Coverage Report

Created: 2022-07-16 07:03

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/CodeGen/CodeGenFunction.h
Line
Count
Source (jump to first uncovered line)
1
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This is the internal per-function state used for llvm translation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15
16
#include "CGBuilder.h"
17
#include "CGDebugInfo.h"
18
#include "CGLoopInfo.h"
19
#include "CGValue.h"
20
#include "CodeGenModule.h"
21
#include "CodeGenPGO.h"
22
#include "EHScopeStack.h"
23
#include "VarBypassDetector.h"
24
#include "clang/AST/CharUnits.h"
25
#include "clang/AST/CurrentSourceLocExprScope.h"
26
#include "clang/AST/ExprCXX.h"
27
#include "clang/AST/ExprObjC.h"
28
#include "clang/AST/ExprOpenMP.h"
29
#include "clang/AST/StmtOpenMP.h"
30
#include "clang/AST/Type.h"
31
#include "clang/Basic/ABI.h"
32
#include "clang/Basic/CapturedStmt.h"
33
#include "clang/Basic/CodeGenOptions.h"
34
#include "clang/Basic/OpenMPKinds.h"
35
#include "clang/Basic/TargetInfo.h"
36
#include "llvm/ADT/ArrayRef.h"
37
#include "llvm/ADT/DenseMap.h"
38
#include "llvm/ADT/MapVector.h"
39
#include "llvm/ADT/SmallVector.h"
40
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41
#include "llvm/IR/ValueHandle.h"
42
#include "llvm/Support/Debug.h"
43
#include "llvm/Transforms/Utils/SanitizerStats.h"
44
45
namespace llvm {
46
class BasicBlock;
47
class LLVMContext;
48
class MDNode;
49
class SwitchInst;
50
class Twine;
51
class Value;
52
class CanonicalLoopInfo;
53
}
54
55
namespace clang {
56
class ASTContext;
57
class CXXDestructorDecl;
58
class CXXForRangeStmt;
59
class CXXTryStmt;
60
class Decl;
61
class LabelDecl;
62
class FunctionDecl;
63
class FunctionProtoType;
64
class LabelStmt;
65
class ObjCContainerDecl;
66
class ObjCInterfaceDecl;
67
class ObjCIvarDecl;
68
class ObjCMethodDecl;
69
class ObjCImplementationDecl;
70
class ObjCPropertyImplDecl;
71
class TargetInfo;
72
class VarDecl;
73
class ObjCForCollectionStmt;
74
class ObjCAtTryStmt;
75
class ObjCAtThrowStmt;
76
class ObjCAtSynchronizedStmt;
77
class ObjCAutoreleasePoolStmt;
78
class OMPUseDevicePtrClause;
79
class OMPUseDeviceAddrClause;
80
class SVETypeFlags;
81
class OMPExecutableDirective;
82
83
namespace analyze_os_log {
84
class OSLogBufferLayout;
85
}
86
87
namespace CodeGen {
88
class CodeGenTypes;
89
class CGCallee;
90
class CGFunctionInfo;
91
class CGBlockInfo;
92
class CGCXXABI;
93
class BlockByrefHelpers;
94
class BlockByrefInfo;
95
class BlockFieldFlags;
96
class RegionCodeGenTy;
97
class TargetCodeGenInfo;
98
struct OMPTaskDataTy;
99
struct CGCoroData;
100
101
/// The kind of evaluation to perform on values of a particular
102
/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
103
/// CGExprAgg?
104
///
105
/// TODO: should vectors maybe be split out into their own thing?
106
enum TypeEvaluationKind {
107
  TEK_Scalar,
108
  TEK_Complex,
109
  TEK_Aggregate
110
};
111
112
#define LIST_SANITIZER_CHECKS                                                  \
113
  SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
114
  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
115
  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
116
  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
117
  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
118
  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
119
  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
120
  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
121
  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
122
  SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
123
  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
124
  SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
125
  SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
126
  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
127
  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
128
  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
129
  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
130
  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
131
  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
132
  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
133
  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
134
  SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
135
  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
136
  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
137
  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
138
139
enum SanitizerHandler {
140
#define SANITIZER_CHECK(Enum, Name, Version) Enum,
141
  LIST_SANITIZER_CHECKS
142
#undef SANITIZER_CHECK
143
};
144
145
/// Helper class with most of the code for saving a value for a
146
/// conditional expression cleanup.
147
struct DominatingLLVMValue {
148
  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
149
150
  /// Answer whether the given value needs extra work to be saved.
151
263
  static bool needsSaving(llvm::Value *value) {
152
    // If it's not an instruction, we don't need to save.
153
263
    if (!isa<llvm::Instruction>(value)) 
return false55
;
154
155
    // If it's an instruction in the entry block, we don't need to save.
156
208
    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
157
208
    return (block != &block->getParent()->getEntryBlock());
158
263
  }
159
160
  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
161
  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
162
};
163
164
/// A partial specialization of DominatingValue for llvm::Values that
165
/// might be llvm::Instructions.
166
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
167
  typedef T *type;
168
68
  static type restore(CodeGenFunction &CGF, saved_type value) {
169
68
    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
170
68
  }
171
};
172
173
/// A specialization of DominatingValue for Address.
174
template <> struct DominatingValue<Address> {
175
  typedef Address type;
176
177
  struct saved_type {
178
    DominatingLLVMValue::saved_type SavedValue;
179
    llvm::Type *ElementType;
180
    CharUnits Alignment;
181
  };
182
183
0
  static bool needsSaving(type value) {
184
0
    return DominatingLLVMValue::needsSaving(value.getPointer());
185
0
  }
186
172
  static saved_type save(CodeGenFunction &CGF, type value) {
187
172
    return { DominatingLLVMValue::save(CGF, value.getPointer()),
188
172
             value.getElementType(), value.getAlignment() };
189
172
  }
190
190
  static type restore(CodeGenFunction &CGF, saved_type value) {
191
190
    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
192
190
                   value.ElementType, value.Alignment);
193
190
  }
194
};
195
196
/// A specialization of DominatingValue for RValue.
197
template <> struct DominatingValue<RValue> {
198
  typedef RValue type;
199
  class saved_type {
200
    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
201
                AggregateAddress, ComplexAddress };
202
203
    llvm::Value *Value;
204
    llvm::Type *ElementType;
205
    unsigned K : 3;
206
    unsigned Align : 29;
207
    saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
208
16
      : Value(v), ElementType(e), K(k), Align(a) {}
209
210
  public:
211
    static bool needsSaving(RValue value);
212
    static saved_type save(CodeGenFunction &CGF, RValue value);
213
    RValue restore(CodeGenFunction &CGF);
214
215
    // implementations in CGCleanup.cpp
216
  };
217
218
0
  static bool needsSaving(type value) {
219
0
    return saved_type::needsSaving(value);
220
0
  }
221
16
  static saved_type save(CodeGenFunction &CGF, type value) {
222
16
    return saved_type::save(CGF, value);
223
16
  }
224
0
  static type restore(CodeGenFunction &CGF, saved_type value) {
225
0
    return value.restore(CGF);
226
0
  }
227
};
228
229
/// CodeGenFunction - This class organizes the per-function state that is used
230
/// while generating LLVM code.
231
class CodeGenFunction : public CodeGenTypeCache {
232
  CodeGenFunction(const CodeGenFunction &) = delete;
233
  void operator=(const CodeGenFunction &) = delete;
234
235
  friend class CGCXXABI;
236
public:
237
  /// A jump destination is an abstract label, branching to which may
238
  /// require a jump out through normal cleanups.
239
  struct JumpDest {
240
1.28M
    JumpDest() : Block(nullptr), Index(0) {}
241
    JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
242
             unsigned Index)
243
422k
        : Block(Block), ScopeDepth(Depth), Index(Index) {}
244
245
472k
    bool isValid() const { return Block != nullptr; }
246
1.44M
    llvm::BasicBlock *getBlock() const { return Block; }
247
197k
    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
248
7.69k
    unsigned getDestIndex() const { return Index; }
249
250
    // This should be used cautiously.
251
154
    void setScopeDepth(EHScopeStack::stable_iterator depth) {
252
154
      ScopeDepth = depth;
253
154
    }
254
255
  private:
256
    llvm::BasicBlock *Block;
257
    EHScopeStack::stable_iterator ScopeDepth;
258
    unsigned Index;
259
  };
260
261
  CodeGenModule &CGM;  // Per-module state.
262
  const TargetInfo &Target;
263
264
  // For EH/SEH outlined funclets, this field points to parent's CGF
265
  CodeGenFunction *ParentCGF = nullptr;
266
267
  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
268
  LoopInfoStack LoopStack;
269
  CGBuilderTy Builder;
270
271
  // Stores variables for which we can't generate correct lifetime markers
272
  // because of jumps.
273
  VarBypassDetector Bypasses;
274
275
  /// List of recently emitted OMPCanonicalLoops.
276
  ///
277
  /// Since OMPCanonicalLoops are nested inside other statements (in particular
278
  /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
279
  /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
280
  /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
281
  /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
282
  /// this stack when done. Entering a new loop requires clearing this list; it
283
  /// either means we start parsing a new loop nest (in which case the previous
284
  /// loop nest goes out of scope) or a second loop in the same level in which
285
  /// case it would be ambiguous into which of the two (or more) loops the loop
286
  /// nest would extend.
287
  SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
288
289
  /// Number of nested loop to be consumed by the last surrounding
290
  /// loop-associated directive.
291
  int ExpectedOMPLoopDepth = 0;
292
293
  // CodeGen lambda for loops and support for ordered clause
294
  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
295
                                  JumpDest)>
296
      CodeGenLoopTy;
297
  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
298
                                  const unsigned, const bool)>
299
      CodeGenOrderedTy;
300
301
  // Codegen lambda for loop bounds in worksharing loop constructs
302
  typedef llvm::function_ref<std::pair<LValue, LValue>(
303
      CodeGenFunction &, const OMPExecutableDirective &S)>
304
      CodeGenLoopBoundsTy;
305
306
  // Codegen lambda for loop bounds in dispatch-based loop implementation
307
  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
308
      CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
309
      Address UB)>
310
      CodeGenDispatchBoundsTy;
311
312
  /// CGBuilder insert helper. This function is called after an
313
  /// instruction is created using Builder.
314
  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
315
                    llvm::BasicBlock *BB,
316
                    llvm::BasicBlock::iterator InsertPt) const;
317
318
  /// CurFuncDecl - Holds the Decl for the current outermost
319
  /// non-closure context.
320
  const Decl *CurFuncDecl;
321
  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
322
  const Decl *CurCodeDecl;
323
  const CGFunctionInfo *CurFnInfo;
324
  QualType FnRetTy;
325
  llvm::Function *CurFn = nullptr;
326
327
  /// Save Parameter Decl for coroutine.
328
  llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
329
330
  // Holds coroutine data if the current function is a coroutine. We use a
331
  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
332
  // in this header.
333
  struct CGCoroInfo {
334
    std::unique_ptr<CGCoroData> Data;
335
    CGCoroInfo();
336
    ~CGCoroInfo();
337
  };
338
  CGCoroInfo CurCoro;
339
340
393
  bool isCoroutine() const {
341
393
    return CurCoro.Data != nullptr;
342
393
  }
343
344
  /// CurGD - The GlobalDecl for the current function being compiled.
345
  GlobalDecl CurGD;
346
347
  /// PrologueCleanupDepth - The cleanup depth enclosing all the
348
  /// cleanups associated with the parameters.
349
  EHScopeStack::stable_iterator PrologueCleanupDepth;
350
351
  /// ReturnBlock - Unified return block.
352
  JumpDest ReturnBlock;
353
354
  /// ReturnValue - The temporary alloca to hold the return
355
  /// value. This is invalid iff the function has no return value.
356
  Address ReturnValue = Address::invalid();
357
358
  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
359
  /// This is invalid if sret is not in use.
360
  Address ReturnValuePointer = Address::invalid();
361
362
  /// If a return statement is being visited, this holds the return statment's
363
  /// result expression.
364
  const Expr *RetExpr = nullptr;
365
366
  /// Return true if a label was seen in the current scope.
367
32.8k
  bool hasLabelBeenSeenInCurrentScope() const {
368
32.8k
    if (CurLexicalScope)
369
11.0k
      return CurLexicalScope->hasLabels();
370
21.7k
    return !LabelMap.empty();
371
32.8k
  }
372
373
  /// AllocaInsertPoint - This is an instruction in the entry block before which
374
  /// we prefer to insert allocas.
375
  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
376
377
private:
378
  /// PostAllocaInsertPt - This is a place in the prologue where code can be
379
  /// inserted that will be dominated by all the static allocas. This helps
380
  /// achieve two things:
381
  ///   1. Contiguity of all static allocas (within the prologue) is maintained.
382
  ///   2. All other prologue code (which are dominated by static allocas) do
383
  ///      appear in the source order immediately after all static allocas.
384
  ///
385
  /// PostAllocaInsertPt will be lazily created when it is *really* required.
386
  llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
387
388
public:
389
  /// Return PostAllocaInsertPt. If it is not yet created, then insert it
390
  /// immediately after AllocaInsertPt.
391
6.29k
  llvm::Instruction *getPostAllocaInsertPoint() {
392
6.29k
    if (!PostAllocaInsertPt) {
393
2.26k
      assert(AllocaInsertPt &&
394
2.26k
             "Expected static alloca insertion point at function prologue");
395
0
      assert(AllocaInsertPt->getParent()->isEntryBlock() &&
396
2.26k
             "EBB should be entry block of the current code gen function");
397
0
      PostAllocaInsertPt = AllocaInsertPt->clone();
398
2.26k
      PostAllocaInsertPt->setName("postallocapt");
399
2.26k
      PostAllocaInsertPt->insertAfter(AllocaInsertPt);
400
2.26k
    }
401
402
0
    return PostAllocaInsertPt;
403
6.29k
  }
404
405
  /// API for captured statement code generation.
406
  class CGCapturedStmtInfo {
407
  public:
408
    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
409
40.2k
        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
410
    explicit CGCapturedStmtInfo(const CapturedStmt &S,
411
                                CapturedRegionKind K = CR_Default)
412
25.6k
      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
413
414
25.6k
      RecordDecl::field_iterator Field =
415
25.6k
        S.getCapturedRecordDecl()->field_begin();
416
25.6k
      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
417
25.6k
                                                E = S.capture_end();
418
63.9k
           I != E; 
++I, ++Field38.2k
) {
419
38.2k
        if (I->capturesThis())
420
1.86k
          CXXThisFieldDecl = *Field;
421
36.4k
        else if (I->capturesVariable())
422
14.9k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
423
21.4k
        else if (I->capturesVariableByCopy())
424
18.2k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
425
38.2k
      }
426
25.6k
    }
427
428
    virtual ~CGCapturedStmtInfo();
429
430
106k
    CapturedRegionKind getKind() const { return Kind; }
431
432
1.04k
    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
433
    // Retrieve the value of the context parameter.
434
2.11k
    virtual llvm::Value *getContextValue() const { return ThisValue; }
435
436
    /// Lookup the captured field decl for a variable.
437
30.8k
    virtual const FieldDecl *lookup(const VarDecl *VD) const {
438
30.8k
      return CaptureFields.lookup(VD->getCanonicalDecl());
439
30.8k
    }
440
441
1.04k
    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
442
1.06k
    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
443
444
0
    static bool classof(const CGCapturedStmtInfo *) {
445
0
      return true;
446
0
    }
447
448
    /// Emit the captured statement body.
449
127
    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
450
127
      CGF.incrementProfileCounter(S);
451
127
      CGF.EmitStmt(S);
452
127
    }
453
454
    /// Get the name of the capture helper.
455
127
    virtual StringRef getHelperName() const { return "__captured_stmt"; }
456
457
    /// Get the CaptureFields
458
6
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
459
6
      return CaptureFields;
460
6
    }
461
462
  private:
463
    /// The kind of captured statement being generated.
464
    CapturedRegionKind Kind;
465
466
    /// Keep the map between VarDecl and FieldDecl.
467
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
468
469
    /// The base address of the captured record, passed in as the first
470
    /// argument of the parallel region function.
471
    llvm::Value *ThisValue;
472
473
    /// Captured 'this' type.
474
    FieldDecl *CXXThisFieldDecl;
475
  };
476
  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
477
478
  /// RAII for correct setting/restoring of CapturedStmtInfo.
479
  class CGCapturedStmtRAII {
480
  private:
481
    CodeGenFunction &CGF;
482
    CGCapturedStmtInfo *PrevCapturedStmtInfo;
483
  public:
484
    CGCapturedStmtRAII(CodeGenFunction &CGF,
485
                       CGCapturedStmtInfo *NewCapturedStmtInfo)
486
25.9k
        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
487
25.9k
      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
488
25.9k
    }
489
25.9k
    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
490
  };
491
492
  /// An abstract representation of regular/ObjC call/message targets.
493
  class AbstractCallee {
494
    /// The function declaration of the callee.
495
    const Decl *CalleeDecl;
496
497
  public:
498
2.73k
    AbstractCallee() : CalleeDecl(nullptr) {}
499
294k
    AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
500
11.9k
    AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
501
396k
    bool hasFunctionDecl() const {
502
396k
      return isa_and_nonnull<FunctionDecl>(CalleeDecl);
503
396k
    }
504
396k
    const Decl *getDecl() const { return CalleeDecl; }
505
365k
    unsigned getNumParams() const {
506
365k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
507
365k
        return FD->getNumParams();
508
8
      return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
509
365k
    }
510
276k
    const ParmVarDecl *getParamDecl(unsigned I) const {
511
276k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
512
276k
        return FD->getParamDecl(I);
513
7
      return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
514
276k
    }
515
  };
516
517
  /// Sanitizers enabled for this function.
518
  SanitizerSet SanOpts;
519
520
  /// True if CodeGen currently emits code implementing sanitizer checks.
521
  bool IsSanitizerScope = false;
522
523
  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
524
  class SanitizerScope {
525
    CodeGenFunction *CGF;
526
  public:
527
    SanitizerScope(CodeGenFunction *CGF);
528
    ~SanitizerScope();
529
  };
530
531
  /// In C++, whether we are code generating a thunk.  This controls whether we
532
  /// should emit cleanups.
533
  bool CurFuncIsThunk = false;
534
535
  /// In ARC, whether we should autorelease the return value.
536
  bool AutoreleaseResult = false;
537
538
  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
539
  /// potentially set the return value.
540
  bool SawAsmBlock = false;
541
542
  const NamedDecl *CurSEHParent = nullptr;
543
544
  /// True if the current function is an outlined SEH helper. This can be a
545
  /// finally block or filter expression.
546
  bool IsOutlinedSEHHelper = false;
547
548
  /// True if CodeGen currently emits code inside presereved access index
549
  /// region.
550
  bool IsInPreservedAIRegion = false;
551
552
  /// True if the current statement has nomerge attribute.
553
  bool InNoMergeAttributedStmt = false;
554
555
  /// True if the current statement has noinline attribute.
556
  bool InNoInlineAttributedStmt = false;
557
558
  /// True if the current statement has always_inline attribute.
559
  bool InAlwaysInlineAttributedStmt = false;
560
561
  // The CallExpr within the current statement that the musttail attribute
562
  // applies to.  nullptr if there is no 'musttail' on the current statement.
563
  const CallExpr *MustTailCall = nullptr;
564
565
  /// Returns true if a function must make progress, which means the
566
  /// mustprogress attribute can be added.
567
231k
  bool checkIfFunctionMustProgress() {
568
231k
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
569
231k
        CodeGenOptions::FiniteLoopsKind::Never)
570
115
      return false;
571
572
    // C++11 and later guarantees that a thread eventually will do one of the
573
    // following (6.9.2.3.1 in C++11):
574
    // - terminate,
575
    //  - make a call to a library I/O function,
576
    //  - perform an access through a volatile glvalue, or
577
    //  - perform a synchronization operation or an atomic operation.
578
    //
579
    // Hence each function is 'mustprogress' in C++11 or later.
580
231k
    return getLangOpts().CPlusPlus11;
581
231k
  }
582
583
  /// Returns true if a loop must make progress, which means the mustprogress
584
  /// attribute can be added. \p HasConstantCond indicates whether the branch
585
  /// condition is a known constant.
586
19.8k
  bool checkIfLoopMustProgress(bool HasConstantCond) {
587
19.8k
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
588
19.8k
        CodeGenOptions::FiniteLoopsKind::Always)
589
155
      return true;
590
19.6k
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
591
19.6k
        CodeGenOptions::FiniteLoopsKind::Never)
592
155
      return false;
593
594
    // If the containing function must make progress, loops also must make
595
    // progress (as in C++11 and later).
596
19.5k
    if (checkIfFunctionMustProgress())
597
18.4k
      return true;
598
599
    // Now apply rules for plain C (see  6.8.5.6 in C11).
600
    // Loops with constant conditions do not have to make progress in any C
601
    // version.
602
1.09k
    if (HasConstantCond)
603
278
      return false;
604
605
    // Loops with non-constant conditions must make progress in C11 and later.
606
814
    return getLangOpts().C11;
607
1.09k
  }
608
609
  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
610
  llvm::Value *BlockPointer = nullptr;
611
612
  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
613
  FieldDecl *LambdaThisCaptureField = nullptr;
614
615
  /// A mapping from NRVO variables to the flags used to indicate
616
  /// when the NRVO has been applied to this variable.
617
  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
618
619
  EHScopeStack EHStack;
620
  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
621
  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
622
623
  llvm::Instruction *CurrentFuncletPad = nullptr;
624
625
  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
626
0
    bool isRedundantBeforeReturn() override { return true; }
627
628
    llvm::Value *Addr;
629
    llvm::Value *Size;
630
631
  public:
632
    CallLifetimeEnd(Address addr, llvm::Value *size)
633
4.77k
        : Addr(addr.getPointer()), Size(size) {}
634
635
4.91k
    void Emit(CodeGenFunction &CGF, Flags flags) override {
636
4.91k
      CGF.EmitLifetimeEnd(Size, Addr);
637
4.91k
    }
638
  };
639
640
  /// Header for data within LifetimeExtendedCleanupStack.
641
  struct LifetimeExtendedCleanupHeader {
642
    /// The size of the following cleanup object.
643
    unsigned Size;
644
    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
645
    unsigned Kind : 31;
646
    /// Whether this is a conditional cleanup.
647
    unsigned IsConditional : 1;
648
649
1.14k
    size_t getSize() const { return Size; }
650
570
    CleanupKind getKind() const { return (CleanupKind)Kind; }
651
570
    bool isConditional() const { return IsConditional; }
652
  };
653
654
  /// i32s containing the indexes of the cleanup destinations.
655
  Address NormalCleanupDest = Address::invalid();
656
657
  unsigned NextCleanupDestIndex = 1;
658
659
  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
660
  llvm::BasicBlock *EHResumeBlock = nullptr;
661
662
  /// The exception slot.  All landing pads write the current exception pointer
663
  /// into this alloca.
664
  llvm::Value *ExceptionSlot = nullptr;
665
666
  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
667
  /// write the current selector value into this alloca.
668
  llvm::AllocaInst *EHSelectorSlot = nullptr;
669
670
  /// A stack of exception code slots. Entering an __except block pushes a slot
671
  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
672
  /// a value from the top of the stack.
673
  SmallVector<Address, 1> SEHCodeSlotStack;
674
675
  /// Value returned by __exception_info intrinsic.
676
  llvm::Value *SEHInfo = nullptr;
677
678
  /// Emits a landing pad for the current EH stack.
679
  llvm::BasicBlock *EmitLandingPad();
680
681
  llvm::BasicBlock *getInvokeDestImpl();
682
683
  /// Parent loop-based directive for scan directive.
684
  const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
685
  llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
686
  llvm::BasicBlock *OMPAfterScanBlock = nullptr;
687
  llvm::BasicBlock *OMPScanExitBlock = nullptr;
688
  llvm::BasicBlock *OMPScanDispatch = nullptr;
689
  bool OMPFirstScanLoop = false;
690
691
  /// Manages parent directive for scan directives.
692
  class ParentLoopDirectiveForScanRegion {
693
    CodeGenFunction &CGF;
694
    const OMPExecutableDirective *ParentLoopDirectiveForScan;
695
696
  public:
697
    ParentLoopDirectiveForScanRegion(
698
        CodeGenFunction &CGF,
699
        const OMPExecutableDirective &ParentLoopDirectiveForScan)
700
        : CGF(CGF),
701
3.67k
          ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
702
3.67k
      CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
703
3.67k
    }
704
3.67k
    ~ParentLoopDirectiveForScanRegion() {
705
3.67k
      CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
706
3.67k
    }
707
  };
708
709
  template <class T>
710
519
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
519
    return DominatingValue<T>::save(*this, value);
712
519
  }
clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CodeGen::Address>(clang::CodeGen::Address)
Line
Count
Source
710
172
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
172
    return DominatingValue<T>::save(*this, value);
712
172
  }
clang::CodeGen::DominatingValue<clang::QualType>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::QualType>(clang::QualType)
Line
Count
Source
710
96
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
96
    return DominatingValue<T>::save(*this, value);
712
96
  }
clang::CodeGen::DominatingValue<llvm::Value*>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<llvm::Value*>(llvm::Value*)
Line
Count
Source
710
75
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
75
    return DominatingValue<T>::save(*this, value);
712
75
  }
clang::CodeGen::DominatingValue<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
710
88
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
88
    return DominatingValue<T>::save(*this, value);
712
88
  }
clang::CodeGen::DominatingValue<bool>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<bool>(bool)
Line
Count
Source
710
88
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
88
    return DominatingValue<T>::save(*this, value);
712
88
  }
Unexecuted instantiation: clang::CodeGen::DominatingValue<clang::CharUnits>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CharUnits>(clang::CharUnits)
713
714
  class CGFPOptionsRAII {
715
  public:
716
    CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
717
    CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
718
    ~CGFPOptionsRAII();
719
720
  private:
721
    void ConstructorHelper(FPOptions FPFeatures);
722
    CodeGenFunction &CGF;
723
    FPOptions OldFPFeatures;
724
    llvm::fp::ExceptionBehavior OldExcept;
725
    llvm::RoundingMode OldRounding;
726
    Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
727
  };
728
  FPOptions CurFPFeatures;
729
730
public:
731
  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
732
  /// rethrows.
733
  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
734
735
  /// A class controlling the emission of a finally block.
736
  class FinallyInfo {
737
    /// Where the catchall's edge through the cleanup should go.
738
    JumpDest RethrowDest;
739
740
    /// A function to call to enter the catch.
741
    llvm::FunctionCallee BeginCatchFn;
742
743
    /// An i1 variable indicating whether or not the @finally is
744
    /// running for an exception.
745
    llvm::AllocaInst *ForEHVar;
746
747
    /// An i8* variable into which the exception pointer to rethrow
748
    /// has been saved.
749
    llvm::AllocaInst *SavedExnVar;
750
751
  public:
752
    void enter(CodeGenFunction &CGF, const Stmt *Finally,
753
               llvm::FunctionCallee beginCatchFn,
754
               llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
755
    void exit(CodeGenFunction &CGF);
756
  };
757
758
  /// Returns true inside SEH __try blocks.
759
359k
  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
760
761
  /// Returns true while emitting a cleanuppad.
762
358k
  bool isCleanupPadScope() const {
763
358k
    return CurrentFuncletPad && 
isa<llvm::CleanupPadInst>(CurrentFuncletPad)128
;
764
358k
  }
765
766
  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
767
  /// current full-expression.  Safe against the possibility that
768
  /// we're currently inside a conditionally-evaluated expression.
769
  template <class T, class... As>
770
8.84k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
8.84k
    if (!isInConditionalBranch())
774
8.66k
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
171
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
171
    SavedTuple Saved{saveValueInCond(A)...};
779
780
171
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
171
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
171
    initFullExprCleanup();
783
171
  }
CGCall.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyUnpassedArg, clang::CodeGen::Address, clang::QualType>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType)
Line
Count
Source
770
186
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
186
    if (!isInConditionalBranch())
774
178
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
8
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
8
    SavedTuple Saved{saveValueInCond(A)...};
779
780
8
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
8
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
8
    initFullExprCleanup();
783
8
  }
void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
770
809
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
809
    if (!isInConditionalBranch())
774
762
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
47
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
47
    SavedTuple Saved{saveValueInCond(A)...};
779
780
47
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
47
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
47
    initFullExprCleanup();
783
47
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
770
4.90k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
4.90k
    if (!isInConditionalBranch())
774
4.81k
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
88
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
88
    SavedTuple Saved{saveValueInCond(A)...};
779
780
88
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
88
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
88
    initFullExprCleanup();
783
88
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::IrregularPartialArrayDestroy, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
770
78
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
78
    if (!isInConditionalBranch())
774
78
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
0
    SavedTuple Saved{saveValueInCond(A)...};
779
780
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
0
    initFullExprCleanup();
783
0
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::RegularPartialArrayDestroy, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
770
1.90k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
1.90k
    if (!isInConditionalBranch())
774
1.90k
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
0
    SavedTuple Saved{saveValueInCond(A)...};
779
780
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
0
    initFullExprCleanup();
783
0
  }
CGException.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::FreeException, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
770
661
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
661
    if (!isInConditionalBranch())
774
648
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
13
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
13
    SavedTuple Saved{saveValueInCond(A)...};
779
780
13
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
13
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
13
    initFullExprCleanup();
783
13
  }
CGObjC.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::CallObjCRelease, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
770
297
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
297
    if (!isInConditionalBranch())
774
282
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
15
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
15
    SavedTuple Saved{saveValueInCond(A)...};
779
780
15
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
15
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
15
    initFullExprCleanup();
783
15
  }
784
785
  /// Queue a cleanup to be pushed after finishing the current full-expression,
786
  /// potentially with an active flag.
787
  template <class T, class... As>
788
21
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
789
21
    if (!isInConditionalBranch())
790
21
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791
21
                                                       A...);
792
793
0
    Address ActiveFlag = createCleanupActiveFlag();
794
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795
0
           "cleanup active flag should never need saving");
796
797
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798
0
    SavedTuple Saved{saveValueInCond(A)...};
799
800
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802
0
  }
CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
788
4
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
789
4
    if (!isInConditionalBranch())
790
4
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791
4
                                                       A...);
792
793
0
    Address ActiveFlag = createCleanupActiveFlag();
794
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795
0
           "cleanup active flag should never need saving");
796
797
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798
0
    SavedTuple Saved{saveValueInCond(A)...};
799
800
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802
0
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
788
17
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
789
17
    if (!isInConditionalBranch())
790
17
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791
17
                                                       A...);
792
793
0
    Address ActiveFlag = createCleanupActiveFlag();
794
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795
0
           "cleanup active flag should never need saving");
796
797
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798
0
    SavedTuple Saved{saveValueInCond(A)...};
799
800
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802
0
  }
803
804
  template <class T, class... As>
805
  void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
806
570
                                              Address ActiveFlag, As... A) {
807
570
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
570
                                            ActiveFlag.isValid()};
809
810
570
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
570
    LifetimeExtendedCleanupStack.resize(
812
570
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
570
        (Header.IsConditional ? 
sizeof(ActiveFlag)29
:
0541
));
814
815
570
    static_assert(sizeof(Header) % alignof(T) == 0,
816
570
                  "Cleanup will be allocated on misaligned address");
817
570
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
570
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
570
    new (Buffer + sizeof(Header)) T(A...);
820
570
    if (Header.IsConditional)
821
29
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
570
  }
CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
806
4
                                              Address ActiveFlag, As... A) {
807
4
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
4
                                            ActiveFlag.isValid()};
809
810
4
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
4
    LifetimeExtendedCleanupStack.resize(
812
4
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
4
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
814
815
4
    static_assert(sizeof(Header) % alignof(T) == 0,
816
4
                  "Cleanup will be allocated on misaligned address");
817
4
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
4
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
4
    new (Buffer + sizeof(Header)) T(A...);
820
4
    if (Header.IsConditional)
821
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
4
  }
Unexecuted instantiation: CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::CallObjCArcUse, llvm::Value*>, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
806
520
                                              Address ActiveFlag, As... A) {
807
520
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
520
                                            ActiveFlag.isValid()};
809
810
520
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
520
    LifetimeExtendedCleanupStack.resize(
812
520
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
520
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
814
815
520
    static_assert(sizeof(Header) % alignof(T) == 0,
816
520
                  "Cleanup will be allocated on misaligned address");
817
520
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
520
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
520
    new (Buffer + sizeof(Header)) T(A...);
820
520
    if (Header.IsConditional)
821
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
520
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
806
29
                                              Address ActiveFlag, As... A) {
807
29
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
29
                                            ActiveFlag.isValid()};
809
810
29
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
29
    LifetimeExtendedCleanupStack.resize(
812
29
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
29
        (Header.IsConditional ? sizeof(ActiveFlag) : 
00
));
814
815
29
    static_assert(sizeof(Header) % alignof(T) == 0,
816
29
                  "Cleanup will be allocated on misaligned address");
817
29
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
29
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
29
    new (Buffer + sizeof(Header)) T(A...);
820
29
    if (Header.IsConditional)
821
29
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
29
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
806
17
                                              Address ActiveFlag, As... A) {
807
17
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
17
                                            ActiveFlag.isValid()};
809
810
17
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
17
    LifetimeExtendedCleanupStack.resize(
812
17
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
17
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
814
815
17
    static_assert(sizeof(Header) % alignof(T) == 0,
816
17
                  "Cleanup will be allocated on misaligned address");
817
17
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
17
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
17
    new (Buffer + sizeof(Header)) T(A...);
820
17
    if (Header.IsConditional)
821
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
17
  }
Unexecuted instantiation: void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
823
824
  /// Set up the last cleanup that was pushed as a conditional
825
  /// full-expression cleanup.
826
177
  void initFullExprCleanup() {
827
177
    initFullExprCleanupWithFlag(createCleanupActiveFlag());
828
177
  }
829
830
  void initFullExprCleanupWithFlag(Address ActiveFlag);
831
  Address createCleanupActiveFlag();
832
833
  /// PushDestructorCleanup - Push a cleanup to call the
834
  /// complete-object destructor of an object of the given type at the
835
  /// given address.  Does nothing if T is not a C++ class type with a
836
  /// non-trivial destructor.
837
  void PushDestructorCleanup(QualType T, Address Addr);
838
839
  /// PushDestructorCleanup - Push a cleanup to call the
840
  /// complete-object variant of the given destructor on the object at
841
  /// the given address.
842
  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
843
                             Address Addr);
844
845
  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
846
  /// process all branch fixups.
847
  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
848
849
  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
850
  /// The block cannot be reactivated.  Pops it if it's the top of the
851
  /// stack.
852
  ///
853
  /// \param DominatingIP - An instruction which is known to
854
  ///   dominate the current IP (if set) and which lies along
855
  ///   all paths of execution between the current IP and the
856
  ///   the point at which the cleanup comes into scope.
857
  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
858
                              llvm::Instruction *DominatingIP);
859
860
  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
861
  /// Cannot be used to resurrect a deactivated cleanup.
862
  ///
863
  /// \param DominatingIP - An instruction which is known to
864
  ///   dominate the current IP (if set) and which lies along
865
  ///   all paths of execution between the current IP and the
866
  ///   the point at which the cleanup comes into scope.
867
  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
868
                            llvm::Instruction *DominatingIP);
869
870
  /// Enters a new scope for capturing cleanups, all of which
871
  /// will be executed once the scope is exited.
872
  class RunCleanupsScope {
873
    EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
874
    size_t LifetimeExtendedCleanupStackSize;
875
    bool OldDidCallStackSave;
876
  protected:
877
    bool PerformCleanup;
878
  private:
879
880
    RunCleanupsScope(const RunCleanupsScope &) = delete;
881
    void operator=(const RunCleanupsScope &) = delete;
882
883
  protected:
884
    CodeGenFunction& CGF;
885
886
  public:
887
    /// Enter a new cleanup scope.
888
    explicit RunCleanupsScope(CodeGenFunction &CGF)
889
      : PerformCleanup(true), CGF(CGF)
890
999k
    {
891
999k
      CleanupStackDepth = CGF.EHStack.stable_begin();
892
999k
      LifetimeExtendedCleanupStackSize =
893
999k
          CGF.LifetimeExtendedCleanupStack.size();
894
999k
      OldDidCallStackSave = CGF.DidCallStackSave;
895
999k
      CGF.DidCallStackSave = false;
896
999k
      OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
897
999k
      CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
898
999k
    }
899
900
    /// Exit this cleanup scope, emitting any accumulated cleanups.
901
999k
    ~RunCleanupsScope() {
902
999k
      if (PerformCleanup)
903
330k
        ForceCleanup();
904
999k
    }
905
906
    /// Determine whether this scope requires any cleanups.
907
34.0k
    bool requiresCleanups() const {
908
34.0k
      return CGF.EHStack.stable_begin() != CleanupStackDepth;
909
34.0k
    }
910
911
    /// Force the emission of cleanups now, instead of waiting
912
    /// until this object is destroyed.
913
    /// \param ValuesToReload - A list of values that need to be available at
914
    /// the insertion point after cleanup emission. If cleanup emission created
915
    /// a shared cleanup block, these value pointers will be rewritten.
916
    /// Otherwise, they not will be modified.
917
999k
    void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
918
999k
      assert(PerformCleanup && "Already forced cleanup");
919
0
      CGF.DidCallStackSave = OldDidCallStackSave;
920
999k
      CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
921
999k
                           ValuesToReload);
922
999k
      PerformCleanup = false;
923
999k
      CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
924
999k
    }
925
  };
926
927
  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
928
  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
929
      EHScopeStack::stable_end();
930
931
  class LexicalScope : public RunCleanupsScope {
932
    SourceRange Range;
933
    SmallVector<const LabelDecl*, 4> Labels;
934
    LexicalScope *ParentScope;
935
936
    LexicalScope(const LexicalScope &) = delete;
937
    void operator=(const LexicalScope &) = delete;
938
939
  public:
940
    /// Enter a new cleanup scope.
941
    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
942
321k
      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
943
321k
      CGF.CurLexicalScope = this;
944
321k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
945
211k
        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
946
321k
    }
947
948
0
    void addLabel(const LabelDecl *label) {
949
0
      assert(PerformCleanup && "adding label to dead scope?");
950
0
      Labels.push_back(label);
951
0
    }
952
953
    /// Exit this cleanup scope, emitting any accumulated
954
    /// cleanups.
955
321k
    ~LexicalScope() {
956
321k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
957
211k
        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
958
959
      // If we should perform a cleanup, force them now.  Note that
960
      // this ends the cleanup scope before rescoping any labels.
961
321k
      if (PerformCleanup) {
962
286k
        ApplyDebugLocation DL(CGF, Range.getEnd());
963
286k
        ForceCleanup();
964
286k
      }
965
321k
    }
966
967
    /// Force the emission of cleanups now, instead of waiting
968
    /// until this object is destroyed.
969
321k
    void ForceCleanup() {
970
321k
      CGF.CurLexicalScope = ParentScope;
971
321k
      RunCleanupsScope::ForceCleanup();
972
973
321k
      if (!Labels.empty())
974
0
        rescopeLabels();
975
321k
    }
976
977
11.0k
    bool hasLabels() const {
978
11.0k
      return !Labels.empty();
979
11.0k
    }
980
981
    void rescopeLabels();
982
  };
983
984
  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
985
986
  /// The class used to assign some variables some temporarily addresses.
987
  class OMPMapVars {
988
    DeclMapTy SavedLocals;
989
    DeclMapTy SavedTempAddresses;
990
    OMPMapVars(const OMPMapVars &) = delete;
991
    void operator=(const OMPMapVars &) = delete;
992
993
  public:
994
153k
    explicit OMPMapVars() = default;
995
153k
    ~OMPMapVars() {
996
153k
      assert(SavedLocals.empty() && "Did not restored original addresses.");
997
153k
    };
998
999
    /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1000
    /// function \p CGF.
1001
    /// \return true if at least one variable was set already, false otherwise.
1002
    bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1003
175k
                    Address TempAddr) {
1004
175k
      LocalVD = LocalVD->getCanonicalDecl();
1005
      // Only save it once.
1006
175k
      if (SavedLocals.count(LocalVD)) 
return false20.7k
;
1007
1008
      // Copy the existing local entry to SavedLocals.
1009
154k
      auto it = CGF.LocalDeclMap.find(LocalVD);
1010
154k
      if (it != CGF.LocalDeclMap.end())
1011
54.4k
        SavedLocals.try_emplace(LocalVD, it->second);
1012
99.8k
      else
1013
99.8k
        SavedLocals.try_emplace(LocalVD, Address::invalid());
1014
1015
      // Generate the private entry.
1016
154k
      QualType VarTy = LocalVD->getType();
1017
154k
      if (VarTy->isReferenceType()) {
1018
4.54k
        Address Temp = CGF.CreateMemTemp(VarTy);
1019
4.54k
        CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1020
4.54k
        TempAddr = Temp;
1021
4.54k
      }
1022
154k
      SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1023
1024
154k
      return true;
1025
175k
    }
1026
1027
    /// Applies new addresses to the list of the variables.
1028
    /// \return true if at least one variable is using new address, false
1029
    /// otherwise.
1030
140k
    bool apply(CodeGenFunction &CGF) {
1031
140k
      copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1032
140k
      SavedTempAddresses.clear();
1033
140k
      return !SavedLocals.empty();
1034
140k
    }
1035
1036
    /// Restores original addresses of the variables.
1037
153k
    void restore(CodeGenFunction &CGF) {
1038
153k
      if (!SavedLocals.empty()) {
1039
84.2k
        copyInto(SavedLocals, CGF.LocalDeclMap);
1040
84.2k
        SavedLocals.clear();
1041
84.2k
      }
1042
153k
    }
1043
1044
  private:
1045
    /// Copy all the entries in the source map over the corresponding
1046
    /// entries in the destination, which must exist.
1047
224k
    static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1048
308k
      for (auto &Pair : Src) {
1049
308k
        if (!Pair.second.isValid()) {
1050
99.8k
          Dest.erase(Pair.first);
1051
99.8k
          continue;
1052
99.8k
        }
1053
1054
208k
        auto I = Dest.find(Pair.first);
1055
208k
        if (I != Dest.end())
1056
108k
          I->second = Pair.second;
1057
99.8k
        else
1058
99.8k
          Dest.insert(Pair);
1059
208k
      }
1060
224k
    }
1061
  };
1062
1063
  /// The scope used to remap some variables as private in the OpenMP loop body
1064
  /// (or other captured region emitted without outlining), and to restore old
1065
  /// vars back on exit.
1066
  class OMPPrivateScope : public RunCleanupsScope {
1067
    OMPMapVars MappedVars;
1068
    OMPPrivateScope(const OMPPrivateScope &) = delete;
1069
    void operator=(const OMPPrivateScope &) = delete;
1070
1071
  public:
1072
    /// Enter a new OpenMP private scope.
1073
134k
    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1074
1075
    /// Registers \p LocalVD variable as a private with \p Addr as the address
1076
    /// of the corresponding private variable. \p
1077
    /// PrivateGen is the address of the generated private variable.
1078
    /// \return true if the variable is registered as private, false if it has
1079
    /// been privatized already.
1080
154k
    bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1081
154k
      assert(PerformCleanup && "adding private to dead scope");
1082
0
      return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1083
154k
    }
1084
1085
    /// Privatizes local variables previously registered as private.
1086
    /// Registration is separate from the actual privatization to allow
1087
    /// initializers use values of the original variables, not the private one.
1088
    /// This is important, for example, if the private variable is a class
1089
    /// variable initialized by a constructor that references other private
1090
    /// variables. But at initialization original variables must be used, not
1091
    /// private copies.
1092
    /// \return true if at least one variable was privatized, false otherwise.
1093
120k
    bool Privatize() { return MappedVars.apply(CGF); }
1094
1095
134k
    void ForceCleanup() {
1096
134k
      RunCleanupsScope::ForceCleanup();
1097
134k
      MappedVars.restore(CGF);
1098
134k
    }
1099
1100
    /// Exit scope - all the mapped variables are restored.
1101
134k
    ~OMPPrivateScope() {
1102
134k
      if (PerformCleanup)
1103
108k
        ForceCleanup();
1104
134k
    }
1105
1106
    /// Checks if the global variable is captured in current function.
1107
7.20k
    bool isGlobalVarCaptured(const VarDecl *VD) const {
1108
7.20k
      VD = VD->getCanonicalDecl();
1109
7.20k
      return !VD->isLocalVarDeclOrParm() && 
CGF.LocalDeclMap.count(VD) > 0905
;
1110
7.20k
    }
1111
  };
1112
1113
  /// Save/restore original map of previously emitted local vars in case when we
1114
  /// need to duplicate emission of the same code several times in the same
1115
  /// function for OpenMP code.
1116
  class OMPLocalDeclMapRAII {
1117
    CodeGenFunction &CGF;
1118
    DeclMapTy SavedMap;
1119
1120
  public:
1121
    OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1122
13.9k
        : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1123
13.9k
    ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1124
  };
1125
1126
  /// Takes the old cleanup stack size and emits the cleanup blocks
1127
  /// that have been added.
1128
  void
1129
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1130
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1131
1132
  /// Takes the old cleanup stack size and emits the cleanup blocks
1133
  /// that have been added, then adds all lifetime-extended cleanups from
1134
  /// the given position to the stack.
1135
  void
1136
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1137
                   size_t OldLifetimeExtendedStackSize,
1138
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1139
1140
  void ResolveBranchFixups(llvm::BasicBlock *Target);
1141
1142
  /// The given basic block lies in the current EH scope, but may be a
1143
  /// target of a potentially scope-crossing jump; get a stable handle
1144
  /// to which we can perform this jump later.
1145
422k
  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1146
422k
    return JumpDest(Target,
1147
422k
                    EHStack.getInnermostNormalCleanup(),
1148
422k
                    NextCleanupDestIndex++);
1149
422k
  }
1150
1151
  /// The given basic block lies in the current EH scope, but may be a
1152
  /// target of a potentially scope-crossing jump; get a stable handle
1153
  /// to which we can perform this jump later.
1154
413k
  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1155
413k
    return getJumpDestInCurrentScope(createBasicBlock(Name));
1156
413k
  }
1157
1158
  /// EmitBranchThroughCleanup - Emit a branch from the current insert
1159
  /// block through the normal cleanup handling code (if any) and then
1160
  /// on to \arg Dest.
1161
  void EmitBranchThroughCleanup(JumpDest Dest);
1162
1163
  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1164
  /// specified destination obviously has no cleanups to run.  'false' is always
1165
  /// a conservatively correct answer for this method.
1166
  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1167
1168
  /// popCatchScope - Pops the catch scope at the top of the EHScope
1169
  /// stack, emitting any required code (other than the catch handlers
1170
  /// themselves).
1171
  void popCatchScope();
1172
1173
  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1174
  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1175
  llvm::BasicBlock *
1176
  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1177
1178
  /// An object to manage conditionally-evaluated expressions.
1179
  class ConditionalEvaluation {
1180
    llvm::BasicBlock *StartBB;
1181
1182
  public:
1183
    ConditionalEvaluation(CodeGenFunction &CGF)
1184
21.6k
      : StartBB(CGF.Builder.GetInsertBlock()) {}
1185
1186
31.3k
    void begin(CodeGenFunction &CGF) {
1187
31.3k
      assert(CGF.OutermostConditional != this);
1188
31.3k
      if (!CGF.OutermostConditional)
1189
31.1k
        CGF.OutermostConditional = this;
1190
31.3k
    }
1191
1192
31.3k
    void end(CodeGenFunction &CGF) {
1193
31.3k
      assert(CGF.OutermostConditional != nullptr);
1194
31.3k
      if (CGF.OutermostConditional == this)
1195
31.1k
        CGF.OutermostConditional = nullptr;
1196
31.3k
    }
1197
1198
    /// Returns a block which will be executed prior to each
1199
    /// evaluation of the conditional code.
1200
215
    llvm::BasicBlock *getStartingBlock() const {
1201
215
      return StartBB;
1202
215
    }
1203
  };
1204
1205
  /// isInConditionalBranch - Return true if we're currently emitting
1206
  /// one branch or the other of a conditional expression.
1207
11.2k
  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1208
1209
206
  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1210
206
    assert(isInConditionalBranch());
1211
0
    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1212
206
    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1213
206
    store->setAlignment(addr.getAlignment().getAsAlign());
1214
206
  }
1215
1216
  /// An RAII object to record that we're evaluating a statement
1217
  /// expression.
1218
  class StmtExprEvaluation {
1219
    CodeGenFunction &CGF;
1220
1221
    /// We have to save the outermost conditional: cleanups in a
1222
    /// statement expression aren't conditional just because the
1223
    /// StmtExpr is.
1224
    ConditionalEvaluation *SavedOutermostConditional;
1225
1226
  public:
1227
    StmtExprEvaluation(CodeGenFunction &CGF)
1228
4.27k
      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1229
4.27k
      CGF.OutermostConditional = nullptr;
1230
4.27k
    }
1231
1232
4.27k
    ~StmtExprEvaluation() {
1233
4.27k
      CGF.OutermostConditional = SavedOutermostConditional;
1234
4.27k
      CGF.EnsureInsertPoint();
1235
4.27k
    }
1236
  };
1237
1238
  /// An object which temporarily prevents a value from being
1239
  /// destroyed by aggressive peephole optimizations that assume that
1240
  /// all uses of a value have been realized in the IR.
1241
  class PeepholeProtection {
1242
    llvm::Instruction *Inst;
1243
    friend class CodeGenFunction;
1244
1245
  public:
1246
16.2k
    PeepholeProtection() : Inst(nullptr) {}
1247
  };
1248
1249
  /// A non-RAII class containing all the information about a bound
1250
  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1251
  /// this which makes individual mappings very simple; using this
1252
  /// class directly is useful when you have a variable number of
1253
  /// opaque values or don't want the RAII functionality for some
1254
  /// reason.
1255
  class OpaqueValueMappingData {
1256
    const OpaqueValueExpr *OpaqueValue;
1257
    bool BoundLValue;
1258
    CodeGenFunction::PeepholeProtection Protection;
1259
1260
    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1261
                           bool boundLValue)
1262
2.23k
      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1263
  public:
1264
12.3k
    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1265
1266
7.78k
    static bool shouldBindAsLValue(const Expr *expr) {
1267
      // gl-values should be bound as l-values for obvious reasons.
1268
      // Records should be bound as l-values because IR generation
1269
      // always keeps them in memory.  Expressions of function type
1270
      // act exactly like l-values but are formally required to be
1271
      // r-values in C.
1272
7.78k
      return expr->isGLValue() ||
1273
7.78k
             
expr->getType()->isFunctionType()4.51k
||
1274
7.78k
             
hasAggregateEvaluationKind(expr->getType())4.51k
;
1275
7.78k
    }
1276
1277
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1278
                                       const OpaqueValueExpr *ov,
1279
637
                                       const Expr *e) {
1280
637
      if (shouldBindAsLValue(ov))
1281
355
        return bind(CGF, ov, CGF.EmitLValue(e));
1282
282
      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1283
637
    }
1284
1285
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1286
                                       const OpaqueValueExpr *ov,
1287
534
                                       const LValue &lv) {
1288
534
      assert(shouldBindAsLValue(ov));
1289
0
      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1290
534
      return OpaqueValueMappingData(ov, true);
1291
534
    }
1292
1293
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1294
                                       const OpaqueValueExpr *ov,
1295
1.69k
                                       const RValue &rv) {
1296
1.69k
      assert(!shouldBindAsLValue(ov));
1297
0
      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1298
1299
1.69k
      OpaqueValueMappingData data(ov, false);
1300
1301
      // Work around an extremely aggressive peephole optimization in
1302
      // EmitScalarConversion which assumes that all other uses of a
1303
      // value are extant.
1304
1.69k
      data.Protection = CGF.protectFromPeepholes(rv);
1305
1306
1.69k
      return data;
1307
1.69k
    }
1308
1309
13.6k
    bool isValid() const { return OpaqueValue != nullptr; }
1310
6
    void clear() { OpaqueValue = nullptr; }
1311
1312
2.23k
    void unbind(CodeGenFunction &CGF) {
1313
2.23k
      assert(OpaqueValue && "no data to unbind!");
1314
1315
2.23k
      if (BoundLValue) {
1316
534
        CGF.OpaqueLValues.erase(OpaqueValue);
1317
1.69k
      } else {
1318
1.69k
        CGF.OpaqueRValues.erase(OpaqueValue);
1319
1.69k
        CGF.unprotectFromPeepholes(Protection);
1320
1.69k
      }
1321
2.23k
    }
1322
  };
1323
1324
  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1325
  class OpaqueValueMapping {
1326
    CodeGenFunction &CGF;
1327
    OpaqueValueMappingData Data;
1328
1329
  public:
1330
3.82k
    static bool shouldBindAsLValue(const Expr *expr) {
1331
3.82k
      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1332
3.82k
    }
1333
1334
    /// Build the opaque value mapping for the given conditional
1335
    /// operator if it's the GNU ?: extension.  This is a common
1336
    /// enough pattern that the convenience operator is really
1337
    /// helpful.
1338
    ///
1339
    OpaqueValueMapping(CodeGenFunction &CGF,
1340
11.9k
                       const AbstractConditionalOperator *op) : CGF(CGF) {
1341
11.9k
      if (isa<ConditionalOperator>(op))
1342
        // Leave Data empty.
1343
11.9k
        return;
1344
1345
29
      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1346
29
      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1347
29
                                          e->getCommon());
1348
29
    }
1349
1350
    /// Build the opaque value mapping for an OpaqueValueExpr whose source
1351
    /// expression is set to the expression the OVE represents.
1352
    OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1353
39
        : CGF(CGF) {
1354
39
      if (OV) {
1355
39
        assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1356
39
                                      "for OVE with no source expression");
1357
0
        Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1358
39
      }
1359
39
    }
1360
1361
    OpaqueValueMapping(CodeGenFunction &CGF,
1362
                       const OpaqueValueExpr *opaqueValue,
1363
                       LValue lvalue)
1364
169
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1365
169
    }
1366
1367
    OpaqueValueMapping(CodeGenFunction &CGF,
1368
                       const OpaqueValueExpr *opaqueValue,
1369
                       RValue rvalue)
1370
1.41k
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1371
1.41k
    }
1372
1373
6
    void pop() {
1374
6
      Data.unbind(CGF);
1375
6
      Data.clear();
1376
6
    }
1377
1378
13.6k
    ~OpaqueValueMapping() {
1379
13.6k
      if (Data.isValid()) 
Data.unbind(CGF)1.64k
;
1380
13.6k
    }
1381
  };
1382
1383
private:
1384
  CGDebugInfo *DebugInfo;
1385
  /// Used to create unique names for artificial VLA size debug info variables.
1386
  unsigned VLAExprCounter = 0;
1387
  bool DisableDebugInfo = false;
1388
1389
  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1390
  /// calling llvm.stacksave for multiple VLAs in the same scope.
1391
  bool DidCallStackSave = false;
1392
1393
  /// IndirectBranch - The first time an indirect goto is seen we create a block
1394
  /// with an indirect branch.  Every time we see the address of a label taken,
1395
  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1396
  /// codegen'd as a jump to the IndirectBranch's basic block.
1397
  llvm::IndirectBrInst *IndirectBranch = nullptr;
1398
1399
  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1400
  /// decls.
1401
  DeclMapTy LocalDeclMap;
1402
1403
  // Keep track of the cleanups for callee-destructed parameters pushed to the
1404
  // cleanup stack so that they can be deactivated later.
1405
  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1406
      CalleeDestructedParamCleanups;
1407
1408
  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1409
  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1410
  /// parameter.
1411
  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1412
      SizeArguments;
1413
1414
  /// Track escaped local variables with auto storage. Used during SEH
1415
  /// outlining to produce a call to llvm.localescape.
1416
  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1417
1418
  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1419
  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1420
1421
  // BreakContinueStack - This keeps track of where break and continue
1422
  // statements should jump to.
1423
  struct BreakContinue {
1424
    BreakContinue(JumpDest Break, JumpDest Continue)
1425
46.6k
      : BreakBlock(Break), ContinueBlock(Continue) {}
1426
1427
    JumpDest BreakBlock;
1428
    JumpDest ContinueBlock;
1429
  };
1430
  SmallVector<BreakContinue, 8> BreakContinueStack;
1431
1432
  /// Handles cancellation exit points in OpenMP-related constructs.
1433
  class OpenMPCancelExitStack {
1434
    /// Tracks cancellation exit point and join point for cancel-related exit
1435
    /// and normal exit.
1436
    struct CancelExit {
1437
315k
      CancelExit() = default;
1438
      CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1439
                 JumpDest ContBlock)
1440
4.42k
          : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1441
      OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1442
      /// true if the exit block has been emitted already by the special
1443
      /// emitExit() call, false if the default codegen is used.
1444
      bool HasBeenEmitted = false;
1445
      JumpDest ExitBlock;
1446
      JumpDest ContBlock;
1447
    };
1448
1449
    SmallVector<CancelExit, 8> Stack;
1450
1451
  public:
1452
315k
    OpenMPCancelExitStack() : Stack(1) {}
1453
315k
    ~OpenMPCancelExitStack() = default;
1454
    /// Fetches the exit block for the current OpenMP construct.
1455
9.13k
    JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1456
    /// Emits exit block with special codegen procedure specific for the related
1457
    /// OpenMP construct + emits code for normal construct cleanup.
1458
    void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1459
5.01k
                  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1460
5.01k
      if (Stack.back().Kind == Kind && 
getExitBlock().isValid()4.39k
) {
1461
93
        assert(CGF.getOMPCancelDestination(Kind).isValid());
1462
0
        assert(CGF.HaveInsertPoint());
1463
0
        assert(!Stack.back().HasBeenEmitted);
1464
0
        auto IP = CGF.Builder.saveAndClearIP();
1465
93
        CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1466
93
        CodeGen(CGF);
1467
93
        CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1468
93
        CGF.Builder.restoreIP(IP);
1469
93
        Stack.back().HasBeenEmitted = true;
1470
93
      }
1471
0
      CodeGen(CGF);
1472
5.01k
    }
1473
    /// Enter the cancel supporting \a Kind construct.
1474
    /// \param Kind OpenMP directive that supports cancel constructs.
1475
    /// \param HasCancel true, if the construct has inner cancel directive,
1476
    /// false otherwise.
1477
4.42k
    void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1478
4.42k
      Stack.push_back({Kind,
1479
4.42k
                       HasCancel ? 
CGF.getJumpDestInCurrentScope("cancel.exit")93
1480
4.42k
                                 : 
JumpDest()4.33k
,
1481
4.42k
                       HasCancel ? 
CGF.getJumpDestInCurrentScope("cancel.cont")93
1482
4.42k
                                 : 
JumpDest()4.33k
});
1483
4.42k
    }
1484
    /// Emits default exit point for the cancel construct (if the special one
1485
    /// has not be used) + join point for cancel/normal exits.
1486
4.42k
    void exit(CodeGenFunction &CGF) {
1487
4.42k
      if (getExitBlock().isValid()) {
1488
93
        assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1489
0
        bool HaveIP = CGF.HaveInsertPoint();
1490
93
        if (!Stack.back().HasBeenEmitted) {
1491
0
          if (HaveIP)
1492
0
            CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1493
0
          CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1494
0
          CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1495
0
        }
1496
93
        CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1497
93
        if (!HaveIP) {
1498
0
          CGF.Builder.CreateUnreachable();
1499
0
          CGF.Builder.ClearInsertionPoint();
1500
0
        }
1501
93
      }
1502
0
      Stack.pop_back();
1503
4.42k
    }
1504
  };
1505
  OpenMPCancelExitStack OMPCancelStack;
1506
1507
  /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1508
  llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1509
                                                    Stmt::Likelihood LH);
1510
1511
  CodeGenPGO PGO;
1512
1513
  /// Calculate branch weights appropriate for PGO data
1514
  llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1515
                                     uint64_t FalseCount) const;
1516
  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1517
  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1518
                                            uint64_t LoopCount) const;
1519
1520
public:
1521
  /// Increment the profiler's counter for the given statement by \p StepV.
1522
  /// If \p StepV is null, the default increment is 1.
1523
459k
  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1524
459k
    if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1525
459k
        
!CurFn->hasFnAttribute(llvm::Attribute::NoProfile)1.13k
)
1526
1.12k
      PGO.emitCounterIncrement(Builder, S, StepV);
1527
459k
    PGO.setCurrentStmt(S);
1528
459k
  }
1529
1530
  /// Get the profiler's count for the given statement.
1531
182k
  uint64_t getProfileCount(const Stmt *S) {
1532
182k
    return PGO.getStmtCount(S).value_or(0);
1533
182k
  }
1534
1535
  /// Set the profiler's current count.
1536
9.47k
  void setCurrentProfileCount(uint64_t Count) {
1537
9.47k
    PGO.setCurrentRegionCount(Count);
1538
9.47k
  }
1539
1540
  /// Get the profiler's current count. This is generally the count for the most
1541
  /// recently incremented counter.
1542
165k
  uint64_t getCurrentProfileCount() {
1543
165k
    return PGO.getCurrentRegionCount();
1544
165k
  }
1545
1546
private:
1547
1548
  /// SwitchInsn - This is nearest current switch instruction. It is null if
1549
  /// current context is not in a switch.
1550
  llvm::SwitchInst *SwitchInsn = nullptr;
1551
  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1552
  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1553
1554
  /// The likelihood attributes of the SwitchCase.
1555
  SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1556
1557
  /// CaseRangeBlock - This block holds if condition check for last case
1558
  /// statement range in current switch instruction.
1559
  llvm::BasicBlock *CaseRangeBlock = nullptr;
1560
1561
  /// OpaqueLValues - Keeps track of the current set of opaque value
1562
  /// expressions.
1563
  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1564
  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1565
1566
  // VLASizeMap - This keeps track of the associated size for each VLA type.
1567
  // We track this by the size expression rather than the type itself because
1568
  // in certain situations, like a const qualifier applied to an VLA typedef,
1569
  // multiple VLA types can share the same size expression.
1570
  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1571
  // enter/leave scopes.
1572
  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1573
1574
  /// A block containing a single 'unreachable' instruction.  Created
1575
  /// lazily by getUnreachableBlock().
1576
  llvm::BasicBlock *UnreachableBlock = nullptr;
1577
1578
  /// Counts of the number return expressions in the function.
1579
  unsigned NumReturnExprs = 0;
1580
1581
  /// Count the number of simple (constant) return expressions in the function.
1582
  unsigned NumSimpleReturnExprs = 0;
1583
1584
  /// The last regular (non-return) debug location (breakpoint) in the function.
1585
  SourceLocation LastStopPoint;
1586
1587
public:
1588
  /// Source location information about the default argument or member
1589
  /// initializer expression we're evaluating, if any.
1590
  CurrentSourceLocExprScope CurSourceLocExprScope;
1591
  using SourceLocExprScopeGuard =
1592
      CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1593
1594
  /// A scope within which we are constructing the fields of an object which
1595
  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1596
  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1597
  class FieldConstructionScope {
1598
  public:
1599
    FieldConstructionScope(CodeGenFunction &CGF, Address This)
1600
26.1k
        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1601
26.1k
      CGF.CXXDefaultInitExprThis = This;
1602
26.1k
    }
1603
26.1k
    ~FieldConstructionScope() {
1604
26.1k
      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1605
26.1k
    }
1606
1607
  private:
1608
    CodeGenFunction &CGF;
1609
    Address OldCXXDefaultInitExprThis;
1610
  };
1611
1612
  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1613
  /// is overridden to be the object under construction.
1614
  class CXXDefaultInitExprScope  {
1615
  public:
1616
    CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1617
        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1618
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1619
1.18k
          SourceLocScope(E, CGF.CurSourceLocExprScope) {
1620
1.18k
      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1621
1.18k
      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1622
1.18k
    }
1623
1.18k
    ~CXXDefaultInitExprScope() {
1624
1.18k
      CGF.CXXThisValue = OldCXXThisValue;
1625
1.18k
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1626
1.18k
    }
1627
1628
  public:
1629
    CodeGenFunction &CGF;
1630
    llvm::Value *OldCXXThisValue;
1631
    CharUnits OldCXXThisAlignment;
1632
    SourceLocExprScopeGuard SourceLocScope;
1633
  };
1634
1635
  struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1636
    CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1637
4.12k
        : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1638
  };
1639
1640
  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1641
  /// current loop index is overridden.
1642
  class ArrayInitLoopExprScope {
1643
  public:
1644
    ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1645
39
      : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1646
39
      CGF.ArrayInitIndex = Index;
1647
39
    }
1648
39
    ~ArrayInitLoopExprScope() {
1649
39
      CGF.ArrayInitIndex = OldArrayInitIndex;
1650
39
    }
1651
1652
  private:
1653
    CodeGenFunction &CGF;
1654
    llvm::Value *OldArrayInitIndex;
1655
  };
1656
1657
  class InlinedInheritingConstructorScope {
1658
  public:
1659
    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1660
        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1661
          OldCurCodeDecl(CGF.CurCodeDecl),
1662
          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1663
          OldCXXABIThisValue(CGF.CXXABIThisValue),
1664
          OldCXXThisValue(CGF.CXXThisValue),
1665
          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1666
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1667
          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1668
          OldCXXInheritedCtorInitExprArgs(
1669
47
              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1670
47
      CGF.CurGD = GD;
1671
47
      CGF.CurFuncDecl = CGF.CurCodeDecl =
1672
47
          cast<CXXConstructorDecl>(GD.getDecl());
1673
47
      CGF.CXXABIThisDecl = nullptr;
1674
47
      CGF.CXXABIThisValue = nullptr;
1675
47
      CGF.CXXThisValue = nullptr;
1676
47
      CGF.CXXABIThisAlignment = CharUnits();
1677
47
      CGF.CXXThisAlignment = CharUnits();
1678
47
      CGF.ReturnValue = Address::invalid();
1679
47
      CGF.FnRetTy = QualType();
1680
47
      CGF.CXXInheritedCtorInitExprArgs.clear();
1681
47
    }
1682
47
    ~InlinedInheritingConstructorScope() {
1683
47
      CGF.CurGD = OldCurGD;
1684
47
      CGF.CurFuncDecl = OldCurFuncDecl;
1685
47
      CGF.CurCodeDecl = OldCurCodeDecl;
1686
47
      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1687
47
      CGF.CXXABIThisValue = OldCXXABIThisValue;
1688
47
      CGF.CXXThisValue = OldCXXThisValue;
1689
47
      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1690
47
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1691
47
      CGF.ReturnValue = OldReturnValue;
1692
47
      CGF.FnRetTy = OldFnRetTy;
1693
47
      CGF.CXXInheritedCtorInitExprArgs =
1694
47
          std::move(OldCXXInheritedCtorInitExprArgs);
1695
47
    }
1696
1697
  private:
1698
    CodeGenFunction &CGF;
1699
    GlobalDecl OldCurGD;
1700
    const Decl *OldCurFuncDecl;
1701
    const Decl *OldCurCodeDecl;
1702
    ImplicitParamDecl *OldCXXABIThisDecl;
1703
    llvm::Value *OldCXXABIThisValue;
1704
    llvm::Value *OldCXXThisValue;
1705
    CharUnits OldCXXABIThisAlignment;
1706
    CharUnits OldCXXThisAlignment;
1707
    Address OldReturnValue;
1708
    QualType OldFnRetTy;
1709
    CallArgList OldCXXInheritedCtorInitExprArgs;
1710
  };
1711
1712
  // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1713
  // region body, and finalization codegen callbacks. This will class will also
1714
  // contain privatization functions used by the privatization call backs
1715
  //
1716
  // TODO: this is temporary class for things that are being moved out of
1717
  // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1718
  // utility function for use with the OMPBuilder. Once that move to use the
1719
  // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1720
  // directly, or a new helper class that will contain functions used by both
1721
  // this and the OMPBuilder
1722
1723
  struct OMPBuilderCBHelpers {
1724
1725
    OMPBuilderCBHelpers() = delete;
1726
    OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1727
    OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1728
1729
    using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1730
1731
    /// Cleanup action for allocate support.
1732
    class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1733
1734
    private:
1735
      llvm::CallInst *RTLFnCI;
1736
1737
    public:
1738
0
      OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1739
0
        RLFnCI->removeFromParent();
1740
0
      }
1741
1742
0
      void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1743
0
        if (!CGF.HaveInsertPoint())
1744
0
          return;
1745
0
        CGF.Builder.Insert(RTLFnCI);
1746
0
      }
1747
    };
1748
1749
    /// Returns address of the threadprivate variable for the current
1750
    /// thread. This Also create any necessary OMP runtime calls.
1751
    ///
1752
    /// \param VD VarDecl for Threadprivate variable.
1753
    /// \param VDAddr Address of the Vardecl
1754
    /// \param Loc  The location where the barrier directive was encountered
1755
    static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1756
                                          const VarDecl *VD, Address VDAddr,
1757
                                          SourceLocation Loc);
1758
1759
    /// Gets the OpenMP-specific address of the local variable /p VD.
1760
    static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1761
                                             const VarDecl *VD);
1762
    /// Get the platform-specific name separator.
1763
    /// \param Parts different parts of the final name that needs separation
1764
    /// \param FirstSeparator First separator used between the initial two
1765
    ///        parts of the name.
1766
    /// \param Separator separator used between all of the rest consecutinve
1767
    ///        parts of the name
1768
    static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1769
                                             StringRef FirstSeparator = ".",
1770
                                             StringRef Separator = ".");
1771
    /// Emit the Finalization for an OMP region
1772
    /// \param CGF  The Codegen function this belongs to
1773
    /// \param IP Insertion point for generating the finalization code.
1774
176
    static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1775
176
      CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1776
176
      assert(IP.getBlock()->end() != IP.getPoint() &&
1777
176
             "OpenMP IR Builder should cause terminated block!");
1778
1779
0
      llvm::BasicBlock *IPBB = IP.getBlock();
1780
176
      llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1781
176
      assert(DestBB && "Finalization block should have one successor!");
1782
1783
      // erase and replace with cleanup branch.
1784
0
      IPBB->getTerminator()->eraseFromParent();
1785
176
      CGF.Builder.SetInsertPoint(IPBB);
1786
176
      CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1787
176
      CGF.EmitBranchThroughCleanup(Dest);
1788
176
    }
1789
1790
    /// Emit the body of an OMP region
1791
    /// \param CGF            The Codegen function this belongs to
1792
    /// \param RegionBodyStmt The body statement for the OpenMP region being
1793
    ///                       generated
1794
    /// \param AllocaIP       Where to insert alloca instructions
1795
    /// \param CodeGenIP      Where to insert the region code
1796
    /// \param RegionName     Name to be used for new blocks
1797
    static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1798
                                         const Stmt *RegionBodyStmt,
1799
                                         InsertPointTy AllocaIP,
1800
                                         InsertPointTy CodeGenIP,
1801
                                         Twine RegionName);
1802
1803
    static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1804
                                llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1805
8
                                ArrayRef<llvm::Value *> Args) {
1806
8
      llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1807
8
      if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1808
0
        CodeGenIPBBTI->eraseFromParent();
1809
1810
8
      CGF.Builder.SetInsertPoint(CodeGenIPBB);
1811
1812
8
      if (Fn->doesNotThrow())
1813
0
        CGF.EmitNounwindRuntimeCall(Fn, Args);
1814
8
      else
1815
8
        CGF.EmitRuntimeCall(Fn, Args);
1816
1817
8
      if (CGF.Builder.saveIP().isSet())
1818
8
        CGF.Builder.CreateBr(&FiniBB);
1819
8
    }
1820
1821
    /// Emit the body of an OMP region that will be outlined in
1822
    /// OpenMPIRBuilder::finalize().
1823
    /// \param CGF            The Codegen function this belongs to
1824
    /// \param RegionBodyStmt The body statement for the OpenMP region being
1825
    ///                       generated
1826
    /// \param AllocaIP       Where to insert alloca instructions
1827
    /// \param CodeGenIP      Where to insert the region code
1828
    /// \param RegionName     Name to be used for new blocks
1829
    static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1830
                                          const Stmt *RegionBodyStmt,
1831
                                          InsertPointTy AllocaIP,
1832
                                          InsertPointTy CodeGenIP,
1833
                                          Twine RegionName);
1834
1835
    /// RAII for preserving necessary info during Outlined region body codegen.
1836
    class OutlinedRegionBodyRAII {
1837
1838
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1839
      CodeGenFunction::JumpDest OldReturnBlock;
1840
      CodeGenFunction &CGF;
1841
1842
    public:
1843
      OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1844
                             llvm::BasicBlock &RetBB)
1845
50
          : CGF(cgf) {
1846
50
        assert(AllocaIP.isSet() &&
1847
50
               "Must specify Insertion point for allocas of outlined function");
1848
0
        OldAllocaIP = CGF.AllocaInsertPt;
1849
50
        CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1850
1851
50
        OldReturnBlock = CGF.ReturnBlock;
1852
50
        CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1853
50
      }
1854
1855
50
      ~OutlinedRegionBodyRAII() {
1856
50
        CGF.AllocaInsertPt = OldAllocaIP;
1857
50
        CGF.ReturnBlock = OldReturnBlock;
1858
50
      }
1859
    };
1860
1861
    /// RAII for preserving necessary info during inlined region body codegen.
1862
    class InlinedRegionBodyRAII {
1863
1864
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1865
      CodeGenFunction &CGF;
1866
1867
    public:
1868
      InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1869
                            llvm::BasicBlock &FiniBB)
1870
98
          : CGF(cgf) {
1871
        // Alloca insertion block should be in the entry block of the containing
1872
        // function so it expects an empty AllocaIP in which case will reuse the
1873
        // old alloca insertion point, or a new AllocaIP in the same block as
1874
        // the old one
1875
98
        assert((!AllocaIP.isSet() ||
1876
98
                CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1877
98
               "Insertion point should be in the entry block of containing "
1878
98
               "function!");
1879
0
        OldAllocaIP = CGF.AllocaInsertPt;
1880
98
        if (AllocaIP.isSet())
1881
0
          CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1882
1883
        // TODO: Remove the call, after making sure the counter is not used by
1884
        //       the EHStack.
1885
        // Since this is an inlined region, it should not modify the
1886
        // ReturnBlock, and should reuse the one for the enclosing outlined
1887
        // region. So, the JumpDest being return by the function is discarded
1888
98
        (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1889
98
      }
1890
1891
98
      ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1892
    };
1893
  };
1894
1895
private:
1896
  /// CXXThisDecl - When generating code for a C++ member function,
1897
  /// this will hold the implicit 'this' declaration.
1898
  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1899
  llvm::Value *CXXABIThisValue = nullptr;
1900
  llvm::Value *CXXThisValue = nullptr;
1901
  CharUnits CXXABIThisAlignment;
1902
  CharUnits CXXThisAlignment;
1903
1904
  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1905
  /// this expression.
1906
  Address CXXDefaultInitExprThis = Address::invalid();
1907
1908
  /// The current array initialization index when evaluating an
1909
  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1910
  llvm::Value *ArrayInitIndex = nullptr;
1911
1912
  /// The values of function arguments to use when evaluating
1913
  /// CXXInheritedCtorInitExprs within this context.
1914
  CallArgList CXXInheritedCtorInitExprArgs;
1915
1916
  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1917
  /// destructor, this will hold the implicit argument (e.g. VTT).
1918
  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1919
  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1920
1921
  /// OutermostConditional - Points to the outermost active
1922
  /// conditional control.  This is used so that we know if a
1923
  /// temporary should be destroyed conditionally.
1924
  ConditionalEvaluation *OutermostConditional = nullptr;
1925
1926
  /// The current lexical scope.
1927
  LexicalScope *CurLexicalScope = nullptr;
1928
1929
  /// The current source location that should be used for exception
1930
  /// handling code.
1931
  SourceLocation CurEHLocation;
1932
1933
  /// BlockByrefInfos - For each __block variable, contains
1934
  /// information about the layout of the variable.
1935
  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1936
1937
  /// Used by -fsanitize=nullability-return to determine whether the return
1938
  /// value can be checked.
1939
  llvm::Value *RetValNullabilityPrecondition = nullptr;
1940
1941
  /// Check if -fsanitize=nullability-return instrumentation is required for
1942
  /// this function.
1943
1.14M
  bool requiresReturnValueNullabilityCheck() const {
1944
1.14M
    return RetValNullabilityPrecondition;
1945
1.14M
  }
1946
1947
  /// Used to store precise source locations for return statements by the
1948
  /// runtime return value checks.
1949
  Address ReturnLocation = Address::invalid();
1950
1951
  /// Check if the return value of this function requires sanitization.
1952
  bool requiresReturnValueCheck() const;
1953
1954
  llvm::BasicBlock *TerminateLandingPad = nullptr;
1955
  llvm::BasicBlock *TerminateHandler = nullptr;
1956
  llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1957
1958
  /// Terminate funclets keyed by parent funclet pad.
1959
  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1960
1961
  /// Largest vector width used in ths function. Will be used to create a
1962
  /// function attribute.
1963
  unsigned LargestVectorWidth = 0;
1964
1965
  /// True if we need emit the life-time markers. This is initially set in
1966
  /// the constructor, but could be overwritten to true if this is a coroutine.
1967
  bool ShouldEmitLifetimeMarkers;
1968
1969
  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1970
  /// the function metadata.
1971
  void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
1972
1973
public:
1974
  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1975
  ~CodeGenFunction();
1976
1977
546k
  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1978
16.4M
  ASTContext &getContext() const { return CGM.getContext(); }
1979
12.3M
  CGDebugInfo *getDebugInfo() {
1980
12.3M
    if (DisableDebugInfo)
1981
7.79k
      return nullptr;
1982
12.3M
    return DebugInfo;
1983
12.3M
  }
1984
2.82k
  void disableDebugInfo() { DisableDebugInfo = true; }
1985
2.82k
  void enableDebugInfo() { DisableDebugInfo = false; }
1986
1987
229
  bool shouldUseFusedARCCalls() {
1988
229
    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1989
229
  }
1990
1991
12.0M
  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1992
1993
  /// Returns a pointer to the function's exception object and selector slot,
1994
  /// which is assigned in every landing pad.
1995
  Address getExceptionSlot();
1996
  Address getEHSelectorSlot();
1997
1998
  /// Returns the contents of the function's exception object and selector
1999
  /// slots.
2000
  llvm::Value *getExceptionFromSlot();
2001
  llvm::Value *getSelectorFromSlot();
2002
2003
  Address getNormalCleanupDestSlot();
2004
2005
444
  llvm::BasicBlock *getUnreachableBlock() {
2006
444
    if (!UnreachableBlock) {
2007
399
      UnreachableBlock = createBasicBlock("unreachable");
2008
399
      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2009
399
    }
2010
444
    return UnreachableBlock;
2011
444
  }
2012
2013
233k
  llvm::BasicBlock *getInvokeDest() {
2014
233k
    if (!EHStack.requiresLandingPad()) 
return nullptr194k
;
2015
38.6k
    return getInvokeDestImpl();
2016
233k
  }
2017
2018
359k
  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
2019
2020
645k
  const TargetInfo &getTarget() const { return Target; }
2021
3.46M
  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2022
31.4k
  const TargetCodeGenInfo &getTargetHooks() const {
2023
31.4k
    return CGM.getTargetCodeGenInfo();
2024
31.4k
  }
2025
2026
  //===--------------------------------------------------------------------===//
2027
  //                                  Cleanups
2028
  //===--------------------------------------------------------------------===//
2029
2030
  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2031
2032
  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2033
                                        Address arrayEndPointer,
2034
                                        QualType elementType,
2035
                                        CharUnits elementAlignment,
2036
                                        Destroyer *destroyer);
2037
  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2038
                                      llvm::Value *arrayEnd,
2039
                                      QualType elementType,
2040
                                      CharUnits elementAlignment,
2041
                                      Destroyer *destroyer);
2042
2043
  void pushDestroy(QualType::DestructionKind dtorKind,
2044
                   Address addr, QualType type);
2045
  void pushEHDestroy(QualType::DestructionKind dtorKind,
2046
                     Address addr, QualType type);
2047
  void pushDestroy(CleanupKind kind, Address addr, QualType type,
2048
                   Destroyer *destroyer, bool useEHCleanupForArray);
2049
  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2050
                                   QualType type, Destroyer *destroyer,
2051
                                   bool useEHCleanupForArray);
2052
  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2053
                                   llvm::Value *CompletePtr,
2054
                                   QualType ElementType);
2055
  void pushStackRestore(CleanupKind kind, Address SPMem);
2056
  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2057
                   bool useEHCleanupForArray);
2058
  llvm::Function *generateDestroyHelper(Address addr, QualType type,
2059
                                        Destroyer *destroyer,
2060
                                        bool useEHCleanupForArray,
2061
                                        const VarDecl *VD);
2062
  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2063
                        QualType elementType, CharUnits elementAlign,
2064
                        Destroyer *destroyer,
2065
                        bool checkZeroLength, bool useEHCleanup);
2066
2067
  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2068
2069
  /// Determines whether an EH cleanup is required to destroy a type
2070
  /// with the given destruction kind.
2071
24.0k
  bool needsEHCleanup(QualType::DestructionKind kind) {
2072
24.0k
    switch (kind) {
2073
17.8k
    case QualType::DK_none:
2074
17.8k
      return false;
2075
5.10k
    case QualType::DK_cxx_destructor:
2076
5.59k
    case QualType::DK_objc_weak_lifetime:
2077
5.68k
    case QualType::DK_nontrivial_c_struct:
2078
5.68k
      return getLangOpts().Exceptions;
2079
560
    case QualType::DK_objc_strong_lifetime:
2080
560
      return getLangOpts().Exceptions &&
2081
560
             
CGM.getCodeGenOpts().ObjCAutoRefCountExceptions90
;
2082
24.0k
    }
2083
0
    llvm_unreachable("bad destruction kind");
2084
0
  }
2085
2086
1.84k
  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2087
1.84k
    return (needsEHCleanup(kind) ? 
NormalAndEHCleanup913
:
NormalCleanup933
);
2088
1.84k
  }
2089
2090
  //===--------------------------------------------------------------------===//
2091
  //                                  Objective-C
2092
  //===--------------------------------------------------------------------===//
2093
2094
  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2095
2096
  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2097
2098
  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2099
  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2100
                          const ObjCPropertyImplDecl *PID);
2101
  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2102
                              const ObjCPropertyImplDecl *propImpl,
2103
                              const ObjCMethodDecl *GetterMothodDecl,
2104
                              llvm::Constant *AtomicHelperFn);
2105
2106
  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2107
                                  ObjCMethodDecl *MD, bool ctor);
2108
2109
  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2110
  /// for the given property.
2111
  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2112
                          const ObjCPropertyImplDecl *PID);
2113
  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2114
                              const ObjCPropertyImplDecl *propImpl,
2115
                              llvm::Constant *AtomicHelperFn);
2116
2117
  //===--------------------------------------------------------------------===//
2118
  //                                  Block Bits
2119
  //===--------------------------------------------------------------------===//
2120
2121
  /// Emit block literal.
2122
  /// \return an LLVM value which is a pointer to a struct which contains
2123
  /// information about the block, including the block invoke function, the
2124
  /// captured variables, etc.
2125
  llvm::Value *EmitBlockLiteral(const BlockExpr *);
2126
2127
  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2128
                                        const CGBlockInfo &Info,
2129
                                        const DeclMapTy &ldm,
2130
                                        bool IsLambdaConversionToBlock,
2131
                                        bool BuildGlobalBlock);
2132
2133
  /// Check if \p T is a C++ class that has a destructor that can throw.
2134
  static bool cxxDestructorCanThrow(QualType T);
2135
2136
  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2137
  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2138
  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2139
                                             const ObjCPropertyImplDecl *PID);
2140
  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2141
                                             const ObjCPropertyImplDecl *PID);
2142
  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2143
2144
  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2145
                         bool CanThrow);
2146
2147
  class AutoVarEmission;
2148
2149
  void emitByrefStructureInit(const AutoVarEmission &emission);
2150
2151
  /// Enter a cleanup to destroy a __block variable.  Note that this
2152
  /// cleanup should be a no-op if the variable hasn't left the stack
2153
  /// yet; if a cleanup is required for the variable itself, that needs
2154
  /// to be done externally.
2155
  ///
2156
  /// \param Kind Cleanup kind.
2157
  ///
2158
  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2159
  /// structure that will be passed to _Block_object_dispose. When
2160
  /// \p LoadBlockVarAddr is true, the address of the field of the block
2161
  /// structure that holds the address of the __block structure.
2162
  ///
2163
  /// \param Flags The flag that will be passed to _Block_object_dispose.
2164
  ///
2165
  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2166
  /// \p Addr to get the address of the __block structure.
2167
  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2168
                         bool LoadBlockVarAddr, bool CanThrow);
2169
2170
  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2171
                                llvm::Value *ptr);
2172
2173
  Address LoadBlockStruct();
2174
  Address GetAddrOfBlockDecl(const VarDecl *var);
2175
2176
  /// BuildBlockByrefAddress - Computes the location of the
2177
  /// data in a variable which is declared as __block.
2178
  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2179
                                bool followForward = true);
2180
  Address emitBlockByrefAddress(Address baseAddr,
2181
                                const BlockByrefInfo &info,
2182
                                bool followForward,
2183
                                const llvm::Twine &name);
2184
2185
  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2186
2187
  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2188
2189
  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2190
                    const CGFunctionInfo &FnInfo);
2191
2192
  /// Annotate the function with an attribute that disables TSan checking at
2193
  /// runtime.
2194
  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2195
2196
  /// Emit code for the start of a function.
2197
  /// \param Loc       The location to be associated with the function.
2198
  /// \param StartLoc  The location of the function body.
2199
  void StartFunction(GlobalDecl GD,
2200
                     QualType RetTy,
2201
                     llvm::Function *Fn,
2202
                     const CGFunctionInfo &FnInfo,
2203
                     const FunctionArgList &Args,
2204
                     SourceLocation Loc = SourceLocation(),
2205
                     SourceLocation StartLoc = SourceLocation());
2206
2207
  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2208
2209
  void EmitConstructorBody(FunctionArgList &Args);
2210
  void EmitDestructorBody(FunctionArgList &Args);
2211
  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2212
  void EmitFunctionBody(const Stmt *Body);
2213
  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2214
2215
  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2216
                                  CallArgList &CallArgs);
2217
  void EmitLambdaBlockInvokeBody();
2218
  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2219
  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2220
73
  void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2221
73
    EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2222
73
  }
2223
  void EmitAsanPrologueOrEpilogue(bool Prologue);
2224
2225
  /// Emit the unified return block, trying to avoid its emission when
2226
  /// possible.
2227
  /// \return The debug location of the user written return statement if the
2228
  /// return block is is avoided.
2229
  llvm::DebugLoc EmitReturnBlock();
2230
2231
  /// FinishFunction - Complete IR generation of the current function. It is
2232
  /// legal to call this function even if there is no current insertion point.
2233
  void FinishFunction(SourceLocation EndLoc=SourceLocation());
2234
2235
  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2236
                  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2237
2238
  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2239
                                 const ThunkInfo *Thunk, bool IsUnprototyped);
2240
2241
  void FinishThunk();
2242
2243
  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2244
  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2245
                         llvm::FunctionCallee Callee);
2246
2247
  /// Generate a thunk for the given method.
2248
  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2249
                     GlobalDecl GD, const ThunkInfo &Thunk,
2250
                     bool IsUnprototyped);
2251
2252
  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2253
                                       const CGFunctionInfo &FnInfo,
2254
                                       GlobalDecl GD, const ThunkInfo &Thunk);
2255
2256
  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2257
                        FunctionArgList &Args);
2258
2259
  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2260
2261
  /// Struct with all information about dynamic [sub]class needed to set vptr.
2262
  struct VPtr {
2263
    BaseSubobject Base;
2264
    const CXXRecordDecl *NearestVBase;
2265
    CharUnits OffsetFromNearestVBase;
2266
    const CXXRecordDecl *VTableClass;
2267
  };
2268
2269
  /// Initialize the vtable pointer of the given subobject.
2270
  void InitializeVTablePointer(const VPtr &vptr);
2271
2272
  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2273
2274
  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2275
  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2276
2277
  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2278
                         CharUnits OffsetFromNearestVBase,
2279
                         bool BaseIsNonVirtualPrimaryBase,
2280
                         const CXXRecordDecl *VTableClass,
2281
                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2282
2283
  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2284
2285
  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2286
  /// to by This.
2287
  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2288
                            const CXXRecordDecl *VTableClass);
2289
2290
  enum CFITypeCheckKind {
2291
    CFITCK_VCall,
2292
    CFITCK_NVCall,
2293
    CFITCK_DerivedCast,
2294
    CFITCK_UnrelatedCast,
2295
    CFITCK_ICall,
2296
    CFITCK_NVMFCall,
2297
    CFITCK_VMFCall,
2298
  };
2299
2300
  /// Derived is the presumed address of an object of type T after a
2301
  /// cast. If T is a polymorphic class type, emit a check that the virtual
2302
  /// table for Derived belongs to a class derived from T.
2303
  void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2304
                                 CFITypeCheckKind TCK, SourceLocation Loc);
2305
2306
  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2307
  /// If vptr CFI is enabled, emit a check that VTable is valid.
2308
  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2309
                                 CFITypeCheckKind TCK, SourceLocation Loc);
2310
2311
  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2312
  /// RD using llvm.type.test.
2313
  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2314
                          CFITypeCheckKind TCK, SourceLocation Loc);
2315
2316
  /// If whole-program virtual table optimization is enabled, emit an assumption
2317
  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2318
  /// enabled, emit a check that VTable is a member of RD's type identifier.
2319
  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2320
                                    llvm::Value *VTable, SourceLocation Loc);
2321
2322
  /// Returns whether we should perform a type checked load when loading a
2323
  /// virtual function for virtual calls to members of RD. This is generally
2324
  /// true when both vcall CFI and whole-program-vtables are enabled.
2325
  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2326
2327
  /// Emit a type checked load from the given vtable.
2328
  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2329
                                         llvm::Value *VTable,
2330
                                         llvm::Type *VTableTy,
2331
                                         uint64_t VTableByteOffset);
2332
2333
  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2334
  /// given phase of destruction for a destructor.  The end result
2335
  /// should call destructors on members and base classes in reverse
2336
  /// order of their construction.
2337
  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2338
2339
  /// ShouldInstrumentFunction - Return true if the current function should be
2340
  /// instrumented with __cyg_profile_func_* calls
2341
  bool ShouldInstrumentFunction();
2342
2343
  /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2344
  /// should not be instrumented with sanitizers.
2345
  bool ShouldSkipSanitizerInstrumentation();
2346
2347
  /// ShouldXRayInstrument - Return true if the current function should be
2348
  /// instrumented with XRay nop sleds.
2349
  bool ShouldXRayInstrumentFunction() const;
2350
2351
  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2352
  /// XRay custom event handling calls.
2353
  bool AlwaysEmitXRayCustomEvents() const;
2354
2355
  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2356
  /// XRay typed event handling calls.
2357
  bool AlwaysEmitXRayTypedEvents() const;
2358
2359
  /// Decode an address used in a function prologue, encoded by \c
2360
  /// EncodeAddrForUseInPrologue.
2361
  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2362
                                        llvm::Value *EncodedAddr);
2363
2364
  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2365
  /// arguments for the given function. This is also responsible for naming the
2366
  /// LLVM function arguments.
2367
  void EmitFunctionProlog(const CGFunctionInfo &FI,
2368
                          llvm::Function *Fn,
2369
                          const FunctionArgList &Args);
2370
2371
  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2372
  /// given temporary.
2373
  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2374
                          SourceLocation EndLoc);
2375
2376
  /// Emit a test that checks if the return value \p RV is nonnull.
2377
  void EmitReturnValueCheck(llvm::Value *RV);
2378
2379
  /// EmitStartEHSpec - Emit the start of the exception spec.
2380
  void EmitStartEHSpec(const Decl *D);
2381
2382
  /// EmitEndEHSpec - Emit the end of the exception spec.
2383
  void EmitEndEHSpec(const Decl *D);
2384
2385
  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2386
  llvm::BasicBlock *getTerminateLandingPad();
2387
2388
  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2389
  /// terminate.
2390
  llvm::BasicBlock *getTerminateFunclet();
2391
2392
  /// getTerminateHandler - Return a handler (not a landing pad, just
2393
  /// a catch handler) that just calls terminate.  This is used when
2394
  /// a terminate scope encloses a try.
2395
  llvm::BasicBlock *getTerminateHandler();
2396
2397
  llvm::Type *ConvertTypeForMem(QualType T);
2398
  llvm::Type *ConvertType(QualType T);
2399
22.6k
  llvm::Type *ConvertType(const TypeDecl *T) {
2400
22.6k
    return ConvertType(getContext().getTypeDeclType(T));
2401
22.6k
  }
2402
2403
  /// LoadObjCSelf - Load the value of self. This function is only valid while
2404
  /// generating code for an Objective-C method.
2405
  llvm::Value *LoadObjCSelf();
2406
2407
  /// TypeOfSelfObject - Return type of object that this self represents.
2408
  QualType TypeOfSelfObject();
2409
2410
  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2411
  static TypeEvaluationKind getEvaluationKind(QualType T);
2412
2413
3.96M
  static bool hasScalarEvaluationKind(QualType T) {
2414
3.96M
    return getEvaluationKind(T) == TEK_Scalar;
2415
3.96M
  }
2416
2417
783k
  static bool hasAggregateEvaluationKind(QualType T) {
2418
783k
    return getEvaluationKind(T) == TEK_Aggregate;
2419
783k
  }
2420
2421
  /// createBasicBlock - Create an LLVM basic block.
2422
  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2423
                                     llvm::Function *parent = nullptr,
2424
1.23M
                                     llvm::BasicBlock *before = nullptr) {
2425
1.23M
    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2426
1.23M
  }
2427
2428
  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2429
  /// label maps to.
2430
  JumpDest getJumpDestForLabel(const LabelDecl *S);
2431
2432
  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2433
  /// another basic block, simplify it. This assumes that no other code could
2434
  /// potentially reference the basic block.
2435
  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2436
2437
  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2438
  /// adding a fall-through branch from the current insert block if
2439
  /// necessary. It is legal to call this function even if there is no current
2440
  /// insertion point.
2441
  ///
2442
  /// IsFinished - If true, indicates that the caller has finished emitting
2443
  /// branches to the given block and does not expect to emit code into it. This
2444
  /// means the block can be ignored if it is unreachable.
2445
  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2446
2447
  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2448
  /// near its uses, and leave the insertion point in it.
2449
  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2450
2451
  /// EmitBranch - Emit a branch to the specified basic block from the current
2452
  /// insert block, taking care to avoid creation of branches from dummy
2453
  /// blocks. It is legal to call this function even if there is no current
2454
  /// insertion point.
2455
  ///
2456
  /// This function clears the current insertion point. The caller should follow
2457
  /// calls to this function with calls to Emit*Block prior to generation new
2458
  /// code.
2459
  void EmitBranch(llvm::BasicBlock *Block);
2460
2461
  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2462
  /// indicates that the current code being emitted is unreachable.
2463
2.36M
  bool HaveInsertPoint() const {
2464
2.36M
    return Builder.GetInsertBlock() != nullptr;
2465
2.36M
  }
2466
2467
  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2468
  /// emitted IR has a place to go. Note that by definition, if this function
2469
  /// creates a block then that block is unreachable; callers may do better to
2470
  /// detect when no insertion point is defined and simply skip IR generation.
2471
22.1k
  void EnsureInsertPoint() {
2472
22.1k
    if (!HaveInsertPoint())
2473
2.38k
      EmitBlock(createBasicBlock());
2474
22.1k
  }
2475
2476
  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2477
  /// specified stmt yet.
2478
  void ErrorUnsupported(const Stmt *S, const char *Type);
2479
2480
  //===--------------------------------------------------------------------===//
2481
  //                                  Helpers
2482
  //===--------------------------------------------------------------------===//
2483
2484
  LValue MakeAddrLValue(Address Addr, QualType T,
2485
2.30M
                        AlignmentSource Source = AlignmentSource::Type) {
2486
2.30M
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2487
2.30M
                            CGM.getTBAAAccessInfo(T));
2488
2.30M
  }
2489
2490
  LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2491
725k
                        TBAAAccessInfo TBAAInfo) {
2492
725k
    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2493
725k
  }
2494
2495
  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2496
16.6k
                        AlignmentSource Source = AlignmentSource::Type) {
2497
16.6k
    Address Addr(V, ConvertTypeForMem(T), Alignment);
2498
16.6k
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2499
16.6k
                            CGM.getTBAAAccessInfo(T));
2500
16.6k
  }
2501
2502
  LValue
2503
  MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2504
30
                            AlignmentSource Source = AlignmentSource::Type) {
2505
30
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2506
30
                            TBAAAccessInfo());
2507
30
  }
2508
2509
  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2510
  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2511
2512
  Address EmitLoadOfReference(LValue RefLVal,
2513
                              LValueBaseInfo *PointeeBaseInfo = nullptr,
2514
                              TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2515
  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2516
  LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2517
                                   AlignmentSource Source =
2518
59.5k
                                       AlignmentSource::Type) {
2519
59.5k
    LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2520
59.5k
                                    CGM.getTBAAAccessInfo(RefTy));
2521
59.5k
    return EmitLoadOfReferenceLValue(RefLVal);
2522
59.5k
  }
2523
2524
  /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2525
  /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2526
  /// it is loaded from.
2527
  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2528
                            LValueBaseInfo *BaseInfo = nullptr,
2529
                            TBAAAccessInfo *TBAAInfo = nullptr);
2530
  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2531
2532
  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2533
  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2534
  /// insertion point of the builder. The caller is responsible for setting an
2535
  /// appropriate alignment on
2536
  /// the alloca.
2537
  ///
2538
  /// \p ArraySize is the number of array elements to be allocated if it
2539
  ///    is not nullptr.
2540
  ///
2541
  /// LangAS::Default is the address space of pointers to local variables and
2542
  /// temporaries, as exposed in the source language. In certain
2543
  /// configurations, this is not the same as the alloca address space, and a
2544
  /// cast is needed to lift the pointer from the alloca AS into
2545
  /// LangAS::Default. This can happen when the target uses a restricted
2546
  /// address space for the stack but the source language requires
2547
  /// LangAS::Default to be a generic address space. The latter condition is
2548
  /// common for most programming languages; OpenCL is an exception in that
2549
  /// LangAS::Default is the private address space, which naturally maps
2550
  /// to the stack.
2551
  ///
2552
  /// Because the address of a temporary is often exposed to the program in
2553
  /// various ways, this function will perform the cast. The original alloca
2554
  /// instruction is returned through \p Alloca if it is not nullptr.
2555
  ///
2556
  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2557
  /// more efficient if the caller knows that the address will not be exposed.
2558
  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2559
                                     llvm::Value *ArraySize = nullptr);
2560
  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2561
                           const Twine &Name = "tmp",
2562
                           llvm::Value *ArraySize = nullptr,
2563
                           Address *Alloca = nullptr);
2564
  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2565
                                      const Twine &Name = "tmp",
2566
                                      llvm::Value *ArraySize = nullptr);
2567
2568
  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2569
  /// default ABI alignment of the given LLVM type.
2570
  ///
2571
  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2572
  /// any given AST type that happens to have been lowered to the
2573
  /// given IR type.  This should only ever be used for function-local,
2574
  /// IR-driven manipulations like saving and restoring a value.  Do
2575
  /// not hand this address off to arbitrary IRGen routines, and especially
2576
  /// do not pass it as an argument to a function that might expect a
2577
  /// properly ABI-aligned value.
2578
  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2579
                                       const Twine &Name = "tmp");
2580
2581
  /// CreateIRTemp - Create a temporary IR object of the given type, with
2582
  /// appropriate alignment. This routine should only be used when an temporary
2583
  /// value needs to be stored into an alloca (for example, to avoid explicit
2584
  /// PHI construction), but the type is the IR type, not the type appropriate
2585
  /// for storing in memory.
2586
  ///
2587
  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2588
  /// ConvertType instead of ConvertTypeForMem.
2589
  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2590
2591
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2592
  /// appropriate alignmen and cast it to the default address space. Returns
2593
  /// the original alloca instruction by \p Alloca if it is not nullptr.
2594
  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2595
                        Address *Alloca = nullptr);
2596
  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2597
                        Address *Alloca = nullptr);
2598
2599
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2600
  /// appropriate alignmen without casting it to the default address space.
2601
  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2602
  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2603
                                   const Twine &Name = "tmp");
2604
2605
  /// CreateAggTemp - Create a temporary memory object for the given
2606
  /// aggregate type.
2607
  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2608
10.3k
                             Address *Alloca = nullptr) {
2609
10.3k
    return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2610
10.3k
                                 T.getQualifiers(),
2611
10.3k
                                 AggValueSlot::IsNotDestructed,
2612
10.3k
                                 AggValueSlot::DoesNotNeedGCBarriers,
2613
10.3k
                                 AggValueSlot::IsNotAliased,
2614
10.3k
                                 AggValueSlot::DoesNotOverlap);
2615
10.3k
  }
2616
2617
  /// Emit a cast to void* in the appropriate address space.
2618
  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2619
2620
  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2621
  /// expression and compare the result against zero, returning an Int1Ty value.
2622
  llvm::Value *EvaluateExprAsBool(const Expr *E);
2623
2624
  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2625
  void EmitIgnoredExpr(const Expr *E);
2626
2627
  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2628
  /// any type.  The result is returned as an RValue struct.  If this is an
2629
  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2630
  /// the result should be returned.
2631
  ///
2632
  /// \param ignoreResult True if the resulting value isn't used.
2633
  RValue EmitAnyExpr(const Expr *E,
2634
                     AggValueSlot aggSlot = AggValueSlot::ignored(),
2635
                     bool ignoreResult = false);
2636
2637
  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2638
  // or the value of the expression, depending on how va_list is defined.
2639
  Address EmitVAListRef(const Expr *E);
2640
2641
  /// Emit a "reference" to a __builtin_ms_va_list; this is
2642
  /// always the value of the expression, because a __builtin_ms_va_list is a
2643
  /// pointer to a char.
2644
  Address EmitMSVAListRef(const Expr *E);
2645
2646
  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2647
  /// always be accessible even if no aggregate location is provided.
2648
  RValue EmitAnyExprToTemp(const Expr *E);
2649
2650
  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2651
  /// arbitrary expression into the given memory location.
2652
  void EmitAnyExprToMem(const Expr *E, Address Location,
2653
                        Qualifiers Quals, bool IsInitializer);
2654
2655
  void EmitAnyExprToExn(const Expr *E, Address Addr);
2656
2657
  /// EmitExprAsInit - Emits the code necessary to initialize a
2658
  /// location in memory with the given initializer.
2659
  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2660
                      bool capturedByInit);
2661
2662
  /// hasVolatileMember - returns true if aggregate type has a volatile
2663
  /// member.
2664
4.65k
  bool hasVolatileMember(QualType T) {
2665
4.65k
    if (const RecordType *RT = T->getAs<RecordType>()) {
2666
3.17k
      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2667
3.17k
      return RD->hasVolatileMember();
2668
3.17k
    }
2669
1.48k
    return false;
2670
4.65k
  }
2671
2672
  /// Determine whether a return value slot may overlap some other object.
2673
6.75k
  AggValueSlot::Overlap_t getOverlapForReturnValue() {
2674
    // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2675
    // class subobjects. These cases may need to be revisited depending on the
2676
    // resolution of the relevant core issue.
2677
6.75k
    return AggValueSlot::DoesNotOverlap;
2678
6.75k
  }
2679
2680
  /// Determine whether a field initialization may overlap some other object.
2681
  AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2682
2683
  /// Determine whether a base class initialization may overlap some other
2684
  /// object.
2685
  AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2686
                                                const CXXRecordDecl *BaseRD,
2687
                                                bool IsVirtual);
2688
2689
  /// Emit an aggregate assignment.
2690
4.19k
  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2691
4.19k
    bool IsVolatile = hasVolatileMember(EltTy);
2692
4.19k
    EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2693
4.19k
  }
2694
2695
  void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2696
6.03k
                             AggValueSlot::Overlap_t MayOverlap) {
2697
6.03k
    EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2698
6.03k
  }
2699
2700
  /// EmitAggregateCopy - Emit an aggregate copy.
2701
  ///
2702
  /// \param isVolatile \c true iff either the source or the destination is
2703
  ///        volatile.
2704
  /// \param MayOverlap Whether the tail padding of the destination might be
2705
  ///        occupied by some other object. More efficient code can often be
2706
  ///        generated if not.
2707
  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2708
                         AggValueSlot::Overlap_t MayOverlap,
2709
                         bool isVolatile = false);
2710
2711
  /// GetAddrOfLocalVar - Return the address of a local variable.
2712
198k
  Address GetAddrOfLocalVar(const VarDecl *VD) {
2713
198k
    auto it = LocalDeclMap.find(VD);
2714
198k
    assert(it != LocalDeclMap.end() &&
2715
198k
           "Invalid argument to GetAddrOfLocalVar(), no decl!");
2716
0
    return it->second;
2717
198k
  }
2718
2719
  /// Given an opaque value expression, return its LValue mapping if it exists,
2720
  /// otherwise create one.
2721
  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2722
2723
  /// Given an opaque value expression, return its RValue mapping if it exists,
2724
  /// otherwise create one.
2725
  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2726
2727
  /// Get the index of the current ArrayInitLoopExpr, if any.
2728
78
  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2729
2730
  /// getAccessedFieldNo - Given an encoded value and a result number, return
2731
  /// the input field number being accessed.
2732
  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2733
2734
  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2735
  llvm::BasicBlock *GetIndirectGotoBlock();
2736
2737
  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2738
  static bool IsWrappedCXXThis(const Expr *E);
2739
2740
  /// EmitNullInitialization - Generate code to set a value of the given type to
2741
  /// null, If the type contains data member pointers, they will be initialized
2742
  /// to -1 in accordance with the Itanium C++ ABI.
2743
  void EmitNullInitialization(Address DestPtr, QualType Ty);
2744
2745
  /// Emits a call to an LLVM variable-argument intrinsic, either
2746
  /// \c llvm.va_start or \c llvm.va_end.
2747
  /// \param ArgValue A reference to the \c va_list as emitted by either
2748
  /// \c EmitVAListRef or \c EmitMSVAListRef.
2749
  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2750
  /// calls \c llvm.va_end.
2751
  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2752
2753
  /// Generate code to get an argument from the passed in pointer
2754
  /// and update it accordingly.
2755
  /// \param VE The \c VAArgExpr for which to generate code.
2756
  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2757
  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2758
  /// \returns A pointer to the argument.
2759
  // FIXME: We should be able to get rid of this method and use the va_arg
2760
  // instruction in LLVM instead once it works well enough.
2761
  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2762
2763
  /// emitArrayLength - Compute the length of an array, even if it's a
2764
  /// VLA, and drill down to the base element type.
2765
  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2766
                               QualType &baseType,
2767
                               Address &addr);
2768
2769
  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2770
  /// the given variably-modified type and store them in the VLASizeMap.
2771
  ///
2772
  /// This function can be called with a null (unreachable) insert point.
2773
  void EmitVariablyModifiedType(QualType Ty);
2774
2775
  struct VlaSizePair {
2776
    llvm::Value *NumElts;
2777
    QualType Type;
2778
2779
12.2k
    VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2780
  };
2781
2782
  /// Return the number of elements for a single dimension
2783
  /// for the given array type.
2784
  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2785
  VlaSizePair getVLAElements1D(QualType vla);
2786
2787
  /// Returns an LLVM value that corresponds to the size,
2788
  /// in non-variably-sized elements, of a variable length array type,
2789
  /// plus that largest non-variably-sized element type.  Assumes that
2790
  /// the type has already been emitted with EmitVariablyModifiedType.
2791
  VlaSizePair getVLASize(const VariableArrayType *vla);
2792
  VlaSizePair getVLASize(QualType vla);
2793
2794
  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2795
  /// generating code for an C++ member function.
2796
164k
  llvm::Value *LoadCXXThis() {
2797
164k
    assert(CXXThisValue && "no 'this' value for this function");
2798
0
    return CXXThisValue;
2799
164k
  }
2800
  Address LoadCXXThisAddress();
2801
2802
  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2803
  /// virtual bases.
2804
  // FIXME: Every place that calls LoadCXXVTT is something
2805
  // that needs to be abstracted properly.
2806
351
  llvm::Value *LoadCXXVTT() {
2807
351
    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2808
0
    return CXXStructorImplicitParamValue;
2809
351
  }
2810
2811
  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2812
  /// complete class to the given direct base.
2813
  Address
2814
  GetAddressOfDirectBaseInCompleteClass(Address Value,
2815
                                        const CXXRecordDecl *Derived,
2816
                                        const CXXRecordDecl *Base,
2817
                                        bool BaseIsVirtual);
2818
2819
  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2820
2821
  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2822
  /// load of 'this' and returns address of the base class.
2823
  Address GetAddressOfBaseClass(Address Value,
2824
                                const CXXRecordDecl *Derived,
2825
                                CastExpr::path_const_iterator PathBegin,
2826
                                CastExpr::path_const_iterator PathEnd,
2827
                                bool NullCheckValue, SourceLocation Loc);
2828
2829
  Address GetAddressOfDerivedClass(Address Value,
2830
                                   const CXXRecordDecl *Derived,
2831
                                   CastExpr::path_const_iterator PathBegin,
2832
                                   CastExpr::path_const_iterator PathEnd,
2833
                                   bool NullCheckValue);
2834
2835
  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2836
  /// base constructor/destructor with virtual bases.
2837
  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2838
  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2839
  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2840
                               bool Delegating);
2841
2842
  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2843
                                      CXXCtorType CtorType,
2844
                                      const FunctionArgList &Args,
2845
                                      SourceLocation Loc);
2846
  // It's important not to confuse this and the previous function. Delegating
2847
  // constructors are the C++0x feature. The constructor delegate optimization
2848
  // is used to reduce duplication in the base and complete consturctors where
2849
  // they are substantially the same.
2850
  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2851
                                        const FunctionArgList &Args);
2852
2853
  /// Emit a call to an inheriting constructor (that is, one that invokes a
2854
  /// constructor inherited from a base class) by inlining its definition. This
2855
  /// is necessary if the ABI does not support forwarding the arguments to the
2856
  /// base class constructor (because they're variadic or similar).
2857
  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2858
                                               CXXCtorType CtorType,
2859
                                               bool ForVirtualBase,
2860
                                               bool Delegating,
2861
                                               CallArgList &Args);
2862
2863
  /// Emit a call to a constructor inherited from a base class, passing the
2864
  /// current constructor's arguments along unmodified (without even making
2865
  /// a copy).
2866
  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2867
                                       bool ForVirtualBase, Address This,
2868
                                       bool InheritedFromVBase,
2869
                                       const CXXInheritedCtorInitExpr *E);
2870
2871
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2872
                              bool ForVirtualBase, bool Delegating,
2873
                              AggValueSlot ThisAVS, const CXXConstructExpr *E);
2874
2875
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2876
                              bool ForVirtualBase, bool Delegating,
2877
                              Address This, CallArgList &Args,
2878
                              AggValueSlot::Overlap_t Overlap,
2879
                              SourceLocation Loc, bool NewPointerIsChecked);
2880
2881
  /// Emit assumption load for all bases. Requires to be be called only on
2882
  /// most-derived class and not under construction of the object.
2883
  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2884
2885
  /// Emit assumption that vptr load == global vtable.
2886
  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2887
2888
  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2889
                                      Address This, Address Src,
2890
                                      const CXXConstructExpr *E);
2891
2892
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2893
                                  const ArrayType *ArrayTy,
2894
                                  Address ArrayPtr,
2895
                                  const CXXConstructExpr *E,
2896
                                  bool NewPointerIsChecked,
2897
                                  bool ZeroInitialization = false);
2898
2899
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2900
                                  llvm::Value *NumElements,
2901
                                  Address ArrayPtr,
2902
                                  const CXXConstructExpr *E,
2903
                                  bool NewPointerIsChecked,
2904
                                  bool ZeroInitialization = false);
2905
2906
  static Destroyer destroyCXXObject;
2907
2908
  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2909
                             bool ForVirtualBase, bool Delegating, Address This,
2910
                             QualType ThisTy);
2911
2912
  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2913
                               llvm::Type *ElementTy, Address NewPtr,
2914
                               llvm::Value *NumElements,
2915
                               llvm::Value *AllocSizeWithoutCookie);
2916
2917
  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2918
                        Address Ptr);
2919
2920
  void EmitSehCppScopeBegin();
2921
  void EmitSehCppScopeEnd();
2922
  void EmitSehTryScopeBegin();
2923
  void EmitSehTryScopeEnd();
2924
2925
  llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2926
  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2927
2928
  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2929
  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2930
2931
  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2932
                      QualType DeleteTy, llvm::Value *NumElements = nullptr,
2933
                      CharUnits CookieSize = CharUnits());
2934
2935
  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2936
                                  const CallExpr *TheCallExpr, bool IsDelete);
2937
2938
  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2939
  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2940
  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2941
2942
  /// Situations in which we might emit a check for the suitability of a
2943
  /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2944
  /// compiler-rt.
2945
  enum TypeCheckKind {
2946
    /// Checking the operand of a load. Must be suitably sized and aligned.
2947
    TCK_Load,
2948
    /// Checking the destination of a store. Must be suitably sized and aligned.
2949
    TCK_Store,
2950
    /// Checking the bound value in a reference binding. Must be suitably sized
2951
    /// and aligned, but is not required to refer to an object (until the
2952
    /// reference is used), per core issue 453.
2953
    TCK_ReferenceBinding,
2954
    /// Checking the object expression in a non-static data member access. Must
2955
    /// be an object within its lifetime.
2956
    TCK_MemberAccess,
2957
    /// Checking the 'this' pointer for a call to a non-static member function.
2958
    /// Must be an object within its lifetime.
2959
    TCK_MemberCall,
2960
    /// Checking the 'this' pointer for a constructor call.
2961
    TCK_ConstructorCall,
2962
    /// Checking the operand of a static_cast to a derived pointer type. Must be
2963
    /// null or an object within its lifetime.
2964
    TCK_DowncastPointer,
2965
    /// Checking the operand of a static_cast to a derived reference type. Must
2966
    /// be an object within its lifetime.
2967
    TCK_DowncastReference,
2968
    /// Checking the operand of a cast to a base object. Must be suitably sized
2969
    /// and aligned.
2970
    TCK_Upcast,
2971
    /// Checking the operand of a cast to a virtual base object. Must be an
2972
    /// object within its lifetime.
2973
    TCK_UpcastToVirtualBase,
2974
    /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2975
    TCK_NonnullAssign,
2976
    /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2977
    /// null or an object within its lifetime.
2978
    TCK_DynamicOperation
2979
  };
2980
2981
  /// Determine whether the pointer type check \p TCK permits null pointers.
2982
  static bool isNullPointerAllowed(TypeCheckKind TCK);
2983
2984
  /// Determine whether the pointer type check \p TCK requires a vptr check.
2985
  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2986
2987
  /// Whether any type-checking sanitizers are enabled. If \c false,
2988
  /// calls to EmitTypeCheck can be skipped.
2989
  bool sanitizePerformTypeCheck() const;
2990
2991
  /// Emit a check that \p V is the address of storage of the
2992
  /// appropriate size and alignment for an object of type \p Type
2993
  /// (or if ArraySize is provided, for an array of that bound).
2994
  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2995
                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
2996
                     SanitizerSet SkippedChecks = SanitizerSet(),
2997
                     llvm::Value *ArraySize = nullptr);
2998
2999
  /// Emit a check that \p Base points into an array object, which
3000
  /// we can access at index \p Index. \p Accessed should be \c false if we
3001
  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3002
  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3003
                       QualType IndexType, bool Accessed);
3004
3005
  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3006
                                       bool isInc, bool isPre);
3007
  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3008
                                         bool isInc, bool isPre);
3009
3010
  /// Converts Location to a DebugLoc, if debug information is enabled.
3011
  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3012
3013
  /// Get the record field index as represented in debug info.
3014
  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3015
3016
3017
  //===--------------------------------------------------------------------===//
3018
  //                            Declaration Emission
3019
  //===--------------------------------------------------------------------===//
3020
3021
  /// EmitDecl - Emit a declaration.
3022
  ///
3023
  /// This function can be called with a null (unreachable) insert point.
3024
  void EmitDecl(const Decl &D);
3025
3026
  /// EmitVarDecl - Emit a local variable declaration.
3027
  ///
3028
  /// This function can be called with a null (unreachable) insert point.
3029
  void EmitVarDecl(const VarDecl &D);
3030
3031
  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3032
                      bool capturedByInit);
3033
3034
  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3035
                             llvm::Value *Address);
3036
3037
  /// Determine whether the given initializer is trivial in the sense
3038
  /// that it requires no code to be generated.
3039
  bool isTrivialInitializer(const Expr *Init);
3040
3041
  /// EmitAutoVarDecl - Emit an auto variable declaration.
3042
  ///
3043
  /// This function can be called with a null (unreachable) insert point.
3044
  void EmitAutoVarDecl(const VarDecl &D);
3045
3046
  class AutoVarEmission {
3047
    friend class CodeGenFunction;
3048
3049
    const VarDecl *Variable;
3050
3051
    /// The address of the alloca for languages with explicit address space
3052
    /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3053
    /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3054
    /// as a global constant.
3055
    Address Addr;
3056
3057
    llvm::Value *NRVOFlag;
3058
3059
    /// True if the variable is a __block variable that is captured by an
3060
    /// escaping block.
3061
    bool IsEscapingByRef;
3062
3063
    /// True if the variable is of aggregate type and has a constant
3064
    /// initializer.
3065
    bool IsConstantAggregate;
3066
3067
    /// Non-null if we should use lifetime annotations.
3068
    llvm::Value *SizeForLifetimeMarkers;
3069
3070
    /// Address with original alloca instruction. Invalid if the variable was
3071
    /// emitted as a global constant.
3072
    Address AllocaAddr;
3073
3074
    struct Invalid {};
3075
    AutoVarEmission(Invalid)
3076
        : Variable(nullptr), Addr(Address::invalid()),
3077
68
          AllocaAddr(Address::invalid()) {}
3078
3079
    AutoVarEmission(const VarDecl &variable)
3080
        : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3081
          IsEscapingByRef(false), IsConstantAggregate(false),
3082
257k
          SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3083
3084
497k
    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3085
3086
  public:
3087
68
    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3088
3089
261k
    bool useLifetimeMarkers() const {
3090
261k
      return SizeForLifetimeMarkers != nullptr;
3091
261k
    }
3092
3.94k
    llvm::Value *getSizeForLifetimeMarkers() const {
3093
3.94k
      assert(useLifetimeMarkers());
3094
0
      return SizeForLifetimeMarkers;
3095
3.94k
    }
3096
3097
    /// Returns the raw, allocated address, which is not necessarily
3098
    /// the address of the object itself. It is casted to default
3099
    /// address space for address space agnostic languages.
3100
36.3k
    Address getAllocatedAddress() const {
3101
36.3k
      return Addr;
3102
36.3k
    }
3103
3104
    /// Returns the address for the original alloca instruction.
3105
3.94k
    Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3106
3107
    /// Returns the address of the object within this declaration.
3108
    /// Note that this does not chase the forwarding pointer for
3109
    /// __block decls.
3110
249k
    Address getObjectAddress(CodeGenFunction &CGF) const {
3111
249k
      if (!IsEscapingByRef) 
return Addr249k
;
3112
3113
257
      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3114
249k
    }
3115
  };
3116
  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3117
  void EmitAutoVarInit(const AutoVarEmission &emission);
3118
  void EmitAutoVarCleanups(const AutoVarEmission &emission);
3119
  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3120
                              QualType::DestructionKind dtorKind);
3121
3122
  /// Emits the alloca and debug information for the size expressions for each
3123
  /// dimension of an array. It registers the association of its (1-dimensional)
3124
  /// QualTypes and size expression's debug node, so that CGDebugInfo can
3125
  /// reference this node when creating the DISubrange object to describe the
3126
  /// array types.
3127
  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3128
                                              const VarDecl &D,
3129
                                              bool EmitDebugInfo);
3130
3131
  void EmitStaticVarDecl(const VarDecl &D,
3132
                         llvm::GlobalValue::LinkageTypes Linkage);
3133
3134
  class ParamValue {
3135
    llvm::Value *Value;
3136
    llvm::Type *ElementType;
3137
    unsigned Alignment;
3138
    ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3139
529k
        : Value(V), ElementType(T), Alignment(A) {}
3140
  public:
3141
514k
    static ParamValue forDirect(llvm::Value *value) {
3142
514k
      return ParamValue(value, nullptr, 0);
3143
514k
    }
3144
14.7k
    static ParamValue forIndirect(Address addr) {
3145
14.7k
      assert(!addr.getAlignment().isZero());
3146
0
      return ParamValue(addr.getPointer(), addr.getElementType(),
3147
14.7k
                        addr.getAlignment().getQuantity());
3148
14.7k
    }
3149
3150
1.06M
    bool isIndirect() const { return Alignment != 0; }
3151
529k
    llvm::Value *getAnyValue() const { return Value; }
3152
3153
514k
    llvm::Value *getDirectValue() const {
3154
514k
      assert(!isIndirect());
3155
0
      return Value;
3156
514k
    }
3157
3158
14.7k
    Address getIndirectAddress() const {
3159
14.7k
      assert(isIndirect());
3160
0
      return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3161
14.7k
    }
3162
  };
3163
3164
  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3165
  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3166
3167
  /// protectFromPeepholes - Protect a value that we're intending to
3168
  /// store to the side, but which will probably be used later, from
3169
  /// aggressive peepholing optimizations that might delete it.
3170
  ///
3171
  /// Pass the result to unprotectFromPeepholes to declare that
3172
  /// protection is no longer required.
3173
  ///
3174
  /// There's no particular reason why this shouldn't apply to
3175
  /// l-values, it's just that no existing peepholes work on pointers.
3176
  PeepholeProtection protectFromPeepholes(RValue rvalue);
3177
  void unprotectFromPeepholes(PeepholeProtection protection);
3178
3179
  void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3180
                                    SourceLocation Loc,
3181
                                    SourceLocation AssumptionLoc,
3182
                                    llvm::Value *Alignment,
3183
                                    llvm::Value *OffsetValue,
3184
                                    llvm::Value *TheCheck,
3185
                                    llvm::Instruction *Assumption);
3186
3187
  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3188
                               SourceLocation Loc, SourceLocation AssumptionLoc,
3189
                               llvm::Value *Alignment,
3190
                               llvm::Value *OffsetValue = nullptr);
3191
3192
  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3193
                               SourceLocation AssumptionLoc,
3194
                               llvm::Value *Alignment,
3195
                               llvm::Value *OffsetValue = nullptr);
3196
3197
  //===--------------------------------------------------------------------===//
3198
  //                             Statement Emission
3199
  //===--------------------------------------------------------------------===//
3200
3201
  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3202
  void EmitStopPoint(const Stmt *S);
3203
3204
  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3205
  /// this function even if there is no current insertion point.
3206
  ///
3207
  /// This function may clear the current insertion point; callers should use
3208
  /// EnsureInsertPoint if they wish to subsequently generate code without first
3209
  /// calling EmitBlock, EmitBranch, or EmitStmt.
3210
  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3211
3212
  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3213
  /// necessarily require an insertion point or debug information; typically
3214
  /// because the statement amounts to a jump or a container of other
3215
  /// statements.
3216
  ///
3217
  /// \return True if the statement was handled.
3218
  bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3219
3220
  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3221
                           AggValueSlot AVS = AggValueSlot::ignored());
3222
  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3223
                                       bool GetLast = false,
3224
                                       AggValueSlot AVS =
3225
                                                AggValueSlot::ignored());
3226
3227
  /// EmitLabel - Emit the block for the given label. It is legal to call this
3228
  /// function even if there is no current insertion point.
3229
  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3230
3231
  void EmitLabelStmt(const LabelStmt &S);
3232
  void EmitAttributedStmt(const AttributedStmt &S);
3233
  void EmitGotoStmt(const GotoStmt &S);
3234
  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3235
  void EmitIfStmt(const IfStmt &S);
3236
3237
  void EmitWhileStmt(const WhileStmt &S,
3238
                     ArrayRef<const Attr *> Attrs = None);
3239
  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3240
  void EmitForStmt(const ForStmt &S,
3241
                   ArrayRef<const Attr *> Attrs = None);
3242
  void EmitReturnStmt(const ReturnStmt &S);
3243
  void EmitDeclStmt(const DeclStmt &S);
3244
  void EmitBreakStmt(const BreakStmt &S);
3245
  void EmitContinueStmt(const ContinueStmt &S);
3246
  void EmitSwitchStmt(const SwitchStmt &S);
3247
  void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3248
  void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3249
  void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3250
  void EmitAsmStmt(const AsmStmt &S);
3251
3252
  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3253
  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3254
  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3255
  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3256
  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3257
3258
  void EmitCoroutineBody(const CoroutineBodyStmt &S);
3259
  void EmitCoreturnStmt(const CoreturnStmt &S);
3260
  RValue EmitCoawaitExpr(const CoawaitExpr &E,
3261
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3262
                         bool ignoreResult = false);
3263
  LValue EmitCoawaitLValue(const CoawaitExpr *E);
3264
  RValue EmitCoyieldExpr(const CoyieldExpr &E,
3265
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3266
                         bool ignoreResult = false);
3267
  LValue EmitCoyieldLValue(const CoyieldExpr *E);
3268
  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3269
3270
  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3271
  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3272
3273
  void EmitCXXTryStmt(const CXXTryStmt &S);
3274
  void EmitSEHTryStmt(const SEHTryStmt &S);
3275
  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3276
  void EnterSEHTryStmt(const SEHTryStmt &S);
3277
  void ExitSEHTryStmt(const SEHTryStmt &S);
3278
  void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3279
                           llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3280
3281
  void pushSEHCleanup(CleanupKind kind,
3282
                      llvm::Function *FinallyFunc);
3283
  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3284
                              const Stmt *OutlinedStmt);
3285
3286
  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3287
                                            const SEHExceptStmt &Except);
3288
3289
  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3290
                                             const SEHFinallyStmt &Finally);
3291
3292
  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3293
                                llvm::Value *ParentFP,
3294
                                llvm::Value *EntryEBP);
3295
  llvm::Value *EmitSEHExceptionCode();
3296
  llvm::Value *EmitSEHExceptionInfo();
3297
  llvm::Value *EmitSEHAbnormalTermination();
3298
3299
  /// Emit simple code for OpenMP directives in Simd-only mode.
3300
  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3301
3302
  /// Scan the outlined statement for captures from the parent function. For
3303
  /// each capture, mark the capture as escaped and emit a call to
3304
  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3305
  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3306
                          bool IsFilter);
3307
3308
  /// Recovers the address of a local in a parent function. ParentVar is the
3309
  /// address of the variable used in the immediate parent function. It can
3310
  /// either be an alloca or a call to llvm.localrecover if there are nested
3311
  /// outlined functions. ParentFP is the frame pointer of the outermost parent
3312
  /// frame.
3313
  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3314
                                    Address ParentVar,
3315
                                    llvm::Value *ParentFP);
3316
3317
  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3318
                           ArrayRef<const Attr *> Attrs = None);
3319
3320
  /// Controls insertion of cancellation exit blocks in worksharing constructs.
3321
  class OMPCancelStackRAII {
3322
    CodeGenFunction &CGF;
3323
3324
  public:
3325
    OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3326
                       bool HasCancel)
3327
4.42k
        : CGF(CGF) {
3328
4.42k
      CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3329
4.42k
    }
3330
4.42k
    ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3331
  };
3332
3333
  /// Returns calculated size of the specified type.
3334
  llvm::Value *getTypeSize(QualType Ty);
3335
  LValue InitCapturedStruct(const CapturedStmt &S);
3336
  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3337
  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3338
  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3339
  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3340
                                                     SourceLocation Loc);
3341
  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3342
                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
3343
  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3344
                          SourceLocation Loc);
3345
  /// Perform element by element copying of arrays with type \a
3346
  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3347
  /// generated by \a CopyGen.
3348
  ///
3349
  /// \param DestAddr Address of the destination array.
3350
  /// \param SrcAddr Address of the source array.
3351
  /// \param OriginalType Type of destination and source arrays.
3352
  /// \param CopyGen Copying procedure that copies value of single array element
3353
  /// to another single array element.
3354
  void EmitOMPAggregateAssign(
3355
      Address DestAddr, Address SrcAddr, QualType OriginalType,
3356
      const llvm::function_ref<void(Address, Address)> CopyGen);
3357
  /// Emit proper copying of data from one variable to another.
3358
  ///
3359
  /// \param OriginalType Original type of the copied variables.
3360
  /// \param DestAddr Destination address.
3361
  /// \param SrcAddr Source address.
3362
  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3363
  /// type of the base array element).
3364
  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3365
  /// the base array element).
3366
  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3367
  /// DestVD.
3368
  void EmitOMPCopy(QualType OriginalType,
3369
                   Address DestAddr, Address SrcAddr,
3370
                   const VarDecl *DestVD, const VarDecl *SrcVD,
3371
                   const Expr *Copy);
3372
  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3373
  /// \a X = \a E \a BO \a E.
3374
  ///
3375
  /// \param X Value to be updated.
3376
  /// \param E Update value.
3377
  /// \param BO Binary operation for update operation.
3378
  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3379
  /// expression, false otherwise.
3380
  /// \param AO Atomic ordering of the generated atomic instructions.
3381
  /// \param CommonGen Code generator for complex expressions that cannot be
3382
  /// expressed through atomicrmw instruction.
3383
  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3384
  /// generated, <false, RValue::get(nullptr)> otherwise.
3385
  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3386
      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3387
      llvm::AtomicOrdering AO, SourceLocation Loc,
3388
      const llvm::function_ref<RValue(RValue)> CommonGen);
3389
  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3390
                                 OMPPrivateScope &PrivateScope);
3391
  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3392
                            OMPPrivateScope &PrivateScope);
3393
  void EmitOMPUseDevicePtrClause(
3394
      const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3395
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3396
  void EmitOMPUseDeviceAddrClause(
3397
      const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3398
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3399
  /// Emit code for copyin clause in \a D directive. The next code is
3400
  /// generated at the start of outlined functions for directives:
3401
  /// \code
3402
  /// threadprivate_var1 = master_threadprivate_var1;
3403
  /// operator=(threadprivate_var2, master_threadprivate_var2);
3404
  /// ...
3405
  /// __kmpc_barrier(&loc, global_tid);
3406
  /// \endcode
3407
  ///
3408
  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3409
  /// \returns true if at least one copyin variable is found, false otherwise.
3410
  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3411
  /// Emit initial code for lastprivate variables. If some variable is
3412
  /// not also firstprivate, then the default initialization is used. Otherwise
3413
  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3414
  /// method.
3415
  ///
3416
  /// \param D Directive that may have 'lastprivate' directives.
3417
  /// \param PrivateScope Private scope for capturing lastprivate variables for
3418
  /// proper codegen in internal captured statement.
3419
  ///
3420
  /// \returns true if there is at least one lastprivate variable, false
3421
  /// otherwise.
3422
  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3423
                                    OMPPrivateScope &PrivateScope);
3424
  /// Emit final copying of lastprivate values to original variables at
3425
  /// the end of the worksharing or simd directive.
3426
  ///
3427
  /// \param D Directive that has at least one 'lastprivate' directives.
3428
  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3429
  /// it is the last iteration of the loop code in associated directive, or to
3430
  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3431
  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3432
                                     bool NoFinals,
3433
                                     llvm::Value *IsLastIterCond = nullptr);
3434
  /// Emit initial code for linear clauses.
3435
  void EmitOMPLinearClause(const OMPLoopDirective &D,
3436
                           CodeGenFunction::OMPPrivateScope &PrivateScope);
3437
  /// Emit final code for linear clauses.
3438
  /// \param CondGen Optional conditional code for final part of codegen for
3439
  /// linear clause.
3440
  void EmitOMPLinearClauseFinal(
3441
      const OMPLoopDirective &D,
3442
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3443
  /// Emit initial code for reduction variables. Creates reduction copies
3444
  /// and initializes them with the values according to OpenMP standard.
3445
  ///
3446
  /// \param D Directive (possibly) with the 'reduction' clause.
3447
  /// \param PrivateScope Private scope for capturing reduction variables for
3448
  /// proper codegen in internal captured statement.
3449
  ///
3450
  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3451
                                  OMPPrivateScope &PrivateScope,
3452
                                  bool ForInscan = false);
3453
  /// Emit final update of reduction values to original variables at
3454
  /// the end of the directive.
3455
  ///
3456
  /// \param D Directive that has at least one 'reduction' directives.
3457
  /// \param ReductionKind The kind of reduction to perform.
3458
  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3459
                                   const OpenMPDirectiveKind ReductionKind);
3460
  /// Emit initial code for linear variables. Creates private copies
3461
  /// and initializes them with the values according to OpenMP standard.
3462
  ///
3463
  /// \param D Directive (possibly) with the 'linear' clause.
3464
  /// \return true if at least one linear variable is found that should be
3465
  /// initialized with the value of the original variable, false otherwise.
3466
  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3467
3468
  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3469
                                        llvm::Function * /*OutlinedFn*/,
3470
                                        const OMPTaskDataTy & /*Data*/)>
3471
      TaskGenTy;
3472
  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3473
                                 const OpenMPDirectiveKind CapturedRegion,
3474
                                 const RegionCodeGenTy &BodyGen,
3475
                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3476
  struct OMPTargetDataInfo {
3477
    Address BasePointersArray = Address::invalid();
3478
    Address PointersArray = Address::invalid();
3479
    Address SizesArray = Address::invalid();
3480
    Address MappersArray = Address::invalid();
3481
    unsigned NumberOfTargetItems = 0;
3482
9.83k
    explicit OMPTargetDataInfo() = default;
3483
    OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3484
                      Address SizesArray, Address MappersArray,
3485
                      unsigned NumberOfTargetItems)
3486
        : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3487
          SizesArray(SizesArray), MappersArray(MappersArray),
3488
0
          NumberOfTargetItems(NumberOfTargetItems) {}
3489
  };
3490
  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3491
                                       const RegionCodeGenTy &BodyGen,
3492
                                       OMPTargetDataInfo &InputInfo);
3493
  void processInReduction(const OMPExecutableDirective &S,
3494
                          OMPTaskDataTy &Data,
3495
                          CodeGenFunction &CGF,
3496
                          const CapturedStmt *CS,
3497
                          OMPPrivateScope &Scope);
3498
  void EmitOMPMetaDirective(const OMPMetaDirective &S);
3499
  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3500
  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3501
  void EmitOMPTileDirective(const OMPTileDirective &S);
3502
  void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3503
  void EmitOMPForDirective(const OMPForDirective &S);
3504
  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3505
  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3506
  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3507
  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3508
  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3509
  void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3510
  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3511
  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3512
  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3513
  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3514
  void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3515
  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3516
  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3517
  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3518
  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3519
  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3520
  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3521
  void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3522
  void EmitOMPScanDirective(const OMPScanDirective &S);
3523
  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3524
  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3525
  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3526
  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3527
  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3528
  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3529
  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3530
  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3531
  void
3532
  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3533
  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3534
  void
3535
  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3536
  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3537
  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3538
  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3539
  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3540
  void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3541
  void
3542
  EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3543
  void EmitOMPParallelMasterTaskLoopDirective(
3544
      const OMPParallelMasterTaskLoopDirective &S);
3545
  void EmitOMPParallelMasterTaskLoopSimdDirective(
3546
      const OMPParallelMasterTaskLoopSimdDirective &S);
3547
  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3548
  void EmitOMPDistributeParallelForDirective(
3549
      const OMPDistributeParallelForDirective &S);
3550
  void EmitOMPDistributeParallelForSimdDirective(
3551
      const OMPDistributeParallelForSimdDirective &S);
3552
  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3553
  void EmitOMPTargetParallelForSimdDirective(
3554
      const OMPTargetParallelForSimdDirective &S);
3555
  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3556
  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3557
  void
3558
  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3559
  void EmitOMPTeamsDistributeParallelForSimdDirective(
3560
      const OMPTeamsDistributeParallelForSimdDirective &S);
3561
  void EmitOMPTeamsDistributeParallelForDirective(
3562
      const OMPTeamsDistributeParallelForDirective &S);
3563
  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3564
  void EmitOMPTargetTeamsDistributeDirective(
3565
      const OMPTargetTeamsDistributeDirective &S);
3566
  void EmitOMPTargetTeamsDistributeParallelForDirective(
3567
      const OMPTargetTeamsDistributeParallelForDirective &S);
3568
  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3569
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3570
  void EmitOMPTargetTeamsDistributeSimdDirective(
3571
      const OMPTargetTeamsDistributeSimdDirective &S);
3572
  void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3573
  void EmitOMPInteropDirective(const OMPInteropDirective &S);
3574
3575
  /// Emit device code for the target directive.
3576
  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3577
                                          StringRef ParentName,
3578
                                          const OMPTargetDirective &S);
3579
  static void
3580
  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3581
                                      const OMPTargetParallelDirective &S);
3582
  /// Emit device code for the target parallel for directive.
3583
  static void EmitOMPTargetParallelForDeviceFunction(
3584
      CodeGenModule &CGM, StringRef ParentName,
3585
      const OMPTargetParallelForDirective &S);
3586
  /// Emit device code for the target parallel for simd directive.
3587
  static void EmitOMPTargetParallelForSimdDeviceFunction(
3588
      CodeGenModule &CGM, StringRef ParentName,
3589
      const OMPTargetParallelForSimdDirective &S);
3590
  /// Emit device code for the target teams directive.
3591
  static void
3592
  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3593
                                   const OMPTargetTeamsDirective &S);
3594
  /// Emit device code for the target teams distribute directive.
3595
  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3596
      CodeGenModule &CGM, StringRef ParentName,
3597
      const OMPTargetTeamsDistributeDirective &S);
3598
  /// Emit device code for the target teams distribute simd directive.
3599
  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3600
      CodeGenModule &CGM, StringRef ParentName,
3601
      const OMPTargetTeamsDistributeSimdDirective &S);
3602
  /// Emit device code for the target simd directive.
3603
  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3604
                                              StringRef ParentName,
3605
                                              const OMPTargetSimdDirective &S);
3606
  /// Emit device code for the target teams distribute parallel for simd
3607
  /// directive.
3608
  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3609
      CodeGenModule &CGM, StringRef ParentName,
3610
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3611
3612
  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3613
      CodeGenModule &CGM, StringRef ParentName,
3614
      const OMPTargetTeamsDistributeParallelForDirective &S);
3615
3616
  /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3617
  /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3618
  /// future it is meant to be the number of loops expected in the loop nests
3619
  /// (usually specified by the "collapse" clause) that are collapsed to a
3620
  /// single loop by this function.
3621
  llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3622
                                                             int Depth);
3623
3624
  /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3625
  void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3626
3627
  /// Emit inner loop of the worksharing/simd construct.
3628
  ///
3629
  /// \param S Directive, for which the inner loop must be emitted.
3630
  /// \param RequiresCleanup true, if directive has some associated private
3631
  /// variables.
3632
  /// \param LoopCond Bollean condition for loop continuation.
3633
  /// \param IncExpr Increment expression for loop control variable.
3634
  /// \param BodyGen Generator for the inner body of the inner loop.
3635
  /// \param PostIncGen Genrator for post-increment code (required for ordered
3636
  /// loop directvies).
3637
  void EmitOMPInnerLoop(
3638
      const OMPExecutableDirective &S, bool RequiresCleanup,
3639
      const Expr *LoopCond, const Expr *IncExpr,
3640
      const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3641
      const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3642
3643
  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3644
  /// Emit initial code for loop counters of loop-based directives.
3645
  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3646
                                  OMPPrivateScope &LoopScope);
3647
3648
  /// Helper for the OpenMP loop directives.
3649
  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3650
3651
  /// Emit code for the worksharing loop-based directive.
3652
  /// \return true, if this construct has any lastprivate clause, false -
3653
  /// otherwise.
3654
  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3655
                              const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3656
                              const CodeGenDispatchBoundsTy &CGDispatchBounds);
3657
3658
  /// Emit code for the distribute loop-based directive.
3659
  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3660
                             const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3661
3662
  /// Helpers for the OpenMP loop directives.
3663
  void EmitOMPSimdInit(const OMPLoopDirective &D);
3664
  void EmitOMPSimdFinal(
3665
      const OMPLoopDirective &D,
3666
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3667
3668
  /// Emits the lvalue for the expression with possibly captured variable.
3669
  LValue EmitOMPSharedLValue(const Expr *E);
3670
3671
private:
3672
  /// Helpers for blocks.
3673
  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3674
3675
  /// struct with the values to be passed to the OpenMP loop-related functions
3676
  struct OMPLoopArguments {
3677
    /// loop lower bound
3678
    Address LB = Address::invalid();
3679
    /// loop upper bound
3680
    Address UB = Address::invalid();
3681
    /// loop stride
3682
    Address ST = Address::invalid();
3683
    /// isLastIteration argument for runtime functions
3684
    Address IL = Address::invalid();
3685
    /// Chunk value generated by sema
3686
    llvm::Value *Chunk = nullptr;
3687
    /// EnsureUpperBound
3688
    Expr *EUB = nullptr;
3689
    /// IncrementExpression
3690
    Expr *IncExpr = nullptr;
3691
    /// Loop initialization
3692
    Expr *Init = nullptr;
3693
    /// Loop exit condition
3694
    Expr *Cond = nullptr;
3695
    /// Update of LB after a whole chunk has been executed
3696
    Expr *NextLB = nullptr;
3697
    /// Update of UB after a whole chunk has been executed
3698
    Expr *NextUB = nullptr;
3699
164
    OMPLoopArguments() = default;
3700
    OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3701
                     llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3702
                     Expr *IncExpr = nullptr, Expr *Init = nullptr,
3703
                     Expr *Cond = nullptr, Expr *NextLB = nullptr,
3704
                     Expr *NextUB = nullptr)
3705
        : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3706
          IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3707
2.27k
          NextUB(NextUB) {}
3708
  };
3709
  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3710
                        const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3711
                        const OMPLoopArguments &LoopArgs,
3712
                        const CodeGenLoopTy &CodeGenLoop,
3713
                        const CodeGenOrderedTy &CodeGenOrdered);
3714
  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3715
                           bool IsMonotonic, const OMPLoopDirective &S,
3716
                           OMPPrivateScope &LoopScope, bool Ordered,
3717
                           const OMPLoopArguments &LoopArgs,
3718
                           const CodeGenDispatchBoundsTy &CGDispatchBounds);
3719
  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3720
                                  const OMPLoopDirective &S,
3721
                                  OMPPrivateScope &LoopScope,
3722
                                  const OMPLoopArguments &LoopArgs,
3723
                                  const CodeGenLoopTy &CodeGenLoopContent);
3724
  /// Emit code for sections directive.
3725
  void EmitSections(const OMPExecutableDirective &S);
3726
3727
public:
3728
3729
  //===--------------------------------------------------------------------===//
3730
  //                         LValue Expression Emission
3731
  //===--------------------------------------------------------------------===//
3732
3733
  /// Create a check that a scalar RValue is non-null.
3734
  llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3735
3736
  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3737
  RValue GetUndefRValue(QualType Ty);
3738
3739
  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3740
  /// and issue an ErrorUnsupported style diagnostic (using the
3741
  /// provided Name).
3742
  RValue EmitUnsupportedRValue(const Expr *E,
3743
                               const char *Name);
3744
3745
  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3746
  /// an ErrorUnsupported style diagnostic (using the provided Name).
3747
  LValue EmitUnsupportedLValue(const Expr *E,
3748
                               const char *Name);
3749
3750
  /// EmitLValue - Emit code to compute a designator that specifies the location
3751
  /// of the expression.
3752
  ///
3753
  /// This can return one of two things: a simple address or a bitfield
3754
  /// reference.  In either case, the LLVM Value* in the LValue structure is
3755
  /// guaranteed to be an LLVM pointer type.
3756
  ///
3757
  /// If this returns a bitfield reference, nothing about the pointee type of
3758
  /// the LLVM value is known: For example, it may not be a pointer to an
3759
  /// integer.
3760
  ///
3761
  /// If this returns a normal address, and if the lvalue's C type is fixed
3762
  /// size, this method guarantees that the returned pointer type will point to
3763
  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3764
  /// variable length type, this is not possible.
3765
  ///
3766
  LValue EmitLValue(const Expr *E);
3767
3768
  /// Same as EmitLValue but additionally we generate checking code to
3769
  /// guard against undefined behavior.  This is only suitable when we know
3770
  /// that the address will be used to access the object.
3771
  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3772
3773
  RValue convertTempToRValue(Address addr, QualType type,
3774
                             SourceLocation Loc);
3775
3776
  void EmitAtomicInit(Expr *E, LValue lvalue);
3777
3778
  bool LValueIsSuitableForInlineAtomic(LValue Src);
3779
3780
  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3781
                        AggValueSlot Slot = AggValueSlot::ignored());
3782
3783
  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3784
                        llvm::AtomicOrdering AO, bool IsVolatile = false,
3785
                        AggValueSlot slot = AggValueSlot::ignored());
3786
3787
  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3788
3789
  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3790
                       bool IsVolatile, bool isInit);
3791
3792
  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3793
      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3794
      llvm::AtomicOrdering Success =
3795
          llvm::AtomicOrdering::SequentiallyConsistent,
3796
      llvm::AtomicOrdering Failure =
3797
          llvm::AtomicOrdering::SequentiallyConsistent,
3798
      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3799
3800
  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3801
                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
3802
                        bool IsVolatile);
3803
3804
  /// EmitToMemory - Change a scalar value from its value
3805
  /// representation to its in-memory representation.
3806
  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3807
3808
  /// EmitFromMemory - Change a scalar value from its memory
3809
  /// representation to its value representation.
3810
  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3811
3812
  /// Check if the scalar \p Value is within the valid range for the given
3813
  /// type \p Ty.
3814
  ///
3815
  /// Returns true if a check is needed (even if the range is unknown).
3816
  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3817
                            SourceLocation Loc);
3818
3819
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3820
  /// care to appropriately convert from the memory representation to
3821
  /// the LLVM value representation.
3822
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3823
                                SourceLocation Loc,
3824
                                AlignmentSource Source = AlignmentSource::Type,
3825
4.79k
                                bool isNontemporal = false) {
3826
4.79k
    return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3827
4.79k
                            CGM.getTBAAAccessInfo(Ty), isNontemporal);
3828
4.79k
  }
3829
3830
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3831
                                SourceLocation Loc, LValueBaseInfo BaseInfo,
3832
                                TBAAAccessInfo TBAAInfo,
3833
                                bool isNontemporal = false);
3834
3835
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3836
  /// care to appropriately convert from the memory representation to
3837
  /// the LLVM value representation.  The l-value must be a simple
3838
  /// l-value.
3839
  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3840
3841
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3842
  /// care to appropriately convert from the memory representation to
3843
  /// the LLVM value representation.
3844
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3845
                         bool Volatile, QualType Ty,
3846
                         AlignmentSource Source = AlignmentSource::Type,
3847
1.20k
                         bool isInit = false, bool isNontemporal = false) {
3848
1.20k
    EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3849
1.20k
                      CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3850
1.20k
  }
3851
3852
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3853
                         bool Volatile, QualType Ty,
3854
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3855
                         bool isInit = false, bool isNontemporal = false);
3856
3857
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3858
  /// care to appropriately convert from the memory representation to
3859
  /// the LLVM value representation.  The l-value must be a simple
3860
  /// l-value.  The isInit flag indicates whether this is an initialization.
3861
  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3862
  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3863
3864
  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3865
  /// this method emits the address of the lvalue, then loads the result as an
3866
  /// rvalue, returning the rvalue.
3867
  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3868
  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3869
  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3870
  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3871
3872
  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3873
  /// lvalue, where both are guaranteed to the have the same type, and that type
3874
  /// is 'Ty'.
3875
  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3876
  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3877
  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3878
3879
  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3880
  /// as EmitStoreThroughLValue.
3881
  ///
3882
  /// \param Result [out] - If non-null, this will be set to a Value* for the
3883
  /// bit-field contents after the store, appropriate for use as the result of
3884
  /// an assignment to the bit-field.
3885
  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3886
                                      llvm::Value **Result=nullptr);
3887
3888
  /// Emit an l-value for an assignment (simple or compound) of complex type.
3889
  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3890
  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3891
  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3892
                                             llvm::Value *&Result);
3893
3894
  // Note: only available for agg return types
3895
  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3896
  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3897
  // Note: only available for agg return types
3898
  LValue EmitCallExprLValue(const CallExpr *E);
3899
  // Note: only available for agg return types
3900
  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3901
  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3902
  LValue EmitStringLiteralLValue(const StringLiteral *E);
3903
  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3904
  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3905
  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3906
  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3907
                                bool Accessed = false);
3908
  LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3909
  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3910
                                 bool IsLowerBound = true);
3911
  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3912
  LValue EmitMemberExpr(const MemberExpr *E);
3913
  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3914
  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3915
  LValue EmitInitListLValue(const InitListExpr *E);
3916
  void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
3917
  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3918
  LValue EmitCastLValue(const CastExpr *E);
3919
  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3920
  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3921
3922
  Address EmitExtVectorElementLValue(LValue V);
3923
3924
  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3925
3926
  Address EmitArrayToPointerDecay(const Expr *Array,
3927
                                  LValueBaseInfo *BaseInfo = nullptr,
3928
                                  TBAAAccessInfo *TBAAInfo = nullptr);
3929
3930
  class ConstantEmission {
3931
    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3932
    ConstantEmission(llvm::Constant *C, bool isReference)
3933
6.96k
      : ValueAndIsReference(C, isReference) {}
3934
  public:
3935
1.04M
    ConstantEmission() {}
3936
60
    static ConstantEmission forReference(llvm::Constant *C) {
3937
60
      return ConstantEmission(C, true);
3938
60
    }
3939
6.90k
    static ConstantEmission forValue(llvm::Constant *C) {
3940
6.90k
      return ConstantEmission(C, false);
3941
6.90k
    }
3942
3943
1.05M
    explicit operator bool() const {
3944
1.05M
      return ValueAndIsReference.getOpaqueValue() != nullptr;
3945
1.05M
    }
3946
3947
13.9k
    bool isReference() const { return ValueAndIsReference.getInt(); }
3948
60
    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3949
60
      assert(isReference());
3950
0
      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3951
60
                                            refExpr->getType());
3952
60
    }
3953
3954
6.90k
    llvm::Constant *getValue() const {
3955
6.90k
      assert(!isReference());
3956
0
      return ValueAndIsReference.getPointer();
3957
6.90k
    }
3958
  };
3959
3960
  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3961
  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3962
  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3963
3964
  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3965
                                AggValueSlot slot = AggValueSlot::ignored());
3966
  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3967
3968
  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3969
                              const ObjCIvarDecl *Ivar);
3970
  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3971
  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3972
3973
  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3974
  /// if the Field is a reference, this will return the address of the reference
3975
  /// and not the address of the value stored in the reference.
3976
  LValue EmitLValueForFieldInitialization(LValue Base,
3977
                                          const FieldDecl* Field);
3978
3979
  LValue EmitLValueForIvar(QualType ObjectTy,
3980
                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
3981
                           unsigned CVRQualifiers);
3982
3983
  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3984
  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3985
  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3986
  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3987
3988
  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3989
  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3990
  LValue EmitStmtExprLValue(const StmtExpr *E);
3991
  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3992
  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3993
  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3994
3995
  //===--------------------------------------------------------------------===//
3996
  //                         Scalar Expression Emission
3997
  //===--------------------------------------------------------------------===//
3998
3999
  /// EmitCall - Generate a call of the given function, expecting the given
4000
  /// result type, and using the given argument list which specifies both the
4001
  /// LLVM arguments and the types they were derived from.
4002
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4003
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
4004
                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4005
                  SourceLocation Loc);
4006
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4007
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
4008
                  llvm::CallBase **callOrInvoke = nullptr,
4009
18.5k
                  bool IsMustTail = false) {
4010
18.5k
    return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4011
18.5k
                    IsMustTail, SourceLocation());
4012
18.5k
  }
4013
  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4014
                  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4015
  RValue EmitCallExpr(const CallExpr *E,
4016
                      ReturnValueSlot ReturnValue = ReturnValueSlot());
4017
  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4018
  CGCallee EmitCallee(const Expr *E);
4019
4020
  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4021
  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4022
4023
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4024
                                  const Twine &name = "");
4025
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4026
                                  ArrayRef<llvm::Value *> args,
4027
                                  const Twine &name = "");
4028
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4029
                                          const Twine &name = "");
4030
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4031
                                          ArrayRef<llvm::Value *> args,
4032
                                          const Twine &name = "");
4033
4034
  SmallVector<llvm::OperandBundleDef, 1>
4035
  getBundlesForFunclet(llvm::Value *Callee);
4036
4037
  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4038
                                   ArrayRef<llvm::Value *> Args,
4039
                                   const Twine &Name = "");
4040
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4041
                                          ArrayRef<llvm::Value *> args,
4042
                                          const Twine &name = "");
4043
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4044
                                          const Twine &name = "");
4045
  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4046
                                       ArrayRef<llvm::Value *> args);
4047
4048
  CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4049
                                     NestedNameSpecifier *Qual,
4050
                                     llvm::Type *Ty);
4051
4052
  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4053
                                               CXXDtorType Type,
4054
                                               const CXXRecordDecl *RD);
4055
4056
  // Return the copy constructor name with the prefix "__copy_constructor_"
4057
  // removed.
4058
  static std::string getNonTrivialCopyConstructorStr(QualType QT,
4059
                                                     CharUnits Alignment,
4060
                                                     bool IsVolatile,
4061
                                                     ASTContext &Ctx);
4062
4063
  // Return the destructor name with the prefix "__destructor_" removed.
4064
  static std::string getNonTrivialDestructorStr(QualType QT,
4065
                                                CharUnits Alignment,
4066
                                                bool IsVolatile,
4067
                                                ASTContext &Ctx);
4068
4069
  // These functions emit calls to the special functions of non-trivial C
4070
  // structs.
4071
  void defaultInitNonTrivialCStructVar(LValue Dst);
4072
  void callCStructDefaultConstructor(LValue Dst);
4073
  void callCStructDestructor(LValue Dst);
4074
  void callCStructCopyConstructor(LValue Dst, LValue Src);
4075
  void callCStructMoveConstructor(LValue Dst, LValue Src);
4076
  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4077
  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4078
4079
  RValue
4080
  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4081
                              const CGCallee &Callee,
4082
                              ReturnValueSlot ReturnValue, llvm::Value *This,
4083
                              llvm::Value *ImplicitParam,
4084
                              QualType ImplicitParamTy, const CallExpr *E,
4085
                              CallArgList *RtlArgs);
4086
  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4087
                               llvm::Value *This, QualType ThisTy,
4088
                               llvm::Value *ImplicitParam,
4089
                               QualType ImplicitParamTy, const CallExpr *E);
4090
  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4091
                               ReturnValueSlot ReturnValue);
4092
  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4093
                                               const CXXMethodDecl *MD,
4094
                                               ReturnValueSlot ReturnValue,
4095
                                               bool HasQualifier,
4096
                                               NestedNameSpecifier *Qualifier,
4097
                                               bool IsArrow, const Expr *Base);
4098
  // Compute the object pointer.
4099
  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4100
                                          llvm::Value *memberPtr,
4101
                                          const MemberPointerType *memberPtrType,
4102
                                          LValueBaseInfo *BaseInfo = nullptr,
4103
                                          TBAAAccessInfo *TBAAInfo = nullptr);
4104
  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4105
                                      ReturnValueSlot ReturnValue);
4106
4107
  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4108
                                       const CXXMethodDecl *MD,
4109
                                       ReturnValueSlot ReturnValue);
4110
  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4111
4112
  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4113
                                ReturnValueSlot ReturnValue);
4114
4115
  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4116
  RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4117
  RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4118
4119
  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4120
                         const CallExpr *E, ReturnValueSlot ReturnValue);
4121
4122
  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4123
4124
  /// Emit IR for __builtin_os_log_format.
4125
  RValue emitBuiltinOSLogFormat(const CallExpr &E);
4126
4127
  /// Emit IR for __builtin_is_aligned.
4128
  RValue EmitBuiltinIsAligned(const CallExpr *E);
4129
  /// Emit IR for __builtin_align_up/__builtin_align_down.
4130
  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4131
4132
  llvm::Function *generateBuiltinOSLogHelperFunction(
4133
      const analyze_os_log::OSLogBufferLayout &Layout,
4134
      CharUnits BufferAlignment);
4135
4136
  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4137
4138
  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4139
  /// is unhandled by the current target.
4140
  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4141
                                     ReturnValueSlot ReturnValue);
4142
4143
  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4144
                                             const llvm::CmpInst::Predicate Fp,
4145
                                             const llvm::CmpInst::Predicate Ip,
4146
                                             const llvm::Twine &Name = "");
4147
  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4148
                                  ReturnValueSlot ReturnValue,
4149
                                  llvm::Triple::ArchType Arch);
4150
  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4151
                                     ReturnValueSlot ReturnValue,
4152
                                     llvm::Triple::ArchType Arch);
4153
  llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4154
                                     ReturnValueSlot ReturnValue,
4155
                                     llvm::Triple::ArchType Arch);
4156
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4157
                                   QualType RTy);
4158
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4159
                                   QualType RTy);
4160
4161
  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4162
                                         unsigned LLVMIntrinsic,
4163
                                         unsigned AltLLVMIntrinsic,
4164
                                         const char *NameHint,
4165
                                         unsigned Modifier,
4166
                                         const CallExpr *E,
4167
                                         SmallVectorImpl<llvm::Value *> &Ops,
4168
                                         Address PtrOp0, Address PtrOp1,
4169
                                         llvm::Triple::ArchType Arch);
4170
4171
  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4172
                                          unsigned Modifier, llvm::Type *ArgTy,
4173
                                          const CallExpr *E);
4174
  llvm::Value *EmitNeonCall(llvm::Function *F,
4175
                            SmallVectorImpl<llvm::Value*> &O,
4176
                            const char *name,
4177
                            unsigned shift = 0, bool rightshift = false);
4178
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4179
                             const llvm::ElementCount &Count);
4180
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4181
  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4182
                                   bool negateForRightShift);
4183
  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4184
                                 llvm::Type *Ty, bool usgn, const char *name);
4185
  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4186
  /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4187
  /// access builtin.  Only required if it can't be inferred from the base
4188
  /// pointer operand.
4189
  llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4190
4191
  SmallVector<llvm::Type *, 2>
4192
  getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4193
                      ArrayRef<llvm::Value *> Ops);
4194
  llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4195
  llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4196
  llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4197
  llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4198
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4199
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4200
  llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4201
  llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4202
                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4203
                            unsigned BuiltinID);
4204
  llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4205
                           llvm::ArrayRef<llvm::Value *> Ops,
4206
                           unsigned BuiltinID);
4207
  llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4208
                                    llvm::ScalableVectorType *VTy);
4209
  llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4210
                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4211
                                 unsigned IntID);
4212
  llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4213
                                   llvm::SmallVectorImpl<llvm::Value *> &Ops,
4214
                                   unsigned IntID);
4215
  llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4216
                                 SmallVectorImpl<llvm::Value *> &Ops,
4217
                                 unsigned BuiltinID, bool IsZExtReturn);
4218
  llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4219
                                  SmallVectorImpl<llvm::Value *> &Ops,
4220
                                  unsigned BuiltinID);
4221
  llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4222
                                   SmallVectorImpl<llvm::Value *> &Ops,
4223
                                   unsigned BuiltinID);
4224
  llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4225
                                     SmallVectorImpl<llvm::Value *> &Ops,
4226
                                     unsigned IntID);
4227
  llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4228
                                 SmallVectorImpl<llvm::Value *> &Ops,
4229
                                 unsigned IntID);
4230
  llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4231
                                  SmallVectorImpl<llvm::Value *> &Ops,
4232
                                  unsigned IntID);
4233
  llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4234
4235
  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4236
                                      llvm::Triple::ArchType Arch);
4237
  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4238
4239
  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4240
  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4241
  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4242
  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4243
  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4244
  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4245
  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4246
                                          const CallExpr *E);
4247
  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4248
  llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4249
                                    ReturnValueSlot ReturnValue);
4250
  bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4251
                               llvm::AtomicOrdering &AO,
4252
                               llvm::SyncScope::ID &SSID);
4253
4254
  enum class MSVCIntrin;
4255
  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4256
4257
  llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4258
4259
  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4260
  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4261
  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4262
  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4263
  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4264
  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4265
                                const ObjCMethodDecl *MethodWithObjects);
4266
  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4267
  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4268
                             ReturnValueSlot Return = ReturnValueSlot());
4269
4270
  /// Retrieves the default cleanup kind for an ARC cleanup.
4271
  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4272
1.13k
  CleanupKind getARCCleanupKind() {
4273
1.13k
    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4274
1.13k
             ? 
NormalAndEHCleanup84
:
NormalCleanup1.05k
;
4275
1.13k
  }
4276
4277
  // ARC primitives.
4278
  void EmitARCInitWeak(Address addr, llvm::Value *value);
4279
  void EmitARCDestroyWeak(Address addr);
4280
  llvm::Value *EmitARCLoadWeak(Address addr);
4281
  llvm::Value *EmitARCLoadWeakRetained(Address addr);
4282
  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4283
  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4284
  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4285
  void EmitARCCopyWeak(Address dst, Address src);
4286
  void EmitARCMoveWeak(Address dst, Address src);
4287
  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4288
  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4289
  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4290
                                  bool resultIgnored);
4291
  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4292
                                      bool resultIgnored);
4293
  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4294
  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4295
  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4296
  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4297
  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4298
  llvm::Value *EmitARCAutorelease(llvm::Value *value);
4299
  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4300
  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4301
  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4302
  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4303
4304
  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4305
  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4306
                                      llvm::Type *returnType);
4307
  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4308
4309
  std::pair<LValue,llvm::Value*>
4310
  EmitARCStoreAutoreleasing(const BinaryOperator *e);
4311
  std::pair<LValue,llvm::Value*>
4312
  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4313
  std::pair<LValue,llvm::Value*>
4314
  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4315
4316
  llvm::Value *EmitObjCAlloc(llvm::Value *value,
4317
                             llvm::Type *returnType);
4318
  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4319
                                     llvm::Type *returnType);
4320
  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4321
4322
  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4323
  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4324
  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4325
4326
  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4327
  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4328
                                            bool allowUnsafeClaim);
4329
  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4330
  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4331
  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4332
4333
  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4334
4335
  void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4336
4337
  static Destroyer destroyARCStrongImprecise;
4338
  static Destroyer destroyARCStrongPrecise;
4339
  static Destroyer destroyARCWeak;
4340
  static Destroyer emitARCIntrinsicUse;
4341
  static Destroyer destroyNonTrivialCStruct;
4342
4343
  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4344
  llvm::Value *EmitObjCAutoreleasePoolPush();
4345
  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4346
  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4347
  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4348
4349
  /// Emits a reference binding to the passed in expression.
4350
  RValue EmitReferenceBindingToExpr(const Expr *E);
4351
4352
  //===--------------------------------------------------------------------===//
4353
  //                           Expression Emission
4354
  //===--------------------------------------------------------------------===//
4355
4356
  // Expressions are broken into three classes: scalar, complex, aggregate.
4357
4358
  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4359
  /// scalar type, returning the result.
4360
  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4361
4362
  /// Emit a conversion from the specified type to the specified destination
4363
  /// type, both of which are LLVM scalar types.
4364
  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4365
                                    QualType DstTy, SourceLocation Loc);
4366
4367
  /// Emit a conversion from the specified complex type to the specified
4368
  /// destination type, where the destination type is an LLVM scalar type.
4369
  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4370
                                             QualType DstTy,
4371
                                             SourceLocation Loc);
4372
4373
  /// EmitAggExpr - Emit the computation of the specified expression
4374
  /// of aggregate type.  The result is computed into the given slot,
4375
  /// which may be null to indicate that the value is not needed.
4376
  void EmitAggExpr(const Expr *E, AggValueSlot AS);
4377
4378
  /// EmitAggExprToLValue - Emit the computation of the specified expression of
4379
  /// aggregate type into a temporary LValue.
4380
  LValue EmitAggExprToLValue(const Expr *E);
4381
4382
  /// Build all the stores needed to initialize an aggregate at Dest with the
4383
  /// value Val.
4384
  void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4385
4386
  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4387
  /// make sure it survives garbage collection until this point.
4388
  void EmitExtendGCLifetime(llvm::Value *object);
4389
4390
  /// EmitComplexExpr - Emit the computation of the specified expression of
4391
  /// complex type, returning the result.
4392
  ComplexPairTy EmitComplexExpr(const Expr *E,
4393
                                bool IgnoreReal = false,
4394
                                bool IgnoreImag = false);
4395
4396
  /// EmitComplexExprIntoLValue - Emit the given expression of complex
4397
  /// type and place its result into the specified l-value.
4398
  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4399
4400
  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4401
  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4402
4403
  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4404
  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4405
4406
  Address emitAddrOfRealComponent(Address complex, QualType complexType);
4407
  Address emitAddrOfImagComponent(Address complex, QualType complexType);
4408
4409
  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4410
  /// global variable that has already been created for it.  If the initializer
4411
  /// has a different type than GV does, this may free GV and return a different
4412
  /// one.  Otherwise it just returns GV.
4413
  llvm::GlobalVariable *
4414
  AddInitializerToStaticVarDecl(const VarDecl &D,
4415
                                llvm::GlobalVariable *GV);
4416
4417
  // Emit an @llvm.invariant.start call for the given memory region.
4418
  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4419
4420
  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4421
  /// variable with global storage.
4422
  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4423
                                bool PerformInit);
4424
4425
  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4426
                                   llvm::Constant *Addr);
4427
4428
  llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4429
                                      llvm::FunctionCallee Dtor,
4430
                                      llvm::Constant *Addr,
4431
                                      llvm::FunctionCallee &AtExit);
4432
4433
  /// Call atexit() with a function that passes the given argument to
4434
  /// the given function.
4435
  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4436
                                    llvm::Constant *addr);
4437
4438
  /// Call atexit() with function dtorStub.
4439
  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4440
4441
  /// Call unatexit() with function dtorStub.
4442
  llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4443
4444
  /// Emit code in this function to perform a guarded variable
4445
  /// initialization.  Guarded initializations are used when it's not
4446
  /// possible to prove that an initialization will be done exactly
4447
  /// once, e.g. with a static local variable or a static data member
4448
  /// of a class template.
4449
  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4450
                          bool PerformInit);
4451
4452
  enum class GuardKind { VariableGuard, TlsGuard };
4453
4454
  /// Emit a branch to select whether or not to perform guarded initialization.
4455
  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4456
                                llvm::BasicBlock *InitBlock,
4457
                                llvm::BasicBlock *NoInitBlock,
4458
                                GuardKind Kind, const VarDecl *D);
4459
4460
  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4461
  /// variables.
4462
  void
4463
  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4464
                            ArrayRef<llvm::Function *> CXXThreadLocals,
4465
                            ConstantAddress Guard = ConstantAddress::invalid());
4466
4467
  /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4468
  /// variables.
4469
  void GenerateCXXGlobalCleanUpFunc(
4470
      llvm::Function *Fn,
4471
      ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4472
                          llvm::Constant *>>
4473
          DtorsOrStermFinalizers);
4474
4475
  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4476
                                        const VarDecl *D,
4477
                                        llvm::GlobalVariable *Addr,
4478
                                        bool PerformInit);
4479
4480
  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4481
4482
  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4483
4484
  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4485
4486
  RValue EmitAtomicExpr(AtomicExpr *E);
4487
4488
  //===--------------------------------------------------------------------===//
4489
  //                         Annotations Emission
4490
  //===--------------------------------------------------------------------===//
4491
4492
  /// Emit an annotation call (intrinsic).
4493
  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4494
                                  llvm::Value *AnnotatedVal,
4495
                                  StringRef AnnotationStr,
4496
                                  SourceLocation Location,
4497
                                  const AnnotateAttr *Attr);
4498
4499
  /// Emit local annotations for the local variable V, declared by D.
4500
  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4501
4502
  /// Emit field annotations for the given field & value. Returns the
4503
  /// annotation result.
4504
  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4505
4506
  //===--------------------------------------------------------------------===//
4507
  //                             Internal Helpers
4508
  //===--------------------------------------------------------------------===//
4509
4510
  /// ContainsLabel - Return true if the statement contains a label in it.  If
4511
  /// this statement is not executed normally, it not containing a label means
4512
  /// that we can just remove the code.
4513
  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4514
4515
  /// containsBreak - Return true if the statement contains a break out of it.
4516
  /// If the statement (recursively) contains a switch or loop with a break
4517
  /// inside of it, this is fine.
4518
  static bool containsBreak(const Stmt *S);
4519
4520
  /// Determine if the given statement might introduce a declaration into the
4521
  /// current scope, by being a (possibly-labelled) DeclStmt.
4522
  static bool mightAddDeclToScope(const Stmt *S);
4523
4524
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4525
  /// to a constant, or if it does but contains a label, return false.  If it
4526
  /// constant folds return true and set the boolean result in Result.
4527
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4528
                                    bool AllowLabels = false);
4529
4530
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4531
  /// to a constant, or if it does but contains a label, return false.  If it
4532
  /// constant folds return true and set the folded value.
4533
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4534
                                    bool AllowLabels = false);
4535
4536
  /// isInstrumentedCondition - Determine whether the given condition is an
4537
  /// instrumentable condition (i.e. no "&&" or "||").
4538
  static bool isInstrumentedCondition(const Expr *C);
4539
4540
  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4541
  /// increments a profile counter based on the semantics of the given logical
4542
  /// operator opcode.  This is used to instrument branch condition coverage
4543
  /// for logical operators.
4544
  void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4545
                                llvm::BasicBlock *TrueBlock,
4546
                                llvm::BasicBlock *FalseBlock,
4547
                                uint64_t TrueCount = 0,
4548
                                Stmt::Likelihood LH = Stmt::LH_None,
4549
                                const Expr *CntrIdx = nullptr);
4550
4551
  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4552
  /// if statement) to the specified blocks.  Based on the condition, this might
4553
  /// try to simplify the codegen of the conditional based on the branch.
4554
  /// TrueCount should be the number of times we expect the condition to
4555
  /// evaluate to true based on PGO data.
4556
  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4557
                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4558
                            Stmt::Likelihood LH = Stmt::LH_None);
4559
4560
  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4561
  /// nonnull, if \p LHS is marked _Nonnull.
4562
  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4563
4564
  /// An enumeration which makes it easier to specify whether or not an
4565
  /// operation is a subtraction.
4566
  enum { NotSubtraction = false, IsSubtraction = true };
4567
4568
  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4569
  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4570
  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4571
  /// \p IsSubtraction indicates whether the expression used to form the GEP
4572
  /// is a subtraction.
4573
  llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4574
                                      ArrayRef<llvm::Value *> IdxList,
4575
                                      bool SignedIndices,
4576
                                      bool IsSubtraction,
4577
                                      SourceLocation Loc,
4578
                                      const Twine &Name = "");
4579
4580
  /// Specifies which type of sanitizer check to apply when handling a
4581
  /// particular builtin.
4582
  enum BuiltinCheckKind {
4583
    BCK_CTZPassedZero,
4584
    BCK_CLZPassedZero,
4585
  };
4586
4587
  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4588
  /// enabled, a runtime check specified by \p Kind is also emitted.
4589
  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4590
4591
  /// Emit a description of a type in a format suitable for passing to
4592
  /// a runtime sanitizer handler.
4593
  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4594
4595
  /// Convert a value into a format suitable for passing to a runtime
4596
  /// sanitizer handler.
4597
  llvm::Value *EmitCheckValue(llvm::Value *V);
4598
4599
  /// Emit a description of a source location in a format suitable for
4600
  /// passing to a runtime sanitizer handler.
4601
  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4602
4603
  /// Create a basic block that will either trap or call a handler function in
4604
  /// the UBSan runtime with the provided arguments, and create a conditional
4605
  /// branch to it.
4606
  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4607
                 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4608
                 ArrayRef<llvm::Value *> DynamicArgs);
4609
4610
  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4611
  /// if Cond if false.
4612
  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4613
                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4614
                            ArrayRef<llvm::Constant *> StaticArgs);
4615
4616
  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4617
  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4618
  void EmitUnreachable(SourceLocation Loc);
4619
4620
  /// Create a basic block that will call the trap intrinsic, and emit a
4621
  /// conditional branch to it, for the -ftrapv checks.
4622
  void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4623
4624
  /// Emit a call to trap or debugtrap and attach function attribute
4625
  /// "trap-func-name" if specified.
4626
  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4627
4628
  /// Emit a stub for the cross-DSO CFI check function.
4629
  void EmitCfiCheckStub();
4630
4631
  /// Emit a cross-DSO CFI failure handling function.
4632
  void EmitCfiCheckFail();
4633
4634
  /// Create a check for a function parameter that may potentially be
4635
  /// declared as non-null.
4636
  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4637
                           AbstractCallee AC, unsigned ParmNum);
4638
4639
  /// EmitCallArg - Emit a single call argument.
4640
  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4641
4642
  /// EmitDelegateCallArg - We are performing a delegate call; that
4643
  /// is, the current function is delegating to another one.  Produce
4644
  /// a r-value suitable for passing the given parameter.
4645
  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4646
                           SourceLocation loc);
4647
4648
  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4649
  /// point operation, expressed as the maximum relative error in ulp.
4650
  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4651
4652
  /// Set the codegen fast-math flags.
4653
  void SetFastMathFlags(FPOptions FPFeatures);
4654
4655
  // Truncate or extend a boolean vector to the requested number of elements.
4656
  llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
4657
                                     unsigned NumElementsDst,
4658
                                     const llvm::Twine &Name = "");
4659
4660
private:
4661
  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4662
  void EmitReturnOfRValue(RValue RV, QualType Ty);
4663
4664
  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4665
4666
  llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4667
      DeferredReplacements;
4668
4669
  /// Set the address of a local variable.
4670
800k
  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4671
800k
    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4672
0
    LocalDeclMap.insert({VD, Addr});
4673
800k
  }
4674
4675
  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4676
  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4677
  ///
4678
  /// \param AI - The first function argument of the expansion.
4679
  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4680
                          llvm::Function::arg_iterator &AI);
4681
4682
  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4683
  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4684
  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4685
  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4686
                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
4687
                        unsigned &IRCallArgPos);
4688
4689
  std::pair<llvm::Value *, llvm::Type *>
4690
  EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4691
               std::string &ConstraintStr);
4692
4693
  std::pair<llvm::Value *, llvm::Type *>
4694
  EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4695
                     QualType InputType, std::string &ConstraintStr,
4696
                     SourceLocation Loc);
4697
4698
  /// Attempts to statically evaluate the object size of E. If that
4699
  /// fails, emits code to figure the size of E out for us. This is
4700
  /// pass_object_size aware.
4701
  ///
4702
  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4703
  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4704
                                               llvm::IntegerType *ResType,
4705
                                               llvm::Value *EmittedE,
4706
                                               bool IsDynamic);
4707
4708
  /// Emits the size of E, as required by __builtin_object_size. This
4709
  /// function is aware of pass_object_size parameters, and will act accordingly
4710
  /// if E is a parameter with the pass_object_size attribute.
4711
  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4712
                                     llvm::IntegerType *ResType,
4713
                                     llvm::Value *EmittedE,
4714
                                     bool IsDynamic);
4715
4716
  void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4717
                                       Address Loc);
4718
4719
public:
4720
  enum class EvaluationOrder {
4721
    ///! No language constraints on evaluation order.
4722
    Default,
4723
    ///! Language semantics require left-to-right evaluation.
4724
    ForceLeftToRight,
4725
    ///! Language semantics require right-to-left evaluation.
4726
    ForceRightToLeft
4727
  };
4728
4729
  // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4730
  // an ObjCMethodDecl.
4731
  struct PrototypeWrapper {
4732
    llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4733
4734
296k
    PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4735
11.9k
    PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4736
  };
4737
4738
  void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4739
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4740
                    AbstractCallee AC = AbstractCallee(),
4741
                    unsigned ParamsToSkip = 0,
4742
                    EvaluationOrder Order = EvaluationOrder::Default);
4743
4744
  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4745
  /// emit the value and compute our best estimate of the alignment of the
4746
  /// pointee.
4747
  ///
4748
  /// \param BaseInfo - If non-null, this will be initialized with
4749
  /// information about the source of the alignment and the may-alias
4750
  /// attribute.  Note that this function will conservatively fall back on
4751
  /// the type when it doesn't recognize the expression and may-alias will
4752
  /// be set to false.
4753
  ///
4754
  /// One reasonable way to use this information is when there's a language
4755
  /// guarantee that the pointer must be aligned to some stricter value, and
4756
  /// we're simply trying to ensure that sufficiently obvious uses of under-
4757
  /// aligned objects don't get miscompiled; for example, a placement new
4758
  /// into the address of a local variable.  In such a case, it's quite
4759
  /// reasonable to just ignore the returned alignment when it isn't from an
4760
  /// explicit source.
4761
  Address EmitPointerWithAlignment(const Expr *Addr,
4762
                                   LValueBaseInfo *BaseInfo = nullptr,
4763
                                   TBAAAccessInfo *TBAAInfo = nullptr);
4764
4765
  /// If \p E references a parameter with pass_object_size info or a constant
4766
  /// array size modifier, emit the object size divided by the size of \p EltTy.
4767
  /// Otherwise return null.
4768
  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4769
4770
  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4771
4772
  struct MultiVersionResolverOption {
4773
    llvm::Function *Function;
4774
    struct Conds {
4775
      StringRef Architecture;
4776
      llvm::SmallVector<StringRef, 8> Features;
4777
4778
      Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4779
342
          : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4780
    } Conditions;
4781
4782
    MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4783
                               ArrayRef<StringRef> Feats)
4784
342
        : Function(F), Conditions(Arch, Feats) {}
4785
  };
4786
4787
  // Emits the body of a multiversion function's resolver. Assumes that the
4788
  // options are already sorted in the proper order, with the 'default' option
4789
  // last (if it exists).
4790
  void EmitMultiVersionResolver(llvm::Function *Resolver,
4791
                                ArrayRef<MultiVersionResolverOption> Options);
4792
4793
private:
4794
  QualType getVarArgType(const Expr *Arg);
4795
4796
  void EmitDeclMetadata();
4797
4798
  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4799
                                  const AutoVarEmission &emission);
4800
4801
  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4802
4803
  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4804
  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4805
  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4806
  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4807
  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4808
  llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4809
  llvm::Value *EmitX86CpuInit();
4810
  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4811
};
4812
4813
4814
inline DominatingLLVMValue::saved_type
4815
247
DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4816
247
  if (!needsSaving(value)) 
return saved_type(value, false)206
;
4817
4818
  // Otherwise, we need an alloca.
4819
41
  auto align = CharUnits::fromQuantity(
4820
41
            CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4821
41
  Address alloca =
4822
41
    CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4823
41
  CGF.Builder.CreateStore(value, alloca);
4824
4825
41
  return saved_type(alloca.getPointer(), true);
4826
247
}
4827
4828
inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4829
258
                                                 saved_type value) {
4830
  // If the value says it wasn't saved, trust that it's still dominating.
4831
258
  if (!value.getInt()) 
return value.getPointer()231
;
4832
4833
  // Otherwise, it should be an alloca instruction, as set up in save().
4834
27
  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4835
27
  return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4836
27
                                       alloca->getAlign());
4837
258
}
4838
4839
}  // end namespace CodeGen
4840
4841
// Map the LangOption for floating point exception behavior into
4842
// the corresponding enum in the IR.
4843
llvm::fp::ExceptionBehavior
4844
ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4845
}  // end namespace clang
4846
4847
#endif