | goto error; |
2962 | 324 | if (sol->size == 0) |
2963 | 324 | isl_die0 (sol->ctx, isl_error_internal, |
2964 | 324 | "no solution found", goto error); |
2965 | 324 | if (graph->n_total_row >= graph->max_row) |
2966 | 324 | isl_die0 (sol->ctx, isl_error_internal, |
2967 | 324 | "too many schedule rows", goto error); |
2968 | 324 | |
2969 | 763 | for (i = 0; 324 i < graph->n; ++i439 ) { |
2970 | 439 | struct isl_sched_node *node = &graph->node[i]; |
2971 | 439 | int pos; |
2972 | 439 | int row = isl_mat_rows(node->sched); |
2973 | 439 | |
2974 | 439 | isl_vec_free(csol); |
2975 | 439 | csol = extract_var_coef(node, sol); |
2976 | 439 | if (!csol) |
2977 | 0 | goto error; |
2978 | 439 | |
2979 | 439 | isl_map_free(node->sched_map); |
2980 | 439 | node->sched_map = NULL; |
2981 | 439 | node->sched = isl_mat_add_rows(node->sched, 1); |
2982 | 439 | if (!node->sched) |
2983 | 0 | goto error; |
2984 | 439 | pos = node_cst_coef_offset(node); |
2985 | 439 | node->sched = isl_mat_set_element(node->sched, |
2986 | 439 | row, 0, sol->el[1 + pos]); |
2987 | 439 | pos = node_par_coef_offset(node); |
2988 | 681 | for (j = 0; j < node->nparam; ++j242 ) |
2989 | 242 | node->sched = isl_mat_set_element(node->sched, |
2990 | 242 | row, 1 + j, sol->el[1 + pos + j]); |
2991 | 1.26k | for (j = 0; j < node->nvar; ++j830 ) |
2992 | 830 | node->sched = isl_mat_set_element(node->sched, |
2993 | 830 | row, 1 + node->nparam + j, csol->el[j]); |
2994 | 439 | node->coincident[graph->n_total_row] = coincident; |
2995 | 439 | } |
2996 | 324 | isl_vec_free(sol); |
2997 | 324 | isl_vec_free(csol); |
2998 | 324 | |
2999 | 324 | graph->n_row++; |
3000 | 324 | graph->n_total_row++; |
3001 | 324 | |
3002 | 324 | return 0; |
3003 | 0 | error: |
3004 | 0 | isl_vec_free(sol); |
3005 | 0 | isl_vec_free(csol); |
3006 | 0 | return -1; |
3007 | 324 | } |
3008 | | |
3009 | | /* Convert row "row" of node->sched into an isl_aff living in "ls" |
3010 | | * and return this isl_aff. |
3011 | | */ |
3012 | | static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls, |
3013 | | struct isl_sched_node *node, int row) |
3014 | 1.02k | { |
3015 | 1.02k | int j; |
3016 | 1.02k | isl_int v; |
3017 | 1.02k | isl_aff *aff; |
3018 | 1.02k | |
3019 | 1.02k | isl_int_init(v); |
3020 | 1.02k | |
3021 | 1.02k | aff = isl_aff_zero_on_domain(ls); |
3022 | 1.02k | if (isl_mat_get_element(node->sched, row, 0, &v) < 0) |
3023 | 0 | goto error; |
3024 | 1.02k | aff = isl_aff_set_constant(aff, v); |
3025 | 1.59k | for (j = 0; j < node->nparam; ++j570 ) { |
3026 | 570 | if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0) |
3027 | 0 | goto error; |
3028 | 570 | aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v); |
3029 | 570 | } |
3030 | 2.87k | for (j = 0; 1.02k j < node->nvar; ++j1.85k ) { |
3031 | 1.85k | if (isl_mat_get_element(node->sched, row, |
3032 | 1.85k | 1 + node->nparam + j, &v) < 0) |
3033 | 0 | goto error; |
3034 | 1.85k | aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v); |
3035 | 1.85k | } |
3036 | 1.02k | |
3037 | 1.02k | isl_int_clear(v); |
3038 | 1.02k | |
3039 | 1.02k | return aff; |
3040 | 0 | error: |
3041 | 0 | isl_int_clear(v); |
3042 | 0 | isl_aff_free(aff); |
3043 | 0 | return NULL; |
3044 | 1.02k | } |
3045 | | |
3046 | | /* Convert the "n" rows starting at "first" of node->sched into a multi_aff |
3047 | | * and return this multi_aff. |
3048 | | * |
3049 | | * The result is defined over the uncompressed node domain. |
3050 | | */ |
3051 | | static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff( |
3052 | | struct isl_sched_node *node, int first, int n) |
3053 | 748 | { |
3054 | 748 | int i; |
3055 | 748 | isl_space *space; |
3056 | 748 | isl_local_space *ls; |
3057 | 748 | isl_aff *aff; |
3058 | 748 | isl_multi_aff *ma; |
3059 | 748 | int nrow; |
3060 | 748 | |
3061 | 748 | if (!node) |
3062 | 0 | return NULL; |
3063 | 748 | nrow = isl_mat_rows(node->sched); |
3064 | 748 | if (node->compressed) |
3065 | 66 | space = isl_multi_aff_get_domain_space(node->decompress); |
3066 | 682 | else |
3067 | 682 | space = isl_space_copy(node->space); |
3068 | 748 | ls = isl_local_space_from_space(isl_space_copy(space)); |
3069 | 748 | space = isl_space_from_domain(space); |
3070 | 748 | space = isl_space_add_dims(space, isl_dim_out, n); |
3071 | 748 | ma = isl_multi_aff_zero(space); |
3072 | 748 | |
3073 | 1.76k | for (i = first; i < first + n; ++i1.02k ) { |
3074 | 1.02k | aff = extract_schedule_row(isl_local_space_copy(ls), node, i); |
3075 | 1.02k | ma = isl_multi_aff_set_aff(ma, i - first, aff); |
3076 | 1.02k | } |
3077 | 748 | |
3078 | 748 | isl_local_space_free(ls); |
3079 | 748 | |
3080 | 748 | if (node->compressed) |
3081 | 66 | ma = isl_multi_aff_pullback_multi_aff(ma, |
3082 | 66 | isl_multi_aff_copy(node->compress)); |
3083 | 748 | |
3084 | 748 | return ma; |
3085 | 748 | } |
3086 | | |
3087 | | /* Convert node->sched into a multi_aff and return this multi_aff. |
3088 | | * |
3089 | | * The result is defined over the uncompressed node domain. |
3090 | | */ |
3091 | | static __isl_give isl_multi_aff *node_extract_schedule_multi_aff( |
3092 | | struct isl_sched_node *node) |
3093 | 213 | { |
3094 | 213 | int nrow; |
3095 | 213 | |
3096 | 213 | nrow = isl_mat_rows(node->sched); |
3097 | 213 | return node_extract_partial_schedule_multi_aff(node, 0, nrow); |
3098 | 213 | } |
3099 | | |
3100 | | /* Convert node->sched into a map and return this map. |
3101 | | * |
3102 | | * The result is cached in node->sched_map, which needs to be released |
3103 | | * whenever node->sched is updated. |
3104 | | * It is defined over the uncompressed node domain. |
3105 | | */ |
3106 | | static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node) |
3107 | 624 | { |
3108 | 624 | if (!node->sched_map) { |
3109 | 213 | isl_multi_aff *ma; |
3110 | 213 | |
3111 | 213 | ma = node_extract_schedule_multi_aff(node); |
3112 | 213 | node->sched_map = isl_map_from_multi_aff(ma); |
3113 | 213 | } |
3114 | 624 | |
3115 | 624 | return isl_map_copy(node->sched_map); |
3116 | 624 | } |
3117 | | |
3118 | | /* Construct a map that can be used to update a dependence relation |
3119 | | * based on the current schedule. |
3120 | | * That is, construct a map expressing that source and sink |
3121 | | * are executed within the same iteration of the current schedule. |
3122 | | * This map can then be intersected with the dependence relation. |
3123 | | * This is not the most efficient way, but this shouldn't be a critical |
3124 | | * operation. |
3125 | | */ |
3126 | | static __isl_give isl_map *specializer(struct isl_sched_node *src, |
3127 | | struct isl_sched_node *dst) |
3128 | 278 | { |
3129 | 278 | isl_map *src_sched, *dst_sched; |
3130 | 278 | |
3131 | 278 | src_sched = node_extract_schedule(src); |
3132 | 278 | dst_sched = node_extract_schedule(dst); |
3133 | 278 | return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched)); |
3134 | 278 | } |
3135 | | |
3136 | | /* Intersect the domains of the nested relations in domain and range |
3137 | | * of "umap" with "map". |
3138 | | */ |
3139 | | static __isl_give isl_union_map *intersect_domains( |
3140 | | __isl_take isl_union_map *umap, __isl_keep isl_map *map) |
3141 | 81 | { |
3142 | 81 | isl_union_set *uset; |
3143 | 81 | |
3144 | 81 | umap = isl_union_map_zip(umap); |
3145 | 81 | uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map))); |
3146 | 81 | umap = isl_union_map_intersect_domain(umap, uset); |
3147 | 81 | umap = isl_union_map_zip(umap); |
3148 | 81 | return umap; |
3149 | 81 | } |
3150 | | |
3151 | | /* Update the dependence relation of the given edge based |
3152 | | * on the current schedule. |
3153 | | * If the dependence is carried completely by the current schedule, then |
3154 | | * it is removed from the edge_tables. It is kept in the list of edges |
3155 | | * as otherwise all edge_tables would have to be recomputed. |
3156 | | * |
3157 | | * If the edge is of a type that can appear multiple times |
3158 | | * between the same pair of nodes, then it is added to |
3159 | | * the edge table (again). This prevents the situation |
3160 | | * where none of these edges is referenced from the edge table |
3161 | | * because the one that was referenced turned out to be empty and |
3162 | | * was therefore removed from the table. |
3163 | | */ |
3164 | | static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph, |
3165 | | struct isl_sched_edge *edge) |
3166 | 278 | { |
3167 | 278 | int empty; |
3168 | 278 | isl_map *id; |
3169 | 278 | |
3170 | 278 | id = specializer(edge->src, edge->dst); |
3171 | 278 | edge->map = isl_map_intersect(edge->map, isl_map_copy(id)); |
3172 | 278 | if (!edge->map) |
3173 | 0 | goto error; |
3174 | 278 | |
3175 | 278 | if (edge->tagged_condition) { |
3176 | 38 | edge->tagged_condition = |
3177 | 38 | intersect_domains(edge->tagged_condition, id); |
3178 | 38 | if (!edge->tagged_condition) |
3179 | 0 | goto error; |
3180 | 278 | } |
3181 | 278 | if (edge->tagged_validity) { |
3182 | 43 | edge->tagged_validity = |
3183 | 43 | intersect_domains(edge->tagged_validity, id); |
3184 | 43 | if (!edge->tagged_validity) |
3185 | 0 | goto error; |
3186 | 278 | } |
3187 | 278 | |
3188 | 278 | empty = isl_map_plain_is_empty(edge->map); |
3189 | 278 | if (empty < 0) |
3190 | 0 | goto error; |
3191 | 278 | if (empty) { |
3192 | 168 | graph_remove_edge(graph, edge); |
3193 | 168 | } else if (110 is_multi_edge_type(edge)110 ) { |
3194 | 33 | if (graph_edge_tables_add(ctx, graph, edge) < 0) |
3195 | 0 | goto error; |
3196 | 278 | } |
3197 | 278 | |
3198 | 278 | isl_map_free(id); |
3199 | 278 | return isl_stat_ok; |
3200 | 0 | error: |
3201 | 0 | isl_map_free(id); |
3202 | 0 | return isl_stat_error; |
3203 | 278 | } |
3204 | | |
3205 | | /* Does the domain of "umap" intersect "uset"? |
3206 | | */ |
3207 | | static int domain_intersects(__isl_keep isl_union_map *umap, |
3208 | | __isl_keep isl_union_set *uset) |
3209 | 39 | { |
3210 | 39 | int empty; |
3211 | 39 | |
3212 | 39 | umap = isl_union_map_copy(umap); |
3213 | 39 | umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset)); |
3214 | 39 | empty = isl_union_map_is_empty(umap); |
3215 | 39 | isl_union_map_free(umap); |
3216 | 39 | |
3217 | 39 | return empty < 0 ? -10 : !empty; |
3218 | 39 | } |
3219 | | |
3220 | | /* Does the range of "umap" intersect "uset"? |
3221 | | */ |
3222 | | static int range_intersects(__isl_keep isl_union_map *umap, |
3223 | | __isl_keep isl_union_set *uset) |
3224 | 26 | { |
3225 | 26 | int empty; |
3226 | 26 | |
3227 | 26 | umap = isl_union_map_copy(umap); |
3228 | 26 | umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset)); |
3229 | 26 | empty = isl_union_map_is_empty(umap); |
3230 | 26 | isl_union_map_free(umap); |
3231 | 26 | |
3232 | 26 | return empty < 0 ? -10 : !empty; |
3233 | 26 | } |
3234 | | |
3235 | | /* Are the condition dependences of "edge" local with respect to |
3236 | | * the current schedule? |
3237 | | * |
3238 | | * That is, are domain and range of the condition dependences mapped |
3239 | | * to the same point? |
3240 | | * |
3241 | | * In other words, is the condition false? |
3242 | | */ |
3243 | | static int is_condition_false(struct isl_sched_edge *edge) |
3244 | 36 | { |
3245 | 36 | isl_union_map *umap; |
3246 | 36 | isl_map *map, *sched, *test; |
3247 | 36 | int empty, local; |
3248 | 36 | |
3249 | 36 | empty = isl_union_map_is_empty(edge->tagged_condition); |
3250 | 36 | if (empty < 0 || empty) |
3251 | 2 | return empty; |
3252 | 34 | |
3253 | 34 | umap = isl_union_map_copy(edge->tagged_condition); |
3254 | 34 | umap = isl_union_map_zip(umap); |
3255 | 34 | umap = isl_union_set_unwrap(isl_union_map_domain(umap)); |
3256 | 34 | map = isl_map_from_union_map(umap); |
3257 | 34 | |
3258 | 34 | sched = node_extract_schedule(edge->src); |
3259 | 34 | map = isl_map_apply_domain(map, sched); |
3260 | 34 | sched = node_extract_schedule(edge->dst); |
3261 | 34 | map = isl_map_apply_range(map, sched); |
3262 | 34 | |
3263 | 34 | test = isl_map_identity(isl_map_get_space(map)); |
3264 | 34 | local = isl_map_is_subset(map, test); |
3265 | 34 | isl_map_free(map); |
3266 | 34 | isl_map_free(test); |
3267 | 34 | |
3268 | 34 | return local; |
3269 | 34 | } |
3270 | | |
3271 | | /* For each conditional validity constraint that is adjacent |
3272 | | * to a condition with domain in condition_source or range in condition_sink, |
3273 | | * turn it into an unconditional validity constraint. |
3274 | | */ |
3275 | | static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph, |
3276 | | __isl_take isl_union_set *condition_source, |
3277 | | __isl_take isl_union_set *condition_sink) |
3278 | 10 | { |
3279 | 10 | int i; |
3280 | 10 | |
3281 | 10 | condition_source = isl_union_set_coalesce(condition_source); |
3282 | 10 | condition_sink = isl_union_set_coalesce(condition_sink); |
3283 | 10 | |
3284 | 51 | for (i = 0; i < graph->n_edge; ++i41 ) { |
3285 | 41 | int adjacent; |
3286 | 41 | isl_union_map *validity; |
3287 | 41 | |
3288 | 41 | if (!is_conditional_validity(&graph->edge[i])) |
3289 | 18 | continue; |
3290 | 23 | if (is_validity(&graph->edge[i])) |
3291 | 4 | continue; |
3292 | 19 | |
3293 | 19 | validity = graph->edge[i].tagged_validity; |
3294 | 19 | adjacent = domain_intersects(validity, condition_sink); |
3295 | 19 | if (adjacent >= 0 && !adjacent) |
3296 | 18 | adjacent = range_intersects(validity, condition_source); |
3297 | 19 | if (adjacent < 0) |
3298 | 0 | goto error; |
3299 | 19 | if (!adjacent) |
3300 | 17 | continue; |
3301 | 2 | |
3302 | 2 | set_validity(&graph->edge[i]); |
3303 | 2 | } |
3304 | 10 | |
3305 | 10 | isl_union_set_free(condition_source); |
3306 | 10 | isl_union_set_free(condition_sink); |
3307 | 10 | return 0; |
3308 | 0 | error: |
3309 | 0 | isl_union_set_free(condition_source); |
3310 | 0 | isl_union_set_free(condition_sink); |
3311 | 0 | return -1; |
3312 | 10 | } |
3313 | | |
3314 | | /* Update the dependence relations of all edges based on the current schedule |
3315 | | * and enforce conditional validity constraints that are adjacent |
3316 | | * to satisfied condition constraints. |
3317 | | * |
3318 | | * First check if any of the condition constraints are satisfied |
3319 | | * (i.e., not local to the outer schedule) and keep track of |
3320 | | * their domain and range. |
3321 | | * Then update all dependence relations (which removes the non-local |
3322 | | * constraints). |
3323 | | * Finally, if any condition constraints turned out to be satisfied, |
3324 | | * then turn all adjacent conditional validity constraints into |
3325 | | * unconditional validity constraints. |
3326 | | */ |
3327 | | static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph) |
3328 | 186 | { |
3329 | 186 | int i; |
3330 | 186 | int any = 0; |
3331 | 186 | isl_union_set *source, *sink; |
3332 | 186 | |
3333 | 186 | source = isl_union_set_empty(isl_space_params_alloc(ctx, 0)); |
3334 | 186 | sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0)); |
3335 | 464 | for (i = 0; i < graph->n_edge; ++i278 ) { |
3336 | 278 | int local; |
3337 | 278 | isl_union_set *uset; |
3338 | 278 | isl_union_map *umap; |
3339 | 278 | |
3340 | 278 | if (!is_condition(&graph->edge[i])) |
3341 | 240 | continue; |
3342 | 38 | if (is_local(&graph->edge[i])) |
3343 | 17 | continue; |
3344 | 21 | local = is_condition_false(&graph->edge[i]); |
3345 | 21 | if (local < 0) |
3346 | 0 | goto error; |
3347 | 21 | if (local) |
3348 | 10 | continue; |
3349 | 11 | |
3350 | 11 | any = 1; |
3351 | 11 | |
3352 | 11 | umap = isl_union_map_copy(graph->edge[i].tagged_condition); |
3353 | 11 | uset = isl_union_map_domain(umap); |
3354 | 11 | source = isl_union_set_union(source, uset); |
3355 | 11 | |
3356 | 11 | umap = isl_union_map_copy(graph->edge[i].tagged_condition); |
3357 | 11 | uset = isl_union_map_range(umap); |
3358 | 11 | sink = isl_union_set_union(sink, uset); |
3359 | 11 | } |
3360 | 186 | |
3361 | 464 | for (i = 0; 186 i < graph->n_edge; ++i278 ) { |
3362 | 278 | if (update_edge(ctx, graph, &graph->edge[i]) < 0) |
3363 | 0 | goto error; |
3364 | 278 | } |
3365 | 186 | |
3366 | 186 | if (any) |
3367 | 10 | return unconditionalize_adjacent_validity(graph, source, sink); |
3368 | 176 | |
3369 | 176 | isl_union_set_free(source); |
3370 | 176 | isl_union_set_free(sink); |
3371 | 176 | return 0; |
3372 | 0 | error: |
3373 | 0 | isl_union_set_free(source); |
3374 | 0 | isl_union_set_free(sink); |
3375 | 0 | return -1; |
3376 | 176 | } |
3377 | | |
3378 | | static void next_band(struct isl_sched_graph *graph) |
3379 | 188 | { |
3380 | 188 | graph->band_start = graph->n_total_row; |
3381 | 188 | } |
3382 | | |
3383 | | /* Return the union of the universe domains of the nodes in "graph" |
3384 | | * that satisfy "pred". |
3385 | | */ |
3386 | | static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx, |
3387 | | struct isl_sched_graph *graph, |
3388 | | int (*pred)(struct isl_sched_node *node, int data), int data) |
3389 | 152 | { |
3390 | 152 | int i; |
3391 | 152 | isl_set *set; |
3392 | 152 | isl_union_set *dom; |
3393 | 152 | |
3394 | 255 | for (i = 0; i < graph->n; ++i103 ) |
3395 | 255 | if (pred(&graph->node[i], data)) |
3396 | 152 | break; |
3397 | 152 | |
3398 | 152 | if (i >= graph->n) |
3399 | 152 | isl_die0 (ctx, isl_error_internal, |
3400 | 152 | "empty component", return NULL); |
3401 | 152 | |
3402 | 152 | set = isl_set_universe(isl_space_copy(graph->node[i].space)); |
3403 | 152 | dom = isl_union_set_from_set(set); |
3404 | 152 | |
3405 | 278 | for (i = i + 1; i < graph->n; ++i126 ) { |
3406 | 126 | if (!pred(&graph->node[i], data)) |
3407 | 113 | continue; |
3408 | 13 | set = isl_set_universe(isl_space_copy(graph->node[i].space)); |
3409 | 13 | dom = isl_union_set_union(dom, isl_union_set_from_set(set)); |
3410 | 13 | } |
3411 | 152 | |
3412 | 152 | return dom; |
3413 | 152 | } |
3414 | | |
3415 | | /* Return a list of unions of universe domains, where each element |
3416 | | * in the list corresponds to an SCC (or WCC) indexed by node->scc. |
3417 | | */ |
3418 | | static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx, |
3419 | | struct isl_sched_graph *graph) |
3420 | 68 | { |
3421 | 68 | int i; |
3422 | 68 | isl_union_set_list *filters; |
3423 | 68 | |
3424 | 68 | filters = isl_union_set_list_alloc(ctx, graph->scc); |
3425 | 216 | for (i = 0; i < graph->scc; ++i148 ) { |
3426 | 148 | isl_union_set *dom; |
3427 | 148 | |
3428 | 148 | dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i); |
3429 | 148 | filters = isl_union_set_list_add(filters, dom); |
3430 | 148 | } |
3431 | 68 | |
3432 | 68 | return filters; |
3433 | 68 | } |
3434 | | |
3435 | | /* Return a list of two unions of universe domains, one for the SCCs up |
3436 | | * to and including graph->src_scc and another for the other SCCs. |
3437 | | */ |
3438 | | static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx, |
3439 | | struct isl_sched_graph *graph) |
3440 | 2 | { |
3441 | 2 | isl_union_set *dom; |
3442 | 2 | isl_union_set_list *filters; |
3443 | 2 | |
3444 | 2 | filters = isl_union_set_list_alloc(ctx, 2); |
3445 | 2 | dom = isl_sched_graph_domain(ctx, graph, |
3446 | 2 | &node_scc_at_most, graph->src_scc); |
3447 | 2 | filters = isl_union_set_list_add(filters, dom); |
3448 | 2 | dom = isl_sched_graph_domain(ctx, graph, |
3449 | 2 | &node_scc_at_least, graph->src_scc + 1); |
3450 | 2 | filters = isl_union_set_list_add(filters, dom); |
3451 | 2 | |
3452 | 2 | return filters; |
3453 | 2 | } |
3454 | | |
3455 | | /* Copy nodes that satisfy node_pred from the src dependence graph |
3456 | | * to the dst dependence graph. |
3457 | | */ |
3458 | | static isl_stat copy_nodes(struct isl_sched_graph *dst, |
3459 | | struct isl_sched_graph *src, |
3460 | | int (*node_pred)(struct isl_sched_node *node, int data), int data) |
3461 | 196 | { |
3462 | 196 | int i; |
3463 | 196 | |
3464 | 196 | dst->n = 0; |
3465 | 700 | for (i = 0; i < src->n; ++i504 ) { |
3466 | 504 | int j; |
3467 | 504 | |
3468 | 504 | if (!node_pred(&src->node[i], data)) |
3469 | 278 | continue; |
3470 | 226 | |
3471 | 226 | j = dst->n; |
3472 | 226 | dst->node[j].space = isl_space_copy(src->node[i].space); |
3473 | 226 | dst->node[j].compressed = src->node[i].compressed; |
3474 | 226 | dst->node[j].hull = isl_set_copy(src->node[i].hull); |
3475 | 226 | dst->node[j].compress = |
3476 | 226 | isl_multi_aff_copy(src->node[i].compress); |
3477 | 226 | dst->node[j].decompress = |
3478 | 226 | isl_multi_aff_copy(src->node[i].decompress); |
3479 | 226 | dst->node[j].nvar = src->node[i].nvar; |
3480 | 226 | dst->node[j].nparam = src->node[i].nparam; |
3481 | 226 | dst->node[j].sched = isl_mat_copy(src->node[i].sched); |
3482 | 226 | dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map); |
3483 | 226 | dst->node[j].coincident = src->node[i].coincident; |
3484 | 226 | dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes); |
3485 | 226 | dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds); |
3486 | 226 | dst->node[j].max = isl_vec_copy(src->node[i].max); |
3487 | 226 | dst->n++; |
3488 | 226 | |
3489 | 226 | if (!dst->node[j].space || !dst->node[j].sched) |
3490 | 0 | return isl_stat_error; |
3491 | 226 | if (dst->node[j].compressed && |
3492 | 226 | (14 !dst->node[j].hull14 || !dst->node[j].compress14 || |
3493 | 14 | !dst->node[j].decompress)) |
3494 | 0 | return isl_stat_error; |
3495 | 226 | } |
3496 | 196 | |
3497 | 196 | return isl_stat_ok; |
3498 | 196 | } |
3499 | | |
3500 | | /* Copy non-empty edges that satisfy edge_pred from the src dependence graph |
3501 | | * to the dst dependence graph. |
3502 | | * If the source or destination node of the edge is not in the destination |
3503 | | * graph, then it must be a backward proximity edge and it should simply |
3504 | | * be ignored. |
3505 | | */ |
3506 | | static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst, |
3507 | | struct isl_sched_graph *src, |
3508 | | int (*edge_pred)(struct isl_sched_edge *edge, int data), int data) |
3509 | 196 | { |
3510 | 196 | int i; |
3511 | 196 | |
3512 | 196 | dst->n_edge = 0; |
3513 | 728 | for (i = 0; i < src->n_edge; ++i532 ) { |
3514 | 532 | struct isl_sched_edge *edge = &src->edge[i]; |
3515 | 532 | isl_map *map; |
3516 | 532 | isl_union_map *tagged_condition; |
3517 | 532 | isl_union_map *tagged_validity; |
3518 | 532 | struct isl_sched_node *dst_src, *dst_dst; |
3519 | 532 | |
3520 | 532 | if (!edge_pred(edge, data)) |
3521 | 419 | continue; |
3522 | 113 | |
3523 | 113 | if (isl_map_plain_is_empty(edge->map)) |
3524 | 31 | continue; |
3525 | 82 | |
3526 | 82 | dst_src = graph_find_node(ctx, dst, edge->src->space); |
3527 | 82 | dst_dst = graph_find_node(ctx, dst, edge->dst->space); |
3528 | 82 | if (!dst_src || !dst_dst) |
3529 | 0 | return isl_stat_error; |
3530 | 82 | if (!is_node(dst, dst_src) || !is_node(dst, dst_dst)) { |
3531 | 0 | if (is_validity(edge) || is_conditional_validity(edge)) |
3532 | 0 | isl_die(ctx, isl_error_internal, |
3533 | 0 | "backward (conditional) validity edge", |
3534 | 0 | return isl_stat_error); |
3535 | 0 | continue; |
3536 | 82 | } |
3537 | 82 | |
3538 | 82 | map = isl_map_copy(edge->map); |
3539 | 82 | tagged_condition = isl_union_map_copy(edge->tagged_condition); |
3540 | 82 | tagged_validity = isl_union_map_copy(edge->tagged_validity); |
3541 | 82 | |
3542 | 82 | dst->edge[dst->n_edge].src = dst_src; |
3543 | 82 | dst->edge[dst->n_edge].dst = dst_dst; |
3544 | 82 | dst->edge[dst->n_edge].map = map; |
3545 | 82 | dst->edge[dst->n_edge].tagged_condition = tagged_condition; |
3546 | 82 | dst->edge[dst->n_edge].tagged_validity = tagged_validity; |
3547 | 82 | dst->edge[dst->n_edge].types = edge->types; |
3548 | 82 | dst->n_edge++; |
3549 | 82 | |
3550 | 82 | if (edge->tagged_condition && !tagged_condition11 ) |
3551 | 0 | return isl_stat_error; |
3552 | 82 | if (edge->tagged_validity && !tagged_validity6 ) |
3553 | 0 | return isl_stat_error; |
3554 | 82 | |
3555 | 82 | if (graph_edge_tables_add(ctx, dst, |
3556 | 82 | &dst->edge[dst->n_edge - 1]) < 0) |
3557 | 0 | return isl_stat_error; |
3558 | 82 | } |
3559 | 196 | |
3560 | 196 | return isl_stat_ok; |
3561 | 196 | } |
3562 | | |
3563 | | /* Compute the maximal number of variables over all nodes. |
3564 | | * This is the maximal number of linearly independent schedule |
3565 | | * rows that we need to compute. |
3566 | | * Just in case we end up in a part of the dependence graph |
3567 | | * with only lower-dimensional domains, we make sure we will |
3568 | | * compute the required amount of extra linearly independent rows. |
3569 | | */ |
3570 | | static int compute_maxvar(struct isl_sched_graph *graph) |
3571 | 441 | { |
3572 | 441 | int i; |
3573 | 441 | |
3574 | 441 | graph->maxvar = 0; |
3575 | 1.06k | for (i = 0; i < graph->n; ++i619 ) { |
3576 | 619 | struct isl_sched_node *node = &graph->node[i]; |
3577 | 619 | int nvar; |
3578 | 619 | |
3579 | 619 | if (node_update_vmap(node) < 0) |
3580 | 0 | return -1; |
3581 | 619 | nvar = node->nvar + graph->n_row - node->rank; |
3582 | 619 | if (nvar > graph->maxvar) |
3583 | 432 | graph->maxvar = nvar; |
3584 | 619 | } |
3585 | 441 | |
3586 | 441 | return 0; |
3587 | 441 | } |
3588 | | |
3589 | | /* Extract the subgraph of "graph" that consists of the nodes satisfying |
3590 | | * "node_pred" and the edges satisfying "edge_pred" and store |
3591 | | * the result in "sub". |
3592 | | */ |
3593 | | static isl_stat extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph, |
3594 | | int (*node_pred)(struct isl_sched_node *node, int data), |
3595 | | int (*edge_pred)(struct isl_sched_edge *edge, int data), |
3596 | | int data, struct isl_sched_graph *sub) |
3597 | 196 | { |
3598 | 196 | int i, n = 0, n_edge = 0; |
3599 | 196 | int t; |
3600 | 196 | |
3601 | 700 | for (i = 0; i < graph->n; ++i504 ) |
3602 | 504 | if (node_pred(&graph->node[i], data)) |
3603 | 226 | ++n; |
3604 | 728 | for (i = 0; i < graph->n_edge; ++i532 ) |
3605 | 532 | if (edge_pred(&graph->edge[i], data)) |
3606 | 113 | ++n_edge; |
3607 | 196 | if (graph_alloc(ctx, sub, n, n_edge) < 0) |
3608 | 0 | return isl_stat_error; |
3609 | 196 | sub->root = graph->root; |
3610 | 196 | if (copy_nodes(sub, graph, node_pred, data) < 0) |
3611 | 0 | return isl_stat_error; |
3612 | 196 | if (graph_init_table(ctx, sub) < 0) |
3613 | 0 | return isl_stat_error; |
3614 | 1.17k | for (t = 0; 196 t <= isl_edge_last; ++t980 ) |
3615 | 980 | sub->max_edge[t] = graph->max_edge[t]; |
3616 | 196 | if (graph_init_edge_tables(ctx, sub) < 0) |
3617 | 0 | return isl_stat_error; |
3618 | 196 | if (copy_edges(ctx, sub, graph, edge_pred, data) < 0) |
3619 | 0 | return isl_stat_error; |
3620 | 196 | sub->n_row = graph->n_row; |
3621 | 196 | sub->max_row = graph->max_row; |
3622 | 196 | sub->n_total_row = graph->n_total_row; |
3623 | 196 | sub->band_start = graph->band_start; |
3624 | 196 | |
3625 | 196 | return isl_stat_ok; |
3626 | 196 | } |
3627 | | |
3628 | | static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node, |
3629 | | struct isl_sched_graph *graph); |
3630 | | static __isl_give isl_schedule_node *compute_schedule_wcc( |
3631 | | isl_schedule_node *node, struct isl_sched_graph *graph); |
3632 | | |
3633 | | /* Compute a schedule for a subgraph of "graph". In particular, for |
3634 | | * the graph composed of nodes that satisfy node_pred and edges that |
3635 | | * that satisfy edge_pred. |
3636 | | * If the subgraph is known to consist of a single component, then wcc should |
3637 | | * be set and then we call compute_schedule_wcc on the constructed subgraph. |
3638 | | * Otherwise, we call compute_schedule, which will check whether the subgraph |
3639 | | * is connected. |
3640 | | * |
3641 | | * The schedule is inserted at "node" and the updated schedule node |
3642 | | * is returned. |
3643 | | */ |
3644 | | static __isl_give isl_schedule_node *compute_sub_schedule( |
3645 | | __isl_take isl_schedule_node *node, isl_ctx *ctx, |
3646 | | struct isl_sched_graph *graph, |
3647 | | int (*node_pred)(struct isl_sched_node *node, int data), |
3648 | | int (*edge_pred)(struct isl_sched_edge *edge, int data), |
3649 | | int data, int wcc) |
3650 | 78 | { |
3651 | 78 | struct isl_sched_graph split = { 0 }; |
3652 | 78 | |
3653 | 78 | if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data, |
3654 | 78 | &split) < 0) |
3655 | 0 | goto error; |
3656 | 78 | |
3657 | 78 | if (wcc) |
3658 | 74 | node = compute_schedule_wcc(node, &split); |
3659 | 4 | else |
3660 | 4 | node = compute_schedule(node, &split); |
3661 | 78 | |
3662 | 78 | graph_free(ctx, &split); |
3663 | 78 | return node; |
3664 | 0 | error: |
3665 | 0 | graph_free(ctx, &split); |
3666 | 0 | return isl_schedule_node_free(node); |
3667 | 78 | } |
3668 | | |
3669 | | static int edge_scc_exactly(struct isl_sched_edge *edge, int scc) |
3670 | 770 | { |
3671 | 770 | return edge->src->scc == scc && edge->dst->scc == scc308 ; |
3672 | 770 | } |
3673 | | |
3674 | | static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc) |
3675 | 14 | { |
3676 | 14 | return edge->dst->scc <= scc; |
3677 | 14 | } |
3678 | | |
3679 | | static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc) |
3680 | 14 | { |
3681 | 14 | return edge->src->scc >= scc; |
3682 | 14 | } |
3683 | | |
3684 | | /* Reset the current band by dropping all its schedule rows. |
3685 | | */ |
3686 | | static isl_stat reset_band(struct isl_sched_graph *graph) |
3687 | 8 | { |
3688 | 8 | int i; |
3689 | 8 | int drop; |
3690 | 8 | |
3691 | 8 | drop = graph->n_total_row - graph->band_start; |
3692 | 8 | graph->n_total_row -= drop; |
3693 | 8 | graph->n_row -= drop; |
3694 | 8 | |
3695 | 28 | for (i = 0; i < graph->n; ++i20 ) { |
3696 | 20 | struct isl_sched_node *node = &graph->node[i]; |
3697 | 20 | |
3698 | 20 | isl_map_free(node->sched_map); |
3699 | 20 | node->sched_map = NULL; |
3700 | 20 | |
3701 | 20 | node->sched = isl_mat_drop_rows(node->sched, |
3702 | 20 | graph->band_start, drop); |
3703 | 20 | |
3704 | 20 | if (!node->sched) |
3705 | 0 | return isl_stat_error; |
3706 | 20 | } |
3707 | 8 | |
3708 | 8 | return isl_stat_ok; |
3709 | 8 | } |
3710 | | |
3711 | | /* Split the current graph into two parts and compute a schedule for each |
3712 | | * part individually. In particular, one part consists of all SCCs up |
3713 | | * to and including graph->src_scc, while the other part contains the other |
3714 | | * SCCs. The split is enforced by a sequence node inserted at position "node" |
3715 | | * in the schedule tree. Return the updated schedule node. |
3716 | | * If either of these two parts consists of a sequence, then it is spliced |
3717 | | * into the sequence containing the two parts. |
3718 | | * |
3719 | | * The current band is reset. It would be possible to reuse |
3720 | | * the previously computed rows as the first rows in the next |
3721 | | * band, but recomputing them may result in better rows as we are looking |
3722 | | * at a smaller part of the dependence graph. |
3723 | | */ |
3724 | | static __isl_give isl_schedule_node *compute_split_schedule( |
3725 | | __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) |
3726 | 2 | { |
3727 | 2 | int is_seq; |
3728 | 2 | isl_ctx *ctx; |
3729 | 2 | isl_union_set_list *filters; |
3730 | 2 | |
3731 | 2 | if (!node) |
3732 | 0 | return NULL; |
3733 | 2 | |
3734 | 2 | if (reset_band(graph) < 0) |
3735 | 0 | return isl_schedule_node_free(node); |
3736 | 2 | |
3737 | 2 | next_band(graph); |
3738 | 2 | |
3739 | 2 | ctx = isl_schedule_node_get_ctx(node); |
3740 | 2 | filters = extract_split(ctx, graph); |
3741 | 2 | node = isl_schedule_node_insert_sequence(node, filters); |
3742 | 2 | node = isl_schedule_node_child(node, 1); |
3743 | 2 | node = isl_schedule_node_child(node, 0); |
3744 | 2 | |
3745 | 2 | node = compute_sub_schedule(node, ctx, graph, |
3746 | 2 | &node_scc_at_least, &edge_src_scc_at_least, |
3747 | 2 | graph->src_scc + 1, 0); |
3748 | 2 | is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence; |
3749 | 2 | node = isl_schedule_node_parent(node); |
3750 | 2 | node = isl_schedule_node_parent(node); |
3751 | 2 | if (is_seq) |
3752 | 0 | node = isl_schedule_node_sequence_splice_child(node, 1); |
3753 | 2 | node = isl_schedule_node_child(node, 0); |
3754 | 2 | node = isl_schedule_node_child(node, 0); |
3755 | 2 | node = compute_sub_schedule(node, ctx, graph, |
3756 | 2 | &node_scc_at_most, &edge_dst_scc_at_most, |
3757 | 2 | graph->src_scc, 0); |
3758 | 2 | is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence; |
3759 | 2 | node = isl_schedule_node_parent(node); |
3760 | 2 | node = isl_schedule_node_parent(node); |
3761 | 2 | if (is_seq) |
3762 | 0 | node = isl_schedule_node_sequence_splice_child(node, 0); |
3763 | 2 | |
3764 | 2 | return node; |
3765 | 2 | } |
3766 | | |
3767 | | /* Insert a band node at position "node" in the schedule tree corresponding |
3768 | | * to the current band in "graph". Mark the band node permutable |
3769 | | * if "permutable" is set. |
3770 | | * The partial schedules and the coincidence property are extracted |
3771 | | * from the graph nodes. |
3772 | | * Return the updated schedule node. |
3773 | | */ |
3774 | | static __isl_give isl_schedule_node *insert_current_band( |
3775 | | __isl_take isl_schedule_node *node, struct isl_sched_graph *graph, |
3776 | | int permutable) |
3777 | 168 | { |
3778 | 168 | int i; |
3779 | 168 | int start, end, n; |
3780 | 168 | isl_multi_aff *ma; |
3781 | 168 | isl_multi_pw_aff *mpa; |
3782 | 168 | isl_multi_union_pw_aff *mupa; |
3783 | 168 | |
3784 | 168 | if (!node) |
3785 | 0 | return NULL; |
3786 | 168 | |
3787 | 168 | if (graph->n < 1) |
3788 | 168 | isl_die0 (isl_schedule_node_get_ctx(node), isl_error_internal, |
3789 | 168 | "graph should have at least one node", |
3790 | 168 | return isl_schedule_node_free(node)); |
3791 | 168 | |
3792 | 168 | start = graph->band_start; |
3793 | 168 | end = graph->n_total_row; |
3794 | 168 | n = end - start; |
3795 | 168 | |
3796 | 168 | ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n); |
3797 | 168 | mpa = isl_multi_pw_aff_from_multi_aff(ma); |
3798 | 168 | mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa); |
3799 | 168 | |
3800 | 244 | for (i = 1; i < graph->n; ++i76 ) { |
3801 | 76 | isl_multi_union_pw_aff *mupa_i; |
3802 | 76 | |
3803 | 76 | ma = node_extract_partial_schedule_multi_aff(&graph->node[i], |
3804 | 76 | start, n); |
3805 | 76 | mpa = isl_multi_pw_aff_from_multi_aff(ma); |
3806 | 76 | mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa); |
3807 | 76 | mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i); |
3808 | 76 | } |
3809 | 168 | node = isl_schedule_node_insert_partial_schedule(node, mupa); |
3810 | 168 | |
3811 | 443 | for (i = 0; i < n; ++i275 ) |
3812 | 275 | node = isl_schedule_node_band_member_set_coincident(node, i, |
3813 | 275 | graph->node[0].coincident[start + i]); |
3814 | 168 | node = isl_schedule_node_band_set_permutable(node, permutable); |
3815 | 168 | |
3816 | 168 | return node; |
3817 | 168 | } |
3818 | | |
3819 | | /* Update the dependence relations based on the current schedule, |
3820 | | * add the current band to "node" and then continue with the computation |
3821 | | * of the next band. |
3822 | | * Return the updated schedule node. |
3823 | | */ |
3824 | | static __isl_give isl_schedule_node *compute_next_band( |
3825 | | __isl_take isl_schedule_node *node, |
3826 | | struct isl_sched_graph *graph, int permutable) |
3827 | 168 | { |
3828 | 168 | isl_ctx *ctx; |
3829 | 168 | |
3830 | 168 | if (!node) |
3831 | 0 | return NULL; |
3832 | 168 | |
3833 | 168 | ctx = isl_schedule_node_get_ctx(node); |
3834 | 168 | if (update_edges(ctx, graph) < 0) |
3835 | 0 | return isl_schedule_node_free(node); |
3836 | 168 | node = insert_current_band(node, graph, permutable); |
3837 | 168 | next_band(graph); |
3838 | 168 | |
3839 | 168 | node = isl_schedule_node_child(node, 0); |
3840 | 168 | node = compute_schedule(node, graph); |
3841 | 168 | node = isl_schedule_node_parent(node); |
3842 | 168 | |
3843 | 168 | return node; |
3844 | 168 | } |
3845 | | |
3846 | | /* Add the constraints "coef" derived from an edge from "node" to itself |
3847 | | * to graph->lp in order to respect the dependences and to try and carry them. |
3848 | | * "pos" is the sequence number of the edge that needs to be carried. |
3849 | | * "coef" represents general constraints on coefficients (c_0, c_x) |
3850 | | * of valid constraints for (y - x) with x and y instances of the node. |
3851 | | * |
3852 | | * The constraints added to graph->lp need to enforce |
3853 | | * |
3854 | | * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x) |
3855 | | * = c_j_x (y - x) >= e_i |
3856 | | * |
3857 | | * for each (x,y) in the dependence relation of the edge. |
3858 | | * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x), |
3859 | | * taking into account that each coefficient in c_j_x is represented |
3860 | | * as a pair of non-negative coefficients. |
3861 | | */ |
3862 | | static isl_stat add_intra_constraints(struct isl_sched_graph *graph, |
3863 | | struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos) |
3864 | 40 | { |
3865 | 40 | int offset; |
3866 | 40 | isl_ctx *ctx; |
3867 | 40 | isl_dim_map *dim_map; |
3868 | 40 | |
3869 | 40 | if (!coef) |
3870 | 0 | return isl_stat_error; |
3871 | 40 | |
3872 | 40 | ctx = isl_basic_set_get_ctx(coef); |
3873 | 40 | offset = coef_var_offset(coef); |
3874 | 40 | dim_map = intra_dim_map(ctx, graph, node, offset, 1); |
3875 | 40 | isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1); |
3876 | 40 | graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map); |
3877 | 40 | |
3878 | 40 | return isl_stat_ok; |
3879 | 40 | } |
3880 | | |
3881 | | /* Add the constraints "coef" derived from an edge from "src" to "dst" |
3882 | | * to graph->lp in order to respect the dependences and to try and carry them. |
3883 | | * "pos" is the sequence number of the edge that needs to be carried or |
3884 | | * -1 if no attempt should be made to carry the dependences. |
3885 | | * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y) |
3886 | | * of valid constraints for (x, y) with x and y instances of "src" and "dst". |
3887 | | * |
3888 | | * The constraints added to graph->lp need to enforce |
3889 | | * |
3890 | | * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i |
3891 | | * |
3892 | | * for each (x,y) in the dependence relation of the edge or |
3893 | | * |
3894 | | * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0 |
3895 | | * |
3896 | | * if pos is -1. |
3897 | | * That is, |
3898 | | * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x) |
3899 | | * or |
3900 | | * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x) |
3901 | | * needs to be plugged in for (c_0, c_n, c_x, c_y), |
3902 | | * taking into account that each coefficient in c_j_x and c_k_x is represented |
3903 | | * as a pair of non-negative coefficients. |
3904 | | */ |
3905 | | static isl_stat add_inter_constraints(struct isl_sched_graph *graph, |
3906 | | struct isl_sched_node *src, struct isl_sched_node *dst, |
3907 | | __isl_take isl_basic_set *coef, int pos) |
3908 | 18 | { |
3909 | 18 | int offset; |
3910 | 18 | isl_ctx *ctx; |
3911 | 18 | isl_dim_map *dim_map; |
3912 | 18 | |
3913 | 18 | if (!coef) |
3914 | 0 | return isl_stat_error; |
3915 | 18 | |
3916 | 18 | ctx = isl_basic_set_get_ctx(coef); |
3917 | 18 | offset = coef_var_offset(coef); |
3918 | 18 | dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1); |
3919 | 18 | if (pos >= 0) |
3920 | 18 | isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1); |
3921 | 18 | graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map); |
3922 | 18 | |
3923 | 18 | return isl_stat_ok; |
3924 | 18 | } |
3925 | | |
3926 | | /* Data structure for keeping track of the data needed |
3927 | | * to exploit non-trivial lineality spaces. |
3928 | | * |
3929 | | * "any_non_trivial" is true if there are any non-trivial lineality spaces. |
3930 | | * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL. |
3931 | | * "equivalent" connects instances to other instances on the same line(s). |
3932 | | * "mask" contains the domain spaces of "equivalent". |
3933 | | * Any instance set not in "mask" does not have a non-trivial lineality space. |
3934 | | */ |
3935 | | struct isl_exploit_lineality_data { |
3936 | | isl_bool any_non_trivial; |
3937 | | isl_union_map *equivalent; |
3938 | | isl_union_set *mask; |
3939 | | }; |
3940 | | |
3941 | | /* Data structure collecting information used during the construction |
3942 | | * of an LP for carrying dependences. |
3943 | | * |
3944 | | * "intra" is a sequence of coefficient constraints for intra-node edges. |
3945 | | * "inter" is a sequence of coefficient constraints for inter-node edges. |
3946 | | * "lineality" contains data used to exploit non-trivial lineality spaces. |
3947 | | */ |
3948 | | struct isl_carry { |
3949 | | isl_basic_set_list *intra; |
3950 | | isl_basic_set_list *inter; |
3951 | | struct isl_exploit_lineality_data lineality; |
3952 | | }; |
3953 | | |
3954 | | /* Free all the data stored in "carry". |
3955 | | */ |
3956 | | static void isl_carry_clear(struct isl_carry *carry) |
3957 | 28 | { |
3958 | 28 | isl_basic_set_list_free(carry->intra); |
3959 | 28 | isl_basic_set_list_free(carry->inter); |
3960 | 28 | isl_union_map_free(carry->lineality.equivalent); |
3961 | 28 | isl_union_set_free(carry->lineality.mask); |
3962 | 28 | } |
3963 | | |
3964 | | /* Return a pointer to the node in "graph" that lives in "space". |
3965 | | * If the requested node has been compressed, then "space" |
3966 | | * corresponds to the compressed space. |
3967 | | * The graph is assumed to have such a node. |
3968 | | * Return NULL in case of error. |
3969 | | * |
3970 | | * First try and see if "space" is the space of an uncompressed node. |
3971 | | * If so, return that node. |
3972 | | * Otherwise, "space" was constructed by construct_compressed_id and |
3973 | | * contains a user pointer pointing to the node in the tuple id. |
3974 | | * However, this node belongs to the original dependence graph. |
3975 | | * If "graph" is a subgraph of this original dependence graph, |
3976 | | * then the node with the same space still needs to be looked up |
3977 | | * in the current graph. |
3978 | | */ |
3979 | | static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx, |
3980 | | struct isl_sched_graph *graph, __isl_keep isl_space *space) |
3981 | 96 | { |
3982 | 96 | isl_id *id; |
3983 | 96 | struct isl_sched_node *node; |
3984 | 96 | |
3985 | 96 | if (!space) |
3986 | 0 | return NULL; |
3987 | 96 | |
3988 | 96 | node = graph_find_node(ctx, graph, space); |
3989 | 96 | if (!node) |
3990 | 0 | return NULL; |
3991 | 96 | if (is_node(graph, node)) |
3992 | 96 | return node; |
3993 | 0 | |
3994 | 0 | id = isl_space_get_tuple_id(space, isl_dim_set); |
3995 | 0 | node = isl_id_get_user(id); |
3996 | 0 | isl_id_free(id); |
3997 | 0 |
|
3998 | 0 | if (!node) |
3999 | 0 | return NULL; |
4000 | 0 | |
4001 | 0 | if (!is_node(graph->root, node)) |
4002 | 0 | isl_die(ctx, isl_error_internal, |
4003 | 0 | "space points to invalid node", return NULL); |
4004 | 0 | if (graph != graph->root) |
4005 | 0 | node = graph_find_node(ctx, graph, node->space); |
4006 | 0 | if (!is_node(graph, node)) |
4007 | 0 | isl_die(ctx, isl_error_internal, |
4008 | 0 | "unable to find node", return NULL); |
4009 | 0 |
|
4010 | 0 | return node; |
4011 | 0 | } |
4012 | | |
4013 | | /* Internal data structure for add_all_constraints. |
4014 | | * |
4015 | | * "graph" is the schedule constraint graph for which an LP problem |
4016 | | * is being constructed. |
4017 | | * "carry_inter" indicates whether inter-node edges should be carried. |
4018 | | * "pos" is the position of the next edge that needs to be carried. |
4019 | | */ |
4020 | | struct isl_add_all_constraints_data { |
4021 | | isl_ctx *ctx; |
4022 | | struct isl_sched_graph *graph; |
4023 | | int carry_inter; |
4024 | | int pos; |
4025 | | }; |
4026 | | |
4027 | | /* Add the constraints "coef" derived from an edge from a node to itself |
4028 | | * to data->graph->lp in order to respect the dependences and |
4029 | | * to try and carry them. |
4030 | | * |
4031 | | * The space of "coef" is of the form |
4032 | | * |
4033 | | * coefficients[[c_cst] -> S[c_x]] |
4034 | | * |
4035 | | * with S[c_x] the (compressed) space of the node. |
4036 | | * Extract the node from the space and call add_intra_constraints. |
4037 | | */ |
4038 | | static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user) |
4039 | 40 | { |
4040 | 40 | struct isl_add_all_constraints_data *data = user; |
4041 | 40 | isl_space *space; |
4042 | 40 | struct isl_sched_node *node; |
4043 | 40 | |
4044 | 40 | space = isl_basic_set_get_space(coef); |
4045 | 40 | space = isl_space_range(isl_space_unwrap(space)); |
4046 | 40 | node = graph_find_compressed_node(data->ctx, data->graph, space); |
4047 | 40 | isl_space_free(space); |
4048 | 40 | return add_intra_constraints(data->graph, node, coef, data->pos++); |
4049 | 40 | } |
4050 | | |
4051 | | /* Add the constraints "coef" derived from an edge from a node j |
4052 | | * to a node k to data->graph->lp in order to respect the dependences and |
4053 | | * to try and carry them (provided data->carry_inter is set). |
4054 | | * |
4055 | | * The space of "coef" is of the form |
4056 | | * |
4057 | | * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]] |
4058 | | * |
4059 | | * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes. |
4060 | | * Extract the nodes from the space and call add_inter_constraints. |
4061 | | */ |
4062 | | static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user) |
4063 | 18 | { |
4064 | 18 | struct isl_add_all_constraints_data *data = user; |
4065 | 18 | isl_space *space, *dom; |
4066 | 18 | struct isl_sched_node *src, *dst; |
4067 | 18 | int pos; |
4068 | 18 | |
4069 | 18 | space = isl_basic_set_get_space(coef); |
4070 | 18 | space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space))); |
4071 | 18 | dom = isl_space_domain(isl_space_copy(space)); |
4072 | 18 | src = graph_find_compressed_node(data->ctx, data->graph, dom); |
4073 | 18 | isl_space_free(dom); |
4074 | 18 | space = isl_space_range(space); |
4075 | 18 | dst = graph_find_compressed_node(data->ctx, data->graph, space); |
4076 | 18 | isl_space_free(space); |
4077 | 18 | |
4078 | 18 | pos = data->carry_inter ? data->pos++ : -10 ; |
4079 | 18 | return add_inter_constraints(data->graph, src, dst, coef, pos); |
4080 | 18 | } |
4081 | | |
4082 | | /* Add constraints to graph->lp that force all (conditional) validity |
4083 | | * dependences to be respected and attempt to carry them. |
4084 | | * "intra" is the sequence of coefficient constraints for intra-node edges. |
4085 | | * "inter" is the sequence of coefficient constraints for inter-node edges. |
4086 | | * "carry_inter" indicates whether inter-node edges should be carried or |
4087 | | * only respected. |
4088 | | */ |
4089 | | static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph, |
4090 | | __isl_keep isl_basic_set_list *intra, |
4091 | | __isl_keep isl_basic_set_list *inter, int carry_inter) |
4092 | 28 | { |
4093 | 28 | struct isl_add_all_constraints_data data = { ctx, graph, carry_inter }; |
4094 | 28 | |
4095 | 28 | data.pos = 0; |
4096 | 28 | if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0) |
4097 | 0 | return isl_stat_error; |
4098 | 28 | if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0) |
4099 | 0 | return isl_stat_error; |
4100 | 28 | return isl_stat_ok; |
4101 | 28 | } |
4102 | | |
4103 | | /* Internal data structure for count_all_constraints |
4104 | | * for keeping track of the number of equality and inequality constraints. |
4105 | | */ |
4106 | | struct isl_sched_count { |
4107 | | int n_eq; |
4108 | | int n_ineq; |
4109 | | }; |
4110 | | |
4111 | | /* Add the number of equality and inequality constraints of "bset" |
4112 | | * to data->n_eq and data->n_ineq. |
4113 | | */ |
4114 | | static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user) |
4115 | 58 | { |
4116 | 58 | struct isl_sched_count *data = user; |
4117 | 58 | |
4118 | 58 | return update_count(bset, 1, &data->n_eq, &data->n_ineq); |
4119 | 58 | } |
4120 | | |
4121 | | /* Count the number of equality and inequality constraints |
4122 | | * that will be added to the carry_lp problem. |
4123 | | * We count each edge exactly once. |
4124 | | * "intra" is the sequence of coefficient constraints for intra-node edges. |
4125 | | * "inter" is the sequence of coefficient constraints for inter-node edges. |
4126 | | */ |
4127 | | static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra, |
4128 | | __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq) |
4129 | 28 | { |
4130 | 28 | struct isl_sched_count data; |
4131 | 28 | |
4132 | 28 | data.n_eq = data.n_ineq = 0; |
4133 | 28 | if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0) |
4134 | 0 | return isl_stat_error; |
4135 | 28 | if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0) |
4136 | 0 | return isl_stat_error; |
4137 | 28 | |
4138 | 28 | *n_eq = data.n_eq; |
4139 | 28 | *n_ineq = data.n_ineq; |
4140 | 28 | |
4141 | 28 | return isl_stat_ok; |
4142 | 28 | } |
4143 | | |
4144 | | /* Construct an LP problem for finding schedule coefficients |
4145 | | * such that the schedule carries as many validity dependences as possible. |
4146 | | * In particular, for each dependence i, we bound the dependence distance |
4147 | | * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum |
4148 | | * of all e_i's. Dependences with e_i = 0 in the solution are simply |
4149 | | * respected, while those with e_i > 0 (in practice e_i = 1) are carried. |
4150 | | * "intra" is the sequence of coefficient constraints for intra-node edges. |
4151 | | * "inter" is the sequence of coefficient constraints for inter-node edges. |
4152 | | * "n_edge" is the total number of edges. |
4153 | | * "carry_inter" indicates whether inter-node edges should be carried or |
4154 | | * only respected. That is, if "carry_inter" is not set, then |
4155 | | * no e_i variables are introduced for the inter-node edges. |
4156 | | * |
4157 | | * All variables of the LP are non-negative. The actual coefficients |
4158 | | * may be negative, so each coefficient is represented as the difference |
4159 | | * of two non-negative variables. The negative part always appears |
4160 | | * immediately before the positive part. |
4161 | | * Other than that, the variables have the following order |
4162 | | * |
4163 | | * - sum of (1 - e_i) over all edges |
4164 | | * - sum of all c_n coefficients |
4165 | | * (unconstrained when computing non-parametric schedules) |
4166 | | * - sum of positive and negative parts of all c_x coefficients |
4167 | | * - for each edge |
4168 | | * - e_i |
4169 | | * - for each node |
4170 | | * - positive and negative parts of c_i_x, in opposite order |
4171 | | * - c_i_n (if parametric) |
4172 | | * - c_i_0 |
4173 | | * |
4174 | | * The constraints are those from the (validity) edges plus three equalities |
4175 | | * to express the sums and n_edge inequalities to express e_i <= 1. |
4176 | | */ |
4177 | | static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph, |
4178 | | int n_edge, __isl_keep isl_basic_set_list *intra, |
4179 | | __isl_keep isl_basic_set_list *inter, int carry_inter) |
4180 | 28 | { |
4181 | 28 | int i; |
4182 | 28 | int k; |
4183 | 28 | isl_space *dim; |
4184 | 28 | unsigned total; |
4185 | 28 | int n_eq, n_ineq; |
4186 | 28 | |
4187 | 28 | total = 3 + n_edge; |
4188 | 68 | for (i = 0; i < graph->n; ++i40 ) { |
4189 | 40 | struct isl_sched_node *node = &graph->node[graph->sorted[i]]; |
4190 | 40 | node->start = total; |
4191 | 40 | total += 1 + node->nparam + 2 * node->nvar; |
4192 | 40 | } |
4193 | 28 | |
4194 | 28 | if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0) |
4195 | 0 | return isl_stat_error; |
4196 | 28 | |
4197 | 28 | dim = isl_space_set_alloc(ctx, 0, total); |
4198 | 28 | isl_basic_set_free(graph->lp); |
4199 | 28 | n_eq += 3; |
4200 | 28 | n_ineq += n_edge; |
4201 | 28 | graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq); |
4202 | 28 | graph->lp = isl_basic_set_set_rational(graph->lp); |
4203 | 28 | |
4204 | 28 | k = isl_basic_set_alloc_equality(graph->lp); |
4205 | 28 | if (k < 0) |
4206 | 0 | return isl_stat_error; |
4207 | 28 | isl_seq_clr(graph->lp->eq[k], 1 + total); |
4208 | 28 | isl_int_set_si(graph->lp->eq[k][0], -n_edge); |
4209 | 28 | isl_int_set_si(graph->lp->eq[k][1], 1); |
4210 | 86 | for (i = 0; i < n_edge; ++i58 ) |
4211 | 58 | isl_int_set_si(graph->lp->eq[k][4 + i], 1); |
4212 | 28 | |
4213 | 28 | if (add_param_sum_constraint(graph, 1) < 0) |
4214 | 0 | return isl_stat_error; |
4215 | 28 | if (add_var_sum_constraint(graph, 2) < 0) |
4216 | 0 | return isl_stat_error; |
4217 | 28 | |
4218 | 86 | for (i = 0; 28 i < n_edge; ++i58 ) { |
4219 | 58 | k = isl_basic_set_alloc_inequality(graph->lp); |
4220 | 58 | if (k < 0) |
4221 | 0 | return isl_stat_error; |
4222 | 58 | isl_seq_clr(graph->lp->ineq[k], 1 + total); |
4223 | 58 | isl_int_set_si(graph->lp->ineq[k][4 + i], -1); |
4224 | 58 | isl_int_set_si(graph->lp->ineq[k][0], 1); |
4225 | 58 | } |
4226 | 28 | |
4227 | 28 | if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0) |
4228 | 0 | return isl_stat_error; |
4229 | 28 | |
4230 | 28 | return isl_stat_ok; |
4231 | 28 | } |
4232 | | |
4233 | | static __isl_give isl_schedule_node *compute_component_schedule( |
4234 | | __isl_take isl_schedule_node *node, struct isl_sched_graph *graph, |
4235 | | int wcc); |
4236 | | |
4237 | | /* If the schedule_split_scaled option is set and if the linear |
4238 | | * parts of the scheduling rows for all nodes in the graphs have |
4239 | | * a non-trivial common divisor, then remove this |
4240 | | * common divisor from the linear part. |
4241 | | * Otherwise, insert a band node directly and continue with |
4242 | | * the construction of the schedule. |
4243 | | * |
4244 | | * If a non-trivial common divisor is found, then |
4245 | | * the linear part is reduced and the remainder is ignored. |
4246 | | * The pieces of the graph that are assigned different remainders |
4247 | | * form (groups of) strongly connected components within |
4248 | | * the scaled down band. If needed, they can therefore |
4249 | | * be ordered along this remainder in a sequence node. |
4250 | | * However, this ordering is not enforced here in order to allow |
4251 | | * the scheduler to combine some of the strongly connected components. |
4252 | | */ |
4253 | | static __isl_give isl_schedule_node *split_scaled( |
4254 | | __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) |
4255 | 26 | { |
4256 | 26 | int i; |
4257 | 26 | int row; |
4258 | 26 | isl_ctx *ctx; |
4259 | 26 | isl_int gcd, gcd_i; |
4260 | 26 | |
4261 | 26 | if (!node) |
4262 | 0 | return NULL; |
4263 | 26 | |
4264 | 26 | ctx = isl_schedule_node_get_ctx(node); |
4265 | 26 | if (!ctx->opt->schedule_split_scaled) |
4266 | 0 | return compute_next_band(node, graph, 0); |
4267 | 26 | if (graph->n <= 1) |
4268 | 20 | return compute_next_band(node, graph, 0); |
4269 | 6 | |
4270 | 6 | isl_int_init(gcd); |
4271 | 6 | isl_int_init(gcd_i); |
4272 | 6 | |
4273 | 6 | isl_int_set_si(gcd, 0); |
4274 | 6 | |
4275 | 6 | row = isl_mat_rows(graph->node[0].sched) - 1; |
4276 | 6 | |
4277 | 20 | for (i = 0; i < graph->n; ++i14 ) { |
4278 | 14 | struct isl_sched_node *node = &graph->node[i]; |
4279 | 14 | int cols = isl_mat_cols(node->sched); |
4280 | 14 | |
4281 | 14 | isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i); |
4282 | 14 | isl_int_gcd(gcd, gcd, gcd_i); |
4283 | 14 | } |
4284 | 6 | |
4285 | 6 | isl_int_clear(gcd_i); |
4286 | 6 | |
4287 | 6 | if (isl_int_cmp_si(gcd, 1) <= 0) { |
4288 | 2 | isl_int_clear(gcd); |
4289 | 2 | return compute_next_band(node, graph, 0); |
4290 | 2 | } |
4291 | 4 | |
4292 | 14 | for (i = 0; 4 i < graph->n; ++i10 ) { |
4293 | 10 | struct isl_sched_node *node = &graph->node[i]; |
4294 | 10 | |
4295 | 10 | isl_int_fdiv_q(node->sched->row[row][0], |
4296 | 10 | node->sched->row[row][0], gcd); |
4297 | 10 | isl_int_mul(node->sched->row[row][0], |
4298 | 10 | node->sched->row[row][0], gcd); |
4299 | 10 | node->sched = isl_mat_scale_down_row(node->sched, row, gcd); |
4300 | 10 | if (!node->sched) |
4301 | 0 | goto error; |
4302 | 10 | } |
4303 | 4 | |
4304 | 4 | isl_int_clear(gcd); |
4305 | 4 | |
4306 | 4 | return compute_next_band(node, graph, 0); |
4307 | 0 | error: |
4308 | 0 | isl_int_clear(gcd); |
4309 | 0 | return isl_schedule_node_free(node); |
4310 | 4 | } |
4311 | | |
4312 | | /* Is the schedule row "sol" trivial on node "node"? |
4313 | | * That is, is the solution zero on the dimensions linearly independent of |
4314 | | * the previously found solutions? |
4315 | | * Return 1 if the solution is trivial, 0 if it is not and -1 on error. |
4316 | | * |
4317 | | * Each coefficient is represented as the difference between |
4318 | | * two non-negative values in "sol". |
4319 | | * We construct the schedule row s and check if it is linearly |
4320 | | * independent of previously computed schedule rows |
4321 | | * by computing T s, with T the linear combinations that are zero |
4322 | | * on linearly dependent schedule rows. |
4323 | | * If the result consists of all zeros, then the solution is trivial. |
4324 | | */ |
4325 | | static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol) |
4326 | 32 | { |
4327 | 32 | int trivial; |
4328 | 32 | isl_vec *node_sol; |
4329 | 32 | |
4330 | 32 | if (!sol) |
4331 | 0 | return -1; |
4332 | 32 | if (node->nvar == node->rank) |
4333 | 4 | return 0; |
4334 | 28 | |
4335 | 28 | node_sol = extract_var_coef(node, sol); |
4336 | 28 | node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol); |
4337 | 28 | if (!node_sol) |
4338 | 0 | return -1; |
4339 | 28 | |
4340 | 28 | trivial = isl_seq_first_non_zero(node_sol->el, |
4341 | 28 | node->nvar - node->rank) == -1; |
4342 | 28 | |
4343 | 28 | isl_vec_free(node_sol); |
4344 | 28 | |
4345 | 28 | return trivial; |
4346 | 28 | } |
4347 | | |
4348 | | /* Is the schedule row "sol" trivial on any node where it should |
4349 | | * not be trivial? |
4350 | | * Return 1 if any solution is trivial, 0 if they are not and -1 on error. |
4351 | | */ |
4352 | | static int is_any_trivial(struct isl_sched_graph *graph, |
4353 | | __isl_keep isl_vec *sol) |
4354 | 28 | { |
4355 | 28 | int i; |
4356 | 28 | |
4357 | 56 | for (i = 0; i < graph->n; ++i28 ) { |
4358 | 32 | struct isl_sched_node *node = &graph->node[i]; |
4359 | 32 | int trivial; |
4360 | 32 | |
4361 | 32 | if (!needs_row(graph, node)) |
4362 | 0 | continue; |
4363 | 32 | trivial = is_trivial(node, sol); |
4364 | 32 | if (trivial < 0 || trivial) |
4365 | 4 | return trivial; |
4366 | 32 | } |
4367 | 28 | |
4368 | 28 | return 024 ; |
4369 | 28 | } |
4370 | | |
4371 | | /* Does the schedule represented by "sol" perform loop coalescing on "node"? |
4372 | | * If so, return the position of the coalesced dimension. |
4373 | | * Otherwise, return node->nvar or -1 on error. |
4374 | | * |
4375 | | * In particular, look for pairs of coefficients c_i and c_j such that |
4376 | | * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|. |
4377 | | * If any such pair is found, then return i. |
4378 | | * If size_i is infinity, then no check on c_i needs to be performed. |
4379 | | */ |
4380 | | static int find_node_coalescing(struct isl_sched_node *node, |
4381 | | __isl_keep isl_vec *sol) |
4382 | 44 | { |
4383 | 44 | int i, j; |
4384 | 44 | isl_int max; |
4385 | 44 | isl_vec *csol; |
4386 | 44 | |
4387 | 44 | if (node->nvar <= 1) |
4388 | 23 | return node->nvar; |
4389 | 21 | |
4390 | 21 | csol = extract_var_coef(node, sol); |
4391 | 21 | if (!csol) |
4392 | 0 | return -1; |
4393 | 21 | isl_int_init(max); |
4394 | 61 | for (i = 0; i < node->nvar; ++i40 ) { |
4395 | 42 | isl_val *v; |
4396 | 42 | |
4397 | 42 | if (isl_int_is_zero(csol->el[i])) |
4398 | 42 | continue16 ; |
4399 | 26 | v = isl_multi_val_get_val(node->sizes, i); |
4400 | 26 | if (!v) |
4401 | 0 | goto error; |
4402 | 26 | if (!isl_val_is_int(v)) { |
4403 | 14 | isl_val_free(v); |
4404 | 14 | continue; |
4405 | 14 | } |
4406 | 12 | v = isl_val_div_ui(v, 2); |
4407 | 12 | v = isl_val_ceil(v); |
4408 | 12 | if (!v) |
4409 | 0 | goto error; |
4410 | 12 | isl_int_mul(max, v->n, csol->el[i]); |
4411 | 12 | isl_val_free(v); |
4412 | 12 | |
4413 | 32 | for (j = 0; j < node->nvar; ++j20 ) { |
4414 | 22 | if (j == i) |
4415 | 10 | continue; |
4416 | 12 | if (isl_int_abs_gt(csol->el[j], max)) |
4417 | 12 | break2 ; |
4418 | 12 | } |
4419 | 12 | if (j < node->nvar) |
4420 | 2 | break; |
4421 | 12 | } |
4422 | 21 | |
4423 | 21 | isl_int_clear(max); |
4424 | 21 | isl_vec_free(csol); |
4425 | 21 | return i; |
4426 | 0 | error: |
4427 | 0 | isl_int_clear(max); |
4428 | 0 | isl_vec_free(csol); |
4429 | 0 | return -1; |
4430 | 21 | } |
4431 | | |
4432 | | /* Force the schedule coefficient at position "pos" of "node" to be zero |
4433 | | * in "tl". |
4434 | | * The coefficient is encoded as the difference between two non-negative |
4435 | | * variables. Force these two variables to have the same value. |
4436 | | */ |
4437 | | static __isl_give isl_tab_lexmin *zero_out_node_coef( |
4438 | | __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos) |
4439 | 2 | { |
4440 | 2 | int dim; |
4441 | 2 | isl_ctx *ctx; |
4442 | 2 | isl_vec *eq; |
4443 | 2 | |
4444 | 2 | ctx = isl_space_get_ctx(node->space); |
4445 | 2 | dim = isl_tab_lexmin_dim(tl); |
4446 | 2 | if (dim < 0) |
4447 | 0 | return isl_tab_lexmin_free(tl); |
4448 | 2 | eq = isl_vec_alloc(ctx, 1 + dim); |
4449 | 2 | eq = isl_vec_clr(eq); |
4450 | 2 | if (!eq) |
4451 | 0 | return isl_tab_lexmin_free(tl); |
4452 | 2 | |
4453 | 2 | pos = 1 + node_var_coef_pos(node, pos); |
4454 | 2 | isl_int_set_si(eq->el[pos], 1); |
4455 | 2 | isl_int_set_si(eq->el[pos + 1], -1); |
4456 | 2 | tl = isl_tab_lexmin_add_eq(tl, eq->el); |
4457 | 2 | isl_vec_free(eq); |
4458 | 2 | |
4459 | 2 | return tl; |
4460 | 2 | } |
4461 | | |
4462 | | /* Return the lexicographically smallest rational point in the basic set |
4463 | | * from which "tl" was constructed, double checking that this input set |
4464 | | * was not empty. |
4465 | | */ |
4466 | | static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl) |
4467 | 32 | { |
4468 | 32 | isl_vec *sol; |
4469 | 32 | |
4470 | 32 | sol = isl_tab_lexmin_get_solution(tl); |
4471 | 32 | if (!sol) |
4472 | 0 | return NULL; |
4473 | 32 | if (sol->size == 0) |
4474 | 32 | isl_die0 (isl_vec_get_ctx(sol), isl_error_internal, |
4475 | 32 | "error in schedule construction", |
4476 | 32 | return isl_vec_free(sol)); |
4477 | 32 | return sol; |
4478 | 32 | } |
4479 | | |
4480 | | /* Does the solution "sol" of the LP problem constructed by setup_carry_lp |
4481 | | * carry any of the "n_edge" groups of dependences? |
4482 | | * The value in the first position is the sum of (1 - e_i) over all "n_edge" |
4483 | | * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented |
4484 | | * by the edge are carried by the solution. |
4485 | | * If the sum of the (1 - e_i) is smaller than "n_edge" then at least |
4486 | | * one of those is carried. |
4487 | | * |
4488 | | * Note that despite the fact that the problem is solved using a rational |
4489 | | * solver, the solution is guaranteed to be integral. |
4490 | | * Specifically, the dependence distance lower bounds e_i (and therefore |
4491 | | * also their sum) are integers. See Lemma 5 of [1]. |
4492 | | * |
4493 | | * Any potential denominator of the sum is cleared by this function. |
4494 | | * The denominator is not relevant for any of the other elements |
4495 | | * in the solution. |
4496 | | * |
4497 | | * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling |
4498 | | * Problem, Part II: Multi-Dimensional Time. |
4499 | | * In Intl. Journal of Parallel Programming, 1992. |
4500 | | */ |
4501 | | static int carries_dependences(__isl_keep isl_vec *sol, int n_edge) |
4502 | 32 | { |
4503 | 32 | isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]); |
4504 | 32 | isl_int_set_si(sol->el[0], 1); |
4505 | 32 | return isl_int_cmp_si(sol->el[1], n_edge) < 0; |
4506 | 32 | } |
4507 | | |
4508 | | /* Return the lexicographically smallest rational point in "lp", |
4509 | | * assuming that all variables are non-negative and performing some |
4510 | | * additional sanity checks. |
4511 | | * If "want_integral" is set, then compute the lexicographically smallest |
4512 | | * integer point instead. |
4513 | | * In particular, "lp" should not be empty by construction. |
4514 | | * Double check that this is the case. |
4515 | | * If dependences are not carried for any of the "n_edge" edges, |
4516 | | * then return an empty vector. |
4517 | | * |
4518 | | * If the schedule_treat_coalescing option is set and |
4519 | | * if the computed schedule performs loop coalescing on a given node, |
4520 | | * i.e., if it is of the form |
4521 | | * |
4522 | | * c_i i + c_j j + ... |
4523 | | * |
4524 | | * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero |
4525 | | * to cut out this solution. Repeat this process until no more loop |
4526 | | * coalescing occurs or until no more dependences can be carried. |
4527 | | * In the latter case, revert to the previously computed solution. |
4528 | | * |
4529 | | * If the caller requests an integral solution and if coalescing should |
4530 | | * be treated, then perform the coalescing treatment first as |
4531 | | * an integral solution computed before coalescing treatment |
4532 | | * would carry the same number of edges and would therefore probably |
4533 | | * also be coalescing. |
4534 | | * |
4535 | | * To allow the coalescing treatment to be performed first, |
4536 | | * the initial solution is allowed to be rational and it is only |
4537 | | * cut out (if needed) in the next iteration, if no coalescing measures |
4538 | | * were taken. |
4539 | | */ |
4540 | | static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph, |
4541 | | __isl_take isl_basic_set *lp, int n_edge, int want_integral) |
4542 | 28 | { |
4543 | 28 | int i, pos, cut; |
4544 | 28 | isl_ctx *ctx; |
4545 | 28 | isl_tab_lexmin *tl; |
4546 | 28 | isl_vec *sol = NULL, *prev; |
4547 | 28 | int treat_coalescing; |
4548 | 28 | int try_again; |
4549 | 28 | |
4550 | 28 | if (!lp) |
4551 | 0 | return NULL; |
4552 | 28 | ctx = isl_basic_set_get_ctx(lp); |
4553 | 28 | treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx); |
4554 | 28 | tl = isl_tab_lexmin_from_basic_set(lp); |
4555 | 28 | |
4556 | 28 | cut = 0; |
4557 | 32 | do { |
4558 | 32 | int integral; |
4559 | 32 | |
4560 | 32 | try_again = 0; |
4561 | 32 | if (cut) |
4562 | 2 | tl = isl_tab_lexmin_cut_to_integer(tl); |
4563 | 32 | prev = sol; |
4564 | 32 | sol = non_empty_solution(tl); |
4565 | 32 | if (!sol) |
4566 | 0 | goto error; |
4567 | 32 | |
4568 | 32 | integral = isl_int_is_one(sol->el[0]); |
4569 | 32 | if (!carries_dependences(sol, n_edge)) { |
4570 | 2 | if (!prev) |
4571 | 0 | prev = isl_vec_alloc(ctx, 0); |
4572 | 2 | isl_vec_free(sol); |
4573 | 2 | sol = prev; |
4574 | 2 | break; |
4575 | 2 | } |
4576 | 30 | prev = isl_vec_free(prev); |
4577 | 30 | cut = want_integral && !integral16 ; |
4578 | 30 | if (cut) |
4579 | 2 | try_again = 1; |
4580 | 30 | if (!treat_coalescing) |
4581 | 0 | continue; |
4582 | 72 | for (i = 0; 30 i < graph->n; ++i42 ) { |
4583 | 44 | struct isl_sched_node *node = &graph->node[i]; |
4584 | 44 | |
4585 | 44 | pos = find_node_coalescing(node, sol); |
4586 | 44 | if (pos < 0) |
4587 | 0 | goto error; |
4588 | 44 | if (pos < node->nvar) |
4589 | 2 | break; |
4590 | 44 | } |
4591 | 30 | if (i < graph->n) { |
4592 | 2 | try_again = 1; |
4593 | 2 | tl = zero_out_node_coef(tl, &graph->node[i], pos); |
4594 | 2 | cut = 0; |
4595 | 2 | } |
4596 | 30 | } while (try_again); |
4597 | 28 | |
4598 | 28 | isl_tab_lexmin_free(tl); |
4599 | 28 | |
4600 | 28 | return sol; |
4601 | 0 | error: |
4602 | 0 | isl_tab_lexmin_free(tl); |
4603 | 0 | isl_vec_free(prev); |
4604 | 0 | isl_vec_free(sol); |
4605 | 0 | return NULL; |
4606 | 28 | } |
4607 | | |
4608 | | /* If "edge" is an edge from a node to itself, then add the corresponding |
4609 | | * dependence relation to "umap". |
4610 | | * If "node" has been compressed, then the dependence relation |
4611 | | * is also compressed first. |
4612 | | */ |
4613 | | static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap, |
4614 | | struct isl_sched_edge *edge) |
4615 | 42 | { |
4616 | 42 | isl_map *map; |
4617 | 42 | struct isl_sched_node *node = edge->src; |
4618 | 42 | |
4619 | 42 | if (edge->src != edge->dst) |
4620 | 20 | return umap; |
4621 | 22 | |
4622 | 22 | map = isl_map_copy(edge->map); |
4623 | 22 | if (node->compressed) { |
4624 | 0 | map = isl_map_preimage_domain_multi_aff(map, |
4625 | 0 | isl_multi_aff_copy(node->decompress)); |
4626 | 0 | map = isl_map_preimage_range_multi_aff(map, |
4627 | 0 | isl_multi_aff_copy(node->decompress)); |
4628 | 0 | } |
4629 | 22 | umap = isl_union_map_add_map(umap, map); |
4630 | 22 | return umap; |
4631 | 22 | } |
4632 | | |
4633 | | /* If "edge" is an edge from a node to another node, then add the corresponding |
4634 | | * dependence relation to "umap". |
4635 | | * If the source or destination nodes of "edge" have been compressed, |
4636 | | * then the dependence relation is also compressed first. |
4637 | | */ |
4638 | | static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap, |
4639 | | struct isl_sched_edge *edge) |
4640 | 42 | { |
4641 | 42 | isl_map *map; |
4642 | 42 | |
4643 | 42 | if (edge->src == edge->dst) |
4644 | 22 | return umap; |
4645 | 20 | |
4646 | 20 | map = isl_map_copy(edge->map); |
4647 | 20 | if (edge->src->compressed) |
4648 | 0 | map = isl_map_preimage_domain_multi_aff(map, |
4649 | 0 | isl_multi_aff_copy(edge->src->decompress)); |
4650 | 20 | if (edge->dst->compressed) |
4651 | 0 | map = isl_map_preimage_range_multi_aff(map, |
4652 | 0 | isl_multi_aff_copy(edge->dst->decompress)); |
4653 | 20 | umap = isl_union_map_add_map(umap, map); |
4654 | 20 | return umap; |
4655 | 20 | } |
4656 | | |
4657 | | /* Internal data structure used by union_drop_coalescing_constraints |
4658 | | * to collect bounds on all relevant statements. |
4659 | | * |
4660 | | * "graph" is the schedule constraint graph for which an LP problem |
4661 | | * is being constructed. |
4662 | | * "bounds" collects the bounds. |
4663 | | */ |
4664 | | struct isl_collect_bounds_data { |
4665 | | isl_ctx *ctx; |
4666 | | struct isl_sched_graph *graph; |
4667 | | isl_union_set *bounds; |
4668 | | }; |
4669 | | |
4670 | | /* Add the size bounds for the node with instance deltas in "set" |
4671 | | * to data->bounds. |
4672 | | */ |
4673 | | static isl_stat collect_bounds(__isl_take isl_set *set, void *user) |
4674 | 20 | { |
4675 | 20 | struct isl_collect_bounds_data *data = user; |
4676 | 20 | struct isl_sched_node *node; |
4677 | 20 | isl_space *space; |
4678 | 20 | isl_set *bounds; |
4679 | 20 | |
4680 | 20 | space = isl_set_get_space(set); |
4681 | 20 | isl_set_free(set); |
4682 | 20 | |
4683 | 20 | node = graph_find_compressed_node(data->ctx, data->graph, space); |
4684 | 20 | isl_space_free(space); |
4685 | 20 | |
4686 | 20 | bounds = isl_set_from_basic_set(get_size_bounds(node)); |
4687 | 20 | data->bounds = isl_union_set_add_set(data->bounds, bounds); |
4688 | 20 | |
4689 | 20 | return isl_stat_ok; |
4690 | 20 | } |
4691 | | |
4692 | | /* Drop some constraints from "delta" that could be exploited |
4693 | | * to construct loop coalescing schedules. |
4694 | | * In particular, drop those constraint that bound the difference |
4695 | | * to the size of the domain. |
4696 | | * Do this for each set/node in "delta" separately. |
4697 | | * The parameters are assumed to have been projected out by the caller. |
4698 | | */ |
4699 | | static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx, |
4700 | | struct isl_sched_graph *graph, __isl_take isl_union_set *delta) |
4701 | 28 | { |
4702 | 28 | struct isl_collect_bounds_data data = { ctx, graph }; |
4703 | 28 | |
4704 | 28 | data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0)); |
4705 | 28 | if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0) |
4706 | 0 | data.bounds = isl_union_set_free(data.bounds); |
4707 | 28 | delta = isl_union_set_plain_gist(delta, data.bounds); |
4708 | 28 | |
4709 | 28 | return delta; |
4710 | 28 | } |
4711 | | |
4712 | | /* Given a non-trivial lineality space "lineality", add the corresponding |
4713 | | * universe set to data->mask and add a map from elements to |
4714 | | * other elements along the lines in "lineality" to data->equivalent. |
4715 | | * If this is the first time this function gets called |
4716 | | * (data->any_non_trivial is still false), then set data->any_non_trivial and |
4717 | | * initialize data->mask and data->equivalent. |
4718 | | * |
4719 | | * In particular, if the lineality space is defined by equality constraints |
4720 | | * |
4721 | | * E x = 0 |
4722 | | * |
4723 | | * then construct an affine mapping |
4724 | | * |
4725 | | * f : x -> E x |
4726 | | * |
4727 | | * and compute the equivalence relation of having the same image under f: |
4728 | | * |
4729 | | * { x -> x' : E x = E x' } |
4730 | | */ |
4731 | | static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality, |
4732 | | struct isl_exploit_lineality_data *data) |
4733 | 2 | { |
4734 | 2 | isl_mat *eq; |
4735 | 2 | isl_space *space; |
4736 | 2 | isl_set *univ; |
4737 | 2 | isl_multi_aff *ma; |
4738 | 2 | isl_multi_pw_aff *mpa; |
4739 | 2 | isl_map *map; |
4740 | 2 | int n; |
4741 | 2 | |
4742 | 2 | if (!lineality) |
4743 | 0 | return isl_stat_error; |
4744 | 2 | if (isl_basic_set_dim(lineality, isl_dim_div) != 0) |
4745 | 2 | isl_die0 (isl_basic_set_get_ctx(lineality), isl_error_internal, |
4746 | 2 | "local variables not allowed", goto error); |
4747 | 2 | |
4748 | 2 | space = isl_basic_set_get_space(lineality); |
4749 | 2 | if (!data->any_non_trivial) { |
4750 | 2 | data->equivalent = isl_union_map_empty(isl_space_copy(space)); |
4751 | 2 | data->mask = isl_union_set_empty(isl_space_copy(space)); |
4752 | 2 | } |
4753 | 2 | data->any_non_trivial = isl_bool_true; |
4754 | 2 | |
4755 | 2 | univ = isl_set_universe(isl_space_copy(space)); |
4756 | 2 | data->mask = isl_union_set_add_set(data->mask, univ); |
4757 | 2 | |
4758 | 2 | eq = isl_basic_set_extract_equalities(lineality); |
4759 | 2 | n = isl_mat_rows(eq); |
4760 | 2 | eq = isl_mat_insert_zero_rows(eq, 0, 1); |
4761 | 2 | eq = isl_mat_set_element_si(eq, 0, 0, 1); |
4762 | 2 | space = isl_space_from_domain(space); |
4763 | 2 | space = isl_space_add_dims(space, isl_dim_out, n); |
4764 | 2 | ma = isl_multi_aff_from_aff_mat(space, eq); |
4765 | 2 | mpa = isl_multi_pw_aff_from_multi_aff(ma); |
4766 | 2 | map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa)); |
4767 | 2 | data->equivalent = isl_union_map_add_map(data->equivalent, map); |
4768 | 2 | |
4769 | 2 | isl_basic_set_free(lineality); |
4770 | 2 | return isl_stat_ok; |
4771 | 0 | error: |
4772 | 0 | isl_basic_set_free(lineality); |
4773 | 0 | return isl_stat_error; |
4774 | 2 | } |
4775 | | |
4776 | | /* Check if the lineality space "set" is non-trivial (i.e., is not just |
4777 | | * the origin or, in other words, satisfies a number of equality constraints |
4778 | | * that is smaller than the dimension of the set). |
4779 | | * If so, extend data->mask and data->equivalent accordingly. |
4780 | | * |
4781 | | * The input should not have any local variables already, but |
4782 | | * isl_set_remove_divs is called to make sure it does not. |
4783 | | */ |
4784 | | static isl_stat add_lineality(__isl_take isl_set *set, void *user) |
4785 | 20 | { |
4786 | 20 | struct isl_exploit_lineality_data *data = user; |
4787 | 20 | isl_basic_set *hull; |
4788 | 20 | int dim, n_eq; |
4789 | 20 | |
4790 | 20 | set = isl_set_remove_divs(set); |
4791 | 20 | hull = isl_set_unshifted_simple_hull(set); |
4792 | 20 | dim = isl_basic_set_dim(hull, isl_dim_set); |
4793 | 20 | n_eq = isl_basic_set_n_equality(hull); |
4794 | 20 | if (!hull) |
4795 | 0 | return isl_stat_error; |
4796 | 20 | if (dim != n_eq) |
4797 | 2 | return add_non_trivial_lineality(hull, data); |
4798 | 18 | isl_basic_set_free(hull); |
4799 | 18 | return isl_stat_ok; |
4800 | 18 | } |
4801 | | |
4802 | | /* Check if the difference set on intra-node schedule constraints "intra" |
4803 | | * has any non-trivial lineality space. |
4804 | | * If so, then extend the difference set to a difference set |
4805 | | * on equivalent elements. That is, if "intra" is |
4806 | | * |
4807 | | * { y - x : (x,y) \in V } |
4808 | | * |
4809 | | * and elements are equivalent if they have the same image under f, |
4810 | | * then return |
4811 | | * |
4812 | | * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') } |
4813 | | * |
4814 | | * or, since f is linear, |
4815 | | * |
4816 | | * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') } |
4817 | | * |
4818 | | * The results of the search for non-trivial lineality spaces is stored |
4819 | | * in "data". |
4820 | | */ |
4821 | | static __isl_give isl_union_set *exploit_intra_lineality( |
4822 | | __isl_take isl_union_set *intra, |
4823 | | struct isl_exploit_lineality_data *data) |
4824 | 28 | { |
4825 | 28 | isl_union_set *lineality; |
4826 | 28 | isl_union_set *uset; |
4827 | 28 | |
4828 | 28 | data->any_non_trivial = isl_bool_false; |
4829 | 28 | lineality = isl_union_set_copy(intra); |
4830 | 28 | lineality = isl_union_set_combined_lineality_space(lineality); |
4831 | 28 | if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0) |
4832 | 0 | data->any_non_trivial = isl_bool_error; |
4833 | 28 | isl_union_set_free(lineality); |
4834 | 28 | |
4835 | 28 | if (data->any_non_trivial < 0) |
4836 | 0 | return isl_union_set_free(intra); |
4837 | 28 | if (!data->any_non_trivial) |
4838 | 26 | return intra; |
4839 | 2 | |
4840 | 2 | uset = isl_union_set_copy(intra); |
4841 | 2 | intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask)); |
4842 | 2 | uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent)); |
4843 | 2 | intra = isl_union_set_union(intra, uset); |
4844 | 2 | |
4845 | 2 | intra = isl_union_set_remove_divs(intra); |
4846 | 2 | |
4847 | 2 | return intra; |
4848 | 2 | } |
4849 | | |
4850 | | /* If the difference set on intra-node schedule constraints was found to have |
4851 | | * any non-trivial lineality space by exploit_intra_lineality, |
4852 | | * as recorded in "data", then extend the inter-node |
4853 | | * schedule constraints "inter" to schedule constraints on equivalent elements. |
4854 | | * That is, if "inter" is V and |
4855 | | * elements are equivalent if they have the same image under f, then return |
4856 | | * |
4857 | | * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') } |
4858 | | */ |
4859 | | static __isl_give isl_union_map *exploit_inter_lineality( |
4860 | | __isl_take isl_union_map *inter, |
4861 | | struct isl_exploit_lineality_data *data) |
4862 | 28 | { |
4863 | 28 | isl_union_map *umap; |
4864 | 28 | |
4865 | 28 | if (data->any_non_trivial < 0) |
4866 | 0 | return isl_union_map_free(inter); |
4867 | 28 | if (!data->any_non_trivial) |
4868 | 26 | return inter; |
4869 | 2 | |
4870 | 2 | umap = isl_union_map_copy(inter); |
4871 | 2 | inter = isl_union_map_subtract_range(inter, |
4872 | 2 | isl_union_set_copy(data->mask)); |
4873 | 2 | umap = isl_union_map_apply_range(umap, |
4874 | 2 | isl_union_map_copy(data->equivalent)); |
4875 | 2 | inter = isl_union_map_union(inter, umap); |
4876 | 2 | umap = isl_union_map_copy(inter); |
4877 | 2 | inter = isl_union_map_subtract_domain(inter, |
4878 | 2 | isl_union_set_copy(data->mask)); |
4879 | 2 | umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent), |
4880 | 2 | umap); |
4881 | 2 | inter = isl_union_map_union(inter, umap); |
4882 | 2 | |
4883 | 2 | inter = isl_union_map_remove_divs(inter); |
4884 | 2 | |
4885 | 2 | return inter; |
4886 | 2 | } |
4887 | | |
4888 | | /* For each (conditional) validity edge in "graph", |
4889 | | * add the corresponding dependence relation using "add" |
4890 | | * to a collection of dependence relations and return the result. |
4891 | | * If "coincidence" is set, then coincidence edges are considered as well. |
4892 | | */ |
4893 | | static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph, |
4894 | | __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap, |
4895 | | struct isl_sched_edge *edge), int coincidence) |
4896 | 56 | { |
4897 | 56 | int i; |
4898 | 56 | isl_space *space; |
4899 | 56 | isl_union_map *umap; |
4900 | 56 | |
4901 | 56 | space = isl_space_copy(graph->node[0].space); |
4902 | 56 | umap = isl_union_map_empty(space); |
4903 | 56 | |
4904 | 140 | for (i = 0; i < graph->n_edge; ++i84 ) { |
4905 | 84 | struct isl_sched_edge *edge = &graph->edge[i]; |
4906 | 84 | |
4907 | 84 | if (!is_any_validity(edge) && |
4908 | 84 | (0 !coincidence0 || !is_coincidence(edge)0 )) |
4909 | 0 | continue; |
4910 | 84 | |
4911 | 84 | umap = add(umap, edge); |
4912 | 84 | } |
4913 | 56 | |
4914 | 56 | return umap; |
4915 | 56 | } |
4916 | | |
4917 | | /* Project out all parameters from "uset" and return the result. |
4918 | | */ |
4919 | | static __isl_give isl_union_set *union_set_drop_parameters( |
4920 | | __isl_take isl_union_set *uset) |
4921 | 28 | { |
4922 | 28 | unsigned nparam; |
4923 | 28 | |
4924 | 28 | nparam = isl_union_set_dim(uset, isl_dim_param); |
4925 | 28 | return isl_union_set_project_out(uset, isl_dim_param, 0, nparam); |
4926 | 28 | } |
4927 | | |
4928 | | /* For each dependence relation on a (conditional) validity edge |
4929 | | * from a node to itself, |
4930 | | * construct the set of coefficients of valid constraints for elements |
4931 | | * in that dependence relation and collect the results. |
4932 | | * If "coincidence" is set, then coincidence edges are considered as well. |
4933 | | * |
4934 | | * In particular, for each dependence relation R, constraints |
4935 | | * on coefficients (c_0, c_x) are constructed such that |
4936 | | * |
4937 | | * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R } |
4938 | | * |
4939 | | * If the schedule_treat_coalescing option is set, then some constraints |
4940 | | * that could be exploited to construct coalescing schedules |
4941 | | * are removed before the dual is computed, but after the parameters |
4942 | | * have been projected out. |
4943 | | * The entire computation is essentially the same as that performed |
4944 | | * by intra_coefficients, except that it operates on multiple |
4945 | | * edges together and that the parameters are always projected out. |
4946 | | * |
4947 | | * Additionally, exploit any non-trivial lineality space |
4948 | | * in the difference set after removing coalescing constraints and |
4949 | | * store the results of the non-trivial lineality space detection in "data". |
4950 | | * The procedure is currently run unconditionally, but it is unlikely |
4951 | | * to find any non-trivial lineality spaces if no coalescing constraints |
4952 | | * have been removed. |
4953 | | * |
4954 | | * Note that if a dependence relation is a union of basic maps, |
4955 | | * then each basic map needs to be treated individually as it may only |
4956 | | * be possible to carry the dependences expressed by some of those |
4957 | | * basic maps and not all of them. |
4958 | | * The collected validity constraints are therefore not coalesced and |
4959 | | * it is assumed that they are not coalesced automatically. |
4960 | | * Duplicate basic maps can be removed, however. |
4961 | | * In particular, if the same basic map appears as a disjunct |
4962 | | * in multiple edges, then it only needs to be carried once. |
4963 | | */ |
4964 | | static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx, |
4965 | | struct isl_sched_graph *graph, int coincidence, |
4966 | | struct isl_exploit_lineality_data *data) |
4967 | 28 | { |
4968 | 28 | isl_union_map *intra; |
4969 | 28 | isl_union_set *delta; |
4970 | 28 | isl_basic_set_list *list; |
4971 | 28 | |
4972 | 28 | intra = collect_validity(graph, &add_intra, coincidence); |
4973 | 28 | delta = isl_union_map_deltas(intra); |
4974 | 28 | delta = union_set_drop_parameters(delta); |
4975 | 28 | delta = isl_union_set_remove_divs(delta); |
4976 | 28 | if (isl_options_get_schedule_treat_coalescing(ctx)) |
4977 | 28 | delta = union_drop_coalescing_constraints(ctx, graph, delta); |
4978 | 28 | delta = exploit_intra_lineality(delta, data); |
4979 | 28 | list = isl_union_set_get_basic_set_list(delta); |
4980 | 28 | isl_union_set_free(delta); |
4981 | 28 | |
4982 | 28 | return isl_basic_set_list_coefficients(list); |
4983 | 28 | } |
4984 | | |
4985 | | /* For each dependence relation on a (conditional) validity edge |
4986 | | * from a node to some other node, |
4987 | | * construct the set of coefficients of valid constraints for elements |
4988 | | * in that dependence relation and collect the results. |
4989 | | * If "coincidence" is set, then coincidence edges are considered as well. |
4990 | | * |
4991 | | * In particular, for each dependence relation R, constraints |
4992 | | * on coefficients (c_0, c_n, c_x, c_y) are constructed such that |
4993 | | * |
4994 | | * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R |
4995 | | * |
4996 | | * This computation is essentially the same as that performed |
4997 | | * by inter_coefficients, except that it operates on multiple |
4998 | | * edges together. |
4999 | | * |
5000 | | * Additionally, exploit any non-trivial lineality space |
5001 | | * that may have been discovered by collect_intra_validity |
5002 | | * (as stored in "data"). |
5003 | | * |
5004 | | * Note that if a dependence relation is a union of basic maps, |
5005 | | * then each basic map needs to be treated individually as it may only |
5006 | | * be possible to carry the dependences expressed by some of those |
5007 | | * basic maps and not all of them. |
5008 | | * The collected validity constraints are therefore not coalesced and |
5009 | | * it is assumed that they are not coalesced automatically. |
5010 | | * Duplicate basic maps can be removed, however. |
5011 | | * In particular, if the same basic map appears as a disjunct |
5012 | | * in multiple edges, then it only needs to be carried once. |
5013 | | */ |
5014 | | static __isl_give isl_basic_set_list *collect_inter_validity( |
5015 | | struct isl_sched_graph *graph, int coincidence, |
5016 | | struct isl_exploit_lineality_data *data) |
5017 | 28 | { |
5018 | 28 | isl_union_map *inter; |
5019 | 28 | isl_union_set *wrap; |
5020 | 28 | isl_basic_set_list *list; |
5021 | 28 | |
5022 | 28 | inter = collect_validity(graph, &add_inter, coincidence); |
5023 | 28 | inter = exploit_inter_lineality(inter, data); |
5024 | 28 | inter = isl_union_map_remove_divs(inter); |
5025 | 28 | wrap = isl_union_map_wrap(inter); |
5026 | 28 | list = isl_union_set_get_basic_set_list(wrap); |
5027 | 28 | isl_union_set_free(wrap); |
5028 | 28 | return isl_basic_set_list_coefficients(list); |
5029 | 28 | } |
5030 | | |
5031 | | /* Construct an LP problem for finding schedule coefficients |
5032 | | * such that the schedule carries as many of the "n_edge" groups of |
5033 | | * dependences as possible based on the corresponding coefficient |
5034 | | * constraints and return the lexicographically smallest non-trivial solution. |
5035 | | * "intra" is the sequence of coefficient constraints for intra-node edges. |
5036 | | * "inter" is the sequence of coefficient constraints for inter-node edges. |
5037 | | * If "want_integral" is set, then compute an integral solution |
5038 | | * for the coefficients rather than using the numerators |
5039 | | * of a rational solution. |
5040 | | * "carry_inter" indicates whether inter-node edges should be carried or |
5041 | | * only respected. |
5042 | | * |
5043 | | * If none of the "n_edge" groups can be carried |
5044 | | * then return an empty vector. |
5045 | | */ |
5046 | | static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx, |
5047 | | struct isl_sched_graph *graph, int n_edge, |
5048 | | __isl_keep isl_basic_set_list *intra, |
5049 | | __isl_keep isl_basic_set_list *inter, int want_integral, |
5050 | | int carry_inter) |
5051 | 28 | { |
5052 | 28 | isl_basic_set *lp; |
5053 | 28 | |
5054 | 28 | if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0) |
5055 | 0 | return NULL; |
5056 | 28 | |
5057 | 28 | lp = isl_basic_set_copy(graph->lp); |
5058 | 28 | return non_neg_lexmin(graph, lp, n_edge, want_integral); |
5059 | 28 | } |
5060 | | |
5061 | | /* Construct an LP problem for finding schedule coefficients |
5062 | | * such that the schedule carries as many of the validity dependences |
5063 | | * as possible and |
5064 | | * return the lexicographically smallest non-trivial solution. |
5065 | | * If "fallback" is set, then the carrying is performed as a fallback |
5066 | | * for the Pluto-like scheduler. |
5067 | | * If "coincidence" is set, then try and carry coincidence edges as well. |
5068 | | * |
5069 | | * The variable "n_edge" stores the number of groups that should be carried. |
5070 | | * If none of the "n_edge" groups can be carried |
5071 | | * then return an empty vector. |
5072 | | * If, moreover, "n_edge" is zero, then the LP problem does not even |
5073 | | * need to be constructed. |
5074 | | * |
5075 | | * If a fallback solution is being computed, then compute an integral solution |
5076 | | * for the coefficients rather than using the numerators |
5077 | | * of a rational solution. |
5078 | | * |
5079 | | * If a fallback solution is being computed, if there are any intra-node |
5080 | | * dependences, and if requested by the user, then first try |
5081 | | * to only carry those intra-node dependences. |
5082 | | * If this fails to carry any dependences, then try again |
5083 | | * with the inter-node dependences included. |
5084 | | */ |
5085 | | static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx, |
5086 | | struct isl_sched_graph *graph, int fallback, int coincidence) |
5087 | 28 | { |
5088 | 28 | int n_intra, n_inter; |
5089 | 28 | int n_edge; |
5090 | 28 | struct isl_carry carry = { 0 }; |
5091 | 28 | isl_vec *sol; |
5092 | 28 | |
5093 | 28 | carry.intra = collect_intra_validity(ctx, graph, coincidence, |
5094 | 28 | &carry.lineality); |
5095 | 28 | carry.inter = collect_inter_validity(graph, coincidence, |
5096 | 28 | &carry.lineality); |
5097 | 28 | if (!carry.intra || !carry.inter) |
5098 | 0 | goto error; |
5099 | 28 | n_intra = isl_basic_set_list_n_basic_set(carry.intra); |
5100 | 28 | n_inter = isl_basic_set_list_n_basic_set(carry.inter); |
5101 | 28 | |
5102 | 28 | if (fallback && n_intra > 014 && |
5103 | 28 | isl_options_get_schedule_carry_self_first(ctx)10 ) { |
5104 | 10 | sol = compute_carrying_sol_coef(ctx, graph, n_intra, |
5105 | 10 | carry.intra, carry.inter, fallback, 0); |
5106 | 10 | if (!sol || sol->size != 0 || n_inter == 00 ) { |
5107 | 10 | isl_carry_clear(&carry); |
5108 | 10 | return sol; |
5109 | 10 | } |
5110 | 0 | isl_vec_free(sol); |
5111 | 0 | } |
5112 | 28 | |
5113 | 28 | n_edge = n_intra + n_inter; |
5114 | 18 | if (n_edge == 0) { |
5115 | 0 | isl_carry_clear(&carry); |
5116 | 0 | return isl_vec_alloc(ctx, 0); |
5117 | 0 | } |
5118 | 18 | |
5119 | 18 | sol = compute_carrying_sol_coef(ctx, graph, n_edge, |
5120 | 18 | carry.intra, carry.inter, fallback, 1); |
5121 | 18 | isl_carry_clear(&carry); |
5122 | 18 | return sol; |
5123 | 0 | error: |
5124 | 0 | isl_carry_clear(&carry); |
5125 | 0 | return NULL; |
5126 | 18 | } |
5127 | | |
5128 | | /* Construct a schedule row for each node such that as many validity dependences |
5129 | | * as possible are carried and then continue with the next band. |
5130 | | * If "fallback" is set, then the carrying is performed as a fallback |
5131 | | * for the Pluto-like scheduler. |
5132 | | * If "coincidence" is set, then try and carry coincidence edges as well. |
5133 | | * |
5134 | | * If there are no validity dependences, then no dependence can be carried and |
5135 | | * the procedure is guaranteed to fail. If there is more than one component, |
5136 | | * then try computing a schedule on each component separately |
5137 | | * to prevent or at least postpone this failure. |
5138 | | * |
5139 | | * If a schedule row is computed, then check that dependences are carried |
5140 | | * for at least one of the edges. |
5141 | | * |
5142 | | * If the computed schedule row turns out to be trivial on one or |
5143 | | * more nodes where it should not be trivial, then we throw it away |
5144 | | * and try again on each component separately. |
5145 | | * |
5146 | | * If there is only one component, then we accept the schedule row anyway, |
5147 | | * but we do not consider it as a complete row and therefore do not |
5148 | | * increment graph->n_row. Note that the ranks of the nodes that |
5149 | | * do get a non-trivial schedule part will get updated regardless and |
5150 | | * graph->maxvar is computed based on these ranks. The test for |
5151 | | * whether more schedule rows are required in compute_schedule_wcc |
5152 | | * is therefore not affected. |
5153 | | * |
5154 | | * Insert a band corresponding to the schedule row at position "node" |
5155 | | * of the schedule tree and continue with the construction of the schedule. |
5156 | | * This insertion and the continued construction is performed by split_scaled |
5157 | | * after optionally checking for non-trivial common divisors. |
5158 | | */ |
5159 | | static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node, |
5160 | | struct isl_sched_graph *graph, int fallback, int coincidence) |
5161 | 28 | { |
5162 | 28 | int trivial; |
5163 | 28 | isl_ctx *ctx; |
5164 | 28 | isl_vec *sol; |
5165 | 28 | |
5166 | 28 | if (!node) |
5167 | 0 | return NULL; |
5168 | 28 | |
5169 | 28 | ctx = isl_schedule_node_get_ctx(node); |
5170 | 28 | sol = compute_carrying_sol(ctx, graph, fallback, coincidence); |
5171 | 28 | if (!sol) |
5172 | 0 | return isl_schedule_node_free(node); |
5173 | 28 | if (sol->size == 0) { |
5174 | 0 | isl_vec_free(sol); |
5175 | 0 | if (graph->scc > 1) |
5176 | 0 | return compute_component_schedule(node, graph, 1); |
5177 | 0 | isl_die(ctx, isl_error_unknown, "unable to carry dependences", |
5178 | 0 | return isl_schedule_node_free(node)); |
5179 | 0 | } |
5180 | 28 | |
5181 | 28 | trivial = is_any_trivial(graph, sol); |
5182 | 28 | if (trivial < 0) { |
5183 | 0 | sol = isl_vec_free(sol); |
5184 | 28 | } else if (trivial && graph->scc > 14 ) { |
5185 | 2 | isl_vec_free(sol); |
5186 | 2 | return compute_component_schedule(node, graph, 1); |
5187 | 2 | } |
5188 | 26 | |
5189 | 26 | if (update_schedule(graph, sol, 0) < 0) |
5190 | 0 | return isl_schedule_node_free(node); |
5191 | 26 | if (trivial) |
5192 | 2 | graph->n_row--; |
5193 | 26 | |
5194 | 26 | return split_scaled(node, graph); |
5195 | 26 | } |
5196 | | |
5197 | | /* Construct a schedule row for each node such that as many validity dependences |
5198 | | * as possible are carried and then continue with the next band. |
5199 | | * Do so as a fallback for the Pluto-like scheduler. |
5200 | | * If "coincidence" is set, then try and carry coincidence edges as well. |
5201 | | */ |
5202 | | static __isl_give isl_schedule_node *carry_fallback( |
5203 | | __isl_take isl_schedule_node *node, struct isl_sched_graph *graph, |
5204 | | int coincidence) |
5205 | 14 | { |
5206 | 14 | return carry(node, graph, 1, coincidence); |
5207 | 14 | } |
5208 | | |
5209 | | /* Construct a schedule row for each node such that as many validity dependences |
5210 | | * as possible are carried and then continue with the next band. |
5211 | | * Do so for the case where the Feautrier scheduler was selected |
5212 | | * by the user. |
5213 | | */ |
5214 | | static __isl_give isl_schedule_node *carry_feautrier( |
5215 | | __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) |
5216 | 14 | { |
5217 | 14 | return carry(node, graph, 0, 0); |
5218 | 14 | } |
5219 | | |
5220 | | /* Construct a schedule row for each node such that as many validity dependences |
5221 | | * as possible are carried and then continue with the next band. |
5222 | | * Do so as a fallback for the Pluto-like scheduler. |
5223 | | */ |
5224 | | static __isl_give isl_schedule_node *carry_dependences( |
5225 | | __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) |
5226 | 9 | { |
5227 | 9 | return carry_fallback(node, graph, 0); |
5228 | 9 | } |
5229 | | |
5230 | | /* Construct a schedule row for each node such that as many validity or |
5231 | | * coincidence dependences as possible are carried and |
5232 | | * then continue with the next band. |
5233 | | * Do so as a fallback for the Pluto-like scheduler. |
5234 | | */ |
5235 | | static __isl_give isl_schedule_node *carry_coincidence( |
5236 | | __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) |
5237 | 5 | { |
5238 | 5 | return carry_fallback(node, graph, 1); |
5239 | 5 | } |
5240 | | |
5241 | | /* Topologically sort statements mapped to the same schedule iteration |
5242 | | * and add insert a sequence node in front of "node" |
5243 | | * corresponding to this order. |
5244 | | * If "initialized" is set, then it may be assumed that compute_maxvar |
5245 | | * has been called on the current band. Otherwise, call |
5246 | | * compute_maxvar if and before carry_dependences gets called. |
5247 | | * |
5248 | | * If it turns out to be impossible to sort the statements apart, |
5249 | | * because different dependences impose different orderings |
5250 | | * on the statements, then we extend the schedule such that |
5251 | | * it carries at least one more dependence. |
5252 | | */ |
5253 | | static __isl_give isl_schedule_node *sort_statements( |
5254 | | __isl_take isl_schedule_node *node, struct isl_sched_graph *graph, |
5255 | | int initialized) |
5256 | 171 | { |
5257 | 171 | isl_ctx *ctx; |
5258 | 171 | isl_union_set_list *filters; |
5259 | 171 | |
5260 | 171 | if (!node) |
5261 | 0 | return NULL; |
5262 | 171 | |
5263 | 171 | ctx = isl_schedule_node_get_ctx(node); |
5264 | 171 | if (graph->n < 1) |
5265 | 171 | isl_die0 (ctx, isl_error_internal, |
5266 | 171 | "graph should have at least one node", |
5267 | 171 | return isl_schedule_node_free(node)); |
5268 | 171 | |
5269 | 171 | if (graph->n == 1) |
5270 | 153 | return node; |
5271 | 18 | |
5272 | 18 | if (update_edges(ctx, graph) < 0) |
5273 | 0 | return isl_schedule_node_free(node); |
5274 | 18 | |
5275 | 18 | if (graph->n_edge == 0) |
5276 | 0 | return node; |
5277 | 18 | |
5278 | 18 | if (detect_sccs(ctx, graph) < 0) |
5279 | 0 | return isl_schedule_node_free(node); |
5280 | 18 | |
5281 | 18 | next_band(graph); |
5282 | 18 | if (graph->scc < graph->n) { |
5283 | 2 | if (!initialized && compute_maxvar(graph) < 00 ) |
5284 | 0 | return isl_schedule_node_free(node); |
5285 | 2 | return carry_dependences(node, graph); |
5286 | 2 | } |
5287 | 16 | |
5288 | 16 | filters = extract_sccs(ctx, graph); |
5289 | 16 | node = isl_schedule_node_insert_sequence(node, filters); |
5290 | 16 | |
5291 | 16 | return node; |
5292 | 16 | } |
5293 | | |
5294 | | /* Are there any (non-empty) (conditional) validity edges in the graph? |
5295 | | */ |
5296 | | static int has_validity_edges(struct isl_sched_graph *graph) |
5297 | 34 | { |
5298 | 34 | int i; |
5299 | 34 | |
5300 | 46 | for (i = 0; i < graph->n_edge; ++i12 ) { |
5301 | 26 | int empty; |
5302 | 26 | |
5303 | 26 | empty = isl_map_plain_is_empty(graph->edge[i].map); |
5304 | 26 | if (empty < 0) |
5305 | 0 | return -1; |
5306 | 26 | if (empty) |
5307 | 10 | continue; |
5308 | 16 | if (is_any_validity(&graph->edge[i])) |
5309 | 14 | return 1; |
5310 | 16 | } |
5311 | 34 | |
5312 | 34 | return 020 ; |
5313 | 34 | } |
5314 | | |
5315 | | /* Should we apply a Feautrier step? |
5316 | | * That is, did the user request the Feautrier algorithm and are |
5317 | | * there any validity dependences (left)? |
5318 | | */ |
5319 | | static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph) |
5320 | 321 | { |
5321 | 321 | if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER) |
5322 | 321 | return 0287 ; |
5323 | 34 | |
5324 | 34 | return has_validity_edges(graph); |
5325 | 34 | } |
5326 | | |
5327 | | /* Compute a schedule for a connected dependence graph using Feautrier's |
5328 | | * multi-dimensional scheduling algorithm and return the updated schedule node. |
5329 | | * |
5330 | | * The original algorithm is described in [1]. |
5331 | | * The main idea is to minimize the number of scheduling dimensions, by |
5332 | | * trying to satisfy as many dependences as possible per scheduling dimension. |
5333 | | * |
5334 | | * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling |
5335 | | * Problem, Part II: Multi-Dimensional Time. |
5336 | | * In Intl. Journal of Parallel Programming, 1992. |
5337 | | */ |
5338 | | static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier( |
5339 | | isl_schedule_node *node, struct isl_sched_graph *graph) |
5340 | 14 | { |
5341 | 14 | return carry_feautrier(node, graph); |
5342 | 14 | } |
5343 | | |
5344 | | /* Turn off the "local" bit on all (condition) edges. |
5345 | | */ |
5346 | | static void clear_local_edges(struct isl_sched_graph *graph) |
5347 | 381 | { |
5348 | 381 | int i; |
5349 | 381 | |
5350 | 733 | for (i = 0; i < graph->n_edge; ++i352 ) |
5351 | 352 | if (is_condition(&graph->edge[i])) |
5352 | 44 | clear_local(&graph->edge[i]); |
5353 | 381 | } |
5354 | | |
5355 | | /* Does "graph" have both condition and conditional validity edges? |
5356 | | */ |
5357 | | static int need_condition_check(struct isl_sched_graph *graph) |
5358 | 381 | { |
5359 | 381 | int i; |
5360 | 381 | int any_condition = 0; |
5361 | 381 | int any_conditional_validity = 0; |
5362 | 381 | |
5363 | 733 | for (i = 0; i < graph->n_edge; ++i352 ) { |
5364 | 352 | if (is_condition(&graph->edge[i])) |
5365 | 44 | any_condition = 1; |
5366 | 352 | if (is_conditional_validity(&graph->edge[i])) |
5367 | 45 | any_conditional_validity = 1; |
5368 | 352 | } |
5369 | 381 | |
5370 | 381 | return any_condition && any_conditional_validity27 ; |
5371 | 381 | } |
5372 | | |
5373 | | /* Does "graph" contain any coincidence edge? |
5374 | | */ |
5375 | | static int has_any_coincidence(struct isl_sched_graph *graph) |
5376 | 381 | { |
5377 | 381 | int i; |
5378 | 381 | |
5379 | 526 | for (i = 0; i < graph->n_edge; ++i145 ) |
5380 | 298 | if (is_coincidence(&graph->edge[i])) |
5381 | 153 | return 1; |
5382 | 381 | |
5383 | 381 | return 0228 ; |
5384 | 381 | } |
5385 | | |
5386 | | /* Extract the final schedule row as a map with the iteration domain |
5387 | | * of "node" as domain. |
5388 | | */ |
5389 | | static __isl_give isl_map *final_row(struct isl_sched_node *node) |
5390 | 142 | { |
5391 | 142 | isl_multi_aff *ma; |
5392 | 142 | int row; |
5393 | 142 | |
5394 | 142 | row = isl_mat_rows(node->sched) - 1; |
5395 | 142 | ma = node_extract_partial_schedule_multi_aff(node, row, 1); |
5396 | 142 | return isl_map_from_multi_aff(ma); |
5397 | 142 | } |
5398 | | |
5399 | | /* Is the conditional validity dependence in the edge with index "edge_index" |
5400 | | * violated by the latest (i.e., final) row of the schedule? |
5401 | | * That is, is i scheduled after j |
5402 | | * for any conditional validity dependence i -> j? |
5403 | | */ |
5404 | | static int is_violated(struct isl_sched_graph *graph, int edge_index) |
5405 | 71 | { |
5406 | 71 | isl_map *src_sched, *dst_sched, *map; |
5407 | 71 | struct isl_sched_edge *edge = &graph->edge[edge_index]; |
5408 | 71 | int empty; |
5409 | 71 | |
5410 | 71 | src_sched = final_row(edge->src); |
5411 | 71 | dst_sched = final_row(edge->dst); |
5412 | 71 | map = isl_map_copy(edge->map); |
5413 | 71 | map = isl_map_apply_domain(map, src_sched); |
5414 | 71 | map = isl_map_apply_range(map, dst_sched); |
5415 | 71 | map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0); |
5416 | 71 | empty = isl_map_is_empty(map); |
5417 | 71 | isl_map_free(map); |
5418 | 71 | |
5419 | 71 | if (empty < 0) |
5420 | 0 | return -1; |
5421 | 71 | |
5422 | 71 | return !empty; |
5423 | 71 | } |
5424 | | |
5425 | | /* Does "graph" have any satisfied condition edges that |
5426 | | * are adjacent to the conditional validity constraint with |
5427 | | * domain "conditional_source" and range "conditional_sink"? |
5428 | | * |
|