/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/AST/ExprConstant.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements the Expr constant evaluator. |
10 | | // |
11 | | // Constant expression evaluation produces four main results: |
12 | | // |
13 | | // * A success/failure flag indicating whether constant folding was successful. |
14 | | // This is the 'bool' return value used by most of the code in this file. A |
15 | | // 'false' return value indicates that constant folding has failed, and any |
16 | | // appropriate diagnostic has already been produced. |
17 | | // |
18 | | // * An evaluated result, valid only if constant folding has not failed. |
19 | | // |
20 | | // * A flag indicating if evaluation encountered (unevaluated) side-effects. |
21 | | // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), |
22 | | // where it is possible to determine the evaluated result regardless. |
23 | | // |
24 | | // * A set of notes indicating why the evaluation was not a constant expression |
25 | | // (under the C++11 / C++1y rules only, at the moment), or, if folding failed |
26 | | // too, why the expression could not be folded. |
27 | | // |
28 | | // If we are checking for a potential constant expression, failure to constant |
29 | | // fold a potential constant sub-expression will be indicated by a 'false' |
30 | | // return value (the expression could not be folded) and no diagnostic (the |
31 | | // expression is not necessarily non-constant). |
32 | | // |
33 | | //===----------------------------------------------------------------------===// |
34 | | |
35 | | #include "Interp/Context.h" |
36 | | #include "Interp/Frame.h" |
37 | | #include "Interp/State.h" |
38 | | #include "clang/AST/APValue.h" |
39 | | #include "clang/AST/ASTContext.h" |
40 | | #include "clang/AST/ASTDiagnostic.h" |
41 | | #include "clang/AST/ASTLambda.h" |
42 | | #include "clang/AST/Attr.h" |
43 | | #include "clang/AST/CXXInheritance.h" |
44 | | #include "clang/AST/CharUnits.h" |
45 | | #include "clang/AST/CurrentSourceLocExprScope.h" |
46 | | #include "clang/AST/Expr.h" |
47 | | #include "clang/AST/OSLog.h" |
48 | | #include "clang/AST/OptionalDiagnostic.h" |
49 | | #include "clang/AST/RecordLayout.h" |
50 | | #include "clang/AST/StmtVisitor.h" |
51 | | #include "clang/AST/TypeLoc.h" |
52 | | #include "clang/Basic/Builtins.h" |
53 | | #include "clang/Basic/TargetInfo.h" |
54 | | #include "llvm/ADT/APFixedPoint.h" |
55 | | #include "llvm/ADT/Optional.h" |
56 | | #include "llvm/ADT/SmallBitVector.h" |
57 | | #include "llvm/Support/Debug.h" |
58 | | #include "llvm/Support/SaveAndRestore.h" |
59 | | #include "llvm/Support/raw_ostream.h" |
60 | | #include <cstring> |
61 | | #include <functional> |
62 | | |
63 | | #define DEBUG_TYPE "exprconstant" |
64 | | |
65 | | using namespace clang; |
66 | | using llvm::APFixedPoint; |
67 | | using llvm::APInt; |
68 | | using llvm::APSInt; |
69 | | using llvm::APFloat; |
70 | | using llvm::FixedPointSemantics; |
71 | | using llvm::Optional; |
72 | | |
73 | | namespace { |
74 | | struct LValue; |
75 | | class CallStackFrame; |
76 | | class EvalInfo; |
77 | | |
78 | | using SourceLocExprScopeGuard = |
79 | | CurrentSourceLocExprScope::SourceLocExprScopeGuard; |
80 | | |
81 | 21.0M | static QualType getType(APValue::LValueBase B) { |
82 | 21.0M | return B.getType(); |
83 | 21.0M | } |
84 | | |
85 | | /// Get an LValue path entry, which is known to not be an array index, as a |
86 | | /// field declaration. |
87 | 50.7k | static const FieldDecl *getAsField(APValue::LValuePathEntry E) { |
88 | 50.7k | return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); |
89 | 50.7k | } |
90 | | /// Get an LValue path entry, which is known to not be an array index, as a |
91 | | /// base class declaration. |
92 | 2.99k | static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { |
93 | 2.99k | return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); |
94 | 2.99k | } |
95 | | /// Determine whether this LValue path entry for a base class names a virtual |
96 | | /// base class. |
97 | 807 | static bool isVirtualBaseClass(APValue::LValuePathEntry E) { |
98 | 807 | return E.getAsBaseOrMember().getInt(); |
99 | 807 | } |
100 | | |
101 | | /// Given an expression, determine the type used to store the result of |
102 | | /// evaluating that expression. |
103 | 2.18M | static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { |
104 | 2.18M | if (E->isPRValue()) |
105 | 2.15M | return E->getType(); |
106 | 35.0k | return Ctx.getLValueReferenceType(E->getType()); |
107 | 2.18M | } |
108 | | |
109 | | /// Given a CallExpr, try to get the alloc_size attribute. May return null. |
110 | 6.19k | static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { |
111 | 6.19k | if (const FunctionDecl *DirectCallee = CE->getDirectCallee()) |
112 | 4.61k | return DirectCallee->getAttr<AllocSizeAttr>(); |
113 | 1.58k | if (const Decl *IndirectCallee = CE->getCalleeDecl()) |
114 | 1.58k | return IndirectCallee->getAttr<AllocSizeAttr>(); |
115 | 0 | return nullptr; |
116 | 1.58k | } |
117 | | |
118 | | /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. |
119 | | /// This will look through a single cast. |
120 | | /// |
121 | | /// Returns null if we couldn't unwrap a function with alloc_size. |
122 | 5.15k | static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { |
123 | 5.15k | if (!E->getType()->isPointerType()) |
124 | 0 | return nullptr; |
125 | | |
126 | 5.15k | E = E->IgnoreParens(); |
127 | | // If we're doing a variable assignment from e.g. malloc(N), there will |
128 | | // probably be a cast of some kind. In exotic cases, we might also see a |
129 | | // top-level ExprWithCleanups. Ignore them either way. |
130 | 5.15k | if (const auto *FE = dyn_cast<FullExpr>(E)) |
131 | 15 | E = FE->getSubExpr()->IgnoreParens(); |
132 | | |
133 | 5.15k | if (const auto *Cast = dyn_cast<CastExpr>(E)) |
134 | 1.79k | E = Cast->getSubExpr()->IgnoreParens(); |
135 | | |
136 | 5.15k | if (const auto *CE = dyn_cast<CallExpr>(E)) |
137 | 4.95k | return getAllocSizeAttr(CE) ? CE4.35k : nullptr598 ; |
138 | 203 | return nullptr; |
139 | 5.15k | } |
140 | | |
141 | | /// Determines whether or not the given Base contains a call to a function |
142 | | /// with the alloc_size attribute. |
143 | 780k | static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { |
144 | 780k | const auto *E = Base.dyn_cast<const Expr *>(); |
145 | 780k | return E && E->getType()->isPointerType()49.5k && tryUnwrapAllocSizeCall(E)2.62k ; |
146 | 780k | } |
147 | | |
148 | | /// Determines whether the given kind of constant expression is only ever |
149 | | /// used for name mangling. If so, it's permitted to reference things that we |
150 | | /// can't generate code for (in particular, dllimported functions). |
151 | 28.9k | static bool isForManglingOnly(ConstantExprKind Kind) { |
152 | 28.9k | switch (Kind) { |
153 | 28.3k | case ConstantExprKind::Normal: |
154 | 28.3k | case ConstantExprKind::ClassTemplateArgument: |
155 | 28.3k | case ConstantExprKind::ImmediateInvocation: |
156 | | // Note that non-type template arguments of class type are emitted as |
157 | | // template parameter objects. |
158 | 28.3k | return false; |
159 | | |
160 | 568 | case ConstantExprKind::NonClassTemplateArgument: |
161 | 568 | return true; |
162 | 28.9k | } |
163 | 0 | llvm_unreachable("unknown ConstantExprKind"); |
164 | 0 | } |
165 | | |
166 | 119k | static bool isTemplateArgument(ConstantExprKind Kind) { |
167 | 119k | switch (Kind) { |
168 | 118k | case ConstantExprKind::Normal: |
169 | 118k | case ConstantExprKind::ImmediateInvocation: |
170 | 118k | return false; |
171 | | |
172 | 46 | case ConstantExprKind::ClassTemplateArgument: |
173 | 1.05k | case ConstantExprKind::NonClassTemplateArgument: |
174 | 1.05k | return true; |
175 | 119k | } |
176 | 0 | llvm_unreachable("unknown ConstantExprKind"); |
177 | 0 | } |
178 | | |
179 | | /// The bound to claim that an array of unknown bound has. |
180 | | /// The value in MostDerivedArraySize is undefined in this case. So, set it |
181 | | /// to an arbitrary value that's likely to loudly break things if it's used. |
182 | | static const uint64_t AssumedSizeForUnsizedArray = |
183 | | std::numeric_limits<uint64_t>::max() / 2; |
184 | | |
185 | | /// Determines if an LValue with the given LValueBase will have an unsized |
186 | | /// array in its designator. |
187 | | /// Find the path length and type of the most-derived subobject in the given |
188 | | /// path, and find the size of the containing array, if any. |
189 | | static unsigned |
190 | | findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, |
191 | | ArrayRef<APValue::LValuePathEntry> Path, |
192 | | uint64_t &ArraySize, QualType &Type, bool &IsArray, |
193 | 774k | bool &FirstEntryIsUnsizedArray) { |
194 | | // This only accepts LValueBases from APValues, and APValues don't support |
195 | | // arrays that lack size info. |
196 | 774k | assert(!isBaseAnAllocSizeCall(Base) && |
197 | 774k | "Unsized arrays shouldn't appear here"); |
198 | 0 | unsigned MostDerivedLength = 0; |
199 | 774k | Type = getType(Base); |
200 | | |
201 | 844k | for (unsigned I = 0, N = Path.size(); I != N; ++I70.8k ) { |
202 | 70.8k | if (Type->isArrayType()) { |
203 | 47.0k | const ArrayType *AT = Ctx.getAsArrayType(Type); |
204 | 47.0k | Type = AT->getElementType(); |
205 | 47.0k | MostDerivedLength = I + 1; |
206 | 47.0k | IsArray = true; |
207 | | |
208 | 47.0k | if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { |
209 | 46.8k | ArraySize = CAT->getSize().getZExtValue(); |
210 | 46.8k | } else { |
211 | 136 | assert(I == 0 && "unexpected unsized array designator"); |
212 | 0 | FirstEntryIsUnsizedArray = true; |
213 | 136 | ArraySize = AssumedSizeForUnsizedArray; |
214 | 136 | } |
215 | 47.0k | } else if (23.8k Type->isAnyComplexType()23.8k ) { |
216 | 73 | const ComplexType *CT = Type->castAs<ComplexType>(); |
217 | 73 | Type = CT->getElementType(); |
218 | 73 | ArraySize = 2; |
219 | 73 | MostDerivedLength = I + 1; |
220 | 73 | IsArray = true; |
221 | 23.7k | } else if (const FieldDecl *FD = getAsField(Path[I])) { |
222 | 19.4k | Type = FD->getType(); |
223 | 19.4k | ArraySize = 0; |
224 | 19.4k | MostDerivedLength = I + 1; |
225 | 19.4k | IsArray = false; |
226 | 19.4k | } else { |
227 | | // Path[I] describes a base class. |
228 | 4.24k | ArraySize = 0; |
229 | 4.24k | IsArray = false; |
230 | 4.24k | } |
231 | 70.8k | } |
232 | 774k | return MostDerivedLength; |
233 | 774k | } |
234 | | |
235 | | /// A path from a glvalue to a subobject of that glvalue. |
236 | | struct SubobjectDesignator { |
237 | | /// True if the subobject was named in a manner not supported by C++11. Such |
238 | | /// lvalues can still be folded, but they are not core constant expressions |
239 | | /// and we cannot perform lvalue-to-rvalue conversions on them. |
240 | | unsigned Invalid : 1; |
241 | | |
242 | | /// Is this a pointer one past the end of an object? |
243 | | unsigned IsOnePastTheEnd : 1; |
244 | | |
245 | | /// Indicator of whether the first entry is an unsized array. |
246 | | unsigned FirstEntryIsAnUnsizedArray : 1; |
247 | | |
248 | | /// Indicator of whether the most-derived object is an array element. |
249 | | unsigned MostDerivedIsArrayElement : 1; |
250 | | |
251 | | /// The length of the path to the most-derived object of which this is a |
252 | | /// subobject. |
253 | | unsigned MostDerivedPathLength : 28; |
254 | | |
255 | | /// The size of the array of which the most-derived object is an element. |
256 | | /// This will always be 0 if the most-derived object is not an array |
257 | | /// element. 0 is not an indicator of whether or not the most-derived object |
258 | | /// is an array, however, because 0-length arrays are allowed. |
259 | | /// |
260 | | /// If the current array is an unsized array, the value of this is |
261 | | /// undefined. |
262 | | uint64_t MostDerivedArraySize; |
263 | | |
264 | | /// The type of the most derived object referred to by this address. |
265 | | QualType MostDerivedType; |
266 | | |
267 | | typedef APValue::LValuePathEntry PathEntry; |
268 | | |
269 | | /// The entries on the path from the glvalue to the designated subobject. |
270 | | SmallVector<PathEntry, 8> Entries; |
271 | | |
272 | 15.8M | SubobjectDesignator() : Invalid(true) {} |
273 | | |
274 | | explicit SubobjectDesignator(QualType T) |
275 | | : Invalid(false), IsOnePastTheEnd(false), |
276 | | FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
277 | | MostDerivedPathLength(0), MostDerivedArraySize(0), |
278 | 12.8M | MostDerivedType(T) {} |
279 | | |
280 | | SubobjectDesignator(ASTContext &Ctx, const APValue &V) |
281 | | : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), |
282 | | FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
283 | 816k | MostDerivedPathLength(0), MostDerivedArraySize(0) { |
284 | 816k | assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); |
285 | 816k | if (!Invalid) { |
286 | 810k | IsOnePastTheEnd = V.isLValueOnePastTheEnd(); |
287 | 810k | ArrayRef<PathEntry> VEntries = V.getLValuePath(); |
288 | 810k | Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); |
289 | 810k | if (V.getLValueBase()) { |
290 | 774k | bool IsArray = false; |
291 | 774k | bool FirstIsUnsizedArray = false; |
292 | 774k | MostDerivedPathLength = findMostDerivedSubobject( |
293 | 774k | Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, |
294 | 774k | MostDerivedType, IsArray, FirstIsUnsizedArray); |
295 | 774k | MostDerivedIsArrayElement = IsArray; |
296 | 774k | FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; |
297 | 774k | } |
298 | 810k | } |
299 | 816k | } |
300 | | |
301 | | void truncate(ASTContext &Ctx, APValue::LValueBase Base, |
302 | 151 | unsigned NewLength) { |
303 | 151 | if (Invalid) |
304 | 0 | return; |
305 | | |
306 | 151 | assert(Base && "cannot truncate path for null pointer"); |
307 | 0 | assert(NewLength <= Entries.size() && "not a truncation"); |
308 | | |
309 | 151 | if (NewLength == Entries.size()) |
310 | 0 | return; |
311 | 151 | Entries.resize(NewLength); |
312 | | |
313 | 151 | bool IsArray = false; |
314 | 151 | bool FirstIsUnsizedArray = false; |
315 | 151 | MostDerivedPathLength = findMostDerivedSubobject( |
316 | 151 | Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, |
317 | 151 | FirstIsUnsizedArray); |
318 | 151 | MostDerivedIsArrayElement = IsArray; |
319 | 151 | FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; |
320 | 151 | } |
321 | | |
322 | 10.3k | void setInvalid() { |
323 | 10.3k | Invalid = true; |
324 | 10.3k | Entries.clear(); |
325 | 10.3k | } |
326 | | |
327 | | /// Determine whether the most derived subobject is an array without a |
328 | | /// known bound. |
329 | 4.81M | bool isMostDerivedAnUnsizedArray() const { |
330 | 4.81M | assert(!Invalid && "Calling this makes no sense on invalid designators"); |
331 | 4.81M | return Entries.size() == 1 && FirstEntryIsAnUnsizedArray556k ; |
332 | 4.81M | } |
333 | | |
334 | | /// Determine what the most derived array's size is. Results in an assertion |
335 | | /// failure if the most derived array lacks a size. |
336 | 177k | uint64_t getMostDerivedArraySize() const { |
337 | 177k | assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); |
338 | 0 | return MostDerivedArraySize; |
339 | 177k | } |
340 | | |
341 | | /// Determine whether this is a one-past-the-end pointer. |
342 | 2.38M | bool isOnePastTheEnd() const { |
343 | 2.38M | assert(!Invalid); |
344 | 2.38M | if (IsOnePastTheEnd) |
345 | 105 | return true; |
346 | 2.38M | if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement2.38M && |
347 | 2.38M | Entries[MostDerivedPathLength - 1].getAsArrayIndex() == |
348 | 99.4k | MostDerivedArraySize) |
349 | 751 | return true; |
350 | 2.38M | return false; |
351 | 2.38M | } |
352 | | |
353 | | /// Get the range of valid index adjustments in the form |
354 | | /// {maximum value that can be subtracted from this pointer, |
355 | | /// maximum value that can be added to this pointer} |
356 | 2.26k | std::pair<uint64_t, uint64_t> validIndexAdjustments() { |
357 | 2.26k | if (Invalid || isMostDerivedAnUnsizedArray()) |
358 | 64 | return {0, 0}; |
359 | | |
360 | | // [expr.add]p4: For the purposes of these operators, a pointer to a |
361 | | // nonarray object behaves the same as a pointer to the first element of |
362 | | // an array of length one with the type of the object as its element type. |
363 | 2.20k | bool IsArray = MostDerivedPathLength == Entries.size() && |
364 | 2.20k | MostDerivedIsArrayElement2.12k ; |
365 | 2.20k | uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()2.06k |
366 | 2.20k | : (uint64_t)IsOnePastTheEnd136 ; |
367 | 2.20k | uint64_t ArraySize = |
368 | 2.20k | IsArray ? getMostDerivedArraySize()2.06k : (uint64_t)1136 ; |
369 | 2.20k | return {ArrayIndex, ArraySize - ArrayIndex}; |
370 | 2.26k | } |
371 | | |
372 | | /// Check that this refers to a valid subobject. |
373 | 0 | bool isValidSubobject() const { |
374 | 0 | if (Invalid) |
375 | 0 | return false; |
376 | 0 | return !isOnePastTheEnd(); |
377 | 0 | } |
378 | | /// Check that this refers to a valid subobject, and if not, produce a |
379 | | /// relevant diagnostic and set the designator as invalid. |
380 | | bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); |
381 | | |
382 | | /// Get the type of the designated object. |
383 | 12.9k | QualType getType(ASTContext &Ctx) const { |
384 | 12.9k | assert(!Invalid && "invalid designator has no subobject type"); |
385 | 12.9k | return MostDerivedPathLength == Entries.size() |
386 | 12.9k | ? MostDerivedType12.8k |
387 | 12.9k | : Ctx.getRecordType(getAsBaseClass(Entries.back()))120 ; |
388 | 12.9k | } |
389 | | |
390 | | /// Update this designator to refer to the first element within this array. |
391 | 93.1k | void addArrayUnchecked(const ConstantArrayType *CAT) { |
392 | 93.1k | Entries.push_back(PathEntry::ArrayIndex(0)); |
393 | | |
394 | | // This is a most-derived object. |
395 | 93.1k | MostDerivedType = CAT->getElementType(); |
396 | 93.1k | MostDerivedIsArrayElement = true; |
397 | 93.1k | MostDerivedArraySize = CAT->getSize().getZExtValue(); |
398 | 93.1k | MostDerivedPathLength = Entries.size(); |
399 | 93.1k | } |
400 | | /// Update this designator to refer to the first element within the array of |
401 | | /// elements of type T. This is an array of unknown size. |
402 | 4.65k | void addUnsizedArrayUnchecked(QualType ElemTy) { |
403 | 4.65k | Entries.push_back(PathEntry::ArrayIndex(0)); |
404 | | |
405 | 4.65k | MostDerivedType = ElemTy; |
406 | 4.65k | MostDerivedIsArrayElement = true; |
407 | | // The value in MostDerivedArraySize is undefined in this case. So, set it |
408 | | // to an arbitrary value that's likely to loudly break things if it's |
409 | | // used. |
410 | 4.65k | MostDerivedArraySize = AssumedSizeForUnsizedArray; |
411 | 4.65k | MostDerivedPathLength = Entries.size(); |
412 | 4.65k | } |
413 | | /// Update this designator to refer to the given base or member of this |
414 | | /// object. |
415 | 184k | void addDeclUnchecked(const Decl *D, bool Virtual = false) { |
416 | 184k | Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); |
417 | | |
418 | | // If this isn't a base class, it's a new most-derived object. |
419 | 184k | if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { |
420 | 171k | MostDerivedType = FD->getType(); |
421 | 171k | MostDerivedIsArrayElement = false; |
422 | 171k | MostDerivedArraySize = 0; |
423 | 171k | MostDerivedPathLength = Entries.size(); |
424 | 171k | } |
425 | 184k | } |
426 | | /// Update this designator to refer to the given complex component. |
427 | 221 | void addComplexUnchecked(QualType EltTy, bool Imag) { |
428 | 221 | Entries.push_back(PathEntry::ArrayIndex(Imag)); |
429 | | |
430 | | // This is technically a most-derived object, though in practice this |
431 | | // is unlikely to matter. |
432 | 221 | MostDerivedType = EltTy; |
433 | 221 | MostDerivedIsArrayElement = true; |
434 | 221 | MostDerivedArraySize = 2; |
435 | 221 | MostDerivedPathLength = Entries.size(); |
436 | 221 | } |
437 | | void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); |
438 | | void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, |
439 | | const APSInt &N); |
440 | | /// Add N to the address of this subobject. |
441 | 176k | void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { |
442 | 176k | if (Invalid || !N) return0 ; |
443 | 176k | uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); |
444 | 176k | if (isMostDerivedAnUnsizedArray()) { |
445 | 580 | diagnoseUnsizedArrayPointerArithmetic(Info, E); |
446 | | // Can't verify -- trust that the user is doing the right thing (or if |
447 | | // not, trust that the caller will catch the bad behavior). |
448 | | // FIXME: Should we reject if this overflows, at least? |
449 | 580 | Entries.back() = PathEntry::ArrayIndex( |
450 | 580 | Entries.back().getAsArrayIndex() + TruncatedN); |
451 | 580 | return; |
452 | 580 | } |
453 | | |
454 | | // [expr.add]p4: For the purposes of these operators, a pointer to a |
455 | | // nonarray object behaves the same as a pointer to the first element of |
456 | | // an array of length one with the type of the object as its element type. |
457 | 175k | bool IsArray = MostDerivedPathLength == Entries.size() && |
458 | 175k | MostDerivedIsArrayElement175k ; |
459 | 175k | uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()175k |
460 | 175k | : (uint64_t)IsOnePastTheEnd383 ; |
461 | 175k | uint64_t ArraySize = |
462 | 175k | IsArray ? getMostDerivedArraySize()175k : (uint64_t)1383 ; |
463 | | |
464 | 175k | if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex175k ) { |
465 | | // Calculate the actual index in a wide enough type, so we can include |
466 | | // it in the note. |
467 | 435 | N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); |
468 | 435 | (llvm::APInt&)N += ArrayIndex; |
469 | 435 | assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); |
470 | 0 | diagnosePointerArithmetic(Info, E, N); |
471 | 435 | setInvalid(); |
472 | 435 | return; |
473 | 435 | } |
474 | | |
475 | 175k | ArrayIndex += TruncatedN; |
476 | 175k | assert(ArrayIndex <= ArraySize && |
477 | 175k | "bounds check succeeded for out-of-bounds index"); |
478 | | |
479 | 175k | if (IsArray) |
480 | 174k | Entries.back() = PathEntry::ArrayIndex(ArrayIndex); |
481 | 243 | else |
482 | 243 | IsOnePastTheEnd = (ArrayIndex != 0); |
483 | 175k | } |
484 | | }; |
485 | | |
486 | | /// A scope at the end of which an object can need to be destroyed. |
487 | | enum class ScopeKind { |
488 | | Block, |
489 | | FullExpression, |
490 | | Call |
491 | | }; |
492 | | |
493 | | /// A reference to a particular call and its arguments. |
494 | | struct CallRef { |
495 | 21.5M | CallRef() : OrigCallee(), CallIndex(0), Version() {} |
496 | | CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version) |
497 | 444k | : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {} |
498 | | |
499 | 670k | explicit operator bool() const { return OrigCallee; } |
500 | | |
501 | | /// Get the parameter that the caller initialized, corresponding to the |
502 | | /// given parameter in the callee. |
503 | 202k | const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const { |
504 | 202k | return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex()) |
505 | 202k | : PVD0 ; |
506 | 202k | } |
507 | | |
508 | | /// The callee at the point where the arguments were evaluated. This might |
509 | | /// be different from the actual callee (a different redeclaration, or a |
510 | | /// virtual override), but this function's parameters are the ones that |
511 | | /// appear in the parameter map. |
512 | | const FunctionDecl *OrigCallee; |
513 | | /// The call index of the frame that holds the argument values. |
514 | | unsigned CallIndex; |
515 | | /// The version of the parameters corresponding to this call. |
516 | | unsigned Version; |
517 | | }; |
518 | | |
519 | | /// A stack frame in the constexpr call stack. |
520 | | class CallStackFrame : public interp::Frame { |
521 | | public: |
522 | | EvalInfo &Info; |
523 | | |
524 | | /// Parent - The caller of this stack frame. |
525 | | CallStackFrame *Caller; |
526 | | |
527 | | /// Callee - The function which was called. |
528 | | const FunctionDecl *Callee; |
529 | | |
530 | | /// This - The binding for the this pointer in this call, if any. |
531 | | const LValue *This; |
532 | | |
533 | | /// Information on how to find the arguments to this call. Our arguments |
534 | | /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a |
535 | | /// key and this value as the version. |
536 | | CallRef Arguments; |
537 | | |
538 | | /// Source location information about the default argument or default |
539 | | /// initializer expression we're evaluating, if any. |
540 | | CurrentSourceLocExprScope CurSourceLocExprScope; |
541 | | |
542 | | // Note that we intentionally use std::map here so that references to |
543 | | // values are stable. |
544 | | typedef std::pair<const void *, unsigned> MapKeyTy; |
545 | | typedef std::map<MapKeyTy, APValue> MapTy; |
546 | | /// Temporaries - Temporary lvalues materialized within this stack frame. |
547 | | MapTy Temporaries; |
548 | | |
549 | | /// CallLoc - The location of the call expression for this call. |
550 | | SourceLocation CallLoc; |
551 | | |
552 | | /// Index - The call index of this call. |
553 | | unsigned Index; |
554 | | |
555 | | /// The stack of integers for tracking version numbers for temporaries. |
556 | | SmallVector<unsigned, 2> TempVersionStack = {1}; |
557 | | unsigned CurTempVersion = TempVersionStack.back(); |
558 | | |
559 | 61.2k | unsigned getTempVersion() const { return TempVersionStack.back(); } |
560 | | |
561 | 17.1M | void pushTempVersion() { |
562 | 17.1M | TempVersionStack.push_back(++CurTempVersion); |
563 | 17.1M | } |
564 | | |
565 | 17.1M | void popTempVersion() { |
566 | 17.1M | TempVersionStack.pop_back(); |
567 | 17.1M | } |
568 | | |
569 | 444k | CallRef createCall(const FunctionDecl *Callee) { |
570 | 444k | return {Callee, Index, ++CurTempVersion}; |
571 | 444k | } |
572 | | |
573 | | // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact |
574 | | // on the overall stack usage of deeply-recursing constexpr evaluations. |
575 | | // (We should cache this map rather than recomputing it repeatedly.) |
576 | | // But let's try this and see how it goes; we can look into caching the map |
577 | | // as a later change. |
578 | | |
579 | | /// LambdaCaptureFields - Mapping from captured variables/this to |
580 | | /// corresponding data members in the closure class. |
581 | | llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; |
582 | | FieldDecl *LambdaThisCaptureField; |
583 | | |
584 | | CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, |
585 | | const FunctionDecl *Callee, const LValue *This, |
586 | | CallRef Arguments); |
587 | | ~CallStackFrame(); |
588 | | |
589 | | // Return the temporary for Key whose version number is Version. |
590 | 332k | APValue *getTemporary(const void *Key, unsigned Version) { |
591 | 332k | MapKeyTy KV(Key, Version); |
592 | 332k | auto LB = Temporaries.lower_bound(KV); |
593 | 332k | if (LB != Temporaries.end() && LB->first == KV330k ) |
594 | 330k | return &LB->second; |
595 | | // Pair (Key,Version) wasn't found in the map. Check that no elements |
596 | | // in the map have 'Key' as their key. |
597 | 2.26k | assert((LB == Temporaries.end() || LB->first.first != Key) && |
598 | 2.26k | (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && |
599 | 2.26k | "Element with key 'Key' found in map"); |
600 | 0 | return nullptr; |
601 | 332k | } |
602 | | |
603 | | // Return the current temporary for Key in the map. |
604 | 3.98k | APValue *getCurrentTemporary(const void *Key) { |
605 | 3.98k | auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); |
606 | 3.98k | if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key2.80k ) |
607 | 2.75k | return &std::prev(UB)->second; |
608 | 1.22k | return nullptr; |
609 | 3.98k | } |
610 | | |
611 | | // Return the version number of the current temporary for Key. |
612 | 90.7k | unsigned getCurrentTemporaryVersion(const void *Key) const { |
613 | 90.7k | auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); |
614 | 90.7k | if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) |
615 | 90.7k | return std::prev(UB)->first.second; |
616 | 0 | return 0; |
617 | 90.7k | } |
618 | | |
619 | | /// Allocate storage for an object of type T in this stack frame. |
620 | | /// Populates LV with a handle to the created object. Key identifies |
621 | | /// the temporary within the stack frame, and must not be reused without |
622 | | /// bumping the temporary version number. |
623 | | template<typename KeyT> |
624 | | APValue &createTemporary(const KeyT *Key, QualType T, |
625 | | ScopeKind Scope, LValue &LV); |
626 | | |
627 | | /// Allocate storage for a parameter of a function call made in this frame. |
628 | | APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV); |
629 | | |
630 | | void describe(llvm::raw_ostream &OS) override; |
631 | | |
632 | 3.13k | Frame *getCaller() const override { return Caller; } |
633 | 3.13k | SourceLocation getCallLocation() const override { return CallLoc; } |
634 | 8.59k | const FunctionDecl *getCallee() const override { return Callee; } |
635 | | |
636 | 126 | bool isStdFunction() const { |
637 | 185 | for (const DeclContext *DC = Callee; DC; DC = DC->getParent()59 ) |
638 | 112 | if (DC->isStdNamespace()) |
639 | 53 | return true; |
640 | 73 | return false; |
641 | 126 | } |
642 | | |
643 | | private: |
644 | | APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T, |
645 | | ScopeKind Scope); |
646 | | }; |
647 | | |
648 | | /// Temporarily override 'this'. |
649 | | class ThisOverrideRAII { |
650 | | public: |
651 | | ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) |
652 | 31.4k | : Frame(Frame), OldThis(Frame.This) { |
653 | 31.4k | if (Enable) |
654 | 2.58k | Frame.This = NewThis; |
655 | 31.4k | } |
656 | 31.4k | ~ThisOverrideRAII() { |
657 | 31.4k | Frame.This = OldThis; |
658 | 31.4k | } |
659 | | private: |
660 | | CallStackFrame &Frame; |
661 | | const LValue *OldThis; |
662 | | }; |
663 | | } |
664 | | |
665 | | static bool HandleDestruction(EvalInfo &Info, const Expr *E, |
666 | | const LValue &This, QualType ThisType); |
667 | | static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, |
668 | | APValue::LValueBase LVBase, APValue &Value, |
669 | | QualType T); |
670 | | |
671 | | namespace { |
672 | | /// A cleanup, and a flag indicating whether it is lifetime-extended. |
673 | | class Cleanup { |
674 | | llvm::PointerIntPair<APValue*, 2, ScopeKind> Value; |
675 | | APValue::LValueBase Base; |
676 | | QualType T; |
677 | | |
678 | | public: |
679 | | Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, |
680 | | ScopeKind Scope) |
681 | 516k | : Value(Val, Scope), Base(Base), T(T) {} |
682 | | |
683 | | /// Determine whether this cleanup should be performed at the end of the |
684 | | /// given kind of scope. |
685 | 1.08M | bool isDestroyedAtEndOf(ScopeKind K) const { |
686 | 1.08M | return (int)Value.getInt() >= (int)K; |
687 | 1.08M | } |
688 | 493k | bool endLifetime(EvalInfo &Info, bool RunDestructors) { |
689 | 493k | if (RunDestructors) { |
690 | 86.6k | SourceLocation Loc; |
691 | 86.6k | if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) |
692 | 78.9k | Loc = VD->getLocation(); |
693 | 7.67k | else if (const Expr *E = Base.dyn_cast<const Expr*>()) |
694 | 7.67k | Loc = E->getExprLoc(); |
695 | 86.6k | return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); |
696 | 86.6k | } |
697 | 407k | *Value.getPointer() = APValue(); |
698 | 407k | return true; |
699 | 493k | } |
700 | | |
701 | 22.4k | bool hasSideEffect() { |
702 | 22.4k | return T.isDestructedType(); |
703 | 22.4k | } |
704 | | }; |
705 | | |
706 | | /// A reference to an object whose construction we are currently evaluating. |
707 | | struct ObjectUnderConstruction { |
708 | | APValue::LValueBase Base; |
709 | | ArrayRef<APValue::LValuePathEntry> Path; |
710 | | friend bool operator==(const ObjectUnderConstruction &LHS, |
711 | 2.07M | const ObjectUnderConstruction &RHS) { |
712 | 2.07M | return LHS.Base == RHS.Base && LHS.Path == RHS.Path1.63M ; |
713 | 2.07M | } |
714 | 115k | friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { |
715 | 115k | return llvm::hash_combine(Obj.Base, Obj.Path); |
716 | 115k | } |
717 | | }; |
718 | | enum class ConstructionPhase { |
719 | | None, |
720 | | Bases, |
721 | | AfterBases, |
722 | | AfterFields, |
723 | | Destroying, |
724 | | DestroyingBases |
725 | | }; |
726 | | } |
727 | | |
728 | | namespace llvm { |
729 | | template<> struct DenseMapInfo<ObjectUnderConstruction> { |
730 | | using Base = DenseMapInfo<APValue::LValueBase>; |
731 | 191k | static ObjectUnderConstruction getEmptyKey() { |
732 | 191k | return {Base::getEmptyKey(), {}}; } |
733 | 168k | static ObjectUnderConstruction getTombstoneKey() { |
734 | 168k | return {Base::getTombstoneKey(), {}}; |
735 | 168k | } |
736 | 115k | static unsigned getHashValue(const ObjectUnderConstruction &Object) { |
737 | 115k | return hash_value(Object); |
738 | 115k | } |
739 | | static bool isEqual(const ObjectUnderConstruction &LHS, |
740 | 2.07M | const ObjectUnderConstruction &RHS) { |
741 | 2.07M | return LHS == RHS; |
742 | 2.07M | } |
743 | | }; |
744 | | } |
745 | | |
746 | | namespace { |
747 | | /// A dynamically-allocated heap object. |
748 | | struct DynAlloc { |
749 | | /// The value of this heap-allocated object. |
750 | | APValue Value; |
751 | | /// The allocating expression; used for diagnostics. Either a CXXNewExpr |
752 | | /// or a CallExpr (the latter is for direct calls to operator new inside |
753 | | /// std::allocator<T>::allocate). |
754 | | const Expr *AllocExpr = nullptr; |
755 | | |
756 | | enum Kind { |
757 | | New, |
758 | | ArrayNew, |
759 | | StdAllocator |
760 | | }; |
761 | | |
762 | | /// Get the kind of the allocation. This must match between allocation |
763 | | /// and deallocation. |
764 | 503 | Kind getKind() const { |
765 | 503 | if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) |
766 | 479 | return NE->isArray() ? ArrayNew355 : New124 ; |
767 | 24 | assert(isa<CallExpr>(AllocExpr)); |
768 | 0 | return StdAllocator; |
769 | 503 | } |
770 | | }; |
771 | | |
772 | | struct DynAllocOrder { |
773 | 198k | bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { |
774 | 198k | return L.getIndex() < R.getIndex(); |
775 | 198k | } |
776 | | }; |
777 | | |
778 | | /// EvalInfo - This is a private struct used by the evaluator to capture |
779 | | /// information about a subexpression as it is folded. It retains information |
780 | | /// about the AST context, but also maintains information about the folded |
781 | | /// expression. |
782 | | /// |
783 | | /// If an expression could be evaluated, it is still possible it is not a C |
784 | | /// "integer constant expression" or constant expression. If not, this struct |
785 | | /// captures information about how and why not. |
786 | | /// |
787 | | /// One bit of information passed *into* the request for constant folding |
788 | | /// indicates whether the subexpression is "evaluated" or not according to C |
789 | | /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can |
790 | | /// evaluate the expression regardless of what the RHS is, but C only allows |
791 | | /// certain things in certain situations. |
792 | | class EvalInfo : public interp::State { |
793 | | public: |
794 | | ASTContext &Ctx; |
795 | | |
796 | | /// EvalStatus - Contains information about the evaluation. |
797 | | Expr::EvalStatus &EvalStatus; |
798 | | |
799 | | /// CurrentCall - The top of the constexpr call stack. |
800 | | CallStackFrame *CurrentCall; |
801 | | |
802 | | /// CallStackDepth - The number of calls in the call stack right now. |
803 | | unsigned CallStackDepth; |
804 | | |
805 | | /// NextCallIndex - The next call index to assign. |
806 | | unsigned NextCallIndex; |
807 | | |
808 | | /// StepsLeft - The remaining number of evaluation steps we're permitted |
809 | | /// to perform. This is essentially a limit for the number of statements |
810 | | /// we will evaluate. |
811 | | unsigned StepsLeft; |
812 | | |
813 | | /// Enable the experimental new constant interpreter. If an expression is |
814 | | /// not supported by the interpreter, an error is triggered. |
815 | | bool EnableNewConstInterp; |
816 | | |
817 | | /// BottomFrame - The frame in which evaluation started. This must be |
818 | | /// initialized after CurrentCall and CallStackDepth. |
819 | | CallStackFrame BottomFrame; |
820 | | |
821 | | /// A stack of values whose lifetimes end at the end of some surrounding |
822 | | /// evaluation frame. |
823 | | llvm::SmallVector<Cleanup, 16> CleanupStack; |
824 | | |
825 | | /// EvaluatingDecl - This is the declaration whose initializer is being |
826 | | /// evaluated, if any. |
827 | | APValue::LValueBase EvaluatingDecl; |
828 | | |
829 | | enum class EvaluatingDeclKind { |
830 | | None, |
831 | | /// We're evaluating the construction of EvaluatingDecl. |
832 | | Ctor, |
833 | | /// We're evaluating the destruction of EvaluatingDecl. |
834 | | Dtor, |
835 | | }; |
836 | | EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; |
837 | | |
838 | | /// EvaluatingDeclValue - This is the value being constructed for the |
839 | | /// declaration whose initializer is being evaluated, if any. |
840 | | APValue *EvaluatingDeclValue; |
841 | | |
842 | | /// Set of objects that are currently being constructed. |
843 | | llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> |
844 | | ObjectsUnderConstruction; |
845 | | |
846 | | /// Current heap allocations, along with the location where each was |
847 | | /// allocated. We use std::map here because we need stable addresses |
848 | | /// for the stored APValues. |
849 | | std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; |
850 | | |
851 | | /// The number of heap allocations performed so far in this evaluation. |
852 | | unsigned NumHeapAllocs = 0; |
853 | | |
854 | | struct EvaluatingConstructorRAII { |
855 | | EvalInfo &EI; |
856 | | ObjectUnderConstruction Object; |
857 | | bool DidInsert; |
858 | | EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, |
859 | | bool HasBases) |
860 | 30.1k | : EI(EI), Object(Object) { |
861 | 30.1k | DidInsert = |
862 | 30.1k | EI.ObjectsUnderConstruction |
863 | 30.1k | .insert({Object, HasBases ? ConstructionPhase::Bases1.40k |
864 | 30.1k | : ConstructionPhase::AfterBases28.7k }) |
865 | 30.1k | .second; |
866 | 30.1k | } |
867 | 1.32k | void finishedConstructingBases() { |
868 | 1.32k | EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; |
869 | 1.32k | } |
870 | 26.3k | void finishedConstructingFields() { |
871 | 26.3k | EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields; |
872 | 26.3k | } |
873 | 30.1k | ~EvaluatingConstructorRAII() { |
874 | 30.1k | if (DidInsert) EI.ObjectsUnderConstruction.erase(Object)29.9k ; |
875 | 30.1k | } |
876 | | }; |
877 | | |
878 | | struct EvaluatingDestructorRAII { |
879 | | EvalInfo &EI; |
880 | | ObjectUnderConstruction Object; |
881 | | bool DidInsert; |
882 | | EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) |
883 | 762 | : EI(EI), Object(Object) { |
884 | 762 | DidInsert = EI.ObjectsUnderConstruction |
885 | 762 | .insert({Object, ConstructionPhase::Destroying}) |
886 | 762 | .second; |
887 | 762 | } |
888 | 48 | void startedDestroyingBases() { |
889 | 48 | EI.ObjectsUnderConstruction[Object] = |
890 | 48 | ConstructionPhase::DestroyingBases; |
891 | 48 | } |
892 | 762 | ~EvaluatingDestructorRAII() { |
893 | 762 | if (DidInsert) |
894 | 761 | EI.ObjectsUnderConstruction.erase(Object); |
895 | 762 | } |
896 | | }; |
897 | | |
898 | | ConstructionPhase |
899 | | isEvaluatingCtorDtor(APValue::LValueBase Base, |
900 | 29.5k | ArrayRef<APValue::LValuePathEntry> Path) { |
901 | 29.5k | return ObjectsUnderConstruction.lookup({Base, Path}); |
902 | 29.5k | } |
903 | | |
904 | | /// If we're currently speculatively evaluating, the outermost call stack |
905 | | /// depth at which we can mutate state, otherwise 0. |
906 | | unsigned SpeculativeEvaluationDepth = 0; |
907 | | |
908 | | /// The current array initialization index, if we're performing array |
909 | | /// initialization. |
910 | | uint64_t ArrayInitIndex = -1; |
911 | | |
912 | | /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further |
913 | | /// notes attached to it will also be stored, otherwise they will not be. |
914 | | bool HasActiveDiagnostic; |
915 | | |
916 | | /// Have we emitted a diagnostic explaining why we couldn't constant |
917 | | /// fold (not just why it's not strictly a constant expression)? |
918 | | bool HasFoldFailureDiagnostic; |
919 | | |
920 | | /// Whether or not we're in a context where the front end requires a |
921 | | /// constant value. |
922 | | bool InConstantContext; |
923 | | |
924 | | /// Whether we're checking that an expression is a potential constant |
925 | | /// expression. If so, do not fail on constructs that could become constant |
926 | | /// later on (such as a use of an undefined global). |
927 | | bool CheckingPotentialConstantExpression = false; |
928 | | |
929 | | /// Whether we're checking for an expression that has undefined behavior. |
930 | | /// If so, we will produce warnings if we encounter an operation that is |
931 | | /// always undefined. |
932 | | /// |
933 | | /// Note that we still need to evaluate the expression normally when this |
934 | | /// is set; this is used when evaluating ICEs in C. |
935 | | bool CheckingForUndefinedBehavior = false; |
936 | | |
937 | | enum EvaluationMode { |
938 | | /// Evaluate as a constant expression. Stop if we find that the expression |
939 | | /// is not a constant expression. |
940 | | EM_ConstantExpression, |
941 | | |
942 | | /// Evaluate as a constant expression. Stop if we find that the expression |
943 | | /// is not a constant expression. Some expressions can be retried in the |
944 | | /// optimizer if we don't constant fold them here, but in an unevaluated |
945 | | /// context we try to fold them immediately since the optimizer never |
946 | | /// gets a chance to look at it. |
947 | | EM_ConstantExpressionUnevaluated, |
948 | | |
949 | | /// Fold the expression to a constant. Stop if we hit a side-effect that |
950 | | /// we can't model. |
951 | | EM_ConstantFold, |
952 | | |
953 | | /// Evaluate in any way we know how. Don't worry about side-effects that |
954 | | /// can't be modeled. |
955 | | EM_IgnoreSideEffects, |
956 | | } EvalMode; |
957 | | |
958 | | /// Are we checking whether the expression is a potential constant |
959 | | /// expression? |
960 | 10.9M | bool checkingPotentialConstantExpression() const override { |
961 | 10.9M | return CheckingPotentialConstantExpression; |
962 | 10.9M | } |
963 | | |
964 | | /// Are we checking an expression for overflow? |
965 | | // FIXME: We should check for any kind of undefined or suspicious behavior |
966 | | // in such constructs, not just overflow. |
967 | 4.82M | bool checkingForUndefinedBehavior() const override { |
968 | 4.82M | return CheckingForUndefinedBehavior; |
969 | 4.82M | } |
970 | | |
971 | | EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) |
972 | | : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), |
973 | | CallStackDepth(0), NextCallIndex(1), |
974 | | StepsLeft(C.getLangOpts().ConstexprStepLimit), |
975 | | EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp), |
976 | | BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()), |
977 | | EvaluatingDecl((const ValueDecl *)nullptr), |
978 | | EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), |
979 | | HasFoldFailureDiagnostic(false), InConstantContext(false), |
980 | 20.7M | EvalMode(Mode) {} |
981 | | |
982 | 20.7M | ~EvalInfo() { |
983 | 20.7M | discardCleanups(); |
984 | 20.7M | } |
985 | | |
986 | 29.0M | ASTContext &getCtx() const override { return Ctx; } |
987 | | |
988 | | void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, |
989 | 2.71M | EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { |
990 | 2.71M | EvaluatingDecl = Base; |
991 | 2.71M | IsEvaluatingDecl = EDK; |
992 | 2.71M | EvaluatingDeclValue = &Value; |
993 | 2.71M | } |
994 | | |
995 | 199k | bool CheckCallLimit(SourceLocation Loc) { |
996 | | // Don't perform any constexpr calls (other than the call we're checking) |
997 | | // when checking a potential constant expression. |
998 | 199k | if (checkingPotentialConstantExpression() && CallStackDepth > 157.8k ) |
999 | 3.49k | return false; |
1000 | 195k | if (NextCallIndex == 0) { |
1001 | | // NextCallIndex has wrapped around. |
1002 | 0 | FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); |
1003 | 0 | return false; |
1004 | 0 | } |
1005 | 195k | if (CallStackDepth <= getLangOpts().ConstexprCallDepth) |
1006 | 195k | return true; |
1007 | 12 | FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) |
1008 | 12 | << getLangOpts().ConstexprCallDepth; |
1009 | 12 | return false; |
1010 | 195k | } |
1011 | | |
1012 | | std::pair<CallStackFrame *, unsigned> |
1013 | 494k | getCallFrameAndDepth(unsigned CallIndex) { |
1014 | 494k | assert(CallIndex && "no call index in getCallFrameAndDepth"); |
1015 | | // We will eventually hit BottomFrame, which has Index 1, so Frame can't |
1016 | | // be null in this loop. |
1017 | 0 | unsigned Depth = CallStackDepth; |
1018 | 494k | CallStackFrame *Frame = CurrentCall; |
1019 | 1.05M | while (Frame->Index > CallIndex) { |
1020 | 558k | Frame = Frame->Caller; |
1021 | 558k | --Depth; |
1022 | 558k | } |
1023 | 494k | if (Frame->Index == CallIndex) |
1024 | 494k | return {Frame, Depth}; |
1025 | 14 | return {nullptr, 0}; |
1026 | 494k | } |
1027 | | |
1028 | 6.73M | bool nextStep(const Stmt *S) { |
1029 | 6.73M | if (!StepsLeft) { |
1030 | 9 | FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); |
1031 | 9 | return false; |
1032 | 9 | } |
1033 | 6.73M | --StepsLeft; |
1034 | 6.73M | return true; |
1035 | 6.73M | } |
1036 | | |
1037 | | APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); |
1038 | | |
1039 | 45.6k | Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) { |
1040 | 45.6k | Optional<DynAlloc*> Result; |
1041 | 45.6k | auto It = HeapAllocs.find(DA); |
1042 | 45.6k | if (It != HeapAllocs.end()) |
1043 | 45.6k | Result = &It->second; |
1044 | 45.6k | return Result; |
1045 | 45.6k | } |
1046 | | |
1047 | | /// Get the allocated storage for the given parameter of the given call. |
1048 | 3.85k | APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) { |
1049 | 3.85k | CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first; |
1050 | 3.85k | return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version) |
1051 | 3.85k | : nullptr0 ; |
1052 | 3.85k | } |
1053 | | |
1054 | | /// Information about a stack frame for std::allocator<T>::[de]allocate. |
1055 | | struct StdAllocatorCaller { |
1056 | | unsigned FrameIndex; |
1057 | | QualType ElemType; |
1058 | 974 | explicit operator bool() const { return FrameIndex != 0; }; |
1059 | | }; |
1060 | | |
1061 | 974 | StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { |
1062 | 1.00k | for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; |
1063 | 974 | Call = Call->Caller33 ) { |
1064 | 159 | const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); |
1065 | 159 | if (!MD) |
1066 | 3 | continue; |
1067 | 156 | const IdentifierInfo *FnII = MD->getIdentifier(); |
1068 | 156 | if (!FnII || !FnII->isStr(FnName)146 ) |
1069 | 30 | continue; |
1070 | | |
1071 | 126 | const auto *CTSD = |
1072 | 126 | dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); |
1073 | 126 | if (!CTSD) |
1074 | 0 | continue; |
1075 | | |
1076 | 126 | const IdentifierInfo *ClassII = CTSD->getIdentifier(); |
1077 | 126 | const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); |
1078 | 126 | if (CTSD->isInStdNamespace() && ClassII && |
1079 | 126 | ClassII->isStr("allocator") && TAL.size() >= 1 && |
1080 | 126 | TAL[0].getKind() == TemplateArgument::Type) |
1081 | 126 | return {Call->Index, TAL[0].getAsType()}; |
1082 | 126 | } |
1083 | | |
1084 | 848 | return {}; |
1085 | 974 | } |
1086 | | |
1087 | 389k | void performLifetimeExtension() { |
1088 | | // Disable the cleanups for lifetime-extended temporaries. |
1089 | 389k | llvm::erase_if(CleanupStack, [](Cleanup &C) { |
1090 | 343 | return !C.isDestroyedAtEndOf(ScopeKind::FullExpression); |
1091 | 343 | }); |
1092 | 389k | } |
1093 | | |
1094 | | /// Throw away any remaining cleanups at the end of evaluation. If any |
1095 | | /// cleanups would have had a side-effect, note that as an unmodeled |
1096 | | /// side-effect and return false. Otherwise, return true. |
1097 | 25.2M | bool discardCleanups() { |
1098 | 25.2M | for (Cleanup &C : CleanupStack) { |
1099 | 22.4k | if (C.hasSideEffect() && !noteSideEffect()1.67k ) { |
1100 | 480 | CleanupStack.clear(); |
1101 | 480 | return false; |
1102 | 480 | } |
1103 | 22.4k | } |
1104 | 25.2M | CleanupStack.clear(); |
1105 | 25.2M | return true; |
1106 | 25.2M | } |
1107 | | |
1108 | | private: |
1109 | 822k | interp::Frame *getCurrentFrame() override { return CurrentCall; } |
1110 | 822k | const interp::Frame *getBottomFrame() const override { return &BottomFrame; } |
1111 | | |
1112 | 4.72M | bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } |
1113 | 6.52M | void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } |
1114 | | |
1115 | 822k | void setFoldFailureDiagnostic(bool Flag) override { |
1116 | 822k | HasFoldFailureDiagnostic = Flag; |
1117 | 822k | } |
1118 | | |
1119 | 10.4M | Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } |
1120 | | |
1121 | | // If we have a prior diagnostic, it will be noting that the expression |
1122 | | // isn't a constant expression. This diagnostic is more important, |
1123 | | // unless we require this evaluation to produce a constant expression. |
1124 | | // |
1125 | | // FIXME: We might want to show both diagnostics to the user in |
1126 | | // EM_ConstantFold mode. |
1127 | 826k | bool hasPriorDiagnostic() override { |
1128 | 826k | if (!EvalStatus.Diag->empty()) { |
1129 | 4.91k | switch (EvalMode) { |
1130 | 712 | case EM_ConstantFold: |
1131 | 783 | case EM_IgnoreSideEffects: |
1132 | 783 | if (!HasFoldFailureDiagnostic) |
1133 | 706 | break; |
1134 | | // We've already failed to fold something. Keep that diagnostic. |
1135 | 783 | LLVM_FALLTHROUGH77 ;77 |
1136 | 4.20k | case EM_ConstantExpression: |
1137 | 4.20k | case EM_ConstantExpressionUnevaluated: |
1138 | 4.20k | setActiveDiagnostic(false); |
1139 | 4.20k | return true; |
1140 | 4.91k | } |
1141 | 4.91k | } |
1142 | 822k | return false; |
1143 | 826k | } |
1144 | | |
1145 | 1.64M | unsigned getCallStackDepth() override { return CallStackDepth; } |
1146 | | |
1147 | | public: |
1148 | | /// Should we continue evaluation after encountering a side-effect that we |
1149 | | /// couldn't model? |
1150 | 1.47M | bool keepEvaluatingAfterSideEffect() { |
1151 | 1.47M | switch (EvalMode) { |
1152 | 63.0k | case EM_IgnoreSideEffects: |
1153 | 63.0k | return true; |
1154 | | |
1155 | 1.40M | case EM_ConstantExpression: |
1156 | 1.41M | case EM_ConstantExpressionUnevaluated: |
1157 | 1.41M | case EM_ConstantFold: |
1158 | | // By default, assume any side effect might be valid in some other |
1159 | | // evaluation of this expression from a different context. |
1160 | 1.41M | return checkingPotentialConstantExpression() || |
1161 | 1.41M | checkingForUndefinedBehavior()1.14k ; |
1162 | 1.47M | } |
1163 | 0 | llvm_unreachable("Missed EvalMode case"); |
1164 | 0 | } |
1165 | | |
1166 | | /// Note that we have had a side-effect, and determine whether we should |
1167 | | /// keep evaluating. |
1168 | 1.47M | bool noteSideEffect() { |
1169 | 1.47M | EvalStatus.HasSideEffects = true; |
1170 | 1.47M | return keepEvaluatingAfterSideEffect(); |
1171 | 1.47M | } |
1172 | | |
1173 | | /// Should we continue evaluation after encountering undefined behavior? |
1174 | 715 | bool keepEvaluatingAfterUndefinedBehavior() { |
1175 | 715 | switch (EvalMode) { |
1176 | 618 | case EM_IgnoreSideEffects: |
1177 | 638 | case EM_ConstantFold: |
1178 | 638 | return true; |
1179 | | |
1180 | 77 | case EM_ConstantExpression: |
1181 | 77 | case EM_ConstantExpressionUnevaluated: |
1182 | 77 | return checkingForUndefinedBehavior(); |
1183 | 715 | } |
1184 | 0 | llvm_unreachable("Missed EvalMode case"); |
1185 | 0 | } |
1186 | | |
1187 | | /// Note that we hit something that was technically undefined behavior, but |
1188 | | /// that we can evaluate past it (such as signed overflow or floating-point |
1189 | | /// division by zero.) |
1190 | 715 | bool noteUndefinedBehavior() override { |
1191 | 715 | EvalStatus.HasUndefinedBehavior = true; |
1192 | 715 | return keepEvaluatingAfterUndefinedBehavior(); |
1193 | 715 | } |
1194 | | |
1195 | | /// Should we continue evaluation as much as possible after encountering a |
1196 | | /// construct which can't be reduced to a value? |
1197 | 4.86M | bool keepEvaluatingAfterFailure() const override { |
1198 | 4.86M | if (!StepsLeft) |
1199 | 0 | return false; |
1200 | | |
1201 | 4.86M | switch (EvalMode) { |
1202 | 187k | case EM_ConstantExpression: |
1203 | 205k | case EM_ConstantExpressionUnevaluated: |
1204 | 235k | case EM_ConstantFold: |
1205 | 4.86M | case EM_IgnoreSideEffects: |
1206 | 4.86M | return checkingPotentialConstantExpression() || |
1207 | 4.86M | checkingForUndefinedBehavior()4.82M ; |
1208 | 4.86M | } |
1209 | 0 | llvm_unreachable("Missed EvalMode case"); |
1210 | 0 | } |
1211 | | |
1212 | | /// Notes that we failed to evaluate an expression that other expressions |
1213 | | /// directly depend on, and determine if we should keep evaluating. This |
1214 | | /// should only be called if we actually intend to keep evaluating. |
1215 | | /// |
1216 | | /// Call noteSideEffect() instead if we may be able to ignore the value that |
1217 | | /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: |
1218 | | /// |
1219 | | /// (Foo(), 1) // use noteSideEffect |
1220 | | /// (Foo() || true) // use noteSideEffect |
1221 | | /// Foo() + 1 // use noteFailure |
1222 | 4.33M | LLVM_NODISCARD bool noteFailure() { |
1223 | | // Failure when evaluating some expression often means there is some |
1224 | | // subexpression whose evaluation was skipped. Therefore, (because we |
1225 | | // don't track whether we skipped an expression when unwinding after an |
1226 | | // evaluation failure) every evaluation failure that bubbles up from a |
1227 | | // subexpression implies that a side-effect has potentially happened. We |
1228 | | // skip setting the HasSideEffects flag to true until we decide to |
1229 | | // continue evaluating after that point, which happens here. |
1230 | 4.33M | bool KeepGoing = keepEvaluatingAfterFailure(); |
1231 | 4.33M | EvalStatus.HasSideEffects |= KeepGoing; |
1232 | 4.33M | return KeepGoing; |
1233 | 4.33M | } |
1234 | | |
1235 | | class ArrayInitLoopIndex { |
1236 | | EvalInfo &Info; |
1237 | | uint64_t OuterIndex; |
1238 | | |
1239 | | public: |
1240 | | ArrayInitLoopIndex(EvalInfo &Info) |
1241 | 27 | : Info(Info), OuterIndex(Info.ArrayInitIndex) { |
1242 | 27 | Info.ArrayInitIndex = 0; |
1243 | 27 | } |
1244 | 27 | ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } |
1245 | | |
1246 | 301 | operator uint64_t&() { return Info.ArrayInitIndex; } |
1247 | | }; |
1248 | | }; |
1249 | | |
1250 | | /// Object used to treat all foldable expressions as constant expressions. |
1251 | | struct FoldConstant { |
1252 | | EvalInfo &Info; |
1253 | | bool Enabled; |
1254 | | bool HadNoPriorDiags; |
1255 | | EvalInfo::EvaluationMode OldMode; |
1256 | | |
1257 | | explicit FoldConstant(EvalInfo &Info, bool Enabled) |
1258 | | : Info(Info), |
1259 | | Enabled(Enabled), |
1260 | | HadNoPriorDiags(Info.EvalStatus.Diag && |
1261 | | Info.EvalStatus.Diag->empty() && |
1262 | | !Info.EvalStatus.HasSideEffects), |
1263 | 264k | OldMode(Info.EvalMode) { |
1264 | 264k | if (Enabled) |
1265 | 4.60k | Info.EvalMode = EvalInfo::EM_ConstantFold; |
1266 | 264k | } |
1267 | 172k | void keepDiagnostics() { Enabled = false; } |
1268 | 264k | ~FoldConstant() { |
1269 | 264k | if (Enabled && HadNoPriorDiags1.81k && !Info.EvalStatus.Diag->empty()67 && |
1270 | 264k | !Info.EvalStatus.HasSideEffects67 ) |
1271 | 67 | Info.EvalStatus.Diag->clear(); |
1272 | 264k | Info.EvalMode = OldMode; |
1273 | 264k | } |
1274 | | }; |
1275 | | |
1276 | | /// RAII object used to set the current evaluation mode to ignore |
1277 | | /// side-effects. |
1278 | | struct IgnoreSideEffectsRAII { |
1279 | | EvalInfo &Info; |
1280 | | EvalInfo::EvaluationMode OldMode; |
1281 | | explicit IgnoreSideEffectsRAII(EvalInfo &Info) |
1282 | 9.79k | : Info(Info), OldMode(Info.EvalMode) { |
1283 | 9.79k | Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; |
1284 | 9.79k | } |
1285 | | |
1286 | 9.79k | ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } |
1287 | | }; |
1288 | | |
1289 | | /// RAII object used to optionally suppress diagnostics and side-effects from |
1290 | | /// a speculative evaluation. |
1291 | | class SpeculativeEvaluationRAII { |
1292 | | EvalInfo *Info = nullptr; |
1293 | | Expr::EvalStatus OldStatus; |
1294 | | unsigned OldSpeculativeEvaluationDepth; |
1295 | | |
1296 | 102k | void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { |
1297 | 102k | Info = Other.Info; |
1298 | 102k | OldStatus = Other.OldStatus; |
1299 | 102k | OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; |
1300 | 102k | Other.Info = nullptr; |
1301 | 102k | } |
1302 | | |
1303 | 16.8M | void maybeRestoreState() { |
1304 | 16.8M | if (!Info) |
1305 | 16.7M | return; |
1306 | | |
1307 | 82.6k | Info->EvalStatus = OldStatus; |
1308 | 82.6k | Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; |
1309 | 82.6k | } |
1310 | | |
1311 | | public: |
1312 | 16.6M | SpeculativeEvaluationRAII() = default; |
1313 | | |
1314 | | SpeculativeEvaluationRAII( |
1315 | | EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) |
1316 | | : Info(&Info), OldStatus(Info.EvalStatus), |
1317 | 82.6k | OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { |
1318 | 82.6k | Info.EvalStatus.Diag = NewDiag; |
1319 | 82.6k | Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; |
1320 | 82.6k | } |
1321 | | |
1322 | | SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; |
1323 | 37.0k | SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { |
1324 | 37.0k | moveFromAndCancel(std::move(Other)); |
1325 | 37.0k | } |
1326 | | |
1327 | 65.3k | SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { |
1328 | 65.3k | maybeRestoreState(); |
1329 | 65.3k | moveFromAndCancel(std::move(Other)); |
1330 | 65.3k | return *this; |
1331 | 65.3k | } |
1332 | | |
1333 | 16.7M | ~SpeculativeEvaluationRAII() { maybeRestoreState(); } |
1334 | | }; |
1335 | | |
1336 | | /// RAII object wrapping a full-expression or block scope, and handling |
1337 | | /// the ending of the lifetime of temporaries created within it. |
1338 | | template<ScopeKind Kind> |
1339 | | class ScopeRAII { |
1340 | | EvalInfo &Info; |
1341 | | unsigned OldStackSize; |
1342 | | public: |
1343 | | ScopeRAII(EvalInfo &Info) |
1344 | 17.1M | : Info(Info), OldStackSize(Info.CleanupStack.size()) { |
1345 | | // Push a new temporary version. This is needed to distinguish between |
1346 | | // temporaries created in different iterations of a loop. |
1347 | 17.1M | Info.CurrentCall->pushTempVersion(); |
1348 | 17.1M | } ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::ScopeRAII((anonymous namespace)::EvalInfo&) Line | Count | Source | 1344 | 749k | : Info(Info), OldStackSize(Info.CleanupStack.size()) { | 1345 | | // Push a new temporary version. This is needed to distinguish between | 1346 | | // temporaries created in different iterations of a loop. | 1347 | 749k | Info.CurrentCall->pushTempVersion(); | 1348 | 749k | } |
ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)0>::ScopeRAII((anonymous namespace)::EvalInfo&) Line | Count | Source | 1344 | 15.0M | : Info(Info), OldStackSize(Info.CleanupStack.size()) { | 1345 | | // Push a new temporary version. This is needed to distinguish between | 1346 | | // temporaries created in different iterations of a loop. | 1347 | 15.0M | Info.CurrentCall->pushTempVersion(); | 1348 | 15.0M | } |
ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::ScopeRAII((anonymous namespace)::EvalInfo&) Line | Count | Source | 1344 | 1.37M | : Info(Info), OldStackSize(Info.CleanupStack.size()) { | 1345 | | // Push a new temporary version. This is needed to distinguish between | 1346 | | // temporaries created in different iterations of a loop. | 1347 | 1.37M | Info.CurrentCall->pushTempVersion(); | 1348 | 1.37M | } |
|
1349 | 17.1M | bool destroy(bool RunDestructors = true) { |
1350 | 17.1M | bool OK = cleanup(Info, RunDestructors, OldStackSize); |
1351 | 17.1M | OldStackSize = -1U; |
1352 | 17.1M | return OK; |
1353 | 17.1M | } ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)0>::destroy(bool) Line | Count | Source | 1349 | 15.0M | bool destroy(bool RunDestructors = true) { | 1350 | 15.0M | bool OK = cleanup(Info, RunDestructors, OldStackSize); | 1351 | 15.0M | OldStackSize = -1U; | 1352 | 15.0M | return OK; | 1353 | 15.0M | } |
ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::destroy(bool) Line | Count | Source | 1349 | 749k | bool destroy(bool RunDestructors = true) { | 1350 | 749k | bool OK = cleanup(Info, RunDestructors, OldStackSize); | 1351 | 749k | OldStackSize = -1U; | 1352 | 749k | return OK; | 1353 | 749k | } |
ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::destroy(bool) Line | Count | Source | 1349 | 1.37M | bool destroy(bool RunDestructors = true) { | 1350 | 1.37M | bool OK = cleanup(Info, RunDestructors, OldStackSize); | 1351 | 1.37M | OldStackSize = -1U; | 1352 | 1.37M | return OK; | 1353 | 1.37M | } |
|
1354 | 17.1M | ~ScopeRAII() { |
1355 | 17.1M | if (OldStackSize != -1U) |
1356 | 775k | destroy(false); |
1357 | | // Body moved to a static method to encourage the compiler to inline away |
1358 | | // instances of this class. |
1359 | 17.1M | Info.CurrentCall->popTempVersion(); |
1360 | 17.1M | } ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)0>::~ScopeRAII() Line | Count | Source | 1354 | 15.0M | ~ScopeRAII() { | 1355 | 15.0M | if (OldStackSize != -1U) | 1356 | 58.0k | destroy(false); | 1357 | | // Body moved to a static method to encourage the compiler to inline away | 1358 | | // instances of this class. | 1359 | 15.0M | Info.CurrentCall->popTempVersion(); | 1360 | 15.0M | } |
ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::~ScopeRAII() Line | Count | Source | 1354 | 749k | ~ScopeRAII() { | 1355 | 749k | if (OldStackSize != -1U) | 1356 | 629k | destroy(false); | 1357 | | // Body moved to a static method to encourage the compiler to inline away | 1358 | | // instances of this class. | 1359 | 749k | Info.CurrentCall->popTempVersion(); | 1360 | 749k | } |
ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::~ScopeRAII() Line | Count | Source | 1354 | 1.37M | ~ScopeRAII() { | 1355 | 1.37M | if (OldStackSize != -1U) | 1356 | 87.9k | destroy(false); | 1357 | | // Body moved to a static method to encourage the compiler to inline away | 1358 | | // instances of this class. | 1359 | 1.37M | Info.CurrentCall->popTempVersion(); | 1360 | 1.37M | } |
|
1361 | | private: |
1362 | | static bool cleanup(EvalInfo &Info, bool RunDestructors, |
1363 | 17.1M | unsigned OldStackSize) { |
1364 | 17.1M | assert(OldStackSize <= Info.CleanupStack.size() && |
1365 | 17.1M | "running cleanups out of order?"); |
1366 | | |
1367 | | // Run all cleanups for a block scope, and non-lifetime-extended cleanups |
1368 | | // for a full-expression scope. |
1369 | 0 | bool Success = true; |
1370 | 17.6M | for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I547k ) { |
1371 | 548k | if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { |
1372 | 493k | if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { |
1373 | 304 | Success = false; |
1374 | 304 | break; |
1375 | 304 | } |
1376 | 493k | } |
1377 | 548k | } |
1378 | | |
1379 | | // Compact any retained cleanups. |
1380 | 17.1M | auto NewEnd = Info.CleanupStack.begin() + OldStackSize; |
1381 | 17.1M | if (Kind != ScopeKind::Block) |
1382 | 2.12M | NewEnd = |
1383 | 2.12M | std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { |
1384 | 533k | return C.isDestroyedAtEndOf(Kind); |
1385 | 533k | }); ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int)::'lambda'((anonymous namespace)::Cleanup&)::operator()((anonymous namespace)::Cleanup&) const Line | Count | Source | 1383 | 498k | std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { | 1384 | 498k | return C.isDestroyedAtEndOf(Kind); | 1385 | 498k | }); |
ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int)::'lambda'((anonymous namespace)::Cleanup&)::operator()((anonymous namespace)::Cleanup&) const Line | Count | Source | 1383 | 35.3k | std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { | 1384 | 35.3k | return C.isDestroyedAtEndOf(Kind); | 1385 | 35.3k | }); |
|
1386 | 17.1M | Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); |
1387 | 17.1M | return Success; |
1388 | 17.1M | } ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)0>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int) Line | Count | Source | 1363 | 15.0M | unsigned OldStackSize) { | 1364 | 15.0M | assert(OldStackSize <= Info.CleanupStack.size() && | 1365 | 15.0M | "running cleanups out of order?"); | 1366 | | | 1367 | | // Run all cleanups for a block scope, and non-lifetime-extended cleanups | 1368 | | // for a full-expression scope. | 1369 | 0 | bool Success = true; | 1370 | 15.0M | for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I14.0k ) { | 1371 | 14.2k | if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { | 1372 | 14.2k | if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { | 1373 | 143 | Success = false; | 1374 | 143 | break; | 1375 | 143 | } | 1376 | 14.2k | } | 1377 | 14.2k | } | 1378 | | | 1379 | | // Compact any retained cleanups. | 1380 | 15.0M | auto NewEnd = Info.CleanupStack.begin() + OldStackSize; | 1381 | 15.0M | if (Kind != ScopeKind::Block) | 1382 | 0 | NewEnd = | 1383 | 0 | std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { | 1384 | 0 | return C.isDestroyedAtEndOf(Kind); | 1385 | 0 | }); | 1386 | 15.0M | Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); | 1387 | 15.0M | return Success; | 1388 | 15.0M | } |
ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int) Line | Count | Source | 1363 | 749k | unsigned OldStackSize) { | 1364 | 749k | assert(OldStackSize <= Info.CleanupStack.size() && | 1365 | 749k | "running cleanups out of order?"); | 1366 | | | 1367 | | // Run all cleanups for a block scope, and non-lifetime-extended cleanups | 1368 | | // for a full-expression scope. | 1369 | 0 | bool Success = true; | 1370 | 1.24M | for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I498k ) { | 1371 | 498k | if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { | 1372 | 459k | if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { | 1373 | 137 | Success = false; | 1374 | 137 | break; | 1375 | 137 | } | 1376 | 459k | } | 1377 | 498k | } | 1378 | | | 1379 | | // Compact any retained cleanups. | 1380 | 749k | auto NewEnd = Info.CleanupStack.begin() + OldStackSize; | 1381 | 749k | if (Kind != ScopeKind::Block) | 1382 | 749k | NewEnd = | 1383 | 749k | std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { | 1384 | 749k | return C.isDestroyedAtEndOf(Kind); | 1385 | 749k | }); | 1386 | 749k | Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); | 1387 | 749k | return Success; | 1388 | 749k | } |
ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int) Line | Count | Source | 1363 | 1.37M | unsigned OldStackSize) { | 1364 | 1.37M | assert(OldStackSize <= Info.CleanupStack.size() && | 1365 | 1.37M | "running cleanups out of order?"); | 1366 | | | 1367 | | // Run all cleanups for a block scope, and non-lifetime-extended cleanups | 1368 | | // for a full-expression scope. | 1369 | 0 | bool Success = true; | 1370 | 1.40M | for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I35.3k ) { | 1371 | 35.3k | if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { | 1372 | 19.4k | if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { | 1373 | 24 | Success = false; | 1374 | 24 | break; | 1375 | 24 | } | 1376 | 19.4k | } | 1377 | 35.3k | } | 1378 | | | 1379 | | // Compact any retained cleanups. | 1380 | 1.37M | auto NewEnd = Info.CleanupStack.begin() + OldStackSize; | 1381 | 1.37M | if (Kind != ScopeKind::Block) | 1382 | 1.37M | NewEnd = | 1383 | 1.37M | std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { | 1384 | 1.37M | return C.isDestroyedAtEndOf(Kind); | 1385 | 1.37M | }); | 1386 | 1.37M | Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); | 1387 | 1.37M | return Success; | 1388 | 1.37M | } |
|
1389 | | }; |
1390 | | typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII; |
1391 | | typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII; |
1392 | | typedef ScopeRAII<ScopeKind::Call> CallScopeRAII; |
1393 | | } |
1394 | | |
1395 | | bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, |
1396 | 282k | CheckSubobjectKind CSK) { |
1397 | 282k | if (Invalid) |
1398 | 28 | return false; |
1399 | 282k | if (isOnePastTheEnd()) { |
1400 | 32 | Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) |
1401 | 32 | << CSK; |
1402 | 32 | setInvalid(); |
1403 | 32 | return false; |
1404 | 32 | } |
1405 | | // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there |
1406 | | // must actually be at least one array element; even a VLA cannot have a |
1407 | | // bound of zero. And if our index is nonzero, we already had a CCEDiag. |
1408 | 282k | return true; |
1409 | 282k | } |
1410 | | |
1411 | | void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, |
1412 | 580 | const Expr *E) { |
1413 | 580 | Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); |
1414 | | // Do not set the designator as invalid: we can represent this situation, |
1415 | | // and correct handling of __builtin_object_size requires us to do so. |
1416 | 580 | } |
1417 | | |
1418 | | void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, |
1419 | | const Expr *E, |
1420 | 435 | const APSInt &N) { |
1421 | | // If we're complaining, we must be able to statically determine the size of |
1422 | | // the most derived array. |
1423 | 435 | if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement423 ) |
1424 | 295 | Info.CCEDiag(E, diag::note_constexpr_array_index) |
1425 | 295 | << N << /*array*/ 0 |
1426 | 295 | << static_cast<unsigned>(getMostDerivedArraySize()); |
1427 | 140 | else |
1428 | 140 | Info.CCEDiag(E, diag::note_constexpr_array_index) |
1429 | 140 | << N << /*non-array*/ 1; |
1430 | 435 | setInvalid(); |
1431 | 435 | } |
1432 | | |
1433 | | CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, |
1434 | | const FunctionDecl *Callee, const LValue *This, |
1435 | | CallRef Call) |
1436 | | : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), |
1437 | 20.9M | Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) { |
1438 | 20.9M | Info.CurrentCall = this; |
1439 | 20.9M | ++Info.CallStackDepth; |
1440 | 20.9M | } |
1441 | | |
1442 | 20.9M | CallStackFrame::~CallStackFrame() { |
1443 | 20.9M | assert(Info.CurrentCall == this && "calls retired out of order"); |
1444 | 0 | --Info.CallStackDepth; |
1445 | 20.9M | Info.CurrentCall = Caller; |
1446 | 20.9M | } |
1447 | | |
1448 | 15.0M | static bool isRead(AccessKinds AK) { |
1449 | 15.0M | return AK == AK_Read || AK == AK_ReadObjectRepresentation318k ; |
1450 | 15.0M | } |
1451 | | |
1452 | 9.82M | static bool isModification(AccessKinds AK) { |
1453 | 9.82M | switch (AK) { |
1454 | 9.30M | case AK_Read: |
1455 | 9.30M | case AK_ReadObjectRepresentation: |
1456 | 9.47M | case AK_MemberCall: |
1457 | 9.47M | case AK_DynamicCast: |
1458 | 9.47M | case AK_TypeId: |
1459 | 9.47M | return false; |
1460 | 210k | case AK_Assign: |
1461 | 352k | case AK_Increment: |
1462 | 354k | case AK_Decrement: |
1463 | 354k | case AK_Construct: |
1464 | 355k | case AK_Destroy: |
1465 | 355k | return true; |
1466 | 9.82M | } |
1467 | 0 | llvm_unreachable("unknown access kind"); |
1468 | 0 | } |
1469 | | |
1470 | 15.0M | static bool isAnyAccess(AccessKinds AK) { |
1471 | 15.0M | return isRead(AK) || isModification(AK)316k ; |
1472 | 15.0M | } |
1473 | | |
1474 | | /// Is this an access per the C++ definition? |
1475 | 7.53M | static bool isFormalAccess(AccessKinds AK) { |
1476 | 7.53M | return isAnyAccess(AK) && AK != AK_Construct7.49M && AK != AK_Destroy7.48M ; |
1477 | 7.53M | } |
1478 | | |
1479 | | /// Is this kind of axcess valid on an indeterminate object value? |
1480 | 15.3k | static bool isValidIndeterminateAccess(AccessKinds AK) { |
1481 | 15.3k | switch (AK) { |
1482 | 62 | case AK_Read: |
1483 | 62 | case AK_Increment: |
1484 | 62 | case AK_Decrement: |
1485 | | // These need the object's value. |
1486 | 62 | return false; |
1487 | | |
1488 | 0 | case AK_ReadObjectRepresentation: |
1489 | 15.2k | case AK_Assign: |
1490 | 15.2k | case AK_Construct: |
1491 | 15.2k | case AK_Destroy: |
1492 | | // Construction and destruction don't need the value. |
1493 | 15.2k | return true; |
1494 | | |
1495 | 0 | case AK_MemberCall: |
1496 | 0 | case AK_DynamicCast: |
1497 | 0 | case AK_TypeId: |
1498 | | // These aren't really meaningful on scalars. |
1499 | 0 | return true; |
1500 | 15.3k | } |
1501 | 0 | llvm_unreachable("unknown access kind"); |
1502 | 0 | } |
1503 | | |
1504 | | namespace { |
1505 | | struct ComplexValue { |
1506 | | private: |
1507 | | bool IsInt; |
1508 | | |
1509 | | public: |
1510 | | APSInt IntReal, IntImag; |
1511 | | APFloat FloatReal, FloatImag; |
1512 | | |
1513 | 4.36k | ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} |
1514 | | |
1515 | 916 | void makeComplexFloat() { IsInt = false; } |
1516 | 1.01k | bool isComplexFloat() const { return !IsInt; } |
1517 | 1.19k | APFloat &getComplexFloatReal() { return FloatReal; } |
1518 | 1.21k | APFloat &getComplexFloatImag() { return FloatImag; } |
1519 | | |
1520 | 293 | void makeComplexInt() { IsInt = true; } |
1521 | 4 | bool isComplexInt() const { return IsInt; } |
1522 | 327 | APSInt &getComplexIntReal() { return IntReal; } |
1523 | 318 | APSInt &getComplexIntImag() { return IntImag; } |
1524 | | |
1525 | 350 | void moveInto(APValue &v) const { |
1526 | 350 | if (isComplexFloat()) |
1527 | 233 | v = APValue(FloatReal, FloatImag); |
1528 | 117 | else |
1529 | 117 | v = APValue(IntReal, IntImag); |
1530 | 350 | } |
1531 | 35 | void setFrom(const APValue &v) { |
1532 | 35 | assert(v.isComplexFloat() || v.isComplexInt()); |
1533 | 35 | if (v.isComplexFloat()) { |
1534 | 15 | makeComplexFloat(); |
1535 | 15 | FloatReal = v.getComplexFloatReal(); |
1536 | 15 | FloatImag = v.getComplexFloatImag(); |
1537 | 20 | } else { |
1538 | 20 | makeComplexInt(); |
1539 | 20 | IntReal = v.getComplexIntReal(); |
1540 | 20 | IntImag = v.getComplexIntImag(); |
1541 | 20 | } |
1542 | 35 | } |
1543 | | }; |
1544 | | |
1545 | | struct LValue { |
1546 | | APValue::LValueBase Base; |
1547 | | CharUnits Offset; |
1548 | | SubobjectDesignator Designator; |
1549 | | bool IsNullPtr : 1; |
1550 | | bool InvalidBase : 1; |
1551 | | |
1552 | 2.61M | const APValue::LValueBase getLValueBase() const { return Base; } |
1553 | 426k | CharUnits &getLValueOffset() { return Offset; } |
1554 | 340 | const CharUnits &getLValueOffset() const { return Offset; } |
1555 | 8.74k | SubobjectDesignator &getLValueDesignator() { return Designator; } |
1556 | 119k | const SubobjectDesignator &getLValueDesignator() const { return Designator;} |
1557 | 714 | bool isNullPointer() const { return IsNullPtr;} |
1558 | | |
1559 | 7.98M | unsigned getLValueCallIndex() const { return Base.getCallIndex(); } |
1560 | 3.87M | unsigned getLValueVersion() const { return Base.getVersion(); } |
1561 | | |
1562 | 1.35M | void moveInto(APValue &V) const { |
1563 | 1.35M | if (Designator.Invalid) |
1564 | 7.03k | V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); |
1565 | 1.34M | else { |
1566 | 1.34M | assert(!InvalidBase && "APValues can't handle invalid LValue bases"); |
1567 | 0 | V = APValue(Base, Offset, Designator.Entries, |
1568 | 1.34M | Designator.IsOnePastTheEnd, IsNullPtr); |
1569 | 1.34M | } |
1570 | 1.35M | } |
1571 | 816k | void setFrom(ASTContext &Ctx, const APValue &V) { |
1572 | 816k | assert(V.isLValue() && "Setting LValue from a non-LValue?"); |
1573 | 0 | Base = V.getLValueBase(); |
1574 | 816k | Offset = V.getLValueOffset(); |
1575 | 816k | InvalidBase = false; |
1576 | 816k | Designator = SubobjectDesignator(Ctx, V); |
1577 | 816k | IsNullPtr = V.isNullPointer(); |
1578 | 816k | } |
1579 | | |
1580 | 12.7M | void set(APValue::LValueBase B, bool BInvalid = false) { |
1581 | 12.7M | #ifndef NDEBUG |
1582 | | // We only allow a few types of invalid bases. Enforce that here. |
1583 | 12.7M | if (BInvalid) { |
1584 | 1.54k | const auto *E = B.get<const Expr *>(); |
1585 | 1.54k | assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && |
1586 | 1.54k | "Unexpected type of invalid base"); |
1587 | 1.54k | } |
1588 | 0 | #endif |
1589 | | |
1590 | 0 | Base = B; |
1591 | 12.7M | Offset = CharUnits::fromQuantity(0); |
1592 | 12.7M | InvalidBase = BInvalid; |
1593 | 12.7M | Designator = SubobjectDesignator(getType(B)); |
1594 | 12.7M | IsNullPtr = false; |
1595 | 12.7M | } |
1596 | | |
1597 | 77.4k | void setNull(ASTContext &Ctx, QualType PointerTy) { |
1598 | 77.4k | Base = (const ValueDecl *)nullptr; |
1599 | 77.4k | Offset = |
1600 | 77.4k | CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); |
1601 | 77.4k | InvalidBase = false; |
1602 | 77.4k | Designator = SubobjectDesignator(PointerTy->getPointeeType()); |
1603 | 77.4k | IsNullPtr = true; |
1604 | 77.4k | } |
1605 | | |
1606 | 1.54k | void setInvalid(APValue::LValueBase B, unsigned I = 0) { |
1607 | 1.54k | set(B, true); |
1608 | 1.54k | } |
1609 | | |
1610 | 14 | std::string toString(ASTContext &Ctx, QualType T) const { |
1611 | 14 | APValue Printable; |
1612 | 14 | moveInto(Printable); |
1613 | 14 | return Printable.getAsString(Ctx, T); |
1614 | 14 | } |
1615 | | |
1616 | | private: |
1617 | | // Check that this LValue is not based on a null pointer. If it is, produce |
1618 | | // a diagnostic and mark the designator as invalid. |
1619 | | template <typename GenDiagType> |
1620 | 368k | bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { |
1621 | 368k | if (Designator.Invalid) |
1622 | 292 | return false; |
1623 | 367k | if (IsNullPtr) { |
1624 | 742 | GenDiag(); |
1625 | 742 | Designator.setInvalid(); |
1626 | 742 | return false; |
1627 | 742 | } |
1628 | 367k | return true; |
1629 | 367k | } ExprConstant.cpp:bool (anonymous namespace)::LValue::checkNullPointerDiagnosingWith<(anonymous namespace)::LValue::checkNullPointer((anonymous namespace)::EvalInfo&, clang::Expr const*, clang::CheckSubobjectKind)::'lambda'()>((anonymous namespace)::LValue::checkNullPointer((anonymous namespace)::EvalInfo&, clang::Expr const*, clang::CheckSubobjectKind)::'lambda'() const&) Line | Count | Source | 1620 | 361k | bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { | 1621 | 361k | if (Designator.Invalid) | 1622 | 292 | return false; | 1623 | 361k | if (IsNullPtr) { | 1624 | 598 | GenDiag(); | 1625 | 598 | Designator.setInvalid(); | 1626 | 598 | return false; | 1627 | 598 | } | 1628 | 360k | return true; | 1629 | 361k | } |
ExprConstant.cpp:bool (anonymous namespace)::LValue::checkNullPointerDiagnosingWith<(anonymous namespace)::LValue::checkNullPointerForFoldAccess((anonymous namespace)::EvalInfo&, clang::Expr const*, clang::AccessKinds)::'lambda'()>((anonymous namespace)::LValue::checkNullPointerForFoldAccess((anonymous namespace)::EvalInfo&, clang::Expr const*, clang::AccessKinds)::'lambda'() const&) Line | Count | Source | 1620 | 6.38k | bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { | 1621 | 6.38k | if (Designator.Invalid) | 1622 | 0 | return false; | 1623 | 6.38k | if (IsNullPtr) { | 1624 | 144 | GenDiag(); | 1625 | 144 | Designator.setInvalid(); | 1626 | 144 | return false; | 1627 | 144 | } | 1628 | 6.24k | return true; | 1629 | 6.38k | } |
|
1630 | | |
1631 | | public: |
1632 | | bool checkNullPointer(EvalInfo &Info, const Expr *E, |
1633 | 361k | CheckSubobjectKind CSK) { |
1634 | 361k | return checkNullPointerDiagnosingWith([&Info, E, CSK] { |
1635 | 598 | Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; |
1636 | 598 | }); |
1637 | 361k | } |
1638 | | |
1639 | | bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, |
1640 | 6.38k | AccessKinds AK) { |
1641 | 6.38k | return checkNullPointerDiagnosingWith([&Info, E, AK] { |
1642 | 144 | Info.FFDiag(E, diag::note_constexpr_access_null) << AK; |
1643 | 144 | }); |
1644 | 6.38k | } |
1645 | | |
1646 | | // Check this LValue refers to an object. If not, set the designator to be |
1647 | | // invalid and emit a diagnostic. |
1648 | 282k | bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { |
1649 | 282k | return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)185k ) && |
1650 | 282k | Designator.checkSubobject(Info, E, CSK)282k ; |
1651 | 282k | } |
1652 | | |
1653 | | void addDecl(EvalInfo &Info, const Expr *E, |
1654 | 184k | const Decl *D, bool Virtual = false) { |
1655 | 184k | if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field171k : CSK_Base12.7k )) |
1656 | 184k | Designator.addDeclUnchecked(D, Virtual); |
1657 | 184k | } |
1658 | 4.68k | void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { |
1659 | 4.68k | if (!Designator.Entries.empty()) { |
1660 | 24 | Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); |
1661 | 24 | Designator.setInvalid(); |
1662 | 24 | return; |
1663 | 24 | } |
1664 | 4.66k | if (checkSubobject(Info, E, CSK_ArrayToPointer)) { |
1665 | 4.65k | assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); |
1666 | 0 | Designator.FirstEntryIsAnUnsizedArray = true; |
1667 | 4.65k | Designator.addUnsizedArrayUnchecked(ElemTy); |
1668 | 4.65k | } |
1669 | 4.66k | } |
1670 | 93.1k | void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { |
1671 | 93.1k | if (checkSubobject(Info, E, CSK_ArrayToPointer)) |
1672 | 93.1k | Designator.addArrayUnchecked(CAT); |
1673 | 93.1k | } |
1674 | 233 | void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { |
1675 | 233 | if (checkSubobject(Info, E, Imag ? CSK_Imag111 : CSK_Real122 )) |
1676 | 221 | Designator.addComplexUnchecked(EltTy, Imag); |
1677 | 233 | } |
1678 | 232k | void clearIsNullPointer() { |
1679 | 232k | IsNullPtr = false; |
1680 | 232k | } |
1681 | | void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, |
1682 | 187k | const APSInt &Index, CharUnits ElementSize) { |
1683 | | // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, |
1684 | | // but we're not required to diagnose it and it's valid in C++.) |
1685 | 187k | if (!Index) |
1686 | 10.6k | return; |
1687 | | |
1688 | | // Compute the new offset in the appropriate width, wrapping at 64 bits. |
1689 | | // FIXME: When compiling for a 32-bit target, we should use 32-bit |
1690 | | // offsets. |
1691 | 176k | uint64_t Offset64 = Offset.getQuantity(); |
1692 | 176k | uint64_t ElemSize64 = ElementSize.getQuantity(); |
1693 | 176k | uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); |
1694 | 176k | Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); |
1695 | | |
1696 | 176k | if (checkNullPointer(Info, E, CSK_ArrayIndex)) |
1697 | 176k | Designator.adjustIndex(Info, E, Index); |
1698 | 176k | clearIsNullPointer(); |
1699 | 176k | } |
1700 | 171k | void adjustOffset(CharUnits N) { |
1701 | 171k | Offset += N; |
1702 | 171k | if (N.getQuantity()) |
1703 | 55.6k | clearIsNullPointer(); |
1704 | 171k | } |
1705 | | }; |
1706 | | |
1707 | | struct MemberPtr { |
1708 | 3.11k | MemberPtr() {} |
1709 | | explicit MemberPtr(const ValueDecl *Decl) |
1710 | 2.02k | : DeclAndIsDerivedMember(Decl, false) {} |
1711 | | |
1712 | | /// The member or (direct or indirect) field referred to by this member |
1713 | | /// pointer, or 0 if this is a null member pointer. |
1714 | 3.88k | const ValueDecl *getDecl() const { |
1715 | 3.88k | return DeclAndIsDerivedMember.getPointer(); |
1716 | 3.88k | } |
1717 | | /// Is this actually a member of some type derived from the relevant class? |
1718 | 2.88k | bool isDerivedMember() const { |
1719 | 2.88k | return DeclAndIsDerivedMember.getInt(); |
1720 | 2.88k | } |
1721 | | /// Get the class which the declaration actually lives in. |
1722 | 116 | const CXXRecordDecl *getContainingRecord() const { |
1723 | 116 | return cast<CXXRecordDecl>( |
1724 | 116 | DeclAndIsDerivedMember.getPointer()->getDeclContext()); |
1725 | 116 | } |
1726 | | |
1727 | 1.74k | void moveInto(APValue &V) const { |
1728 | 1.74k | V = APValue(getDecl(), isDerivedMember(), Path); |
1729 | 1.74k | } |
1730 | 258 | void setFrom(const APValue &V) { |
1731 | 258 | assert(V.isMemberPointer()); |
1732 | 0 | DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); |
1733 | 258 | DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); |
1734 | 258 | Path.clear(); |
1735 | 258 | ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); |
1736 | 258 | Path.insert(Path.end(), P.begin(), P.end()); |
1737 | 258 | } |
1738 | | |
1739 | | /// DeclAndIsDerivedMember - The member declaration, and a flag indicating |
1740 | | /// whether the member is a member of some class derived from the class type |
1741 | | /// of the member pointer. |
1742 | | llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; |
1743 | | /// Path - The path of base/derived classes from the member declaration's |
1744 | | /// class (exclusive) to the class type of the member pointer (inclusive). |
1745 | | SmallVector<const CXXRecordDecl*, 4> Path; |
1746 | | |
1747 | | /// Perform a cast towards the class of the Decl (either up or down the |
1748 | | /// hierarchy). |
1749 | 144 | bool castBack(const CXXRecordDecl *Class) { |
1750 | 144 | assert(!Path.empty()); |
1751 | 0 | const CXXRecordDecl *Expected; |
1752 | 144 | if (Path.size() >= 2) |
1753 | 141 | Expected = Path[Path.size() - 2]; |
1754 | 3 | else |
1755 | 3 | Expected = getContainingRecord(); |
1756 | 144 | if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { |
1757 | | // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), |
1758 | | // if B does not contain the original member and is not a base or |
1759 | | // derived class of the class containing the original member, the result |
1760 | | // of the cast is undefined. |
1761 | | // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to |
1762 | | // (D::*). We consider that to be a language defect. |
1763 | 0 | return false; |
1764 | 0 | } |
1765 | 144 | Path.pop_back(); |
1766 | 144 | return true; |
1767 | 144 | } |
1768 | | /// Perform a base-to-derived member pointer cast. |
1769 | 498 | bool castToDerived(const CXXRecordDecl *Derived) { |
1770 | 498 | if (!getDecl()) |
1771 | 0 | return true; |
1772 | 498 | if (!isDerivedMember()) { |
1773 | 438 | Path.push_back(Derived); |
1774 | 438 | return true; |
1775 | 438 | } |
1776 | 60 | if (!castBack(Derived)) |
1777 | 0 | return false; |
1778 | 60 | if (Path.empty()) |
1779 | 3 | DeclAndIsDerivedMember.setInt(false); |
1780 | 60 | return true; |
1781 | 60 | } |
1782 | | /// Perform a derived-to-base member pointer cast. |
1783 | 343 | bool castToBase(const CXXRecordDecl *Base) { |
1784 | 343 | if (!getDecl()) |
1785 | 0 | return true; |
1786 | 343 | if (Path.empty()) |
1787 | 82 | DeclAndIsDerivedMember.setInt(true); |
1788 | 343 | if (isDerivedMember()) { |
1789 | 259 | Path.push_back(Base); |
1790 | 259 | return true; |
1791 | 259 | } |
1792 | 84 | return castBack(Base); |
1793 | 343 | } |
1794 | | }; |
1795 | | |
1796 | | /// Compare two member pointers, which are assumed to be of the same type. |
1797 | 57 | static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { |
1798 | 57 | if (!LHS.getDecl() || !RHS.getDecl()) |
1799 | 0 | return !LHS.getDecl() && !RHS.getDecl(); |
1800 | 57 | if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) |
1801 | 12 | return false; |
1802 | 45 | return LHS.Path == RHS.Path; |
1803 | 57 | } |
1804 | | } |
1805 | | |
1806 | | static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); |
1807 | | static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, |
1808 | | const LValue &This, const Expr *E, |
1809 | | bool AllowNonLiteralTypes = false); |
1810 | | static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, |
1811 | | bool InvalidBaseOK = false); |
1812 | | static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, |
1813 | | bool InvalidBaseOK = false); |
1814 | | static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, |
1815 | | EvalInfo &Info); |
1816 | | static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); |
1817 | | static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); |
1818 | | static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
1819 | | EvalInfo &Info); |
1820 | | static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); |
1821 | | static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); |
1822 | | static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, |
1823 | | EvalInfo &Info); |
1824 | | static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); |
1825 | | static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, |
1826 | | EvalInfo &Info); |
1827 | | |
1828 | | /// Evaluate an integer or fixed point expression into an APResult. |
1829 | | static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, |
1830 | | EvalInfo &Info); |
1831 | | |
1832 | | /// Evaluate only a fixed point expression into an APResult. |
1833 | | static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, |
1834 | | EvalInfo &Info); |
1835 | | |
1836 | | //===----------------------------------------------------------------------===// |
1837 | | // Misc utilities |
1838 | | //===----------------------------------------------------------------------===// |
1839 | | |
1840 | | /// Negate an APSInt in place, converting it to a signed form if necessary, and |
1841 | | /// preserving its value (by extending by up to one bit as needed). |
1842 | 276 | static void negateAsSigned(APSInt &Int) { |
1843 | 276 | if (Int.isUnsigned() || Int.isMinSignedValue()266 ) { |
1844 | 10 | Int = Int.extend(Int.getBitWidth() + 1); |
1845 | 10 | Int.setIsSigned(true); |
1846 | 10 | } |
1847 | 276 | Int = -Int; |
1848 | 276 | } |
1849 | | |
1850 | | template<typename KeyT> |
1851 | | APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, |
1852 | 61.2k | ScopeKind Scope, LValue &LV) { |
1853 | 61.2k | unsigned Version = getTempVersion(); |
1854 | 61.2k | APValue::LValueBase Base(Key, Index, Version); |
1855 | 61.2k | LV.set(Base); |
1856 | 61.2k | return createLocal(Base, Key, T, Scope); |
1857 | 61.2k | } ExprConstant.cpp:clang::APValue& (anonymous namespace)::CallStackFrame::createTemporary<clang::OpaqueValueExpr>(clang::OpaqueValueExpr const*, clang::QualType, (anonymous namespace)::ScopeKind, (anonymous namespace)::LValue&) Line | Count | Source | 1852 | 1.49k | ScopeKind Scope, LValue &LV) { | 1853 | 1.49k | unsigned Version = getTempVersion(); | 1854 | 1.49k | APValue::LValueBase Base(Key, Index, Version); | 1855 | 1.49k | LV.set(Base); | 1856 | 1.49k | return createLocal(Base, Key, T, Scope); | 1857 | 1.49k | } |
ExprConstant.cpp:clang::APValue& (anonymous namespace)::CallStackFrame::createTemporary<clang::VarDecl>(clang::VarDecl const*, clang::QualType, (anonymous namespace)::ScopeKind, (anonymous namespace)::LValue&) Line | Count | Source | 1852 | 14.1k | ScopeKind Scope, LValue &LV) { | 1853 | 14.1k | unsigned Version = getTempVersion(); | 1854 | 14.1k | APValue::LValueBase Base(Key, Index, Version); | 1855 | 14.1k | LV.set(Base); | 1856 | 14.1k | return createLocal(Base, Key, T, Scope); | 1857 | 14.1k | } |
ExprConstant.cpp:clang::APValue& (anonymous namespace)::CallStackFrame::createTemporary<clang::Expr>(clang::Expr const*, clang::QualType, (anonymous namespace)::ScopeKind, (anonymous namespace)::LValue&) Line | Count | Source | 1852 | 10.6k | ScopeKind Scope, LValue &LV) { | 1853 | 10.6k | unsigned Version = getTempVersion(); | 1854 | 10.6k | APValue::LValueBase Base(Key, Index, Version); | 1855 | 10.6k | LV.set(Base); | 1856 | 10.6k | return createLocal(Base, Key, T, Scope); | 1857 | 10.6k | } |
ExprConstant.cpp:clang::APValue& (anonymous namespace)::CallStackFrame::createTemporary<clang::MaterializeTemporaryExpr>(clang::MaterializeTemporaryExpr const*, clang::QualType, (anonymous namespace)::ScopeKind, (anonymous namespace)::LValue&) Line | Count | Source | 1852 | 34.9k | ScopeKind Scope, LValue &LV) { | 1853 | 34.9k | unsigned Version = getTempVersion(); | 1854 | 34.9k | APValue::LValueBase Base(Key, Index, Version); | 1855 | 34.9k | LV.set(Base); | 1856 | 34.9k | return createLocal(Base, Key, T, Scope); | 1857 | 34.9k | } |
|
1858 | | |
1859 | | /// Allocate storage for a parameter of a function call made in this frame. |
1860 | | APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD, |
1861 | 462k | LValue &LV) { |
1862 | 462k | assert(Args.CallIndex == Index && "creating parameter in wrong frame"); |
1863 | 0 | APValue::LValueBase Base(PVD, Index, Args.Version); |
1864 | 462k | LV.set(Base); |
1865 | | // We always destroy parameters at the end of the call, even if we'd allow |
1866 | | // them to live to the end of the full-expression at runtime, in order to |
1867 | | // give portable results and match other compilers. |
1868 | 462k | return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call); |
1869 | 462k | } |
1870 | | |
1871 | | APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key, |
1872 | 524k | QualType T, ScopeKind Scope) { |
1873 | 524k | assert(Base.getCallIndex() == Index && "lvalue for wrong frame"); |
1874 | 0 | unsigned Version = Base.getVersion(); |
1875 | 524k | APValue &Result = Temporaries[MapKeyTy(Key, Version)]; |
1876 | 524k | assert(Result.isAbsent() && "local created multiple times"); |
1877 | | |
1878 | | // If we're creating a local immediately in the operand of a speculative |
1879 | | // evaluation, don't register a cleanup to be run outside the speculative |
1880 | | // evaluation context, since we won't actually be able to initialize this |
1881 | | // object. |
1882 | 524k | if (Index <= Info.SpeculativeEvaluationDepth) { |
1883 | 7.60k | if (T.isDestructedType()) |
1884 | 599 | Info.noteSideEffect(); |
1885 | 516k | } else { |
1886 | 516k | Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope)); |
1887 | 516k | } |
1888 | 524k | return Result; |
1889 | 524k | } |
1890 | | |
1891 | 1.13k | APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { |
1892 | 1.13k | if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { |
1893 | 0 | FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); |
1894 | 0 | return nullptr; |
1895 | 0 | } |
1896 | | |
1897 | 1.13k | DynamicAllocLValue DA(NumHeapAllocs++); |
1898 | 1.13k | LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); |
1899 | 1.13k | auto Result = HeapAllocs.emplace(std::piecewise_construct, |
1900 | 1.13k | std::forward_as_tuple(DA), std::tuple<>()); |
1901 | 1.13k | assert(Result.second && "reused a heap alloc index?"); |
1902 | 0 | Result.first->second.AllocExpr = E; |
1903 | 1.13k | return &Result.first->second.Value; |
1904 | 1.13k | } |
1905 | | |
1906 | | /// Produce a string describing the given constexpr call. |
1907 | 2.42k | void CallStackFrame::describe(raw_ostream &Out) { |
1908 | 2.42k | unsigned ArgIndex = 0; |
1909 | 2.42k | bool IsMemberCall = isa<CXXMethodDecl>(Callee) && |
1910 | 2.42k | !isa<CXXConstructorDecl>(Callee)1.54k && |
1911 | 2.42k | cast<CXXMethodDecl>(Callee)->isInstance()1.07k ; |
1912 | | |
1913 | 2.42k | if (!IsMemberCall) |
1914 | 1.35k | Out << *Callee << '('; |
1915 | | |
1916 | 2.42k | if (This && IsMemberCall1.54k ) { |
1917 | 1.07k | APValue Val; |
1918 | 1.07k | This->moveInto(Val); |
1919 | 1.07k | Val.printPretty(Out, Info.Ctx, |
1920 | 1.07k | This->Designator.MostDerivedType); |
1921 | | // FIXME: Add parens around Val if needed. |
1922 | 1.07k | Out << "->" << *Callee << '('; |
1923 | 1.07k | IsMemberCall = false; |
1924 | 1.07k | } |
1925 | | |
1926 | 2.42k | for (FunctionDecl::param_const_iterator I = Callee->param_begin(), |
1927 | 4.35k | E = Callee->param_end(); I != E; ++I, ++ArgIndex1.92k ) { |
1928 | 1.92k | if (ArgIndex > (unsigned)IsMemberCall) |
1929 | 650 | Out << ", "; |
1930 | | |
1931 | 1.92k | const ParmVarDecl *Param = *I; |
1932 | 1.92k | APValue *V = Info.getParamSlot(Arguments, Param); |
1933 | 1.92k | if (V) |
1934 | 1.92k | V->printPretty(Out, Info.Ctx, Param->getType()); |
1935 | 0 | else |
1936 | 0 | Out << "<...>"; |
1937 | | |
1938 | 1.92k | if (ArgIndex == 0 && IsMemberCall1.27k ) |
1939 | 0 | Out << "->" << *Callee << '('; |
1940 | 1.92k | } |
1941 | | |
1942 | 2.42k | Out << ')'; |
1943 | 2.42k | } |
1944 | | |
1945 | | /// Evaluate an expression to see if it had side-effects, and discard its |
1946 | | /// result. |
1947 | | /// \return \c true if the caller should keep evaluating. |
1948 | 88.4k | static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { |
1949 | 88.4k | assert(!E->isValueDependent()); |
1950 | 0 | APValue Scratch; |
1951 | 88.4k | if (!Evaluate(Scratch, Info, E)) |
1952 | | // We don't need the value, but we might have skipped a side effect here. |
1953 | 6.23k | return Info.noteSideEffect(); |
1954 | 82.1k | return true; |
1955 | 88.4k | } |
1956 | | |
1957 | | /// Should this call expression be treated as a constant? |
1958 | 36.5k | static bool IsConstantCall(const CallExpr *E) { |
1959 | 36.5k | unsigned Builtin = E->getBuiltinCallee(); |
1960 | 36.5k | return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || |
1961 | 36.5k | Builtin == Builtin::BI__builtin___NSStringMakeConstantString35.2k || |
1962 | 36.5k | Builtin == Builtin::BI__builtin_function_start35.2k ); |
1963 | 36.5k | } |
1964 | | |
1965 | 119k | static bool IsGlobalLValue(APValue::LValueBase B) { |
1966 | | // C++11 [expr.const]p3 An address constant expression is a prvalue core |
1967 | | // constant expression of pointer type that evaluates to... |
1968 | | |
1969 | | // ... a null pointer value, or a prvalue core constant expression of type |
1970 | | // std::nullptr_t. |
1971 | 119k | if (!B) return true36.4k ; |
1972 | | |
1973 | 82.7k | if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
1974 | | // ... the address of an object with static storage duration, |
1975 | 70.3k | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
1976 | 57.6k | return VD->hasGlobalStorage(); |
1977 | 12.6k | if (isa<TemplateParamObjectDecl>(D)) |
1978 | 83 | return true; |
1979 | | // ... the address of a function, |
1980 | | // ... the address of a GUID [MS extension], |
1981 | | // ... the address of an unnamed global constant |
1982 | 12.6k | return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D); |
1983 | 12.6k | } |
1984 | | |
1985 | 12.4k | if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()11.4k ) |
1986 | 1.18k | return true; |
1987 | | |
1988 | 11.2k | const Expr *E = B.get<const Expr*>(); |
1989 | 11.2k | switch (E->getStmtClass()) { |
1990 | 0 | default: |
1991 | 0 | return false; |
1992 | 90 | case Expr::CompoundLiteralExprClass: { |
1993 | 90 | const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); |
1994 | 90 | return CLE->isFileScope() && CLE->isLValue()87 ; |
1995 | 0 | } |
1996 | 1.09k | case Expr::MaterializeTemporaryExprClass: |
1997 | | // A materialized temporary might have been lifetime-extended to static |
1998 | | // storage duration. |
1999 | 1.09k | return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; |
2000 | | // A string literal has static storage duration. |
2001 | 5.12k | case Expr::StringLiteralClass: |
2002 | 5.15k | case Expr::PredefinedExprClass: |
2003 | 8.83k | case Expr::ObjCStringLiteralClass: |
2004 | 8.91k | case Expr::ObjCEncodeExprClass: |
2005 | 8.91k | return true; |
2006 | 9 | case Expr::ObjCBoxedExprClass: |
2007 | 9 | return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); |
2008 | 693 | case Expr::CallExprClass: |
2009 | 693 | return IsConstantCall(cast<CallExpr>(E)); |
2010 | | // For GCC compatibility, &&label has static storage duration. |
2011 | 105 | case Expr::AddrLabelExprClass: |
2012 | 105 | return true; |
2013 | | // A Block literal expression may be used as the initialization value for |
2014 | | // Block variables at global or local static scope. |
2015 | 320 | case Expr::BlockExprClass: |
2016 | 320 | return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); |
2017 | | // The APValue generated from a __builtin_source_location will be emitted as a |
2018 | | // literal. |
2019 | 0 | case Expr::SourceLocExprClass: |
2020 | 0 | return true; |
2021 | 0 | case Expr::ImplicitValueInitExprClass: |
2022 | | // FIXME: |
2023 | | // We can never form an lvalue with an implicit value initialization as its |
2024 | | // base through expression evaluation, so these only appear in one case: the |
2025 | | // implicit variable declaration we invent when checking whether a constexpr |
2026 | | // constructor can produce a constant expression. We must assume that such |
2027 | | // an expression might be a global lvalue. |
2028 | 0 | return true; |
2029 | 11.2k | } |
2030 | 11.2k | } |
2031 | | |
2032 | 1.61k | static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { |
2033 | 1.61k | return LVal.Base.dyn_cast<const ValueDecl*>(); |
2034 | 1.61k | } |
2035 | | |
2036 | 1.11k | static bool IsLiteralLValue(const LValue &Value) { |
2037 | 1.11k | if (Value.getLValueCallIndex()) |
2038 | 15 | return false; |
2039 | 1.10k | const Expr *E = Value.Base.dyn_cast<const Expr*>(); |
2040 | 1.10k | return E && !isa<MaterializeTemporaryExpr>(E)108 ; |
2041 | 1.11k | } |
2042 | | |
2043 | 1.03k | static bool IsWeakLValue(const LValue &Value) { |
2044 | 1.03k | const ValueDecl *Decl = GetLValueBaseDecl(Value); |
2045 | 1.03k | return Decl && Decl->isWeak()633 ; |
2046 | 1.03k | } |
2047 | | |
2048 | 573 | static bool isZeroSized(const LValue &Value) { |
2049 | 573 | const ValueDecl *Decl = GetLValueBaseDecl(Value); |
2050 | 573 | if (Decl && isa<VarDecl>(Decl)234 ) { |
2051 | 178 | QualType Ty = Decl->getType(); |
2052 | 178 | if (Ty->isArrayType()) |
2053 | 62 | return Ty->isIncompleteType() || |
2054 | 62 | Decl->getASTContext().getTypeSize(Ty) == 042 ; |
2055 | 178 | } |
2056 | 511 | return false; |
2057 | 573 | } |
2058 | | |
2059 | 6.06k | static bool HasSameBase(const LValue &A, const LValue &B) { |
2060 | 6.06k | if (!A.getLValueBase()) |
2061 | 835 | return !B.getLValueBase(); |
2062 | 5.23k | if (!B.getLValueBase()) |
2063 | 386 | return false; |
2064 | | |
2065 | 4.84k | if (A.getLValueBase().getOpaqueValue() != |
2066 | 4.84k | B.getLValueBase().getOpaqueValue()) |
2067 | 750 | return false; |
2068 | | |
2069 | 4.09k | return A.getLValueCallIndex() == B.getLValueCallIndex() && |
2070 | 4.09k | A.getLValueVersion() == B.getLValueVersion(); |
2071 | 4.84k | } |
2072 | | |
2073 | 1.36M | static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { |
2074 | 1.36M | assert(Base && "no location for a null lvalue"); |
2075 | 0 | const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); |
2076 | | |
2077 | | // For a parameter, find the corresponding call stack frame (if it still |
2078 | | // exists), and point at the parameter of the function definition we actually |
2079 | | // invoked. |
2080 | 1.36M | if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) { |
2081 | 1.09M | unsigned Idx = PVD->getFunctionScopeIndex(); |
2082 | 2.20M | for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller1.10M ) { |
2083 | 1.10M | if (F->Arguments.CallIndex == Base.getCallIndex() && |
2084 | 1.10M | F->Arguments.Version == Base.getVersion()1.09M && F->Callee1.09M && |
2085 | 1.10M | Idx < F->Callee->getNumParams()15 ) { |
2086 | 12 | VD = F->Callee->getParamDecl(Idx); |
2087 | 12 | break; |
2088 | 12 | } |
2089 | 1.10M | } |
2090 | 1.09M | } |
2091 | | |
2092 | 1.36M | if (VD) |
2093 | 1.36M | Info.Note(VD->getLocation(), diag::note_declared_at); |
2094 | 651 | else if (const Expr *E = Base.dyn_cast<const Expr*>()) |
2095 | 391 | Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); |
2096 | 260 | else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
2097 | | // FIXME: Produce a note for dangling pointers too. |
2098 | 224 | if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA)) |
2099 | 224 | Info.Note((*Alloc)->AllocExpr->getExprLoc(), |
2100 | 224 | diag::note_constexpr_dynamic_alloc_here); |
2101 | 224 | } |
2102 | | // We have no information to show for a typeid(T) object. |
2103 | 1.36M | } |
2104 | | |
2105 | | enum class CheckEvaluationResultKind { |
2106 | | ConstantExpression, |
2107 | | FullyInitialized, |
2108 | | }; |
2109 | | |
2110 | | /// Materialized temporaries that we've already checked to determine if they're |
2111 | | /// initializsed by a constant expression. |
2112 | | using CheckedTemporaries = |
2113 | | llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; |
2114 | | |
2115 | | static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, |
2116 | | EvalInfo &Info, SourceLocation DiagLoc, |
2117 | | QualType Type, const APValue &Value, |
2118 | | ConstantExprKind Kind, |
2119 | | SourceLocation SubobjectLoc, |
2120 | | CheckedTemporaries &CheckedTemps); |
2121 | | |
2122 | | /// Check that this reference or pointer core constant expression is a valid |
2123 | | /// value for an address or reference constant expression. Return true if we |
2124 | | /// can fold this expression, whether or not it's a constant expression. |
2125 | | static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, |
2126 | | QualType Type, const LValue &LVal, |
2127 | | ConstantExprKind Kind, |
2128 | 119k | CheckedTemporaries &CheckedTemps) { |
2129 | 119k | bool IsReferenceType = Type->isReferenceType(); |
2130 | | |
2131 | 119k | APValue::LValueBase Base = LVal.getLValueBase(); |
2132 | 119k | const SubobjectDesignator &Designator = LVal.getLValueDesignator(); |
2133 | | |
2134 | 119k | const Expr *BaseE = Base.dyn_cast<const Expr *>(); |
2135 | 119k | const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>(); |
2136 | | |
2137 | | // Additional restrictions apply in a template argument. We only enforce the |
2138 | | // C++20 restrictions here; additional syntactic and semantic restrictions |
2139 | | // are applied elsewhere. |
2140 | 119k | if (isTemplateArgument(Kind)) { |
2141 | 1.05k | int InvalidBaseKind = -1; |
2142 | 1.05k | StringRef Ident; |
2143 | 1.05k | if (Base.is<TypeInfoLValue>()) |
2144 | 6 | InvalidBaseKind = 0; |
2145 | 1.04k | else if (isa_and_nonnull<StringLiteral>(BaseE)) |
2146 | 12 | InvalidBaseKind = 1; |
2147 | 1.03k | else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) || |
2148 | 1.03k | isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD)1.02k ) |
2149 | 15 | InvalidBaseKind = 2; |
2150 | 1.02k | else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) { |
2151 | 8 | InvalidBaseKind = 3; |
2152 | 8 | Ident = PE->getIdentKindName(); |
2153 | 8 | } |
2154 | | |
2155 | 1.05k | if (InvalidBaseKind != -1) { |
2156 | 41 | Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg) |
2157 | 41 | << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind |
2158 | 41 | << Ident; |
2159 | 41 | return false; |
2160 | 41 | } |
2161 | 1.05k | } |
2162 | | |
2163 | 119k | if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) { |
2164 | 12.5k | if (FD->isConsteval()) { |
2165 | 97 | Info.FFDiag(Loc, diag::note_consteval_address_accessible) |
2166 | 97 | << !Type->isAnyPointerType(); |
2167 | 97 | Info.Note(FD->getLocation(), diag::note_declared_at); |
2168 | 97 | return false; |
2169 | 97 | } |
2170 | 12.5k | } |
2171 | | |
2172 | | // Check that the object is a global. Note that the fake 'this' object we |
2173 | | // manufacture when checking potential constant expressions is conservatively |
2174 | | // assumed to be global here. |
2175 | 119k | if (!IsGlobalLValue(Base)) { |
2176 | 39.8k | if (Info.getLangOpts().CPlusPlus11) { |
2177 | 36.7k | const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); |
2178 | 36.7k | Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) |
2179 | 36.7k | << IsReferenceType << !Designator.Entries.empty() |
2180 | 36.7k | << !!VD << VD; |
2181 | | |
2182 | 36.7k | auto *VarD = dyn_cast_or_null<VarDecl>(VD); |
2183 | 36.7k | if (VarD && VarD->isConstexpr()36.3k ) { |
2184 | | // Non-static local constexpr variables have unintuitive semantics: |
2185 | | // constexpr int a = 1; |
2186 | | // constexpr const int *p = &a; |
2187 | | // ... is invalid because the address of 'a' is not constant. Suggest |
2188 | | // adding a 'static' in this case. |
2189 | 36 | Info.Note(VarD->getLocation(), diag::note_constexpr_not_static) |
2190 | 36 | << VarD |
2191 | 36 | << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static "); |
2192 | 36.7k | } else { |
2193 | 36.7k | NoteLValueLocation(Info, Base); |
2194 | 36.7k | } |
2195 | 36.7k | } else { |
2196 | 3.06k | Info.FFDiag(Loc); |
2197 | 3.06k | } |
2198 | | // Don't allow references to temporaries to escape. |
2199 | 39.8k | return false; |
2200 | 39.8k | } |
2201 | 79.3k | assert((Info.checkingPotentialConstantExpression() || |
2202 | 79.3k | LVal.getLValueCallIndex() == 0) && |
2203 | 79.3k | "have call index for global lvalue"); |
2204 | | |
2205 | 79.3k | if (Base.is<DynamicAllocLValue>()) { |
2206 | 205 | Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) |
2207 | 205 | << IsReferenceType << !Designator.Entries.empty(); |
2208 | 205 | NoteLValueLocation(Info, Base); |
2209 | 205 | return false; |
2210 | 205 | } |
2211 | | |
2212 | 79.1k | if (BaseVD) { |
2213 | 30.8k | if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) { |
2214 | | // Check if this is a thread-local variable. |
2215 | 18.1k | if (Var->getTLSKind()) |
2216 | | // FIXME: Diagnostic! |
2217 | 122 | return false; |
2218 | | |
2219 | | // A dllimport variable never acts like a constant, unless we're |
2220 | | // evaluating a value for use only in name mangling. |
2221 | 18.0k | if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>()17.6k ) |
2222 | | // FIXME: Diagnostic! |
2223 | 75 | return false; |
2224 | | |
2225 | | // In CUDA/HIP device compilation, only device side variables have |
2226 | | // constant addresses. |
2227 | 17.9k | if (Info.getCtx().getLangOpts().CUDA && |
2228 | 17.9k | Info.getCtx().getLangOpts().CUDAIsDevice704 && |
2229 | 17.9k | Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars376 ) { |
2230 | 62 | if ((!Var->hasAttr<CUDADeviceAttr>() && |
2231 | 62 | !Var->hasAttr<CUDAConstantAttr>()54 && |
2232 | 62 | !Var->getType()->isCUDADeviceBuiltinSurfaceType()20 && |
2233 | 62 | !Var->getType()->isCUDADeviceBuiltinTextureType()16 ) || |
2234 | 62 | Var->hasAttr<HIPManagedAttr>()50 ) |
2235 | 16 | return false; |
2236 | 62 | } |
2237 | 17.9k | } |
2238 | 30.6k | if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) { |
2239 | | // __declspec(dllimport) must be handled very carefully: |
2240 | | // We must never initialize an expression with the thunk in C++. |
2241 | | // Doing otherwise would allow the same id-expression to yield |
2242 | | // different addresses for the same function in different translation |
2243 | | // units. However, this means that we must dynamically initialize the |
2244 | | // expression with the contents of the import address table at runtime. |
2245 | | // |
2246 | | // The C language has no notion of ODR; furthermore, it has no notion of |
2247 | | // dynamic initialization. This means that we are permitted to |
2248 | | // perform initialization with the address of the thunk. |
2249 | 12.4k | if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind)9.92k && |
2250 | 12.4k | FD->hasAttr<DLLImportAttr>()9.81k ) |
2251 | | // FIXME: Diagnostic! |
2252 | 212 | return false; |
2253 | 12.4k | } |
2254 | 48.2k | } else if (const auto *MTE = |
2255 | 48.2k | dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) { |
2256 | 729 | if (CheckedTemps.insert(MTE).second) { |
2257 | 717 | QualType TempType = getType(Base); |
2258 | 717 | if (TempType.isDestructedType()) { |
2259 | 4 | Info.FFDiag(MTE->getExprLoc(), |
2260 | 4 | diag::note_constexpr_unsupported_temporary_nontrivial_dtor) |
2261 | 4 | << TempType; |
2262 | 4 | return false; |
2263 | 4 | } |
2264 | | |
2265 | 713 | APValue *V = MTE->getOrCreateValue(false); |
2266 | 713 | assert(V && "evasluation result refers to uninitialised temporary"); |
2267 | 713 | if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, |
2268 | 713 | Info, MTE->getExprLoc(), TempType, *V, |
2269 | 713 | Kind, SourceLocation(), CheckedTemps)) |
2270 | 11 | return false; |
2271 | 713 | } |
2272 | 729 | } |
2273 | | |
2274 | | // Allow address constant expressions to be past-the-end pointers. This is |
2275 | | // an extension: the standard requires them to point to an object. |
2276 | 78.6k | if (!IsReferenceType) |
2277 | 60.5k | return true; |
2278 | | |
2279 | | // A reference constant expression must refer to an object. |
2280 | 18.1k | if (!Base) { |
2281 | | // FIXME: diagnostic |
2282 | 269 | Info.CCEDiag(Loc); |
2283 | 269 | return true; |
2284 | 269 | } |
2285 | | |
2286 | | // Does this refer one past the end of some object? |
2287 | 17.8k | if (!Designator.Invalid && Designator.isOnePastTheEnd()17.8k ) { |
2288 | 59 | Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) |
2289 | 59 | << !Designator.Entries.empty() << !!BaseVD << BaseVD; |
2290 | 59 | NoteLValueLocation(Info, Base); |
2291 | 59 | } |
2292 | | |
2293 | 17.8k | return true; |
2294 | 18.1k | } |
2295 | | |
2296 | | /// Member pointers are constant expressions unless they point to a |
2297 | | /// non-virtual dllimport member function. |
2298 | | static bool CheckMemberPointerConstantExpression(EvalInfo &Info, |
2299 | | SourceLocation Loc, |
2300 | | QualType Type, |
2301 | | const APValue &Value, |
2302 | 1.33k | ConstantExprKind Kind) { |
2303 | 1.33k | const ValueDecl *Member = Value.getMemberPointerDecl(); |
2304 | 1.33k | const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); |
2305 | 1.33k | if (!FD) |
2306 | 404 | return true; |
2307 | 931 | if (FD->isConsteval()) { |
2308 | 4 | Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0; |
2309 | 4 | Info.Note(FD->getLocation(), diag::note_declared_at); |
2310 | 4 | return false; |
2311 | 4 | } |
2312 | 927 | return isForManglingOnly(Kind) || FD->isVirtual()913 || |
2313 | 927 | !FD->hasAttr<DLLImportAttr>()788 ; |
2314 | 931 | } |
2315 | | |
2316 | | /// Check that this core constant expression is of literal type, and if not, |
2317 | | /// produce an appropriate diagnostic. |
2318 | | static bool CheckLiteralType(EvalInfo &Info, const Expr *E, |
2319 | 14.7M | const LValue *This = nullptr) { |
2320 | 14.7M | if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx)12.7M ) |
2321 | 14.6M | return true; |
2322 | | |
2323 | | // C++1y: A constant initializer for an object o [...] may also invoke |
2324 | | // constexpr constructors for o and its subobjects even if those objects |
2325 | | // are of non-literal class types. |
2326 | | // |
2327 | | // C++11 missed this detail for aggregates, so classes like this: |
2328 | | // struct foo_t { union { int i; volatile int j; } u; }; |
2329 | | // are not (obviously) initializable like so: |
2330 | | // __attribute__((__require_constant_initialization__)) |
2331 | | // static const foo_t x = {{0}}; |
2332 | | // because "i" is a subobject with non-literal initialization (due to the |
2333 | | // volatile member of the union). See: |
2334 | | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 |
2335 | | // Therefore, we use the C++1y behavior. |
2336 | 95.7k | if (This && Info.EvaluatingDecl == This->getLValueBase()21.0k ) |
2337 | 2.66k | return true; |
2338 | | |
2339 | | // Prvalue constant expressions must be of literal types. |
2340 | 93.0k | if (Info.getLangOpts().CPlusPlus11) |
2341 | 54.9k | Info.FFDiag(E, diag::note_constexpr_nonliteral) |
2342 | 54.9k | << E->getType(); |
2343 | 38.0k | else |
2344 | 38.0k | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
2345 | 93.0k | return false; |
2346 | 95.7k | } |
2347 | | |
2348 | | static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, |
2349 | | EvalInfo &Info, SourceLocation DiagLoc, |
2350 | | QualType Type, const APValue &Value, |
2351 | | ConstantExprKind Kind, |
2352 | | SourceLocation SubobjectLoc, |
2353 | 11.6M | CheckedTemporaries &CheckedTemps) { |
2354 | 11.6M | if (!Value.hasValue()) { |
2355 | 1.30k | Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) |
2356 | 1.30k | << true << Type; |
2357 | 1.30k | if (SubobjectLoc.isValid()) |
2358 | 1.30k | Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here); |
2359 | 1.30k | return false; |
2360 | 1.30k | } |
2361 | | |
2362 | | // We allow _Atomic(T) to be initialized from anything that T can be |
2363 | | // initialized from. |
2364 | 11.6M | if (const AtomicType *AT = Type->getAs<AtomicType>()) |
2365 | 133 | Type = AT->getValueType(); |
2366 | | |
2367 | | // Core issue 1454: For a literal constant expression of array or class type, |
2368 | | // each subobject of its value shall have been initialized by a constant |
2369 | | // expression. |
2370 | 11.6M | if (Value.isArray()) { |
2371 | 6.20k | QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); |
2372 | 99.9k | for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I93.7k ) { |
2373 | 93.7k | if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, |
2374 | 93.7k | Value.getArrayInitializedElt(I), Kind, |
2375 | 93.7k | SubobjectLoc, CheckedTemps)) |
2376 | 29 | return false; |
2377 | 93.7k | } |
2378 | 6.17k | if (!Value.hasArrayFiller()) |
2379 | 3.92k | return true; |
2380 | 2.24k | return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, |
2381 | 2.24k | Value.getArrayFiller(), Kind, SubobjectLoc, |
2382 | 2.24k | CheckedTemps); |
2383 | 6.17k | } |
2384 | 11.6M | if (Value.isUnion() && Value.getUnionField()1.08k ) { |
2385 | 852 | return CheckEvaluationResult( |
2386 | 852 | CERK, Info, DiagLoc, Value.getUnionField()->getType(), |
2387 | 852 | Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(), |
2388 | 852 | CheckedTemps); |
2389 | 852 | } |
2390 | 11.6M | if (Value.isStruct()) { |
2391 | 28.0k | RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); |
2392 | 28.0k | if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { |
2393 | 28.0k | unsigned BaseIndex = 0; |
2394 | 28.0k | for (const CXXBaseSpecifier &BS : CD->bases()) { |
2395 | 2.90k | if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), |
2396 | 2.90k | Value.getStructBase(BaseIndex), Kind, |
2397 | 2.90k | BS.getBeginLoc(), CheckedTemps)) |
2398 | 628 | return false; |
2399 | 2.28k | ++BaseIndex; |
2400 | 2.28k | } |
2401 | 28.0k | } |
2402 | 27.4k | for (const auto *I : RD->fields()) { |
2403 | 20.0k | if (I->isUnnamedBitfield()) |
2404 | 89 | continue; |
2405 | | |
2406 | 19.9k | if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), |
2407 | 19.9k | Value.getStructField(I->getFieldIndex()), |
2408 | 19.9k | Kind, I->getLocation(), CheckedTemps)) |
2409 | 1.63k | return false; |
2410 | 19.9k | } |
2411 | 27.4k | } |
2412 | | |
2413 | 11.6M | if (Value.isLValue() && |
2414 | 11.6M | CERK == CheckEvaluationResultKind::ConstantExpression152k ) { |
2415 | 118k | LValue LVal; |
2416 | 118k | LVal.setFrom(Info.Ctx, Value); |
2417 | 118k | return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind, |
2418 | 118k | CheckedTemps); |
2419 | 118k | } |
2420 | | |
2421 | 11.5M | if (Value.isMemberPointer() && |
2422 | 11.5M | CERK == CheckEvaluationResultKind::ConstantExpression1.59k ) |
2423 | 1.33k | return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind); |
2424 | | |
2425 | | // Everything else is fine. |
2426 | 11.5M | return true; |
2427 | 11.5M | } |
2428 | | |
2429 | | /// Check that this core constant expression value is a valid value for a |
2430 | | /// constant expression. If not, report an appropriate diagnostic. Does not |
2431 | | /// check that the expression is of literal type. |
2432 | | static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, |
2433 | | QualType Type, const APValue &Value, |
2434 | 9.60M | ConstantExprKind Kind) { |
2435 | | // Nothing to check for a constant expression of type 'cv void'. |
2436 | 9.60M | if (Type->isVoidType()) |
2437 | 310 | return true; |
2438 | | |
2439 | 9.60M | CheckedTemporaries CheckedTemps; |
2440 | 9.60M | return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, |
2441 | 9.60M | Info, DiagLoc, Type, Value, Kind, |
2442 | 9.60M | SourceLocation(), CheckedTemps); |
2443 | 9.60M | } |
2444 | | |
2445 | | /// Check that this evaluated value is fully-initialized and can be loaded by |
2446 | | /// an lvalue-to-rvalue conversion. |
2447 | | static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, |
2448 | 1.95M | QualType Type, const APValue &Value) { |
2449 | 1.95M | CheckedTemporaries CheckedTemps; |
2450 | 1.95M | return CheckEvaluationResult( |
2451 | 1.95M | CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, |
2452 | 1.95M | ConstantExprKind::Normal, SourceLocation(), CheckedTemps); |
2453 | 1.95M | } |
2454 | | |
2455 | | /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless |
2456 | | /// "the allocated storage is deallocated within the evaluation". |
2457 | 9.55M | static bool CheckMemoryLeaks(EvalInfo &Info) { |
2458 | 9.55M | if (!Info.HeapAllocs.empty()) { |
2459 | | // We can still fold to a constant despite a compile-time memory leak, |
2460 | | // so long as the heap allocation isn't referenced in the result (we check |
2461 | | // that in CheckConstantExpression). |
2462 | 23 | Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, |
2463 | 23 | diag::note_constexpr_memory_leak) |
2464 | 23 | << unsigned(Info.HeapAllocs.size() - 1); |
2465 | 23 | } |
2466 | 9.55M | return true; |
2467 | 9.55M | } |
2468 | | |
2469 | 6.44k | static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { |
2470 | | // A null base expression indicates a null pointer. These are always |
2471 | | // evaluatable, and they are false unless the offset is zero. |
2472 | 6.44k | if (!Value.getLValueBase()) { |
2473 | 863 | Result = !Value.getLValueOffset().isZero(); |
2474 | 863 | return true; |
2475 | 863 | } |
2476 | | |
2477 | | // We have a non-null base. These are generally known to be true, but if it's |
2478 | | // a weak declaration it can be null at runtime. |
2479 | 5.58k | Result = true; |
2480 | 5.58k | const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); |
2481 | 5.58k | return !Decl || !Decl->isWeak()1.03k ; |
2482 | 6.44k | } |
2483 | | |
2484 | 2.89M | static bool HandleConversionToBool(const APValue &Val, bool &Result) { |
2485 | 2.89M | switch (Val.getKind()) { |
2486 | 131k | case APValue::None: |
2487 | 131k | case APValue::Indeterminate: |
2488 | 131k | return false; |
2489 | 2.75M | case APValue::Int: |
2490 | 2.75M | Result = Val.getInt().getBoolValue(); |
2491 | 2.75M | return true; |
2492 | 0 | case APValue::FixedPoint: |
2493 | 0 | Result = Val.getFixedPoint().getBoolValue(); |
2494 | 0 | return true; |
2495 | 91 | case APValue::Float: |
2496 | 91 | Result = !Val.getFloat().isZero(); |
2497 | 91 | return true; |
2498 | 4 | case APValue::ComplexInt: |
2499 | 4 | Result = Val.getComplexIntReal().getBoolValue() || |
2500 | 4 | Val.getComplexIntImag().getBoolValue()2 ; |
2501 | 4 | return true; |
2502 | 4 | case APValue::ComplexFloat: |
2503 | 4 | Result = !Val.getComplexFloatReal().isZero() || |
2504 | 4 | !Val.getComplexFloatImag().isZero()2 ; |
2505 | 4 | return true; |
2506 | 6.44k | case APValue::LValue: |
2507 | 6.44k | return EvalPointerValueAsBool(Val, Result); |
2508 | 75 | case APValue::MemberPointer: |
2509 | 75 | Result = Val.getMemberPointerDecl(); |
2510 | 75 | return true; |
2511 | 36 | case APValue::Vector: |
2512 | 36 | case APValue::Array: |
2513 | 36 | case APValue::Struct: |
2514 | 36 | case APValue::Union: |
2515 | 36 | case APValue::AddrLabelDiff: |
2516 | 36 | return false; |
2517 | 2.89M | } |
2518 | | |
2519 | 0 | llvm_unreachable("unknown APValue kind"); |
2520 | 0 | } |
2521 | | |
2522 | | static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, |
2523 | 1.85M | EvalInfo &Info) { |
2524 | 1.85M | assert(!E->isValueDependent()); |
2525 | 0 | assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition"); |
2526 | 0 | APValue Val; |
2527 | 1.85M | if (!Evaluate(Val, Info, E)) |
2528 | 411k | return false; |
2529 | 1.44M | return HandleConversionToBool(Val, Result); |
2530 | 1.85M | } |
2531 | | |
2532 | | template<typename T> |
2533 | | static bool HandleOverflow(EvalInfo &Info, const Expr *E, |
2534 | 706 | const T &SrcValue, QualType DestType) { |
2535 | 706 | Info.CCEDiag(E, diag::note_constexpr_overflow) |
2536 | 706 | << SrcValue << DestType; |
2537 | 706 | return Info.noteUndefinedBehavior(); |
2538 | 706 | } ExprConstant.cpp:bool HandleOverflow<llvm::APSInt>((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APSInt const&, clang::QualType) Line | Count | Source | 2534 | 620 | const T &SrcValue, QualType DestType) { | 2535 | 620 | Info.CCEDiag(E, diag::note_constexpr_overflow) | 2536 | 620 | << SrcValue << DestType; | 2537 | 620 | return Info.noteUndefinedBehavior(); | 2538 | 620 | } |
ExprConstant.cpp:bool HandleOverflow<llvm::APFixedPoint>((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APFixedPoint const&, clang::QualType) Line | Count | Source | 2534 | 58 | const T &SrcValue, QualType DestType) { | 2535 | 58 | Info.CCEDiag(E, diag::note_constexpr_overflow) | 2536 | 58 | << SrcValue << DestType; | 2537 | 58 | return Info.noteUndefinedBehavior(); | 2538 | 58 | } |
ExprConstant.cpp:bool HandleOverflow<llvm::APFloat>((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APFloat const&, clang::QualType) Line | Count | Source | 2534 | 28 | const T &SrcValue, QualType DestType) { | 2535 | 28 | Info.CCEDiag(E, diag::note_constexpr_overflow) | 2536 | 28 | << SrcValue << DestType; | 2537 | 28 | return Info.noteUndefinedBehavior(); | 2538 | 28 | } |
|
2539 | | |
2540 | | static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, |
2541 | | QualType SrcType, const APFloat &Value, |
2542 | 5.21k | QualType DestType, APSInt &Result) { |
2543 | 5.21k | unsigned DestWidth = Info.Ctx.getIntWidth(DestType); |
2544 | | // Determine whether we are converting to unsigned or signed. |
2545 | 5.21k | bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); |
2546 | | |
2547 | 5.21k | Result = APSInt(DestWidth, !DestSigned); |
2548 | 5.21k | bool ignored; |
2549 | 5.21k | if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) |
2550 | 5.21k | & APFloat::opInvalidOp) |
2551 | 28 | return HandleOverflow(Info, E, Value, DestType); |
2552 | 5.18k | return true; |
2553 | 5.21k | } |
2554 | | |
2555 | | /// Get rounding mode to use in evaluation of the specified expression. |
2556 | | /// |
2557 | | /// If rounding mode is unknown at compile time, still try to evaluate the |
2558 | | /// expression. If the result is exact, it does not depend on rounding mode. |
2559 | | /// So return "tonearest" mode instead of "dynamic". |
2560 | 28.1k | static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) { |
2561 | 28.1k | llvm::RoundingMode RM = |
2562 | 28.1k | E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode(); |
2563 | 28.1k | if (RM == llvm::RoundingMode::Dynamic) |
2564 | 176 | RM = llvm::RoundingMode::NearestTiesToEven; |
2565 | 28.1k | return RM; |
2566 | 28.1k | } |
2567 | | |
2568 | | /// Check if the given evaluation result is allowed for constant evaluation. |
2569 | | static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E, |
2570 | 28.1k | APFloat::opStatus St) { |
2571 | | // In a constant context, assume that any dynamic rounding mode or FP |
2572 | | // exception state matches the default floating-point environment. |
2573 | 28.1k | if (Info.InConstantContext) |
2574 | 16.9k | return true; |
2575 | | |
2576 | 11.2k | FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); |
2577 | 11.2k | if ((St & APFloat::opInexact) && |
2578 | 11.2k | FPO.getRoundingMode() == llvm::RoundingMode::Dynamic437 ) { |
2579 | | // Inexact result means that it depends on rounding mode. If the requested |
2580 | | // mode is dynamic, the evaluation cannot be made in compile time. |
2581 | 24 | Info.FFDiag(E, diag::note_constexpr_dynamic_rounding); |
2582 | 24 | return false; |
2583 | 24 | } |
2584 | | |
2585 | 11.2k | if ((St != APFloat::opOK) && |
2586 | 11.2k | (419 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic419 || |
2587 | 419 | FPO.getExceptionMode() != LangOptions::FPE_Ignore || |
2588 | 419 | FPO.getAllowFEnvAccess()417 )) { |
2589 | 2 | Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); |
2590 | 2 | return false; |
2591 | 2 | } |
2592 | | |
2593 | 11.2k | if ((St & APFloat::opStatus::opInvalidOp) && |
2594 | 11.2k | FPO.getExceptionMode() != LangOptions::FPE_Ignore0 ) { |
2595 | | // There is no usefully definable result. |
2596 | 0 | Info.FFDiag(E); |
2597 | 0 | return false; |
2598 | 0 | } |
2599 | | |
2600 | | // FIXME: if: |
2601 | | // - evaluation triggered other FP exception, and |
2602 | | // - exception mode is not "ignore", and |
2603 | | // - the expression being evaluated is not a part of global variable |
2604 | | // initializer, |
2605 | | // the evaluation probably need to be rejected. |
2606 | 11.2k | return true; |
2607 | 11.2k | } |
2608 | | |
2609 | | static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, |
2610 | | QualType SrcType, QualType DestType, |
2611 | 10.3k | APFloat &Result) { |
2612 | 10.3k | assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E)); |
2613 | 0 | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
2614 | 10.3k | APFloat::opStatus St; |
2615 | 10.3k | APFloat Value = Result; |
2616 | 10.3k | bool ignored; |
2617 | 10.3k | St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored); |
2618 | 10.3k | return checkFloatingPointResult(Info, E, St); |
2619 | 10.3k | } |
2620 | | |
2621 | | static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, |
2622 | | QualType DestType, QualType SrcType, |
2623 | 1.19M | const APSInt &Value) { |
2624 | 1.19M | unsigned DestWidth = Info.Ctx.getIntWidth(DestType); |
2625 | | // Figure out if this is a truncate, extend or noop cast. |
2626 | | // If the input is signed, do a sign extend, noop, or truncate. |
2627 | 1.19M | APSInt Result = Value.extOrTrunc(DestWidth); |
2628 | 1.19M | Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); |
2629 | 1.19M | if (DestType->isBooleanType()) |
2630 | 60 | Result = Value.getBoolValue(); |
2631 | 1.19M | return Result; |
2632 | 1.19M | } |
2633 | | |
2634 | | static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, |
2635 | | const FPOptions FPO, |
2636 | | QualType SrcType, const APSInt &Value, |
2637 | 24.6k | QualType DestType, APFloat &Result) { |
2638 | 24.6k | Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); |
2639 | 24.6k | APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), |
2640 | 24.6k | APFloat::rmNearestTiesToEven); |
2641 | 24.6k | if (!Info.InConstantContext && St != llvm::APFloatBase::opOK13.3k && |
2642 | 24.6k | FPO.isFPConstrained()4 ) { |
2643 | 0 | Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); |
2644 | 0 | return false; |
2645 | 0 | } |
2646 | 24.6k | return true; |
2647 | 24.6k | } |
2648 | | |
2649 | | static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, |
2650 | 436 | APValue &Value, const FieldDecl *FD) { |
2651 | 436 | assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); |
2652 | | |
2653 | 436 | if (!Value.isInt()) { |
2654 | | // Trying to store a pointer-cast-to-integer into a bitfield. |
2655 | | // FIXME: In this case, we should provide the diagnostic for casting |
2656 | | // a pointer to an integer. |
2657 | 4 | assert(Value.isLValue() && "integral value neither int nor lvalue?"); |
2658 | 0 | Info.FFDiag(E); |
2659 | 4 | return false; |
2660 | 4 | } |
2661 | | |
2662 | 432 | APSInt &Int = Value.getInt(); |
2663 | 432 | unsigned OldBitWidth = Int.getBitWidth(); |
2664 | 432 | unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); |
2665 | 432 | if (NewBitWidth < OldBitWidth) |
2666 | 379 | Int = Int.trunc(NewBitWidth).extend(OldBitWidth); |
2667 | 432 | return true; |
2668 | 436 | } |
2669 | | |
2670 | | static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E, |
2671 | 345k | llvm::APInt &Res) { |
2672 | 345k | APValue SVal; |
2673 | 345k | if (!Evaluate(SVal, Info, E)) |
2674 | 344k | return false; |
2675 | 253 | if (SVal.isInt()) { |
2676 | 24 | Res = SVal.getInt(); |
2677 | 24 | return true; |
2678 | 24 | } |
2679 | 229 | if (SVal.isFloat()) { |
2680 | 0 | Res = SVal.getFloat().bitcastToAPInt(); |
2681 | 0 | return true; |
2682 | 0 | } |
2683 | 229 | if (SVal.isVector()) { |
2684 | 229 | QualType VecTy = E->getType(); |
2685 | 229 | unsigned VecSize = Info.Ctx.getTypeSize(VecTy); |
2686 | 229 | QualType EltTy = VecTy->castAs<VectorType>()->getElementType(); |
2687 | 229 | unsigned EltSize = Info.Ctx.getTypeSize(EltTy); |
2688 | 229 | bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); |
2689 | 229 | Res = llvm::APInt::getZero(VecSize); |
2690 | 1.45k | for (unsigned i = 0; i < SVal.getVectorLength(); i++1.22k ) { |
2691 | 1.22k | APValue &Elt = SVal.getVectorElt(i); |
2692 | 1.22k | llvm::APInt EltAsInt; |
2693 | 1.22k | if (Elt.isInt()) { |
2694 | 1.07k | EltAsInt = Elt.getInt(); |
2695 | 1.07k | } else if (148 Elt.isFloat()148 ) { |
2696 | 148 | EltAsInt = Elt.getFloat().bitcastToAPInt(); |
2697 | 148 | } else { |
2698 | | // Don't try to handle vectors of anything other than int or float |
2699 | | // (not sure if it's possible to hit this case). |
2700 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
2701 | 0 | return false; |
2702 | 0 | } |
2703 | 1.22k | unsigned BaseEltSize = EltAsInt.getBitWidth(); |
2704 | 1.22k | if (BigEndian) |
2705 | 704 | Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize); |
2706 | 520 | else |
2707 | 520 | Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize); |
2708 | 1.22k | } |
2709 | 229 | return true; |
2710 | 229 | } |
2711 | | // Give up if the input isn't an int, float, or vector. For example, we |
2712 | | // reject "(v4i16)(intptr_t)&a". |
2713 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
2714 | 0 | return false; |
2715 | 229 | } |
2716 | | |
2717 | | /// Perform the given integer operation, which is known to need at most BitWidth |
2718 | | /// bits, and check for overflow in the original type (if that type was not an |
2719 | | /// unsigned type). |
2720 | | template<typename Operation> |
2721 | | static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, |
2722 | | const APSInt &LHS, const APSInt &RHS, |
2723 | | unsigned BitWidth, Operation Op, |
2724 | 3.05M | APSInt &Result) { |
2725 | 3.05M | if (LHS.isUnsigned()) { |
2726 | 156k | Result = Op(LHS, RHS); |
2727 | 156k | return true; |
2728 | 156k | } |
2729 | | |
2730 | 2.89M | APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); |
2731 | 2.89M | Result = Value.trunc(LHS.getBitWidth()); |
2732 | 2.89M | if (Result.extend(BitWidth) != Value) { |
2733 | 593 | if (Info.checkingForUndefinedBehavior()) |
2734 | 224 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
2735 | 224 | diag::warn_integer_constant_overflow) |
2736 | 224 | << toString(Result, 10) << E->getType(); |
2737 | 593 | return HandleOverflow(Info, E, Value, E->getType()); |
2738 | 593 | } |
2739 | 2.89M | return true; |
2740 | 2.89M | } ExprConstant.cpp:bool CheckedIntArithmetic<std::__1::multiplies<llvm::APSInt> >((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APSInt const&, llvm::APSInt const&, unsigned int, std::__1::multiplies<llvm::APSInt>, llvm::APSInt&) Line | Count | Source | 2724 | 224k | APSInt &Result) { | 2725 | 224k | if (LHS.isUnsigned()) { | 2726 | 66.5k | Result = Op(LHS, RHS); | 2727 | 66.5k | return true; | 2728 | 66.5k | } | 2729 | | | 2730 | 158k | APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); | 2731 | 158k | Result = Value.trunc(LHS.getBitWidth()); | 2732 | 158k | if (Result.extend(BitWidth) != Value) { | 2733 | 547 | if (Info.checkingForUndefinedBehavior()) | 2734 | 210 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), | 2735 | 210 | diag::warn_integer_constant_overflow) | 2736 | 210 | << toString(Result, 10) << E->getType(); | 2737 | 547 | return HandleOverflow(Info, E, Value, E->getType()); | 2738 | 547 | } | 2739 | 157k | return true; | 2740 | 158k | } |
ExprConstant.cpp:bool CheckedIntArithmetic<std::__1::plus<llvm::APSInt> >((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APSInt const&, llvm::APSInt const&, unsigned int, std::__1::plus<llvm::APSInt>, llvm::APSInt&) Line | Count | Source | 2724 | 1.01M | APSInt &Result) { | 2725 | 1.01M | if (LHS.isUnsigned()) { | 2726 | 18.1k | Result = Op(LHS, RHS); | 2727 | 18.1k | return true; | 2728 | 18.1k | } | 2729 | | | 2730 | 992k | APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); | 2731 | 992k | Result = Value.trunc(LHS.getBitWidth()); | 2732 | 992k | if (Result.extend(BitWidth) != Value) { | 2733 | 38 | if (Info.checkingForUndefinedBehavior()) | 2734 | 14 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), | 2735 | 14 | diag::warn_integer_constant_overflow) | 2736 | 14 | << toString(Result, 10) << E->getType(); | 2737 | 38 | return HandleOverflow(Info, E, Value, E->getType()); | 2738 | 38 | } | 2739 | 992k | return true; | 2740 | 992k | } |
ExprConstant.cpp:bool CheckedIntArithmetic<std::__1::minus<llvm::APSInt> >((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APSInt const&, llvm::APSInt const&, unsigned int, std::__1::minus<llvm::APSInt>, llvm::APSInt&) Line | Count | Source | 2724 | 1.81M | APSInt &Result) { | 2725 | 1.81M | if (LHS.isUnsigned()) { | 2726 | 71.8k | Result = Op(LHS, RHS); | 2727 | 71.8k | return true; | 2728 | 71.8k | } | 2729 | | | 2730 | 1.74M | APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); | 2731 | 1.74M | Result = Value.trunc(LHS.getBitWidth()); | 2732 | 1.74M | if (Result.extend(BitWidth) != Value) { | 2733 | 8 | if (Info.checkingForUndefinedBehavior()) | 2734 | 0 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), | 2735 | 0 | diag::warn_integer_constant_overflow) | 2736 | 0 | << toString(Result, 10) << E->getType(); | 2737 | 8 | return HandleOverflow(Info, E, Value, E->getType()); | 2738 | 8 | } | 2739 | 1.74M | return true; | 2740 | 1.74M | } |
|
2741 | | |
2742 | | /// Perform the given binary integer operation. |
2743 | | static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS, |
2744 | | BinaryOperatorKind Opcode, APSInt RHS, |
2745 | 4.43M | APSInt &Result) { |
2746 | 4.43M | switch (Opcode) { |
2747 | 0 | default: |
2748 | 0 | Info.FFDiag(E); |
2749 | 0 | return false; |
2750 | 224k | case BO_Mul: |
2751 | 224k | return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, |
2752 | 224k | std::multiplies<APSInt>(), Result); |
2753 | 1.01M | case BO_Add: |
2754 | 1.01M | return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, |
2755 | 1.01M | std::plus<APSInt>(), Result); |
2756 | 1.81M | case BO_Sub: |
2757 | 1.81M | return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, |
2758 | 1.81M | std::minus<APSInt>(), Result); |
2759 | 19.2k | case BO_And: Result = LHS & RHS; return true; |
2760 | 1.70k | case BO_Xor: Result = LHS ^ RHS; return true; |
2761 | 69.6k | case BO_Or: Result = LHS | RHS; return true; |
2762 | 747k | case BO_Div: |
2763 | 755k | case BO_Rem: |
2764 | 755k | if (RHS == 0) { |
2765 | 141 | Info.FFDiag(E, diag::note_expr_divide_by_zero); |
2766 | 141 | return false; |
2767 | 141 | } |
2768 | 754k | Result = (Opcode == BO_Rem ? LHS % RHS7.95k : LHS / RHS747k ); |
2769 | | // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports |
2770 | | // this operation and gives the two's complement result. |
2771 | 754k | if (RHS.isNegative() && RHS.isAllOnes()7 && LHS.isSigned()7 && |
2772 | 754k | LHS.isMinSignedValue()7 ) |
2773 | 6 | return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), |
2774 | 6 | E->getType()); |
2775 | 754k | return true; |
2776 | 260k | case BO_Shl: { |
2777 | 260k | if (Info.getLangOpts().OpenCL) |
2778 | | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
2779 | 18 | RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
2780 | 18 | static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
2781 | 18 | RHS.isUnsigned()); |
2782 | 260k | else if (RHS.isSigned() && RHS.isNegative()228k ) { |
2783 | | // During constant-folding, a negative shift is an opposite shift. Such |
2784 | | // a shift is not a constant expression. |
2785 | 13 | Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; |
2786 | 13 | RHS = -RHS; |
2787 | 13 | goto shift_right; |
2788 | 13 | } |
2789 | 260k | shift_left: |
2790 | | // C++11 [expr.shift]p1: Shift width must be less than the bit width of |
2791 | | // the shifted type. |
2792 | 260k | unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
2793 | 260k | if (SA != RHS) { |
2794 | 19 | Info.CCEDiag(E, diag::note_constexpr_large_shift) |
2795 | 19 | << RHS << E->getType() << LHS.getBitWidth(); |
2796 | 260k | } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20174k ) { |
2797 | | // C++11 [expr.shift]p2: A signed left shift must have a non-negative |
2798 | | // operand, and must not overflow the corresponding unsigned type. |
2799 | | // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to |
2800 | | // E1 x 2^E2 module 2^N. |
2801 | 173k | if (LHS.isNegative()) |
2802 | 31 | Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; |
2803 | 173k | else if (LHS.countLeadingZeros() < SA) |
2804 | 9 | Info.CCEDiag(E, diag::note_constexpr_lshift_discards); |
2805 | 173k | } |
2806 | 260k | Result = LHS << SA; |
2807 | 260k | return true; |
2808 | 260k | } |
2809 | 11.1k | case BO_Shr: { |
2810 | 11.1k | if (Info.getLangOpts().OpenCL) |
2811 | | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
2812 | 2 | RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
2813 | 2 | static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
2814 | 2 | RHS.isUnsigned()); |
2815 | 11.1k | else if (RHS.isSigned() && RHS.isNegative()11.0k ) { |
2816 | | // During constant-folding, a negative shift is an opposite shift. Such a |
2817 | | // shift is not a constant expression. |
2818 | 9 | Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; |
2819 | 9 | RHS = -RHS; |
2820 | 9 | goto shift_left; |
2821 | 9 | } |
2822 | 11.1k | shift_right: |
2823 | | // C++11 [expr.shift]p1: Shift width must be less than the bit width of the |
2824 | | // shifted type. |
2825 | 11.1k | unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
2826 | 11.1k | if (SA != RHS) |
2827 | 9 | Info.CCEDiag(E, diag::note_constexpr_large_shift) |
2828 | 9 | << RHS << E->getType() << LHS.getBitWidth(); |
2829 | 11.1k | Result = LHS >> SA; |
2830 | 11.1k | return true; |
2831 | 11.1k | } |
2832 | | |
2833 | 73.8k | case BO_LT: Result = LHS < RHS; return true; |
2834 | 10.2k | case BO_GT: Result = LHS > RHS; return true; |
2835 | 25.5k | case BO_LE: Result = LHS <= RHS; return true; |
2836 | 7.78k | case BO_GE: Result = LHS >= RHS; return true; |
2837 | 92.7k | case BO_EQ: Result = LHS == RHS; return true; |
2838 | 52.8k | case BO_NE: Result = LHS != RHS; return true; |
2839 | 0 | case BO_Cmp: |
2840 | 0 | llvm_unreachable("BO_Cmp should be handled elsewhere"); |
2841 | 4.43M | } |
2842 | 4.43M | } |
2843 | | |
2844 | | /// Perform the given binary floating-point operation, in-place, on LHS. |
2845 | | static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E, |
2846 | | APFloat &LHS, BinaryOperatorKind Opcode, |
2847 | 17.8k | const APFloat &RHS) { |
2848 | 17.8k | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
2849 | 17.8k | APFloat::opStatus St; |
2850 | 17.8k | switch (Opcode) { |
2851 | 0 | default: |
2852 | 0 | Info.FFDiag(E); |
2853 | 0 | return false; |
2854 | 4.26k | case BO_Mul: |
2855 | 4.26k | St = LHS.multiply(RHS, RM); |
2856 | 4.26k | break; |
2857 | 2.56k | case BO_Add: |
2858 | 2.56k | St = LHS.add(RHS, RM); |
2859 | 2.56k | break; |
2860 | 4.49k | case BO_Sub: |
2861 | 4.49k | St = LHS.subtract(RHS, RM); |
2862 | 4.49k | break; |
2863 | 6.50k | case BO_Div: |
2864 | | // [expr.mul]p4: |
2865 | | // If the second operand of / or % is zero the behavior is undefined. |
2866 | 6.50k | if (RHS.isZero()) |
2867 | 13 | Info.CCEDiag(E, diag::note_expr_divide_by_zero); |
2868 | 6.50k | St = LHS.divide(RHS, RM); |
2869 | 6.50k | break; |
2870 | 17.8k | } |
2871 | | |
2872 | | // [expr.pre]p4: |
2873 | | // If during the evaluation of an expression, the result is not |
2874 | | // mathematically defined [...], the behavior is undefined. |
2875 | | // FIXME: C++ rules require us to not conform to IEEE 754 here. |
2876 | 17.8k | if (LHS.isNaN()) { |
2877 | 9 | Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); |
2878 | 9 | return Info.noteUndefinedBehavior(); |
2879 | 9 | } |
2880 | | |
2881 | 17.8k | return checkFloatingPointResult(Info, E, St); |
2882 | 17.8k | } |
2883 | | |
2884 | | static bool handleLogicalOpForVector(const APInt &LHSValue, |
2885 | | BinaryOperatorKind Opcode, |
2886 | 32 | const APInt &RHSValue, APInt &Result) { |
2887 | 32 | bool LHS = (LHSValue != 0); |
2888 | 32 | bool RHS = (RHSValue != 0); |
2889 | | |
2890 | 32 | if (Opcode == BO_LAnd) |
2891 | 16 | Result = LHS && RHS8 ; |
2892 | 16 | else |
2893 | 16 | Result = LHS || RHS8 ; |
2894 | 32 | return true; |
2895 | 32 | } |
2896 | | static bool handleLogicalOpForVector(const APFloat &LHSValue, |
2897 | | BinaryOperatorKind Opcode, |
2898 | 96 | const APFloat &RHSValue, APInt &Result) { |
2899 | 96 | bool LHS = !LHSValue.isZero(); |
2900 | 96 | bool RHS = !RHSValue.isZero(); |
2901 | | |
2902 | 96 | if (Opcode == BO_LAnd) |
2903 | 48 | Result = LHS && RHS24 ; |
2904 | 48 | else |
2905 | 48 | Result = LHS || RHS40 ; |
2906 | 96 | return true; |
2907 | 96 | } |
2908 | | |
2909 | | static bool handleLogicalOpForVector(const APValue &LHSValue, |
2910 | | BinaryOperatorKind Opcode, |
2911 | 128 | const APValue &RHSValue, APInt &Result) { |
2912 | | // The result is always an int type, however operands match the first. |
2913 | 128 | if (LHSValue.getKind() == APValue::Int) |
2914 | 32 | return handleLogicalOpForVector(LHSValue.getInt(), Opcode, |
2915 | 32 | RHSValue.getInt(), Result); |
2916 | 96 | assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); |
2917 | 0 | return handleLogicalOpForVector(LHSValue.getFloat(), Opcode, |
2918 | 96 | RHSValue.getFloat(), Result); |
2919 | 128 | } |
2920 | | |
2921 | | template <typename APTy> |
2922 | | static bool |
2923 | | handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode, |
2924 | 224 | const APTy &RHSValue, APInt &Result) { |
2925 | 224 | switch (Opcode) { |
2926 | 0 | default: |
2927 | 0 | llvm_unreachable("unsupported binary operator"); |
2928 | 36 | case BO_EQ: |
2929 | 36 | Result = (LHSValue == RHSValue); |
2930 | 36 | break; |
2931 | 36 | case BO_NE: |
2932 | 36 | Result = (LHSValue != RHSValue); |
2933 | 36 | break; |
2934 | 44 | case BO_LT: |
2935 | 44 | Result = (LHSValue < RHSValue); |
2936 | 44 | break; |
2937 | 36 | case BO_GT: |
2938 | 36 | Result = (LHSValue > RHSValue); |
2939 | 36 | break; |
2940 | 36 | case BO_LE: |
2941 | 36 | Result = (LHSValue <= RHSValue); |
2942 | 36 | break; |
2943 | 36 | case BO_GE: |
2944 | 36 | Result = (LHSValue >= RHSValue); |
2945 | 36 | break; |
2946 | 224 | } |
2947 | | |
2948 | | // The boolean operations on these vector types use an instruction that |
2949 | | // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 |
2950 | | // to -1 to make sure that we produce the correct value. |
2951 | 224 | Result.negate(); |
2952 | | |
2953 | 224 | return true; |
2954 | 224 | } ExprConstant.cpp:bool handleCompareOpForVectorHelper<llvm::APSInt>(llvm::APSInt const&, clang::BinaryOperatorKind, llvm::APSInt const&, llvm::APInt&) Line | Count | Source | 2924 | 128 | const APTy &RHSValue, APInt &Result) { | 2925 | 128 | switch (Opcode) { | 2926 | 0 | default: | 2927 | 0 | llvm_unreachable("unsupported binary operator"); | 2928 | 20 | case BO_EQ: | 2929 | 20 | Result = (LHSValue == RHSValue); | 2930 | 20 | break; | 2931 | 20 | case BO_NE: | 2932 | 20 | Result = (LHSValue != RHSValue); | 2933 | 20 | break; | 2934 | 28 | case BO_LT: | 2935 | 28 | Result = (LHSValue < RHSValue); | 2936 | 28 | break; | 2937 | 20 | case BO_GT: | 2938 | 20 | Result = (LHSValue > RHSValue); | 2939 | 20 | break; | 2940 | 20 | case BO_LE: | 2941 | 20 | Result = (LHSValue <= RHSValue); | 2942 | 20 | break; | 2943 | 20 | case BO_GE: | 2944 | 20 | Result = (LHSValue >= RHSValue); | 2945 | 20 | break; | 2946 | 128 | } | 2947 | | | 2948 | | // The boolean operations on these vector types use an instruction that | 2949 | | // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 | 2950 | | // to -1 to make sure that we produce the correct value. | 2951 | 128 | Result.negate(); | 2952 | | | 2953 | 128 | return true; | 2954 | 128 | } |
ExprConstant.cpp:bool handleCompareOpForVectorHelper<llvm::APFloat>(llvm::APFloat const&, clang::BinaryOperatorKind, llvm::APFloat const&, llvm::APInt&) Line | Count | Source | 2924 | 96 | const APTy &RHSValue, APInt &Result) { | 2925 | 96 | switch (Opcode) { | 2926 | 0 | default: | 2927 | 0 | llvm_unreachable("unsupported binary operator"); | 2928 | 16 | case BO_EQ: | 2929 | 16 | Result = (LHSValue == RHSValue); | 2930 | 16 | break; | 2931 | 16 | case BO_NE: | 2932 | 16 | Result = (LHSValue != RHSValue); | 2933 | 16 | break; | 2934 | 16 | case BO_LT: | 2935 | 16 | Result = (LHSValue < RHSValue); | 2936 | 16 | break; | 2937 | 16 | case BO_GT: | 2938 | 16 | Result = (LHSValue > RHSValue); | 2939 | 16 | break; | 2940 | 16 | case BO_LE: | 2941 | 16 | Result = (LHSValue <= RHSValue); | 2942 | 16 | break; | 2943 | 16 | case BO_GE: | 2944 | 16 | Result = (LHSValue >= RHSValue); | 2945 | 16 | break; | 2946 | 96 | } | 2947 | | | 2948 | | // The boolean operations on these vector types use an instruction that | 2949 | | // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 | 2950 | | // to -1 to make sure that we produce the correct value. | 2951 | 96 | Result.negate(); | 2952 | | | 2953 | 96 | return true; | 2954 | 96 | } |
|
2955 | | |
2956 | | static bool handleCompareOpForVector(const APValue &LHSValue, |
2957 | | BinaryOperatorKind Opcode, |
2958 | 224 | const APValue &RHSValue, APInt &Result) { |
2959 | | // The result is always an int type, however operands match the first. |
2960 | 224 | if (LHSValue.getKind() == APValue::Int) |
2961 | 128 | return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode, |
2962 | 128 | RHSValue.getInt(), Result); |
2963 | 96 | assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); |
2964 | 0 | return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode, |
2965 | 96 | RHSValue.getFloat(), Result); |
2966 | 224 | } |
2967 | | |
2968 | | // Perform binary operations for vector types, in place on the LHS. |
2969 | | static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E, |
2970 | | BinaryOperatorKind Opcode, |
2971 | | APValue &LHSValue, |
2972 | 555 | const APValue &RHSValue) { |
2973 | 555 | assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && |
2974 | 555 | "Operation not supported on vector types"); |
2975 | | |
2976 | 0 | const auto *VT = E->getType()->castAs<VectorType>(); |
2977 | 555 | unsigned NumElements = VT->getNumElements(); |
2978 | 555 | QualType EltTy = VT->getElementType(); |
2979 | | |
2980 | | // In the cases (typically C as I've observed) where we aren't evaluating |
2981 | | // constexpr but are checking for cases where the LHS isn't yet evaluatable, |
2982 | | // just give up. |
2983 | 555 | if (!LHSValue.isVector()) { |
2984 | 358 | assert(LHSValue.isLValue() && |
2985 | 358 | "A vector result that isn't a vector OR uncalculated LValue"); |
2986 | 0 | Info.FFDiag(E); |
2987 | 358 | return false; |
2988 | 358 | } |
2989 | | |
2990 | 197 | assert(LHSValue.getVectorLength() == NumElements && |
2991 | 197 | RHSValue.getVectorLength() == NumElements && "Different vector sizes"); |
2992 | | |
2993 | 0 | SmallVector<APValue, 4> ResultElements; |
2994 | | |
2995 | 985 | for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum788 ) { |
2996 | 788 | APValue LHSElt = LHSValue.getVectorElt(EltNum); |
2997 | 788 | APValue RHSElt = RHSValue.getVectorElt(EltNum); |
2998 | | |
2999 | 788 | if (EltTy->isIntegerType()) { |
3000 | 660 | APSInt EltResult{Info.Ctx.getIntWidth(EltTy), |
3001 | 660 | EltTy->isUnsignedIntegerType()}; |
3002 | 660 | bool Success = true; |
3003 | | |
3004 | 660 | if (BinaryOperator::isLogicalOp(Opcode)) |
3005 | 128 | Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult); |
3006 | 532 | else if (BinaryOperator::isComparisonOp(Opcode)) |
3007 | 224 | Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult); |
3008 | 308 | else |
3009 | 308 | Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode, |
3010 | 308 | RHSElt.getInt(), EltResult); |
3011 | | |
3012 | 660 | if (!Success) { |
3013 | 0 | Info.FFDiag(E); |
3014 | 0 | return false; |
3015 | 0 | } |
3016 | 660 | ResultElements.emplace_back(EltResult); |
3017 | | |
3018 | 660 | } else if (128 EltTy->isFloatingType()128 ) { |
3019 | 128 | assert(LHSElt.getKind() == APValue::Float && |
3020 | 128 | RHSElt.getKind() == APValue::Float && |
3021 | 128 | "Mismatched LHS/RHS/Result Type"); |
3022 | 0 | APFloat LHSFloat = LHSElt.getFloat(); |
3023 | | |
3024 | 128 | if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode, |
3025 | 128 | RHSElt.getFloat())) { |
3026 | 0 | Info.FFDiag(E); |
3027 | 0 | return false; |
3028 | 0 | } |
3029 | | |
3030 | 128 | ResultElements.emplace_back(LHSFloat); |
3031 | 128 | } |
3032 | 788 | } |
3033 | | |
3034 | 197 | LHSValue = APValue(ResultElements.data(), ResultElements.size()); |
3035 | 197 | return true; |
3036 | 197 | } |
3037 | | |
3038 | | /// Cast an lvalue referring to a base subobject to a derived class, by |
3039 | | /// truncating the lvalue's path to the given length. |
3040 | | static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, |
3041 | | const RecordDecl *TruncatedType, |
3042 | 429 | unsigned TruncatedElements) { |
3043 | 429 | SubobjectDesignator &D = Result.Designator; |
3044 | | |
3045 | | // Check we actually point to a derived class object. |
3046 | 429 | if (TruncatedElements == D.Entries.size()) |
3047 | 174 | return true; |
3048 | 255 | assert(TruncatedElements >= D.MostDerivedPathLength && |
3049 | 255 | "not casting to a derived class"); |
3050 | 255 | if (!Result.checkSubobject(Info, E, CSK_Derived)) |
3051 | 5 | return false; |
3052 | | |
3053 | | // Truncate the path to the subobject, and remove any derived-to-base offsets. |
3054 | 250 | const RecordDecl *RD = TruncatedType; |
3055 | 1.05k | for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I807 ) { |
3056 | 807 | if (RD->isInvalidDecl()) return false0 ; |
3057 | 807 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
3058 | 807 | const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); |
3059 | 807 | if (isVirtualBaseClass(D.Entries[I])) |
3060 | 3 | Result.Offset -= Layout.getVBaseClassOffset(Base); |
3061 | 804 | else |
3062 | 804 | Result.Offset -= Layout.getBaseClassOffset(Base); |
3063 | 807 | RD = Base; |
3064 | 807 | } |
3065 | 250 | D.Entries.resize(TruncatedElements); |
3066 | 250 | return true; |
3067 | 250 | } |
3068 | | |
3069 | | static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
3070 | | const CXXRecordDecl *Derived, |
3071 | | const CXXRecordDecl *Base, |
3072 | 12.6k | const ASTRecordLayout *RL = nullptr) { |
3073 | 12.6k | if (!RL) { |
3074 | 9.74k | if (Derived->isInvalidDecl()) return false0 ; |
3075 | 9.74k | RL = &Info.Ctx.getASTRecordLayout(Derived); |
3076 | 9.74k | } |
3077 | | |
3078 | 12.6k | Obj.getLValueOffset() += RL->getBaseClassOffset(Base); |
3079 | 12.6k | Obj.addDecl(Info, E, Base, /*Virtual*/ false); |
3080 | 12.6k | return true; |
3081 | 12.6k | } |
3082 | | |
3083 | | static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
3084 | | const CXXRecordDecl *DerivedDecl, |
3085 | 9.50k | const CXXBaseSpecifier *Base) { |
3086 | 9.50k | const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); |
3087 | | |
3088 | 9.50k | if (!Base->isVirtual()) |
3089 | 9.38k | return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); |
3090 | | |
3091 | 116 | SubobjectDesignator &D = Obj.Designator; |
3092 | 116 | if (D.Invalid) |
3093 | 0 | return false; |
3094 | | |
3095 | | // Extract most-derived object and corresponding type. |
3096 | 116 | DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); |
3097 | 116 | if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) |
3098 | 0 | return false; |
3099 | | |
3100 | | // Find the virtual base class. |
3101 | 116 | if (DerivedDecl->isInvalidDecl()) return false0 ; |
3102 | 116 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); |
3103 | 116 | Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); |
3104 | 116 | Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); |
3105 | 116 | return true; |
3106 | 116 | } |
3107 | | |
3108 | | static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, |
3109 | 4.92k | QualType Type, LValue &Result) { |
3110 | 4.92k | for (CastExpr::path_const_iterator PathI = E->path_begin(), |
3111 | 4.92k | PathE = E->path_end(); |
3112 | 14.0k | PathI != PathE; ++PathI9.14k ) { |
3113 | 9.14k | if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), |
3114 | 9.14k | *PathI)) |
3115 | 0 | return false; |
3116 | 9.14k | Type = (*PathI)->getType(); |
3117 | 9.14k | } |
3118 | 4.92k | return true; |
3119 | 4.92k | } |
3120 | | |
3121 | | /// Cast an lvalue referring to a derived class to a known base subobject. |
3122 | | static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, |
3123 | | const CXXRecordDecl *DerivedRD, |
3124 | 42 | const CXXRecordDecl *BaseRD) { |
3125 | 42 | CXXBasePaths Paths(/*FindAmbiguities=*/false, |
3126 | 42 | /*RecordPaths=*/true, /*DetectVirtual=*/false); |
3127 | 42 | if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) |
3128 | 0 | llvm_unreachable("Class must be derived from the passed in base class!"); |
3129 | | |
3130 | 42 | for (CXXBasePathElement &Elem : Paths.front()) |
3131 | 63 | if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) |
3132 | 0 | return false; |
3133 | 42 | return true; |
3134 | 42 | } |
3135 | | |
3136 | | /// Update LVal to refer to the given field, which must be a member of the type |
3137 | | /// currently described by LVal. |
3138 | | static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, |
3139 | | const FieldDecl *FD, |
3140 | 171k | const ASTRecordLayout *RL = nullptr) { |
3141 | 171k | if (!RL) { |
3142 | 139k | if (FD->getParent()->isInvalidDecl()) return false3 ; |
3143 | 139k | RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); |
3144 | 139k | } |
3145 | | |
3146 | 171k | unsigned I = FD->getFieldIndex(); |
3147 | 171k | LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); |
3148 | 171k | LVal.addDecl(Info, E, FD); |
3149 | 171k | return true; |
3150 | 171k | } |
3151 | | |
3152 | | /// Update LVal to refer to the given indirect field. |
3153 | | static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, |
3154 | | LValue &LVal, |
3155 | 0 | const IndirectFieldDecl *IFD) { |
3156 | 0 | for (const auto *C : IFD->chain()) |
3157 | 0 | if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) |
3158 | 0 | return false; |
3159 | 0 | return true; |
3160 | 0 | } |
3161 | | |
3162 | | /// Get the size of the given type in char units. |
3163 | | static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, |
3164 | 346k | QualType Type, CharUnits &Size) { |
3165 | | // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc |
3166 | | // extension. |
3167 | 346k | if (Type->isVoidType() || Type->isFunctionType()346k ) { |
3168 | 149 | Size = CharUnits::One(); |
3169 | 149 | return true; |
3170 | 149 | } |
3171 | | |
3172 | 346k | if (Type->isDependentType()) { |
3173 | 0 | Info.FFDiag(Loc); |
3174 | 0 | return false; |
3175 | 0 | } |
3176 | | |
3177 | 346k | if (!Type->isConstantSizeType()) { |
3178 | | // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
3179 | | // FIXME: Better diagnostic. |
3180 | 2.13k | Info.FFDiag(Loc); |
3181 | 2.13k | return false; |
3182 | 2.13k | } |
3183 | | |
3184 | 343k | Size = Info.Ctx.getTypeSizeInChars(Type); |
3185 | 343k | return true; |
3186 | 346k | } |
3187 | | |
3188 | | /// Update a pointer value to model pointer arithmetic. |
3189 | | /// \param Info - Information about the ongoing evaluation. |
3190 | | /// \param E - The expression being evaluated, for diagnostic purposes. |
3191 | | /// \param LVal - The pointer value to be updated. |
3192 | | /// \param EltTy - The pointee type represented by LVal. |
3193 | | /// \param Adjustment - The adjustment, in objects of type EltTy, to add. |
3194 | | static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
3195 | | LValue &LVal, QualType EltTy, |
3196 | 189k | APSInt Adjustment) { |
3197 | 189k | CharUnits SizeOfPointee; |
3198 | 189k | if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) |
3199 | 1.95k | return false; |
3200 | | |
3201 | 187k | LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); |
3202 | 187k | return true; |
3203 | 189k | } |
3204 | | |
3205 | | static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
3206 | | LValue &LVal, QualType EltTy, |
3207 | 150k | int64_t Adjustment) { |
3208 | 150k | return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, |
3209 | 150k | APSInt::get(Adjustment)); |
3210 | 150k | } |
3211 | | |
3212 | | /// Update an lvalue to refer to a component of a complex number. |
3213 | | /// \param Info - Information about the ongoing evaluation. |
3214 | | /// \param LVal - The lvalue to be updated. |
3215 | | /// \param EltTy - The complex number's component type. |
3216 | | /// \param Imag - False for the real component, true for the imaginary. |
3217 | | static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, |
3218 | | LValue &LVal, QualType EltTy, |
3219 | 233 | bool Imag) { |
3220 | 233 | if (Imag) { |
3221 | 111 | CharUnits SizeOfComponent; |
3222 | 111 | if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) |
3223 | 0 | return false; |
3224 | 111 | LVal.Offset += SizeOfComponent; |
3225 | 111 | } |
3226 | 233 | LVal.addComplex(Info, E, EltTy, Imag); |
3227 | 233 | return true; |
3228 | 233 | } |
3229 | | |
3230 | | /// Try to evaluate the initializer for a variable declaration. |
3231 | | /// |
3232 | | /// \param Info Information about the ongoing evaluation. |
3233 | | /// \param E An expression to be used when printing diagnostics. |
3234 | | /// \param VD The variable whose initializer should be obtained. |
3235 | | /// \param Version The version of the variable within the frame. |
3236 | | /// \param Frame The frame in which the variable was created. Must be null |
3237 | | /// if this variable is not local to the evaluation. |
3238 | | /// \param Result Filled in with a pointer to the value of the variable. |
3239 | | static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, |
3240 | | const VarDecl *VD, CallStackFrame *Frame, |
3241 | 4.03M | unsigned Version, APValue *&Result) { |
3242 | 4.03M | APValue::LValueBase Base(VD, Frame ? Frame->Index292k : 03.74M , Version); |
3243 | | |
3244 | | // If this is a local variable, dig out its value. |
3245 | 4.03M | if (Frame) { |
3246 | 292k | Result = Frame->getTemporary(VD, Version); |
3247 | 292k | if (Result) |
3248 | 289k | return true; |
3249 | | |
3250 | 2.24k | if (!isa<ParmVarDecl>(VD)) { |
3251 | | // Assume variables referenced within a lambda's call operator that were |
3252 | | // not declared within the call operator are captures and during checking |
3253 | | // of a potential constant expression, assume they are unknown constant |
3254 | | // expressions. |
3255 | 0 | assert(isLambdaCallOperator(Frame->Callee) && |
3256 | 0 | (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && |
3257 | 0 | "missing value for local variable"); |
3258 | 0 | if (Info.checkingPotentialConstantExpression()) |
3259 | 0 | return false; |
3260 | | // FIXME: This diagnostic is bogus; we do support captures. Is this code |
3261 | | // still reachable at all? |
3262 | 0 | Info.FFDiag(E->getBeginLoc(), |
3263 | 0 | diag::note_unimplemented_constexpr_lambda_feature_ast) |
3264 | 0 | << "captures not currently allowed"; |
3265 | 0 | return false; |
3266 | 0 | } |
3267 | 2.24k | } |
3268 | | |
3269 | | // If we're currently evaluating the initializer of this declaration, use that |
3270 | | // in-flight value. |
3271 | 3.74M | if (Info.EvaluatingDecl == Base) { |
3272 | 84 | Result = Info.EvaluatingDeclValue; |
3273 | 84 | return true; |
3274 | 84 | } |
3275 | | |
3276 | 3.74M | if (isa<ParmVarDecl>(VD)) { |
3277 | | // Assume parameters of a potential constant expression are usable in |
3278 | | // constant expressions. |
3279 | 1.79M | if (!Info.checkingPotentialConstantExpression() || |
3280 | 1.79M | !Info.CurrentCall->Callee56.2k || |
3281 | 1.79M | !Info.CurrentCall->Callee->Equals(VD->getDeclContext())56.2k ) { |
3282 | 1.74M | if (Info.getLangOpts().CPlusPlus11) { |
3283 | 1.08M | Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) |
3284 | 1.08M | << VD; |
3285 | 1.08M | NoteLValueLocation(Info, Base); |
3286 | 1.08M | } else { |
3287 | 654k | Info.FFDiag(E); |
3288 | 654k | } |
3289 | 1.74M | } |
3290 | 1.79M | return false; |
3291 | 1.79M | } |
3292 | | |
3293 | | // Dig out the initializer, and use the declaration which it's attached to. |
3294 | | // FIXME: We should eventually check whether the variable has a reachable |
3295 | | // initializing declaration. |
3296 | 1.94M | const Expr *Init = VD->getAnyInitializer(VD); |
3297 | 1.94M | if (!Init) { |
3298 | | // Don't diagnose during potential constant expression checking; an |
3299 | | // initializer might be added later. |
3300 | 103k | if (!Info.checkingPotentialConstantExpression()) { |
3301 | 103k | Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) |
3302 | 103k | << VD; |
3303 | 103k | NoteLValueLocation(Info, Base); |
3304 | 103k | } |
3305 | 103k | return false; |
3306 | 103k | } |
3307 | | |
3308 | 1.84M | if (Init->isValueDependent()) { |
3309 | | // The DeclRefExpr is not value-dependent, but the variable it refers to |
3310 | | // has a value-dependent initializer. This should only happen in |
3311 | | // constant-folding cases, where the variable is not actually of a suitable |
3312 | | // type for use in a constant expression (otherwise the DeclRefExpr would |
3313 | | // have been value-dependent too), so diagnose that. |
3314 | 8 | assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx)); |
3315 | 8 | if (!Info.checkingPotentialConstantExpression()) { |
3316 | 8 | Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 |
3317 | 8 | ? diag::note_constexpr_ltor_non_constexpr6 |
3318 | 8 | : diag::note_constexpr_ltor_non_integral2 , 1) |
3319 | 8 | << VD << VD->getType(); |
3320 | 8 | NoteLValueLocation(Info, Base); |
3321 | 8 | } |
3322 | 8 | return false; |
3323 | 8 | } |
3324 | | |
3325 | | // Check that we can fold the initializer. In C++, we will have already done |
3326 | | // this in the cases where it matters for conformance. |
3327 | 1.84M | if (!VD->evaluateValue()) { |
3328 | 140k | Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; |
3329 | 140k | NoteLValueLocation(Info, Base); |
3330 | 140k | return false; |
3331 | 140k | } |
3332 | | |
3333 | | // Check that the variable is actually usable in constant expressions. For a |
3334 | | // const integral variable or a reference, we might have a non-constant |
3335 | | // initializer that we can nonetheless evaluate the initializer for. Such |
3336 | | // variables are not usable in constant expressions. In C++98, the |
3337 | | // initializer also syntactically needs to be an ICE. |
3338 | | // |
3339 | | // FIXME: We don't diagnose cases that aren't potentially usable in constant |
3340 | | // expressions here; doing so would regress diagnostics for things like |
3341 | | // reading from a volatile constexpr variable. |
3342 | 1.70M | if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization()1.70M && |
3343 | 1.70M | VD->mightBeUsableInConstantExpressions(Info.Ctx)925 ) || |
3344 | 1.70M | (1.70M (1.70M Info.getLangOpts().CPlusPlus1.70M || Info.getLangOpts().OpenCL1.87k ) && |
3345 | 1.70M | !Info.getLangOpts().CPlusPlus111.70M && !VD->hasICEInitializer(Info.Ctx)545 )) { |
3346 | 622 | Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; |
3347 | 622 | NoteLValueLocation(Info, Base); |
3348 | 622 | } |
3349 | | |
3350 | | // Never use the initializer of a weak variable, not even for constant |
3351 | | // folding. We can't be sure that this is the definition that will be used. |
3352 | 1.70M | if (VD->isWeak()) { |
3353 | 19 | Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD; |
3354 | 19 | NoteLValueLocation(Info, Base); |
3355 | 19 | return false; |
3356 | 19 | } |
3357 | | |
3358 | 1.70M | Result = VD->getEvaluatedValue(); |
3359 | 1.70M | return true; |
3360 | 1.70M | } |
3361 | | |
3362 | | /// Get the base index of the given base class within an APValue representing |
3363 | | /// the given derived class. |
3364 | | static unsigned getBaseIndex(const CXXRecordDecl *Derived, |
3365 | 1.42k | const CXXRecordDecl *Base) { |
3366 | 1.42k | Base = Base->getCanonicalDecl(); |
3367 | 1.42k | unsigned Index = 0; |
3368 | 1.42k | for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), |
3369 | 1.76k | E = Derived->bases_end(); I != E; ++I, ++Index345 ) { |
3370 | 1.76k | if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) |
3371 | 1.42k | return Index; |
3372 | 1.76k | } |
3373 | | |
3374 | 0 | llvm_unreachable("base class missing from derived class's bases list"); |
3375 | 0 | } |
3376 | | |
3377 | | /// Extract the value of a character from a string literal. |
3378 | | static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, |
3379 | 27.5k | uint64_t Index) { |
3380 | 27.5k | assert(!isa<SourceLocExpr>(Lit) && |
3381 | 27.5k | "SourceLocExpr should have already been converted to a StringLiteral"); |
3382 | | |
3383 | | // FIXME: Support MakeStringConstant |
3384 | 27.5k | if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { |
3385 | 0 | std::string Str; |
3386 | 0 | Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); |
3387 | 0 | assert(Index <= Str.size() && "Index too large"); |
3388 | 0 | return APSInt::getUnsigned(Str.c_str()[Index]); |
3389 | 0 | } |
3390 | | |
3391 | 27.5k | if (auto PE = dyn_cast<PredefinedExpr>(Lit)) |
3392 | 347 | Lit = PE->getFunctionName(); |
3393 | 27.5k | const StringLiteral *S = cast<StringLiteral>(Lit); |
3394 | 27.5k | const ConstantArrayType *CAT = |
3395 | 27.5k | Info.Ctx.getAsConstantArrayType(S->getType()); |
3396 | 27.5k | assert(CAT && "string literal isn't an array"); |
3397 | 0 | QualType CharType = CAT->getElementType(); |
3398 | 27.5k | assert(CharType->isIntegerType() && "unexpected character type"); |
3399 | | |
3400 | 0 | APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), |
3401 | 27.5k | CharType->isUnsignedIntegerType()); |
3402 | 27.5k | if (Index < S->getLength()) |
3403 | 26.2k | Value = S->getCodeUnit(Index); |
3404 | 27.5k | return Value; |
3405 | 27.5k | } |
3406 | | |
3407 | | // Expand a string literal into an array of characters. |
3408 | | // |
3409 | | // FIXME: This is inefficient; we should probably introduce something similar |
3410 | | // to the LLVM ConstantDataArray to make this cheaper. |
3411 | | static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, |
3412 | | APValue &Result, |
3413 | 1.63k | QualType AllocType = QualType()) { |
3414 | 1.63k | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
3415 | 1.63k | AllocType.isNull() ? S->getType()1.61k : AllocType19 ); |
3416 | 1.63k | assert(CAT && "string literal isn't an array"); |
3417 | 0 | QualType CharType = CAT->getElementType(); |
3418 | 1.63k | assert(CharType->isIntegerType() && "unexpected character type"); |
3419 | | |
3420 | 0 | unsigned Elts = CAT->getSize().getZExtValue(); |
3421 | 1.63k | Result = APValue(APValue::UninitArray(), |
3422 | 1.63k | std::min(S->getLength(), Elts), Elts); |
3423 | 1.63k | APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), |
3424 | 1.63k | CharType->isUnsignedIntegerType()); |
3425 | 1.63k | if (Result.hasArrayFiller()) |
3426 | 1.62k | Result.getArrayFiller() = APValue(Value); |
3427 | 66.6k | for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I65.0k ) { |
3428 | 65.0k | Value = S->getCodeUnit(I); |
3429 | 65.0k | Result.getArrayInitializedElt(I) = APValue(Value); |
3430 | 65.0k | } |
3431 | 1.63k | } |
3432 | | |
3433 | | // Expand an array so that it has more than Index filled elements. |
3434 | 1.13k | static void expandArray(APValue &Array, unsigned Index) { |
3435 | 1.13k | unsigned Size = Array.getArraySize(); |
3436 | 1.13k | assert(Index < Size); |
3437 | | |
3438 | | // Always at least double the number of elements for which we store a value. |
3439 | 0 | unsigned OldElts = Array.getArrayInitializedElts(); |
3440 | 1.13k | unsigned NewElts = std::max(Index+1, OldElts * 2); |
3441 | 1.13k | NewElts = std::min(Size, std::max(NewElts, 8u)); |
3442 | | |
3443 | | // Copy the data across. |
3444 | 1.13k | APValue NewValue(APValue::UninitArray(), NewElts, Size); |
3445 | 20.7k | for (unsigned I = 0; I != OldElts; ++I19.6k ) |
3446 | 19.6k | NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); |
3447 | 50.4k | for (unsigned I = OldElts; I != NewElts; ++I49.3k ) |
3448 | 49.3k | NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); |
3449 | 1.13k | if (NewValue.hasArrayFiller()) |
3450 | 536 | NewValue.getArrayFiller() = Array.getArrayFiller(); |
3451 | 1.13k | Array.swap(NewValue); |
3452 | 1.13k | } |
3453 | | |
3454 | | /// Determine whether a type would actually be read by an lvalue-to-rvalue |
3455 | | /// conversion. If it's of class type, we may assume that the copy operation |
3456 | | /// is trivial. Note that this is never true for a union type with fields |
3457 | | /// (because the copy always "reads" the active member) and always true for |
3458 | | /// a non-class type. |
3459 | | static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD); |
3460 | 1.80k | static bool isReadByLvalueToRvalueConversion(QualType T) { |
3461 | 1.80k | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
3462 | 1.80k | return !RD || isReadByLvalueToRvalueConversion(RD)183 ; |
3463 | 1.80k | } |
3464 | 2.52k | static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) { |
3465 | | // FIXME: A trivial copy of a union copies the object representation, even if |
3466 | | // the union is empty. |
3467 | 2.52k | if (RD->isUnion()) |
3468 | 38 | return !RD->field_empty(); |
3469 | 2.49k | if (RD->isEmpty()) |
3470 | 769 | return false; |
3471 | | |
3472 | 1.72k | for (auto *Field : RD->fields()) |
3473 | 1.76k | if (!Field->isUnnamedBitfield() && |
3474 | 1.76k | isReadByLvalueToRvalueConversion(Field->getType())1.76k ) |
3475 | 1.69k | return true; |
3476 | | |
3477 | 26 | for (auto &BaseSpec : RD->bases()) |
3478 | 20 | if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) |
3479 | 14 | return true; |
3480 | | |
3481 | 12 | return false; |
3482 | 26 | } |
3483 | | |
3484 | | /// Diagnose an attempt to read from any unreadable field within the specified |
3485 | | /// type, which might be a class type. |
3486 | | static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, |
3487 | 687 | QualType T) { |
3488 | 687 | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
3489 | 687 | if (!RD) |
3490 | 18 | return false; |
3491 | | |
3492 | 669 | if (!RD->hasMutableFields()) |
3493 | 650 | return false; |
3494 | | |
3495 | 35 | for (auto *Field : RD->fields())19 { |
3496 | | // If we're actually going to read this field in some way, then it can't |
3497 | | // be mutable. If we're in a union, then assigning to a mutable field |
3498 | | // (even an empty one) can change the active member, so that's not OK. |
3499 | | // FIXME: Add core issue number for the union case. |
3500 | 35 | if (Field->isMutable() && |
3501 | 35 | (22 RD->isUnion()22 || isReadByLvalueToRvalueConversion(Field->getType())16 )) { |
3502 | 13 | Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; |
3503 | 13 | Info.Note(Field->getLocation(), diag::note_declared_at); |
3504 | 13 | return true; |
3505 | 13 | } |
3506 | | |
3507 | 22 | if (diagnoseMutableFields(Info, E, AK, Field->getType())) |
3508 | 3 | return true; |
3509 | 22 | } |
3510 | | |
3511 | 3 | for (auto &BaseSpec : RD->bases()) |
3512 | 0 | if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) |
3513 | 0 | return true; |
3514 | | |
3515 | | // All mutable fields were empty, and thus not actually read. |
3516 | 3 | return false; |
3517 | 3 | } |
3518 | | |
3519 | | static bool lifetimeStartedInEvaluation(EvalInfo &Info, |
3520 | | APValue::LValueBase Base, |
3521 | 1.84M | bool MutableSubobject = false) { |
3522 | | // A temporary or transient heap allocation we created. |
3523 | 1.84M | if (Base.getCallIndex() || Base.is<DynamicAllocLValue>()1.84M ) |
3524 | 815 | return true; |
3525 | | |
3526 | 1.84M | switch (Info.IsEvaluatingDecl) { |
3527 | 1.75M | case EvalInfo::EvaluatingDeclKind::None: |
3528 | 1.75M | return false; |
3529 | | |
3530 | 92.8k | case EvalInfo::EvaluatingDeclKind::Ctor: |
3531 | | // The variable whose initializer we're evaluating. |
3532 | 92.8k | if (Info.EvaluatingDecl == Base) |
3533 | 834 | return true; |
3534 | | |
3535 | | // A temporary lifetime-extended by the variable whose initializer we're |
3536 | | // evaluating. |
3537 | 92.0k | if (auto *BaseE = Base.dyn_cast<const Expr *>()) |
3538 | 56 | if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) |
3539 | 56 | return Info.EvaluatingDecl == BaseMTE->getExtendingDecl(); |
3540 | 91.9k | return false; |
3541 | | |
3542 | 519 | case EvalInfo::EvaluatingDeclKind::Dtor: |
3543 | | // C++2a [expr.const]p6: |
3544 | | // [during constant destruction] the lifetime of a and its non-mutable |
3545 | | // subobjects (but not its mutable subobjects) [are] considered to start |
3546 | | // within e. |
3547 | 519 | if (MutableSubobject || Base != Info.EvaluatingDecl516 ) |
3548 | 8 | return false; |
3549 | | // FIXME: We can meaningfully extend this to cover non-const objects, but |
3550 | | // we will need special handling: we should be able to access only |
3551 | | // subobjects of such objects that are themselves declared const. |
3552 | 511 | QualType T = getType(Base); |
3553 | 511 | return T.isConstQualified() || T->isReferenceType()432 ; |
3554 | 1.84M | } |
3555 | | |
3556 | 0 | llvm_unreachable("unknown evaluating decl kind"); |
3557 | 0 | } |
3558 | | |
3559 | | namespace { |
3560 | | /// A handle to a complete object (an object that is not a subobject of |
3561 | | /// another object). |
3562 | | struct CompleteObject { |
3563 | | /// The identity of the object. |
3564 | | APValue::LValueBase Base; |
3565 | | /// The value of the complete object. |
3566 | | APValue *Value; |
3567 | | /// The type of the complete object. |
3568 | | QualType Type; |
3569 | | |
3570 | 5.47M | CompleteObject() : Value(nullptr) {} |
3571 | | CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) |
3572 | 2.06M | : Base(Base), Value(Value), Type(Type) {} |
3573 | | |
3574 | 20.9k | bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { |
3575 | | // If this isn't a "real" access (eg, if it's just accessing the type |
3576 | | // info), allow it. We assume the type doesn't change dynamically for |
3577 | | // subobjects of constexpr objects (even though we'd hit UB here if it |
3578 | | // did). FIXME: Is this right? |
3579 | 20.9k | if (!isAnyAccess(AK)) |
3580 | 19.3k | return true; |
3581 | | |
3582 | | // In C++14 onwards, it is permitted to read a mutable member whose |
3583 | | // lifetime began within the evaluation. |
3584 | | // FIXME: Should we also allow this in C++11? |
3585 | 1.53k | if (!Info.getLangOpts().CPlusPlus14) |
3586 | 84 | return false; |
3587 | 1.45k | return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); |
3588 | 1.53k | } |
3589 | | |
3590 | 7.55M | explicit operator bool() const { return !Type.isNull(); } |
3591 | | }; |
3592 | | } // end anonymous namespace |
3593 | | |
3594 | | static QualType getSubobjectType(QualType ObjType, QualType SubobjType, |
3595 | 26.3k | bool IsMutable = false) { |
3596 | | // C++ [basic.type.qualifier]p1: |
3597 | | // - A const object is an object of type const T or a non-mutable subobject |
3598 | | // of a const object. |
3599 | 26.3k | if (ObjType.isConstQualified() && !IsMutable15.5k ) |
3600 | 15.5k | SubobjType.addConst(); |
3601 | | // - A volatile object is an object of type const T or a subobject of a |
3602 | | // volatile object. |
3603 | 26.3k | if (ObjType.isVolatileQualified()) |
3604 | 11 | SubobjType.addVolatile(); |
3605 | 26.3k | return SubobjType; |
3606 | 26.3k | } |
3607 | | |
3608 | | /// Find the designated sub-object of an rvalue. |
3609 | | template<typename SubobjectHandler> |
3610 | | typename SubobjectHandler::result_type |
3611 | | findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, |
3612 | 2.03M | const SubobjectDesignator &Sub, SubobjectHandler &handler) { |
3613 | 2.03M | if (Sub.Invalid) |
3614 | | // A diagnostic will have already been produced. |
3615 | 0 | return handler.failed(); |
3616 | 2.03M | if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()2.03M ) { |
3617 | 300 | if (Info.getLangOpts().CPlusPlus11) |
3618 | 300 | Info.FFDiag(E, Sub.isOnePastTheEnd() |
3619 | 300 | ? diag::note_constexpr_access_past_end |
3620 | 300 | : diag::note_constexpr_access_unsized_array0 ) |
3621 | 300 | << handler.AccessKind; |
3622 | 0 | else |
3623 | 0 | Info.FFDiag(E); |
3624 | 300 | return handler.failed(); |
3625 | 300 | } |
3626 | | |
3627 | 2.03M | APValue *O = Obj.Value; |
3628 | 2.03M | QualType ObjType = Obj.Type; |
3629 | 2.03M | const FieldDecl *LastField = nullptr; |
3630 | 2.03M | const FieldDecl *VolatileField = nullptr; |
3631 | | |
3632 | | // Walk the designator's path to find the subobject. |
3633 | 2.12M | for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I84.7k ) { |
3634 | | // Reading an indeterminate value is undefined, but assigning over one is OK. |
3635 | 2.12M | if ((O->isAbsent() && !(363 handler.AccessKind == AK_Construct363 && I == N30 )) || |
3636 | 2.12M | (2.12M O->isIndeterminate()2.12M && |
3637 | 2.12M | !isValidIndeterminateAccess(handler.AccessKind)15.3k )) { |
3638 | 398 | if (!Info.checkingPotentialConstantExpression()) |
3639 | 379 | Info.FFDiag(E, diag::note_constexpr_access_uninit) |
3640 | 379 | << handler.AccessKind << O->isIndeterminate(); |
3641 | 398 | return handler.failed(); |
3642 | 398 | } |
3643 | | |
3644 | | // C++ [class.ctor]p5, C++ [class.dtor]p5: |
3645 | | // const and volatile semantics are not applied on an object under |
3646 | | // {con,de}struction. |
3647 | 2.12M | if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()367k ) && |
3648 | 2.12M | ObjType->isRecordType()1.75M && |
3649 | 2.12M | Info.isEvaluatingCtorDtor( |
3650 | 29.0k | Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), |
3651 | 29.0k | Sub.Entries.begin() + I)) != |
3652 | 29.0k | ConstructionPhase::None) { |
3653 | 913 | ObjType = Info.Ctx.getCanonicalType(ObjType); |
3654 | 913 | ObjType.removeLocalConst(); |
3655 | 913 | ObjType.removeLocalVolatile(); |
3656 | 913 | } |
3657 | | |
3658 | | // If this is our last pass, check that the final object type is OK. |
3659 | 2.12M | if (I == N || (85.1k I == N - 185.1k && ObjType->isAnyComplexType()77.7k )) { |
3660 | | // Accesses to volatile objects are prohibited. |
3661 | 2.03M | if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)24 ) { |
3662 | 24 | if (Info.getLangOpts().CPlusPlus) { |
3663 | 24 | int DiagKind; |
3664 | 24 | SourceLocation Loc; |
3665 | 24 | const NamedDecl *Decl = nullptr; |
3666 | 24 | if (VolatileField) { |
3667 | 0 | DiagKind = 2; |
3668 | 0 | Loc = VolatileField->getLocation(); |
3669 | 0 | Decl = VolatileField; |
3670 | 24 | } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { |
3671 | 21 | DiagKind = 1; |
3672 | 21 | Loc = VD->getLocation(); |
3673 | 21 | Decl = VD; |
3674 | 21 | } else { |
3675 | 3 | DiagKind = 0; |
3676 | 3 | if (auto *E = Obj.Base.dyn_cast<const Expr *>()) |
3677 | 3 | Loc = E->getExprLoc(); |
3678 | 3 | } |
3679 | 24 | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) |
3680 | 24 | << handler.AccessKind << DiagKind << Decl; |
3681 | 24 | Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; |
3682 | 24 | } else { |
3683 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
3684 | 0 | } |
3685 | 24 | return handler.failed(); |
3686 | 24 | } |
3687 | | |
3688 | | // If we are reading an object of class type, there may still be more |
3689 | | // things we need to check: if there are any mutable subobjects, we |
3690 | | // cannot perform this read. (This only happens when performing a trivial |
3691 | | // copy or assignment.) |
3692 | 2.03M | if (ObjType->isRecordType() && |
3693 | 2.03M | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)20.8k && |
3694 | 2.03M | diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)665 ) |
3695 | 13 | return handler.failed(); |
3696 | 2.03M | } |
3697 | | |
3698 | 2.12M | if (I == N) { |
3699 | 2.03M | if (!handler.found(*O, ObjType)) |
3700 | 37 | return false; |
3701 | | |
3702 | | // If we modified a bit-field, truncate it to the right width. |
3703 | 2.03M | if (isModification(handler.AccessKind) && |
3704 | 2.03M | LastField58.6k && LastField->isBitField()1.38k && |
3705 | 2.03M | !truncateBitfieldValue(Info, E, *O, LastField)24 ) |
3706 | 0 | return false; |
3707 | | |
3708 | 2.03M | return true; |
3709 | 2.03M | } |
3710 | | |
3711 | 85.1k | LastField = nullptr; |
3712 | 85.1k | if (ObjType->isArrayType()) { |
3713 | | // Next subobject is an array element. |
3714 | 58.4k | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); |
3715 | 58.4k | assert(CAT && "vla in literal type?"); |
3716 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); |
3717 | 58.4k | if (CAT->getSize().ule(Index)) { |
3718 | | // Note, it should not be possible to form a pointer with a valid |
3719 | | // designator which points more than one past the end of the array. |
3720 | 0 | if (Info.getLangOpts().CPlusPlus11) |
3721 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) |
3722 | 0 | << handler.AccessKind; |
3723 | 0 | else |
3724 | 0 | Info.FFDiag(E); |
3725 | 0 | return handler.failed(); |
3726 | 0 | } |
3727 | | |
3728 | 58.4k | ObjType = CAT->getElementType(); |
3729 | | |
3730 | 58.4k | if (O->getArrayInitializedElts() > Index) |
3731 | 56.6k | O = &O->getArrayInitializedElt(Index); |
3732 | 1.71k | else if (!isRead(handler.AccessKind)) { |
3733 | 956 | expandArray(*O, Index); |
3734 | 956 | O = &O->getArrayInitializedElt(Index); |
3735 | 956 | } else |
3736 | 756 | O = &O->getArrayFiller(); |
3737 | 58.4k | } else if (26.7k ObjType->isAnyComplexType()26.7k ) { |
3738 | | // Next subobject is a complex number. |
3739 | 24 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); |
3740 | 24 | if (Index > 1) { |
3741 | 0 | if (Info.getLangOpts().CPlusPlus11) |
3742 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) |
3743 | 0 | << handler.AccessKind; |
3744 | 0 | else |
3745 | 0 | Info.FFDiag(E); |
3746 | 0 | return handler.failed(); |
3747 | 0 | } |
3748 | | |
3749 | 24 | ObjType = getSubobjectType( |
3750 | 24 | ObjType, ObjType->castAs<ComplexType>()->getElementType()); |
3751 | | |
3752 | 24 | assert(I == N - 1 && "extracting subobject of scalar?"); |
3753 | 24 | if (O->isComplexInt()) { |
3754 | 12 | return handler.found(Index ? O->getComplexIntImag()6 |
3755 | 12 | : O->getComplexIntReal()6 , ObjType); |
3756 | 12 | } else { |
3757 | 12 | assert(O->isComplexFloat()); |
3758 | 12 | return handler.found(Index ? O->getComplexFloatImag()6 |
3759 | 12 | : O->getComplexFloatReal()6 , ObjType); |
3760 | 12 | } |
3761 | 26.7k | } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { |
3762 | 25.3k | if (Field->isMutable() && |
3763 | 25.3k | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)40 ) { |
3764 | 29 | Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) |
3765 | 29 | << handler.AccessKind << Field; |
3766 | 29 | Info.Note(Field->getLocation(), diag::note_declared_at); |
3767 | 29 | return handler.failed(); |
3768 | 29 | } |
3769 | | |
3770 | | // Next subobject is a class, struct or union field. |
3771 | 25.3k | RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); |
3772 | 25.3k | if (RD->isUnion()) { |
3773 | 1.00k | const FieldDecl *UnionField = O->getUnionField(); |
3774 | 1.00k | if (!UnionField || |
3775 | 1.00k | UnionField->getCanonicalDecl() != Field->getCanonicalDecl()994 ) { |
3776 | 332 | if (I == N - 1 && handler.AccessKind == AK_Construct297 ) { |
3777 | | // Placement new onto an inactive union member makes it active. |
3778 | 3 | O->setUnion(Field, APValue()); |
3779 | 329 | } else { |
3780 | | // FIXME: If O->getUnionValue() is absent, report that there's no |
3781 | | // active union member rather than reporting the prior active union |
3782 | | // member. We'll need to fix nullptr_t to not use APValue() as its |
3783 | | // representation first. |
3784 | 329 | Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) |
3785 | 329 | << handler.AccessKind << Field << !UnionField << UnionField; |
3786 | 329 | return handler.failed(); |
3787 | 329 | } |
3788 | 332 | } |
3789 | 675 | O = &O->getUnionValue(); |
3790 | 675 | } else |
3791 | 24.3k | O = &O->getStructField(Field->getFieldIndex()); |
3792 | | |
3793 | 24.9k | ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); |
3794 | 24.9k | LastField = Field; |
3795 | 24.9k | if (Field->getType().isVolatileQualified()) |
3796 | 0 | VolatileField = Field; |
3797 | 24.9k | } else { |
3798 | | // Next subobject is a base class. |
3799 | 1.37k | const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); |
3800 | 1.37k | const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); |
3801 | 1.37k | O = &O->getStructBase(getBaseIndex(Derived, Base)); |
3802 | | |
3803 | 1.37k | ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); |
3804 | 1.37k | } |
3805 | 85.1k | } |
3806 | 2.03M | } ExprConstant.cpp:(anonymous namespace)::StartLifetimeOfUnionMemberHandler::result_type findSubobject<(anonymous namespace)::StartLifetimeOfUnionMemberHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::StartLifetimeOfUnionMemberHandler&) Line | Count | Source | 3612 | 151 | const SubobjectDesignator &Sub, SubobjectHandler &handler) { | 3613 | 151 | if (Sub.Invalid) | 3614 | | // A diagnostic will have already been produced. | 3615 | 0 | return handler.failed(); | 3616 | 151 | if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { | 3617 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3618 | 0 | Info.FFDiag(E, Sub.isOnePastTheEnd() | 3619 | 0 | ? diag::note_constexpr_access_past_end | 3620 | 0 | : diag::note_constexpr_access_unsized_array) | 3621 | 0 | << handler.AccessKind; | 3622 | 0 | else | 3623 | 0 | Info.FFDiag(E); | 3624 | 0 | return handler.failed(); | 3625 | 0 | } | 3626 | | | 3627 | 151 | APValue *O = Obj.Value; | 3628 | 151 | QualType ObjType = Obj.Type; | 3629 | 151 | const FieldDecl *LastField = nullptr; | 3630 | 151 | const FieldDecl *VolatileField = nullptr; | 3631 | | | 3632 | | // Walk the designator's path to find the subobject. | 3633 | 175 | for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I24 ) { | 3634 | | // Reading an indeterminate value is undefined, but assigning over one is OK. | 3635 | 175 | if ((O->isAbsent() && !(0 handler.AccessKind == AK_Construct0 && I == N0 )) || | 3636 | 175 | (O->isIndeterminate() && | 3637 | 175 | !isValidIndeterminateAccess(handler.AccessKind)0 )) { | 3638 | 0 | if (!Info.checkingPotentialConstantExpression()) | 3639 | 0 | Info.FFDiag(E, diag::note_constexpr_access_uninit) | 3640 | 0 | << handler.AccessKind << O->isIndeterminate(); | 3641 | 0 | return handler.failed(); | 3642 | 0 | } | 3643 | | | 3644 | | // C++ [class.ctor]p5, C++ [class.dtor]p5: | 3645 | | // const and volatile semantics are not applied on an object under | 3646 | | // {con,de}struction. | 3647 | 175 | if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && | 3648 | 175 | ObjType->isRecordType()0 && | 3649 | 175 | Info.isEvaluatingCtorDtor( | 3650 | 0 | Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), | 3651 | 0 | Sub.Entries.begin() + I)) != | 3652 | 0 | ConstructionPhase::None) { | 3653 | 0 | ObjType = Info.Ctx.getCanonicalType(ObjType); | 3654 | 0 | ObjType.removeLocalConst(); | 3655 | 0 | ObjType.removeLocalVolatile(); | 3656 | 0 | } | 3657 | | | 3658 | | // If this is our last pass, check that the final object type is OK. | 3659 | 175 | if (I == N || (26 I == N - 126 && ObjType->isAnyComplexType()10 )) { | 3660 | | // Accesses to volatile objects are prohibited. | 3661 | 149 | if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)0 ) { | 3662 | 0 | if (Info.getLangOpts().CPlusPlus) { | 3663 | 0 | int DiagKind; | 3664 | 0 | SourceLocation Loc; | 3665 | 0 | const NamedDecl *Decl = nullptr; | 3666 | 0 | if (VolatileField) { | 3667 | 0 | DiagKind = 2; | 3668 | 0 | Loc = VolatileField->getLocation(); | 3669 | 0 | Decl = VolatileField; | 3670 | 0 | } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { | 3671 | 0 | DiagKind = 1; | 3672 | 0 | Loc = VD->getLocation(); | 3673 | 0 | Decl = VD; | 3674 | 0 | } else { | 3675 | 0 | DiagKind = 0; | 3676 | 0 | if (auto *E = Obj.Base.dyn_cast<const Expr *>()) | 3677 | 0 | Loc = E->getExprLoc(); | 3678 | 0 | } | 3679 | 0 | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) | 3680 | 0 | << handler.AccessKind << DiagKind << Decl; | 3681 | 0 | Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; | 3682 | 0 | } else { | 3683 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 3684 | 0 | } | 3685 | 0 | return handler.failed(); | 3686 | 0 | } | 3687 | | | 3688 | | // If we are reading an object of class type, there may still be more | 3689 | | // things we need to check: if there are any mutable subobjects, we | 3690 | | // cannot perform this read. (This only happens when performing a trivial | 3691 | | // copy or assignment.) | 3692 | 149 | if (ObjType->isRecordType() && | 3693 | 149 | !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && | 3694 | 149 | diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)0 ) | 3695 | 0 | return handler.failed(); | 3696 | 149 | } | 3697 | | | 3698 | 175 | if (I == N) { | 3699 | 149 | if (!handler.found(*O, ObjType)) | 3700 | 3 | return false; | 3701 | | | 3702 | | // If we modified a bit-field, truncate it to the right width. | 3703 | 146 | if (isModification(handler.AccessKind) && | 3704 | 146 | LastField && LastField->isBitField()10 && | 3705 | 146 | !truncateBitfieldValue(Info, E, *O, LastField)0 ) | 3706 | 0 | return false; | 3707 | | | 3708 | 146 | return true; | 3709 | 146 | } | 3710 | | | 3711 | 26 | LastField = nullptr; | 3712 | 26 | if (ObjType->isArrayType()) { | 3713 | | // Next subobject is an array element. | 3714 | 0 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); | 3715 | 0 | assert(CAT && "vla in literal type?"); | 3716 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); | 3717 | 0 | if (CAT->getSize().ule(Index)) { | 3718 | | // Note, it should not be possible to form a pointer with a valid | 3719 | | // designator which points more than one past the end of the array. | 3720 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3721 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 3722 | 0 | << handler.AccessKind; | 3723 | 0 | else | 3724 | 0 | Info.FFDiag(E); | 3725 | 0 | return handler.failed(); | 3726 | 0 | } | 3727 | | | 3728 | 0 | ObjType = CAT->getElementType(); | 3729 | |
| 3730 | 0 | if (O->getArrayInitializedElts() > Index) | 3731 | 0 | O = &O->getArrayInitializedElt(Index); | 3732 | 0 | else if (!isRead(handler.AccessKind)) { | 3733 | 0 | expandArray(*O, Index); | 3734 | 0 | O = &O->getArrayInitializedElt(Index); | 3735 | 0 | } else | 3736 | 0 | O = &O->getArrayFiller(); | 3737 | 26 | } else if (ObjType->isAnyComplexType()) { | 3738 | | // Next subobject is a complex number. | 3739 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); | 3740 | 0 | if (Index > 1) { | 3741 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3742 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 3743 | 0 | << handler.AccessKind; | 3744 | 0 | else | 3745 | 0 | Info.FFDiag(E); | 3746 | 0 | return handler.failed(); | 3747 | 0 | } | 3748 | | | 3749 | 0 | ObjType = getSubobjectType( | 3750 | 0 | ObjType, ObjType->castAs<ComplexType>()->getElementType()); | 3751 | |
| 3752 | 0 | assert(I == N - 1 && "extracting subobject of scalar?"); | 3753 | 0 | if (O->isComplexInt()) { | 3754 | 0 | return handler.found(Index ? O->getComplexIntImag() | 3755 | 0 | : O->getComplexIntReal(), ObjType); | 3756 | 0 | } else { | 3757 | 0 | assert(O->isComplexFloat()); | 3758 | 0 | return handler.found(Index ? O->getComplexFloatImag() | 3759 | 0 | : O->getComplexFloatReal(), ObjType); | 3760 | 0 | } | 3761 | 26 | } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { | 3762 | 22 | if (Field->isMutable() && | 3763 | 22 | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)0 ) { | 3764 | 0 | Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) | 3765 | 0 | << handler.AccessKind << Field; | 3766 | 0 | Info.Note(Field->getLocation(), diag::note_declared_at); | 3767 | 0 | return handler.failed(); | 3768 | 0 | } | 3769 | | | 3770 | | // Next subobject is a class, struct or union field. | 3771 | 22 | RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); | 3772 | 22 | if (RD->isUnion()) { | 3773 | 6 | const FieldDecl *UnionField = O->getUnionField(); | 3774 | 6 | if (!UnionField || | 3775 | 6 | UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { | 3776 | 2 | if (I == N - 1 && handler.AccessKind == AK_Construct0 ) { | 3777 | | // Placement new onto an inactive union member makes it active. | 3778 | 0 | O->setUnion(Field, APValue()); | 3779 | 2 | } else { | 3780 | | // FIXME: If O->getUnionValue() is absent, report that there's no | 3781 | | // active union member rather than reporting the prior active union | 3782 | | // member. We'll need to fix nullptr_t to not use APValue() as its | 3783 | | // representation first. | 3784 | 2 | Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) | 3785 | 2 | << handler.AccessKind << Field << !UnionField << UnionField; | 3786 | 2 | return handler.failed(); | 3787 | 2 | } | 3788 | 2 | } | 3789 | 4 | O = &O->getUnionValue(); | 3790 | 4 | } else | 3791 | 16 | O = &O->getStructField(Field->getFieldIndex()); | 3792 | | | 3793 | 20 | ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); | 3794 | 20 | LastField = Field; | 3795 | 20 | if (Field->getType().isVolatileQualified()) | 3796 | 0 | VolatileField = Field; | 3797 | 20 | } else { | 3798 | | // Next subobject is a base class. | 3799 | 4 | const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); | 3800 | 4 | const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); | 3801 | 4 | O = &O->getStructBase(getBaseIndex(Derived, Base)); | 3802 | | | 3803 | 4 | ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); | 3804 | 4 | } | 3805 | 26 | } | 3806 | 151 | } |
ExprConstant.cpp:(anonymous namespace)::ModifySubobjectHandler::result_type findSubobject<(anonymous namespace)::ModifySubobjectHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::ModifySubobjectHandler&) Line | Count | Source | 3612 | 19.0k | const SubobjectDesignator &Sub, SubobjectHandler &handler) { | 3613 | 19.0k | if (Sub.Invalid) | 3614 | | // A diagnostic will have already been produced. | 3615 | 0 | return handler.failed(); | 3616 | 19.0k | if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()19.0k ) { | 3617 | 12 | if (Info.getLangOpts().CPlusPlus11) | 3618 | 12 | Info.FFDiag(E, Sub.isOnePastTheEnd() | 3619 | 12 | ? diag::note_constexpr_access_past_end | 3620 | 12 | : diag::note_constexpr_access_unsized_array0 ) | 3621 | 12 | << handler.AccessKind; | 3622 | 0 | else | 3623 | 0 | Info.FFDiag(E); | 3624 | 12 | return handler.failed(); | 3625 | 12 | } | 3626 | | | 3627 | 19.0k | APValue *O = Obj.Value; | 3628 | 19.0k | QualType ObjType = Obj.Type; | 3629 | 19.0k | const FieldDecl *LastField = nullptr; | 3630 | 19.0k | const FieldDecl *VolatileField = nullptr; | 3631 | | | 3632 | | // Walk the designator's path to find the subobject. | 3633 | 37.6k | for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I18.6k ) { | 3634 | | // Reading an indeterminate value is undefined, but assigning over one is OK. | 3635 | 37.6k | if ((O->isAbsent() && !(53 handler.AccessKind == AK_Construct53 && I == N0 )) || | 3636 | 37.6k | (37.6k O->isIndeterminate()37.6k && | 3637 | 37.6k | !isValidIndeterminateAccess(handler.AccessKind)15.2k )) { | 3638 | 53 | if (!Info.checkingPotentialConstantExpression()) | 3639 | 50 | Info.FFDiag(E, diag::note_constexpr_access_uninit) | 3640 | 50 | << handler.AccessKind << O->isIndeterminate(); | 3641 | 53 | return handler.failed(); | 3642 | 53 | } | 3643 | | | 3644 | | // C++ [class.ctor]p5, C++ [class.dtor]p5: | 3645 | | // const and volatile semantics are not applied on an object under | 3646 | | // {con,de}struction. | 3647 | 37.6k | if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()37.1k ) && | 3648 | 37.6k | ObjType->isRecordType()439 && | 3649 | 37.6k | Info.isEvaluatingCtorDtor( | 3650 | 413 | Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), | 3651 | 413 | Sub.Entries.begin() + I)) != | 3652 | 413 | ConstructionPhase::None) { | 3653 | 407 | ObjType = Info.Ctx.getCanonicalType(ObjType); | 3654 | 407 | ObjType.removeLocalConst(); | 3655 | 407 | ObjType.removeLocalVolatile(); | 3656 | 407 | } | 3657 | | | 3658 | | // If this is our last pass, check that the final object type is OK. | 3659 | 37.6k | if (I == N || (18.6k I == N - 118.6k && ObjType->isAnyComplexType()17.5k )) { | 3660 | | // Accesses to volatile objects are prohibited. | 3661 | 19.0k | if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)0 ) { | 3662 | 0 | if (Info.getLangOpts().CPlusPlus) { | 3663 | 0 | int DiagKind; | 3664 | 0 | SourceLocation Loc; | 3665 | 0 | const NamedDecl *Decl = nullptr; | 3666 | 0 | if (VolatileField) { | 3667 | 0 | DiagKind = 2; | 3668 | 0 | Loc = VolatileField->getLocation(); | 3669 | 0 | Decl = VolatileField; | 3670 | 0 | } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { | 3671 | 0 | DiagKind = 1; | 3672 | 0 | Loc = VD->getLocation(); | 3673 | 0 | Decl = VD; | 3674 | 0 | } else { | 3675 | 0 | DiagKind = 0; | 3676 | 0 | if (auto *E = Obj.Base.dyn_cast<const Expr *>()) | 3677 | 0 | Loc = E->getExprLoc(); | 3678 | 0 | } | 3679 | 0 | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) | 3680 | 0 | << handler.AccessKind << DiagKind << Decl; | 3681 | 0 | Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; | 3682 | 0 | } else { | 3683 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 3684 | 0 | } | 3685 | 0 | return handler.failed(); | 3686 | 0 | } | 3687 | | | 3688 | | // If we are reading an object of class type, there may still be more | 3689 | | // things we need to check: if there are any mutable subobjects, we | 3690 | | // cannot perform this read. (This only happens when performing a trivial | 3691 | | // copy or assignment.) | 3692 | 19.0k | if (ObjType->isRecordType() && | 3693 | 19.0k | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)86 && | 3694 | 19.0k | diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)0 ) | 3695 | 0 | return handler.failed(); | 3696 | 19.0k | } | 3697 | | | 3698 | 37.6k | if (I == N) { | 3699 | 19.0k | if (!handler.found(*O, ObjType)) | 3700 | 21 | return false; | 3701 | | | 3702 | | // If we modified a bit-field, truncate it to the right width. | 3703 | 18.9k | if (isModification(handler.AccessKind) && | 3704 | 18.9k | LastField && LastField->isBitField()1.14k && | 3705 | 18.9k | !truncateBitfieldValue(Info, E, *O, LastField)6 ) | 3706 | 0 | return false; | 3707 | | | 3708 | 18.9k | return true; | 3709 | 18.9k | } | 3710 | | | 3711 | 18.6k | LastField = nullptr; | 3712 | 18.6k | if (ObjType->isArrayType()) { | 3713 | | // Next subobject is an array element. | 3714 | 16.4k | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); | 3715 | 16.4k | assert(CAT && "vla in literal type?"); | 3716 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); | 3717 | 16.4k | if (CAT->getSize().ule(Index)) { | 3718 | | // Note, it should not be possible to form a pointer with a valid | 3719 | | // designator which points more than one past the end of the array. | 3720 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3721 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 3722 | 0 | << handler.AccessKind; | 3723 | 0 | else | 3724 | 0 | Info.FFDiag(E); | 3725 | 0 | return handler.failed(); | 3726 | 0 | } | 3727 | | | 3728 | 16.4k | ObjType = CAT->getElementType(); | 3729 | | | 3730 | 16.4k | if (O->getArrayInitializedElts() > Index) | 3731 | 15.4k | O = &O->getArrayInitializedElt(Index); | 3732 | 949 | else if (!isRead(handler.AccessKind)) { | 3733 | 949 | expandArray(*O, Index); | 3734 | 949 | O = &O->getArrayInitializedElt(Index); | 3735 | 949 | } else | 3736 | 0 | O = &O->getArrayFiller(); | 3737 | 16.4k | } else if (2.19k ObjType->isAnyComplexType()2.19k ) { | 3738 | | // Next subobject is a complex number. | 3739 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); | 3740 | 0 | if (Index > 1) { | 3741 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3742 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 3743 | 0 | << handler.AccessKind; | 3744 | 0 | else | 3745 | 0 | Info.FFDiag(E); | 3746 | 0 | return handler.failed(); | 3747 | 0 | } | 3748 | | | 3749 | 0 | ObjType = getSubobjectType( | 3750 | 0 | ObjType, ObjType->castAs<ComplexType>()->getElementType()); | 3751 | |
| 3752 | 0 | assert(I == N - 1 && "extracting subobject of scalar?"); | 3753 | 0 | if (O->isComplexInt()) { | 3754 | 0 | return handler.found(Index ? O->getComplexIntImag() | 3755 | 0 | : O->getComplexIntReal(), ObjType); | 3756 | 0 | } else { | 3757 | 0 | assert(O->isComplexFloat()); | 3758 | 0 | return handler.found(Index ? O->getComplexFloatImag() | 3759 | 0 | : O->getComplexFloatReal(), ObjType); | 3760 | 0 | } | 3761 | 2.19k | } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { | 3762 | 2.10k | if (Field->isMutable() && | 3763 | 2.10k | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)1 ) { | 3764 | 1 | Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) | 3765 | 1 | << handler.AccessKind << Field; | 3766 | 1 | Info.Note(Field->getLocation(), diag::note_declared_at); | 3767 | 1 | return handler.failed(); | 3768 | 1 | } | 3769 | | | 3770 | | // Next subobject is a class, struct or union field. | 3771 | 2.10k | RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); | 3772 | 2.10k | if (RD->isUnion()) { | 3773 | 178 | const FieldDecl *UnionField = O->getUnionField(); | 3774 | 178 | if (!UnionField || | 3775 | 178 | UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { | 3776 | 7 | if (I == N - 1 && handler.AccessKind == AK_Construct1 ) { | 3777 | | // Placement new onto an inactive union member makes it active. | 3778 | 0 | O->setUnion(Field, APValue()); | 3779 | 7 | } else { | 3780 | | // FIXME: If O->getUnionValue() is absent, report that there's no | 3781 | | // active union member rather than reporting the prior active union | 3782 | | // member. We'll need to fix nullptr_t to not use APValue() as its | 3783 | | // representation first. | 3784 | 7 | Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) | 3785 | 7 | << handler.AccessKind << Field << !UnionField << UnionField; | 3786 | 7 | return handler.failed(); | 3787 | 7 | } | 3788 | 7 | } | 3789 | 171 | O = &O->getUnionValue(); | 3790 | 171 | } else | 3791 | 1.93k | O = &O->getStructField(Field->getFieldIndex()); | 3792 | | | 3793 | 2.10k | ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); | 3794 | 2.10k | LastField = Field; | 3795 | 2.10k | if (Field->getType().isVolatileQualified()) | 3796 | 0 | VolatileField = Field; | 3797 | 2.10k | } else { | 3798 | | // Next subobject is a base class. | 3799 | 81 | const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); | 3800 | 81 | const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); | 3801 | 81 | O = &O->getStructBase(getBaseIndex(Derived, Base)); | 3802 | | | 3803 | 81 | ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); | 3804 | 81 | } | 3805 | 18.6k | } | 3806 | 19.0k | } |
ExprConstant.cpp:(anonymous namespace)::IncDecSubobjectHandler::result_type findSubobject<(anonymous namespace)::IncDecSubobjectHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::IncDecSubobjectHandler&) Line | Count | Source | 3612 | 34.4k | const SubobjectDesignator &Sub, SubobjectHandler &handler) { | 3613 | 34.4k | if (Sub.Invalid) | 3614 | | // A diagnostic will have already been produced. | 3615 | 0 | return handler.failed(); | 3616 | 34.4k | if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { | 3617 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3618 | 0 | Info.FFDiag(E, Sub.isOnePastTheEnd() | 3619 | 0 | ? diag::note_constexpr_access_past_end | 3620 | 0 | : diag::note_constexpr_access_unsized_array) | 3621 | 0 | << handler.AccessKind; | 3622 | 0 | else | 3623 | 0 | Info.FFDiag(E); | 3624 | 0 | return handler.failed(); | 3625 | 0 | } | 3626 | | | 3627 | 34.4k | APValue *O = Obj.Value; | 3628 | 34.4k | QualType ObjType = Obj.Type; | 3629 | 34.4k | const FieldDecl *LastField = nullptr; | 3630 | 34.4k | const FieldDecl *VolatileField = nullptr; | 3631 | | | 3632 | | // Walk the designator's path to find the subobject. | 3633 | 34.7k | for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I246 ) { | 3634 | | // Reading an indeterminate value is undefined, but assigning over one is OK. | 3635 | 34.7k | if ((O->isAbsent() && !(17 handler.AccessKind == AK_Construct17 && I == N0 )) || | 3636 | 34.7k | (34.7k O->isIndeterminate()34.7k && | 3637 | 34.7k | !isValidIndeterminateAccess(handler.AccessKind)0 )) { | 3638 | 17 | if (!Info.checkingPotentialConstantExpression()) | 3639 | 14 | Info.FFDiag(E, diag::note_constexpr_access_uninit) | 3640 | 14 | << handler.AccessKind << O->isIndeterminate(); | 3641 | 17 | return handler.failed(); | 3642 | 17 | } | 3643 | | | 3644 | | // C++ [class.ctor]p5, C++ [class.dtor]p5: | 3645 | | // const and volatile semantics are not applied on an object under | 3646 | | // {con,de}struction. | 3647 | 34.7k | if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()34.7k ) && | 3648 | 34.7k | ObjType->isRecordType()18 && | 3649 | 34.7k | Info.isEvaluatingCtorDtor( | 3650 | 18 | Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), | 3651 | 18 | Sub.Entries.begin() + I)) != | 3652 | 18 | ConstructionPhase::None) { | 3653 | 18 | ObjType = Info.Ctx.getCanonicalType(ObjType); | 3654 | 18 | ObjType.removeLocalConst(); | 3655 | 18 | ObjType.removeLocalVolatile(); | 3656 | 18 | } | 3657 | | | 3658 | | // If this is our last pass, check that the final object type is OK. | 3659 | 34.7k | if (I == N || (252 I == N - 1252 && ObjType->isAnyComplexType()193 )) { | 3660 | | // Accesses to volatile objects are prohibited. | 3661 | 34.4k | if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)0 ) { | 3662 | 0 | if (Info.getLangOpts().CPlusPlus) { | 3663 | 0 | int DiagKind; | 3664 | 0 | SourceLocation Loc; | 3665 | 0 | const NamedDecl *Decl = nullptr; | 3666 | 0 | if (VolatileField) { | 3667 | 0 | DiagKind = 2; | 3668 | 0 | Loc = VolatileField->getLocation(); | 3669 | 0 | Decl = VolatileField; | 3670 | 0 | } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { | 3671 | 0 | DiagKind = 1; | 3672 | 0 | Loc = VD->getLocation(); | 3673 | 0 | Decl = VD; | 3674 | 0 | } else { | 3675 | 0 | DiagKind = 0; | 3676 | 0 | if (auto *E = Obj.Base.dyn_cast<const Expr *>()) | 3677 | 0 | Loc = E->getExprLoc(); | 3678 | 0 | } | 3679 | 0 | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) | 3680 | 0 | << handler.AccessKind << DiagKind << Decl; | 3681 | 0 | Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; | 3682 | 0 | } else { | 3683 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 3684 | 0 | } | 3685 | 0 | return handler.failed(); | 3686 | 0 | } | 3687 | | | 3688 | | // If we are reading an object of class type, there may still be more | 3689 | | // things we need to check: if there are any mutable subobjects, we | 3690 | | // cannot perform this read. (This only happens when performing a trivial | 3691 | | // copy or assignment.) | 3692 | 34.4k | if (ObjType->isRecordType() && | 3693 | 34.4k | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)0 && | 3694 | 34.4k | diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)0 ) | 3695 | 0 | return handler.failed(); | 3696 | 34.4k | } | 3697 | | | 3698 | 34.7k | if (I == N) { | 3699 | 34.4k | if (!handler.found(*O, ObjType)) | 3700 | 4 | return false; | 3701 | | | 3702 | | // If we modified a bit-field, truncate it to the right width. | 3703 | 34.4k | if (isModification(handler.AccessKind) && | 3704 | 34.4k | LastField && LastField->isBitField()184 && | 3705 | 34.4k | !truncateBitfieldValue(Info, E, *O, LastField)12 ) | 3706 | 0 | return false; | 3707 | | | 3708 | 34.4k | return true; | 3709 | 34.4k | } | 3710 | | | 3711 | 252 | LastField = nullptr; | 3712 | 252 | if (ObjType->isArrayType()) { | 3713 | | // Next subobject is an array element. | 3714 | 10 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); | 3715 | 10 | assert(CAT && "vla in literal type?"); | 3716 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); | 3717 | 10 | if (CAT->getSize().ule(Index)) { | 3718 | | // Note, it should not be possible to form a pointer with a valid | 3719 | | // designator which points more than one past the end of the array. | 3720 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3721 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 3722 | 0 | << handler.AccessKind; | 3723 | 0 | else | 3724 | 0 | Info.FFDiag(E); | 3725 | 0 | return handler.failed(); | 3726 | 0 | } | 3727 | | | 3728 | 10 | ObjType = CAT->getElementType(); | 3729 | | | 3730 | 10 | if (O->getArrayInitializedElts() > Index) | 3731 | 9 | O = &O->getArrayInitializedElt(Index); | 3732 | 1 | else if (!isRead(handler.AccessKind)) { | 3733 | 1 | expandArray(*O, Index); | 3734 | 1 | O = &O->getArrayInitializedElt(Index); | 3735 | 1 | } else | 3736 | 0 | O = &O->getArrayFiller(); | 3737 | 242 | } else if (ObjType->isAnyComplexType()) { | 3738 | | // Next subobject is a complex number. | 3739 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); | 3740 | 0 | if (Index > 1) { | 3741 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3742 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 3743 | 0 | << handler.AccessKind; | 3744 | 0 | else | 3745 | 0 | Info.FFDiag(E); | 3746 | 0 | return handler.failed(); | 3747 | 0 | } | 3748 | | | 3749 | 0 | ObjType = getSubobjectType( | 3750 | 0 | ObjType, ObjType->castAs<ComplexType>()->getElementType()); | 3751 | |
| 3752 | 0 | assert(I == N - 1 && "extracting subobject of scalar?"); | 3753 | 0 | if (O->isComplexInt()) { | 3754 | 0 | return handler.found(Index ? O->getComplexIntImag() | 3755 | 0 | : O->getComplexIntReal(), ObjType); | 3756 | 0 | } else { | 3757 | 0 | assert(O->isComplexFloat()); | 3758 | 0 | return handler.found(Index ? O->getComplexFloatImag() | 3759 | 0 | : O->getComplexFloatReal(), ObjType); | 3760 | 0 | } | 3761 | 242 | } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { | 3762 | 216 | if (Field->isMutable() && | 3763 | 216 | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)0 ) { | 3764 | 0 | Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) | 3765 | 0 | << handler.AccessKind << Field; | 3766 | 0 | Info.Note(Field->getLocation(), diag::note_declared_at); | 3767 | 0 | return handler.failed(); | 3768 | 0 | } | 3769 | | | 3770 | | // Next subobject is a class, struct or union field. | 3771 | 216 | RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); | 3772 | 216 | if (RD->isUnion()) { | 3773 | 25 | const FieldDecl *UnionField = O->getUnionField(); | 3774 | 25 | if (!UnionField || | 3775 | 25 | UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { | 3776 | 6 | if (I == N - 1 && handler.AccessKind == AK_Construct) { | 3777 | | // Placement new onto an inactive union member makes it active. | 3778 | 0 | O->setUnion(Field, APValue()); | 3779 | 6 | } else { | 3780 | | // FIXME: If O->getUnionValue() is absent, report that there's no | 3781 | | // active union member rather than reporting the prior active union | 3782 | | // member. We'll need to fix nullptr_t to not use APValue() as its | 3783 | | // representation first. | 3784 | 6 | Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) | 3785 | 6 | << handler.AccessKind << Field << !UnionField << UnionField; | 3786 | 6 | return handler.failed(); | 3787 | 6 | } | 3788 | 6 | } | 3789 | 19 | O = &O->getUnionValue(); | 3790 | 19 | } else | 3791 | 191 | O = &O->getStructField(Field->getFieldIndex()); | 3792 | | | 3793 | 210 | ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); | 3794 | 210 | LastField = Field; | 3795 | 210 | if (Field->getType().isVolatileQualified()) | 3796 | 0 | VolatileField = Field; | 3797 | 210 | } else { | 3798 | | // Next subobject is a base class. | 3799 | 26 | const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); | 3800 | 26 | const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); | 3801 | 26 | O = &O->getStructBase(getBaseIndex(Derived, Base)); | 3802 | | | 3803 | 26 | ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); | 3804 | 26 | } | 3805 | 252 | } | 3806 | 34.4k | } |
ExprConstant.cpp:(anonymous namespace)::DestroyObjectHandler::result_type findSubobject<(anonymous namespace)::DestroyObjectHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::DestroyObjectHandler&) Line | Count | Source | 3612 | 52 | const SubobjectDesignator &Sub, SubobjectHandler &handler) { | 3613 | 52 | if (Sub.Invalid) | 3614 | | // A diagnostic will have already been produced. | 3615 | 0 | return handler.failed(); | 3616 | 52 | if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { | 3617 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3618 | 0 | Info.FFDiag(E, Sub.isOnePastTheEnd() | 3619 | 0 | ? diag::note_constexpr_access_past_end | 3620 | 0 | : diag::note_constexpr_access_unsized_array) | 3621 | 0 | << handler.AccessKind; | 3622 | 0 | else | 3623 | 0 | Info.FFDiag(E); | 3624 | 0 | return handler.failed(); | 3625 | 0 | } | 3626 | | | 3627 | 52 | APValue *O = Obj.Value; | 3628 | 52 | QualType ObjType = Obj.Type; | 3629 | 52 | const FieldDecl *LastField = nullptr; | 3630 | 52 | const FieldDecl *VolatileField = nullptr; | 3631 | | | 3632 | | // Walk the designator's path to find the subobject. | 3633 | 79 | for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I27 ) { | 3634 | | // Reading an indeterminate value is undefined, but assigning over one is OK. | 3635 | 79 | if ((O->isAbsent() && !(0 handler.AccessKind == AK_Construct0 && I == N0 )) || | 3636 | 79 | (O->isIndeterminate() && | 3637 | 79 | !isValidIndeterminateAccess(handler.AccessKind)2 )) { | 3638 | 0 | if (!Info.checkingPotentialConstantExpression()) | 3639 | 0 | Info.FFDiag(E, diag::note_constexpr_access_uninit) | 3640 | 0 | << handler.AccessKind << O->isIndeterminate(); | 3641 | 0 | return handler.failed(); | 3642 | 0 | } | 3643 | | | 3644 | | // C++ [class.ctor]p5, C++ [class.dtor]p5: | 3645 | | // const and volatile semantics are not applied on an object under | 3646 | | // {con,de}struction. | 3647 | 79 | if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && | 3648 | 79 | ObjType->isRecordType()0 && | 3649 | 79 | Info.isEvaluatingCtorDtor( | 3650 | 0 | Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), | 3651 | 0 | Sub.Entries.begin() + I)) != | 3652 | 0 | ConstructionPhase::None) { | 3653 | 0 | ObjType = Info.Ctx.getCanonicalType(ObjType); | 3654 | 0 | ObjType.removeLocalConst(); | 3655 | 0 | ObjType.removeLocalVolatile(); | 3656 | 0 | } | 3657 | | | 3658 | | // If this is our last pass, check that the final object type is OK. | 3659 | 79 | if (I == N || (27 I == N - 127 && ObjType->isAnyComplexType()22 )) { | 3660 | | // Accesses to volatile objects are prohibited. | 3661 | 52 | if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)0 ) { | 3662 | 0 | if (Info.getLangOpts().CPlusPlus) { | 3663 | 0 | int DiagKind; | 3664 | 0 | SourceLocation Loc; | 3665 | 0 | const NamedDecl *Decl = nullptr; | 3666 | 0 | if (VolatileField) { | 3667 | 0 | DiagKind = 2; | 3668 | 0 | Loc = VolatileField->getLocation(); | 3669 | 0 | Decl = VolatileField; | 3670 | 0 | } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { | 3671 | 0 | DiagKind = 1; | 3672 | 0 | Loc = VD->getLocation(); | 3673 | 0 | Decl = VD; | 3674 | 0 | } else { | 3675 | 0 | DiagKind = 0; | 3676 | 0 | if (auto *E = Obj.Base.dyn_cast<const Expr *>()) | 3677 | 0 | Loc = E->getExprLoc(); | 3678 | 0 | } | 3679 | 0 | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) | 3680 | 0 | << handler.AccessKind << DiagKind << Decl; | 3681 | 0 | Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; | 3682 | 0 | } else { | 3683 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 3684 | 0 | } | 3685 | 0 | return handler.failed(); | 3686 | 0 | } | 3687 | | | 3688 | | // If we are reading an object of class type, there may still be more | 3689 | | // things we need to check: if there are any mutable subobjects, we | 3690 | | // cannot perform this read. (This only happens when performing a trivial | 3691 | | // copy or assignment.) | 3692 | 52 | if (ObjType->isRecordType() && | 3693 | 52 | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)34 && | 3694 | 52 | diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)0 ) | 3695 | 0 | return handler.failed(); | 3696 | 52 | } | 3697 | | | 3698 | 79 | if (I == N) { | 3699 | 52 | if (!handler.found(*O, ObjType)) | 3700 | 0 | return false; | 3701 | | | 3702 | | // If we modified a bit-field, truncate it to the right width. | 3703 | 52 | if (isModification(handler.AccessKind) && | 3704 | 52 | LastField && LastField->isBitField()13 && | 3705 | 52 | !truncateBitfieldValue(Info, E, *O, LastField)0 ) | 3706 | 0 | return false; | 3707 | | | 3708 | 52 | return true; | 3709 | 52 | } | 3710 | | | 3711 | 27 | LastField = nullptr; | 3712 | 27 | if (ObjType->isArrayType()) { | 3713 | | // Next subobject is an array element. | 3714 | 6 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); | 3715 | 6 | assert(CAT && "vla in literal type?"); | 3716 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); | 3717 | 6 | if (CAT->getSize().ule(Index)) { | 3718 | | // Note, it should not be possible to form a pointer with a valid | 3719 | | // designator which points more than one past the end of the array. | 3720 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3721 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 3722 | 0 | << handler.AccessKind; | 3723 | 0 | else | 3724 | 0 | Info.FFDiag(E); | 3725 | 0 | return handler.failed(); | 3726 | 0 | } | 3727 | | | 3728 | 6 | ObjType = CAT->getElementType(); | 3729 | | | 3730 | 6 | if (O->getArrayInitializedElts() > Index) | 3731 | 6 | O = &O->getArrayInitializedElt(Index); | 3732 | 0 | else if (!isRead(handler.AccessKind)) { | 3733 | 0 | expandArray(*O, Index); | 3734 | 0 | O = &O->getArrayInitializedElt(Index); | 3735 | 0 | } else | 3736 | 0 | O = &O->getArrayFiller(); | 3737 | 21 | } else if (ObjType->isAnyComplexType()) { | 3738 | | // Next subobject is a complex number. | 3739 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); | 3740 | 0 | if (Index > 1) { | 3741 | 0 | if (Info.getLangOpts().CPlusPlus11) | 3742 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) | 3743 | 0 | << handler.AccessKind; | 3744 | 0 | else | 3745 | 0 | Info.FFDiag(E); | 3746 | 0 | return handler.failed(); | 3747 | 0 | } | 3748 | | | 3749 | 0 | ObjType = getSubobjectType( | 3750 | 0 | ObjType, ObjType->castAs<ComplexType>()->getElementType()); | 3751 | |
| 3752 | 0 | assert(I == N - 1 && "extracting subobject of scalar?"); | 3753 | 0 | if (O->isComplexInt()) { | 3754 | 0 | return handler.found(Index ? O->getComplexIntImag() | 3755 | 0 | : O->getComplexIntReal(), ObjType); | 3756 | 0 | } else { | 3757 | 0 | assert(O->isComplexFloat()); | 3758 | 0 | return handler.found(Index ? O->getComplexFloatImag() | 3759 | 0 | : O->getComplexFloatReal(), ObjType); | 3760 | 0 | } | 3761 | 21 | } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { | 3762 | 16 | if (Field->isMutable() && | 3763 | 16 | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)0 ) { | 3764 | 0 | Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) | 3765 | 0 | << handler.AccessKind << Field; | 3766 | 0 | Info.Note(Field->getLocation(), diag::note_declared_at); | 3767 | 0 | return handler.failed(); | 3768 | 0 | } | 3769 | | | 3770 | | // Next subobject is a class, struct or union field. | 3771 | 16 | RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); | 3772 | 16 | if (RD->isUnion()) { | 3773 | 16 | const FieldDecl *UnionField = O->getUnionField(); | 3774 | 16 | if (!UnionField || | 3775 | 16 | UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { | 3776 | 0 | if (I == N - 1 && handler.AccessKind == AK_Construct) { | 3777 | | // Placement new onto an inactive union member makes it active. | 3778 | 0 | O->setUnion(Field, APValue()); | 3779 | 0 | } else { | 3780 | | // FIXME: If O->getUnionValue() is absent, report that there's no | 3781 | | // active union member rather than reporting the prior active union | 3782 | | // member. We'll need to fix nullptr_t to not use APValue() as its | 3783 | | // representation first. | 3784 | 0 | Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) | 3785 | 0 | << handler.AccessKind << Field << !UnionField << UnionField; | 3786 | 0 | return handler.failed(); | 3787 | 0 | } | 3788 | 0 | } | 3789 | 16 | O = &O->getUnionValue(); | 3790 | 16 | } else | 3791 | 0 | O = &O->getStructField(Field->getFieldIndex()); | 3792 | | | 3793 | 16 | ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); | 3794 | 16 | LastField = Field; | 3795 | 16 | if (Field->getType().isVolatileQualified()) | 3796 | 0 | VolatileField = Field; | 3797 | 16 | } else { | 3798 | | // Next subobject is a base class. | 3799 | 5 | const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); | 3800 | 5 | const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); | 3801 | 5 | O = &O->getStructBase(getBaseIndex(Derived, Base)); | 3802 | | | 3803 | 5 | ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); | 3804 | 5 | } | 3805 | 27 | } | 3806 | 52 | } |
ExprConstant.cpp:(anonymous namespace)::CheckDynamicTypeHandler::result_type findSubobject<(anonymous namespace)::CheckDynamicTypeHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::CheckDynamicTypeHandler&) Line | Count | Source | 3612 | 19.4k | const SubobjectDesignator &Sub, SubobjectHandler &handler) { | 3613 | 19.4k | if (Sub.Invalid) | 3614 | | // A diagnostic will have already been produced. | 3615 | 0 | return handler.failed(); | 3616 | 19.4k | if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()19.4k ) { | 3617 | 18 | if (Info.getLangOpts().CPlusPlus11) | 3618 | 18 | Info.FFDiag(E, Sub.isOnePastTheEnd() | 3619 | 18 | ? diag::note_constexpr_access_past_end | 3620 | 18 | : diag::note_constexpr_access_unsized_array0 ) | 3621 | 18 | << handler.AccessKind; | 3622 | 0 | else | 3623 | 0 | Info.FFDiag(E); | 3624 | 18 | return handler.failed(); | 3625 | 18 | } | 3626 | | | 3627 | 19.4k | APValue *O = Obj.Value; | 3628 | 19.4k | QualType ObjType = Obj.Type; | 3629 | 19.4k | const FieldDecl *LastField = nullptr; | 3630 | 19.4k | const FieldDecl *VolatileField = nullptr; | 3631 | | | 3632 | | // Walk the designator's path to find the subobject. | 3633 | 20.4k | for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I951 ) { | 3634 | | // Reading an indeterminate value is undefined, but assigning over one is OK. | 3635 | 20.4k | if ((O->isAbsent() && !(20 handler.AccessKind == AK_Construct20 && I == N0 )) || | 3636 | 20.4k | (20.3k O->isIndeterminate()20.3k && | 3637 | 20.3k | !isValidIndeterminateAccess(handler.AccessKind)0 )) { | 3638 | 20 | if (!Info.checkingPotentialConstantExpression()) | 3639 | 18 | Info.FFDiag(E, diag::note_constexpr_access_uninit) | 3640 | 18 | << handler.AccessKind << O->isIndeterminate(); | 3641 | 20 | return handler.failed(); | 3642 | 20 | } | 3643 | | | 3644 | | // C++ [class.ctor]p5, C++ [class.dtor]p5: | 3645 | | // const and volatile semantics are not applied on an object under | 3646 | | // {con,de}struction. | 3647 | 20.3k | if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()8.08k ) && | 3648 | 20.3k | ObjType->isRecordType()12.3k && | 3649 | 20.3k | Info.isEvaluatingCtorDtor( | 3650 | 12.2k | Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), | 3651 | 12.2k | Sub.Entries.begin() + I)) != | 3652 | 12.2k | ConstructionPhase::None) { | 3653 | 60 | ObjType = Info.Ctx.getCanonicalType(ObjType); | 3654 | 60 | ObjType.removeLocalConst(); | 3655 | 60 | ObjType.removeLocalVolatile(); | 3656 | 60 | } | 3657 | | | 3658 | | // If this is our last pass, check that the final object type is OK. | 3659 | 20.3k | if (I == N || (962 I == N - 1962 && ObjType->isAnyComplexType()620 )) { | 3660 | | // Accesses to volatile objects are prohibited. | 3661 | 19.4k | if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)0 ) { | 3662 | 0 | if (Info.getLangOpts().CPlusPlus) { | 3663 | 0 | int DiagKind; | 3664 | 0 | SourceLocation Loc; | 3665 | 0 | const NamedDecl *Decl = nullptr; | 3666 | 0 | if (VolatileField) { | 3667 | 0 | DiagKind = 2; | 3668 | 0 | Loc = VolatileField->getLocation(); | 3669 | 0 | Decl = VolatileField; | 3670 | 0 | } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { | 3671 | 0 | DiagKind = 1; | 3672 | 0 | Loc = VD->getLocation(); | 3673 | 0 | Decl = VD; | 3674 | 0 | } else { | 3675 | 0 | DiagKind = 0; | 3676 | 0 | if (auto *E = Obj.Base.dyn_cast<const Expr *>()) | 3677 | 0 | Loc = E->getExprLoc(); | 3678 | 0 | } | 3679 | 0 | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) | 3680 | 0 | << handler.AccessKind << DiagKind << Decl; | 3681 | 0 | Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; | 3682 | 0 | } else { | 3683 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); | 3684 | 0 | } | 3685 | 0 | return handler.failed(); | 3686 | 0 | } | 3687 | | | 3688 | | // If we are reading an object of class type, there may still be more | 3689 | | // things we need to check: if there are any mutable subobjects, we | 3690 | | // cannot perform this read. (This only happens when performing a trivial | 3691 | | // copy or assignment.) | 3692 | 19.4k | if (ObjType->isRecordType() && | 3693 | 19.4k | !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && | 3694 | 19.4k | diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)0 ) | 3695 | 0 | return handler.failed(); | 3696 | 19.4k | } | 3697 | | | 3698 | 20.3k | if (I == N) { | 3699 | 19.4k | if (!handler.found(*O, ObjType)) | 3700 | 0 | return false; | 3701 | | | 3702 | | // If we modified a bit-field, truncate it to the right width. | 3703 | 19.4k | if (isModification(handler.AccessKind) && | 3704 | 19.4k | LastField34 && LastField->isBitField()6 && | 3705 | 19.4k | !truncateBitfieldValue(Info, E, *O, LastField)0 ) | 3706 | 0 | return false; | 3707 | | |
|