/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/include/clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h
Line | Count | Source (jump to first uncovered line) |
1 | | //== RangedConstraintManager.h ----------------------------------*- C++ -*--==// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // Ranged constraint manager, built on SimpleConstraintManager. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H |
14 | | #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H |
15 | | |
16 | | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
17 | | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
18 | | #include "clang/StaticAnalyzer/Core/PathSensitive/SimpleConstraintManager.h" |
19 | | #include "llvm/ADT/APSInt.h" |
20 | | #include "llvm/Support/Allocator.h" |
21 | | |
22 | | namespace clang { |
23 | | |
24 | | namespace ento { |
25 | | |
26 | | /// A Range represents the closed range [from, to]. The caller must |
27 | | /// guarantee that from <= to. Note that Range is immutable, so as not |
28 | | /// to subvert RangeSet's immutability. |
29 | | class Range { |
30 | | public: |
31 | 1.94M | Range(const llvm::APSInt &From, const llvm::APSInt &To) : Impl(&From, &To) { |
32 | 1.94M | assert(From <= To); |
33 | 1.94M | } |
34 | | |
35 | 289k | Range(const llvm::APSInt &Point) : Range(Point, Point) {} Unexecuted instantiation: clang::ento::Range::Range(llvm::APSInt const&) clang::ento::Range::Range(llvm::APSInt const&) Line | Count | Source | 35 | 289k | Range(const llvm::APSInt &Point) : Range(Point, Point) {} |
|
36 | | |
37 | 181k | bool Includes(const llvm::APSInt &Point) const { |
38 | 181k | return From() <= Point && Point <= To()181k ; |
39 | 181k | } |
40 | 9.41M | const llvm::APSInt &From() const { return *Impl.first; } |
41 | 8.16M | const llvm::APSInt &To() const { return *Impl.second; } |
42 | 1.83M | const llvm::APSInt *getConcreteValue() const { |
43 | 1.83M | return &From() == &To() ? &From()381k : nullptr1.45M ; |
44 | 1.83M | } |
45 | | |
46 | 3.40M | void Profile(llvm::FoldingSetNodeID &ID) const { |
47 | 3.40M | ID.AddPointer(&From()); |
48 | 3.40M | ID.AddPointer(&To()); |
49 | 3.40M | } |
50 | | void dump(raw_ostream &OS) const; |
51 | | void dump() const; |
52 | | |
53 | | // In order to keep non-overlapping ranges sorted, we can compare only From |
54 | | // points. |
55 | 319k | bool operator<(const Range &RHS) const { return From() < RHS.From(); } |
56 | | |
57 | 3.07M | bool operator==(const Range &RHS) const { return Impl == RHS.Impl; } |
58 | 0 | bool operator!=(const Range &RHS) const { return !operator==(RHS); } |
59 | | |
60 | | private: |
61 | | std::pair<const llvm::APSInt *, const llvm::APSInt *> Impl; |
62 | | }; |
63 | | |
64 | | /// @class RangeSet is a persistent set of non-overlapping ranges. |
65 | | /// |
66 | | /// New RangeSet objects can be ONLY produced by RangeSet::Factory object, which |
67 | | /// also supports the most common operations performed on range sets. |
68 | | /// |
69 | | /// Empty set corresponds to an overly constrained symbol meaning that there |
70 | | /// are no possible values for that symbol. |
71 | | class RangeSet { |
72 | | public: |
73 | | class Factory; |
74 | | |
75 | | private: |
76 | | // We use llvm::SmallVector as the underlying container for the following |
77 | | // reasons: |
78 | | // |
79 | | // * Range sets are usually very simple, 1 or 2 ranges. |
80 | | // That's why llvm::ImmutableSet is not perfect. |
81 | | // |
82 | | // * Ranges in sets are NOT overlapping, so it is natural to keep them |
83 | | // sorted for efficient operations and queries. For this reason, |
84 | | // llvm::SmallSet doesn't fit the requirements, it is not sorted when it |
85 | | // is a vector. |
86 | | // |
87 | | // * Range set operations usually a bit harder than add/remove a range. |
88 | | // Complex operations might do many of those for just one range set. |
89 | | // Formerly it used to be llvm::ImmutableSet, which is inefficient for our |
90 | | // purposes as we want to make these operations BOTH immutable AND |
91 | | // efficient. |
92 | | // |
93 | | // * Iteration over ranges is widespread and a more cache-friendly |
94 | | // structure is preferred. |
95 | | using ImplType = llvm::SmallVector<Range, 4>; |
96 | | |
97 | | struct ContainerType : public ImplType, public llvm::FoldingSetNode { |
98 | 3.18M | void Profile(llvm::FoldingSetNodeID &ID) const { |
99 | 3.40M | for (const Range &It : *this) { |
100 | 3.40M | It.Profile(ID); |
101 | 3.40M | } |
102 | 3.18M | } |
103 | | }; |
104 | | // This is a non-owning pointer to an actual container. |
105 | | // The memory is fully managed by the factory and is alive as long as the |
106 | | // factory itself is alive. |
107 | | // It is a pointer as opposed to a reference, so we can easily reassign |
108 | | // RangeSet objects. |
109 | | using UnderlyingType = const ContainerType *; |
110 | | UnderlyingType Impl; |
111 | | |
112 | | public: |
113 | | using const_iterator = ImplType::const_iterator; |
114 | | |
115 | 4.05M | const_iterator begin() const { return Impl->begin(); } |
116 | 1.01M | const_iterator end() const { return Impl->end(); } |
117 | 612k | size_t size() const { return Impl->size(); } |
118 | | |
119 | 4.92M | bool isEmpty() const { return Impl->empty(); } |
120 | | |
121 | | class Factory { |
122 | | public: |
123 | 15.7k | Factory(BasicValueFactory &BV) : ValueFactory(BV) {} |
124 | | |
125 | | /// Create a new set with all ranges from both LHS and RHS. |
126 | | /// Possible intersections are not checked here. |
127 | | /// |
128 | | /// Complexity: O(N + M) |
129 | | /// where N = size(LHS), M = size(RHS) |
130 | | RangeSet add(RangeSet LHS, RangeSet RHS); |
131 | | /// Create a new set with all ranges from the original set plus the new one. |
132 | | /// Possible intersections are not checked here. |
133 | | /// |
134 | | /// Complexity: O(N) |
135 | | /// where N = size(Original) |
136 | | RangeSet add(RangeSet Original, Range Element); |
137 | | /// Create a new set with all ranges from the original set plus the point. |
138 | | /// Possible intersections are not checked here. |
139 | | /// |
140 | | /// Complexity: O(N) |
141 | | /// where N = size(Original) |
142 | | RangeSet add(RangeSet Original, const llvm::APSInt &Point); |
143 | | /// Create a new set which is a union of two given ranges. |
144 | | /// Possible intersections are not checked here. |
145 | | /// |
146 | | /// Complexity: O(N + M) |
147 | | /// where N = size(LHS), M = size(RHS) |
148 | | RangeSet unite(RangeSet LHS, RangeSet RHS); |
149 | | /// Create a new set by uniting given range set with the given range. |
150 | | /// All intersections and adjacent ranges are handled here. |
151 | | /// |
152 | | /// Complexity: O(N) |
153 | | /// where N = size(Original) |
154 | | RangeSet unite(RangeSet Original, Range Element); |
155 | | /// Create a new set by uniting given range set with the given point. |
156 | | /// All intersections and adjacent ranges are handled here. |
157 | | /// |
158 | | /// Complexity: O(N) |
159 | | /// where N = size(Original) |
160 | | RangeSet unite(RangeSet Original, llvm::APSInt Point); |
161 | | /// Create a new set by uniting given range set with the given range |
162 | | /// between points. All intersections and adjacent ranges are handled here. |
163 | | /// |
164 | | /// Complexity: O(N) |
165 | | /// where N = size(Original) |
166 | | RangeSet unite(RangeSet Original, llvm::APSInt From, llvm::APSInt To); |
167 | | |
168 | 76.8k | RangeSet getEmptySet() { return &EmptySet; } |
169 | | |
170 | | /// Create a new set with just one range. |
171 | | /// @{ |
172 | | RangeSet getRangeSet(Range Origin); |
173 | 920k | RangeSet getRangeSet(const llvm::APSInt &From, const llvm::APSInt &To) { |
174 | 920k | return getRangeSet(Range(From, To)); |
175 | 920k | } |
176 | 179k | RangeSet getRangeSet(const llvm::APSInt &Origin) { |
177 | 179k | return getRangeSet(Origin, Origin); |
178 | 179k | } |
179 | | /// @} |
180 | | |
181 | | /// Intersect the given range sets. |
182 | | /// |
183 | | /// Complexity: O(N + M) |
184 | | /// where N = size(LHS), M = size(RHS) |
185 | | RangeSet intersect(RangeSet LHS, RangeSet RHS); |
186 | | /// Intersect the given set with the closed range [Lower, Upper]. |
187 | | /// |
188 | | /// Unlike the Range type, this range uses modular arithmetic, corresponding |
189 | | /// to the common treatment of C integer overflow. Thus, if the Lower bound |
190 | | /// is greater than the Upper bound, the range is taken to wrap around. This |
191 | | /// is equivalent to taking the intersection with the two ranges [Min, |
192 | | /// Upper] and [Lower, Max], or, alternatively, /removing/ all integers |
193 | | /// between Upper and Lower. |
194 | | /// |
195 | | /// Complexity: O(N) |
196 | | /// where N = size(What) |
197 | | RangeSet intersect(RangeSet What, llvm::APSInt Lower, llvm::APSInt Upper); |
198 | | /// Intersect the given range with the given point. |
199 | | /// |
200 | | /// The result can be either an empty set or a set containing the given |
201 | | /// point depending on whether the point is in the range set. |
202 | | /// |
203 | | /// Complexity: O(logN) |
204 | | /// where N = size(What) |
205 | | RangeSet intersect(RangeSet What, llvm::APSInt Point); |
206 | | |
207 | | /// Delete the given point from the range set. |
208 | | /// |
209 | | /// Complexity: O(N) |
210 | | /// where N = size(From) |
211 | | RangeSet deletePoint(RangeSet From, const llvm::APSInt &Point); |
212 | | /// Negate the given range set. |
213 | | /// |
214 | | /// Turn all [A, B] ranges to [-B, -A], when "-" is a C-like unary minus |
215 | | /// operation under the values of the type. |
216 | | /// |
217 | | /// We also handle MIN because applying unary minus to MIN does not change |
218 | | /// it. |
219 | | /// Example 1: |
220 | | /// char x = -128; // -128 is a MIN value in a range of 'char' |
221 | | /// char y = -x; // y: -128 |
222 | | /// |
223 | | /// Example 2: |
224 | | /// unsigned char x = 0; // 0 is a MIN value in a range of 'unsigned char' |
225 | | /// unsigned char y = -x; // y: 0 |
226 | | /// |
227 | | /// And it makes us to separate the range |
228 | | /// like [MIN, N] to [MIN, MIN] U [-N, MAX]. |
229 | | /// For instance, whole range is {-128..127} and subrange is [-128,-126], |
230 | | /// thus [-128,-127,-126,...] negates to [-128,...,126,127]. |
231 | | /// |
232 | | /// Negate restores disrupted ranges on bounds, |
233 | | /// e.g. [MIN, B] => [MIN, MIN] U [-B, MAX] => [MIN, B]. |
234 | | /// |
235 | | /// Negate is a self-inverse function, i.e. negate(negate(R)) == R. |
236 | | /// |
237 | | /// Complexity: O(N) |
238 | | /// where N = size(What) |
239 | | RangeSet negate(RangeSet What); |
240 | | /// Performs promotions, truncations and conversions of the given set. |
241 | | /// |
242 | | /// This function is optimized for each of the six cast cases: |
243 | | /// - noop |
244 | | /// - conversion |
245 | | /// - truncation |
246 | | /// - truncation-conversion |
247 | | /// - promotion |
248 | | /// - promotion-conversion |
249 | | /// |
250 | | /// NOTE: This function is NOT self-inverse for truncations, because of |
251 | | /// the higher bits loss: |
252 | | /// - castTo(castTo(OrigRangeOfInt, char), int) != OrigRangeOfInt. |
253 | | /// - castTo(castTo(OrigRangeOfChar, int), char) == OrigRangeOfChar. |
254 | | /// But it is self-inverse for all the rest casts. |
255 | | /// |
256 | | /// Complexity: |
257 | | /// - Noop O(1); |
258 | | /// - Truncation O(N^2); |
259 | | /// - Another case O(N); |
260 | | /// where N = size(What) |
261 | | RangeSet castTo(RangeSet What, APSIntType Ty); |
262 | | RangeSet castTo(RangeSet What, QualType T); |
263 | | |
264 | | /// Return associated value factory. |
265 | 267k | BasicValueFactory &getValueFactory() const { return ValueFactory; } |
266 | | |
267 | | private: |
268 | | /// Return a persistent version of the given container. |
269 | | RangeSet makePersistent(ContainerType &&From); |
270 | | /// Construct a new persistent version of the given container. |
271 | | ContainerType *construct(ContainerType &&From); |
272 | | |
273 | | RangeSet intersect(const ContainerType &LHS, const ContainerType &RHS); |
274 | | /// NOTE: This function relies on the fact that all values in the |
275 | | /// containers are persistent (created via BasicValueFactory::getValue). |
276 | | ContainerType unite(const ContainerType &LHS, const ContainerType &RHS); |
277 | | |
278 | | /// This is a helper function for `castTo` method. Implies not to be used |
279 | | /// separately. |
280 | | /// Performs a truncation case of a cast operation. |
281 | | ContainerType truncateTo(RangeSet What, APSIntType Ty); |
282 | | |
283 | | /// This is a helper function for `castTo` method. Implies not to be used |
284 | | /// separately. |
285 | | /// Performs a conversion case and a promotion-conversion case for signeds |
286 | | /// of a cast operation. |
287 | | ContainerType convertTo(RangeSet What, APSIntType Ty); |
288 | | |
289 | | /// This is a helper function for `castTo` method. Implies not to be used |
290 | | /// separately. |
291 | | /// Performs a promotion for unsigneds only. |
292 | | ContainerType promoteTo(RangeSet What, APSIntType Ty); |
293 | | |
294 | | // Many operations include producing new APSInt values and that's why |
295 | | // we need this factory. |
296 | | BasicValueFactory &ValueFactory; |
297 | | // Allocator for all the created containers. |
298 | | // Containers might own their own memory and that's why it is specific |
299 | | // for the type, so it calls container destructors upon deletion. |
300 | | llvm::SpecificBumpPtrAllocator<ContainerType> Arena; |
301 | | // Usually we deal with the same ranges and range sets over and over. |
302 | | // Here we track all created containers and try not to repeat ourselves. |
303 | | llvm::FoldingSet<ContainerType> Cache; |
304 | | static ContainerType EmptySet; |
305 | | }; |
306 | | |
307 | | RangeSet(const RangeSet &) = default; |
308 | | RangeSet &operator=(const RangeSet &) = default; |
309 | | RangeSet(RangeSet &&) = default; |
310 | | RangeSet &operator=(RangeSet &&) = default; |
311 | | ~RangeSet() = default; |
312 | | |
313 | | /// Construct a new RangeSet representing '{ [From, To] }'. |
314 | | RangeSet(Factory &F, const llvm::APSInt &From, const llvm::APSInt &To) |
315 | 740k | : RangeSet(F.getRangeSet(From, To)) {} Unexecuted instantiation: clang::ento::RangeSet::RangeSet(clang::ento::RangeSet::Factory&, llvm::APSInt const&, llvm::APSInt const&) clang::ento::RangeSet::RangeSet(clang::ento::RangeSet::Factory&, llvm::APSInt const&, llvm::APSInt const&) Line | Count | Source | 315 | 740k | : RangeSet(F.getRangeSet(From, To)) {} |
|
316 | | |
317 | | /// Construct a new RangeSet representing the given point as a range. |
318 | | RangeSet(Factory &F, const llvm::APSInt &Point) |
319 | 122k | : RangeSet(F.getRangeSet(Point)) {} Unexecuted instantiation: clang::ento::RangeSet::RangeSet(clang::ento::RangeSet::Factory&, llvm::APSInt const&) clang::ento::RangeSet::RangeSet(clang::ento::RangeSet::Factory&, llvm::APSInt const&) Line | Count | Source | 319 | 122k | : RangeSet(F.getRangeSet(Point)) {} |
|
320 | | |
321 | 1.06M | static void Profile(llvm::FoldingSetNodeID &ID, const RangeSet &RS) { |
322 | 1.06M | ID.AddPointer(RS.Impl); |
323 | 1.06M | } |
324 | | |
325 | | /// Profile - Generates a hash profile of this RangeSet for use |
326 | | /// by FoldingSet. |
327 | 1.06M | void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, *this); } |
328 | | |
329 | | /// getConcreteValue - If a symbol is constrained to equal a specific integer |
330 | | /// constant then this method returns that value. Otherwise, it returns |
331 | | /// NULL. |
332 | 3.02M | const llvm::APSInt *getConcreteValue() const { |
333 | 3.02M | return Impl->size() == 1 ? begin()->getConcreteValue()1.83M : nullptr1.19M ; |
334 | 3.02M | } |
335 | | |
336 | | /// Get the minimal value covered by the ranges in the set. |
337 | | /// |
338 | | /// Complexity: O(1) |
339 | | const llvm::APSInt &getMinValue() const; |
340 | | /// Get the maximal value covered by the ranges in the set. |
341 | | /// |
342 | | /// Complexity: O(1) |
343 | | const llvm::APSInt &getMaxValue() const; |
344 | | |
345 | | bool isUnsigned() const; |
346 | | uint32_t getBitWidth() const; |
347 | | APSIntType getAPSIntType() const; |
348 | | |
349 | | /// Test whether the given point is contained by any of the ranges. |
350 | | /// |
351 | | /// Complexity: O(logN) |
352 | | /// where N = size(this) |
353 | 184k | bool contains(llvm::APSInt Point) const { return containsImpl(Point); } |
354 | | |
355 | 21.3k | bool containsZero() const { |
356 | 21.3k | APSIntType T{getMinValue()}; |
357 | 21.3k | return contains(T.getZeroValue()); |
358 | 21.3k | } |
359 | | |
360 | | /// Test if the range is the [0,0] range. |
361 | | /// |
362 | | /// Complexity: O(1) |
363 | 15.2k | bool encodesFalseRange() const { |
364 | 15.2k | const llvm::APSInt *Constant = getConcreteValue(); |
365 | 15.2k | return Constant && Constant->isZero()10.9k ; |
366 | 15.2k | } |
367 | | |
368 | | /// Test if the range doesn't contain zero. |
369 | | /// |
370 | | /// Complexity: O(logN) |
371 | | /// where N = size(this) |
372 | 4.39k | bool encodesTrueRange() const { return !containsZero(); } |
373 | | |
374 | | void dump(raw_ostream &OS) const; |
375 | | void dump() const; |
376 | | |
377 | 2.71M | bool operator==(const RangeSet &Other) const { return *Impl == *Other.Impl; } |
378 | 0 | bool operator!=(const RangeSet &Other) const { return !(*this == Other); } |
379 | | |
380 | | private: |
381 | 1.36M | /* implicit */ RangeSet(ContainerType *RawContainer) : Impl(RawContainer) {} |
382 | 0 | /* implicit */ RangeSet(UnderlyingType Ptr) : Impl(Ptr) {} |
383 | | |
384 | | /// Pin given points to the type represented by the current range set. |
385 | | /// |
386 | | /// This makes parameter points to be in-out parameters. |
387 | | /// In order to maintain consistent types across all of the ranges in the set |
388 | | /// and to keep all the operations to compare ONLY points of the same type, we |
389 | | /// need to pin every point before any operation. |
390 | | /// |
391 | | /// @Returns true if the given points can be converted to the target type |
392 | | /// without changing the values (i.e. trivially) and false otherwise. |
393 | | /// @{ |
394 | | bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const; |
395 | | bool pin(llvm::APSInt &Point) const; |
396 | | /// @} |
397 | | |
398 | | // This version of this function modifies its arguments (pins it). |
399 | | bool containsImpl(llvm::APSInt &Point) const; |
400 | | |
401 | | friend class Factory; |
402 | | }; |
403 | | |
404 | | using ConstraintMap = llvm::ImmutableMap<SymbolRef, RangeSet>; |
405 | | ConstraintMap getConstraintMap(ProgramStateRef State); |
406 | | |
407 | | class RangedConstraintManager : public SimpleConstraintManager { |
408 | | public: |
409 | | RangedConstraintManager(ExprEngine *EE, SValBuilder &SB) |
410 | 15.6k | : SimpleConstraintManager(EE, SB) {} |
411 | | |
412 | | ~RangedConstraintManager() override; |
413 | | |
414 | | //===------------------------------------------------------------------===// |
415 | | // Implementation for interface from SimpleConstraintManager. |
416 | | //===------------------------------------------------------------------===// |
417 | | |
418 | | ProgramStateRef assumeSym(ProgramStateRef State, SymbolRef Sym, |
419 | | bool Assumption) override; |
420 | | |
421 | | ProgramStateRef assumeSymInclusiveRange(ProgramStateRef State, SymbolRef Sym, |
422 | | const llvm::APSInt &From, |
423 | | const llvm::APSInt &To, |
424 | | bool InRange) override; |
425 | | |
426 | | ProgramStateRef assumeSymUnsupported(ProgramStateRef State, SymbolRef Sym, |
427 | | bool Assumption) override; |
428 | | |
429 | | protected: |
430 | | /// Assume a constraint between a symbolic expression and a concrete integer. |
431 | | virtual ProgramStateRef assumeSymRel(ProgramStateRef State, SymbolRef Sym, |
432 | | BinaryOperator::Opcode op, |
433 | | const llvm::APSInt &Int); |
434 | | |
435 | | //===------------------------------------------------------------------===// |
436 | | // Interface that subclasses must implement. |
437 | | //===------------------------------------------------------------------===// |
438 | | |
439 | | // Each of these is of the form "$Sym+Adj <> V", where "<>" is the comparison |
440 | | // operation for the method being invoked. |
441 | | |
442 | | virtual ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, |
443 | | const llvm::APSInt &V, |
444 | | const llvm::APSInt &Adjustment) = 0; |
445 | | |
446 | | virtual ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, |
447 | | const llvm::APSInt &V, |
448 | | const llvm::APSInt &Adjustment) = 0; |
449 | | |
450 | | virtual ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, |
451 | | const llvm::APSInt &V, |
452 | | const llvm::APSInt &Adjustment) = 0; |
453 | | |
454 | | virtual ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, |
455 | | const llvm::APSInt &V, |
456 | | const llvm::APSInt &Adjustment) = 0; |
457 | | |
458 | | virtual ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, |
459 | | const llvm::APSInt &V, |
460 | | const llvm::APSInt &Adjustment) = 0; |
461 | | |
462 | | virtual ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, |
463 | | const llvm::APSInt &V, |
464 | | const llvm::APSInt &Adjustment) = 0; |
465 | | |
466 | | virtual ProgramStateRef assumeSymWithinInclusiveRange( |
467 | | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
468 | | const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0; |
469 | | |
470 | | virtual ProgramStateRef assumeSymOutsideInclusiveRange( |
471 | | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
472 | | const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0; |
473 | | |
474 | | //===------------------------------------------------------------------===// |
475 | | // Internal implementation. |
476 | | //===------------------------------------------------------------------===// |
477 | | private: |
478 | | static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment); |
479 | | }; |
480 | | |
481 | | /// Try to simplify a given symbolic expression based on the constraints in |
482 | | /// State. This is needed because the Environment bindings are not getting |
483 | | /// updated when a new constraint is added to the State. If the symbol is |
484 | | /// simplified to a non-symbol (e.g. to a constant) then the original symbol |
485 | | /// is returned. We use this function in the family of assumeSymNE/EQ/LT/../GE |
486 | | /// functions where we can work only with symbols. Use the other function |
487 | | /// (simplifyToSVal) if you are interested in a simplification that may yield |
488 | | /// a concrete constant value. |
489 | | SymbolRef simplify(ProgramStateRef State, SymbolRef Sym); |
490 | | |
491 | | /// Try to simplify a given symbolic expression's associated `SVal` based on the |
492 | | /// constraints in State. This is very similar to `simplify`, but this function |
493 | | /// always returns the simplified SVal. The simplified SVal might be a single |
494 | | /// constant (i.e. `ConcreteInt`). |
495 | | SVal simplifyToSVal(ProgramStateRef State, SymbolRef Sym); |
496 | | |
497 | | } // namespace ento |
498 | | } // namespace clang |
499 | | |
500 | | REGISTER_FACTORY_WITH_PROGRAMSTATE(ConstraintMap) |
501 | | |
502 | | #endif |