Coverage Report

Created: 2022-07-16 07:03

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/CodeGen/CGExprCXX.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code dealing with code generation of C++ expressions
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "CGCUDARuntime.h"
14
#include "CGCXXABI.h"
15
#include "CGDebugInfo.h"
16
#include "CGObjCRuntime.h"
17
#include "CodeGenFunction.h"
18
#include "ConstantEmitter.h"
19
#include "TargetInfo.h"
20
#include "clang/Basic/CodeGenOptions.h"
21
#include "clang/CodeGen/CGFunctionInfo.h"
22
#include "llvm/IR/Intrinsics.h"
23
24
using namespace clang;
25
using namespace CodeGen;
26
27
namespace {
28
struct MemberCallInfo {
29
  RequiredArgs ReqArgs;
30
  // Number of prefix arguments for the call. Ignores the `this` pointer.
31
  unsigned PrefixSize;
32
};
33
}
34
35
static MemberCallInfo
36
commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37
                                  llvm::Value *This, llvm::Value *ImplicitParam,
38
                                  QualType ImplicitParamTy, const CallExpr *CE,
39
106k
                                  CallArgList &Args, CallArgList *RtlArgs) {
40
106k
  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41
106k
         isa<CXXOperatorCallExpr>(CE));
42
0
  assert(MD->isInstance() &&
43
106k
         "Trying to emit a member or operator call expr on a static method!");
44
45
  // Push the this ptr.
46
0
  const CXXRecordDecl *RD =
47
106k
      CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48
106k
  Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49
50
  // If there is an implicit parameter (e.g. VTT), emit it.
51
106k
  if (ImplicitParam) {
52
199
    Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53
199
  }
54
55
106k
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56
106k
  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57
106k
  unsigned PrefixSize = Args.size() - 1;
58
59
  // And the rest of the call args.
60
106k
  if (RtlArgs) {
61
    // Special case: if the caller emitted the arguments right-to-left already
62
    // (prior to emitting the *this argument), we're done. This happens for
63
    // assignment operators.
64
947
    Args.addFrom(*RtlArgs);
65
105k
  } else if (CE) {
66
    // Special case: skip first argument of CXXOperatorCall (it is "this").
67
75.4k
    unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 
17.94k
:
067.4k
;
68
75.4k
    CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69
75.4k
                     CE->getDirectCallee());
70
75.4k
  } else {
71
30.0k
    assert(
72
30.0k
        FPT->getNumParams() == 0 &&
73
30.0k
        "No CallExpr specified for function with non-zero number of arguments");
74
30.0k
  }
75
0
  return {required, PrefixSize};
76
106k
}
77
78
RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79
    const CXXMethodDecl *MD, const CGCallee &Callee,
80
    ReturnValueSlot ReturnValue,
81
    llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82
76.1k
    const CallExpr *CE, CallArgList *RtlArgs) {
83
76.1k
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84
76.1k
  CallArgList Args;
85
76.1k
  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86
76.1k
      *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87
76.1k
  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88
76.1k
      Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89
76.1k
  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90
76.1k
                  CE && CE == MustTailCall,
91
76.1k
                  CE ? CE->getExprLoc() : 
SourceLocation()0
);
92
76.1k
}
93
94
RValue CodeGenFunction::EmitCXXDestructorCall(
95
    GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
96
30.2k
    llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
97
30.2k
  const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
98
99
30.2k
  assert(!ThisTy.isNull());
100
0
  assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
101
30.2k
         "Pointer/Object mixup");
102
103
0
  LangAS SrcAS = ThisTy.getAddressSpace();
104
30.2k
  LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
105
30.2k
  if (SrcAS != DstAS) {
106
2
    QualType DstTy = DtorDecl->getThisType();
107
2
    llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
108
2
    This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
109
2
                                                 NewType);
110
2
  }
111
112
30.2k
  CallArgList Args;
113
30.2k
  commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
114
30.2k
                                    ImplicitParamTy, CE, Args, nullptr);
115
30.2k
  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
116
30.2k
                  ReturnValueSlot(), Args, nullptr, CE && 
CE == MustTailCall198
,
117
30.2k
                  CE ? 
CE->getExprLoc()198
:
SourceLocation{}30.0k
);
118
30.2k
}
119
120
RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
121
195
                                            const CXXPseudoDestructorExpr *E) {
122
195
  QualType DestroyedType = E->getDestroyedType();
123
195
  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
124
    // Automatic Reference Counting:
125
    //   If the pseudo-expression names a retainable object with weak or
126
    //   strong lifetime, the object shall be released.
127
4
    Expr *BaseExpr = E->getBase();
128
4
    Address BaseValue = Address::invalid();
129
4
    Qualifiers BaseQuals;
130
131
    // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
132
4
    if (E->isArrow()) {
133
2
      BaseValue = EmitPointerWithAlignment(BaseExpr);
134
2
      const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
135
2
      BaseQuals = PTy->getPointeeType().getQualifiers();
136
2
    } else {
137
2
      LValue BaseLV = EmitLValue(BaseExpr);
138
2
      BaseValue = BaseLV.getAddress(*this);
139
2
      QualType BaseTy = BaseExpr->getType();
140
2
      BaseQuals = BaseTy.getQualifiers();
141
2
    }
142
143
4
    switch (DestroyedType.getObjCLifetime()) {
144
0
    case Qualifiers::OCL_None:
145
0
    case Qualifiers::OCL_ExplicitNone:
146
0
    case Qualifiers::OCL_Autoreleasing:
147
0
      break;
148
149
2
    case Qualifiers::OCL_Strong:
150
2
      EmitARCRelease(Builder.CreateLoad(BaseValue,
151
2
                        DestroyedType.isVolatileQualified()),
152
2
                     ARCPreciseLifetime);
153
2
      break;
154
155
2
    case Qualifiers::OCL_Weak:
156
2
      EmitARCDestroyWeak(BaseValue);
157
2
      break;
158
4
    }
159
191
  } else {
160
    // C++ [expr.pseudo]p1:
161
    //   The result shall only be used as the operand for the function call
162
    //   operator (), and the result of such a call has type void. The only
163
    //   effect is the evaluation of the postfix-expression before the dot or
164
    //   arrow.
165
191
    EmitIgnoredExpr(E->getBase());
166
191
  }
167
168
195
  return RValue::get(nullptr);
169
195
}
170
171
494
static CXXRecordDecl *getCXXRecord(const Expr *E) {
172
494
  QualType T = E->getType();
173
494
  if (const PointerType *PTy = T->getAs<PointerType>())
174
35
    T = PTy->getPointeeType();
175
494
  const RecordType *Ty = T->castAs<RecordType>();
176
494
  return cast<CXXRecordDecl>(Ty->getDecl());
177
494
}
178
179
// Note: This function also emit constructor calls to support a MSVC
180
// extensions allowing explicit constructor function call.
181
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
182
67.9k
                                              ReturnValueSlot ReturnValue) {
183
67.9k
  const Expr *callee = CE->getCallee()->IgnoreParens();
184
185
67.9k
  if (isa<BinaryOperator>(callee))
186
149
    return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
187
188
67.8k
  const MemberExpr *ME = cast<MemberExpr>(callee);
189
67.8k
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
190
191
67.8k
  if (MD->isStatic()) {
192
    // The method is static, emit it as we would a regular call.
193
0
    CGCallee callee =
194
0
        CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
195
0
    return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
196
0
                    ReturnValue);
197
0
  }
198
199
67.8k
  bool HasQualifier = ME->hasQualifier();
200
67.8k
  NestedNameSpecifier *Qualifier = HasQualifier ? 
ME->getQualifier()1.44k
:
nullptr66.3k
;
201
67.8k
  bool IsArrow = ME->isArrow();
202
67.8k
  const Expr *Base = ME->getBase();
203
204
67.8k
  return EmitCXXMemberOrOperatorMemberCallExpr(
205
67.8k
      CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
206
67.8k
}
207
208
RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
209
    const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
210
    bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
211
79.2k
    const Expr *Base) {
212
79.2k
  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
213
214
  // Compute the object pointer.
215
79.2k
  bool CanUseVirtualCall = MD->isVirtual() && 
!HasQualifier1.39k
;
216
217
79.2k
  const CXXMethodDecl *DevirtualizedMethod = nullptr;
218
79.2k
  if (CanUseVirtualCall &&
219
79.2k
      
MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)1.35k
) {
220
422
    const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
221
422
    DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
222
422
    assert(DevirtualizedMethod);
223
0
    const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
224
422
    const Expr *Inner = Base->IgnoreParenBaseCasts();
225
422
    if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
226
422
        MD->getReturnType().getCanonicalType())
227
      // If the return types are not the same, this might be a case where more
228
      // code needs to run to compensate for it. For example, the derived
229
      // method might return a type that inherits form from the return
230
      // type of MD and has a prefix.
231
      // For now we just avoid devirtualizing these covariant cases.
232
2
      DevirtualizedMethod = nullptr;
233
420
    else if (getCXXRecord(Inner) == DevirtualizedClass)
234
      // If the class of the Inner expression is where the dynamic method
235
      // is defined, build the this pointer from it.
236
348
      Base = Inner;
237
72
    else if (getCXXRecord(Base) != DevirtualizedClass) {
238
      // If the method is defined in a class that is not the best dynamic
239
      // one or the one of the full expression, we would have to build
240
      // a derived-to-base cast to compute the correct this pointer, but
241
      // we don't have support for that yet, so do a virtual call.
242
6
      DevirtualizedMethod = nullptr;
243
6
    }
244
422
  }
245
246
0
  bool TrivialForCodegen =
247
79.2k
      MD->isTrivial() || 
(76.3k
MD->isDefaulted()76.3k
&&
MD->getParent()->isUnion()215
);
248
79.2k
  bool TrivialAssignment =
249
79.2k
      TrivialForCodegen &&
250
79.2k
      
(2.90k
MD->isCopyAssignmentOperator()2.90k
||
MD->isMoveAssignmentOperator()840
) &&
251
79.2k
      
!MD->getParent()->mayInsertExtraPadding()2.73k
;
252
253
  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
254
  // operator before the LHS.
255
79.2k
  CallArgList RtlArgStorage;
256
79.2k
  CallArgList *RtlArgs = nullptr;
257
79.2k
  LValue TrivialAssignmentRHS;
258
79.2k
  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
259
11.4k
    if (OCE->isAssignmentOp()) {
260
3.49k
      if (TrivialAssignment) {
261
2.54k
        TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
262
2.54k
      } else {
263
947
        RtlArgs = &RtlArgStorage;
264
947
        EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
265
947
                     drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
266
947
                     /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
267
947
      }
268
3.49k
    }
269
11.4k
  }
270
271
79.2k
  LValue This;
272
79.2k
  if (IsArrow) {
273
27.5k
    LValueBaseInfo BaseInfo;
274
27.5k
    TBAAAccessInfo TBAAInfo;
275
27.5k
    Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
276
27.5k
    This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
277
51.7k
  } else {
278
51.7k
    This = EmitLValue(Base);
279
51.7k
  }
280
281
79.2k
  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
282
    // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
283
    // constructing a new complete object of type Ctor.
284
12
    assert(!RtlArgs);
285
0
    assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
286
0
    CallArgList Args;
287
12
    commonEmitCXXMemberOrOperatorCall(
288
12
        *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr,
289
12
        /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
290
291
12
    EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
292
12
                           /*Delegating=*/false, This.getAddress(*this), Args,
293
12
                           AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
294
12
                           /*NewPointerIsChecked=*/false);
295
12
    return RValue::get(nullptr);
296
12
  }
297
298
79.2k
  if (TrivialForCodegen) {
299
2.89k
    if (isa<CXXDestructorDecl>(MD))
300
167
      return RValue::get(nullptr);
301
302
2.73k
    if (TrivialAssignment) {
303
      // We don't like to generate the trivial copy/move assignment operator
304
      // when it isn't necessary; just produce the proper effect here.
305
      // It's important that we use the result of EmitLValue here rather than
306
      // emitting call arguments, in order to preserve TBAA information from
307
      // the RHS.
308
2.72k
      LValue RHS = isa<CXXOperatorCallExpr>(CE)
309
2.72k
                       ? 
TrivialAssignmentRHS2.54k
310
2.72k
                       : 
EmitLValue(*CE->arg_begin())181
;
311
2.72k
      EmitAggregateAssign(This, RHS, CE->getType());
312
2.72k
      return RValue::get(This.getPointer(*this));
313
2.72k
    }
314
315
2
    assert(MD->getParent()->mayInsertExtraPadding() &&
316
2
           "unknown trivial member function");
317
2
  }
318
319
  // Compute the function type we're calling.
320
76.3k
  const CXXMethodDecl *CalleeDecl =
321
76.3k
      DevirtualizedMethod ? 
DevirtualizedMethod414
:
MD75.9k
;
322
76.3k
  const CGFunctionInfo *FInfo = nullptr;
323
76.3k
  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
324
206
    FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
325
206
        GlobalDecl(Dtor, Dtor_Complete));
326
76.1k
  else
327
76.1k
    FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
328
329
76.3k
  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
330
331
  // C++11 [class.mfct.non-static]p2:
332
  //   If a non-static member function of a class X is called for an object that
333
  //   is not of type X, or of a type derived from X, the behavior is undefined.
334
76.3k
  SourceLocation CallLoc;
335
76.3k
  ASTContext &C = getContext();
336
76.3k
  if (CE)
337
76.3k
    CallLoc = CE->getExprLoc();
338
339
76.3k
  SanitizerSet SkippedChecks;
340
76.3k
  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
341
67.4k
    auto *IOA = CMCE->getImplicitObjectArgument();
342
67.4k
    bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
343
67.4k
    if (IsImplicitObjectCXXThis)
344
24.0k
      SkippedChecks.set(SanitizerKind::Alignment, true);
345
67.4k
    if (IsImplicitObjectCXXThis || 
isa<DeclRefExpr>(IOA)43.3k
)
346
39.5k
      SkippedChecks.set(SanitizerKind::Null, true);
347
67.4k
  }
348
76.3k
  EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
349
76.3k
                This.getPointer(*this),
350
76.3k
                C.getRecordType(CalleeDecl->getParent()),
351
76.3k
                /*Alignment=*/CharUnits::Zero(), SkippedChecks);
352
353
  // C++ [class.virtual]p12:
354
  //   Explicit qualification with the scope operator (5.1) suppresses the
355
  //   virtual call mechanism.
356
  //
357
  // We also don't emit a virtual call if the base expression has a record type
358
  // because then we know what the type is.
359
76.3k
  bool UseVirtualCall = CanUseVirtualCall && 
!DevirtualizedMethod1.35k
;
360
361
76.3k
  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
362
206
    assert(CE->arg_begin() == CE->arg_end() &&
363
206
           "Destructor shouldn't have explicit parameters");
364
0
    assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
365
206
    if (UseVirtualCall) {
366
12
      CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
367
12
                                                This.getAddress(*this),
368
12
                                                cast<CXXMemberCallExpr>(CE));
369
194
    } else {
370
194
      GlobalDecl GD(Dtor, Dtor_Complete);
371
194
      CGCallee Callee;
372
194
      if (getLangOpts().AppleKext && 
Dtor->isVirtual()2
&&
HasQualifier2
)
373
2
        Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
374
192
      else if (!DevirtualizedMethod)
375
190
        Callee =
376
190
            CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
377
2
      else {
378
2
        Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
379
2
      }
380
381
194
      QualType ThisTy =
382
194
          IsArrow ? 
Base->getType()->getPointeeType()172
:
Base->getType()22
;
383
194
      EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
384
194
                            /*ImplicitParam=*/nullptr,
385
194
                            /*ImplicitParamTy=*/QualType(), CE);
386
194
    }
387
206
    return RValue::get(nullptr);
388
206
  }
389
390
  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
391
  // 'CalleeDecl' instead.
392
393
76.1k
  CGCallee Callee;
394
76.1k
  if (UseVirtualCall) {
395
933
    Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
396
75.2k
  } else {
397
75.2k
    if (SanOpts.has(SanitizerKind::CFINVCall) &&
398
75.2k
        
MD->getParent()->isDynamicClass()8
) {
399
8
      llvm::Value *VTable;
400
8
      const CXXRecordDecl *RD;
401
8
      std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
402
8
          *this, This.getAddress(*this), CalleeDecl->getParent());
403
8
      EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
404
8
    }
405
406
75.2k
    if (getLangOpts().AppleKext && 
MD->isVirtual()6
&&
HasQualifier6
)
407
6
      Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
408
75.1k
    else if (!DevirtualizedMethod)
409
74.7k
      Callee =
410
74.7k
          CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
411
412
    else {
412
412
      Callee =
413
412
          CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
414
412
                              GlobalDecl(DevirtualizedMethod));
415
412
    }
416
75.2k
  }
417
418
76.1k
  if (MD->isVirtual()) {
419
1.37k
    Address NewThisAddr =
420
1.37k
        CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
421
1.37k
            *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
422
1.37k
    This.setAddress(NewThisAddr);
423
1.37k
  }
424
425
76.1k
  return EmitCXXMemberOrOperatorCall(
426
76.1k
      CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
427
76.1k
      /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
428
76.3k
}
429
430
RValue
431
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
432
149
                                              ReturnValueSlot ReturnValue) {
433
149
  const BinaryOperator *BO =
434
149
      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
435
149
  const Expr *BaseExpr = BO->getLHS();
436
149
  const Expr *MemFnExpr = BO->getRHS();
437
438
149
  const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
439
149
  const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
440
149
  const auto *RD =
441
149
      cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
442
443
  // Emit the 'this' pointer.
444
149
  Address This = Address::invalid();
445
149
  if (BO->getOpcode() == BO_PtrMemI)
446
88
    This = EmitPointerWithAlignment(BaseExpr);
447
61
  else
448
61
    This = EmitLValue(BaseExpr).getAddress(*this);
449
450
149
  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
451
149
                QualType(MPT->getClass(), 0));
452
453
  // Get the member function pointer.
454
149
  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
455
456
  // Ask the ABI to load the callee.  Note that This is modified.
457
149
  llvm::Value *ThisPtrForCall = nullptr;
458
149
  CGCallee Callee =
459
149
    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
460
149
                                             ThisPtrForCall, MemFnPtr, MPT);
461
462
149
  CallArgList Args;
463
464
149
  QualType ThisType =
465
149
    getContext().getPointerType(getContext().getTagDeclType(RD));
466
467
  // Push the this ptr.
468
149
  Args.add(RValue::get(ThisPtrForCall), ThisType);
469
470
149
  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
471
472
  // And the rest of the call args
473
149
  EmitCallArgs(Args, FPT, E->arguments());
474
149
  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
475
149
                                                      /*PrefixSize=*/0),
476
149
                  Callee, ReturnValue, Args, nullptr, E == MustTailCall,
477
149
                  E->getExprLoc());
478
149
}
479
480
RValue
481
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
482
                                               const CXXMethodDecl *MD,
483
11.4k
                                               ReturnValueSlot ReturnValue) {
484
11.4k
  assert(MD->isInstance() &&
485
11.4k
         "Trying to emit a member call expr on a static method!");
486
0
  return EmitCXXMemberOrOperatorMemberCallExpr(
487
11.4k
      E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
488
11.4k
      /*IsArrow=*/false, E->getArg(0));
489
11.4k
}
490
491
RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
492
63
                                               ReturnValueSlot ReturnValue) {
493
63
  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
494
63
}
495
496
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
497
                                            Address DestPtr,
498
530
                                            const CXXRecordDecl *Base) {
499
530
  if (Base->isEmpty())
500
511
    return;
501
502
19
  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
503
504
19
  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
505
19
  CharUnits NVSize = Layout.getNonVirtualSize();
506
507
  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
508
  // present, they are initialized by the most derived class before calling the
509
  // constructor.
510
19
  SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
511
19
  Stores.emplace_back(CharUnits::Zero(), NVSize);
512
513
  // Each store is split by the existence of a vbptr.
514
19
  CharUnits VBPtrWidth = CGF.getPointerSize();
515
19
  std::vector<CharUnits> VBPtrOffsets =
516
19
      CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
517
19
  for (CharUnits VBPtrOffset : VBPtrOffsets) {
518
    // Stop before we hit any virtual base pointers located in virtual bases.
519
6
    if (VBPtrOffset >= NVSize)
520
2
      break;
521
4
    std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
522
4
    CharUnits LastStoreOffset = LastStore.first;
523
4
    CharUnits LastStoreSize = LastStore.second;
524
525
4
    CharUnits SplitBeforeOffset = LastStoreOffset;
526
4
    CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
527
4
    assert(!SplitBeforeSize.isNegative() && "negative store size!");
528
4
    if (!SplitBeforeSize.isZero())
529
2
      Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
530
531
4
    CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
532
4
    CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
533
4
    assert(!SplitAfterSize.isNegative() && "negative store size!");
534
4
    if (!SplitAfterSize.isZero())
535
4
      Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
536
4
  }
537
538
  // If the type contains a pointer to data member we can't memset it to zero.
539
  // Instead, create a null constant and copy it to the destination.
540
  // TODO: there are other patterns besides zero that we can usefully memset,
541
  // like -1, which happens to be the pattern used by member-pointers.
542
  // TODO: isZeroInitializable can be over-conservative in the case where a
543
  // virtual base contains a member pointer.
544
19
  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
545
19
  if (!NullConstantForBase->isNullValue()) {
546
4
    llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
547
4
        CGF.CGM.getModule(), NullConstantForBase->getType(),
548
4
        /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
549
4
        NullConstantForBase, Twine());
550
551
4
    CharUnits Align =
552
4
        std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
553
4
    NullVariable->setAlignment(Align.getAsAlign());
554
555
4
    Address SrcPtr =
556
4
        Address(CGF.EmitCastToVoidPtr(NullVariable), CGF.Int8Ty, Align);
557
558
    // Get and call the appropriate llvm.memcpy overload.
559
4
    for (std::pair<CharUnits, CharUnits> Store : Stores) {
560
4
      CharUnits StoreOffset = Store.first;
561
4
      CharUnits StoreSize = Store.second;
562
4
      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
563
4
      CGF.Builder.CreateMemCpy(
564
4
          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
565
4
          CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
566
4
          StoreSizeVal);
567
4
    }
568
569
  // Otherwise, just memset the whole thing to zero.  This is legal
570
  // because in LLVM, all default initializers (other than the ones we just
571
  // handled above) are guaranteed to have a bit pattern of all zeros.
572
15
  } else {
573
17
    for (std::pair<CharUnits, CharUnits> Store : Stores) {
574
17
      CharUnits StoreOffset = Store.first;
575
17
      CharUnits StoreSize = Store.second;
576
17
      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
577
17
      CGF.Builder.CreateMemSet(
578
17
          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
579
17
          CGF.Builder.getInt8(0), StoreSizeVal);
580
17
    }
581
15
  }
582
19
}
583
584
void
585
CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
586
66.0k
                                      AggValueSlot Dest) {
587
66.0k
  assert(!Dest.isIgnored() && "Must have a destination!");
588
0
  const CXXConstructorDecl *CD = E->getConstructor();
589
590
  // If we require zero initialization before (or instead of) calling the
591
  // constructor, as can be the case with a non-user-provided default
592
  // constructor, emit the zero initialization now, unless destination is
593
  // already zeroed.
594
66.0k
  if (E->requiresZeroInitialization() && 
!Dest.isZeroed()7.13k
) {
595
7.13k
    switch (E->getConstructionKind()) {
596
2
    case CXXConstructExpr::CK_Delegating:
597
6.60k
    case CXXConstructExpr::CK_Complete:
598
6.60k
      EmitNullInitialization(Dest.getAddress(), E->getType());
599
6.60k
      break;
600
0
    case CXXConstructExpr::CK_VirtualBase:
601
530
    case CXXConstructExpr::CK_NonVirtualBase:
602
530
      EmitNullBaseClassInitialization(*this, Dest.getAddress(),
603
530
                                      CD->getParent());
604
530
      break;
605
7.13k
    }
606
7.13k
  }
607
608
  // If this is a call to a trivial default constructor, do nothing.
609
66.0k
  if (CD->isTrivial() && 
CD->isDefaultConstructor()24.0k
)
610
7.36k
    return;
611
612
  // Elide the constructor if we're constructing from a temporary.
613
58.6k
  if (getLangOpts().ElideConstructors && 
E->isElidable()58.6k
) {
614
    // FIXME: This only handles the simplest case, where the source object
615
    //        is passed directly as the first argument to the constructor.
616
    //        This should also handle stepping though implicit casts and
617
    //        conversion sequences which involve two steps, with a
618
    //        conversion operator followed by a converting constructor.
619
13.8k
    const Expr *SrcObj = E->getArg(0);
620
13.8k
    assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
621
0
    assert(
622
13.8k
        getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
623
0
    EmitAggExpr(SrcObj, Dest);
624
13.8k
    return;
625
13.8k
  }
626
627
44.7k
  if (const ArrayType *arrayType
628
44.7k
        = getContext().getAsArrayType(E->getType())) {
629
899
    EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
630
899
                               Dest.isSanitizerChecked());
631
43.8k
  } else {
632
43.8k
    CXXCtorType Type = Ctor_Complete;
633
43.8k
    bool ForVirtualBase = false;
634
43.8k
    bool Delegating = false;
635
636
43.8k
    switch (E->getConstructionKind()) {
637
87
     case CXXConstructExpr::CK_Delegating:
638
      // We should be emitting a constructor; GlobalDecl will assert this
639
87
      Type = CurGD.getCtorType();
640
87
      Delegating = true;
641
87
      break;
642
643
35.1k
     case CXXConstructExpr::CK_Complete:
644
35.1k
      Type = Ctor_Complete;
645
35.1k
      break;
646
647
553
     case CXXConstructExpr::CK_VirtualBase:
648
553
      ForVirtualBase = true;
649
553
      LLVM_FALLTHROUGH;
650
651
8.67k
     case CXXConstructExpr::CK_NonVirtualBase:
652
8.67k
      Type = Ctor_Base;
653
43.8k
     }
654
655
     // Call the constructor.
656
43.8k
     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
657
43.8k
  }
658
44.7k
}
659
660
void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
661
62
                                                 const Expr *Exp) {
662
62
  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
663
2
    Exp = E->getSubExpr();
664
62
  assert(isa<CXXConstructExpr>(Exp) &&
665
62
         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
666
0
  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
667
62
  const CXXConstructorDecl *CD = E->getConstructor();
668
62
  RunCleanupsScope Scope(*this);
669
670
  // If we require zero initialization before (or instead of) calling the
671
  // constructor, as can be the case with a non-user-provided default
672
  // constructor, emit the zero initialization now.
673
  // FIXME. Do I still need this for a copy ctor synthesis?
674
62
  if (E->requiresZeroInitialization())
675
0
    EmitNullInitialization(Dest, E->getType());
676
677
62
  assert(!getContext().getAsConstantArrayType(E->getType())
678
62
         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
679
0
  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
680
62
}
681
682
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
683
2.30k
                                        const CXXNewExpr *E) {
684
2.30k
  if (!E->isArray())
685
1.60k
    return CharUnits::Zero();
686
687
  // No cookie is required if the operator new[] being used is the
688
  // reserved placement operator new[].
689
700
  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
690
16
    return CharUnits::Zero();
691
692
684
  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
693
700
}
694
695
static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
696
                                        const CXXNewExpr *e,
697
                                        unsigned minElements,
698
                                        llvm::Value *&numElements,
699
1.95k
                                        llvm::Value *&sizeWithoutCookie) {
700
1.95k
  QualType type = e->getAllocatedType();
701
702
1.95k
  if (!e->isArray()) {
703
1.60k
    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
704
1.60k
    sizeWithoutCookie
705
1.60k
      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
706
1.60k
    return sizeWithoutCookie;
707
1.60k
  }
708
709
  // The width of size_t.
710
350
  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
711
712
  // Figure out the cookie size.
713
350
  llvm::APInt cookieSize(sizeWidth,
714
350
                         CalculateCookiePadding(CGF, e).getQuantity());
715
716
  // Emit the array size expression.
717
  // We multiply the size of all dimensions for NumElements.
718
  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
719
350
  numElements =
720
350
    ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
721
350
  if (!numElements)
722
125
    numElements = CGF.EmitScalarExpr(*e->getArraySize());
723
350
  assert(isa<llvm::IntegerType>(numElements->getType()));
724
725
  // The number of elements can be have an arbitrary integer type;
726
  // essentially, we need to multiply it by a constant factor, add a
727
  // cookie size, and verify that the result is representable as a
728
  // size_t.  That's just a gloss, though, and it's wrong in one
729
  // important way: if the count is negative, it's an error even if
730
  // the cookie size would bring the total size >= 0.
731
0
  bool isSigned
732
350
    = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
733
350
  llvm::IntegerType *numElementsType
734
350
    = cast<llvm::IntegerType>(numElements->getType());
735
350
  unsigned numElementsWidth = numElementsType->getBitWidth();
736
737
  // Compute the constant factor.
738
350
  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
739
375
  while (const ConstantArrayType *CAT
740
350
             = CGF.getContext().getAsConstantArrayType(type)) {
741
25
    type = CAT->getElementType();
742
25
    arraySizeMultiplier *= CAT->getSize();
743
25
  }
744
745
350
  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
746
350
  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
747
350
  typeSizeMultiplier *= arraySizeMultiplier;
748
749
  // This will be a size_t.
750
350
  llvm::Value *size;
751
752
  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
753
  // Don't bloat the -O0 code.
754
350
  if (llvm::ConstantInt *numElementsC =
755
350
        dyn_cast<llvm::ConstantInt>(numElements)) {
756
225
    const llvm::APInt &count = numElementsC->getValue();
757
758
225
    bool hasAnyOverflow = false;
759
760
    // If 'count' was a negative number, it's an overflow.
761
225
    if (isSigned && 
count.isNegative()155
)
762
0
      hasAnyOverflow = true;
763
764
    // We want to do all this arithmetic in size_t.  If numElements is
765
    // wider than that, check whether it's already too big, and if so,
766
    // overflow.
767
225
    else if (numElementsWidth > sizeWidth &&
768
225
             
numElementsWidth - sizeWidth > count.countLeadingZeros()0
)
769
0
      hasAnyOverflow = true;
770
771
    // Okay, compute a count at the right width.
772
225
    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
773
774
    // If there is a brace-initializer, we cannot allocate fewer elements than
775
    // there are initializers. If we do, that's treated like an overflow.
776
225
    if (adjustedCount.ult(minElements))
777
0
      hasAnyOverflow = true;
778
779
    // Scale numElements by that.  This might overflow, but we don't
780
    // care because it only overflows if allocationSize does, too, and
781
    // if that overflows then we shouldn't use this.
782
225
    numElements = llvm::ConstantInt::get(CGF.SizeTy,
783
225
                                         adjustedCount * arraySizeMultiplier);
784
785
    // Compute the size before cookie, and track whether it overflowed.
786
225
    bool overflow;
787
225
    llvm::APInt allocationSize
788
225
      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
789
225
    hasAnyOverflow |= overflow;
790
791
    // Add in the cookie, and check whether it's overflowed.
792
225
    if (cookieSize != 0) {
793
      // Save the current size without a cookie.  This shouldn't be
794
      // used if there was overflow.
795
43
      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
796
797
43
      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
798
43
      hasAnyOverflow |= overflow;
799
43
    }
800
801
    // On overflow, produce a -1 so operator new will fail.
802
225
    if (hasAnyOverflow) {
803
0
      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
804
225
    } else {
805
225
      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
806
225
    }
807
808
  // Otherwise, we might need to use the overflow intrinsics.
809
225
  } else {
810
    // There are up to five conditions we need to test for:
811
    // 1) if isSigned, we need to check whether numElements is negative;
812
    // 2) if numElementsWidth > sizeWidth, we need to check whether
813
    //   numElements is larger than something representable in size_t;
814
    // 3) if minElements > 0, we need to check whether numElements is smaller
815
    //    than that.
816
    // 4) we need to compute
817
    //      sizeWithoutCookie := numElements * typeSizeMultiplier
818
    //    and check whether it overflows; and
819
    // 5) if we need a cookie, we need to compute
820
    //      size := sizeWithoutCookie + cookieSize
821
    //    and check whether it overflows.
822
823
125
    llvm::Value *hasOverflow = nullptr;
824
825
    // If numElementsWidth > sizeWidth, then one way or another, we're
826
    // going to have to do a comparison for (2), and this happens to
827
    // take care of (1), too.
828
125
    if (numElementsWidth > sizeWidth) {
829
0
      llvm::APInt threshold(numElementsWidth, 1);
830
0
      threshold <<= sizeWidth;
831
832
0
      llvm::Value *thresholdV
833
0
        = llvm::ConstantInt::get(numElementsType, threshold);
834
835
0
      hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
836
0
      numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
837
838
    // Otherwise, if we're signed, we want to sext up to size_t.
839
125
    } else if (isSigned) {
840
28
      if (numElementsWidth < sizeWidth)
841
8
        numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
842
843
      // If there's a non-1 type size multiplier, then we can do the
844
      // signedness check at the same time as we do the multiply
845
      // because a negative number times anything will cause an
846
      // unsigned overflow.  Otherwise, we have to do it here. But at least
847
      // in this case, we can subsume the >= minElements check.
848
28
      if (typeSizeMultiplier == 1)
849
8
        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
850
8
                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
851
852
    // Otherwise, zext up to size_t if necessary.
853
97
    } else if (numElementsWidth < sizeWidth) {
854
0
      numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
855
0
    }
856
857
125
    assert(numElements->getType() == CGF.SizeTy);
858
859
125
    if (minElements) {
860
      // Don't allow allocation of fewer elements than we have initializers.
861
9
      if (!hasOverflow) {
862
6
        hasOverflow = CGF.Builder.CreateICmpULT(numElements,
863
6
                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
864
6
      } else 
if (3
numElementsWidth > sizeWidth3
) {
865
        // The other existing overflow subsumes this check.
866
        // We do an unsigned comparison, since any signed value < -1 is
867
        // taken care of either above or below.
868
0
        hasOverflow = CGF.Builder.CreateOr(hasOverflow,
869
0
                          CGF.Builder.CreateICmpULT(numElements,
870
0
                              llvm::ConstantInt::get(CGF.SizeTy, minElements)));
871
0
      }
872
9
    }
873
874
125
    size = numElements;
875
876
    // Multiply by the type size if necessary.  This multiplier
877
    // includes all the factors for nested arrays.
878
    //
879
    // This step also causes numElements to be scaled up by the
880
    // nested-array factor if necessary.  Overflow on this computation
881
    // can be ignored because the result shouldn't be used if
882
    // allocation fails.
883
125
    if (typeSizeMultiplier != 1) {
884
53
      llvm::Function *umul_with_overflow
885
53
        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
886
887
53
      llvm::Value *tsmV =
888
53
        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
889
53
      llvm::Value *result =
890
53
          CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
891
892
53
      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
893
53
      if (hasOverflow)
894
6
        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
895
47
      else
896
47
        hasOverflow = overflowed;
897
898
53
      size = CGF.Builder.CreateExtractValue(result, 0);
899
900
      // Also scale up numElements by the array size multiplier.
901
53
      if (arraySizeMultiplier != 1) {
902
        // If the base element type size is 1, then we can re-use the
903
        // multiply we just did.
904
10
        if (typeSize.isOne()) {
905
0
          assert(arraySizeMultiplier == typeSizeMultiplier);
906
0
          numElements = size;
907
908
        // Otherwise we need a separate multiply.
909
10
        } else {
910
10
          llvm::Value *asmV =
911
10
            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
912
10
          numElements = CGF.Builder.CreateMul(numElements, asmV);
913
10
        }
914
10
      }
915
72
    } else {
916
      // numElements doesn't need to be scaled.
917
72
      assert(arraySizeMultiplier == 1);
918
72
    }
919
920
    // Add in the cookie size if necessary.
921
125
    if (cookieSize != 0) {
922
19
      sizeWithoutCookie = size;
923
924
19
      llvm::Function *uadd_with_overflow
925
19
        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
926
927
19
      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
928
19
      llvm::Value *result =
929
19
          CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
930
931
19
      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
932
19
      if (hasOverflow)
933
18
        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
934
1
      else
935
1
        hasOverflow = overflowed;
936
937
19
      size = CGF.Builder.CreateExtractValue(result, 0);
938
19
    }
939
940
    // If we had any possibility of dynamic overflow, make a select to
941
    // overwrite 'size' with an all-ones value, which should cause
942
    // operator new to throw.
943
125
    if (hasOverflow)
944
62
      size = CGF.Builder.CreateSelect(hasOverflow,
945
62
                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
946
62
                                      size);
947
125
  }
948
949
350
  if (cookieSize == 0)
950
288
    sizeWithoutCookie = size;
951
62
  else
952
62
    assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
953
954
0
  return size;
955
1.95k
}
956
957
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
958
                                    QualType AllocType, Address NewPtr,
959
1.60k
                                    AggValueSlot::Overlap_t MayOverlap) {
960
  // FIXME: Refactor with EmitExprAsInit.
961
1.60k
  switch (CGF.getEvaluationKind(AllocType)) {
962
274
  case TEK_Scalar:
963
274
    CGF.EmitScalarInit(Init, nullptr,
964
274
                       CGF.MakeAddrLValue(NewPtr, AllocType), false);
965
274
    return;
966
1
  case TEK_Complex:
967
1
    CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
968
1
                                  /*isInit*/ true);
969
1
    return;
970
1.33k
  case TEK_Aggregate: {
971
1.33k
    AggValueSlot Slot
972
1.33k
      = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
973
1.33k
                              AggValueSlot::IsDestructed,
974
1.33k
                              AggValueSlot::DoesNotNeedGCBarriers,
975
1.33k
                              AggValueSlot::IsNotAliased,
976
1.33k
                              MayOverlap, AggValueSlot::IsNotZeroed,
977
1.33k
                              AggValueSlot::IsSanitizerChecked);
978
1.33k
    CGF.EmitAggExpr(Init, Slot);
979
1.33k
    return;
980
0
  }
981
1.60k
  }
982
0
  llvm_unreachable("bad evaluation kind");
983
0
}
984
985
void CodeGenFunction::EmitNewArrayInitializer(
986
    const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
987
    Address BeginPtr, llvm::Value *NumElements,
988
350
    llvm::Value *AllocSizeWithoutCookie) {
989
  // If we have a type with trivial initialization and no initializer,
990
  // there's nothing to do.
991
350
  if (!E->hasInitializer())
992
197
    return;
993
994
153
  Address CurPtr = BeginPtr;
995
996
153
  unsigned InitListElements = 0;
997
998
153
  const Expr *Init = E->getInitializer();
999
153
  Address EndOfInit = Address::invalid();
1000
153
  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1001
153
  EHScopeStack::stable_iterator Cleanup;
1002
153
  llvm::Instruction *CleanupDominator = nullptr;
1003
1004
153
  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1005
153
  CharUnits ElementAlign =
1006
153
    BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1007
1008
  // Attempt to perform zero-initialization using memset.
1009
153
  auto TryMemsetInitialization = [&]() -> bool {
1010
    // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1011
    // we can initialize with a memset to -1.
1012
21
    if (!CGM.getTypes().isZeroInitializable(ElementType))
1013
4
      return false;
1014
1015
    // Optimization: since zero initialization will just set the memory
1016
    // to all zeroes, generate a single memset to do it in one shot.
1017
1018
    // Subtract out the size of any elements we've already initialized.
1019
17
    auto *RemainingSize = AllocSizeWithoutCookie;
1020
17
    if (InitListElements) {
1021
      // We know this can't overflow; we check this when doing the allocation.
1022
9
      auto *InitializedSize = llvm::ConstantInt::get(
1023
9
          RemainingSize->getType(),
1024
9
          getContext().getTypeSizeInChars(ElementType).getQuantity() *
1025
9
              InitListElements);
1026
9
      RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1027
9
    }
1028
1029
    // Create the memset.
1030
17
    Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1031
17
    return true;
1032
21
  };
1033
1034
  // If the initializer is an initializer list, first do the explicit elements.
1035
153
  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1036
    // Initializing from a (braced) string literal is a special case; the init
1037
    // list element does not initialize a (single) array element.
1038
28
    if (ILE->isStringLiteralInit()) {
1039
      // Initialize the initial portion of length equal to that of the string
1040
      // literal. The allocation must be for at least this much; we emitted a
1041
      // check for that earlier.
1042
8
      AggValueSlot Slot =
1043
8
          AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1044
8
                                AggValueSlot::IsDestructed,
1045
8
                                AggValueSlot::DoesNotNeedGCBarriers,
1046
8
                                AggValueSlot::IsNotAliased,
1047
8
                                AggValueSlot::DoesNotOverlap,
1048
8
                                AggValueSlot::IsNotZeroed,
1049
8
                                AggValueSlot::IsSanitizerChecked);
1050
8
      EmitAggExpr(ILE->getInit(0), Slot);
1051
1052
      // Move past these elements.
1053
8
      InitListElements =
1054
8
          cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1055
8
              ->getSize().getZExtValue();
1056
8
      CurPtr = Builder.CreateConstInBoundsGEP(
1057
8
          CurPtr, InitListElements, "string.init.end");
1058
1059
      // Zero out the rest, if any remain.
1060
8
      llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1061
8
      if (!ConstNum || 
!ConstNum->equalsInt(InitListElements)6
) {
1062
2
        bool OK = TryMemsetInitialization();
1063
2
        (void)OK;
1064
2
        assert(OK && "couldn't memset character type?");
1065
2
      }
1066
0
      return;
1067
8
    }
1068
1069
20
    InitListElements = ILE->getNumInits();
1070
1071
    // If this is a multi-dimensional array new, we will initialize multiple
1072
    // elements with each init list element.
1073
20
    QualType AllocType = E->getAllocatedType();
1074
20
    if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1075
20
            AllocType->getAsArrayTypeUnsafe())) {
1076
3
      ElementTy = ConvertTypeForMem(AllocType);
1077
3
      CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1078
3
      InitListElements *= getContext().getConstantArrayElementCount(CAT);
1079
3
    }
1080
1081
    // Enter a partial-destruction Cleanup if necessary.
1082
20
    if (needsEHCleanup(DtorKind)) {
1083
      // In principle we could tell the Cleanup where we are more
1084
      // directly, but the control flow can get so varied here that it
1085
      // would actually be quite complex.  Therefore we go through an
1086
      // alloca.
1087
2
      EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1088
2
                                   "array.init.end");
1089
2
      CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1090
2
      pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1091
2
                                       ElementType, ElementAlign,
1092
2
                                       getDestroyer(DtorKind));
1093
2
      Cleanup = EHStack.stable_begin();
1094
2
    }
1095
1096
20
    CharUnits StartAlign = CurPtr.getAlignment();
1097
64
    for (unsigned i = 0, e = ILE->getNumInits(); i != e; 
++i44
) {
1098
      // Tell the cleanup that it needs to destroy up to this
1099
      // element.  TODO: some of these stores can be trivially
1100
      // observed to be unnecessary.
1101
44
      if (EndOfInit.isValid()) {
1102
6
        auto FinishedPtr =
1103
6
          Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1104
6
        Builder.CreateStore(FinishedPtr, EndOfInit);
1105
6
      }
1106
      // FIXME: If the last initializer is an incomplete initializer list for
1107
      // an array, and we have an array filler, we can fold together the two
1108
      // initialization loops.
1109
44
      StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1110
44
                              ILE->getInit(i)->getType(), CurPtr,
1111
44
                              AggValueSlot::DoesNotOverlap);
1112
44
      CurPtr = Address(Builder.CreateInBoundsGEP(
1113
44
                           CurPtr.getElementType(), CurPtr.getPointer(),
1114
44
                           Builder.getSize(1), "array.exp.next"),
1115
44
                       CurPtr.getElementType(),
1116
44
                       StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1117
44
    }
1118
1119
    // The remaining elements are filled with the array filler expression.
1120
20
    Init = ILE->getArrayFiller();
1121
1122
    // Extract the initializer for the individual array elements by pulling
1123
    // out the array filler from all the nested initializer lists. This avoids
1124
    // generating a nested loop for the initialization.
1125
22
    while (Init && 
Init->getType()->isConstantArrayType()14
) {
1126
2
      auto *SubILE = dyn_cast<InitListExpr>(Init);
1127
2
      if (!SubILE)
1128
0
        break;
1129
2
      assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1130
0
      Init = SubILE->getArrayFiller();
1131
2
    }
1132
1133
    // Switch back to initializing one base element at a time.
1134
20
    CurPtr = Builder.CreateElementBitCast(CurPtr, BeginPtr.getElementType());
1135
20
  }
1136
1137
  // If all elements have already been initialized, skip any further
1138
  // initialization.
1139
145
  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1140
145
  if (ConstNum && 
ConstNum->getZExtValue() <= InitListElements96
) {
1141
    // If there was a Cleanup, deactivate it.
1142
10
    if (CleanupDominator)
1143
1
      DeactivateCleanupBlock(Cleanup, CleanupDominator);
1144
10
    return;
1145
10
  }
1146
1147
135
  assert(Init && "have trailing elements to initialize but no initializer");
1148
1149
  // If this is a constructor call, try to optimize it out, and failing that
1150
  // emit a single loop to initialize all remaining elements.
1151
135
  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1152
118
    CXXConstructorDecl *Ctor = CCE->getConstructor();
1153
118
    if (Ctor->isTrivial()) {
1154
      // If new expression did not specify value-initialization, then there
1155
      // is no initialization.
1156
54
      if (!CCE->requiresZeroInitialization() || 
Ctor->getParent()->isEmpty()3
)
1157
52
        return;
1158
1159
2
      if (TryMemsetInitialization())
1160
1
        return;
1161
2
    }
1162
1163
    // Store the new Cleanup position for irregular Cleanups.
1164
    //
1165
    // FIXME: Share this cleanup with the constructor call emission rather than
1166
    // having it create a cleanup of its own.
1167
65
    if (EndOfInit.isValid())
1168
1
      Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1169
1170
    // Emit a constructor call loop to initialize the remaining elements.
1171
65
    if (InitListElements)
1172
2
      NumElements = Builder.CreateSub(
1173
2
          NumElements,
1174
2
          llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1175
65
    EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1176
65
                               /*NewPointerIsChecked*/true,
1177
65
                               CCE->requiresZeroInitialization());
1178
65
    return;
1179
118
  }
1180
1181
  // If this is value-initialization, we can usually use memset.
1182
17
  ImplicitValueInitExpr IVIE(ElementType);
1183
17
  if (isa<ImplicitValueInitExpr>(Init)) {
1184
14
    if (TryMemsetInitialization())
1185
11
      return;
1186
1187
    // Switch to an ImplicitValueInitExpr for the element type. This handles
1188
    // only one case: multidimensional array new of pointers to members. In
1189
    // all other cases, we already have an initializer for the array element.
1190
3
    Init = &IVIE;
1191
3
  }
1192
1193
  // At this point we should have found an initializer for the individual
1194
  // elements of the array.
1195
6
  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1196
6
         "got wrong type of element to initialize");
1197
1198
  // If we have an empty initializer list, we can usually use memset.
1199
6
  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1200
3
    if (ILE->getNumInits() == 0 && 
TryMemsetInitialization()0
)
1201
0
      return;
1202
1203
  // If we have a struct whose every field is value-initialized, we can
1204
  // usually use memset.
1205
6
  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1206
3
    if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1207
3
      if (RType->getDecl()->isStruct()) {
1208
3
        unsigned NumElements = 0;
1209
3
        if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1210
3
          NumElements = CXXRD->getNumBases();
1211
3
        for (auto *Field : RType->getDecl()->fields())
1212
5
          if (!Field->isUnnamedBitfield())
1213
5
            ++NumElements;
1214
        // FIXME: Recurse into nested InitListExprs.
1215
3
        if (ILE->getNumInits() == NumElements)
1216
8
          
for (unsigned i = 0, e = ILE->getNumInits(); 3
i != e;
++i5
)
1217
5
            if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1218
0
              --NumElements;
1219
3
        if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1220
3
          return;
1221
3
      }
1222
3
    }
1223
3
  }
1224
1225
  // Create the loop blocks.
1226
3
  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1227
3
  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1228
3
  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1229
1230
  // Find the end of the array, hoisted out of the loop.
1231
3
  llvm::Value *EndPtr =
1232
3
    Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
1233
3
                              NumElements, "array.end");
1234
1235
  // If the number of elements isn't constant, we have to now check if there is
1236
  // anything left to initialize.
1237
3
  if (!ConstNum) {
1238
0
    llvm::Value *IsEmpty =
1239
0
      Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1240
0
    Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1241
0
  }
1242
1243
  // Enter the loop.
1244
3
  EmitBlock(LoopBB);
1245
1246
  // Set up the current-element phi.
1247
3
  llvm::PHINode *CurPtrPhi =
1248
3
      Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1249
3
  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1250
1251
3
  CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1252
1253
  // Store the new Cleanup position for irregular Cleanups.
1254
3
  if (EndOfInit.isValid())
1255
0
    Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1256
1257
  // Enter a partial-destruction Cleanup if necessary.
1258
3
  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1259
0
    pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1260
0
                                   ElementType, ElementAlign,
1261
0
                                   getDestroyer(DtorKind));
1262
0
    Cleanup = EHStack.stable_begin();
1263
0
    CleanupDominator = Builder.CreateUnreachable();
1264
0
  }
1265
1266
  // Emit the initializer into this element.
1267
3
  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1268
3
                          AggValueSlot::DoesNotOverlap);
1269
1270
  // Leave the Cleanup if we entered one.
1271
3
  if (CleanupDominator) {
1272
0
    DeactivateCleanupBlock(Cleanup, CleanupDominator);
1273
0
    CleanupDominator->eraseFromParent();
1274
0
  }
1275
1276
  // Advance to the next element by adjusting the pointer type as necessary.
1277
3
  llvm::Value *NextPtr =
1278
3
    Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1279
3
                                       "array.next");
1280
1281
  // Check whether we've gotten to the end of the array and, if so,
1282
  // exit the loop.
1283
3
  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1284
3
  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1285
3
  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1286
1287
3
  EmitBlock(ContBB);
1288
3
}
1289
1290
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1291
                               QualType ElementType, llvm::Type *ElementTy,
1292
                               Address NewPtr, llvm::Value *NumElements,
1293
1.95k
                               llvm::Value *AllocSizeWithoutCookie) {
1294
1.95k
  ApplyDebugLocation DL(CGF, E);
1295
1.95k
  if (E->isArray())
1296
350
    CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1297
350
                                AllocSizeWithoutCookie);
1298
1.60k
  else if (const Expr *Init = E->getInitializer())
1299
1.56k
    StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1300
1.56k
                            AggValueSlot::DoesNotOverlap);
1301
1.95k
}
1302
1303
/// Emit a call to an operator new or operator delete function, as implicitly
1304
/// created by new-expressions and delete-expressions.
1305
static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1306
                                const FunctionDecl *CalleeDecl,
1307
                                const FunctionProtoType *CalleeType,
1308
4.04k
                                const CallArgList &Args) {
1309
4.04k
  llvm::CallBase *CallOrInvoke;
1310
4.04k
  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1311
4.04k
  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1312
4.04k
  RValue RV =
1313
4.04k
      CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1314
4.04k
                       Args, CalleeType, /*ChainCall=*/false),
1315
4.04k
                   Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1316
1317
  /// C++1y [expr.new]p10:
1318
  ///   [In a new-expression,] an implementation is allowed to omit a call
1319
  ///   to a replaceable global allocation function.
1320
  ///
1321
  /// We model such elidable calls with the 'builtin' attribute.
1322
4.04k
  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1323
4.04k
  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1324
4.04k
      
Fn3.72k
&&
Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)3.72k
) {
1325
3.72k
    CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1326
3.72k
  }
1327
1328
4.04k
  return RV;
1329
4.04k
}
1330
1331
RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1332
                                                 const CallExpr *TheCall,
1333
668
                                                 bool IsDelete) {
1334
668
  CallArgList Args;
1335
668
  EmitCallArgs(Args, Type, TheCall->arguments());
1336
  // Find the allocation or deallocation function that we're calling.
1337
668
  ASTContext &Ctx = getContext();
1338
668
  DeclarationName Name = Ctx.DeclarationNames
1339
668
      .getCXXOperatorName(IsDelete ? 
OO_Delete351
:
OO_New317
);
1340
1341
668
  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1342
690
    if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1343
690
      if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1344
668
        return EmitNewDeleteCall(*this, FD, Type, Args);
1345
0
  llvm_unreachable("predeclared global operator new/delete is missing");
1346
0
}
1347
1348
namespace {
1349
/// The parameters to pass to a usual operator delete.
1350
struct UsualDeleteParams {
1351
  bool DestroyingDelete = false;
1352
  bool Size = false;
1353
  bool Alignment = false;
1354
};
1355
}
1356
1357
2.04k
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1358
2.04k
  UsualDeleteParams Params;
1359
1360
2.04k
  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1361
2.04k
  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1362
1363
  // The first argument is always a void*.
1364
2.04k
  ++AI;
1365
1366
  // The next parameter may be a std::destroying_delete_t.
1367
2.04k
  if (FD->isDestroyingOperatorDelete()) {
1368
30
    Params.DestroyingDelete = true;
1369
30
    assert(AI != AE);
1370
0
    ++AI;
1371
30
  }
1372
1373
  // Figure out what other parameters we should be implicitly passing.
1374
2.04k
  if (AI != AE && 
(*AI)->isIntegerType()122
) {
1375
90
    Params.Size = true;
1376
90
    ++AI;
1377
90
  }
1378
1379
2.04k
  if (AI != AE && 
(*AI)->isAlignValT()58
) {
1380
58
    Params.Alignment = true;
1381
58
    ++AI;
1382
58
  }
1383
1384
2.04k
  assert(AI == AE && "unexpected usual deallocation function parameter");
1385
0
  return Params;
1386
2.04k
}
1387
1388
namespace {
1389
  /// A cleanup to call the given 'operator delete' function upon abnormal
1390
  /// exit from a new expression. Templated on a traits type that deals with
1391
  /// ensuring that the arguments dominate the cleanup if necessary.
1392
  template<typename Traits>
1393
  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1394
    /// Type used to hold llvm::Value*s.
1395
    typedef typename Traits::ValueTy ValueTy;
1396
    /// Type used to hold RValues.
1397
    typedef typename Traits::RValueTy RValueTy;
1398
    struct PlacementArg {
1399
      RValueTy ArgValue;
1400
      QualType ArgType;
1401
    };
1402
1403
    unsigned NumPlacementArgs : 31;
1404
    unsigned PassAlignmentToPlacementDelete : 1;
1405
    const FunctionDecl *OperatorDelete;
1406
    ValueTy Ptr;
1407
    ValueTy AllocSize;
1408
    CharUnits AllocAlign;
1409
1410
80
    PlacementArg *getPlacementArgs() {
1411
80
      return reinterpret_cast<PlacementArg *>(this + 1);
1412
80
    }
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::DirectCleanupTraits>::getPlacementArgs()
Line
Count
Source
1410
72
    PlacementArg *getPlacementArgs() {
1411
72
      return reinterpret_cast<PlacementArg *>(this + 1);
1412
72
    }
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::ConditionalCleanupTraits>::getPlacementArgs()
Line
Count
Source
1410
8
    PlacementArg *getPlacementArgs() {
1411
8
      return reinterpret_cast<PlacementArg *>(this + 1);
1412
8
    }
1413
1414
  public:
1415
828
    static size_t getExtraSize(size_t NumPlacementArgs) {
1416
828
      return NumPlacementArgs * sizeof(PlacementArg);
1417
828
    }
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::DirectCleanupTraits>::getExtraSize(unsigned long)
Line
Count
Source
1415
822
    static size_t getExtraSize(size_t NumPlacementArgs) {
1416
822
      return NumPlacementArgs * sizeof(PlacementArg);
1417
822
    }
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::ConditionalCleanupTraits>::getExtraSize(unsigned long)
Line
Count
Source
1415
6
    static size_t getExtraSize(size_t NumPlacementArgs) {
1416
6
      return NumPlacementArgs * sizeof(PlacementArg);
1417
6
    }
1418
1419
    CallDeleteDuringNew(size_t NumPlacementArgs,
1420
                        const FunctionDecl *OperatorDelete, ValueTy Ptr,
1421
                        ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1422
                        CharUnits AllocAlign)
1423
      : NumPlacementArgs(NumPlacementArgs),
1424
        PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1425
        OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1426
828
        AllocAlign(AllocAlign) {}
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::DirectCleanupTraits>::CallDeleteDuringNew(unsigned long, clang::FunctionDecl const*, llvm::Value*, llvm::Value*, bool, clang::CharUnits)
Line
Count
Source
1426
822
        AllocAlign(AllocAlign) {}
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::ConditionalCleanupTraits>::CallDeleteDuringNew(unsigned long, clang::FunctionDecl const*, clang::CodeGen::DominatingValue<clang::CodeGen::RValue>::saved_type, clang::CodeGen::DominatingValue<clang::CodeGen::RValue>::saved_type, bool, clang::CharUnits)
Line
Count
Source
1426
6
        AllocAlign(AllocAlign) {}
1427
1428
40
    void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1429
40
      assert(I < NumPlacementArgs && "index out of range");
1430
0
      getPlacementArgs()[I] = {Arg, Type};
1431
40
    }
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::DirectCleanupTraits>::setPlacementArg(unsigned int, clang::CodeGen::RValue, clang::QualType)
Line
Count
Source
1428
36
    void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1429
36
      assert(I < NumPlacementArgs && "index out of range");
1430
0
      getPlacementArgs()[I] = {Arg, Type};
1431
36
    }
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::ConditionalCleanupTraits>::setPlacementArg(unsigned int, clang::CodeGen::DominatingValue<clang::CodeGen::RValue>::saved_type, clang::QualType)
Line
Count
Source
1428
4
    void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1429
4
      assert(I < NumPlacementArgs && "index out of range");
1430
0
      getPlacementArgs()[I] = {Arg, Type};
1431
4
    }
1432
1433
402
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1434
402
      const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1435
402
      CallArgList DeleteArgs;
1436
1437
      // The first argument is always a void* (or C* for a destroying operator
1438
      // delete for class type C).
1439
402
      DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1440
1441
      // Figure out what other parameters we should be implicitly passing.
1442
402
      UsualDeleteParams Params;
1443
402
      if (NumPlacementArgs) {
1444
        // A placement deallocation function is implicitly passed an alignment
1445
        // if the placement allocation function was, but is never passed a size.
1446
36
        Params.Alignment = PassAlignmentToPlacementDelete;
1447
366
      } else {
1448
        // For a non-placement new-expression, 'operator delete' can take a
1449
        // size and/or an alignment if it has the right parameters.
1450
366
        Params = getUsualDeleteParams(OperatorDelete);
1451
366
      }
1452
1453
402
      assert(!Params.DestroyingDelete &&
1454
402
             "should not call destroying delete in a new-expression");
1455
1456
      // The second argument can be a std::size_t (for non-placement delete).
1457
402
      if (Params.Size)
1458
6
        DeleteArgs.add(Traits::get(CGF, AllocSize),
1459
6
                       CGF.getContext().getSizeType());
1460
1461
      // The next (second or third) argument can be a std::align_val_t, which
1462
      // is an enum whose underlying type is std::size_t.
1463
      // FIXME: Use the right type as the parameter type. Note that in a call
1464
      // to operator delete(size_t, ...), we may not have it available.
1465
402
      if (Params.Alignment)
1466
36
        DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1467
36
                           CGF.SizeTy, AllocAlign.getQuantity())),
1468
36
                       CGF.getContext().getSizeType());
1469
1470
      // Pass the rest of the arguments, which must match exactly.
1471
442
      for (unsigned I = 0; I != NumPlacementArgs; 
++I40
) {
1472
40
        auto Arg = getPlacementArgs()[I];
1473
40
        DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1474
40
      }
1475
1476
      // Call 'operator delete'.
1477
402
      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1478
402
    }
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::DirectCleanupTraits>::Emit(clang::CodeGen::CodeGenFunction&, clang::CodeGen::EHScopeStack::Cleanup::Flags)
Line
Count
Source
1433
396
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1434
396
      const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1435
396
      CallArgList DeleteArgs;
1436
1437
      // The first argument is always a void* (or C* for a destroying operator
1438
      // delete for class type C).
1439
396
      DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1440
1441
      // Figure out what other parameters we should be implicitly passing.
1442
396
      UsualDeleteParams Params;
1443
396
      if (NumPlacementArgs) {
1444
        // A placement deallocation function is implicitly passed an alignment
1445
        // if the placement allocation function was, but is never passed a size.
1446
34
        Params.Alignment = PassAlignmentToPlacementDelete;
1447
362
      } else {
1448
        // For a non-placement new-expression, 'operator delete' can take a
1449
        // size and/or an alignment if it has the right parameters.
1450
362
        Params = getUsualDeleteParams(OperatorDelete);
1451
362
      }
1452
1453
396
      assert(!Params.DestroyingDelete &&
1454
396
             "should not call destroying delete in a new-expression");
1455
1456
      // The second argument can be a std::size_t (for non-placement delete).
1457
396
      if (Params.Size)
1458
6
        DeleteArgs.add(Traits::get(CGF, AllocSize),
1459
6
                       CGF.getContext().getSizeType());
1460
1461
      // The next (second or third) argument can be a std::align_val_t, which
1462
      // is an enum whose underlying type is std::size_t.
1463
      // FIXME: Use the right type as the parameter type. Note that in a call
1464
      // to operator delete(size_t, ...), we may not have it available.
1465
396
      if (Params.Alignment)
1466
36
        DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1467
36
                           CGF.SizeTy, AllocAlign.getQuantity())),
1468
36
                       CGF.getContext().getSizeType());
1469
1470
      // Pass the rest of the arguments, which must match exactly.
1471
432
      for (unsigned I = 0; I != NumPlacementArgs; 
++I36
) {
1472
36
        auto Arg = getPlacementArgs()[I];
1473
36
        DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1474
36
      }
1475
1476
      // Call 'operator delete'.
1477
396
      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1478
396
    }
CGExprCXX.cpp:(anonymous namespace)::CallDeleteDuringNew<EnterNewDeleteCleanup(clang::CodeGen::CodeGenFunction&, clang::CXXNewExpr const*, clang::CodeGen::Address, llvm::Value*, clang::CharUnits, clang::CodeGen::CallArgList const&)::ConditionalCleanupTraits>::Emit(clang::CodeGen::CodeGenFunction&, clang::CodeGen::EHScopeStack::Cleanup::Flags)
Line
Count
Source
1433
6
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1434
6
      const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1435
6
      CallArgList DeleteArgs;
1436
1437
      // The first argument is always a void* (or C* for a destroying operator
1438
      // delete for class type C).
1439
6
      DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1440
1441
      // Figure out what other parameters we should be implicitly passing.
1442
6
      UsualDeleteParams Params;
1443
6
      if (NumPlacementArgs) {
1444
        // A placement deallocation function is implicitly passed an alignment
1445
        // if the placement allocation function was, but is never passed a size.
1446
2
        Params.Alignment = PassAlignmentToPlacementDelete;
1447
4
      } else {
1448
        // For a non-placement new-expression, 'operator delete' can take a
1449
        // size and/or an alignment if it has the right parameters.
1450
4
        Params = getUsualDeleteParams(OperatorDelete);
1451
4
      }
1452
1453
6
      assert(!Params.DestroyingDelete &&
1454
6
             "should not call destroying delete in a new-expression");
1455
1456
      // The second argument can be a std::size_t (for non-placement delete).
1457
6
      if (Params.Size)
1458
0
        DeleteArgs.add(Traits::get(CGF, AllocSize),
1459
0
                       CGF.getContext().getSizeType());
1460
1461
      // The next (second or third) argument can be a std::align_val_t, which
1462
      // is an enum whose underlying type is std::size_t.
1463
      // FIXME: Use the right type as the parameter type. Note that in a call
1464
      // to operator delete(size_t, ...), we may not have it available.
1465
6
      if (Params.Alignment)
1466
0
        DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1467
0
                           CGF.SizeTy, AllocAlign.getQuantity())),
1468
0
                       CGF.getContext().getSizeType());
1469
1470
      // Pass the rest of the arguments, which must match exactly.
1471
10
      for (unsigned I = 0; I != NumPlacementArgs; 
++I4
) {
1472
4
        auto Arg = getPlacementArgs()[I];
1473
4
        DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1474
4
      }
1475
1476
      // Call 'operator delete'.
1477
6
      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1478
6
    }
1479
  };
1480
}
1481
1482
/// Enter a cleanup to call 'operator delete' if the initializer in a
1483
/// new-expression throws.
1484
static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1485
                                  const CXXNewExpr *E,
1486
                                  Address NewPtr,
1487
                                  llvm::Value *AllocSize,
1488
                                  CharUnits AllocAlign,
1489
828
                                  const CallArgList &NewArgs) {
1490
828
  unsigned NumNonPlacementArgs = E->passAlignment() ? 
240
:
1788
;
1491
1492
  // If we're not inside a conditional branch, then the cleanup will
1493
  // dominate and we can do the easier (and more efficient) thing.
1494
828
  if (!CGF.isInConditionalBranch()) {
1495
822
    struct DirectCleanupTraits {
1496
822
      typedef llvm::Value *ValueTy;
1497
822
      typedef RValue RValueTy;
1498
822
      static RValue get(CodeGenFunction &, ValueTy V) 
{ return RValue::get(V); }402
1499
822
      static RValue get(CodeGenFunction &, RValueTy V) 
{ return V; }36
1500
822
    };
1501
1502
822
    typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1503
1504
822
    DirectCleanup *Cleanup = CGF.EHStack
1505
822
      .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1506
822
                                           E->getNumPlacementArgs(),
1507
822
                                           E->getOperatorDelete(),
1508
822
                                           NewPtr.getPointer(),
1509
822
                                           AllocSize,
1510
822
                                           E->passAlignment(),
1511
822
                                           AllocAlign);
1512
858
    for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; 
++I36
) {
1513
36
      auto &Arg = NewArgs[I + NumNonPlacementArgs];
1514
36
      Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1515
36
    }
1516
1517
822
    return;
1518
822
  }
1519
1520
  // Otherwise, we need to save all this stuff.
1521
6
  DominatingValue<RValue>::saved_type SavedNewPtr =
1522
6
    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1523
6
  DominatingValue<RValue>::saved_type SavedAllocSize =
1524
6
    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1525
1526
6
  struct ConditionalCleanupTraits {
1527
6
    typedef DominatingValue<RValue>::saved_type ValueTy;
1528
6
    typedef DominatingValue<RValue>::saved_type RValueTy;
1529
10
    static RValue get(CodeGenFunction &CGF, ValueTy V) {
1530
10
      return V.restore(CGF);
1531
10
    }
1532
6
  };
1533
6
  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1534
1535
6
  ConditionalCleanup *Cleanup = CGF.EHStack
1536
6
    .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1537
6
                                              E->getNumPlacementArgs(),
1538
6
                                              E->getOperatorDelete(),
1539
6
                                              SavedNewPtr,
1540
6
                                              SavedAllocSize,
1541
6
                                              E->passAlignment(),
1542
6
                                              AllocAlign);
1543
10
  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; 
++I4
) {
1544
4
    auto &Arg = NewArgs[I + NumNonPlacementArgs];
1545
4
    Cleanup->setPlacementArg(
1546
4
        I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1547
4
  }
1548
1549
6
  CGF.initFullExprCleanup();
1550
6
}
1551
1552
1.95k
llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1553
  // The element type being allocated.
1554
1.95k
  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1555
1556
  // 1. Build a call to the allocation function.
1557
1.95k
  FunctionDecl *allocator = E->getOperatorNew();
1558
1559
  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1560
1.95k
  unsigned minElements = 0;
1561
1.95k
  if (E->isArray() && 
E->hasInitializer()350
) {
1562
153
    const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1563
153
    if (ILE && 
ILE->isStringLiteralInit()28
)
1564
8
      minElements =
1565
8
          cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1566
8
              ->getSize().getZExtValue();
1567
145
    else if (ILE)
1568
20
      minElements = ILE->getNumInits();
1569
153
  }
1570
1571
1.95k
  llvm::Value *numElements = nullptr;
1572
1.95k
  llvm::Value *allocSizeWithoutCookie = nullptr;
1573
1.95k
  llvm::Value *allocSize =
1574
1.95k
    EmitCXXNewAllocSize(*this, E, minElements, numElements,
1575
1.95k
                        allocSizeWithoutCookie);
1576
1.95k
  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1577
1578
  // Emit the allocation call.  If the allocator is a global placement
1579
  // operator, just "inline" it directly.
1580
1.95k
  Address allocation = Address::invalid();
1581
1.95k
  CallArgList allocatorArgs;
1582
1.95k
  if (allocator->isReservedGlobalPlacementOperator()) {
1583
656
    assert(E->getNumPlacementArgs() == 1);
1584
0
    const Expr *arg = *E->placement_arguments().begin();
1585
1586
656
    LValueBaseInfo BaseInfo;
1587
656
    allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1588
1589
    // The pointer expression will, in many cases, be an opaque void*.
1590
    // In these cases, discard the computed alignment and use the
1591
    // formal alignment of the allocated type.
1592
656
    if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1593
653
      allocation = allocation.withAlignment(allocAlign);
1594
1595
    // Set up allocatorArgs for the call to operator delete if it's not
1596
    // the reserved global operator.
1597
656
    if (E->getOperatorDelete() &&
1598
656
        
!E->getOperatorDelete()->isReservedGlobalPlacementOperator()560
) {
1599
2
      allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1600
2
      allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1601
2
    }
1602
1603
1.29k
  } else {
1604
1.29k
    const FunctionProtoType *allocatorType =
1605
1.29k
      allocator->getType()->castAs<FunctionProtoType>();
1606
1.29k
    unsigned ParamsToSkip = 0;
1607
1608
    // The allocation size is the first argument.
1609
1.29k
    QualType sizeType = getContext().getSizeType();
1610
1.29k
    allocatorArgs.add(RValue::get(allocSize), sizeType);
1611
1.29k
    ++ParamsToSkip;
1612
1613
1.29k
    if (allocSize != allocSizeWithoutCookie) {
1614
62
      CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1615
62
      allocAlign = std::max(allocAlign, cookieAlign);
1616
62
    }
1617
1618
    // The allocation alignment may be passed as the second argument.
1619
1.29k
    if (E->passAlignment()) {
1620
44
      QualType AlignValT = sizeType;
1621
44
      if (allocatorType->getNumParams() > 1) {
1622
36
        AlignValT = allocatorType->getParamType(1);
1623
36
        assert(getContext().hasSameUnqualifiedType(
1624
36
                   AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1625
36
                   sizeType) &&
1626
36
               "wrong type for alignment parameter");
1627
0
        ++ParamsToSkip;
1628
36
      } else {
1629
        // Corner case, passing alignment to 'operator new(size_t, ...)'.
1630
8
        assert(allocator->isVariadic() && "can't pass alignment to allocator");
1631
8
      }
1632
0
      allocatorArgs.add(
1633
44
          RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1634
44
          AlignValT);
1635
44
    }
1636
1637
    // FIXME: Why do we not pass a CalleeDecl here?
1638
0
    EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1639
1.29k
                 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1640
1641
1.29k
    RValue RV =
1642
1.29k
      EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1643
1644
    // Set !heapallocsite metadata on the call to operator new.
1645
1.29k
    if (getDebugInfo())
1646
681
      if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1647
681
        getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1648
681
                                                 E->getExprLoc());
1649
1650
    // If this was a call to a global replaceable allocation function that does
1651
    // not take an alignment argument, the allocator is known to produce
1652
    // storage that's suitably aligned for any object that fits, up to a known
1653
    // threshold. Otherwise assume it's suitably aligned for the allocated type.
1654
1.29k
    CharUnits allocationAlign = allocAlign;
1655
1.29k
    if (!E->passAlignment() &&
1656
1.29k
        
allocator->isReplaceableGlobalAllocationFunction()1.25k
) {
1657
1.15k
      unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1658
1.15k
          Target.getNewAlign(), getContext().getTypeSize(allocType)));
1659
1.15k
      allocationAlign = std::max(
1660
1.15k
          allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1661
1.15k
    }
1662
1663
1.29k
    allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1664
1.29k
  }
1665
1666
  // Emit a null check on the allocation result if the allocation
1667
  // function is allowed to return null (because it has a non-throwing
1668
  // exception spec or is the reserved placement new) and we have an
1669
  // interesting initializer will be running sanitizers on the initialization.
1670
1.95k
  bool nullCheck = E->shouldNullCheckAllocation() &&
1671
1.95k
                   
(26
!allocType.isPODType(getContext())26
||
E->hasInitializer()10
||
1672
26
                    
sanitizePerformTypeCheck()10
);
1673
1674
1.95k
  llvm::BasicBlock *nullCheckBB = nullptr;
1675
1.95k
  llvm::BasicBlock *contBB = nullptr;
1676
1677
  // The null-check means that the initializer is conditionally
1678
  // evaluated.
1679
1.95k
  ConditionalEvaluation conditional(*this);
1680
1681
1.95k
  if (nullCheck) {
1682
22
    conditional.begin(*this);
1683
1684
22
    nullCheckBB = Builder.GetInsertBlock();
1685
22
    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1686
22
    contBB = createBasicBlock("new.cont");
1687
1688
22
    llvm::Value *isNull =
1689
22
      Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1690
22
    Builder.CreateCondBr(isNull, contBB, notNullBB);
1691
22
    EmitBlock(notNullBB);
1692
22
  }
1693
1694
  // If there's an operator delete, enter a cleanup to call it if an
1695
  // exception is thrown.
1696
1.95k
  EHScopeStack::stable_iterator operatorDeleteCleanup;
1697
1.95k
  llvm::Instruction *cleanupDominator = nullptr;
1698
1.95k
  if (E->getOperatorDelete() &&
1699
1.95k
      
!E->getOperatorDelete()->isReservedGlobalPlacementOperator()1.38k
) {
1700
828
    EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1701
828
                          allocatorArgs);
1702
828
    operatorDeleteCleanup = EHStack.stable_begin();
1703
828
    cleanupDominator = Builder.CreateUnreachable();
1704
828
  }
1705
1706
1.95k
  assert((allocSize == allocSizeWithoutCookie) ==
1707
1.95k
         CalculateCookiePadding(*this, E).isZero());
1708
1.95k
  if (allocSize != allocSizeWithoutCookie) {
1709
62
    assert(E->isArray());
1710
0
    allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1711
62
                                                       numElements,
1712
62
                                                       E, allocType);
1713
62
  }
1714
1715
0
  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1716
1.95k
  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1717
1718
  // Passing pointer through launder.invariant.group to avoid propagation of
1719
  // vptrs information which may be included in previous type.
1720
  // To not break LTO with different optimizations levels, we do it regardless
1721
  // of optimization level.
1722
1.95k
  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1723
1.95k
      
allocator->isReservedGlobalPlacementOperator()32
)
1724
5
    result = Builder.CreateLaunderInvariantGroup(result);
1725
1726
  // Emit sanitizer checks for pointer value now, so that in the case of an
1727
  // array it was checked only once and not at each constructor call. We may
1728
  // have already checked that the pointer is non-null.
1729
  // FIXME: If we have an array cookie and a potentially-throwing allocator,
1730
  // we'll null check the wrong pointer here.
1731
1.95k
  SanitizerSet SkippedChecks;
1732
1.95k
  SkippedChecks.set(SanitizerKind::Null, nullCheck);
1733
1.95k
  EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1734
1.95k
                E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1735
1.95k
                result.getPointer(), allocType, result.getAlignment(),
1736
1.95k
                SkippedChecks, numElements);
1737
1738
1.95k
  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1739
1.95k
                     allocSizeWithoutCookie);
1740
1.95k
  llvm::Value *resultPtr = result.getPointer();
1741
1.95k
  if (E->isArray()) {
1742
    // NewPtr is a pointer to the base element type.  If we're
1743
    // allocating an array of arrays, we'll need to cast back to the
1744
    // array pointer type.
1745
350
    llvm::Type *resultType = ConvertTypeForMem(E->getType());
1746
350
    if (resultPtr->getType() != resultType)
1747
20
      resultPtr = Builder.CreateBitCast(resultPtr, resultType);
1748
350
  }
1749
1750
  // Deactivate the 'operator delete' cleanup if we finished
1751
  // initialization.
1752
1.95k
  if (operatorDeleteCleanup.isValid()) {
1753
828
    DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1754
828
    cleanupDominator->eraseFromParent();
1755
828
  }
1756
1757
1.95k
  if (nullCheck) {
1758
22
    conditional.end(*this);
1759
1760
22
    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1761
22
    EmitBlock(contBB);
1762
1763
22
    llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1764
22
    PHI->addIncoming(resultPtr, notNullBB);
1765
22
    PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1766
22
                     nullCheckBB);
1767
1768
22
    resultPtr = PHI;
1769
22
  }
1770
1771
1.95k
  return resultPtr;
1772
1.95k
}
1773
1774
void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1775
                                     llvm::Value *Ptr, QualType DeleteTy,
1776
                                     llvm::Value *NumElements,
1777
1.68k
                                     CharUnits CookieSize) {
1778
1.68k
  assert((!NumElements && CookieSize.isZero()) ||
1779
1.68k
         DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1780
1781
0
  const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1782
1.68k
  CallArgList DeleteArgs;
1783
1784
1.68k
  auto Params = getUsualDeleteParams(DeleteFD);
1785
1.68k
  auto ParamTypeIt = DeleteFTy->param_type_begin();
1786
1787
  // Pass the pointer itself.
1788
1.68k
  QualType ArgTy = *ParamTypeIt++;
1789
1.68k
  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1790
1.68k
  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1791
1792
  // Pass the std::destroying_delete tag if present.
1793
1.68k
  llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1794
1.68k
  if (Params.DestroyingDelete) {
1795
30
    QualType DDTag = *ParamTypeIt++;
1796
30
    llvm::Type *Ty = getTypes().ConvertType(DDTag);
1797
30
    CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1798
30
    DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1799
30
    DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1800
30
    DeleteArgs.add(
1801
30
        RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
1802
30
  }
1803
1804
  // Pass the size if the delete function has a size_t parameter.
1805
1.68k
  if (Params.Size) {
1806
84
    QualType SizeType = *ParamTypeIt++;
1807
84
    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1808
84
    llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1809
84
                                               DeleteTypeSize.getQuantity());
1810
1811
    // For array new, multiply by the number of elements.
1812
84
    if (NumElements)
1813
23
      Size = Builder.CreateMul(Size, NumElements);
1814
1815
    // If there is a cookie, add the cookie size.
1816
84
    if (!CookieSize.isZero())
1817
23
      Size = Builder.CreateAdd(
1818
23
          Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1819
1820
84
    DeleteArgs.add(RValue::get(Size), SizeType);
1821
84
  }
1822
1823
  // Pass the alignment if the delete function has an align_val_t parameter.
1824
1.68k
  if (Params.Alignment) {
1825
38
    QualType AlignValType = *ParamTypeIt++;
1826
38
    CharUnits DeleteTypeAlign =
1827
38
        getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1828
38
            DeleteTy, true /* NeedsPreferredAlignment */));
1829
38
    llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1830
38
                                                DeleteTypeAlign.getQuantity());
1831
38
    DeleteArgs.add(RValue::get(Align), AlignValType);
1832
38
  }
1833
1834
1.68k
  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1835
1.68k
         "unknown parameter to usual delete function");
1836
1837
  // Emit the call to delete.
1838
0
  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1839
1840
  // If call argument lowering didn't use the destroying_delete_t alloca,
1841
  // remove it again.
1842
1.68k
  if (DestroyingDeleteTag && 
DestroyingDeleteTag->use_empty()30
)
1843
10
    DestroyingDeleteTag->eraseFromParent();
1844
1.68k
}
1845
1846
namespace {
1847
  /// Calls the given 'operator delete' on a single object.
1848
  struct CallObjectDelete final : EHScopeStack::Cleanup {
1849
    llvm::Value *Ptr;
1850
    const FunctionDecl *OperatorDelete;
1851
    QualType ElementType;
1852
1853
    CallObjectDelete(llvm::Value *Ptr,
1854
                     const FunctionDecl *OperatorDelete,
1855
                     QualType ElementType)
1856
535
      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1857
1858
535
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1859
535
      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1860
535
    }
1861
  };
1862
}
1863
1864
void
1865
CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1866
                                             llvm::Value *CompletePtr,
1867
6
                                             QualType ElementType) {
1868
6
  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1869
6
                                        OperatorDelete, ElementType);
1870
6
}
1871
1872
/// Emit the code for deleting a single object with a destroying operator
1873
/// delete. If the element type has a non-virtual destructor, Ptr has already
1874
/// been converted to the type of the parameter of 'operator delete'. Otherwise
1875
/// Ptr points to an object of the static type.
1876
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1877
                                       const CXXDeleteExpr *DE, Address Ptr,
1878
30
                                       QualType ElementType) {
1879
30
  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1880
30
  if (Dtor && Dtor->isVirtual())
1881
12
    CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1882
12
                                                Dtor);
1883
18
  else
1884
18
    CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1885
30
}
1886
1887
/// Emit the code for deleting a single object.
1888
/// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1889
/// if not.
1890
static bool EmitObjectDelete(CodeGenFunction &CGF,
1891
                             const CXXDeleteExpr *DE,
1892
                             Address Ptr,
1893
                             QualType ElementType,
1894
585
                             llvm::BasicBlock *UnconditionalDeleteBlock) {
1895
  // C++11 [expr.delete]p3:
1896
  //   If the static type of the object to be deleted is different from its
1897
  //   dynamic type, the static type shall be a base class of the dynamic type
1898
  //   of the object to be deleted and the static type shall have a virtual
1899
  //   destructor or the behavior is undefined.
1900
585
  CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1901
585
                    DE->getExprLoc(), Ptr.getPointer(),
1902
585
                    ElementType);
1903
1904
585
  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1905
585
  assert(!OperatorDelete->isDestroyingOperatorDelete());
1906
1907
  // Find the destructor for the type, if applicable.  If the
1908
  // destructor is virtual, we'll just emit the vcall and return.
1909
0
  const CXXDestructorDecl *Dtor = nullptr;
1910
585
  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1911
523
    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1912
523
    if (RD->hasDefinition() && 
!RD->hasTrivialDestructor()521
) {
1913
413
      Dtor = RD->getDestructor();
1914
1915
413
      if (Dtor->isVirtual()) {
1916
58
        bool UseVirtualCall = true;
1917
58
        const Expr *Base = DE->getArgument();
1918
58
        if (auto *DevirtualizedDtor =
1919
58
                dyn_cast_or_null<const CXXDestructorDecl>(
1920
58
                    Dtor->getDevirtualizedMethod(
1921
58
                        Base, CGF.CGM.getLangOpts().AppleKext))) {
1922
2
          UseVirtualCall = false;
1923
2
          const CXXRecordDecl *DevirtualizedClass =
1924
2
              DevirtualizedDtor->getParent();
1925
2
          if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1926
            // Devirtualized to the class of the base type (the type of the
1927
            // whole expression).
1928
2
            Dtor = DevirtualizedDtor;
1929
2
          } else {
1930
            // Devirtualized to some other type. Would need to cast the this
1931
            // pointer to that type but we don't have support for that yet, so
1932
            // do a virtual call. FIXME: handle the case where it is
1933
            // devirtualized to the derived type (the type of the inner
1934
            // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1935
0
            UseVirtualCall = true;
1936
0
          }
1937
2
        }
1938
58
        if (UseVirtualCall) {
1939
56
          CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1940
56
                                                      Dtor);
1941
56
          return false;
1942
56
        }
1943
58
      }
1944
413
    }
1945
523
  }
1946
1947
  // Make sure that we call delete even if the dtor throws.
1948
  // This doesn't have to a conditional cleanup because we're going
1949
  // to pop it off in a second.
1950
529
  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1951
529
                                            Ptr.getPointer(),
1952
529
                                            OperatorDelete, ElementType);
1953
1954
529
  if (Dtor)
1955
357
    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1956
357
                              /*ForVirtualBase=*/false,
1957
357
                              /*Delegating=*/false,
1958
357
                              Ptr, ElementType);
1959
172
  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1960
4
    switch (Lifetime) {
1961
0
    case Qualifiers::OCL_None:
1962
0
    case Qualifiers::OCL_ExplicitNone:
1963
0
    case Qualifiers::OCL_Autoreleasing:
1964
0
      break;
1965
1966
2
    case Qualifiers::OCL_Strong:
1967
2
      CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1968
2
      break;
1969
1970
2
    case Qualifiers::OCL_Weak:
1971
2
      CGF.EmitARCDestroyWeak(Ptr);
1972
2
      break;
1973
4
    }
1974
4
  }
1975
1976
  // When optimizing for size, call 'operator delete' unconditionally.
1977
529
  if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
1978
7
    CGF.EmitBlock(UnconditionalDeleteBlock);
1979
7
    CGF.PopCleanupBlock();
1980
7
    return true;
1981
7
  }
1982
1983
522
  CGF.PopCleanupBlock();
1984
522
  return false;
1985
529
}
1986
1987
namespace {
1988
  /// Calls the given 'operator delete' on an array of objects.
1989
  struct CallArrayDelete final : EHScopeStack::Cleanup {
1990
    llvm::Value *Ptr;
1991
    const FunctionDecl *OperatorDelete;
1992
    llvm::Value *NumElements;
1993
    QualType ElementType;
1994
    CharUnits CookieSize;
1995
1996
    CallArrayDelete(llvm::Value *Ptr,
1997
                    const FunctionDecl *OperatorDelete,
1998
                    llvm::Value *NumElements,
1999
                    QualType ElementType,
2000
                    CharUnits CookieSize)
2001
      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2002
265
        ElementType(ElementType), CookieSize(CookieSize) {}
2003
2004
268
    void Emit(CodeGenFunction &CGF, Flags flags) override {
2005
268
      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2006
268
                         CookieSize);
2007
268
    }
2008
  };
2009
}
2010
2011
/// Emit the code for deleting an array of objects.
2012
static void EmitArrayDelete(CodeGenFunction &CGF,
2013
                            const CXXDeleteExpr *E,
2014
                            Address deletedPtr,
2015
265
                            QualType elementType) {
2016
265
  llvm::Value *numElements = nullptr;
2017
265
  llvm::Value *allocatedPtr = nullptr;
2018
265
  CharUnits cookieSize;
2019
265
  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2020
265
                                      numElements, allocatedPtr, cookieSize);
2021
2022
265
  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2023
2024
  // Make sure that we call delete even if one of the dtors throws.
2025
0
  const FunctionDecl *operatorDelete = E->getOperatorDelete();
2026
265
  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2027
265
                                           allocatedPtr, operatorDelete,
2028
265
                                           numElements, elementType,
2029
265
                                           cookieSize);
2030
2031
  // Destroy the elements.
2032
265
  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2033
41
    assert(numElements && "no element count for a type with a destructor!");
2034
2035
0
    CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2036
41
    CharUnits elementAlign =
2037
41
      deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2038
2039
41
    llvm::Value *arrayBegin = deletedPtr.getPointer();
2040
41
    llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2041
41
      deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2042
2043
    // Note that it is legal to allocate a zero-length array, and we
2044
    // can never fold the check away because the length should always
2045
    // come from a cookie.
2046
41
    CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2047
41
                         CGF.getDestroyer(dtorKind),
2048
41
                         /*checkZeroLength*/ true,
2049
41
                         CGF.needsEHCleanup(dtorKind));
2050
41
  }
2051
2052
  // Pop the cleanup block.
2053
0
  CGF.PopCleanupBlock();
2054
265
}
2055
2056
880
void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2057
880
  const Expr *Arg = E->getArgument();
2058
880
  Address Ptr = EmitPointerWithAlignment(Arg);
2059
2060
  // Null check the pointer.
2061
  //
2062
  // We could avoid this null check if we can determine that the object
2063
  // destruction is trivial and doesn't require an array cookie; we can
2064
  // unconditionally perform the operator delete call in that case. For now, we
2065
  // assume that deleted pointers are null rarely enough that it's better to
2066
  // keep the branch. This might be worth revisiting for a -O0 code size win.
2067
880
  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2068
880
  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2069
2070
880
  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2071
2072
880
  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2073
880
  EmitBlock(DeleteNotNull);
2074
2075
880
  QualType DeleteTy = E->getDestroyedType();
2076
2077
  // A destroying operator delete overrides the entire operation of the
2078
  // delete expression.
2079
880
  if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2080
30
    EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2081
30
    EmitBlock(DeleteEnd);
2082
30
    return;
2083
30
  }
2084
2085
  // We might be deleting a pointer to array.  If so, GEP down to the
2086
  // first non-array element.
2087
  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2088
850
  if (DeleteTy->isConstantArrayType()) {
2089
10
    llvm::Value *Zero = Builder.getInt32(0);
2090
10
    SmallVector<llvm::Value*,8> GEP;
2091
2092
10
    GEP.push_back(Zero); // point at the outermost array
2093
2094
    // For each layer of array type we're pointing at:
2095
22
    while (const ConstantArrayType *Arr
2096
12
             = getContext().getAsConstantArrayType(DeleteTy)) {
2097
      // 1. Unpeel the array type.
2098
12
      DeleteTy = Arr->getElementType();
2099
2100
      // 2. GEP to the first element of the array.
2101
12
      GEP.push_back(Zero);
2102
12
    }
2103
2104
10
    Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
2105
10
                                            Ptr.getPointer(), GEP, "del.first"),
2106
10
                  ConvertTypeForMem(DeleteTy), Ptr.getAlignment());
2107
10
  }
2108
2109
850
  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2110
2111
850
  if (E->isArrayForm()) {
2112
265
    EmitArrayDelete(*this, E, Ptr, DeleteTy);
2113
265
    EmitBlock(DeleteEnd);
2114
585
  } else {
2115
585
    if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2116
578
      EmitBlock(DeleteEnd);
2117
585
  }
2118
850
}
2119
2120
52
static bool isGLValueFromPointerDeref(const Expr *E) {
2121
52
  E = E->IgnoreParens();
2122
2123
52
  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2124
6
    if (!CE->getSubExpr()->isGLValue())
2125
0
      return false;
2126
6
    return isGLValueFromPointerDeref(CE->getSubExpr());
2127
6
  }
2128
2129
46
  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2130
4
    return isGLValueFromPointerDeref(OVE->getSourceExpr());
2131
2132
42
  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2133
1
    if (BO->getOpcode() == BO_Comma)
2134
1
      return isGLValueFromPointerDeref(BO->getRHS());
2135
2136
41
  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2137
7
    return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2138
7
           
isGLValueFromPointerDeref(ACO->getFalseExpr())3
;
2139
2140
  // C++11 [expr.sub]p1:
2141
  //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2142
34
  if (isa<ArraySubscriptExpr>(E))
2143
2
    return true;
2144
2145
32
  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2146
19
    if (UO->getOpcode() == UO_Deref)
2147
19
      return true;
2148
2149
13
  return false;
2150
32
}
2151
2152
static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2153
31
                                         llvm::Type *StdTypeInfoPtrTy) {
2154
  // Get the vtable pointer.
2155
31
  Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2156
2157
31
  QualType SrcRecordTy = E->getType();
2158
2159
  // C++ [class.cdtor]p4:
2160
  //   If the operand of typeid refers to the object under construction or
2161
  //   destruction and the static type of the operand is neither the constructor
2162
  //   or destructor’s class nor one of its bases, the behavior is undefined.
2163
31
  CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2164
31
                    ThisPtr.getPointer(), SrcRecordTy);
2165
2166
  // C++ [expr.typeid]p2:
2167
  //   If the glvalue expression is obtained by applying the unary * operator to
2168
  //   a pointer and the pointer is a null pointer value, the typeid expression
2169
  //   throws the std::bad_typeid exception.
2170
  //
2171
  // However, this paragraph's intent is not clear.  We choose a very generous
2172
  // interpretation which implores us to consider comma operators, conditional
2173
  // operators, parentheses and other such constructs.
2174
31
  if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2175
31
          isGLValueFromPointerDeref(E), SrcRecordTy)) {
2176
20
    llvm::BasicBlock *BadTypeidBlock =
2177
20
        CGF.createBasicBlock("typeid.bad_typeid");
2178
20
    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2179
2180
20
    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2181
20
    CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2182
2183
20
    CGF.EmitBlock(BadTypeidBlock);
2184
20
    CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2185
20
    CGF.EmitBlock(EndBlock);
2186
20
  }
2187
2188
31
  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2189
31
                                        StdTypeInfoPtrTy);
2190
31
}
2191
2192
392
llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2193
392
  llvm::Type *StdTypeInfoPtrTy =
2194
392
    ConvertType(E->getType())->getPointerTo();
2195
2196
392
  if (E->isTypeOperand()) {
2197
296
    llvm::Constant *TypeInfo =
2198
296
        CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2199
296
    return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2200
296
  }
2201
2202
  // C++ [expr.typeid]p2:
2203
  //   When typeid is applied to a glvalue expression whose type is a
2204
  //   polymorphic class type, the result refers to a std::type_info object
2205
  //   representing the type of the most derived object (that is, the dynamic
2206
  //   type) to which the glvalue refers.
2207
  // If the operand is already most derived object, no need to look up vtable.
2208
96
  if (E->isPotentiallyEvaluated() && 
!E->isMostDerived(getContext())33
)
2209
31
    return EmitTypeidFromVTable(*this, E->getExprOperand(),
2210
31
                                StdTypeInfoPtrTy);
2211
2212
65
  QualType OperandTy = E->getExprOperand()->getType();
2213
65
  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2214
65
                               StdTypeInfoPtrTy);
2215
96
}
2216
2217
static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2218
2
                                          QualType DestTy) {
2219
2
  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2220
2
  if (DestTy->isPointerType())
2221
1
    return llvm::Constant::getNullValue(DestLTy);
2222
2223
  /// C++ [expr.dynamic.cast]p9:
2224
  ///   A failed cast to reference type throws std::bad_cast
2225
1
  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2226
0
    return nullptr;
2227
2228
1
  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2229
1
  return llvm::UndefValue::get(DestLTy);
2230
1
}
2231
2232
llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2233
77
                                              const CXXDynamicCastExpr *DCE) {
2234
77
  CGM.EmitExplicitCastExprType(DCE, this);
2235
77
  QualType DestTy = DCE->getTypeAsWritten();
2236
2237
77
  QualType SrcTy = DCE->getSubExpr()->getType();
2238
2239
  // C++ [expr.dynamic.cast]p7:
2240
  //   If T is "pointer to cv void," then the result is a pointer to the most
2241
  //   derived object pointed to by v.
2242
77
  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2243
2244
77
  bool isDynamicCastToVoid;
2245
77
  QualType SrcRecordTy;
2246
77
  QualType DestRecordTy;
2247
77
  if (DestPTy) {
2248
64
    isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2249
64
    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2250
64
    DestRecordTy = DestPTy->getPointeeType();
2251
64
  } else {
2252
13
    isDynamicCastToVoid = false;
2253
13
    SrcRecordTy = SrcTy;
2254
13
    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2255
13
  }
2256
2257
  // C++ [class.cdtor]p5:
2258
  //   If the operand of the dynamic_cast refers to the object under
2259
  //   construction or destruction and the static type of the operand is not a
2260
  //   pointer to or object of the constructor or destructor’s own class or one
2261
  //   of its bases, the dynamic_cast results in undefined behavior.
2262
77
  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2263
77
                SrcRecordTy);
2264
2265
77
  if (DCE->isAlwaysNull())
2266
2
    if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2267
2
      return T;
2268
2269
75
  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2270
2271
  // C++ [expr.dynamic.cast]p4:
2272
  //   If the value of v is a null pointer value in the pointer case, the result
2273
  //   is the null pointer value of type T.
2274
0
  bool ShouldNullCheckSrcValue =
2275
75
      CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2276
75
                                                         SrcRecordTy);
2277
2278
75
  llvm::BasicBlock *CastNull = nullptr;
2279
75
  llvm::BasicBlock *CastNotNull = nullptr;
2280
75
  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2281
2282
75
  if (ShouldNullCheckSrcValue) {
2283
59
    CastNull = createBasicBlock("dynamic_cast.null");
2284
59
    CastNotNull = createBasicBlock("dynamic_cast.notnull");
2285
2286
59
    llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2287
59
    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2288
59
    EmitBlock(CastNotNull);
2289
59
  }
2290
2291
75
  llvm::Value *Value;
2292
75
  if (isDynamicCastToVoid) {
2293
6
    Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2294
6
                                                  DestTy);
2295
69
  } else {
2296
69
    assert(DestRecordTy->isRecordType() &&
2297
69
           "destination type must be a record type!");
2298
0
    Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2299
69
                                                DestTy, DestRecordTy, CastEnd);
2300
69
    CastNotNull = Builder.GetInsertBlock();
2301
69
  }
2302
2303
75
  if (ShouldNullCheckSrcValue) {
2304
59
    EmitBranch(CastEnd);
2305
2306
59
    EmitBlock(CastNull);
2307
59
    EmitBranch(CastEnd);
2308
59
  }
2309
2310
75
  EmitBlock(CastEnd);
2311
2312
75
  if (ShouldNullCheckSrcValue) {
2313
59
    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2314
59
    PHI->addIncoming(Value, CastNotNull);
2315
59
    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2316
2317
59
    Value = PHI;
2318
59
  }
2319
2320
75
  return Value;
2321
77
}