Coverage Report

Created: 2023-05-31 04:38

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/AST/VTableBuilder.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code dealing with generation of the layout of virtual tables.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/AST/VTableBuilder.h"
14
#include "clang/AST/ASTContext.h"
15
#include "clang/AST/ASTDiagnostic.h"
16
#include "clang/AST/CXXInheritance.h"
17
#include "clang/AST/RecordLayout.h"
18
#include "clang/Basic/TargetInfo.h"
19
#include "llvm/ADT/SetOperations.h"
20
#include "llvm/ADT/SetVector.h"
21
#include "llvm/ADT/SmallPtrSet.h"
22
#include "llvm/Support/Format.h"
23
#include "llvm/Support/raw_ostream.h"
24
#include <algorithm>
25
#include <cstdio>
26
27
using namespace clang;
28
29
#define DUMP_OVERRIDERS 0
30
31
namespace {
32
33
/// BaseOffset - Represents an offset from a derived class to a direct or
34
/// indirect base class.
35
struct BaseOffset {
36
  /// DerivedClass - The derived class.
37
  const CXXRecordDecl *DerivedClass;
38
39
  /// VirtualBase - If the path from the derived class to the base class
40
  /// involves virtual base classes, this holds the declaration of the last
41
  /// virtual base in this path (i.e. closest to the base class).
42
  const CXXRecordDecl *VirtualBase;
43
44
  /// NonVirtualOffset - The offset from the derived class to the base class.
45
  /// (Or the offset from the virtual base class to the base class, if the
46
  /// path from the derived class to the base class involves a virtual base
47
  /// class.
48
  CharUnits NonVirtualOffset;
49
50
  BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51
25.3k
                 NonVirtualOffset(CharUnits::Zero()) { }
52
  BaseOffset(const CXXRecordDecl *DerivedClass,
53
             const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54
    : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55
4.11k
    NonVirtualOffset(NonVirtualOffset) { }
56
57
19.0k
  bool isEmpty() const { return NonVirtualOffset.isZero() && 
!VirtualBase18.7k
; }
58
};
59
60
/// FinalOverriders - Contains the final overrider member functions for all
61
/// member functions in the base subobjects of a class.
62
class FinalOverriders {
63
public:
64
  /// OverriderInfo - Information about a final overrider.
65
  struct OverriderInfo {
66
    /// Method - The method decl of the overrider.
67
    const CXXMethodDecl *Method;
68
69
    /// VirtualBase - The virtual base class subobject of this overrider.
70
    /// Note that this records the closest derived virtual base class subobject.
71
    const CXXRecordDecl *VirtualBase;
72
73
    /// Offset - the base offset of the overrider's parent in the layout class.
74
    CharUnits Offset;
75
76
    OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77
16.1k
                      Offset(CharUnits::Zero()) { }
78
  };
79
80
private:
81
  /// MostDerivedClass - The most derived class for which the final overriders
82
  /// are stored.
83
  const CXXRecordDecl *MostDerivedClass;
84
85
  /// MostDerivedClassOffset - If we're building final overriders for a
86
  /// construction vtable, this holds the offset from the layout class to the
87
  /// most derived class.
88
  const CharUnits MostDerivedClassOffset;
89
90
  /// LayoutClass - The class we're using for layout information. Will be
91
  /// different than the most derived class if the final overriders are for a
92
  /// construction vtable.
93
  const CXXRecordDecl *LayoutClass;
94
95
  ASTContext &Context;
96
97
  /// MostDerivedClassLayout - the AST record layout of the most derived class.
98
  const ASTRecordLayout &MostDerivedClassLayout;
99
100
  /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101
  /// in a base subobject.
102
  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
103
104
  typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105
                         OverriderInfo> OverridersMapTy;
106
107
  /// OverridersMap - The final overriders for all virtual member functions of
108
  /// all the base subobjects of the most derived class.
109
  OverridersMapTy OverridersMap;
110
111
  /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112
  /// as a record decl and a subobject number) and its offsets in the most
113
  /// derived class as well as the layout class.
114
  typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115
                         CharUnits> SubobjectOffsetMapTy;
116
117
  typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
118
119
  /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120
  /// given base.
121
  void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122
                          CharUnits OffsetInLayoutClass,
123
                          SubobjectOffsetMapTy &SubobjectOffsets,
124
                          SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125
                          SubobjectCountMapTy &SubobjectCounts);
126
127
  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
128
129
  /// dump - dump the final overriders for a base subobject, and all its direct
130
  /// and indirect base subobjects.
131
  void dump(raw_ostream &Out, BaseSubobject Base,
132
            VisitedVirtualBasesSetTy& VisitedVirtualBases);
133
134
public:
135
  FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136
                  CharUnits MostDerivedClassOffset,
137
                  const CXXRecordDecl *LayoutClass);
138
139
  /// getOverrider - Get the final overrider for the given method declaration in
140
  /// the subobject with the given base offset.
141
  OverriderInfo getOverrider(const CXXMethodDecl *MD,
142
34.1k
                             CharUnits BaseOffset) const {
143
34.1k
    assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144
34.1k
           "Did not find overrider!");
145
146
34.1k
    return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
147
34.1k
  }
148
149
  /// dump - dump the final overriders.
150
0
  void dump() {
151
0
    VisitedVirtualBasesSetTy VisitedVirtualBases;
152
0
    dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153
0
         VisitedVirtualBases);
154
0
  }
155
156
};
157
158
FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159
                                 CharUnits MostDerivedClassOffset,
160
                                 const CXXRecordDecl *LayoutClass)
161
  : MostDerivedClass(MostDerivedClass),
162
  MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163
  Context(MostDerivedClass->getASTContext()),
164
5.15k
  MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
165
166
  // Compute base offsets.
167
5.15k
  SubobjectOffsetMapTy SubobjectOffsets;
168
5.15k
  SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169
5.15k
  SubobjectCountMapTy SubobjectCounts;
170
5.15k
  ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171
5.15k
                     /*IsVirtual=*/false,
172
5.15k
                     MostDerivedClassOffset,
173
5.15k
                     SubobjectOffsets, SubobjectLayoutClassOffsets,
174
5.15k
                     SubobjectCounts);
175
176
  // Get the final overriders.
177
5.15k
  CXXFinalOverriderMap FinalOverriders;
178
5.15k
  MostDerivedClass->getFinalOverriders(FinalOverriders);
179
180
15.9k
  for (const auto &Overrider : FinalOverriders) {
181
15.9k
    const CXXMethodDecl *MD = Overrider.first;
182
15.9k
    const OverridingMethods &Methods = Overrider.second;
183
184
16.1k
    for (const auto &M : Methods) {
185
16.1k
      unsigned SubobjectNumber = M.first;
186
16.1k
      assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187
16.1k
                                                   SubobjectNumber)) &&
188
16.1k
             "Did not find subobject offset!");
189
190
16.1k
      CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191
16.1k
                                                            SubobjectNumber)];
192
193
16.1k
      assert(M.second.size() == 1 && "Final overrider is not unique!");
194
16.1k
      const UniqueVirtualMethod &Method = M.second.front();
195
196
16.1k
      const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197
16.1k
      assert(SubobjectLayoutClassOffsets.count(
198
16.1k
             std::make_pair(OverriderRD, Method.Subobject))
199
16.1k
             && "Did not find subobject offset!");
200
16.1k
      CharUnits OverriderOffset =
201
16.1k
        SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202
16.1k
                                                   Method.Subobject)];
203
204
16.1k
      OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205
16.1k
      assert(!Overrider.Method && "Overrider should not exist yet!");
206
207
16.1k
      Overrider.Offset = OverriderOffset;
208
16.1k
      Overrider.Method = Method.Method;
209
16.1k
      Overrider.VirtualBase = Method.InVirtualSubobject;
210
16.1k
    }
211
15.9k
  }
212
213
#if DUMP_OVERRIDERS
214
  // And dump them (for now).
215
  dump();
216
#endif
217
5.15k
}
218
219
static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220
                                    const CXXRecordDecl *DerivedRD,
221
4.11k
                                    const CXXBasePath &Path) {
222
4.11k
  CharUnits NonVirtualOffset = CharUnits::Zero();
223
224
4.11k
  unsigned NonVirtualStart = 0;
225
4.11k
  const CXXRecordDecl *VirtualBase = nullptr;
226
227
  // First, look for the virtual base class.
228
8.52k
  for (int I = Path.size(), E = 0; I != E; 
--I4.40k
) {
229
4.84k
    const CXXBasePathElement &Element = Path[I - 1];
230
231
4.84k
    if (Element.Base->isVirtual()) {
232
447
      NonVirtualStart = I;
233
447
      QualType VBaseType = Element.Base->getType();
234
447
      VirtualBase = VBaseType->getAsCXXRecordDecl();
235
447
      break;
236
447
    }
237
4.84k
  }
238
239
  // Now compute the non-virtual offset.
240
8.52k
  for (unsigned I = NonVirtualStart, E = Path.size(); I != E; 
++I4.40k
) {
241
4.40k
    const CXXBasePathElement &Element = Path[I];
242
243
    // Check the base class offset.
244
4.40k
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245
246
4.40k
    const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247
248
4.40k
    NonVirtualOffset += Layout.getBaseClassOffset(Base);
249
4.40k
  }
250
251
  // FIXME: This should probably use CharUnits or something. Maybe we should
252
  // even change the base offsets in ASTRecordLayout to be specified in
253
  // CharUnits.
254
4.11k
  return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255
256
4.11k
}
257
258
static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259
                                    const CXXRecordDecl *BaseRD,
260
305
                                    const CXXRecordDecl *DerivedRD) {
261
305
  CXXBasePaths Paths(/*FindAmbiguities=*/false,
262
305
                     /*RecordPaths=*/true, /*DetectVirtual=*/false);
263
264
305
  if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265
0
    llvm_unreachable("Class must be derived from the passed in base class!");
266
267
305
  return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268
305
}
269
270
static BaseOffset
271
ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272
                                  const CXXMethodDecl *DerivedMD,
273
14.7k
                                  const CXXMethodDecl *BaseMD) {
274
14.7k
  const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
275
14.7k
  const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
276
277
  // Canonicalize the return types.
278
14.7k
  CanQualType CanDerivedReturnType =
279
14.7k
      Context.getCanonicalType(DerivedFT->getReturnType());
280
14.7k
  CanQualType CanBaseReturnType =
281
14.7k
      Context.getCanonicalType(BaseFT->getReturnType());
282
283
14.7k
  assert(CanDerivedReturnType->getTypeClass() ==
284
14.7k
         CanBaseReturnType->getTypeClass() &&
285
14.7k
         "Types must have same type class!");
286
287
14.7k
  if (CanDerivedReturnType == CanBaseReturnType) {
288
    // No adjustment needed.
289
14.4k
    return BaseOffset();
290
14.4k
  }
291
292
307
  if (isa<ReferenceType>(CanDerivedReturnType)) {
293
37
    CanDerivedReturnType =
294
37
      CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295
37
    CanBaseReturnType =
296
37
      CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297
270
  } else if (isa<PointerType>(CanDerivedReturnType)) {
298
270
    CanDerivedReturnType =
299
270
      CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300
270
    CanBaseReturnType =
301
270
      CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302
270
  } else {
303
0
    llvm_unreachable("Unexpected return type!");
304
0
  }
305
306
  // We need to compare unqualified types here; consider
307
  //   const T *Base::foo();
308
  //   T *Derived::foo();
309
307
  if (CanDerivedReturnType.getUnqualifiedType() ==
310
307
      CanBaseReturnType.getUnqualifiedType()) {
311
    // No adjustment needed.
312
2
    return BaseOffset();
313
2
  }
314
315
305
  const CXXRecordDecl *DerivedRD =
316
305
    cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317
318
305
  const CXXRecordDecl *BaseRD =
319
305
    cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320
321
305
  return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322
307
}
323
324
void
325
FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326
                              CharUnits OffsetInLayoutClass,
327
                              SubobjectOffsetMapTy &SubobjectOffsets,
328
                              SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329
10.9k
                              SubobjectCountMapTy &SubobjectCounts) {
330
10.9k
  const CXXRecordDecl *RD = Base.getBase();
331
332
10.9k
  unsigned SubobjectNumber = 0;
333
10.9k
  if (!IsVirtual)
334
9.50k
    SubobjectNumber = ++SubobjectCounts[RD];
335
336
  // Set up the subobject to offset mapping.
337
10.9k
  assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338
10.9k
         && "Subobject offset already exists!");
339
10.9k
  assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340
10.9k
         && "Subobject offset already exists!");
341
342
10.9k
  SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343
10.9k
  SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344
10.9k
    OffsetInLayoutClass;
345
346
  // Traverse our bases.
347
10.9k
  for (const auto &B : RD->bases()) {
348
6.11k
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349
350
6.11k
    CharUnits BaseOffset;
351
6.11k
    CharUnits BaseOffsetInLayoutClass;
352
6.11k
    if (B.isVirtual()) {
353
      // Check if we've visited this virtual base before.
354
1.76k
      if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355
351
        continue;
356
357
1.41k
      const ASTRecordLayout &LayoutClassLayout =
358
1.41k
        Context.getASTRecordLayout(LayoutClass);
359
360
1.41k
      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361
1.41k
      BaseOffsetInLayoutClass =
362
1.41k
        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363
4.35k
    } else {
364
4.35k
      const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365
4.35k
      CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366
367
4.35k
      BaseOffset = Base.getBaseOffset() + Offset;
368
4.35k
      BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369
4.35k
    }
370
371
5.76k
    ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372
5.76k
                       B.isVirtual(), BaseOffsetInLayoutClass,
373
5.76k
                       SubobjectOffsets, SubobjectLayoutClassOffsets,
374
5.76k
                       SubobjectCounts);
375
5.76k
  }
376
10.9k
}
377
378
void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379
0
                           VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380
0
  const CXXRecordDecl *RD = Base.getBase();
381
0
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382
0
383
0
  for (const auto &B : RD->bases()) {
384
0
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385
0
386
0
    // Ignore bases that don't have any virtual member functions.
387
0
    if (!BaseDecl->isPolymorphic())
388
0
      continue;
389
0
390
0
    CharUnits BaseOffset;
391
0
    if (B.isVirtual()) {
392
0
      if (!VisitedVirtualBases.insert(BaseDecl).second) {
393
0
        // We've visited this base before.
394
0
        continue;
395
0
      }
396
0
397
0
      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398
0
    } else {
399
0
      BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400
0
    }
401
0
402
0
    dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403
0
  }
404
0
405
0
  Out << "Final overriders for (";
406
0
  RD->printQualifiedName(Out);
407
0
  Out << ", ";
408
0
  Out << Base.getBaseOffset().getQuantity() << ")\n";
409
0
410
0
  // Now dump the overriders for this base subobject.
411
0
  for (const auto *MD : RD->methods()) {
412
0
    if (!VTableContextBase::hasVtableSlot(MD))
413
0
      continue;
414
0
    MD = MD->getCanonicalDecl();
415
0
416
0
    OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
417
0
418
0
    Out << "  ";
419
0
    MD->printQualifiedName(Out);
420
0
    Out << " - (";
421
0
    Overrider.Method->printQualifiedName(Out);
422
0
    Out << ", " << Overrider.Offset.getQuantity() << ')';
423
0
424
0
    BaseOffset Offset;
425
0
    if (!Overrider.Method->isPure())
426
0
      Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
427
0
428
0
    if (!Offset.isEmpty()) {
429
0
      Out << " [ret-adj: ";
430
0
      if (Offset.VirtualBase) {
431
0
        Offset.VirtualBase->printQualifiedName(Out);
432
0
        Out << " vbase, ";
433
0
      }
434
0
435
0
      Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
436
0
    }
437
0
438
0
    Out << "\n";
439
0
  }
440
0
}
441
442
/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443
struct VCallOffsetMap {
444
445
  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
446
447
  /// Offsets - Keeps track of methods and their offsets.
448
  // FIXME: This should be a real map and not a vector.
449
  SmallVector<MethodAndOffsetPairTy, 16> Offsets;
450
451
  /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452
  /// can share the same vcall offset.
453
  static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454
                                         const CXXMethodDecl *RHS);
455
456
public:
457
  /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458
  /// add was successful, or false if there was already a member function with
459
  /// the same signature in the map.
460
  bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
461
462
  /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463
  /// vtable address point) for the given virtual member function.
464
  CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
465
466
  // empty - Return whether the offset map is empty or not.
467
1.02k
  bool empty() const { return Offsets.empty(); }
468
};
469
470
static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471
224
                                    const CXXMethodDecl *RHS) {
472
224
  const FunctionProtoType *LT =
473
224
    cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474
224
  const FunctionProtoType *RT =
475
224
    cast<FunctionProtoType>(RHS->getType().getCanonicalType());
476
477
  // Fast-path matches in the canonical types.
478
224
  if (LT == RT) 
return true221
;
479
480
  // Force the signatures to match.  We can't rely on the overrides
481
  // list here because there isn't necessarily an inheritance
482
  // relationship between the two methods.
483
3
  if (LT->getMethodQuals() != RT->getMethodQuals())
484
3
    return false;
485
0
  return LT->getParamTypes() == RT->getParamTypes();
486
3
}
487
488
bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489
588
                                                const CXXMethodDecl *RHS) {
490
588
  assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
491
588
  assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
492
493
  // A destructor can share a vcall offset with another destructor.
494
588
  if (isa<CXXDestructorDecl>(LHS))
495
191
    return isa<CXXDestructorDecl>(RHS);
496
497
  // FIXME: We need to check more things here.
498
499
  // The methods must have the same name.
500
397
  DeclarationName LHSName = LHS->getDeclName();
501
397
  DeclarationName RHSName = RHS->getDeclName();
502
397
  if (LHSName != RHSName)
503
173
    return false;
504
505
  // And the same signatures.
506
224
  return HasSameVirtualSignature(LHS, RHS);
507
397
}
508
509
bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510
952
                                    CharUnits OffsetOffset) {
511
  // Check if we can reuse an offset.
512
952
  for (const auto &OffsetPair : Offsets) {
513
232
    if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
514
93
      return false;
515
232
  }
516
517
  // Add the offset.
518
859
  Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
519
859
  return true;
520
952
}
521
522
303
CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523
  // Look for an offset.
524
356
  for (const auto &OffsetPair : Offsets) {
525
356
    if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
526
303
      return OffsetPair.second;
527
356
  }
528
529
0
  llvm_unreachable("Should always find a vcall offset offset!");
530
0
}
531
532
/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533
class VCallAndVBaseOffsetBuilder {
534
public:
535
  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536
    VBaseOffsetOffsetsMapTy;
537
538
private:
539
  const ItaniumVTableContext &VTables;
540
541
  /// MostDerivedClass - The most derived class for which we're building vcall
542
  /// and vbase offsets.
543
  const CXXRecordDecl *MostDerivedClass;
544
545
  /// LayoutClass - The class we're using for layout information. Will be
546
  /// different than the most derived class if we're building a construction
547
  /// vtable.
548
  const CXXRecordDecl *LayoutClass;
549
550
  /// Context - The ASTContext which we will use for layout information.
551
  ASTContext &Context;
552
553
  /// Components - vcall and vbase offset components
554
  typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
555
  VTableComponentVectorTy Components;
556
557
  /// VisitedVirtualBases - Visited virtual bases.
558
  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
559
560
  /// VCallOffsets - Keeps track of vcall offsets.
561
  VCallOffsetMap VCallOffsets;
562
563
564
  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
565
  /// relative to the address point.
566
  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
567
568
  /// FinalOverriders - The final overriders of the most derived class.
569
  /// (Can be null when we're not building a vtable of the most derived class).
570
  const FinalOverriders *Overriders;
571
572
  /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
573
  /// given base subobject.
574
  void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
575
                               CharUnits RealBaseOffset);
576
577
  /// AddVCallOffsets - Add vcall offsets for the given base subobject.
578
  void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
579
580
  /// AddVBaseOffsets - Add vbase offsets for the given class.
581
  void AddVBaseOffsets(const CXXRecordDecl *Base,
582
                       CharUnits OffsetInLayoutClass);
583
584
  /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
585
  /// chars, relative to the vtable address point.
586
  CharUnits getCurrentOffsetOffset() const;
587
588
public:
589
  VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
590
                             const CXXRecordDecl *MostDerivedClass,
591
                             const CXXRecordDecl *LayoutClass,
592
                             const FinalOverriders *Overriders,
593
                             BaseSubobject Base, bool BaseIsVirtual,
594
                             CharUnits OffsetInLayoutClass)
595
      : VTables(VTables), MostDerivedClass(MostDerivedClass),
596
        LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
597
4.86k
        Overriders(Overriders) {
598
599
    // Add vcall and vbase offsets.
600
4.86k
    AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
601
4.86k
  }
602
603
  /// Methods for iterating over the components.
604
  typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
605
4.47k
  const_iterator components_begin() const { return Components.rbegin(); }
606
4.47k
  const_iterator components_end() const { return Components.rend(); }
607
608
823
  const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
609
4.12k
  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
610
4.12k
    return VBaseOffsetOffsets;
611
4.12k
  }
612
};
613
614
void
615
VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
616
                                                    bool BaseIsVirtual,
617
7.64k
                                                    CharUnits RealBaseOffset) {
618
7.64k
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
619
620
  // Itanium C++ ABI 2.5.2:
621
  //   ..in classes sharing a virtual table with a primary base class, the vcall
622
  //   and vbase offsets added by the derived class all come before the vcall
623
  //   and vbase offsets required by the base class, so that the latter may be
624
  //   laid out as required by the base class without regard to additions from
625
  //   the derived class(es).
626
627
  // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
628
  // emit them for the primary base first).
629
7.64k
  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
630
2.78k
    bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
631
632
2.78k
    CharUnits PrimaryBaseOffset;
633
634
    // Get the base offset of the primary base.
635
2.78k
    if (PrimaryBaseIsVirtual) {
636
455
      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
637
455
             "Primary vbase should have a zero offset!");
638
639
455
      const ASTRecordLayout &MostDerivedClassLayout =
640
455
        Context.getASTRecordLayout(MostDerivedClass);
641
642
455
      PrimaryBaseOffset =
643
455
        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
644
2.32k
    } else {
645
2.32k
      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
646
2.32k
             "Primary base should have a zero offset!");
647
648
2.32k
      PrimaryBaseOffset = Base.getBaseOffset();
649
2.32k
    }
650
651
2.78k
    AddVCallAndVBaseOffsets(
652
2.78k
      BaseSubobject(PrimaryBase,PrimaryBaseOffset),
653
2.78k
      PrimaryBaseIsVirtual, RealBaseOffset);
654
2.78k
  }
655
656
7.64k
  AddVBaseOffsets(Base.getBase(), RealBaseOffset);
657
658
  // We only want to add vcall offsets for virtual bases.
659
7.64k
  if (BaseIsVirtual)
660
988
    AddVCallOffsets(Base, RealBaseOffset);
661
7.64k
}
662
663
2.59k
CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
664
  // OffsetIndex is the index of this vcall or vbase offset, relative to the
665
  // vtable address point. (We subtract 3 to account for the information just
666
  // above the address point, the RTTI info, the offset to top, and the
667
  // vcall offset itself).
668
2.59k
  int64_t OffsetIndex = -(int64_t)(3 + Components.size());
669
670
  // Under the relative ABI, the offset widths are 32-bit ints instead of
671
  // pointer widths.
672
2.59k
  CharUnits OffsetWidth = Context.toCharUnitsFromBits(
673
2.59k
      VTables.isRelativeLayout()
674
2.59k
          ? 
32151
675
2.59k
          : 
Context.getTargetInfo().getPointerWidth(LangAS::Default)2.44k
);
676
2.59k
  CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
677
678
2.59k
  return OffsetOffset;
679
2.59k
}
680
681
void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
682
1.40k
                                                 CharUnits VBaseOffset) {
683
1.40k
  const CXXRecordDecl *RD = Base.getBase();
684
1.40k
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
685
686
1.40k
  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
687
688
  // Handle the primary base first.
689
  // We only want to add vcall offsets if the base is non-virtual; a virtual
690
  // primary base will have its vcall and vbase offsets emitted already.
691
1.40k
  if (PrimaryBase && 
!Layout.isPrimaryBaseVirtual()284
) {
692
    // Get the base offset of the primary base.
693
176
    assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
694
176
           "Primary base should have a zero offset!");
695
696
176
    AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
697
176
                    VBaseOffset);
698
176
  }
699
700
  // Add the vcall offsets.
701
8.13k
  
for (const auto *MD : RD->methods())1.40k
{
702
8.13k
    if (!VTableContextBase::hasVtableSlot(MD))
703
7.18k
      continue;
704
952
    MD = MD->getCanonicalDecl();
705
706
952
    CharUnits OffsetOffset = getCurrentOffsetOffset();
707
708
    // Don't add a vcall offset if we already have one for this member function
709
    // signature.
710
952
    if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
711
93
      continue;
712
713
859
    CharUnits Offset = CharUnits::Zero();
714
715
859
    if (Overriders) {
716
      // Get the final overrider.
717
652
      FinalOverriders::OverriderInfo Overrider =
718
652
        Overriders->getOverrider(MD, Base.getBaseOffset());
719
720
      /// The vcall offset is the offset from the virtual base to the object
721
      /// where the function was overridden.
722
652
      Offset = Overrider.Offset - VBaseOffset;
723
652
    }
724
725
859
    Components.push_back(
726
859
      VTableComponent::MakeVCallOffset(Offset));
727
859
  }
728
729
  // And iterate over all non-virtual bases (ignoring the primary base).
730
1.40k
  for (const auto &B : RD->bases()) {
731
895
    if (B.isVirtual())
732
477
      continue;
733
734
418
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
735
418
    if (BaseDecl == PrimaryBase)
736
176
      continue;
737
738
    // Get the base offset of this base.
739
242
    CharUnits BaseOffset = Base.getBaseOffset() +
740
242
      Layout.getBaseClassOffset(BaseDecl);
741
742
242
    AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
743
242
                    VBaseOffset);
744
242
  }
745
1.40k
}
746
747
void
748
VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
749
16.9k
                                            CharUnits OffsetInLayoutClass) {
750
16.9k
  const ASTRecordLayout &LayoutClassLayout =
751
16.9k
    Context.getASTRecordLayout(LayoutClass);
752
753
  // Add vbase offsets.
754
16.9k
  for (const auto &B : RD->bases()) {
755
9.27k
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
756
757
    // Check if this is a virtual base that we haven't visited before.
758
9.27k
    if (B.isVirtual() && 
VisitedVirtualBases.insert(BaseDecl).second4.03k
) {
759
1.64k
      CharUnits Offset =
760
1.64k
        LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
761
762
      // Add the vbase offset offset.
763
1.64k
      assert(!VBaseOffsetOffsets.count(BaseDecl) &&
764
1.64k
             "vbase offset offset already exists!");
765
766
1.64k
      CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
767
1.64k
      VBaseOffsetOffsets.insert(
768
1.64k
          std::make_pair(BaseDecl, VBaseOffsetOffset));
769
770
1.64k
      Components.push_back(
771
1.64k
          VTableComponent::MakeVBaseOffset(Offset));
772
1.64k
    }
773
774
    // Check the base class looking for more vbase offsets.
775
9.27k
    AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
776
9.27k
  }
777
16.9k
}
778
779
/// ItaniumVTableBuilder - Class for building vtable layout information.
780
class ItaniumVTableBuilder {
781
public:
782
  /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
783
  /// primary bases.
784
  typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
785
    PrimaryBasesSetVectorTy;
786
787
  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
788
    VBaseOffsetOffsetsMapTy;
789
790
  typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
791
792
  typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
793
794
private:
795
  /// VTables - Global vtable information.
796
  ItaniumVTableContext &VTables;
797
798
  /// MostDerivedClass - The most derived class for which we're building this
799
  /// vtable.
800
  const CXXRecordDecl *MostDerivedClass;
801
802
  /// MostDerivedClassOffset - If we're building a construction vtable, this
803
  /// holds the offset from the layout class to the most derived class.
804
  const CharUnits MostDerivedClassOffset;
805
806
  /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
807
  /// base. (This only makes sense when building a construction vtable).
808
  bool MostDerivedClassIsVirtual;
809
810
  /// LayoutClass - The class we're using for layout information. Will be
811
  /// different than the most derived class if we're building a construction
812
  /// vtable.
813
  const CXXRecordDecl *LayoutClass;
814
815
  /// Context - The ASTContext which we will use for layout information.
816
  ASTContext &Context;
817
818
  /// FinalOverriders - The final overriders of the most derived class.
819
  const FinalOverriders Overriders;
820
821
  /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
822
  /// bases in this vtable.
823
  llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
824
825
  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
826
  /// the most derived class.
827
  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
828
829
  /// Components - The components of the vtable being built.
830
  SmallVector<VTableComponent, 64> Components;
831
832
  /// AddressPoints - Address points for the vtable being built.
833
  AddressPointsMapTy AddressPoints;
834
835
  /// MethodInfo - Contains information about a method in a vtable.
836
  /// (Used for computing 'this' pointer adjustment thunks.
837
  struct MethodInfo {
838
    /// BaseOffset - The base offset of this method.
839
    const CharUnits BaseOffset;
840
841
    /// BaseOffsetInLayoutClass - The base offset in the layout class of this
842
    /// method.
843
    const CharUnits BaseOffsetInLayoutClass;
844
845
    /// VTableIndex - The index in the vtable that this method has.
846
    /// (For destructors, this is the index of the complete destructor).
847
    const uint64_t VTableIndex;
848
849
    MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
850
               uint64_t VTableIndex)
851
      : BaseOffset(BaseOffset),
852
      BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
853
12.5k
      VTableIndex(VTableIndex) { }
854
855
    MethodInfo()
856
      : BaseOffset(CharUnits::Zero()),
857
      BaseOffsetInLayoutClass(CharUnits::Zero()),
858
0
      VTableIndex(0) { }
859
860
    MethodInfo(MethodInfo const&) = default;
861
  };
862
863
  typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
864
865
  /// MethodInfoMap - The information for all methods in the vtable we're
866
  /// currently building.
867
  MethodInfoMapTy MethodInfoMap;
868
869
  /// MethodVTableIndices - Contains the index (relative to the vtable address
870
  /// point) where the function pointer for a virtual function is stored.
871
  MethodVTableIndicesTy MethodVTableIndices;
872
873
  typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
874
875
  /// VTableThunks - The thunks by vtable index in the vtable currently being
876
  /// built.
877
  VTableThunksMapTy VTableThunks;
878
879
  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
880
  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
881
882
  /// Thunks - A map that contains all the thunks needed for all methods in the
883
  /// most derived class for which the vtable is currently being built.
884
  ThunksMapTy Thunks;
885
886
  /// AddThunk - Add a thunk for the given method.
887
  void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
888
889
  /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
890
  /// part of the vtable we're currently building.
891
  void ComputeThisAdjustments();
892
893
  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
894
895
  /// PrimaryVirtualBases - All known virtual bases who are a primary base of
896
  /// some other base.
897
  VisitedVirtualBasesSetTy PrimaryVirtualBases;
898
899
  /// ComputeReturnAdjustment - Compute the return adjustment given a return
900
  /// adjustment base offset.
901
  ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
902
903
  /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
904
  /// the 'this' pointer from the base subobject to the derived subobject.
905
  BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
906
                                             BaseSubobject Derived) const;
907
908
  /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
909
  /// given virtual member function, its offset in the layout class and its
910
  /// final overrider.
911
  ThisAdjustment
912
  ComputeThisAdjustment(const CXXMethodDecl *MD,
913
                        CharUnits BaseOffsetInLayoutClass,
914
                        FinalOverriders::OverriderInfo Overrider);
915
916
  /// AddMethod - Add a single virtual member function to the vtable
917
  /// components vector.
918
  void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
919
920
  /// IsOverriderUsed - Returns whether the overrider will ever be used in this
921
  /// part of the vtable.
922
  ///
923
  /// Itanium C++ ABI 2.5.2:
924
  ///
925
  ///   struct A { virtual void f(); };
926
  ///   struct B : virtual public A { int i; };
927
  ///   struct C : virtual public A { int j; };
928
  ///   struct D : public B, public C {};
929
  ///
930
  ///   When B and C are declared, A is a primary base in each case, so although
931
  ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
932
  ///   adjustment is required and no thunk is generated. However, inside D
933
  ///   objects, A is no longer a primary base of C, so if we allowed calls to
934
  ///   C::f() to use the copy of A's vtable in the C subobject, we would need
935
  ///   to adjust this from C* to B::A*, which would require a third-party
936
  ///   thunk. Since we require that a call to C::f() first convert to A*,
937
  ///   C-in-D's copy of A's vtable is never referenced, so this is not
938
  ///   necessary.
939
  bool IsOverriderUsed(const CXXMethodDecl *Overrider,
940
                       CharUnits BaseOffsetInLayoutClass,
941
                       const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
942
                       CharUnits FirstBaseOffsetInLayoutClass) const;
943
944
945
  /// AddMethods - Add the methods of this base subobject and all its
946
  /// primary bases to the vtable components vector.
947
  void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
948
                  const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
949
                  CharUnits FirstBaseOffsetInLayoutClass,
950
                  PrimaryBasesSetVectorTy &PrimaryBases);
951
952
  // LayoutVTable - Layout the vtable for the given base class, including its
953
  // secondary vtables and any vtables for virtual bases.
954
  void LayoutVTable();
955
956
  /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
957
  /// given base subobject, as well as all its secondary vtables.
958
  ///
959
  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
960
  /// or a direct or indirect base of a virtual base.
961
  ///
962
  /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
963
  /// in the layout class.
964
  void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
965
                                        bool BaseIsMorallyVirtual,
966
                                        bool BaseIsVirtualInLayoutClass,
967
                                        CharUnits OffsetInLayoutClass);
968
969
  /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
970
  /// subobject.
971
  ///
972
  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
973
  /// or a direct or indirect base of a virtual base.
974
  void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
975
                              CharUnits OffsetInLayoutClass);
976
977
  /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
978
  /// class hierarchy.
979
  void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
980
                                    CharUnits OffsetInLayoutClass,
981
                                    VisitedVirtualBasesSetTy &VBases);
982
983
  /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
984
  /// given base (excluding any primary bases).
985
  void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
986
                                    VisitedVirtualBasesSetTy &VBases);
987
988
  /// isBuildingConstructionVTable - Return whether this vtable builder is
989
  /// building a construction vtable.
990
11.7k
  bool isBuildingConstructorVTable() const {
991
11.7k
    return MostDerivedClass != LayoutClass;
992
11.7k
  }
993
994
public:
995
  /// Component indices of the first component of each of the vtables in the
996
  /// vtable group.
997
  SmallVector<size_t, 4> VTableIndices;
998
999
  ItaniumVTableBuilder(ItaniumVTableContext &VTables,
1000
                       const CXXRecordDecl *MostDerivedClass,
1001
                       CharUnits MostDerivedClassOffset,
1002
                       bool MostDerivedClassIsVirtual,
1003
                       const CXXRecordDecl *LayoutClass)
1004
      : VTables(VTables), MostDerivedClass(MostDerivedClass),
1005
        MostDerivedClassOffset(MostDerivedClassOffset),
1006
        MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1007
        LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1008
3.82k
        Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1009
3.82k
    assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1010
1011
3.82k
    LayoutVTable();
1012
1013
3.82k
    if (Context.getLangOpts().DumpVTableLayouts)
1014
230
      dumpLayout(llvm::outs());
1015
3.82k
  }
1016
1017
0
  uint64_t getNumThunks() const {
1018
0
    return Thunks.size();
1019
0
  }
1020
1021
3.50k
  ThunksMapTy::const_iterator thunks_begin() const {
1022
3.50k
    return Thunks.begin();
1023
3.50k
  }
1024
1025
3.50k
  ThunksMapTy::const_iterator thunks_end() const {
1026
3.50k
    return Thunks.end();
1027
3.50k
  }
1028
1029
248
  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1030
248
    return VBaseOffsetOffsets;
1031
248
  }
1032
1033
3.82k
  const AddressPointsMapTy &getAddressPoints() const {
1034
3.82k
    return AddressPoints;
1035
3.82k
  }
1036
1037
3.50k
  MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1038
3.50k
    return MethodVTableIndices.begin();
1039
3.50k
  }
1040
1041
3.50k
  MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1042
3.50k
    return MethodVTableIndices.end();
1043
3.50k
  }
1044
1045
3.82k
  ArrayRef<VTableComponent> vtable_components() const { return Components; }
1046
1047
0
  AddressPointsMapTy::const_iterator address_points_begin() const {
1048
0
    return AddressPoints.begin();
1049
0
  }
1050
1051
0
  AddressPointsMapTy::const_iterator address_points_end() const {
1052
0
    return AddressPoints.end();
1053
0
  }
1054
1055
3.82k
  VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1056
3.82k
    return VTableThunks.begin();
1057
3.82k
  }
1058
1059
3.82k
  VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1060
3.82k
    return VTableThunks.end();
1061
3.82k
  }
1062
1063
  /// dumpLayout - Dump the vtable layout.
1064
  void dumpLayout(raw_ostream&);
1065
};
1066
1067
void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1068
440
                                    const ThunkInfo &Thunk) {
1069
440
  assert(!isBuildingConstructorVTable() &&
1070
440
         "Can't add thunks for construction vtable");
1071
1072
440
  SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1073
1074
  // Check if we have this thunk already.
1075
440
  if (llvm::is_contained(ThunksVector, Thunk))
1076
65
    return;
1077
1078
375
  ThunksVector.push_back(Thunk);
1079
375
}
1080
1081
typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1082
1083
/// Visit all the methods overridden by the given method recursively,
1084
/// in a depth-first pre-order. The Visitor's visitor method returns a bool
1085
/// indicating whether to continue the recursion for the given overridden
1086
/// method (i.e. returning false stops the iteration).
1087
template <class VisitorTy>
1088
static void
1089
26.5k
visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1090
26.5k
  assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1091
1092
26.5k
  for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1093
8.62k
    if (!Visitor(OverriddenMD))
1094
147
      continue;
1095
8.47k
    visitAllOverriddenMethods(OverriddenMD, Visitor);
1096
8.47k
  }
1097
26.5k
}
VTableBuilder.cpp:void (anonymous namespace)::visitAllOverriddenMethods<(anonymous namespace)::ComputeAllOverriddenMethods(clang::CXXMethodDecl const*, llvm::SmallPtrSet<clang::CXXMethodDecl const*, 8u>&)::$_0>(clang::CXXMethodDecl const*, (anonymous namespace)::ComputeAllOverriddenMethods(clang::CXXMethodDecl const*, llvm::SmallPtrSet<clang::CXXMethodDecl const*, 8u>&)::$_0&)
Line
Count
Source
1089
21.1k
visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1090
21.1k
  assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1091
1092
21.1k
  for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1093
5.94k
    if (!Visitor(OverriddenMD))
1094
73
      continue;
1095
5.87k
    visitAllOverriddenMethods(OverriddenMD, Visitor);
1096
5.87k
  }
1097
21.1k
}
VTableBuilder.cpp:void (anonymous namespace)::visitAllOverriddenMethods<(anonymous namespace)::VFTableBuilder::ComputeThisOffset((anonymous namespace)::FinalOverriders::OverriderInfo)::$_0>(clang::CXXMethodDecl const*, (anonymous namespace)::VFTableBuilder::ComputeThisOffset((anonymous namespace)::FinalOverriders::OverriderInfo)::$_0&)
Line
Count
Source
1089
5.38k
visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1090
5.38k
  assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1091
1092
5.38k
  for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1093
2.68k
    if (!Visitor(OverriddenMD))
1094
74
      continue;
1095
2.60k
    visitAllOverriddenMethods(OverriddenMD, Visitor);
1096
2.60k
  }
1097
5.38k
}
1098
1099
/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1100
/// the overridden methods that the function decl overrides.
1101
static void
1102
ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1103
15.3k
                            OverriddenMethodsSetTy& OverriddenMethods) {
1104
15.3k
  auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1105
    // Don't recurse on this method if we've already collected it.
1106
5.94k
    return OverriddenMethods.insert(MD).second;
1107
5.94k
  };
1108
15.3k
  visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1109
15.3k
}
1110
1111
4.47k
void ItaniumVTableBuilder::ComputeThisAdjustments() {
1112
  // Now go through the method info map and see if any of the methods need
1113
  // 'this' pointer adjustments.
1114
9.08k
  for (const auto &MI : MethodInfoMap) {
1115
9.08k
    const CXXMethodDecl *MD = MI.first;
1116
9.08k
    const MethodInfo &MethodInfo = MI.second;
1117
1118
    // Ignore adjustments for unused function pointers.
1119
9.08k
    uint64_t VTableIndex = MethodInfo.VTableIndex;
1120
9.08k
    if (Components[VTableIndex].getKind() ==
1121
9.08k
        VTableComponent::CK_UnusedFunctionPointer)
1122
59
      continue;
1123
1124
    // Get the final overrider for this method.
1125
9.02k
    FinalOverriders::OverriderInfo Overrider =
1126
9.02k
      Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1127
1128
    // Check if we need an adjustment at all.
1129
9.02k
    if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1130
      // When a return thunk is needed by a derived class that overrides a
1131
      // virtual base, gcc uses a virtual 'this' adjustment as well.
1132
      // While the thunk itself might be needed by vtables in subclasses or
1133
      // in construction vtables, there doesn't seem to be a reason for using
1134
      // the thunk in this vtable. Still, we do so to match gcc.
1135
8.65k
      if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1136
8.63k
        continue;
1137
8.65k
    }
1138
1139
389
    ThisAdjustment ThisAdjustment =
1140
389
      ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1141
1142
389
    if (ThisAdjustment.isEmpty())
1143
14
      continue;
1144
1145
    // Add it.
1146
375
    VTableThunks[VTableIndex].This = ThisAdjustment;
1147
1148
375
    if (isa<CXXDestructorDecl>(MD)) {
1149
      // Add an adjustment for the deleting destructor as well.
1150
109
      VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1151
109
    }
1152
375
  }
1153
1154
  /// Clear the method info map.
1155
4.47k
  MethodInfoMap.clear();
1156
1157
4.47k
  if (isBuildingConstructorVTable()) {
1158
    // We don't need to store thunk information for construction vtables.
1159
624
    return;
1160
624
  }
1161
1162
3.84k
  for (const auto &TI : VTableThunks) {
1163
426
    const VTableComponent &Component = Components[TI.first];
1164
426
    const ThunkInfo &Thunk = TI.second;
1165
426
    const CXXMethodDecl *MD;
1166
1167
426
    switch (Component.getKind()) {
1168
0
    default:
1169
0
      llvm_unreachable("Unexpected vtable component kind!");
1170
234
    case VTableComponent::CK_FunctionPointer:
1171
234
      MD = Component.getFunctionDecl();
1172
234
      break;
1173
96
    case VTableComponent::CK_CompleteDtorPointer:
1174
96
      MD = Component.getDestructorDecl();
1175
96
      break;
1176
96
    case VTableComponent::CK_DeletingDtorPointer:
1177
      // We've already added the thunk when we saw the complete dtor pointer.
1178
96
      continue;
1179
426
    }
1180
1181
330
    if (MD->getParent() == MostDerivedClass)
1182
310
      AddThunk(MD, Thunk);
1183
330
  }
1184
3.84k
}
1185
1186
ReturnAdjustment
1187
9.15k
ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1188
9.15k
  ReturnAdjustment Adjustment;
1189
1190
9.15k
  if (!Offset.isEmpty()) {
1191
31
    if (Offset.VirtualBase) {
1192
      // Get the virtual base offset offset.
1193
26
      if (Offset.DerivedClass == MostDerivedClass) {
1194
        // We can get the offset offset directly from our map.
1195
18
        Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1196
18
          VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1197
18
      } else {
1198
8
        Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1199
8
          VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1200
8
                                             Offset.VirtualBase).getQuantity();
1201
8
      }
1202
26
    }
1203
1204
31
    Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1205
31
  }
1206
1207
9.15k
  return Adjustment;
1208
9.15k
}
1209
1210
BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1211
3.77k
    BaseSubobject Base, BaseSubobject Derived) const {
1212
3.77k
  const CXXRecordDecl *BaseRD = Base.getBase();
1213
3.77k
  const CXXRecordDecl *DerivedRD = Derived.getBase();
1214
1215
3.77k
  CXXBasePaths Paths(/*FindAmbiguities=*/true,
1216
3.77k
                     /*RecordPaths=*/true, /*DetectVirtual=*/true);
1217
1218
3.77k
  if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1219
0
    llvm_unreachable("Class must be derived from the passed in base class!");
1220
1221
  // We have to go through all the paths, and see which one leads us to the
1222
  // right base subobject.
1223
3.81k
  for (const CXXBasePath &Path : Paths) {
1224
3.81k
    BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1225
1226
3.81k
    CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1227
1228
3.81k
    if (Offset.VirtualBase) {
1229
      // If we have a virtual base class, the non-virtual offset is relative
1230
      // to the virtual base class offset.
1231
325
      const ASTRecordLayout &LayoutClassLayout =
1232
325
        Context.getASTRecordLayout(LayoutClass);
1233
1234
      /// Get the virtual base offset, relative to the most derived class
1235
      /// layout.
1236
325
      OffsetToBaseSubobject +=
1237
325
        LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1238
3.48k
    } else {
1239
      // Otherwise, the non-virtual offset is relative to the derived class
1240
      // offset.
1241
3.48k
      OffsetToBaseSubobject += Derived.getBaseOffset();
1242
3.48k
    }
1243
1244
    // Check if this path gives us the right base subobject.
1245
3.81k
    if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1246
      // Since we're going from the base class _to_ the derived class, we'll
1247
      // invert the non-virtual offset here.
1248
3.76k
      Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1249
3.76k
      return Offset;
1250
3.76k
    }
1251
3.81k
  }
1252
1253
7
  return BaseOffset();
1254
3.77k
}
1255
1256
ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1257
    const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1258
3.77k
    FinalOverriders::OverriderInfo Overrider) {
1259
  // Ignore adjustments for pure virtual member functions.
1260
3.77k
  if (Overrider.Method->isPure())
1261
2
    return ThisAdjustment();
1262
1263
3.77k
  BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1264
3.77k
                                        BaseOffsetInLayoutClass);
1265
1266
3.77k
  BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1267
3.77k
                                       Overrider.Offset);
1268
1269
  // Compute the adjustment offset.
1270
3.77k
  BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1271
3.77k
                                                      OverriderBaseSubobject);
1272
3.77k
  if (Offset.isEmpty())
1273
3.25k
    return ThisAdjustment();
1274
1275
517
  ThisAdjustment Adjustment;
1276
1277
517
  if (Offset.VirtualBase) {
1278
    // Get the vcall offset map for this virtual base.
1279
303
    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1280
1281
303
    if (VCallOffsets.empty()) {
1282
      // We don't have vcall offsets for this virtual base, go ahead and
1283
      // build them.
1284
100
      VCallAndVBaseOffsetBuilder Builder(
1285
100
          VTables, MostDerivedClass, MostDerivedClass,
1286
100
          /*Overriders=*/nullptr,
1287
100
          BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1288
100
          /*BaseIsVirtual=*/true,
1289
          /*OffsetInLayoutClass=*/
1290
100
          CharUnits::Zero());
1291
1292
100
      VCallOffsets = Builder.getVCallOffsets();
1293
100
    }
1294
1295
303
    Adjustment.Virtual.Itanium.VCallOffsetOffset =
1296
303
      VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1297
303
  }
1298
1299
  // Set the non-virtual part of the adjustment.
1300
517
  Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1301
1302
517
  return Adjustment;
1303
3.77k
}
1304
1305
void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1306
9.02k
                                     ReturnAdjustment ReturnAdjustment) {
1307
9.02k
  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1308
2.18k
    assert(ReturnAdjustment.isEmpty() &&
1309
2.18k
           "Destructor can't have return adjustment!");
1310
1311
    // Add both the complete destructor and the deleting destructor.
1312
2.18k
    Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1313
2.18k
    Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1314
6.84k
  } else {
1315
    // Add the return adjustment if necessary.
1316
6.84k
    if (!ReturnAdjustment.isEmpty())
1317
26
      VTableThunks[Components.size()].Return = ReturnAdjustment;
1318
1319
    // Add the function.
1320
6.84k
    Components.push_back(VTableComponent::MakeFunction(MD));
1321
6.84k
  }
1322
9.02k
}
1323
1324
/// OverridesIndirectMethodInBase - Return whether the given member function
1325
/// overrides any methods in the set of given bases.
1326
/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1327
/// For example, if we have:
1328
///
1329
/// struct A { virtual void f(); }
1330
/// struct B : A { virtual void f(); }
1331
/// struct C : B { virtual void f(); }
1332
///
1333
/// OverridesIndirectMethodInBase will return true if given C::f as the method
1334
/// and { A } as the set of bases.
1335
static bool OverridesIndirectMethodInBases(
1336
    const CXXMethodDecl *MD,
1337
112
    ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1338
112
  if (Bases.count(MD->getParent()))
1339
9
    return true;
1340
1341
103
  for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1342
    // Check "indirect overriders".
1343
44
    if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1344
10
      return true;
1345
44
  }
1346
1347
93
  return false;
1348
103
}
1349
1350
bool ItaniumVTableBuilder::IsOverriderUsed(
1351
    const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1352
    const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1353
9.08k
    CharUnits FirstBaseOffsetInLayoutClass) const {
1354
  // If the base and the first base in the primary base chain have the same
1355
  // offsets, then this overrider will be used.
1356
9.08k
  if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1357
9.00k
   return true;
1358
1359
  // We know now that Base (or a direct or indirect base of it) is a primary
1360
  // base in part of the class hierarchy, but not a primary base in the most
1361
  // derived class.
1362
1363
  // If the overrider is the first base in the primary base chain, we know
1364
  // that the overrider will be used.
1365
79
  if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1366
11
    return true;
1367
1368
68
  ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1369
1370
68
  const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1371
68
  PrimaryBases.insert(RD);
1372
1373
  // Now traverse the base chain, starting with the first base, until we find
1374
  // the base that is no longer a primary base.
1375
76
  while (true) {
1376
76
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1377
76
    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1378
1379
76
    if (!PrimaryBase)
1380
0
      break;
1381
1382
76
    if (Layout.isPrimaryBaseVirtual()) {
1383
68
      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1384
68
             "Primary base should always be at offset 0!");
1385
1386
68
      const ASTRecordLayout &LayoutClassLayout =
1387
68
        Context.getASTRecordLayout(LayoutClass);
1388
1389
      // Now check if this is the primary base that is not a primary base in the
1390
      // most derived class.
1391
68
      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1392
68
          FirstBaseOffsetInLayoutClass) {
1393
        // We found it, stop walking the chain.
1394
68
        break;
1395
68
      }
1396
68
    } else {
1397
8
      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1398
8
             "Primary base should always be at offset 0!");
1399
8
    }
1400
1401
8
    if (!PrimaryBases.insert(PrimaryBase))
1402
0
      llvm_unreachable("Found a duplicate primary base!");
1403
1404
8
    RD = PrimaryBase;
1405
8
  }
1406
1407
  // If the final overrider is an override of one of the primary bases,
1408
  // then we know that it will be used.
1409
68
  return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1410
68
}
1411
1412
typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1413
1414
/// FindNearestOverriddenMethod - Given a method, returns the overridden method
1415
/// from the nearest base. Returns null if no method was found.
1416
/// The Bases are expected to be sorted in a base-to-derived order.
1417
static const CXXMethodDecl *
1418
FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1419
15.3k
                            BasesSetVectorTy &Bases) {
1420
15.3k
  OverriddenMethodsSetTy OverriddenMethods;
1421
15.3k
  ComputeAllOverriddenMethods(MD, OverriddenMethods);
1422
1423
15.3k
  for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) {
1424
    // Now check the overridden methods.
1425
7.72k
    for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1426
      // We found our overridden method.
1427
4.92k
      if (OverriddenMD->getParent() == PrimaryBase)
1428
4.23k
        return OverriddenMD;
1429
4.92k
    }
1430
7.72k
  }
1431
1432
11.0k
  return nullptr;
1433
15.3k
}
1434
1435
void ItaniumVTableBuilder::AddMethods(
1436
    BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1437
    const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1438
    CharUnits FirstBaseOffsetInLayoutClass,
1439
7.11k
    PrimaryBasesSetVectorTy &PrimaryBases) {
1440
  // Itanium C++ ABI 2.5.2:
1441
  //   The order of the virtual function pointers in a virtual table is the
1442
  //   order of declaration of the corresponding member functions in the class.
1443
  //
1444
  //   There is an entry for any virtual function declared in a class,
1445
  //   whether it is a new function or overrides a base class function,
1446
  //   unless it overrides a function from the primary base, and conversion
1447
  //   between their return types does not require an adjustment.
1448
1449
7.11k
  const CXXRecordDecl *RD = Base.getBase();
1450
7.11k
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1451
1452
7.11k
  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1453
2.64k
    CharUnits PrimaryBaseOffset;
1454
2.64k
    CharUnits PrimaryBaseOffsetInLayoutClass;
1455
2.64k
    if (Layout.isPrimaryBaseVirtual()) {
1456
346
      assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1457
346
             "Primary vbase should have a zero offset!");
1458
1459
346
      const ASTRecordLayout &MostDerivedClassLayout =
1460
346
        Context.getASTRecordLayout(MostDerivedClass);
1461
1462
346
      PrimaryBaseOffset =
1463
346
        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1464
1465
346
      const ASTRecordLayout &LayoutClassLayout =
1466
346
        Context.getASTRecordLayout(LayoutClass);
1467
1468
346
      PrimaryBaseOffsetInLayoutClass =
1469
346
        LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1470
2.29k
    } else {
1471
2.29k
      assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1472
2.29k
             "Primary base should have a zero offset!");
1473
1474
2.29k
      PrimaryBaseOffset = Base.getBaseOffset();
1475
2.29k
      PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1476
2.29k
    }
1477
1478
2.64k
    AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1479
2.64k
               PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1480
2.64k
               FirstBaseOffsetInLayoutClass, PrimaryBases);
1481
1482
2.64k
    if (!PrimaryBases.insert(PrimaryBase))
1483
0
      llvm_unreachable("Found a duplicate primary base!");
1484
2.64k
  }
1485
1486
7.11k
  typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1487
7.11k
  NewVirtualFunctionsTy NewVirtualFunctions;
1488
1489
7.11k
  llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1490
1491
  // Now go through all virtual member functions and add them.
1492
50.3k
  for (const auto *MD : RD->methods()) {
1493
50.3k
    if (!ItaniumVTableContext::hasVtableSlot(MD))
1494
37.7k
      continue;
1495
12.5k
    MD = MD->getCanonicalDecl();
1496
1497
    // Get the final overrider.
1498
12.5k
    FinalOverriders::OverriderInfo Overrider =
1499
12.5k
      Overriders.getOverrider(MD, Base.getBaseOffset());
1500
1501
    // Check if this virtual member function overrides a method in a primary
1502
    // base. If this is the case, and the return type doesn't require adjustment
1503
    // then we can just use the member function from the primary base.
1504
12.5k
    if (const CXXMethodDecl *OverriddenMD =
1505
12.5k
          FindNearestOverriddenMethod(MD, PrimaryBases)) {
1506
3.46k
      if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1507
3.46k
                                            OverriddenMD).isEmpty()) {
1508
        // Replace the method info of the overridden method with our own
1509
        // method.
1510
3.44k
        assert(MethodInfoMap.count(OverriddenMD) &&
1511
3.44k
               "Did not find the overridden method!");
1512
3.44k
        MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1513
1514
3.44k
        MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1515
3.44k
                              OverriddenMethodInfo.VTableIndex);
1516
1517
3.44k
        assert(!MethodInfoMap.count(MD) &&
1518
3.44k
               "Should not have method info for this method yet!");
1519
1520
3.44k
        MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1521
3.44k
        MethodInfoMap.erase(OverriddenMD);
1522
1523
        // If the overridden method exists in a virtual base class or a direct
1524
        // or indirect base class of a virtual base class, we need to emit a
1525
        // thunk if we ever have a class hierarchy where the base class is not
1526
        // a primary base in the complete object.
1527
3.44k
        if (!isBuildingConstructorVTable() && 
OverriddenMD != MD3.38k
) {
1528
          // Compute the this adjustment.
1529
3.38k
          ThisAdjustment ThisAdjustment =
1530
3.38k
            ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1531
3.38k
                                  Overrider);
1532
1533
3.38k
          if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1534
3.38k
              
Overrider.Method->getParent() == MostDerivedClass130
) {
1535
1536
            // There's no return adjustment from OverriddenMD and MD,
1537
            // but that doesn't mean there isn't one between MD and
1538
            // the final overrider.
1539
130
            BaseOffset ReturnAdjustmentOffset =
1540
130
              ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1541
130
            ReturnAdjustment ReturnAdjustment =
1542
130
              ComputeReturnAdjustment(ReturnAdjustmentOffset);
1543
1544
            // This is a virtual thunk for the most derived class, add it.
1545
130
            AddThunk(Overrider.Method,
1546
130
                     ThunkInfo(ThisAdjustment, ReturnAdjustment));
1547
130
          }
1548
3.38k
        }
1549
1550
3.44k
        continue;
1551
3.44k
      }
1552
3.46k
    }
1553
1554
9.08k
    if (MD->isImplicit())
1555
30
      NewImplicitVirtualFunctions.push_back(MD);
1556
9.05k
    else
1557
9.05k
      NewVirtualFunctions.push_back(MD);
1558
9.08k
  }
1559
1560
7.11k
  std::stable_sort(
1561
7.11k
      NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
1562
7.11k
      [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1563
5
        if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1564
2
          return A->isCopyAssignmentOperator();
1565
3
        if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1566
1
          return A->isMoveAssignmentOperator();
1567
2
        if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
1568
1
          return isa<CXXDestructorDecl>(A);
1569
1
        assert(A->getOverloadedOperator() == OO_EqualEqual &&
1570
1
               B->getOverloadedOperator() == OO_EqualEqual &&
1571
1
               "unexpected or duplicate implicit virtual function");
1572
        // We rely on Sema to have declared the operator== members in the
1573
        // same order as the corresponding operator<=> members.
1574
1
        return false;
1575
1
      });
1576
7.11k
  NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
1577
7.11k
                             NewImplicitVirtualFunctions.end());
1578
1579
9.08k
  for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1580
    // Get the final overrider.
1581
9.08k
    FinalOverriders::OverriderInfo Overrider =
1582
9.08k
      Overriders.getOverrider(MD, Base.getBaseOffset());
1583
1584
    // Insert the method info for this method.
1585
9.08k
    MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1586
9.08k
                          Components.size());
1587
1588
9.08k
    assert(!MethodInfoMap.count(MD) &&
1589
9.08k
           "Should not have method info for this method yet!");
1590
9.08k
    MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1591
1592
    // Check if this overrider is going to be used.
1593
9.08k
    const CXXMethodDecl *OverriderMD = Overrider.Method;
1594
9.08k
    if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1595
9.08k
                         FirstBaseInPrimaryBaseChain,
1596
9.08k
                         FirstBaseOffsetInLayoutClass)) {
1597
59
      Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1598
59
      continue;
1599
59
    }
1600
1601
    // Check if this overrider needs a return adjustment.
1602
    // We don't want to do this for pure virtual member functions.
1603
9.02k
    BaseOffset ReturnAdjustmentOffset;
1604
9.02k
    if (!OverriderMD->isPure()) {
1605
8.58k
      ReturnAdjustmentOffset =
1606
8.58k
        ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1607
8.58k
    }
1608
1609
9.02k
    ReturnAdjustment ReturnAdjustment =
1610
9.02k
      ComputeReturnAdjustment(ReturnAdjustmentOffset);
1611
1612
9.02k
    AddMethod(Overrider.Method, ReturnAdjustment);
1613
9.02k
  }
1614
7.11k
}
1615
1616
3.82k
void ItaniumVTableBuilder::LayoutVTable() {
1617
3.82k
  LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1618
3.82k
                                                 CharUnits::Zero()),
1619
3.82k
                                   /*BaseIsMorallyVirtual=*/false,
1620
3.82k
                                   MostDerivedClassIsVirtual,
1621
3.82k
                                   MostDerivedClassOffset);
1622
1623
3.82k
  VisitedVirtualBasesSetTy VBases;
1624
1625
  // Determine the primary virtual bases.
1626
3.82k
  DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1627
3.82k
                               VBases);
1628
3.82k
  VBases.clear();
1629
1630
3.82k
  LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1631
1632
  // -fapple-kext adds an extra entry at end of vtbl.
1633
3.82k
  bool IsAppleKext = Context.getLangOpts().AppleKext;
1634
3.82k
  if (IsAppleKext)
1635
14
    Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1636
3.82k
}
1637
1638
void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1639
    BaseSubobject Base, bool BaseIsMorallyVirtual,
1640
4.47k
    bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1641
4.47k
  assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1642
1643
4.47k
  unsigned VTableIndex = Components.size();
1644
4.47k
  VTableIndices.push_back(VTableIndex);
1645
1646
  // Add vcall and vbase offsets for this vtable.
1647
4.47k
  VCallAndVBaseOffsetBuilder Builder(
1648
4.47k
      VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1649
4.47k
      BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1650
4.47k
  Components.append(Builder.components_begin(), Builder.components_end());
1651
1652
  // Check if we need to add these vcall offsets.
1653
4.47k
  if (BaseIsVirtualInLayoutClass && 
!Builder.getVCallOffsets().empty()433
) {
1654
290
    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1655
1656
290
    if (VCallOffsets.empty())
1657
290
      VCallOffsets = Builder.getVCallOffsets();
1658
290
  }
1659
1660
  // If we're laying out the most derived class we want to keep track of the
1661
  // virtual base class offset offsets.
1662
4.47k
  if (Base.getBase() == MostDerivedClass)
1663
3.82k
    VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1664
1665
  // Add the offset to top.
1666
4.47k
  CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1667
4.47k
  Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1668
1669
  // Next, add the RTTI.
1670
4.47k
  Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1671
1672
4.47k
  uint64_t AddressPoint = Components.size();
1673
1674
  // Now go through all virtual member functions and add them.
1675
4.47k
  PrimaryBasesSetVectorTy PrimaryBases;
1676
4.47k
  AddMethods(Base, OffsetInLayoutClass,
1677
4.47k
             Base.getBase(), OffsetInLayoutClass,
1678
4.47k
             PrimaryBases);
1679
1680
4.47k
  const CXXRecordDecl *RD = Base.getBase();
1681
4.47k
  if (RD == MostDerivedClass) {
1682
3.82k
    assert(MethodVTableIndices.empty());
1683
8.47k
    
for (const auto &I : MethodInfoMap)3.82k
{
1684
8.47k
      const CXXMethodDecl *MD = I.first;
1685
8.47k
      const MethodInfo &MI = I.second;
1686
8.47k
      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1687
2.07k
        MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1688
2.07k
            = MI.VTableIndex - AddressPoint;
1689
2.07k
        MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1690
2.07k
            = MI.VTableIndex + 1 - AddressPoint;
1691
6.39k
      } else {
1692
6.39k
        MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1693
6.39k
      }
1694
8.47k
    }
1695
3.82k
  }
1696
1697
  // Compute 'this' pointer adjustments.
1698
4.47k
  ComputeThisAdjustments();
1699
1700
  // Add all address points.
1701
7.03k
  while (true) {
1702
7.03k
    AddressPoints.insert(
1703
7.03k
        std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1704
7.03k
                       VTableLayout::AddressPointLocation{
1705
7.03k
                           unsigned(VTableIndices.size() - 1),
1706
7.03k
                           unsigned(AddressPoint - VTableIndex)}));
1707
1708
7.03k
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1709
7.03k
    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1710
1711
7.03k
    if (!PrimaryBase)
1712
4.39k
      break;
1713
1714
2.63k
    if (Layout.isPrimaryBaseVirtual()) {
1715
      // Check if this virtual primary base is a primary base in the layout
1716
      // class. If it's not, we don't want to add it.
1717
340
      const ASTRecordLayout &LayoutClassLayout =
1718
340
        Context.getASTRecordLayout(LayoutClass);
1719
1720
340
      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1721
340
          OffsetInLayoutClass) {
1722
        // We don't want to add this class (or any of its primary bases).
1723
74
        break;
1724
74
      }
1725
340
    }
1726
1727
2.56k
    RD = PrimaryBase;
1728
2.56k
  }
1729
1730
  // Layout secondary vtables.
1731
4.47k
  LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1732
4.47k
}
1733
1734
void
1735
ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1736
                                             bool BaseIsMorallyVirtual,
1737
6.74k
                                             CharUnits OffsetInLayoutClass) {
1738
  // Itanium C++ ABI 2.5.2:
1739
  //   Following the primary virtual table of a derived class are secondary
1740
  //   virtual tables for each of its proper base classes, except any primary
1741
  //   base(s) with which it shares its primary virtual table.
1742
1743
6.74k
  const CXXRecordDecl *RD = Base.getBase();
1744
6.74k
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1745
6.74k
  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1746
1747
6.74k
  for (const auto &B : RD->bases()) {
1748
    // Ignore virtual bases, we'll emit them later.
1749
4.17k
    if (B.isVirtual())
1750
1.12k
      continue;
1751
1752
3.05k
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1753
1754
    // Ignore bases that don't have a vtable.
1755
3.05k
    if (!BaseDecl->isDynamicClass())
1756
464
      continue;
1757
1758
2.58k
    if (isBuildingConstructorVTable()) {
1759
      // Itanium C++ ABI 2.6.4:
1760
      //   Some of the base class subobjects may not need construction virtual
1761
      //   tables, which will therefore not be present in the construction
1762
      //   virtual table group, even though the subobject virtual tables are
1763
      //   present in the main virtual table group for the complete object.
1764
201
      if (!BaseIsMorallyVirtual && 
!BaseDecl->getNumVBases()100
)
1765
22
        continue;
1766
201
    }
1767
1768
    // Get the base offset of this base.
1769
2.56k
    CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1770
2.56k
    CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1771
1772
2.56k
    CharUnits BaseOffsetInLayoutClass =
1773
2.56k
      OffsetInLayoutClass + RelativeBaseOffset;
1774
1775
    // Don't emit a secondary vtable for a primary base. We might however want
1776
    // to emit secondary vtables for other bases of this base.
1777
2.56k
    if (BaseDecl == PrimaryBase) {
1778
2.27k
      LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1779
2.27k
                             BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1780
2.27k
      continue;
1781
2.27k
    }
1782
1783
    // Layout the primary vtable (and any secondary vtables) for this base.
1784
289
    LayoutPrimaryAndSecondaryVTables(
1785
289
      BaseSubobject(BaseDecl, BaseOffset),
1786
289
      BaseIsMorallyVirtual,
1787
289
      /*BaseIsVirtualInLayoutClass=*/false,
1788
289
      BaseOffsetInLayoutClass);
1789
289
  }
1790
6.74k
}
1791
1792
void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1793
    const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1794
7.79k
    VisitedVirtualBasesSetTy &VBases) {
1795
7.79k
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1796
1797
  // Check if this base has a primary base.
1798
7.79k
  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1799
1800
    // Check if it's virtual.
1801
2.63k
    if (Layout.isPrimaryBaseVirtual()) {
1802
340
      bool IsPrimaryVirtualBase = true;
1803
1804
340
      if (isBuildingConstructorVTable()) {
1805
        // Check if the base is actually a primary base in the class we use for
1806
        // layout.
1807
149
        const ASTRecordLayout &LayoutClassLayout =
1808
149
          Context.getASTRecordLayout(LayoutClass);
1809
1810
149
        CharUnits PrimaryBaseOffsetInLayoutClass =
1811
149
          LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1812
1813
        // We know that the base is not a primary base in the layout class if
1814
        // the base offsets are different.
1815
149
        if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1816
45
          IsPrimaryVirtualBase = false;
1817
149
      }
1818
1819
340
      if (IsPrimaryVirtualBase)
1820
295
        PrimaryVirtualBases.insert(PrimaryBase);
1821
340
    }
1822
2.63k
  }
1823
1824
  // Traverse bases, looking for more primary virtual bases.
1825
7.79k
  for (const auto &B : RD->bases()) {
1826
4.24k
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1827
1828
4.24k
    CharUnits BaseOffsetInLayoutClass;
1829
1830
4.24k
    if (B.isVirtual()) {
1831
1.16k
      if (!VBases.insert(BaseDecl).second)
1832
281
        continue;
1833
1834
883
      const ASTRecordLayout &LayoutClassLayout =
1835
883
        Context.getASTRecordLayout(LayoutClass);
1836
1837
883
      BaseOffsetInLayoutClass =
1838
883
        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1839
3.08k
    } else {
1840
3.08k
      BaseOffsetInLayoutClass =
1841
3.08k
        OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1842
3.08k
    }
1843
1844
3.96k
    DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1845
3.96k
  }
1846
7.79k
}
1847
1848
void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1849
4.74k
    const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1850
  // Itanium C++ ABI 2.5.2:
1851
  //   Then come the virtual base virtual tables, also in inheritance graph
1852
  //   order, and again excluding primary bases (which share virtual tables with
1853
  //   the classes for which they are primary).
1854
4.74k
  for (const auto &B : RD->bases()) {
1855
4.14k
    const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1856
1857
    // Check if this base needs a vtable. (If it's virtual, not a primary base
1858
    // of some other class, and we haven't visited it before).
1859
4.14k
    if (B.isVirtual() && 
BaseDecl->isDynamicClass()1.61k
&&
1860
4.14k
        
!PrimaryVirtualBases.count(BaseDecl)983
&&
1861
4.14k
        
VBases.insert(BaseDecl).second675
) {
1862
354
      const ASTRecordLayout &MostDerivedClassLayout =
1863
354
        Context.getASTRecordLayout(MostDerivedClass);
1864
354
      CharUnits BaseOffset =
1865
354
        MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1866
1867
354
      const ASTRecordLayout &LayoutClassLayout =
1868
354
        Context.getASTRecordLayout(LayoutClass);
1869
354
      CharUnits BaseOffsetInLayoutClass =
1870
354
        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1871
1872
354
      LayoutPrimaryAndSecondaryVTables(
1873
354
        BaseSubobject(BaseDecl, BaseOffset),
1874
354
        /*BaseIsMorallyVirtual=*/true,
1875
354
        /*BaseIsVirtualInLayoutClass=*/true,
1876
354
        BaseOffsetInLayoutClass);
1877
354
    }
1878
1879
    // We only need to check the base for virtual base vtables if it actually
1880
    // has virtual bases.
1881
4.14k
    if (BaseDecl->getNumVBases())
1882
920
      LayoutVTablesForVirtualBases(BaseDecl, VBases);
1883
4.14k
  }
1884
4.74k
}
1885
1886
/// dumpLayout - Dump the vtable layout.
1887
230
void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1888
  // FIXME: write more tests that actually use the dumpLayout output to prevent
1889
  // ItaniumVTableBuilder regressions.
1890
1891
230
  if (isBuildingConstructorVTable()) {
1892
172
    Out << "Construction vtable for ('";
1893
172
    MostDerivedClass->printQualifiedName(Out);
1894
172
    Out << "', ";
1895
172
    Out << MostDerivedClassOffset.getQuantity() << ") in '";
1896
172
    LayoutClass->printQualifiedName(Out);
1897
172
  } else {
1898
58
    Out << "Vtable for '";
1899
58
    MostDerivedClass->printQualifiedName(Out);
1900
58
  }
1901
230
  Out << "' (" << Components.size() << " entries).\n";
1902
1903
  // Iterate through the address points and insert them into a new map where
1904
  // they are keyed by the index and not the base object.
1905
  // Since an address point can be shared by multiple subobjects, we use an
1906
  // STL multimap.
1907
230
  std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1908
830
  for (const auto &AP : AddressPoints) {
1909
830
    const BaseSubobject &Base = AP.first;
1910
830
    uint64_t Index =
1911
830
        VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1912
1913
830
    AddressPointsByIndex.insert(std::make_pair(Index, Base));
1914
830
  }
1915
1916
2.81k
  for (unsigned I = 0, E = Components.size(); I != E; 
++I2.58k
) {
1917
2.58k
    uint64_t Index = I;
1918
1919
2.58k
    Out << llvm::format("%4d | ", I);
1920
1921
2.58k
    const VTableComponent &Component = Components[I];
1922
1923
    // Dump the component.
1924
2.58k
    switch (Component.getKind()) {
1925
1926
308
    case VTableComponent::CK_VCallOffset:
1927
308
      Out << "vcall_offset ("
1928
308
          << Component.getVCallOffset().getQuantity()
1929
308
          << ")";
1930
308
      break;
1931
1932
739
    case VTableComponent::CK_VBaseOffset:
1933
739
      Out << "vbase_offset ("
1934
739
          << Component.getVBaseOffset().getQuantity()
1935
739
          << ")";
1936
739
      break;
1937
1938
529
    case VTableComponent::CK_OffsetToTop:
1939
529
      Out << "offset_to_top ("
1940
529
          << Component.getOffsetToTop().getQuantity()
1941
529
          << ")";
1942
529
      break;
1943
1944
529
    case VTableComponent::CK_RTTI:
1945
529
      Component.getRTTIDecl()->printQualifiedName(Out);
1946
529
      Out << " RTTI";
1947
529
      break;
1948
1949
445
    case VTableComponent::CK_FunctionPointer: {
1950
445
      const CXXMethodDecl *MD = Component.getFunctionDecl();
1951
1952
445
      std::string Str =
1953
445
        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1954
445
                                    MD);
1955
445
      Out << Str;
1956
445
      if (MD->isPure())
1957
5
        Out << " [pure]";
1958
1959
445
      if (MD->isDeleted())
1960
1
        Out << " [deleted]";
1961
1962
445
      ThunkInfo Thunk = VTableThunks.lookup(I);
1963
445
      if (!Thunk.isEmpty()) {
1964
        // If this function pointer has a return adjustment, dump it.
1965
84
        if (!Thunk.Return.isEmpty()) {
1966
7
          Out << "\n       [return adjustment: ";
1967
7
          Out << Thunk.Return.NonVirtual << " non-virtual";
1968
1969
7
          if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1970
6
            Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1971
6
            Out << " vbase offset offset";
1972
6
          }
1973
1974
7
          Out << ']';
1975
7
        }
1976
1977
        // If this function pointer has a 'this' pointer adjustment, dump it.
1978
84
        if (!Thunk.This.isEmpty()) {
1979
81
          Out << "\n       [this adjustment: ";
1980
81
          Out << Thunk.This.NonVirtual << " non-virtual";
1981
1982
81
          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1983
71
            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1984
71
            Out << " vcall offset offset";
1985
71
          }
1986
1987
81
          Out << ']';
1988
81
        }
1989
84
      }
1990
1991
445
      break;
1992
0
    }
1993
1994
5
    case VTableComponent::CK_CompleteDtorPointer:
1995
10
    case VTableComponent::CK_DeletingDtorPointer: {
1996
10
      bool IsComplete =
1997
10
        Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
1998
1999
10
      const CXXDestructorDecl *DD = Component.getDestructorDecl();
2000
2001
10
      DD->printQualifiedName(Out);
2002
10
      if (IsComplete)
2003
5
        Out << "() [complete]";
2004
5
      else
2005
5
        Out << "() [deleting]";
2006
2007
10
      if (DD->isPure())
2008
2
        Out << " [pure]";
2009
2010
10
      ThunkInfo Thunk = VTableThunks.lookup(I);
2011
10
      if (!Thunk.isEmpty()) {
2012
        // If this destructor has a 'this' pointer adjustment, dump it.
2013
4
        if (!Thunk.This.isEmpty()) {
2014
4
          Out << "\n       [this adjustment: ";
2015
4
          Out << Thunk.This.NonVirtual << " non-virtual";
2016
2017
4
          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2018
4
            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2019
4
            Out << " vcall offset offset";
2020
4
          }
2021
2022
4
          Out << ']';
2023
4
        }
2024
4
      }
2025
2026
10
      break;
2027
5
    }
2028
2029
26
    case VTableComponent::CK_UnusedFunctionPointer: {
2030
26
      const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2031
2032
26
      std::string Str =
2033
26
        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2034
26
                                    MD);
2035
26
      Out << "[unused] " << Str;
2036
26
      if (MD->isPure())
2037
0
        Out << " [pure]";
2038
26
    }
2039
2040
2.58k
    }
2041
2042
2.58k
    Out << '\n';
2043
2044
    // Dump the next address point.
2045
2.58k
    uint64_t NextIndex = Index + 1;
2046
2.58k
    if (AddressPointsByIndex.count(NextIndex)) {
2047
529
      if (AddressPointsByIndex.count(NextIndex) == 1) {
2048
295
        const BaseSubobject &Base =
2049
295
          AddressPointsByIndex.find(NextIndex)->second;
2050
2051
295
        Out << "       -- (";
2052
295
        Base.getBase()->printQualifiedName(Out);
2053
295
        Out << ", " << Base.getBaseOffset().getQuantity();
2054
295
        Out << ") vtable address --\n";
2055
295
      } else {
2056
234
        CharUnits BaseOffset =
2057
234
          AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2058
2059
        // We store the class names in a set to get a stable order.
2060
234
        std::set<std::string> ClassNames;
2061
234
        for (const auto &I :
2062
535
             llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2063
535
          assert(I.second.getBaseOffset() == BaseOffset &&
2064
535
                 "Invalid base offset!");
2065
535
          const CXXRecordDecl *RD = I.second.getBase();
2066
535
          ClassNames.insert(RD->getQualifiedNameAsString());
2067
535
        }
2068
2069
535
        
for (const std::string &Name : ClassNames)234
{
2070
535
          Out << "       -- (" << Name;
2071
535
          Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2072
535
        }
2073
234
      }
2074
529
    }
2075
2.58k
  }
2076
2077
230
  Out << '\n';
2078
2079
230
  if (isBuildingConstructorVTable())
2080
172
    return;
2081
2082
58
  if (MostDerivedClass->getNumVBases()) {
2083
    // We store the virtual base class names and their offsets in a map to get
2084
    // a stable order.
2085
2086
36
    std::map<std::string, CharUnits> ClassNamesAndOffsets;
2087
75
    for (const auto &I : VBaseOffsetOffsets) {
2088
75
      std::string ClassName = I.first->getQualifiedNameAsString();
2089
75
      CharUnits OffsetOffset = I.second;
2090
75
      ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2091
75
    }
2092
2093
36
    Out << "Virtual base offset offsets for '";
2094
36
    MostDerivedClass->printQualifiedName(Out);
2095
36
    Out << "' (";
2096
36
    Out << ClassNamesAndOffsets.size();
2097
36
    Out << (ClassNamesAndOffsets.size() == 1 ? 
" entry"16
:
" entries"20
) << ").\n";
2098
2099
36
    for (const auto &I : ClassNamesAndOffsets)
2100
75
      Out << "   " << I.first << " | " << I.second.getQuantity() << '\n';
2101
2102
36
    Out << "\n";
2103
36
  }
2104
2105
58
  if (!Thunks.empty()) {
2106
    // We store the method names in a map to get a stable order.
2107
25
    std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2108
2109
29
    for (const auto &I : Thunks) {
2110
29
      const CXXMethodDecl *MD = I.first;
2111
29
      std::string MethodName =
2112
29
        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2113
29
                                    MD);
2114
2115
29
      MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2116
29
    }
2117
2118
29
    for (const auto &I : MethodNamesAndDecls) {
2119
29
      const std::string &MethodName = I.first;
2120
29
      const CXXMethodDecl *MD = I.second;
2121
2122
29
      ThunkInfoVectorTy ThunksVector = Thunks[MD];
2123
29
      llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2124
11
        assert(LHS.Method == nullptr && RHS.Method == nullptr);
2125
11
        return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2126
11
      });
2127
2128
29
      Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2129
29
      Out << (ThunksVector.size() == 1 ? 
" entry"21
:
" entries"8
) << ").\n";
2130
2131
68
      for (unsigned I = 0, E = ThunksVector.size(); I != E; 
++I39
) {
2132
39
        const ThunkInfo &Thunk = ThunksVector[I];
2133
2134
39
        Out << llvm::format("%4d | ", I);
2135
2136
        // If this function pointer has a return pointer adjustment, dump it.
2137
39
        if (!Thunk.Return.isEmpty()) {
2138
5
          Out << "return adjustment: " << Thunk.Return.NonVirtual;
2139
5
          Out << " non-virtual";
2140
5
          if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2141
4
            Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2142
4
            Out << " vbase offset offset";
2143
4
          }
2144
2145
5
          if (!Thunk.This.isEmpty())
2146
2
            Out << "\n       ";
2147
5
        }
2148
2149
        // If this function pointer has a 'this' pointer adjustment, dump it.
2150
39
        if (!Thunk.This.isEmpty()) {
2151
36
          Out << "this adjustment: ";
2152
36
          Out << Thunk.This.NonVirtual << " non-virtual";
2153
2154
36
          if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2155
28
            Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2156
28
            Out << " vcall offset offset";
2157
28
          }
2158
36
        }
2159
2160
39
        Out << '\n';
2161
39
      }
2162
2163
29
      Out << '\n';
2164
29
    }
2165
25
  }
2166
2167
  // Compute the vtable indices for all the member functions.
2168
  // Store them in a map keyed by the index so we'll get a sorted table.
2169
58
  std::map<uint64_t, std::string> IndicesMap;
2170
2171
265
  for (const auto *MD : MostDerivedClass->methods()) {
2172
    // We only want virtual member functions.
2173
265
    if (!ItaniumVTableContext::hasVtableSlot(MD))
2174
180
      continue;
2175
85
    MD = MD->getCanonicalDecl();
2176
2177
85
    std::string MethodName =
2178
85
      PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2179
85
                                  MD);
2180
2181
85
    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2182
3
      GlobalDecl GD(DD, Dtor_Complete);
2183
3
      assert(MethodVTableIndices.count(GD));
2184
3
      uint64_t VTableIndex = MethodVTableIndices[GD];
2185
3
      IndicesMap[VTableIndex] = MethodName + " [complete]";
2186
3
      IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2187
82
    } else {
2188
82
      assert(MethodVTableIndices.count(MD));
2189
82
      IndicesMap[MethodVTableIndices[MD]] = MethodName;
2190
82
    }
2191
85
  }
2192
2193
  // Print the vtable indices for all the member functions.
2194
58
  if (!IndicesMap.empty()) {
2195
56
    Out << "VTable indices for '";
2196
56
    MostDerivedClass->printQualifiedName(Out);
2197
56
    Out << "' (" << IndicesMap.size() << " entries).\n";
2198
2199
88
    for (const auto &I : IndicesMap) {
2200
88
      uint64_t VTableIndex = I.first;
2201
88
      const std::string &MethodName = I.second;
2202
2203
88
      Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2204
88
          << '\n';
2205
88
    }
2206
56
  }
2207
2208
58
  Out << '\n';
2209
58
}
2210
}
2211
2212
static VTableLayout::AddressPointsIndexMapTy
2213
MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2214
5.11k
                        unsigned numVTables) {
2215
5.11k
  VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2216
2217
12.1k
  for (auto it = addressPoints.begin(); it != addressPoints.end(); 
++it7.03k
) {
2218
7.03k
    const auto &addressPointLoc = it->second;
2219
7.03k
    unsigned vtableIndex = addressPointLoc.VTableIndex;
2220
7.03k
    unsigned addressPoint = addressPointLoc.AddressPointIndex;
2221
7.03k
    if (indexMap[vtableIndex]) {
2222
      // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2223
      // every vtable index should have a unique address point.
2224
2.56k
      assert(indexMap[vtableIndex] == addressPoint &&
2225
2.56k
             "Every vtable index should have a unique address point. Found a "
2226
2.56k
             "vtable that has two different address points.");
2227
4.47k
    } else {
2228
4.47k
      indexMap[vtableIndex] = addressPoint;
2229
4.47k
    }
2230
7.03k
  }
2231
2232
  // Note that by this point, not all the address may be initialized if the
2233
  // AddressPoints map is empty. This is ok if the map isn't needed. See
2234
  // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2235
  // emprt map.
2236
5.11k
  return indexMap;
2237
5.11k
}
2238
2239
VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2240
                           ArrayRef<VTableComponent> VTableComponents,
2241
                           ArrayRef<VTableThunkTy> VTableThunks,
2242
                           const AddressPointsMapTy &AddressPoints)
2243
    : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2244
      AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2245
5.11k
                                        AddressPoints, VTableIndices.size())) {
2246
5.11k
  if (VTableIndices.size() <= 1)
2247
4.63k
    assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2248
478
  else
2249
478
    this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2250
2251
5.11k
  llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2252
5.11k
                                    const VTableLayout::VTableThunkTy &RHS) {
2253
376
    assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2254
376
           "Different thunks should have unique indices!");
2255
376
    return LHS.first < RHS.first;
2256
376
  });
2257
5.11k
}
2258
2259
3.71k
VTableLayout::~VTableLayout() { }
2260
2261
448k
bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2262
448k
  return MD->isVirtual() && 
!MD->isConsteval()58.1k
;
2263
448k
}
2264
2265
ItaniumVTableContext::ItaniumVTableContext(
2266
    ASTContext &Context, VTableComponentLayout ComponentLayout)
2267
31.9k
    : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2268
2269
28.0k
ItaniumVTableContext::~ItaniumVTableContext() {}
2270
2271
4.49k
uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2272
4.49k
  GD = GD.getCanonicalDecl();
2273
4.49k
  MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2274
4.49k
  if (I != MethodVTableIndices.end())
2275
2.94k
    return I->second;
2276
2277
1.55k
  const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2278
2279
1.55k
  computeVTableRelatedInformation(RD);
2280
2281
1.55k
  I = MethodVTableIndices.find(GD);
2282
1.55k
  assert(I != MethodVTableIndices.end() && "Did not find index!");
2283
1.55k
  return I->second;
2284
1.55k
}
2285
2286
CharUnits
2287
ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2288
975
                                                 const CXXRecordDecl *VBase) {
2289
975
  ClassPairTy ClassPair(RD, VBase);
2290
2291
975
  VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2292
975
    VirtualBaseClassOffsetOffsets.find(ClassPair);
2293
975
  if (I != VirtualBaseClassOffsetOffsets.end())
2294
683
    return I->second;
2295
2296
292
  VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2297
292
                                     BaseSubobject(RD, CharUnits::Zero()),
2298
292
                                     /*BaseIsVirtual=*/false,
2299
292
                                     /*OffsetInLayoutClass=*/CharUnits::Zero());
2300
2301
345
  for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2302
    // Insert all types.
2303
345
    ClassPairTy ClassPair(RD, I.first);
2304
2305
345
    VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2306
345
  }
2307
2308
292
  I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2309
292
  assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2310
2311
292
  return I->second;
2312
292
}
2313
2314
static std::unique_ptr<VTableLayout>
2315
3.82k
CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2316
3.82k
  SmallVector<VTableLayout::VTableThunkTy, 1>
2317
3.82k
    VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2318
2319
3.82k
  return std::make_unique<VTableLayout>(
2320
3.82k
      Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2321
3.82k
      Builder.getAddressPoints());
2322
3.82k
}
2323
2324
void
2325
12.2k
ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2326
12.2k
  std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2327
2328
  // Check if we've computed this information before.
2329
12.2k
  if (Entry)
2330
8.78k
    return;
2331
2332
3.50k
  ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2333
3.50k
                               /*MostDerivedClassIsVirtual=*/false, RD);
2334
3.50k
  Entry = CreateVTableLayout(Builder);
2335
2336
3.50k
  MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2337
3.50k
                             Builder.vtable_indices_end());
2338
2339
  // Add the known thunks.
2340
3.50k
  Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2341
2342
  // If we don't have the vbase information for this class, insert it.
2343
  // getVirtualBaseOffsetOffset will compute it separately without computing
2344
  // the rest of the vtable related information.
2345
3.50k
  if (!RD->getNumVBases())
2346
3.15k
    return;
2347
2348
347
  const CXXRecordDecl *VBase =
2349
347
    RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2350
2351
347
  if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2352
99
    return;
2353
2354
304
  
for (const auto &I : Builder.getVBaseOffsetOffsets())248
{
2355
    // Insert all types.
2356
304
    ClassPairTy ClassPair(RD, I.first);
2357
2358
304
    VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2359
304
  }
2360
248
}
2361
2362
std::unique_ptr<VTableLayout>
2363
ItaniumVTableContext::createConstructionVTableLayout(
2364
    const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2365
327
    bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2366
327
  ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2367
327
                               MostDerivedClassIsVirtual, LayoutClass);
2368
327
  return CreateVTableLayout(Builder);
2369
327
}
2370
2371
namespace {
2372
2373
// Vtables in the Microsoft ABI are different from the Itanium ABI.
2374
//
2375
// The main differences are:
2376
//  1. Separate vftable and vbtable.
2377
//
2378
//  2. Each subobject with a vfptr gets its own vftable rather than an address
2379
//     point in a single vtable shared between all the subobjects.
2380
//     Each vftable is represented by a separate section and virtual calls
2381
//     must be done using the vftable which has a slot for the function to be
2382
//     called.
2383
//
2384
//  3. Virtual method definitions expect their 'this' parameter to point to the
2385
//     first vfptr whose table provides a compatible overridden method.  In many
2386
//     cases, this permits the original vf-table entry to directly call
2387
//     the method instead of passing through a thunk.
2388
//     See example before VFTableBuilder::ComputeThisOffset below.
2389
//
2390
//     A compatible overridden method is one which does not have a non-trivial
2391
//     covariant-return adjustment.
2392
//
2393
//     The first vfptr is the one with the lowest offset in the complete-object
2394
//     layout of the defining class, and the method definition will subtract
2395
//     that constant offset from the parameter value to get the real 'this'
2396
//     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
2397
//     function defined in a virtual base is overridden in a more derived
2398
//     virtual base and these bases have a reverse order in the complete
2399
//     object), the vf-table may require a this-adjustment thunk.
2400
//
2401
//  4. vftables do not contain new entries for overrides that merely require
2402
//     this-adjustment.  Together with #3, this keeps vf-tables smaller and
2403
//     eliminates the need for this-adjustment thunks in many cases, at the cost
2404
//     of often requiring redundant work to adjust the "this" pointer.
2405
//
2406
//  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2407
//     Vtordisps are emitted into the class layout if a class has
2408
//      a) a user-defined ctor/dtor
2409
//     and
2410
//      b) a method overriding a method in a virtual base.
2411
//
2412
//  To get a better understanding of this code,
2413
//  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2414
2415
class VFTableBuilder {
2416
public:
2417
  typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2418
    MethodVFTableLocationsTy;
2419
2420
  typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2421
    method_locations_range;
2422
2423
private:
2424
  /// VTables - Global vtable information.
2425
  MicrosoftVTableContext &VTables;
2426
2427
  /// Context - The ASTContext which we will use for layout information.
2428
  ASTContext &Context;
2429
2430
  /// MostDerivedClass - The most derived class for which we're building this
2431
  /// vtable.
2432
  const CXXRecordDecl *MostDerivedClass;
2433
2434
  const ASTRecordLayout &MostDerivedClassLayout;
2435
2436
  const VPtrInfo &WhichVFPtr;
2437
2438
  /// FinalOverriders - The final overriders of the most derived class.
2439
  const FinalOverriders Overriders;
2440
2441
  /// Components - The components of the vftable being built.
2442
  SmallVector<VTableComponent, 64> Components;
2443
2444
  MethodVFTableLocationsTy MethodVFTableLocations;
2445
2446
  /// Does this class have an RTTI component?
2447
  bool HasRTTIComponent = false;
2448
2449
  /// MethodInfo - Contains information about a method in a vtable.
2450
  /// (Used for computing 'this' pointer adjustment thunks.
2451
  struct MethodInfo {
2452
    /// VBTableIndex - The nonzero index in the vbtable that
2453
    /// this method's base has, or zero.
2454
    const uint64_t VBTableIndex;
2455
2456
    /// VFTableIndex - The index in the vftable that this method has.
2457
    const uint64_t VFTableIndex;
2458
2459
    /// Shadowed - Indicates if this vftable slot is shadowed by
2460
    /// a slot for a covariant-return override. If so, it shouldn't be printed
2461
    /// or used for vcalls in the most derived class.
2462
    bool Shadowed;
2463
2464
    /// UsesExtraSlot - Indicates if this vftable slot was created because
2465
    /// any of the overridden slots required a return adjusting thunk.
2466
    bool UsesExtraSlot;
2467
2468
    MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2469
               bool UsesExtraSlot = false)
2470
        : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2471
2.50k
          Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2472
2473
    MethodInfo()
2474
        : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2475
0
          UsesExtraSlot(false) {}
2476
  };
2477
2478
  typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2479
2480
  /// MethodInfoMap - The information for all methods in the vftable we're
2481
  /// currently building.
2482
  MethodInfoMapTy MethodInfoMap;
2483
2484
  typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2485
2486
  /// VTableThunks - The thunks by vftable index in the vftable currently being
2487
  /// built.
2488
  VTableThunksMapTy VTableThunks;
2489
2490
  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2491
  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2492
2493
  /// Thunks - A map that contains all the thunks needed for all methods in the
2494
  /// most derived class for which the vftable is currently being built.
2495
  ThunksMapTy Thunks;
2496
2497
  /// AddThunk - Add a thunk for the given method.
2498
340
  void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2499
340
    SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2500
2501
    // Check if we have this thunk already.
2502
340
    if (llvm::is_contained(ThunksVector, Thunk))
2503
0
      return;
2504
2505
340
    ThunksVector.push_back(Thunk);
2506
340
  }
2507
2508
  /// ComputeThisOffset - Returns the 'this' argument offset for the given
2509
  /// method, relative to the beginning of the MostDerivedClass.
2510
  CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2511
2512
  void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2513
                                   CharUnits ThisOffset, ThisAdjustment &TA);
2514
2515
  /// AddMethod - Add a single virtual member function to the vftable
2516
  /// components vector.
2517
1.84k
  void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2518
1.84k
    if (!TI.isEmpty()) {
2519
340
      VTableThunks[Components.size()] = TI;
2520
340
      AddThunk(MD, TI);
2521
340
    }
2522
1.84k
    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2523
359
      assert(TI.Return.isEmpty() &&
2524
359
             "Destructor can't have return adjustment!");
2525
359
      Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2526
1.48k
    } else {
2527
1.48k
      Components.push_back(VTableComponent::MakeFunction(MD));
2528
1.48k
    }
2529
1.84k
  }
2530
2531
  /// AddMethods - Add the methods of this base subobject and the relevant
2532
  /// subbases to the vftable we're currently laying out.
2533
  void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2534
                  const CXXRecordDecl *LastVBase,
2535
                  BasesSetVectorTy &VisitedBases);
2536
2537
1.28k
  void LayoutVFTable() {
2538
    // RTTI data goes before all other entries.
2539
1.28k
    if (HasRTTIComponent)
2540
486
      Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2541
2542
1.28k
    BasesSetVectorTy VisitedBases;
2543
1.28k
    AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2544
1.28k
               VisitedBases);
2545
    // Note that it is possible for the vftable to contain only an RTTI
2546
    // pointer, if all virtual functions are constewval.
2547
1.28k
    assert(!Components.empty() && "vftable can't be empty");
2548
2549
1.28k
    assert(MethodVFTableLocations.empty());
2550
1.84k
    
for (const auto &I : MethodInfoMap)1.28k
{
2551
1.84k
      const CXXMethodDecl *MD = I.first;
2552
1.84k
      const MethodInfo &MI = I.second;
2553
1.84k
      assert(MD == MD->getCanonicalDecl());
2554
2555
      // Skip the methods that the MostDerivedClass didn't override
2556
      // and the entries shadowed by return adjusting thunks.
2557
1.84k
      if (MD->getParent() != MostDerivedClass || 
MI.Shadowed1.31k
)
2558
528
        continue;
2559
1.31k
      MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2560
1.31k
                                WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2561
1.31k
      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2562
359
        MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2563
954
      } else {
2564
954
        MethodVFTableLocations[MD] = Loc;
2565
954
      }
2566
1.31k
    }
2567
1.28k
  }
2568
2569
public:
2570
  VFTableBuilder(MicrosoftVTableContext &VTables,
2571
                 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2572
      : VTables(VTables),
2573
        Context(MostDerivedClass->getASTContext()),
2574
        MostDerivedClass(MostDerivedClass),
2575
        MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2576
        WhichVFPtr(Which),
2577
1.28k
        Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2578
    // Provide the RTTI component if RTTIData is enabled. If the vftable would
2579
    // be available externally, we should not provide the RTTI componenent. It
2580
    // is currently impossible to get available externally vftables with either
2581
    // dllimport or extern template instantiations, but eventually we may add a
2582
    // flag to support additional devirtualization that needs this.
2583
1.28k
    if (Context.getLangOpts().RTTIData)
2584
486
      HasRTTIComponent = true;
2585
2586
1.28k
    LayoutVFTable();
2587
2588
1.28k
    if (Context.getLangOpts().DumpVTableLayouts)
2589
394
      dumpLayout(llvm::outs());
2590
1.28k
  }
2591
2592
0
  uint64_t getNumThunks() const { return Thunks.size(); }
2593
2594
1.28k
  ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2595
2596
1.28k
  ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2597
2598
1.28k
  method_locations_range vtable_locations() const {
2599
1.28k
    return method_locations_range(MethodVFTableLocations.begin(),
2600
1.28k
                                  MethodVFTableLocations.end());
2601
1.28k
  }
2602
2603
1.28k
  ArrayRef<VTableComponent> vtable_components() const { return Components; }
2604
2605
1.28k
  VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2606
1.28k
    return VTableThunks.begin();
2607
1.28k
  }
2608
2609
1.28k
  VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2610
1.28k
    return VTableThunks.end();
2611
1.28k
  }
2612
2613
  void dumpLayout(raw_ostream &);
2614
};
2615
2616
} // end namespace
2617
2618
// Let's study one class hierarchy as an example:
2619
//   struct A {
2620
//     virtual void f();
2621
//     int x;
2622
//   };
2623
//
2624
//   struct B : virtual A {
2625
//     virtual void f();
2626
//   };
2627
//
2628
// Record layouts:
2629
//   struct A:
2630
//   0 |   (A vftable pointer)
2631
//   4 |   int x
2632
//
2633
//   struct B:
2634
//   0 |   (B vbtable pointer)
2635
//   4 |   struct A (virtual base)
2636
//   4 |     (A vftable pointer)
2637
//   8 |     int x
2638
//
2639
// Let's assume we have a pointer to the A part of an object of dynamic type B:
2640
//   B b;
2641
//   A *a = (A*)&b;
2642
//   a->f();
2643
//
2644
// In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2645
// "this" parameter to point at the A subobject, which is B+4.
2646
// In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2647
// performed as a *static* adjustment.
2648
//
2649
// Interesting thing happens when we alter the relative placement of A and B
2650
// subobjects in a class:
2651
//   struct C : virtual B { };
2652
//
2653
//   C c;
2654
//   A *a = (A*)&c;
2655
//   a->f();
2656
//
2657
// Respective record layout is:
2658
//   0 |   (C vbtable pointer)
2659
//   4 |   struct A (virtual base)
2660
//   4 |     (A vftable pointer)
2661
//   8 |     int x
2662
//  12 |   struct B (virtual base)
2663
//  12 |     (B vbtable pointer)
2664
//
2665
// The final overrider of f() in class C is still B::f(), so B+4 should be
2666
// passed as "this" to that code.  However, "a" points at B-8, so the respective
2667
// vftable entry should hold a thunk that adds 12 to the "this" argument before
2668
// performing a tail call to B::f().
2669
//
2670
// With this example in mind, we can now calculate the 'this' argument offset
2671
// for the given method, relative to the beginning of the MostDerivedClass.
2672
CharUnits
2673
2.77k
VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2674
2.77k
  BasesSetVectorTy Bases;
2675
2676
2.77k
  {
2677
    // Find the set of least derived bases that define the given method.
2678
2.77k
    OverriddenMethodsSetTy VisitedOverriddenMethods;
2679
2.77k
    auto InitialOverriddenDefinitionCollector = [&](
2680
2.77k
        const CXXMethodDecl *OverriddenMD) {
2681
2.68k
      if (OverriddenMD->size_overridden_methods() == 0)
2682
2.08k
        Bases.insert(OverriddenMD->getParent());
2683
      // Don't recurse on this method if we've already collected it.
2684
2.68k
      return VisitedOverriddenMethods.insert(OverriddenMD).second;
2685
2.68k
    };
2686
2.77k
    visitAllOverriddenMethods(Overrider.Method,
2687
2.77k
                              InitialOverriddenDefinitionCollector);
2688
2.77k
  }
2689
2690
  // If there are no overrides then 'this' is located
2691
  // in the base that defines the method.
2692
2.77k
  if (Bases.size() == 0)
2693
1.21k
    return Overrider.Offset;
2694
2695
1.56k
  CXXBasePaths Paths;
2696
1.56k
  Overrider.Method->getParent()->lookupInBases(
2697
3.75k
      [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2698
3.75k
        return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2699
3.75k
      },
2700
1.56k
      Paths);
2701
2702
  // This will hold the smallest this offset among overridees of MD.
2703
  // This implies that an offset of a non-virtual base will dominate an offset
2704
  // of a virtual base to potentially reduce the number of thunks required
2705
  // in the derived classes that inherit this method.
2706
1.56k
  CharUnits Ret;
2707
1.56k
  bool First = true;
2708
2709
1.56k
  const ASTRecordLayout &OverriderRDLayout =
2710
1.56k
      Context.getASTRecordLayout(Overrider.Method->getParent());
2711
2.14k
  for (const CXXBasePath &Path : Paths) {
2712
2.14k
    CharUnits ThisOffset = Overrider.Offset;
2713
2.14k
    CharUnits LastVBaseOffset;
2714
2715
    // For each path from the overrider to the parents of the overridden
2716
    // methods, traverse the path, calculating the this offset in the most
2717
    // derived class.
2718
3.23k
    for (const CXXBasePathElement &Element : Path) {
2719
3.23k
      QualType CurTy = Element.Base->getType();
2720
3.23k
      const CXXRecordDecl *PrevRD = Element.Class,
2721
3.23k
                          *CurRD = CurTy->getAsCXXRecordDecl();
2722
3.23k
      const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2723
2724
3.23k
      if (Element.Base->isVirtual()) {
2725
        // The interesting things begin when you have virtual inheritance.
2726
        // The final overrider will use a static adjustment equal to the offset
2727
        // of the vbase in the final overrider class.
2728
        // For example, if the final overrider is in a vbase B of the most
2729
        // derived class and it overrides a method of the B's own vbase A,
2730
        // it uses A* as "this".  In its prologue, it can cast A* to B* with
2731
        // a static offset.  This offset is used regardless of the actual
2732
        // offset of A from B in the most derived class, requiring an
2733
        // this-adjusting thunk in the vftable if A and B are laid out
2734
        // differently in the most derived class.
2735
1.07k
        LastVBaseOffset = ThisOffset =
2736
1.07k
            Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2737
2.15k
      } else {
2738
2.15k
        ThisOffset += Layout.getBaseClassOffset(CurRD);
2739
2.15k
      }
2740
3.23k
    }
2741
2742
2.14k
    if (isa<CXXDestructorDecl>(Overrider.Method)) {
2743
853
      if (LastVBaseOffset.isZero()) {
2744
        // If a "Base" class has at least one non-virtual base with a virtual
2745
        // destructor, the "Base" virtual destructor will take the address
2746
        // of the "Base" subobject as the "this" argument.
2747
356
        ThisOffset = Overrider.Offset;
2748
497
      } else {
2749
        // A virtual destructor of a virtual base takes the address of the
2750
        // virtual base subobject as the "this" argument.
2751
497
        ThisOffset = LastVBaseOffset;
2752
497
      }
2753
853
    }
2754
2755
2.14k
    if (Ret > ThisOffset || 
First2.12k
) {
2756
1.57k
      First = false;
2757
1.57k
      Ret = ThisOffset;
2758
1.57k
    }
2759
2.14k
  }
2760
2761
1.56k
  assert(!First && "Method not found in the given subobject?");
2762
1.56k
  return Ret;
2763
1.56k
}
2764
2765
// Things are getting even more complex when the "this" adjustment has to
2766
// use a dynamic offset instead of a static one, or even two dynamic offsets.
2767
// This is sometimes required when a virtual call happens in the middle of
2768
// a non-most-derived class construction or destruction.
2769
//
2770
// Let's take a look at the following example:
2771
//   struct A {
2772
//     virtual void f();
2773
//   };
2774
//
2775
//   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
2776
//
2777
//   struct B : virtual A {
2778
//     virtual void f();
2779
//     B() {
2780
//       foo(this);
2781
//     }
2782
//   };
2783
//
2784
//   struct C : virtual B {
2785
//     virtual void f();
2786
//   };
2787
//
2788
// Record layouts for these classes are:
2789
//   struct A
2790
//   0 |   (A vftable pointer)
2791
//
2792
//   struct B
2793
//   0 |   (B vbtable pointer)
2794
//   4 |   (vtordisp for vbase A)
2795
//   8 |   struct A (virtual base)
2796
//   8 |     (A vftable pointer)
2797
//
2798
//   struct C
2799
//   0 |   (C vbtable pointer)
2800
//   4 |   (vtordisp for vbase A)
2801
//   8 |   struct A (virtual base)  // A precedes B!
2802
//   8 |     (A vftable pointer)
2803
//  12 |   struct B (virtual base)
2804
//  12 |     (B vbtable pointer)
2805
//
2806
// When one creates an object of type C, the C constructor:
2807
// - initializes all the vbptrs, then
2808
// - calls the A subobject constructor
2809
//   (initializes A's vfptr with an address of A vftable), then
2810
// - calls the B subobject constructor
2811
//   (initializes A's vfptr with an address of B vftable and vtordisp for A),
2812
//   that in turn calls foo(), then
2813
// - initializes A's vfptr with an address of C vftable and zeroes out the
2814
//   vtordisp
2815
//   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2816
//   without vtordisp thunks?
2817
//   FIXME: how are vtordisp handled in the presence of nooverride/final?
2818
//
2819
// When foo() is called, an object with a layout of class C has a vftable
2820
// referencing B::f() that assumes a B layout, so the "this" adjustments are
2821
// incorrect, unless an extra adjustment is done.  This adjustment is called
2822
// "vtordisp adjustment".  Vtordisp basically holds the difference between the
2823
// actual location of a vbase in the layout class and the location assumed by
2824
// the vftable of the class being constructed/destructed.  Vtordisp is only
2825
// needed if "this" escapes a
2826
// structor (or we can't prove otherwise).
2827
// [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2828
// estimation of a dynamic adjustment]
2829
//
2830
// foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2831
// so it just passes that pointer as "this" in a virtual call.
2832
// If there was no vtordisp, that would just dispatch to B::f().
2833
// However, B::f() assumes B+8 is passed as "this",
2834
// yet the pointer foo() passes along is B-4 (i.e. C+8).
2835
// An extra adjustment is needed, so we emit a thunk into the B vftable.
2836
// This vtordisp thunk subtracts the value of vtordisp
2837
// from the "this" argument (-12) before making a tailcall to B::f().
2838
//
2839
// Let's consider an even more complex example:
2840
//   struct D : virtual B, virtual C {
2841
//     D() {
2842
//       foo(this);
2843
//     }
2844
//   };
2845
//
2846
//   struct D
2847
//   0 |   (D vbtable pointer)
2848
//   4 |   (vtordisp for vbase A)
2849
//   8 |   struct A (virtual base)  // A precedes both B and C!
2850
//   8 |     (A vftable pointer)
2851
//  12 |   struct B (virtual base)  // B precedes C!
2852
//  12 |     (B vbtable pointer)
2853
//  16 |   struct C (virtual base)
2854
//  16 |     (C vbtable pointer)
2855
//
2856
// When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2857
// to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
2858
// passes along A, which is C-8.  The A vtordisp holds
2859
//   "D.vbptr[index_of_A] - offset_of_A_in_D"
2860
// and we statically know offset_of_A_in_D, so can get a pointer to D.
2861
// When we know it, we can make an extra vbtable lookup to locate the C vbase
2862
// and one extra static adjustment to calculate the expected value of C+8.
2863
void VFTableBuilder::CalculateVtordispAdjustment(
2864
    FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2865
696
    ThisAdjustment &TA) {
2866
696
  const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2867
696
      MostDerivedClassLayout.getVBaseOffsetsMap();
2868
696
  const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2869
696
      VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2870
696
  assert(VBaseMapEntry != VBaseMap.end());
2871
2872
  // If there's no vtordisp or the final overrider is defined in the same vbase
2873
  // as the initial declaration, we don't need any vtordisp adjustment.
2874
696
  if (!VBaseMapEntry->second.hasVtorDisp() ||
2875
696
      
Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()399
)
2876
313
    return;
2877
2878
  // OK, now we know we need to use a vtordisp thunk.
2879
  // The implicit vtordisp field is located right before the vbase.
2880
383
  CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2881
383
  TA.Virtual.Microsoft.VtordispOffset =
2882
383
      (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2883
2884
  // A simple vtordisp thunk will suffice if the final overrider is defined
2885
  // in either the most derived class or its non-virtual base.
2886
383
  if (Overrider.Method->getParent() == MostDerivedClass ||
2887
383
      
!Overrider.VirtualBase70
)
2888
339
    return;
2889
2890
  // Otherwise, we need to do use the dynamic offset of the final overrider
2891
  // in order to get "this" adjustment right.
2892
44
  TA.Virtual.Microsoft.VBPtrOffset =
2893
44
      (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2894
44
       MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2895
44
  TA.Virtual.Microsoft.VBOffsetOffset =
2896
44
      Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2897
44
      VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2898
2899
44
  TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2900
44
}
2901
2902
static void GroupNewVirtualOverloads(
2903
    const CXXRecordDecl *RD,
2904
2.28k
    SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2905
  // Put the virtual methods into VirtualMethods in the proper order:
2906
  // 1) Group overloads by declaration name. New groups are added to the
2907
  //    vftable in the order of their first declarations in this class
2908
  //    (including overrides, non-virtual methods and any other named decl that
2909
  //    might be nested within the class).
2910
  // 2) In each group, new overloads appear in the reverse order of declaration.
2911
2.28k
  typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2912
2.28k
  SmallVector<MethodGroup, 10> Groups;
2913
2.28k
  typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2914
2.28k
  VisitedGroupIndicesTy VisitedGroupIndices;
2915
16.3k
  for (const auto *D : RD->decls()) {
2916
16.3k
    const auto *ND = dyn_cast<NamedDecl>(D);
2917
16.3k
    if (!ND)
2918
205
      continue;
2919
16.1k
    VisitedGroupIndicesTy::iterator J;
2920
16.1k
    bool Inserted;
2921
16.1k
    std::tie(J, Inserted) = VisitedGroupIndices.insert(
2922
16.1k
        std::make_pair(ND->getDeclName(), Groups.size()));
2923
16.1k
    if (Inserted)
2924
11.4k
      Groups.push_back(MethodGroup());
2925
16.1k
    if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2926
13.4k
      if (MicrosoftVTableContext::hasVtableSlot(MD))
2927
2.77k
        Groups[J->second].push_back(MD->getCanonicalDecl());
2928
16.1k
  }
2929
2930
2.28k
  for (const MethodGroup &Group : Groups)
2931
11.4k
    VirtualMethods.append(Group.rbegin(), Group.rend());
2932
2.28k
}
2933
2934
997
static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2935
1.53k
  for (const auto &B : RD->bases()) {
2936
1.53k
    if (B.isVirtual() && 
B.getType()->getAsCXXRecordDecl() == Base412
)
2937
322
      return true;
2938
1.53k
  }
2939
675
  return false;
2940
997
}
2941
2942
void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2943
                                const CXXRecordDecl *LastVBase,
2944
2.28k
                                BasesSetVectorTy &VisitedBases) {
2945
2.28k
  const CXXRecordDecl *RD = Base.getBase();
2946
2.28k
  if (!RD->isPolymorphic())
2947
0
    return;
2948
2949
2.28k
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2950
2951
  // See if this class expands a vftable of the base we look at, which is either
2952
  // the one defined by the vfptr base path or the primary base of the current
2953
  // class.
2954
2.28k
  const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2955
2.28k
  CharUnits NextBaseOffset;
2956
2.28k
  if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
2957
997
    NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
2958
997
    if (isDirectVBase(NextBase, RD)) {
2959
322
      NextLastVBase = NextBase;
2960
322
      NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2961
675
    } else {
2962
675
      NextBaseOffset =
2963
675
          Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2964
675
    }
2965
1.28k
  } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2966
0
    assert(!Layout.isPrimaryBaseVirtual() &&
2967
0
           "No primary virtual bases in this ABI");
2968
0
    NextBase = PrimaryBase;
2969
0
    NextBaseOffset = Base.getBaseOffset();
2970
0
  }
2971
2972
2.28k
  if (NextBase) {
2973
997
    AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2974
997
               NextLastVBase, VisitedBases);
2975
997
    if (!VisitedBases.insert(NextBase))
2976
0
      llvm_unreachable("Found a duplicate primary base!");
2977
997
  }
2978
2979
2.28k
  SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2980
  // Put virtual methods in the proper order.
2981
2.28k
  GroupNewVirtualOverloads(RD, VirtualMethods);
2982
2983
  // Now go through all virtual member functions and add them to the current
2984
  // vftable. This is done by
2985
  //  - replacing overridden methods in their existing slots, as long as they
2986
  //    don't require return adjustment; calculating This adjustment if needed.
2987
  //  - adding new slots for methods of the current base not present in any
2988
  //    sub-bases;
2989
  //  - adding new slots for methods that require Return adjustment.
2990
  // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2991
2.77k
  for (const CXXMethodDecl *MD : VirtualMethods) {
2992
2.77k
    FinalOverriders::OverriderInfo FinalOverrider =
2993
2.77k
        Overriders.getOverrider(MD, Base.getBaseOffset());
2994
2.77k
    const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2995
2.77k
    const CXXMethodDecl *OverriddenMD =
2996
2.77k
        FindNearestOverriddenMethod(MD, VisitedBases);
2997
2998
2.77k
    ThisAdjustment ThisAdjustmentOffset;
2999
2.77k
    bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
3000
2.77k
    CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3001
2.77k
    ThisAdjustmentOffset.NonVirtual =
3002
2.77k
        (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3003
2.77k
    if ((OverriddenMD || 
FinalOverriderMD != MD2.00k
) &&
3004
2.77k
        
WhichVFPtr.getVBaseWithVPtr()1.41k
)
3005
696
      CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3006
696
                                  ThisAdjustmentOffset);
3007
3008
2.77k
    unsigned VBIndex =
3009
2.77k
        LastVBase ? 
VTables.getVBTableIndex(MostDerivedClass, LastVBase)555
:
02.22k
;
3010
3011
2.77k
    if (OverriddenMD) {
3012
      // If MD overrides anything in this vftable, we need to update the
3013
      // entries.
3014
773
      MethodInfoMapTy::iterator OverriddenMDIterator =
3015
773
          MethodInfoMap.find(OverriddenMD);
3016
3017
      // If the overridden method went to a different vftable, skip it.
3018
773
      if (OverriddenMDIterator == MethodInfoMap.end())
3019
32
        continue;
3020
3021
741
      MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3022
3023
741
      VBIndex = OverriddenMethodInfo.VBTableIndex;
3024
3025
      // Let's check if the overrider requires any return adjustments.
3026
      // We must create a new slot if the MD's return type is not trivially
3027
      // convertible to the OverriddenMD's one.
3028
      // Once a chain of method overrides adds a return adjusting vftable slot,
3029
      // all subsequent overrides will also use an extra method slot.
3030
741
      ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3031
741
                                  Context, MD, OverriddenMD).isEmpty() ||
3032
741
                             
OverriddenMethodInfo.UsesExtraSlot675
;
3033
3034
741
      if (!ReturnAdjustingThunk) {
3035
        // No return adjustment needed - just replace the overridden method info
3036
        // with the current info.
3037
666
        MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3038
666
        MethodInfoMap.erase(OverriddenMDIterator);
3039
3040
666
        assert(!MethodInfoMap.count(MD) &&
3041
666
               "Should not have method info for this method yet!");
3042
666
        MethodInfoMap.insert(std::make_pair(MD, MI));
3043
666
        continue;
3044
666
      }
3045
3046
      // In case we need a return adjustment, we'll add a new slot for
3047
      // the overrider. Mark the overridden method as shadowed by the new slot.
3048
75
      OverriddenMethodInfo.Shadowed = true;
3049
3050
      // Force a special name mangling for a return-adjusting thunk
3051
      // unless the method is the final overrider without this adjustment.
3052
75
      ForceReturnAdjustmentMangling =
3053
75
          !(MD == FinalOverriderMD && 
ThisAdjustmentOffset.isEmpty()61
);
3054
2.00k
    } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3055
2.00k
               
MD->size_overridden_methods()1.86k
) {
3056
      // Skip methods that don't belong to the vftable of the current class,
3057
      // e.g. each method that wasn't seen in any of the visited sub-bases
3058
      // but overrides multiple methods of other sub-bases.
3059
238
      continue;
3060
238
    }
3061
3062
    // If we got here, MD is a method not seen in any of the sub-bases or
3063
    // it requires return adjustment. Insert the method info for this method.
3064
1.84k
    MethodInfo MI(VBIndex,
3065
1.84k
                  HasRTTIComponent ? 
Components.size() - 1613
:
Components.size()1.22k
,
3066
1.84k
                  ReturnAdjustingThunk);
3067
3068
1.84k
    assert(!MethodInfoMap.count(MD) &&
3069
1.84k
           "Should not have method info for this method yet!");
3070
1.84k
    MethodInfoMap.insert(std::make_pair(MD, MI));
3071
3072
    // Check if this overrider needs a return adjustment.
3073
    // We don't want to do this for pure virtual member functions.
3074
1.84k
    BaseOffset ReturnAdjustmentOffset;
3075
1.84k
    ReturnAdjustment ReturnAdjustment;
3076
1.84k
    if (!FinalOverriderMD->isPure()) {
3077
1.80k
      ReturnAdjustmentOffset =
3078
1.80k
          ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3079
1.80k
    }
3080
1.84k
    if (!ReturnAdjustmentOffset.isEmpty()) {
3081
66
      ForceReturnAdjustmentMangling = true;
3082
66
      ReturnAdjustment.NonVirtual =
3083
66
          ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3084
66
      if (ReturnAdjustmentOffset.VirtualBase) {
3085
36
        const ASTRecordLayout &DerivedLayout =
3086
36
            Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3087
36
        ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3088
36
            DerivedLayout.getVBPtrOffset().getQuantity();
3089
36
        ReturnAdjustment.Virtual.Microsoft.VBIndex =
3090
36
            VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3091
36
                                    ReturnAdjustmentOffset.VirtualBase);
3092
36
      }
3093
66
    }
3094
3095
1.84k
    AddMethod(FinalOverriderMD,
3096
1.84k
              ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3097
1.84k
                        ForceReturnAdjustmentMangling ? 
MD91
:
nullptr1.75k
));
3098
1.84k
  }
3099
2.28k
}
3100
3101
394
static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3102
485
  for (const CXXRecordDecl *Elem : llvm::reverse(Path)) {
3103
485
    Out << "'";
3104
485
    Elem->printQualifiedName(Out);
3105
485
    Out << "' in ";
3106
485
  }
3107
394
}
3108
3109
static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3110
366
                                         bool ContinueFirstLine) {
3111
366
  const ReturnAdjustment &R = TI.Return;
3112
366
  bool Multiline = false;
3113
366
  const char *LinePrefix = "\n       ";
3114
366
  if (!R.isEmpty() || 
TI.Method290
) {
3115
104
    if (!ContinueFirstLine)
3116
52
      Out << LinePrefix;
3117
104
    Out << "[return adjustment (to type '"
3118
104
        << TI.Method->getReturnType().getCanonicalType() << "'): ";
3119
104
    if (R.Virtual.Microsoft.VBPtrOffset)
3120
2
      Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3121
104
    if (R.Virtual.Microsoft.VBIndex)
3122
34
      Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3123
104
    Out << R.NonVirtual << " non-virtual]";
3124
104
    Multiline = true;
3125
104
  }
3126
3127
366
  const ThisAdjustment &T = TI.This;
3128
366
  if (!T.isEmpty()) {
3129
300
    if (Multiline || 
!ContinueFirstLine262
)
3130
169
      Out << LinePrefix;
3131
300
    Out << "[this adjustment: ";
3132
300
    if (!TI.This.Virtual.isEmpty()) {
3133
210
      assert(T.Virtual.Microsoft.VtordispOffset < 0);
3134
210
      Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3135
210
      if (T.Virtual.Microsoft.VBPtrOffset) {
3136
40
        Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3137
40
            << " to the left,";
3138
40
        assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3139
40
        Out << LinePrefix << " vboffset at "
3140
40
            << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3141
40
      }
3142
210
    }
3143
300
    Out << T.NonVirtual << " non-virtual]";
3144
300
  }
3145
366
}
3146
3147
394
void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3148
394
  Out << "VFTable for ";
3149
394
  PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3150
394
  Out << "'";
3151
394
  MostDerivedClass->printQualifiedName(Out);
3152
394
  Out << "' (" << Components.size()
3153
394
      << (Components.size() == 1 ? 
" entry"137
:
" entries"257
) << ").\n";
3154
3155
1.12k
  for (unsigned I = 0, E = Components.size(); I != E; 
++I733
) {
3156
733
    Out << llvm::format("%4d | ", I);
3157
3158
733
    const VTableComponent &Component = Components[I];
3159
3160
    // Dump the component.
3161
733
    switch (Component.getKind()) {
3162
0
    case VTableComponent::CK_RTTI:
3163
0
      Component.getRTTIDecl()->printQualifiedName(Out);
3164
0
      Out << " RTTI";
3165
0
      break;
3166
3167
634
    case VTableComponent::CK_FunctionPointer: {
3168
634
      const CXXMethodDecl *MD = Component.getFunctionDecl();
3169
3170
      // FIXME: Figure out how to print the real thunk type, since they can
3171
      // differ in the return type.
3172
634
      std::string Str = PredefinedExpr::ComputeName(
3173
634
          PredefinedExpr::PrettyFunctionNoVirtual, MD);
3174
634
      Out << Str;
3175
634
      if (MD->isPure())
3176
5
        Out << " [pure]";
3177
3178
634
      if (MD->isDeleted())
3179
1
        Out << " [deleted]";
3180
3181
634
      ThunkInfo Thunk = VTableThunks.lookup(I);
3182
634
      if (!Thunk.isEmpty())
3183
119
        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3184
3185
634
      break;
3186
0
    }
3187
3188
99
    case VTableComponent::CK_DeletingDtorPointer: {
3189
99
      const CXXDestructorDecl *DD = Component.getDestructorDecl();
3190
3191
99
      DD->printQualifiedName(Out);
3192
99
      Out << "() [scalar deleting]";
3193
3194
99
      if (DD->isPure())
3195
0
        Out << " [pure]";
3196
3197
99
      ThunkInfo Thunk = VTableThunks.lookup(I);
3198
99
      if (!Thunk.isEmpty()) {
3199
64
        assert(Thunk.Return.isEmpty() &&
3200
64
               "No return adjustment needed for destructors!");
3201
64
        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3202
64
      }
3203
3204
99
      break;
3205
99
    }
3206
3207
99
    default:
3208
0
      DiagnosticsEngine &Diags = Context.getDiagnostics();
3209
0
      unsigned DiagID = Diags.getCustomDiagID(
3210
0
          DiagnosticsEngine::Error,
3211
0
          "Unexpected vftable component type %0 for component number %1");
3212
0
      Diags.Report(MostDerivedClass->getLocation(), DiagID)
3213
0
          << I << Component.getKind();
3214
733
    }
3215
3216
733
    Out << '\n';
3217
733
  }
3218
3219
394
  Out << '\n';
3220
3221
394
  if (!Thunks.empty()) {
3222
    // We store the method names in a map to get a stable order.
3223
121
    std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3224
3225
164
    for (const auto &I : Thunks) {
3226
164
      const CXXMethodDecl *MD = I.first;
3227
164
      std::string MethodName = PredefinedExpr::ComputeName(
3228
164
          PredefinedExpr::PrettyFunctionNoVirtual, MD);
3229
3230
164
      MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3231
164
    }
3232
3233
164
    for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3234
164
      const std::string &MethodName = MethodNameAndDecl.first;
3235
164
      const CXXMethodDecl *MD = MethodNameAndDecl.second;
3236
3237
164
      ThunkInfoVectorTy ThunksVector = Thunks[MD];
3238
164
      llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3239
164
                                         const ThunkInfo &RHS) {
3240
        // Keep different thunks with the same adjustments in the order they
3241
        // were put into the vector.
3242
23
        return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3243
23
      });
3244
3245
164
      Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3246
164
      Out << (ThunksVector.size() == 1 ? 
" entry"149
:
" entries"15
) << ").\n";
3247
3248
347
      for (unsigned I = 0, E = ThunksVector.size(); I != E; 
++I183
) {
3249
183
        const ThunkInfo &Thunk = ThunksVector[I];
3250
3251
183
        Out << llvm::format("%4d | ", I);
3252
183
        dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3253
183
        Out << '\n';
3254
183
      }
3255
3256
164
      Out << '\n';
3257
164
    }
3258
121
  }
3259
3260
394
  Out.flush();
3261
394
}
3262
3263
static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3264
1.10k
                          ArrayRef<const CXXRecordDecl *> B) {
3265
1.10k
  for (const CXXRecordDecl *Decl : B) {
3266
310
    if (A.count(Decl))
3267
39
      return true;
3268
310
  }
3269
1.06k
  return false;
3270
1.10k
}
3271
3272
static bool rebucketPaths(VPtrInfoVector &Paths);
3273
3274
/// Produces MSVC-compatible vbtable data.  The symbols produced by this
3275
/// algorithm match those produced by MSVC 2012 and newer, which is different
3276
/// from MSVC 2010.
3277
///
3278
/// MSVC 2012 appears to minimize the vbtable names using the following
3279
/// algorithm.  First, walk the class hierarchy in the usual order, depth first,
3280
/// left to right, to find all of the subobjects which contain a vbptr field.
3281
/// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
3282
/// record with a vbptr creates an initially empty path.
3283
///
3284
/// To combine paths from child nodes, the paths are compared to check for
3285
/// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
3286
/// components in the same order.  Each group of ambiguous paths is extended by
3287
/// appending the class of the base from which it came.  If the current class
3288
/// node produced an ambiguous path, its path is extended with the current class.
3289
/// After extending paths, MSVC again checks for ambiguity, and extends any
3290
/// ambiguous path which wasn't already extended.  Because each node yields an
3291
/// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3292
/// to produce an unambiguous set of paths.
3293
///
3294
/// TODO: Presumably vftables use the same algorithm.
3295
void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3296
                                                const CXXRecordDecl *RD,
3297
1.81k
                                                VPtrInfoVector &Paths) {
3298
1.81k
  assert(Paths.empty());
3299
1.81k
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3300
3301
  // Base case: this subobject has its own vptr.
3302
1.81k
  if (ForVBTables ? 
Layout.hasOwnVBPtr()617
:
Layout.hasOwnVFPtr()1.19k
)
3303
872
    Paths.push_back(std::make_unique<VPtrInfo>(RD));
3304
3305
  // Recursive case: get all the vbtables from our bases and remove anything
3306
  // that shares a virtual base.
3307
1.81k
  llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3308
1.81k
  for (const auto &B : RD->bases()) {
3309
1.61k
    const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3310
1.61k
    if (B.isVirtual() && 
VBasesSeen.count(Base)706
)
3311
52
      continue;
3312
3313
1.56k
    if (!Base->isDynamicClass())
3314
241
      continue;
3315
3316
1.32k
    const VPtrInfoVector &BasePaths =
3317
1.32k
        ForVBTables ? 
enumerateVBTables(Base)520
:
getVFPtrOffsets(Base)800
;
3318
3319
1.32k
    for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3320
      // Don't include the path if it goes through a virtual base that we've
3321
      // already included.
3322
1.10k
      if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3323
39
        continue;
3324
3325
      // Copy the path and adjust it as necessary.
3326
1.06k
      auto P = std::make_unique<VPtrInfo>(*BaseInfo);
3327
3328
      // We mangle Base into the path if the path would've been ambiguous and it
3329
      // wasn't already extended with Base.
3330
1.06k
      if (P->MangledPath.empty() || 
P->MangledPath.back() != Base259
)
3331
1.02k
        P->NextBaseToMangle = Base;
3332
3333
      // Keep track of which vtable the derived class is going to extend with
3334
      // new methods or bases.  We append to either the vftable of our primary
3335
      // base, or the first non-virtual base that has a vbtable.
3336
1.06k
      if (P->ObjectWithVPtr == Base &&
3337
1.06k
          
Base == (828
ForVBTables828
?
Layout.getBaseSharingVBPtr()265
3338
828
                               : 
Layout.getPrimaryBase()563
))
3339
417
        P->ObjectWithVPtr = RD;
3340
3341
      // Keep track of the full adjustment from the MDC to this vtable.  The
3342
      // adjustment is captured by an optional vbase and a non-virtual offset.
3343
1.06k
      if (B.isVirtual())
3344
337
        P->ContainingVBases.push_back(Base);
3345
731
      else if (P->ContainingVBases.empty())
3346
632
        P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3347
3348
      // Update the full offset in the MDC.
3349
1.06k
      P->FullOffsetInMDC = P->NonVirtualOffset;
3350
1.06k
      if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3351
436
        P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3352
3353
1.06k
      Paths.push_back(std::move(P));
3354
1.06k
    }
3355
3356
1.32k
    if (B.isVirtual())
3357
473
      VBasesSeen.insert(Base);
3358
3359
    // After visiting any direct base, we've transitively visited all of its
3360
    // morally virtual bases.
3361
1.32k
    for (const auto &VB : Base->vbases())
3362
697
      VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3363
1.32k
  }
3364
3365
  // Sort the paths into buckets, and if any of them are ambiguous, extend all
3366
  // paths in ambiguous buckets.
3367
1.81k
  bool Changed = true;
3368
3.89k
  while (Changed)
3369
2.08k
    Changed = rebucketPaths(Paths);
3370
1.81k
}
3371
3372
584
static bool extendPath(VPtrInfo &P) {
3373
584
  if (P.NextBaseToMangle) {
3374
564
    P.MangledPath.push_back(P.NextBaseToMangle);
3375
564
    P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3376
564
    return true;
3377
564
  }
3378
20
  return false;
3379
584
}
3380
3381
2.08k
static bool rebucketPaths(VPtrInfoVector &Paths) {
3382
  // What we're essentially doing here is bucketing together ambiguous paths.
3383
  // Any bucket with more than one path in it gets extended by NextBase, which
3384
  // is usually the direct base of the inherited the vbptr.  This code uses a
3385
  // sorted vector to implement a multiset to form the buckets.  Note that the
3386
  // ordering is based on pointers, but it doesn't change our output order.  The
3387
  // current algorithm is designed to match MSVC 2012's names.
3388
2.08k
  llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted(
3389
2.08k
      llvm::make_pointee_range(Paths));
3390
2.08k
  llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3391
1.26k
    return LHS.MangledPath < RHS.MangledPath;
3392
1.26k
  });
3393
2.08k
  bool Changed = false;
3394
4.37k
  for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3395
    // Scan forward to find the end of the bucket.
3396
2.29k
    size_t BucketStart = I;
3397
2.59k
    do {
3398
2.59k
      ++I;
3399
2.59k
    } while (I != E &&
3400
2.59k
             PathsSorted[BucketStart].get().MangledPath ==
3401
856
                 PathsSorted[I].get().MangledPath);
3402
3403
    // If this bucket has multiple paths, extend them all.
3404
2.29k
    if (I - BucketStart > 1) {
3405
866
      for (size_t II = BucketStart; II != I; 
++II584
)
3406
584
        Changed |= extendPath(PathsSorted[II]);
3407
282
      assert(Changed && "no paths were extended to fix ambiguity");
3408
282
    }
3409
2.29k
  }
3410
2.08k
  return Changed;
3411
2.08k
}
3412
3413
823
MicrosoftVTableContext::~MicrosoftVTableContext() {}
3414
3415
namespace {
3416
typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3417
                        llvm::DenseSet<BaseSubobject>> FullPathTy;
3418
}
3419
3420
// This recursive function finds all paths from a subobject centered at
3421
// (RD, Offset) to the subobject located at IntroducingObject.
3422
static void findPathsToSubobject(ASTContext &Context,
3423
                                 const ASTRecordLayout &MostDerivedLayout,
3424
                                 const CXXRecordDecl *RD, CharUnits Offset,
3425
                                 BaseSubobject IntroducingObject,
3426
                                 FullPathTy &FullPath,
3427
2.99k
                                 std::list<FullPathTy> &Paths) {
3428
2.99k
  if (BaseSubobject(RD, Offset) == IntroducingObject) {
3429
1.32k
    Paths.push_back(FullPath);
3430
1.32k
    return;
3431
1.32k
  }
3432
3433
1.67k
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3434
3435
1.71k
  for (const CXXBaseSpecifier &BS : RD->bases()) {
3436
1.71k
    const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3437
1.71k
    CharUnits NewOffset = BS.isVirtual()
3438
1.71k
                              ? 
MostDerivedLayout.getVBaseClassOffset(Base)495
3439
1.71k
                              : 
Offset + Layout.getBaseClassOffset(Base)1.21k
;
3440
1.71k
    FullPath.insert(BaseSubobject(Base, NewOffset));
3441
1.71k
    findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3442
1.71k
                         IntroducingObject, FullPath, Paths);
3443
1.71k
    FullPath.pop_back();
3444
1.71k
  }
3445
1.67k
}
3446
3447
// Return the paths which are not subsets of other paths.
3448
1.28k
static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3449
1.32k
  FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3450
1.38k
    for (const FullPathTy &OtherPath : FullPaths) {
3451
1.38k
      if (&SpecificPath == &OtherPath)
3452
1.31k
        continue;
3453
84
      
if (77
llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) 77
{
3454
84
            return OtherPath.contains(BSO);
3455
84
          })) {
3456
16
        return true;
3457
16
      }
3458
77
    }
3459
1.30k
    return false;
3460
1.32k
  });
3461
1.28k
}
3462
3463
static CharUnits getOffsetOfFullPath(ASTContext &Context,
3464
                                     const CXXRecordDecl *RD,
3465
44
                                     const FullPathTy &FullPath) {
3466
44
  const ASTRecordLayout &MostDerivedLayout =
3467
44
      Context.getASTRecordLayout(RD);
3468
44
  CharUnits Offset = CharUnits::fromQuantity(-1);
3469
102
  for (const BaseSubobject &BSO : FullPath) {
3470
102
    const CXXRecordDecl *Base = BSO.getBase();
3471
    // The first entry in the path is always the most derived record, skip it.
3472
102
    if (Base == RD) {
3473
44
      assert(Offset.getQuantity() == -1);
3474
44
      Offset = CharUnits::Zero();
3475
44
      continue;
3476
44
    }
3477
58
    assert(Offset.getQuantity() != -1);
3478
58
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3479
    // While we know which base has to be traversed, we don't know if that base
3480
    // was a virtual base.
3481
58
    const CXXBaseSpecifier *BaseBS = std::find_if(
3482
63
        RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3483
63
          return BS.getType()->getAsCXXRecordDecl() == Base;
3484
63
        });
3485
58
    Offset = BaseBS->isVirtual() ? 
MostDerivedLayout.getVBaseClassOffset(Base)48
3486
58
                                 : 
Offset + Layout.getBaseClassOffset(Base)10
;
3487
58
    RD = Base;
3488
58
  }
3489
44
  return Offset;
3490
44
}
3491
3492
// We want to select the path which introduces the most covariant overrides.  If
3493
// two paths introduce overrides which the other path doesn't contain, issue a
3494
// diagnostic.
3495
static const FullPathTy *selectBestPath(ASTContext &Context,
3496
                                        const CXXRecordDecl *RD,
3497
                                        const VPtrInfo &Info,
3498
1.28k
                                        std::list<FullPathTy> &FullPaths) {
3499
  // Handle some easy cases first.
3500
1.28k
  if (FullPaths.empty())
3501
0
    return nullptr;
3502
1.28k
  if (FullPaths.size() == 1)
3503
1.26k
    return &FullPaths.front();
3504
3505
22
  const FullPathTy *BestPath = nullptr;
3506
22
  typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3507
22
  OverriderSetTy LastOverrides;
3508
44
  for (const FullPathTy &SpecificPath : FullPaths) {
3509
44
    assert(!SpecificPath.empty());
3510
44
    OverriderSetTy CurrentOverrides;
3511
44
    const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3512
    // Find the distance from the start of the path to the subobject with the
3513
    // VPtr.
3514
44
    CharUnits BaseOffset =
3515
44
        getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3516
44
    FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3517
280
    for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3518
280
      if (!MicrosoftVTableContext::hasVtableSlot(MD))
3519
222
        continue;
3520
58
      FinalOverriders::OverriderInfo OI =
3521
58
          Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3522
58
      const CXXMethodDecl *OverridingMethod = OI.Method;
3523
      // Only overriders which have a return adjustment introduce problematic
3524
      // thunks.
3525
58
      if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3526
58
              .isEmpty())
3527
49
        continue;
3528
      // It's possible that the overrider isn't in this path.  If so, skip it
3529
      // because this path didn't introduce it.
3530
9
      const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3531
15
      if (
llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) 9
{
3532
15
            return BSO.getBase() == OverridingParent;
3533
15
          }))
3534
0
        continue;
3535
9
      CurrentOverrides.insert(OverridingMethod);
3536
9
    }
3537
44
    OverriderSetTy NewOverrides =
3538
44
        llvm::set_difference(CurrentOverrides, LastOverrides);
3539
44
    if (NewOverrides.empty())
3540
37
      continue;
3541
7
    OverriderSetTy MissingOverrides =
3542
7
        llvm::set_difference(LastOverrides, CurrentOverrides);
3543
7
    if (MissingOverrides.empty()) {
3544
      // This path is a strict improvement over the last path, let's use it.
3545
5
      BestPath = &SpecificPath;
3546
5
      std::swap(CurrentOverrides, LastOverrides);
3547
5
    } else {
3548
      // This path introduces an overrider with a conflicting covariant thunk.
3549
2
      DiagnosticsEngine &Diags = Context.getDiagnostics();
3550
2
      const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3551
2
      const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3552
2
      Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3553
2
          << RD;
3554
2
      Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3555
2
          << CovariantMD;
3556
2
      Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3557
2
          << ConflictMD;
3558
2
    }
3559
7
  }
3560
  // Go with the path that introduced the most covariant overrides.  If there is
3561
  // no such path, pick the first path.
3562
22
  return BestPath ? 
BestPath5
:
&FullPaths.front()17
;
3563
22
}
3564
3565
static void computeFullPathsForVFTables(ASTContext &Context,
3566
                                        const CXXRecordDecl *RD,
3567
1.19k
                                        VPtrInfoVector &Paths) {
3568
1.19k
  const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3569
1.19k
  FullPathTy FullPath;
3570
1.19k
  std::list<FullPathTy> FullPaths;
3571
1.28k
  for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3572
1.28k
    findPathsToSubobject(
3573
1.28k
        Context, MostDerivedLayout, RD, CharUnits::Zero(),
3574
1.28k
        BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3575
1.28k
        FullPaths);
3576
1.28k
    FullPath.clear();
3577
1.28k
    removeRedundantPaths(FullPaths);
3578
1.28k
    Info->PathToIntroducingObject.clear();
3579
1.28k
    if (const FullPathTy *BestPath =
3580
1.28k
            selectBestPath(Context, RD, *Info, FullPaths))
3581
1.28k
      for (const BaseSubobject &BSO : *BestPath)
3582
997
        Info->PathToIntroducingObject.push_back(BSO.getBase());
3583
1.28k
    FullPaths.clear();
3584
1.28k
  }
3585
1.19k
}
3586
3587
static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3588
                                const MethodVFTableLocation &LHS,
3589
102
                                const MethodVFTableLocation &RHS) {
3590
102
  CharUnits L = LHS.VFPtrOffset;
3591
102
  CharUnits R = RHS.VFPtrOffset;
3592
102
  if (LHS.VBase)
3593
34
    L += Layout.getVBaseClassOffset(LHS.VBase);
3594
102
  if (RHS.VBase)
3595
31
    R += Layout.getVBaseClassOffset(RHS.VBase);
3596
102
  return L < R;
3597
102
}
3598
3599
void MicrosoftVTableContext::computeVTableRelatedInformation(
3600
5.38k
    const CXXRecordDecl *RD) {
3601
5.38k
  assert(RD->isDynamicClass());
3602
3603
  // Check if we've computed this information before.
3604
5.38k
  if (VFPtrLocations.count(RD))
3605
4.18k
    return;
3606
3607
1.19k
  const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3608
3609
1.19k
  {
3610
1.19k
    auto VFPtrs = std::make_unique<VPtrInfoVector>();
3611
1.19k
    computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3612
1.19k
    computeFullPathsForVFTables(Context, RD, *VFPtrs);
3613
1.19k
    VFPtrLocations[RD] = std::move(VFPtrs);
3614
1.19k
  }
3615
3616
1.19k
  MethodVFTableLocationsTy NewMethodLocations;
3617
1.28k
  for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3618
1.28k
    VFTableBuilder Builder(*this, RD, *VFPtr);
3619
3620
1.28k
    VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3621
1.28k
    assert(VFTableLayouts.count(id) == 0);
3622
1.28k
    SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3623
1.28k
        Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3624
1.28k
    VFTableLayouts[id] = std::make_unique<VTableLayout>(
3625
1.28k
        ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3626
1.28k
        EmptyAddressPointsMap);
3627
1.28k
    Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3628
3629
1.28k
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3630
1.31k
    for (const auto &Loc : Builder.vtable_locations()) {
3631
1.31k
      auto Insert = NewMethodLocations.insert(Loc);
3632
1.31k
      if (!Insert.second) {
3633
102
        const MethodVFTableLocation &NewLoc = Loc.second;
3634
102
        MethodVFTableLocation &OldLoc = Insert.first->second;
3635
102
        if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3636
3
          OldLoc = NewLoc;
3637
102
      }
3638
1.31k
    }
3639
1.28k
  }
3640
3641
1.19k
  MethodVFTableLocations.insert(NewMethodLocations.begin(),
3642
1.19k
                                NewMethodLocations.end());
3643
1.19k
  if (Context.getLangOpts().DumpVTableLayouts)
3644
288
    dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3645
1.19k
}
3646
3647
void MicrosoftVTableContext::dumpMethodLocations(
3648
    const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3649
288
    raw_ostream &Out) {
3650
  // Compute the vtable indices for all the member functions.
3651
  // Store them in a map keyed by the location so we'll get a sorted table.
3652
288
  std::map<MethodVFTableLocation, std::string> IndicesMap;
3653
288
  bool HasNonzeroOffset = false;
3654
3655
340
  for (const auto &I : NewMethods) {
3656
340
    const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3657
340
    assert(hasVtableSlot(MD));
3658
3659
340
    std::string MethodName = PredefinedExpr::ComputeName(
3660
340
        PredefinedExpr::PrettyFunctionNoVirtual, MD);
3661
3662
340
    if (isa<CXXDestructorDecl>(MD)) {
3663
71
      IndicesMap[I.second] = MethodName + " [scalar deleting]";
3664
269
    } else {
3665
269
      IndicesMap[I.second] = MethodName;
3666
269
    }
3667
3668
340
    if (!I.second.VFPtrOffset.isZero() || 
I.second.VBTableIndex != 0310
)
3669
101
      HasNonzeroOffset = true;
3670
340
  }
3671
3672
  // Print the vtable indices for all the member functions.
3673
288
  if (!IndicesMap.empty()) {
3674
239
    Out << "VFTable indices for ";
3675
239
    Out << "'";
3676
239
    RD->printQualifiedName(Out);
3677
239
    Out << "' (" << IndicesMap.size()
3678
239
        << (IndicesMap.size() == 1 ? 
" entry"162
:
" entries"77
) << ").\n";
3679
3680
239
    CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3681
239
    uint64_t LastVBIndex = 0;
3682
340
    for (const auto &I : IndicesMap) {
3683
340
      CharUnits VFPtrOffset = I.first.VFPtrOffset;
3684
340
      uint64_t VBIndex = I.first.VBTableIndex;
3685
340
      if (HasNonzeroOffset &&
3686
340
          
(110
VFPtrOffset != LastVFPtrOffset110
||
VBIndex != LastVBIndex19
)) {
3687
96
        assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3688
96
        Out << " -- accessible via ";
3689
96
        if (VBIndex)
3690
65
          Out << "vbtable index " << VBIndex << ", ";
3691
96
        Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3692
96
        LastVFPtrOffset = VFPtrOffset;
3693
96
        LastVBIndex = VBIndex;
3694
96
      }
3695
3696
340
      uint64_t VTableIndex = I.first.Index;
3697
340
      const std::string &MethodName = I.second;
3698
340
      Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3699
340
    }
3700
239
    Out << '\n';
3701
239
  }
3702
3703
288
  Out.flush();
3704
288
}
3705
3706
const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3707
3.14k
    const CXXRecordDecl *RD) {
3708
3.14k
  VirtualBaseInfo *VBI;
3709
3710
3.14k
  {
3711
    // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
3712
    // as it may be modified and rehashed under us.
3713
3.14k
    std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3714
3.14k
    if (Entry)
3715
2.53k
      return *Entry;
3716
617
    Entry = std::make_unique<VirtualBaseInfo>();
3717
617
    VBI = Entry.get();
3718
617
  }
3719
3720
0
  computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3721
3722
  // First, see if the Derived class shared the vbptr with a non-virtual base.
3723
617
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3724
617
  if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3725
    // If the Derived class shares the vbptr with a non-virtual base, the shared
3726
    // virtual bases come first so that the layout is the same.
3727
139
    const VirtualBaseInfo &BaseInfo =
3728
139
        computeVBTableRelatedInformation(VBPtrBase);
3729
139
    VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3730
139
                               BaseInfo.VBTableIndices.end());
3731
139
  }
3732
3733
  // New vbases are added to the end of the vbtable.
3734
  // Skip the self entry and vbases visited in the non-virtual base, if any.
3735
617
  unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3736
618
  for (const auto &VB : RD->vbases()) {
3737
618
    const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3738
618
    if (!VBI->VBTableIndices.count(CurVBase))
3739
450
      VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3740
618
  }
3741
3742
617
  return *VBI;
3743
3.14k
}
3744
3745
unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3746
2.11k
                                                 const CXXRecordDecl *VBase) {
3747
2.11k
  const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3748
2.11k
  assert(VBInfo.VBTableIndices.count(VBase));
3749
2.11k
  return VBInfo.VBTableIndices.find(VBase)->second;
3750
2.11k
}
3751
3752
const VPtrInfoVector &
3753
893
MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3754
893
  return computeVBTableRelatedInformation(RD).VBPtrPaths;
3755
893
}
3756
3757
const VPtrInfoVector &
3758
3.02k
MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3759
3.02k
  computeVTableRelatedInformation(RD);
3760
3761
3.02k
  assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3762
3.02k
  return *VFPtrLocations[RD];
3763
3.02k
}
3764
3765
const VTableLayout &
3766
MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3767
1.64k
                                         CharUnits VFPtrOffset) {
3768
1.64k
  computeVTableRelatedInformation(RD);
3769
3770
1.64k
  VFTableIdTy id(RD, VFPtrOffset);
3771
1.64k
  assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3772
1.64k
  return *VFTableLayouts[id];
3773
1.64k
}
3774
3775
MethodVFTableLocation
3776
7.92k
MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3777
7.92k
  assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3778
7.92k
         "Only use this method for virtual methods or dtors");
3779
7.92k
  if (isa<CXXDestructorDecl>(GD.getDecl()))
3780
4.48k
    assert(GD.getDtorType() == Dtor_Deleting);
3781
3782
7.92k
  GD = GD.getCanonicalDecl();
3783
3784
7.92k
  MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3785
7.92k
  if (I != MethodVFTableLocations.end())
3786
7.65k
    return I->second;
3787
3788
275
  const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3789
3790
275
  computeVTableRelatedInformation(RD);
3791
3792
275
  I = MethodVFTableLocations.find(GD);
3793
275
  assert(I != MethodVFTableLocations.end() && "Did not find index!");
3794
275
  return I->second;
3795
275
}