Coverage Report

Created: 2019-07-24 05:18

/Users/buildslave/jenkins/workspace/clang-stage2-coverage-R/llvm/tools/polly/lib/Support/SCEVAffinator.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--------- SCEVAffinator.cpp  - Create Scops from LLVM IR -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Create a polyhedral description for a SCEV value.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "polly/Support/SCEVAffinator.h"
14
#include "polly/Options.h"
15
#include "polly/ScopInfo.h"
16
#include "polly/Support/GICHelper.h"
17
#include "polly/Support/SCEVValidator.h"
18
#include "isl/aff.h"
19
#include "isl/local_space.h"
20
#include "isl/set.h"
21
#include "isl/val.h"
22
23
using namespace llvm;
24
using namespace polly;
25
26
static cl::opt<bool> IgnoreIntegerWrapping(
27
    "polly-ignore-integer-wrapping",
28
    cl::desc("Do not build run-time checks to proof absence of integer "
29
             "wrapping"),
30
    cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));
31
32
// The maximal number of basic sets we allow during the construction of a
33
// piecewise affine function. More complex ones will result in very high
34
// compile time.
35
static int const MaxDisjunctionsInPwAff = 100;
36
37
// The maximal number of bits for which a general expression is modeled
38
// precisely.
39
static unsigned const MaxSmallBitWidth = 7;
40
41
/// Add the number of basic sets in @p Domain to @p User
42
static isl_stat addNumBasicSets(__isl_take isl_set *Domain,
43
709
                                __isl_take isl_aff *Aff, void *User) {
44
709
  auto *NumBasicSets = static_cast<unsigned *>(User);
45
709
  *NumBasicSets += isl_set_n_basic_set(Domain);
46
709
  isl_set_free(Domain);
47
709
  isl_aff_free(Aff);
48
709
  return isl_stat_ok;
49
709
}
50
51
/// Determine if @p PWAC is too complex to continue.
52
374
static bool isTooComplex(PWACtx PWAC) {
53
374
  unsigned NumBasicSets = 0;
54
374
  isl_pw_aff_foreach_piece(PWAC.first.get(), addNumBasicSets, &NumBasicSets);
55
374
  if (NumBasicSets <= MaxDisjunctionsInPwAff)
56
372
    return false;
57
2
  return true;
58
2
}
59
60
/// Return the flag describing the possible wrapping of @p Expr.
61
23.2k
static SCEV::NoWrapFlags getNoWrapFlags(const SCEV *Expr) {
62
23.2k
  if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
63
9.84k
    return NAry->getNoWrapFlags();
64
13.3k
  return SCEV::NoWrapMask;
65
13.3k
}
66
67
static PWACtx combine(PWACtx PWAC0, PWACtx PWAC1,
68
                      __isl_give isl_pw_aff *(Fn)(__isl_take isl_pw_aff *,
69
14.2k
                                                  __isl_take isl_pw_aff *)) {
70
14.2k
  PWAC0.first = isl::manage(Fn(PWAC0.first.release(), PWAC1.first.release()));
71
14.2k
  PWAC0.second = PWAC0.second.unite(PWAC1.second);
72
14.2k
  return PWAC0;
73
14.2k
}
74
75
static __isl_give isl_pw_aff *getWidthExpValOnDomain(unsigned Width,
76
2.98k
                                                     __isl_take isl_set *Dom) {
77
2.98k
  auto *Ctx = isl_set_get_ctx(Dom);
78
2.98k
  auto *WidthVal = isl_val_int_from_ui(Ctx, Width);
79
2.98k
  auto *ExpVal = isl_val_2exp(WidthVal);
80
2.98k
  return isl_pw_aff_val_on_domain(Dom, ExpVal);
81
2.98k
}
82
83
SCEVAffinator::SCEVAffinator(Scop *S, LoopInfo &LI)
84
    : S(S), Ctx(S->getIslCtx().get()), SE(*S->getSE()), LI(LI),
85
1.20k
      TD(S->getFunction().getParent()->getDataLayout()) {}
86
87
12.6k
Loop *SCEVAffinator::getScope() { return BB ? 
LI.getLoopFor(BB)12.2k
:
nullptr410
; }
88
89
45
void SCEVAffinator::interpretAsUnsigned(PWACtx &PWAC, unsigned Width) {
90
45
  auto *NonNegDom = isl_pw_aff_nonneg_set(PWAC.first.copy());
91
45
  auto *NonNegPWA =
92
45
      isl_pw_aff_intersect_domain(PWAC.first.copy(), isl_set_copy(NonNegDom));
93
45
  auto *ExpPWA = getWidthExpValOnDomain(Width, isl_set_complement(NonNegDom));
94
45
  PWAC.first = isl::manage(isl_pw_aff_union_add(
95
45
      NonNegPWA, isl_pw_aff_add(PWAC.first.release(), ExpPWA)));
96
45
}
97
98
164
void SCEVAffinator::takeNonNegativeAssumption(PWACtx &PWAC) {
99
164
  auto *NegPWA = isl_pw_aff_neg(PWAC.first.copy());
100
164
  auto *NegDom = isl_pw_aff_pos_set(NegPWA);
101
164
  PWAC.second =
102
164
      isl::manage(isl_set_union(PWAC.second.release(), isl_set_copy(NegDom)));
103
164
  auto *Restriction = BB ? 
NegDom156
:
isl_set_params(NegDom)8
;
104
164
  auto DL = BB ? 
BB->getTerminator()->getDebugLoc()156
:
DebugLoc()8
;
105
164
  S->recordAssumption(UNSIGNED, isl::manage(Restriction), DL, AS_RESTRICTION,
106
164
                      BB);
107
164
}
108
109
19.8k
PWACtx SCEVAffinator::getPWACtxFromPWA(isl::pw_aff PWA) {
110
19.8k
  return std::make_pair(PWA, isl::set::empty(isl::space(Ctx, 0, NumIterators)));
111
19.8k
}
112
113
10.2k
PWACtx SCEVAffinator::getPwAff(const SCEV *Expr, BasicBlock *BB) {
114
10.2k
  this->BB = BB;
115
10.2k
116
10.2k
  if (BB) {
117
9.74k
    auto *DC = S->getDomainConditions(BB).release();
118
9.74k
    NumIterators = isl_set_n_dim(DC);
119
9.74k
    isl_set_free(DC);
120
9.74k
  } else
121
541
    NumIterators = 0;
122
10.2k
123
10.2k
  return visit(Expr);
124
10.2k
}
125
126
23.2k
PWACtx SCEVAffinator::checkForWrapping(const SCEV *Expr, PWACtx PWAC) const {
127
23.2k
  // If the SCEV flags do contain NSW (no signed wrap) then PWA already
128
23.2k
  // represents Expr in modulo semantic (it is not allowed to overflow), thus we
129
23.2k
  // are done. Otherwise, we will compute:
130
23.2k
  //   PWA = ((PWA + 2^(n-1)) mod (2 ^ n)) - 2^(n-1)
131
23.2k
  // whereas n is the number of bits of the Expr, hence:
132
23.2k
  //   n = bitwidth(ExprType)
133
23.2k
134
23.2k
  if (IgnoreIntegerWrapping || (getNoWrapFlags(Expr) & SCEV::FlagNSW))
135
20.3k
    return PWAC;
136
2.84k
137
2.84k
  isl::pw_aff PWAMod = addModuloSemantic(PWAC.first, Expr->getType());
138
2.84k
139
2.84k
  isl::set NotEqualSet = PWAC.first.ne_set(PWAMod);
140
2.84k
  PWAC.second = PWAC.second.unite(NotEqualSet).coalesce();
141
2.84k
142
2.84k
  const DebugLoc &Loc = BB ? 
BB->getTerminator()->getDebugLoc()2.83k
:
DebugLoc()6
;
143
2.84k
  if (!BB)
144
6
    NotEqualSet = NotEqualSet.params();
145
2.84k
  NotEqualSet = NotEqualSet.coalesce();
146
2.84k
147
2.84k
  if (!NotEqualSet.is_empty())
148
2.83k
    S->recordAssumption(WRAPPING, NotEqualSet, Loc, AS_RESTRICTION, BB);
149
2.84k
150
2.84k
  return PWAC;
151
2.84k
}
152
153
isl::pw_aff SCEVAffinator::addModuloSemantic(isl::pw_aff PWA,
154
2.92k
                                             Type *ExprType) const {
155
2.92k
  unsigned Width = TD.getTypeSizeInBits(ExprType);
156
2.92k
157
2.92k
  auto ModVal = isl::val::int_from_ui(Ctx, Width);
158
2.92k
  ModVal = ModVal.pow2();
159
2.92k
160
2.92k
  isl::set Domain = PWA.domain();
161
2.92k
  isl::pw_aff AddPW =
162
2.92k
      isl::manage(getWidthExpValOnDomain(Width - 1, Domain.release()));
163
2.92k
164
2.92k
  return PWA.add(AddPW).mod(ModVal).sub(AddPW);
165
2.92k
}
166
167
1.69k
bool SCEVAffinator::hasNSWAddRecForLoop(Loop *L) const {
168
10.6k
  for (const auto &CachedPair : CachedExpressions) {
169
10.6k
    auto *AddRec = dyn_cast<SCEVAddRecExpr>(CachedPair.first.first);
170
10.6k
    if (!AddRec)
171
6.49k
      continue;
172
4.16k
    if (AddRec->getLoop() != L)
173
2.27k
      continue;
174
1.88k
    if (AddRec->getNoWrapFlags() & SCEV::FlagNSW)
175
1.31k
      return true;
176
1.88k
  }
177
1.69k
178
1.69k
  
return false386
;
179
1.69k
}
180
181
36.0k
bool SCEVAffinator::computeModuloForExpr(const SCEV *Expr) {
182
36.0k
  unsigned Width = TD.getTypeSizeInBits(Expr->getType());
183
36.0k
  // We assume nsw expressions never overflow.
184
36.0k
  if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
185
15.0k
    if (NAry->getNoWrapFlags() & SCEV::FlagNSW)
186
10.6k
      return false;
187
25.4k
  return Width <= MaxSmallBitWidth;
188
25.4k
}
189
190
17.3k
PWACtx SCEVAffinator::visit(const SCEV *Expr) {
191
17.3k
192
17.3k
  auto Key = std::make_pair(Expr, BB);
193
17.3k
  PWACtx PWAC = CachedExpressions[Key];
194
17.3k
  if (PWAC.first)
195
4.74k
    return PWAC;
196
12.6k
197
12.6k
  auto ConstantAndLeftOverPair = extractConstantFactor(Expr, SE);
198
12.6k
  auto *Factor = ConstantAndLeftOverPair.first;
199
12.6k
  Expr = ConstantAndLeftOverPair.second;
200
12.6k
201
12.6k
  auto *Scope = getScope();
202
12.6k
  S->addParams(getParamsInAffineExpr(&S->getRegion(), Scope, Expr, SE));
203
12.6k
204
12.6k
  // In case the scev is a valid parameter, we do not further analyze this
205
12.6k
  // expression, but create a new parameter in the isl_pw_aff. This allows us
206
12.6k
  // to treat subexpressions that we cannot translate into an piecewise affine
207
12.6k
  // expression, as constant parameters of the piecewise affine expression.
208
12.6k
  if (isl_id *Id = S->getIdForParam(Expr).release()) {
209
1.85k
    isl_space *Space = isl_space_set_alloc(Ctx.get(), 1, NumIterators);
210
1.85k
    Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);
211
1.85k
212
1.85k
    isl_set *Domain = isl_set_universe(isl_space_copy(Space));
213
1.85k
    isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
214
1.85k
    Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);
215
1.85k
216
1.85k
    PWAC = getPWACtxFromPWA(isl::manage(isl_pw_aff_alloc(Domain, Affine)));
217
10.7k
  } else {
218
10.7k
    PWAC = SCEVVisitor<SCEVAffinator, PWACtx>::visit(Expr);
219
10.7k
    if (computeModuloForExpr(Expr))
220
61
      PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
221
10.6k
    else
222
10.6k
      PWAC = checkForWrapping(Expr, PWAC);
223
10.7k
  }
224
12.6k
225
12.6k
  if (!Factor->getType()->isIntegerTy(1)) {
226
12.5k
    PWAC = combine(PWAC, visitConstant(Factor), isl_pw_aff_mul);
227
12.5k
    if (computeModuloForExpr(Key.first))
228
19
      PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
229
12.5k
  }
230
12.6k
231
12.6k
  // For compile time reasons we need to simplify the PWAC before we cache and
232
12.6k
  // return it.
233
12.6k
  PWAC.first = PWAC.first.coalesce();
234
12.6k
  if (!computeModuloForExpr(Key.first))
235
12.5k
    PWAC = checkForWrapping(Key.first, PWAC);
236
12.6k
237
12.6k
  CachedExpressions[Key] = PWAC;
238
12.6k
  return PWAC;
239
12.6k
}
240
241
17.9k
PWACtx SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
242
17.9k
  ConstantInt *Value = Expr->getValue();
243
17.9k
  isl_val *v;
244
17.9k
245
17.9k
  // LLVM does not define if an integer value is interpreted as a signed or
246
17.9k
  // unsigned value. Hence, without further information, it is unknown how
247
17.9k
  // this value needs to be converted to GMP. At the moment, we only support
248
17.9k
  // signed operations. So we just interpret it as signed. Later, there are
249
17.9k
  // two options:
250
17.9k
  //
251
17.9k
  // 1. We always interpret any value as signed and convert the values on
252
17.9k
  //    demand.
253
17.9k
  // 2. We pass down the signedness of the calculation and use it to interpret
254
17.9k
  //    this constant correctly.
255
17.9k
  v = isl_valFromAPInt(Ctx.get(), Value->getValue(), /* isSigned */ true);
256
17.9k
257
17.9k
  isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
258
17.9k
  isl_local_space *ls = isl_local_space_from_space(Space);
259
17.9k
  return getPWACtxFromPWA(
260
17.9k
      isl::manage(isl_pw_aff_from_aff(isl_aff_val_on_domain(ls, v))));
261
17.9k
}
262
263
51
PWACtx SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
264
51
  // Truncate operations are basically modulo operations, thus we can
265
51
  // model them that way. However, for large types we assume the operand
266
51
  // to fit in the new type size instead of introducing a modulo with a very
267
51
  // large constant.
268
51
269
51
  auto *Op = Expr->getOperand();
270
51
  auto OpPWAC = visit(Op);
271
51
272
51
  unsigned Width = TD.getTypeSizeInBits(Expr->getType());
273
51
274
51
  if (computeModuloForExpr(Expr))
275
37
    return OpPWAC;
276
14
277
14
  auto *Dom = OpPWAC.first.domain().release();
278
14
  auto *ExpPWA = getWidthExpValOnDomain(Width - 1, Dom);
279
14
  auto *GreaterDom =
280
14
      isl_pw_aff_ge_set(OpPWAC.first.copy(), isl_pw_aff_copy(ExpPWA));
281
14
  auto *SmallerDom =
282
14
      isl_pw_aff_lt_set(OpPWAC.first.copy(), isl_pw_aff_neg(ExpPWA));
283
14
  auto *OutOfBoundsDom = isl_set_union(SmallerDom, GreaterDom);
284
14
  OpPWAC.second = OpPWAC.second.unite(isl::manage_copy(OutOfBoundsDom));
285
14
286
14
  if (!BB) {
287
1
    assert(isl_set_dim(OutOfBoundsDom, isl_dim_set) == 0 &&
288
1
           "Expected a zero dimensional set for non-basic-block domains");
289
1
    OutOfBoundsDom = isl_set_params(OutOfBoundsDom);
290
1
  }
291
14
292
14
  S->recordAssumption(UNSIGNED, isl::manage(OutOfBoundsDom), DebugLoc(),
293
14
                      AS_RESTRICTION, BB);
294
14
295
14
  return OpPWAC;
296
14
}
297
298
113
PWACtx SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
299
113
  // A zero-extended value can be interpreted as a piecewise defined signed
300
113
  // value. If the value was non-negative it stays the same, otherwise it
301
113
  // is the sum of the original value and 2^n where n is the bit-width of
302
113
  // the original (or operand) type. Examples:
303
113
  //   zext i8 127 to i32 -> { [127] }
304
113
  //   zext i8  -1 to i32 -> { [256 + (-1)] } = { [255] }
305
113
  //   zext i8  %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }
306
113
  //
307
113
  // However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
308
113
  // truncate) to represent some forms of modulo computation. The left-hand side
309
113
  // of the condition in the code below would result in the SCEV
310
113
  // "zext i1 <false, +, true>for.body" which is just another description
311
113
  // of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".
312
113
  //
313
113
  //   for (i = 0; i < N; i++)
314
113
  //     if (i & 1 != 0 /* == i % 2 */)
315
113
  //       /* do something */
316
113
  //
317
113
  // If we do not make the modulo explicit but only use the mechanism described
318
113
  // above we will get the very restrictive assumption "N < 3", because for all
319
113
  // values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
320
113
  // Alternatively, we can make the modulo in the operand explicit in the
321
113
  // resulting piecewise function and thereby avoid the assumption on N. For the
322
113
  // example this would result in the following piecewise affine function:
323
113
  // { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
324
113
  //   [i0] -> [(0)] : 2*floor((i0)/2) = i0 }
325
113
  // To this end we can first determine if the (immediate) operand of the
326
113
  // zero-extend can wrap and, in case it might, we will use explicit modulo
327
113
  // semantic to compute the result instead of emitting non-wrapping
328
113
  // assumptions.
329
113
  //
330
113
  // Note that operands with large bit-widths are less likely to be negative
331
113
  // because it would result in a very large access offset or loop bound after
332
113
  // the zero-extend. To this end one can optimistically assume the operand to
333
113
  // be positive and avoid the piecewise definition if the bit-width is bigger
334
113
  // than some threshold (here MaxZextSmallBitWidth).
335
113
  //
336
113
  // We choose to go with a hybrid solution of all modeling techniques described
337
113
  // above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
338
113
  // wrapping explicitly and use a piecewise defined function. However, if the
339
113
  // bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
340
113
  // assumptions and assume the "former negative" piece will not exist.
341
113
342
113
  auto *Op = Expr->getOperand();
343
113
  auto OpPWAC = visit(Op);
344
113
345
113
  // If the width is to big we assume the negative part does not occur.
346
113
  if (!computeModuloForExpr(Op)) {
347
68
    takeNonNegativeAssumption(OpPWAC);
348
68
    return OpPWAC;
349
68
  }
350
45
351
45
  // If the width is small build the piece for the non-negative part and
352
45
  // the one for the negative part and unify them.
353
45
  unsigned Width = TD.getTypeSizeInBits(Op->getType());
354
45
  interpretAsUnsigned(OpPWAC, Width);
355
45
  return OpPWAC;
356
45
}
357
358
381
PWACtx SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
359
381
  // As all values are represented as signed, a sign extension is a noop.
360
381
  return visit(Expr->getOperand());
361
381
}
362
363
262
PWACtx SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
364
262
  PWACtx Sum = visit(Expr->getOperand(0));
365
262
366
557
  for (int i = 1, e = Expr->getNumOperands(); i < e; 
++i295
) {
367
296
    Sum = combine(Sum, visit(Expr->getOperand(i)), isl_pw_aff_add);
368
296
    if (isTooComplex(Sum))
369
1
      return complexityBailout();
370
296
  }
371
262
372
262
  
return Sum261
;
373
262
}
374
375
1
PWACtx SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
376
1
  PWACtx Prod = visit(Expr->getOperand(0));
377
1
378
2
  for (int i = 1, e = Expr->getNumOperands(); i < e; 
++i1
) {
379
1
    Prod = combine(Prod, visit(Expr->getOperand(i)), isl_pw_aff_mul);
380
1
    if (isTooComplex(Prod))
381
0
      return complexityBailout();
382
1
  }
383
1
384
1
  return Prod;
385
1
}
386
387
4.32k
PWACtx SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
388
4.32k
  assert(Expr->isAffine() && "Only affine AddRecurrences allowed");
389
4.32k
390
4.32k
  auto Flags = Expr->getNoWrapFlags();
391
4.32k
392
4.32k
  // Directly generate isl_pw_aff for Expr if 'start' is zero.
393
4.32k
  if (Expr->getStart()->isZero()) {
394
3.12k
    assert(S->contains(Expr->getLoop()) &&
395
3.12k
           "Scop does not contain the loop referenced in this AddRec");
396
3.12k
397
3.12k
    PWACtx Step = visit(Expr->getOperand(1));
398
3.12k
    isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
399
3.12k
    isl_local_space *LocalSpace = isl_local_space_from_space(Space);
400
3.12k
401
3.12k
    unsigned loopDimension = S->getRelativeLoopDepth(Expr->getLoop());
402
3.12k
403
3.12k
    isl_aff *LAff = isl_aff_set_coefficient_si(
404
3.12k
        isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
405
3.12k
    isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);
406
3.12k
407
3.12k
    Step.first = Step.first.mul(isl::manage(LPwAff));
408
3.12k
    return Step;
409
3.12k
  }
410
1.20k
411
1.20k
  // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
412
1.20k
  // if 'start' is not zero.
413
1.20k
  // TODO: Using the original SCEV no-wrap flags is not always safe, however
414
1.20k
  //       as our code generation is reordering the expression anyway it doesn't
415
1.20k
  //       really matter.
416
1.20k
  const SCEV *ZeroStartExpr =
417
1.20k
      SE.getAddRecExpr(SE.getConstant(Expr->getStart()->getType(), 0),
418
1.20k
                       Expr->getStepRecurrence(SE), Expr->getLoop(), Flags);
419
1.20k
420
1.20k
  PWACtx Result = visit(ZeroStartExpr);
421
1.20k
  PWACtx Start = visit(Expr->getStart());
422
1.20k
  Result = combine(Result, Start, isl_pw_aff_add);
423
1.20k
  return Result;
424
1.20k
}
425
426
65
PWACtx SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
427
65
  PWACtx Max = visit(Expr->getOperand(0));
428
65
429
136
  for (int i = 1, e = Expr->getNumOperands(); i < e; 
++i71
) {
430
72
    Max = combine(Max, visit(Expr->getOperand(i)), isl_pw_aff_max);
431
72
    if (isTooComplex(Max))
432
1
      return complexityBailout();
433
72
  }
434
65
435
65
  
return Max64
;
436
65
}
437
438
4
PWACtx SCEVAffinator::visitSMinExpr(const SCEVSMinExpr *Expr) {
439
4
  PWACtx Min = visit(Expr->getOperand(0));
440
4
441
9
  for (int i = 1, e = Expr->getNumOperands(); i < e; 
++i5
) {
442
5
    Min = combine(Min, visit(Expr->getOperand(i)), isl_pw_aff_min);
443
5
    if (isTooComplex(Min))
444
0
      return complexityBailout();
445
5
  }
446
4
447
4
  return Min;
448
4
}
449
450
0
PWACtx SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
451
0
  llvm_unreachable("SCEVUMaxExpr not yet supported");
452
0
}
453
454
0
PWACtx SCEVAffinator::visitUMinExpr(const SCEVUMinExpr *Expr) {
455
0
  llvm_unreachable("SCEVUMinExpr not yet supported");
456
0
}
457
458
53
PWACtx SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
459
53
  // The handling of unsigned division is basically the same as for signed
460
53
  // division, except the interpretation of the operands. As the divisor
461
53
  // has to be constant in both cases we can simply interpret it as an
462
53
  // unsigned value without additional complexity in the representation.
463
53
  // For the dividend we could choose from the different representation
464
53
  // schemes introduced for zero-extend operations but for now we will
465
53
  // simply use an assumption.
466
53
  auto *Dividend = Expr->getLHS();
467
53
  auto *Divisor = Expr->getRHS();
468
53
  assert(isa<SCEVConstant>(Divisor) &&
469
53
         "UDiv is no parameter but has a non-constant RHS.");
470
53
471
53
  auto DividendPWAC = visit(Dividend);
472
53
  auto DivisorPWAC = visit(Divisor);
473
53
474
53
  if (SE.isKnownNegative(Divisor)) {
475
2
    // Interpret negative divisors unsigned. This is a special case of the
476
2
    // piece-wise defined value described for zero-extends as we already know
477
2
    // the actual value of the constant divisor.
478
2
    unsigned Width = TD.getTypeSizeInBits(Expr->getType());
479
2
    auto *DivisorDom = DivisorPWAC.first.domain().release();
480
2
    auto *WidthExpPWA = getWidthExpValOnDomain(Width, DivisorDom);
481
2
    DivisorPWAC.first = DivisorPWAC.first.add(isl::manage(WidthExpPWA));
482
2
  }
483
53
484
53
  // TODO: One can represent the dividend as piece-wise function to be more
485
53
  //       precise but therefor a heuristic is needed.
486
53
487
53
  // Assume a non-negative dividend.
488
53
  takeNonNegativeAssumption(DividendPWAC);
489
53
490
53
  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_div);
491
53
  DividendPWAC.first = DividendPWAC.first.floor();
492
53
493
53
  return DividendPWAC;
494
53
}
495
496
43
PWACtx SCEVAffinator::visitSDivInstruction(Instruction *SDiv) {
497
43
  assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!");
498
43
499
43
  auto *Scope = getScope();
500
43
  auto *Divisor = SDiv->getOperand(1);
501
43
  auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
502
43
  auto DivisorPWAC = visit(DivisorSCEV);
503
43
  assert(isa<SCEVConstant>(DivisorSCEV) &&
504
43
         "SDiv is no parameter but has a non-constant RHS.");
505
43
506
43
  auto *Dividend = SDiv->getOperand(0);
507
43
  auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
508
43
  auto DividendPWAC = visit(DividendSCEV);
509
43
  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_q);
510
43
  return DividendPWAC;
511
43
}
512
513
37
PWACtx SCEVAffinator::visitSRemInstruction(Instruction *SRem) {
514
37
  assert(SRem->getOpcode() == Instruction::SRem && "Assumed SRem instruction!");
515
37
516
37
  auto *Scope = getScope();
517
37
  auto *Divisor = SRem->getOperand(1);
518
37
  auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
519
37
  auto DivisorPWAC = visit(DivisorSCEV);
520
37
  assert(isa<ConstantInt>(Divisor) &&
521
37
         "SRem is no parameter but has a non-constant RHS.");
522
37
523
37
  auto *Dividend = SRem->getOperand(0);
524
37
  auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
525
37
  auto DividendPWAC = visit(DividendSCEV);
526
37
  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_r);
527
37
  return DividendPWAC;
528
37
}
529
530
92
PWACtx SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
531
92
  if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
532
92
    switch (I->getOpcode()) {
533
92
    case Instruction::IntToPtr:
534
4
      return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
535
92
    case Instruction::PtrToInt:
536
8
      return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
537
92
    case Instruction::SDiv:
538
43
      return visitSDivInstruction(I);
539
92
    case Instruction::SRem:
540
37
      return visitSRemInstruction(I);
541
92
    default:
542
0
      break; // Fall through.
543
0
    }
544
0
  }
545
0
546
0
  llvm_unreachable(
547
0
      "Unknowns SCEV was neither parameter nor a valid instruction.");
548
0
}
549
550
2
PWACtx SCEVAffinator::complexityBailout() {
551
2
  // We hit the complexity limit for affine expressions; invalidate the scop
552
2
  // and return a constant zero.
553
2
  const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : 
DebugLoc()0
;
554
2
  S->invalidate(COMPLEXITY, Loc);
555
2
  return visit(SE.getZero(Type::getInt32Ty(S->getFunction().getContext())));
556
2
}