Coverage Report

Created: 2022-05-17 06:19

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/CodeGen/CodeGenFunction.h
Line
Count
Source (jump to first uncovered line)
1
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This is the internal per-function state used for llvm translation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15
16
#include "CGBuilder.h"
17
#include "CGDebugInfo.h"
18
#include "CGLoopInfo.h"
19
#include "CGValue.h"
20
#include "CodeGenModule.h"
21
#include "CodeGenPGO.h"
22
#include "EHScopeStack.h"
23
#include "VarBypassDetector.h"
24
#include "clang/AST/CharUnits.h"
25
#include "clang/AST/CurrentSourceLocExprScope.h"
26
#include "clang/AST/ExprCXX.h"
27
#include "clang/AST/ExprObjC.h"
28
#include "clang/AST/ExprOpenMP.h"
29
#include "clang/AST/StmtOpenMP.h"
30
#include "clang/AST/Type.h"
31
#include "clang/Basic/ABI.h"
32
#include "clang/Basic/CapturedStmt.h"
33
#include "clang/Basic/CodeGenOptions.h"
34
#include "clang/Basic/OpenMPKinds.h"
35
#include "clang/Basic/TargetInfo.h"
36
#include "llvm/ADT/ArrayRef.h"
37
#include "llvm/ADT/DenseMap.h"
38
#include "llvm/ADT/MapVector.h"
39
#include "llvm/ADT/SmallVector.h"
40
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41
#include "llvm/IR/ValueHandle.h"
42
#include "llvm/Support/Debug.h"
43
#include "llvm/Transforms/Utils/SanitizerStats.h"
44
45
namespace llvm {
46
class BasicBlock;
47
class LLVMContext;
48
class MDNode;
49
class SwitchInst;
50
class Twine;
51
class Value;
52
class CanonicalLoopInfo;
53
}
54
55
namespace clang {
56
class ASTContext;
57
class CXXDestructorDecl;
58
class CXXForRangeStmt;
59
class CXXTryStmt;
60
class Decl;
61
class LabelDecl;
62
class FunctionDecl;
63
class FunctionProtoType;
64
class LabelStmt;
65
class ObjCContainerDecl;
66
class ObjCInterfaceDecl;
67
class ObjCIvarDecl;
68
class ObjCMethodDecl;
69
class ObjCImplementationDecl;
70
class ObjCPropertyImplDecl;
71
class TargetInfo;
72
class VarDecl;
73
class ObjCForCollectionStmt;
74
class ObjCAtTryStmt;
75
class ObjCAtThrowStmt;
76
class ObjCAtSynchronizedStmt;
77
class ObjCAutoreleasePoolStmt;
78
class OMPUseDevicePtrClause;
79
class OMPUseDeviceAddrClause;
80
class SVETypeFlags;
81
class OMPExecutableDirective;
82
83
namespace analyze_os_log {
84
class OSLogBufferLayout;
85
}
86
87
namespace CodeGen {
88
class CodeGenTypes;
89
class CGCallee;
90
class CGFunctionInfo;
91
class CGBlockInfo;
92
class CGCXXABI;
93
class BlockByrefHelpers;
94
class BlockByrefInfo;
95
class BlockFieldFlags;
96
class RegionCodeGenTy;
97
class TargetCodeGenInfo;
98
struct OMPTaskDataTy;
99
struct CGCoroData;
100
101
/// The kind of evaluation to perform on values of a particular
102
/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
103
/// CGExprAgg?
104
///
105
/// TODO: should vectors maybe be split out into their own thing?
106
enum TypeEvaluationKind {
107
  TEK_Scalar,
108
  TEK_Complex,
109
  TEK_Aggregate
110
};
111
112
#define LIST_SANITIZER_CHECKS                                                  \
113
  SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
114
  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
115
  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
116
  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
117
  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
118
  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
119
  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
120
  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
121
  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
122
  SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
123
  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
124
  SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
125
  SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
126
  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
127
  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
128
  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
129
  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
130
  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
131
  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
132
  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
133
  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
134
  SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
135
  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
136
  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
137
  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
138
139
enum SanitizerHandler {
140
#define SANITIZER_CHECK(Enum, Name, Version) Enum,
141
  LIST_SANITIZER_CHECKS
142
#undef SANITIZER_CHECK
143
};
144
145
/// Helper class with most of the code for saving a value for a
146
/// conditional expression cleanup.
147
struct DominatingLLVMValue {
148
  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
149
150
  /// Answer whether the given value needs extra work to be saved.
151
158
  static bool needsSaving(llvm::Value *value) {
152
    // If it's not an instruction, we don't need to save.
153
158
    if (!isa<llvm::Instruction>(value)) 
return false20
;
154
155
    // If it's an instruction in the entry block, we don't need to save.
156
138
    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
157
138
    return (block != &block->getParent()->getEntryBlock());
158
158
  }
159
160
  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
161
  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
162
};
163
164
/// A partial specialization of DominatingValue for llvm::Values that
165
/// might be llvm::Instructions.
166
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
167
  typedef T *type;
168
31
  static type restore(CodeGenFunction &CGF, saved_type value) {
169
31
    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
170
31
  }
171
};
172
173
/// A specialization of DominatingValue for Address.
174
template <> struct DominatingValue<Address> {
175
  typedef Address type;
176
177
  struct saved_type {
178
    DominatingLLVMValue::saved_type SavedValue;
179
    llvm::Type *ElementType;
180
    CharUnits Alignment;
181
  };
182
183
0
  static bool needsSaving(type value) {
184
0
    return DominatingLLVMValue::needsSaving(value.getPointer());
185
0
  }
186
102
  static saved_type save(CodeGenFunction &CGF, type value) {
187
102
    return { DominatingLLVMValue::save(CGF, value.getPointer()),
188
102
             value.getElementType(), value.getAlignment() };
189
102
  }
190
116
  static type restore(CodeGenFunction &CGF, saved_type value) {
191
116
    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
192
116
                   value.ElementType, value.Alignment);
193
116
  }
194
};
195
196
/// A specialization of DominatingValue for RValue.
197
template <> struct DominatingValue<RValue> {
198
  typedef RValue type;
199
  class saved_type {
200
    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
201
                AggregateAddress, ComplexAddress };
202
203
    llvm::Value *Value;
204
    llvm::Type *ElementType;
205
    unsigned K : 3;
206
    unsigned Align : 29;
207
    saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
208
16
      : Value(v), ElementType(e), K(k), Align(a) {}
209
210
  public:
211
    static bool needsSaving(RValue value);
212
    static saved_type save(CodeGenFunction &CGF, RValue value);
213
    RValue restore(CodeGenFunction &CGF);
214
215
    // implementations in CGCleanup.cpp
216
  };
217
218
0
  static bool needsSaving(type value) {
219
0
    return saved_type::needsSaving(value);
220
0
  }
221
16
  static saved_type save(CodeGenFunction &CGF, type value) {
222
16
    return saved_type::save(CGF, value);
223
16
  }
224
0
  static type restore(CodeGenFunction &CGF, saved_type value) {
225
0
    return value.restore(CGF);
226
0
  }
227
};
228
229
/// CodeGenFunction - This class organizes the per-function state that is used
230
/// while generating LLVM code.
231
class CodeGenFunction : public CodeGenTypeCache {
232
  CodeGenFunction(const CodeGenFunction &) = delete;
233
  void operator=(const CodeGenFunction &) = delete;
234
235
  friend class CGCXXABI;
236
public:
237
  /// A jump destination is an abstract label, branching to which may
238
  /// require a jump out through normal cleanups.
239
  struct JumpDest {
240
1.29M
    JumpDest() : Block(nullptr), Index(0) {}
241
    JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
242
             unsigned Index)
243
422k
        : Block(Block), ScopeDepth(Depth), Index(Index) {}
244
245
476k
    bool isValid() const { return Block != nullptr; }
246
1.45M
    llvm::BasicBlock *getBlock() const { return Block; }
247
200k
    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
248
7.65k
    unsigned getDestIndex() const { return Index; }
249
250
    // This should be used cautiously.
251
146
    void setScopeDepth(EHScopeStack::stable_iterator depth) {
252
146
      ScopeDepth = depth;
253
146
    }
254
255
  private:
256
    llvm::BasicBlock *Block;
257
    EHScopeStack::stable_iterator ScopeDepth;
258
    unsigned Index;
259
  };
260
261
  CodeGenModule &CGM;  // Per-module state.
262
  const TargetInfo &Target;
263
264
  // For EH/SEH outlined funclets, this field points to parent's CGF
265
  CodeGenFunction *ParentCGF = nullptr;
266
267
  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
268
  LoopInfoStack LoopStack;
269
  CGBuilderTy Builder;
270
271
  // Stores variables for which we can't generate correct lifetime markers
272
  // because of jumps.
273
  VarBypassDetector Bypasses;
274
275
  /// List of recently emitted OMPCanonicalLoops.
276
  ///
277
  /// Since OMPCanonicalLoops are nested inside other statements (in particular
278
  /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
279
  /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
280
  /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
281
  /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
282
  /// this stack when done. Entering a new loop requires clearing this list; it
283
  /// either means we start parsing a new loop nest (in which case the previous
284
  /// loop nest goes out of scope) or a second loop in the same level in which
285
  /// case it would be ambiguous into which of the two (or more) loops the loop
286
  /// nest would extend.
287
  SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
288
289
  /// Number of nested loop to be consumed by the last surrounding
290
  /// loop-associated directive.
291
  int ExpectedOMPLoopDepth = 0;
292
293
  // CodeGen lambda for loops and support for ordered clause
294
  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
295
                                  JumpDest)>
296
      CodeGenLoopTy;
297
  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
298
                                  const unsigned, const bool)>
299
      CodeGenOrderedTy;
300
301
  // Codegen lambda for loop bounds in worksharing loop constructs
302
  typedef llvm::function_ref<std::pair<LValue, LValue>(
303
      CodeGenFunction &, const OMPExecutableDirective &S)>
304
      CodeGenLoopBoundsTy;
305
306
  // Codegen lambda for loop bounds in dispatch-based loop implementation
307
  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
308
      CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
309
      Address UB)>
310
      CodeGenDispatchBoundsTy;
311
312
  /// CGBuilder insert helper. This function is called after an
313
  /// instruction is created using Builder.
314
  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
315
                    llvm::BasicBlock *BB,
316
                    llvm::BasicBlock::iterator InsertPt) const;
317
318
  /// CurFuncDecl - Holds the Decl for the current outermost
319
  /// non-closure context.
320
  const Decl *CurFuncDecl;
321
  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
322
  const Decl *CurCodeDecl;
323
  const CGFunctionInfo *CurFnInfo;
324
  QualType FnRetTy;
325
  llvm::Function *CurFn = nullptr;
326
327
  /// Save Parameter Decl for coroutine.
328
  llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
329
330
  // Holds coroutine data if the current function is a coroutine. We use a
331
  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
332
  // in this header.
333
  struct CGCoroInfo {
334
    std::unique_ptr<CGCoroData> Data;
335
    CGCoroInfo();
336
    ~CGCoroInfo();
337
  };
338
  CGCoroInfo CurCoro;
339
340
383
  bool isCoroutine() const {
341
383
    return CurCoro.Data != nullptr;
342
383
  }
343
344
  /// CurGD - The GlobalDecl for the current function being compiled.
345
  GlobalDecl CurGD;
346
347
  /// PrologueCleanupDepth - The cleanup depth enclosing all the
348
  /// cleanups associated with the parameters.
349
  EHScopeStack::stable_iterator PrologueCleanupDepth;
350
351
  /// ReturnBlock - Unified return block.
352
  JumpDest ReturnBlock;
353
354
  /// ReturnValue - The temporary alloca to hold the return
355
  /// value. This is invalid iff the function has no return value.
356
  Address ReturnValue = Address::invalid();
357
358
  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
359
  /// This is invalid if sret is not in use.
360
  Address ReturnValuePointer = Address::invalid();
361
362
  /// If a return statement is being visited, this holds the return statment's
363
  /// result expression.
364
  const Expr *RetExpr = nullptr;
365
366
  /// Return true if a label was seen in the current scope.
367
32.2k
  bool hasLabelBeenSeenInCurrentScope() const {
368
32.2k
    if (CurLexicalScope)
369
11.0k
      return CurLexicalScope->hasLabels();
370
21.2k
    return !LabelMap.empty();
371
32.2k
  }
372
373
  /// AllocaInsertPoint - This is an instruction in the entry block before which
374
  /// we prefer to insert allocas.
375
  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
376
377
private:
378
  /// PostAllocaInsertPt - This is a place in the prologue where code can be
379
  /// inserted that will be dominated by all the static allocas. This helps
380
  /// achieve two things:
381
  ///   1. Contiguity of all static allocas (within the prologue) is maintained.
382
  ///   2. All other prologue code (which are dominated by static allocas) do
383
  ///      appear in the source order immediately after all static allocas.
384
  ///
385
  /// PostAllocaInsertPt will be lazily created when it is *really* required.
386
  llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
387
388
public:
389
  /// Return PostAllocaInsertPt. If it is not yet created, then insert it
390
  /// immediately after AllocaInsertPt.
391
4.08k
  llvm::Instruction *getPostAllocaInsertPoint() {
392
4.08k
    if (!PostAllocaInsertPt) {
393
1.51k
      assert(AllocaInsertPt &&
394
1.51k
             "Expected static alloca insertion point at function prologue");
395
0
      assert(AllocaInsertPt->getParent()->isEntryBlock() &&
396
1.51k
             "EBB should be entry block of the current code gen function");
397
0
      PostAllocaInsertPt = AllocaInsertPt->clone();
398
1.51k
      PostAllocaInsertPt->setName("postallocapt");
399
1.51k
      PostAllocaInsertPt->insertAfter(AllocaInsertPt);
400
1.51k
    }
401
402
0
    return PostAllocaInsertPt;
403
4.08k
  }
404
405
  /// API for captured statement code generation.
406
  class CGCapturedStmtInfo {
407
  public:
408
    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
409
43.6k
        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
410
    explicit CGCapturedStmtInfo(const CapturedStmt &S,
411
                                CapturedRegionKind K = CR_Default)
412
25.5k
      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
413
414
25.5k
      RecordDecl::field_iterator Field =
415
25.5k
        S.getCapturedRecordDecl()->field_begin();
416
25.5k
      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
417
25.5k
                                                E = S.capture_end();
418
63.8k
           I != E; 
++I, ++Field38.2k
) {
419
38.2k
        if (I->capturesThis())
420
1.86k
          CXXThisFieldDecl = *Field;
421
36.3k
        else if (I->capturesVariable())
422
14.9k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
423
21.3k
        else if (I->capturesVariableByCopy())
424
18.2k
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
425
38.2k
      }
426
25.5k
    }
427
428
    virtual ~CGCapturedStmtInfo();
429
430
29.7k
    CapturedRegionKind getKind() const { return Kind; }
431
432
1.02k
    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
433
    // Retrieve the value of the context parameter.
434
2.08k
    virtual llvm::Value *getContextValue() const { return ThisValue; }
435
436
    /// Lookup the captured field decl for a variable.
437
30.7k
    virtual const FieldDecl *lookup(const VarDecl *VD) const {
438
30.7k
      return CaptureFields.lookup(VD->getCanonicalDecl());
439
30.7k
    }
440
441
1.02k
    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
442
1.05k
    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
443
444
0
    static bool classof(const CGCapturedStmtInfo *) {
445
0
      return true;
446
0
    }
447
448
    /// Emit the captured statement body.
449
123
    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
450
123
      CGF.incrementProfileCounter(S);
451
123
      CGF.EmitStmt(S);
452
123
    }
453
454
    /// Get the name of the capture helper.
455
123
    virtual StringRef getHelperName() const { return "__captured_stmt"; }
456
457
    /// Get the CaptureFields
458
6
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
459
6
      return CaptureFields;
460
6
    }
461
462
  private:
463
    /// The kind of captured statement being generated.
464
    CapturedRegionKind Kind;
465
466
    /// Keep the map between VarDecl and FieldDecl.
467
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
468
469
    /// The base address of the captured record, passed in as the first
470
    /// argument of the parallel region function.
471
    llvm::Value *ThisValue;
472
473
    /// Captured 'this' type.
474
    FieldDecl *CXXThisFieldDecl;
475
  };
476
  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
477
478
  /// RAII for correct setting/restoring of CapturedStmtInfo.
479
  class CGCapturedStmtRAII {
480
  private:
481
    CodeGenFunction &CGF;
482
    CGCapturedStmtInfo *PrevCapturedStmtInfo;
483
  public:
484
    CGCapturedStmtRAII(CodeGenFunction &CGF,
485
                       CGCapturedStmtInfo *NewCapturedStmtInfo)
486
25.8k
        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
487
25.8k
      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
488
25.8k
    }
489
25.8k
    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
490
  };
491
492
  /// An abstract representation of regular/ObjC call/message targets.
493
  class AbstractCallee {
494
    /// The function declaration of the callee.
495
    const Decl *CalleeDecl;
496
497
  public:
498
2.70k
    AbstractCallee() : CalleeDecl(nullptr) {}
499
302k
    AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
500
11.9k
    AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
501
402k
    bool hasFunctionDecl() const {
502
402k
      return isa_and_nonnull<FunctionDecl>(CalleeDecl);
503
402k
    }
504
402k
    const Decl *getDecl() const { return CalleeDecl; }
505
371k
    unsigned getNumParams() const {
506
371k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
507
371k
        return FD->getNumParams();
508
8
      return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
509
371k
    }
510
284k
    const ParmVarDecl *getParamDecl(unsigned I) const {
511
284k
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
512
284k
        return FD->getParamDecl(I);
513
7
      return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
514
284k
    }
515
  };
516
517
  /// Sanitizers enabled for this function.
518
  SanitizerSet SanOpts;
519
520
  /// True if CodeGen currently emits code implementing sanitizer checks.
521
  bool IsSanitizerScope = false;
522
523
  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
524
  class SanitizerScope {
525
    CodeGenFunction *CGF;
526
  public:
527
    SanitizerScope(CodeGenFunction *CGF);
528
    ~SanitizerScope();
529
  };
530
531
  /// In C++, whether we are code generating a thunk.  This controls whether we
532
  /// should emit cleanups.
533
  bool CurFuncIsThunk = false;
534
535
  /// In ARC, whether we should autorelease the return value.
536
  bool AutoreleaseResult = false;
537
538
  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
539
  /// potentially set the return value.
540
  bool SawAsmBlock = false;
541
542
  const NamedDecl *CurSEHParent = nullptr;
543
544
  /// True if the current function is an outlined SEH helper. This can be a
545
  /// finally block or filter expression.
546
  bool IsOutlinedSEHHelper = false;
547
548
  /// True if CodeGen currently emits code inside presereved access index
549
  /// region.
550
  bool IsInPreservedAIRegion = false;
551
552
  /// True if the current statement has nomerge attribute.
553
  bool InNoMergeAttributedStmt = false;
554
555
  /// True if the current statement has noinline attribute.
556
  bool InNoInlineAttributedStmt = false;
557
558
  /// True if the current statement has always_inline attribute.
559
  bool InAlwaysInlineAttributedStmt = false;
560
561
  // The CallExpr within the current statement that the musttail attribute
562
  // applies to.  nullptr if there is no 'musttail' on the current statement.
563
  const CallExpr *MustTailCall = nullptr;
564
565
  /// Returns true if a function must make progress, which means the
566
  /// mustprogress attribute can be added.
567
233k
  bool checkIfFunctionMustProgress() {
568
233k
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
569
233k
        CodeGenOptions::FiniteLoopsKind::Never)
570
115
      return false;
571
572
    // C++11 and later guarantees that a thread eventually will do one of the
573
    // following (6.9.2.3.1 in C++11):
574
    // - terminate,
575
    //  - make a call to a library I/O function,
576
    //  - perform an access through a volatile glvalue, or
577
    //  - perform a synchronization operation or an atomic operation.
578
    //
579
    // Hence each function is 'mustprogress' in C++11 or later.
580
232k
    return getLangOpts().CPlusPlus11;
581
233k
  }
582
583
  /// Returns true if a loop must make progress, which means the mustprogress
584
  /// attribute can be added. \p HasConstantCond indicates whether the branch
585
  /// condition is a known constant.
586
19.5k
  bool checkIfLoopMustProgress(bool HasConstantCond) {
587
19.5k
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
588
19.5k
        CodeGenOptions::FiniteLoopsKind::Always)
589
155
      return true;
590
19.3k
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
591
19.3k
        CodeGenOptions::FiniteLoopsKind::Never)
592
155
      return false;
593
594
    // If the containing function must make progress, loops also must make
595
    // progress (as in C++11 and later).
596
19.2k
    if (checkIfFunctionMustProgress())
597
18.1k
      return true;
598
599
    // Now apply rules for plain C (see  6.8.5.6 in C11).
600
    // Loops with constant conditions do not have to make progress in any C
601
    // version.
602
1.08k
    if (HasConstantCond)
603
278
      return false;
604
605
    // Loops with non-constant conditions must make progress in C11 and later.
606
809
    return getLangOpts().C11;
607
1.08k
  }
608
609
  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
610
  llvm::Value *BlockPointer = nullptr;
611
612
  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
613
  FieldDecl *LambdaThisCaptureField = nullptr;
614
615
  /// A mapping from NRVO variables to the flags used to indicate
616
  /// when the NRVO has been applied to this variable.
617
  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
618
619
  EHScopeStack EHStack;
620
  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
621
  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
622
623
  llvm::Instruction *CurrentFuncletPad = nullptr;
624
625
  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
626
0
    bool isRedundantBeforeReturn() override { return true; }
627
628
    llvm::Value *Addr;
629
    llvm::Value *Size;
630
631
  public:
632
    CallLifetimeEnd(Address addr, llvm::Value *size)
633
4.53k
        : Addr(addr.getPointer()), Size(size) {}
634
635
4.67k
    void Emit(CodeGenFunction &CGF, Flags flags) override {
636
4.67k
      CGF.EmitLifetimeEnd(Size, Addr);
637
4.67k
    }
638
  };
639
640
  /// Header for data within LifetimeExtendedCleanupStack.
641
  struct LifetimeExtendedCleanupHeader {
642
    /// The size of the following cleanup object.
643
    unsigned Size;
644
    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
645
    unsigned Kind : 31;
646
    /// Whether this is a conditional cleanup.
647
    unsigned IsConditional : 1;
648
649
1.13k
    size_t getSize() const { return Size; }
650
568
    CleanupKind getKind() const { return (CleanupKind)Kind; }
651
568
    bool isConditional() const { return IsConditional; }
652
  };
653
654
  /// i32s containing the indexes of the cleanup destinations.
655
  Address NormalCleanupDest = Address::invalid();
656
657
  unsigned NextCleanupDestIndex = 1;
658
659
  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
660
  llvm::BasicBlock *EHResumeBlock = nullptr;
661
662
  /// The exception slot.  All landing pads write the current exception pointer
663
  /// into this alloca.
664
  llvm::Value *ExceptionSlot = nullptr;
665
666
  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
667
  /// write the current selector value into this alloca.
668
  llvm::AllocaInst *EHSelectorSlot = nullptr;
669
670
  /// A stack of exception code slots. Entering an __except block pushes a slot
671
  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
672
  /// a value from the top of the stack.
673
  SmallVector<Address, 1> SEHCodeSlotStack;
674
675
  /// Value returned by __exception_info intrinsic.
676
  llvm::Value *SEHInfo = nullptr;
677
678
  /// Emits a landing pad for the current EH stack.
679
  llvm::BasicBlock *EmitLandingPad();
680
681
  llvm::BasicBlock *getInvokeDestImpl();
682
683
  /// Parent loop-based directive for scan directive.
684
  const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
685
  llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
686
  llvm::BasicBlock *OMPAfterScanBlock = nullptr;
687
  llvm::BasicBlock *OMPScanExitBlock = nullptr;
688
  llvm::BasicBlock *OMPScanDispatch = nullptr;
689
  bool OMPFirstScanLoop = false;
690
691
  /// Manages parent directive for scan directives.
692
  class ParentLoopDirectiveForScanRegion {
693
    CodeGenFunction &CGF;
694
    const OMPExecutableDirective *ParentLoopDirectiveForScan;
695
696
  public:
697
    ParentLoopDirectiveForScanRegion(
698
        CodeGenFunction &CGF,
699
        const OMPExecutableDirective &ParentLoopDirectiveForScan)
700
        : CGF(CGF),
701
3.67k
          ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
702
3.67k
      CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
703
3.67k
    }
704
3.67k
    ~ParentLoopDirectiveForScanRegion() {
705
3.67k
      CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
706
3.67k
    }
707
  };
708
709
  template <class T>
710
309
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
309
    return DominatingValue<T>::save(*this, value);
712
309
  }
clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CodeGen::Address>(clang::CodeGen::Address)
Line
Count
Source
710
102
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
102
    return DominatingValue<T>::save(*this, value);
712
102
  }
clang::CodeGen::DominatingValue<clang::QualType>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::QualType>(clang::QualType)
Line
Count
Source
710
61
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
61
    return DominatingValue<T>::save(*this, value);
712
61
  }
clang::CodeGen::DominatingValue<llvm::Value*>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<llvm::Value*>(llvm::Value*)
Line
Count
Source
710
40
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
40
    return DominatingValue<T>::save(*this, value);
712
40
  }
clang::CodeGen::DominatingValue<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
710
53
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
53
    return DominatingValue<T>::save(*this, value);
712
53
  }
clang::CodeGen::DominatingValue<bool>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<bool>(bool)
Line
Count
Source
710
53
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711
53
    return DominatingValue<T>::save(*this, value);
712
53
  }
Unexecuted instantiation: clang::CodeGen::DominatingValue<clang::CharUnits>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CharUnits>(clang::CharUnits)
713
714
  class CGFPOptionsRAII {
715
  public:
716
    CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
717
    CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
718
    ~CGFPOptionsRAII();
719
720
  private:
721
    void ConstructorHelper(FPOptions FPFeatures);
722
    CodeGenFunction &CGF;
723
    FPOptions OldFPFeatures;
724
    llvm::fp::ExceptionBehavior OldExcept;
725
    llvm::RoundingMode OldRounding;
726
    Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
727
  };
728
  FPOptions CurFPFeatures;
729
730
public:
731
  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
732
  /// rethrows.
733
  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
734
735
  /// A class controlling the emission of a finally block.
736
  class FinallyInfo {
737
    /// Where the catchall's edge through the cleanup should go.
738
    JumpDest RethrowDest;
739
740
    /// A function to call to enter the catch.
741
    llvm::FunctionCallee BeginCatchFn;
742
743
    /// An i1 variable indicating whether or not the @finally is
744
    /// running for an exception.
745
    llvm::AllocaInst *ForEHVar;
746
747
    /// An i8* variable into which the exception pointer to rethrow
748
    /// has been saved.
749
    llvm::AllocaInst *SavedExnVar;
750
751
  public:
752
    void enter(CodeGenFunction &CGF, const Stmt *Finally,
753
               llvm::FunctionCallee beginCatchFn,
754
               llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
755
    void exit(CodeGenFunction &CGF);
756
  };
757
758
  /// Returns true inside SEH __try blocks.
759
366k
  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
760
761
  /// Returns true while emitting a cleanuppad.
762
366k
  bool isCleanupPadScope() const {
763
366k
    return CurrentFuncletPad && 
isa<llvm::CleanupPadInst>(CurrentFuncletPad)128
;
764
366k
  }
765
766
  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
767
  /// current full-expression.  Safe against the possibility that
768
  /// we're currently inside a conditionally-evaluated expression.
769
  template <class T, class... As>
770
8.68k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
8.68k
    if (!isInConditionalBranch())
774
8.58k
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
101
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
101
    SavedTuple Saved{saveValueInCond(A)...};
779
780
101
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
101
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
101
    initFullExprCleanup();
783
101
  }
CGCall.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyUnpassedArg, clang::CodeGen::Address, clang::QualType>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType)
Line
Count
Source
770
186
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
186
    if (!isInConditionalBranch())
774
178
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
8
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
8
    SavedTuple Saved{saveValueInCond(A)...};
779
780
8
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
8
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
8
    initFullExprCleanup();
783
8
  }
void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
770
719
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
719
    if (!isInConditionalBranch())
774
707
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
12
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
12
    SavedTuple Saved{saveValueInCond(A)...};
779
780
12
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
12
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
12
    initFullExprCleanup();
783
12
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
770
4.86k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
4.86k
    if (!isInConditionalBranch())
774
4.81k
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
53
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
53
    SavedTuple Saved{saveValueInCond(A)...};
779
780
53
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
53
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
53
    initFullExprCleanup();
783
53
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::IrregularPartialArrayDestroy, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
770
72
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
72
    if (!isInConditionalBranch())
774
72
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
0
    SavedTuple Saved{saveValueInCond(A)...};
779
780
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
0
    initFullExprCleanup();
783
0
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::RegularPartialArrayDestroy, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Line
Count
Source
770
1.89k
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
1.89k
    if (!isInConditionalBranch())
774
1.89k
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
0
    SavedTuple Saved{saveValueInCond(A)...};
779
780
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
0
    initFullExprCleanup();
783
0
  }
CGException.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::FreeException, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
770
646
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
646
    if (!isInConditionalBranch())
774
633
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
13
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
13
    SavedTuple Saved{saveValueInCond(A)...};
779
780
13
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
13
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
13
    initFullExprCleanup();
783
13
  }
CGObjC.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::CallObjCRelease, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
770
297
  void pushFullExprCleanup(CleanupKind kind, As... A) {
771
    // If we're not in a conditional branch, or if none of the
772
    // arguments requires saving, then use the unconditional cleanup.
773
297
    if (!isInConditionalBranch())
774
282
      return EHStack.pushCleanup<T>(kind, A...);
775
776
    // Stash values in a tuple so we can guarantee the order of saves.
777
15
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778
15
    SavedTuple Saved{saveValueInCond(A)...};
779
780
15
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781
15
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782
15
    initFullExprCleanup();
783
15
  }
784
785
  /// Queue a cleanup to be pushed after finishing the current full-expression,
786
  /// potentially with an active flag.
787
  template <class T, class... As>
788
21
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
789
21
    if (!isInConditionalBranch())
790
21
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791
21
                                                       A...);
792
793
0
    Address ActiveFlag = createCleanupActiveFlag();
794
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795
0
           "cleanup active flag should never need saving");
796
797
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798
0
    SavedTuple Saved{saveValueInCond(A)...};
799
800
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802
0
  }
CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Line
Count
Source
788
4
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
789
4
    if (!isInConditionalBranch())
790
4
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791
4
                                                       A...);
792
793
0
    Address ActiveFlag = createCleanupActiveFlag();
794
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795
0
           "cleanup active flag should never need saving");
796
797
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798
0
    SavedTuple Saved{saveValueInCond(A)...};
799
800
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802
0
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
788
17
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
789
17
    if (!isInConditionalBranch())
790
17
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791
17
                                                       A...);
792
793
0
    Address ActiveFlag = createCleanupActiveFlag();
794
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795
0
           "cleanup active flag should never need saving");
796
797
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798
0
    SavedTuple Saved{saveValueInCond(A)...};
799
800
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802
0
  }
803
804
  template <class T, class... As>
805
  void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
806
568
                                              Address ActiveFlag, As... A) {
807
568
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
568
                                            ActiveFlag.isValid()};
809
810
568
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
568
    LifetimeExtendedCleanupStack.resize(
812
568
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
568
        (Header.IsConditional ? 
sizeof(ActiveFlag)29
:
0539
));
814
815
568
    static_assert(sizeof(Header) % alignof(T) == 0,
816
568
                  "Cleanup will be allocated on misaligned address");
817
568
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
568
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
568
    new (Buffer + sizeof(Header)) T(A...);
820
568
    if (Header.IsConditional)
821
29
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
568
  }
CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
806
4
                                              Address ActiveFlag, As... A) {
807
4
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
4
                                            ActiveFlag.isValid()};
809
810
4
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
4
    LifetimeExtendedCleanupStack.resize(
812
4
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
4
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
814
815
4
    static_assert(sizeof(Header) % alignof(T) == 0,
816
4
                  "Cleanup will be allocated on misaligned address");
817
4
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
4
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
4
    new (Buffer + sizeof(Header)) T(A...);
820
4
    if (Header.IsConditional)
821
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
4
  }
Unexecuted instantiation: CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::CallObjCArcUse, llvm::Value*>, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
806
518
                                              Address ActiveFlag, As... A) {
807
518
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
518
                                            ActiveFlag.isValid()};
809
810
518
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
518
    LifetimeExtendedCleanupStack.resize(
812
518
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
518
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
814
815
518
    static_assert(sizeof(Header) % alignof(T) == 0,
816
518
                  "Cleanup will be allocated on misaligned address");
817
518
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
518
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
518
    new (Buffer + sizeof(Header)) T(A...);
820
518
    if (Header.IsConditional)
821
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
518
  }
CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Line
Count
Source
806
29
                                              Address ActiveFlag, As... A) {
807
29
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
29
                                            ActiveFlag.isValid()};
809
810
29
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
29
    LifetimeExtendedCleanupStack.resize(
812
29
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
29
        (Header.IsConditional ? sizeof(ActiveFlag) : 
00
));
814
815
29
    static_assert(sizeof(Header) % alignof(T) == 0,
816
29
                  "Cleanup will be allocated on misaligned address");
817
29
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
29
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
29
    new (Buffer + sizeof(Header)) T(A...);
820
29
    if (Header.IsConditional)
821
29
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
29
  }
void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, llvm::Value*)
Line
Count
Source
806
17
                                              Address ActiveFlag, As... A) {
807
17
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808
17
                                            ActiveFlag.isValid()};
809
810
17
    size_t OldSize = LifetimeExtendedCleanupStack.size();
811
17
    LifetimeExtendedCleanupStack.resize(
812
17
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813
17
        (Header.IsConditional ? 
sizeof(ActiveFlag)0
: 0));
814
815
17
    static_assert(sizeof(Header) % alignof(T) == 0,
816
17
                  "Cleanup will be allocated on misaligned address");
817
17
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818
17
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
819
17
    new (Buffer + sizeof(Header)) T(A...);
820
17
    if (Header.IsConditional)
821
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822
17
  }
Unexecuted instantiation: void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
823
824
  /// Set up the last cleanup that was pushed as a conditional
825
  /// full-expression cleanup.
826
107
  void initFullExprCleanup() {
827
107
    initFullExprCleanupWithFlag(createCleanupActiveFlag());
828
107
  }
829
830
  void initFullExprCleanupWithFlag(Address ActiveFlag);
831
  Address createCleanupActiveFlag();
832
833
  /// PushDestructorCleanup - Push a cleanup to call the
834
  /// complete-object destructor of an object of the given type at the
835
  /// given address.  Does nothing if T is not a C++ class type with a
836
  /// non-trivial destructor.
837
  void PushDestructorCleanup(QualType T, Address Addr);
838
839
  /// PushDestructorCleanup - Push a cleanup to call the
840
  /// complete-object variant of the given destructor on the object at
841
  /// the given address.
842
  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
843
                             Address Addr);
844
845
  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
846
  /// process all branch fixups.
847
  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
848
849
  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
850
  /// The block cannot be reactivated.  Pops it if it's the top of the
851
  /// stack.
852
  ///
853
  /// \param DominatingIP - An instruction which is known to
854
  ///   dominate the current IP (if set) and which lies along
855
  ///   all paths of execution between the current IP and the
856
  ///   the point at which the cleanup comes into scope.
857
  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
858
                              llvm::Instruction *DominatingIP);
859
860
  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
861
  /// Cannot be used to resurrect a deactivated cleanup.
862
  ///
863
  /// \param DominatingIP - An instruction which is known to
864
  ///   dominate the current IP (if set) and which lies along
865
  ///   all paths of execution between the current IP and the
866
  ///   the point at which the cleanup comes into scope.
867
  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
868
                            llvm::Instruction *DominatingIP);
869
870
  /// Enters a new scope for capturing cleanups, all of which
871
  /// will be executed once the scope is exited.
872
  class RunCleanupsScope {
873
    EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
874
    size_t LifetimeExtendedCleanupStackSize;
875
    bool OldDidCallStackSave;
876
  protected:
877
    bool PerformCleanup;
878
  private:
879
880
    RunCleanupsScope(const RunCleanupsScope &) = delete;
881
    void operator=(const RunCleanupsScope &) = delete;
882
883
  protected:
884
    CodeGenFunction& CGF;
885
886
  public:
887
    /// Enter a new cleanup scope.
888
    explicit RunCleanupsScope(CodeGenFunction &CGF)
889
      : PerformCleanup(true), CGF(CGF)
890
980k
    {
891
980k
      CleanupStackDepth = CGF.EHStack.stable_begin();
892
980k
      LifetimeExtendedCleanupStackSize =
893
980k
          CGF.LifetimeExtendedCleanupStack.size();
894
980k
      OldDidCallStackSave = CGF.DidCallStackSave;
895
980k
      CGF.DidCallStackSave = false;
896
980k
      OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
897
980k
      CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
898
980k
    }
899
900
    /// Exit this cleanup scope, emitting any accumulated cleanups.
901
980k
    ~RunCleanupsScope() {
902
980k
      if (PerformCleanup)
903
325k
        ForceCleanup();
904
980k
    }
905
906
    /// Determine whether this scope requires any cleanups.
907
33.7k
    bool requiresCleanups() const {
908
33.7k
      return CGF.EHStack.stable_begin() != CleanupStackDepth;
909
33.7k
    }
910
911
    /// Force the emission of cleanups now, instead of waiting
912
    /// until this object is destroyed.
913
    /// \param ValuesToReload - A list of values that need to be available at
914
    /// the insertion point after cleanup emission. If cleanup emission created
915
    /// a shared cleanup block, these value pointers will be rewritten.
916
    /// Otherwise, they not will be modified.
917
980k
    void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
918
980k
      assert(PerformCleanup && "Already forced cleanup");
919
0
      CGF.DidCallStackSave = OldDidCallStackSave;
920
980k
      CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
921
980k
                           ValuesToReload);
922
980k
      PerformCleanup = false;
923
980k
      CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
924
980k
    }
925
  };
926
927
  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
928
  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
929
      EHScopeStack::stable_end();
930
931
  class LexicalScope : public RunCleanupsScope {
932
    SourceRange Range;
933
    SmallVector<const LabelDecl*, 4> Labels;
934
    LexicalScope *ParentScope;
935
936
    LexicalScope(const LexicalScope &) = delete;
937
    void operator=(const LexicalScope &) = delete;
938
939
  public:
940
    /// Enter a new cleanup scope.
941
    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
942
305k
      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
943
305k
      CGF.CurLexicalScope = this;
944
305k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
945
206k
        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
946
305k
    }
947
948
0
    void addLabel(const LabelDecl *label) {
949
0
      assert(PerformCleanup && "adding label to dead scope?");
950
0
      Labels.push_back(label);
951
0
    }
952
953
    /// Exit this cleanup scope, emitting any accumulated
954
    /// cleanups.
955
305k
    ~LexicalScope() {
956
305k
      if (CGDebugInfo *DI = CGF.getDebugInfo())
957
206k
        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
958
959
      // If we should perform a cleanup, force them now.  Note that
960
      // this ends the cleanup scope before rescoping any labels.
961
305k
      if (PerformCleanup) {
962
271k
        ApplyDebugLocation DL(CGF, Range.getEnd());
963
271k
        ForceCleanup();
964
271k
      }
965
305k
    }
966
967
    /// Force the emission of cleanups now, instead of waiting
968
    /// until this object is destroyed.
969
305k
    void ForceCleanup() {
970
305k
      CGF.CurLexicalScope = ParentScope;
971
305k
      RunCleanupsScope::ForceCleanup();
972
973
305k
      if (!Labels.empty())
974
0
        rescopeLabels();
975
305k
    }
976
977
11.0k
    bool hasLabels() const {
978
11.0k
      return !Labels.empty();
979
11.0k
    }
980
981
    void rescopeLabels();
982
  };
983
984
  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
985
986
  /// The class used to assign some variables some temporarily addresses.
987
  class OMPMapVars {
988
    DeclMapTy SavedLocals;
989
    DeclMapTy SavedTempAddresses;
990
    OMPMapVars(const OMPMapVars &) = delete;
991
    void operator=(const OMPMapVars &) = delete;
992
993
  public:
994
153k
    explicit OMPMapVars() = default;
995
153k
    ~OMPMapVars() {
996
153k
      assert(SavedLocals.empty() && "Did not restored original addresses.");
997
153k
    };
998
999
    /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1000
    /// function \p CGF.
1001
    /// \return true if at least one variable was set already, false otherwise.
1002
    bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1003
174k
                    Address TempAddr) {
1004
174k
      LocalVD = LocalVD->getCanonicalDecl();
1005
      // Only save it once.
1006
174k
      if (SavedLocals.count(LocalVD)) 
return false20.7k
;
1007
1008
      // Copy the existing local entry to SavedLocals.
1009
154k
      auto it = CGF.LocalDeclMap.find(LocalVD);
1010
154k
      if (it != CGF.LocalDeclMap.end())
1011
54.3k
        SavedLocals.try_emplace(LocalVD, it->second);
1012
99.7k
      else
1013
99.7k
        SavedLocals.try_emplace(LocalVD, Address::invalid());
1014
1015
      // Generate the private entry.
1016
154k
      QualType VarTy = LocalVD->getType();
1017
154k
      if (VarTy->isReferenceType()) {
1018
4.54k
        Address Temp = CGF.CreateMemTemp(VarTy);
1019
4.54k
        CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1020
4.54k
        TempAddr = Temp;
1021
4.54k
      }
1022
154k
      SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1023
1024
154k
      return true;
1025
174k
    }
1026
1027
    /// Applies new addresses to the list of the variables.
1028
    /// \return true if at least one variable is using new address, false
1029
    /// otherwise.
1030
139k
    bool apply(CodeGenFunction &CGF) {
1031
139k
      copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1032
139k
      SavedTempAddresses.clear();
1033
139k
      return !SavedLocals.empty();
1034
139k
    }
1035
1036
    /// Restores original addresses of the variables.
1037
153k
    void restore(CodeGenFunction &CGF) {
1038
153k
      if (!SavedLocals.empty()) {
1039
84.1k
        copyInto(SavedLocals, CGF.LocalDeclMap);
1040
84.1k
        SavedLocals.clear();
1041
84.1k
      }
1042
153k
    }
1043
1044
  private:
1045
    /// Copy all the entries in the source map over the corresponding
1046
    /// entries in the destination, which must exist.
1047
223k
    static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1048
308k
      for (auto &Pair : Src) {
1049
308k
        if (!Pair.second.isValid()) {
1050
99.7k
          Dest.erase(Pair.first);
1051
99.7k
          continue;
1052
99.7k
        }
1053
1054
208k
        auto I = Dest.find(Pair.first);
1055
208k
        if (I != Dest.end())
1056
108k
          I->second = Pair.second;
1057
99.7k
        else
1058
99.7k
          Dest.insert(Pair);
1059
208k
      }
1060
223k
    }
1061
  };
1062
1063
  /// The scope used to remap some variables as private in the OpenMP loop body
1064
  /// (or other captured region emitted without outlining), and to restore old
1065
  /// vars back on exit.
1066
  class OMPPrivateScope : public RunCleanupsScope {
1067
    OMPMapVars MappedVars;
1068
    OMPPrivateScope(const OMPPrivateScope &) = delete;
1069
    void operator=(const OMPPrivateScope &) = delete;
1070
1071
  public:
1072
    /// Enter a new OpenMP private scope.
1073
133k
    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1074
1075
    /// Registers \p LocalVD variable as a private with \p Addr as the address
1076
    /// of the corresponding private variable. \p
1077
    /// PrivateGen is the address of the generated private variable.
1078
    /// \return true if the variable is registered as private, false if it has
1079
    /// been privatized already.
1080
154k
    bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1081
154k
      assert(PerformCleanup && "adding private to dead scope");
1082
0
      return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1083
154k
    }
1084
1085
    /// Privatizes local variables previously registered as private.
1086
    /// Registration is separate from the actual privatization to allow
1087
    /// initializers use values of the original variables, not the private one.
1088
    /// This is important, for example, if the private variable is a class
1089
    /// variable initialized by a constructor that references other private
1090
    /// variables. But at initialization original variables must be used, not
1091
    /// private copies.
1092
    /// \return true if at least one variable was privatized, false otherwise.
1093
119k
    bool Privatize() { return MappedVars.apply(CGF); }
1094
1095
133k
    void ForceCleanup() {
1096
133k
      RunCleanupsScope::ForceCleanup();
1097
133k
      MappedVars.restore(CGF);
1098
133k
    }
1099
1100
    /// Exit scope - all the mapped variables are restored.
1101
133k
    ~OMPPrivateScope() {
1102
133k
      if (PerformCleanup)
1103
108k
        ForceCleanup();
1104
133k
    }
1105
1106
    /// Checks if the global variable is captured in current function.
1107
7.20k
    bool isGlobalVarCaptured(const VarDecl *VD) const {
1108
7.20k
      VD = VD->getCanonicalDecl();
1109
7.20k
      return !VD->isLocalVarDeclOrParm() && 
CGF.LocalDeclMap.count(VD) > 0905
;
1110
7.20k
    }
1111
  };
1112
1113
  /// Save/restore original map of previously emitted local vars in case when we
1114
  /// need to duplicate emission of the same code several times in the same
1115
  /// function for OpenMP code.
1116
  class OMPLocalDeclMapRAII {
1117
    CodeGenFunction &CGF;
1118
    DeclMapTy SavedMap;
1119
1120
  public:
1121
    OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1122
13.9k
        : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1123
13.9k
    ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1124
  };
1125
1126
  /// Takes the old cleanup stack size and emits the cleanup blocks
1127
  /// that have been added.
1128
  void
1129
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1130
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1131
1132
  /// Takes the old cleanup stack size and emits the cleanup blocks
1133
  /// that have been added, then adds all lifetime-extended cleanups from
1134
  /// the given position to the stack.
1135
  void
1136
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1137
                   size_t OldLifetimeExtendedStackSize,
1138
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1139
1140
  void ResolveBranchFixups(llvm::BasicBlock *Target);
1141
1142
  /// The given basic block lies in the current EH scope, but may be a
1143
  /// target of a potentially scope-crossing jump; get a stable handle
1144
  /// to which we can perform this jump later.
1145
421k
  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1146
421k
    return JumpDest(Target,
1147
421k
                    EHStack.getInnermostNormalCleanup(),
1148
421k
                    NextCleanupDestIndex++);
1149
421k
  }
1150
1151
  /// The given basic block lies in the current EH scope, but may be a
1152
  /// target of a potentially scope-crossing jump; get a stable handle
1153
  /// to which we can perform this jump later.
1154
413k
  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1155
413k
    return getJumpDestInCurrentScope(createBasicBlock(Name));
1156
413k
  }
1157
1158
  /// EmitBranchThroughCleanup - Emit a branch from the current insert
1159
  /// block through the normal cleanup handling code (if any) and then
1160
  /// on to \arg Dest.
1161
  void EmitBranchThroughCleanup(JumpDest Dest);
1162
1163
  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1164
  /// specified destination obviously has no cleanups to run.  'false' is always
1165
  /// a conservatively correct answer for this method.
1166
  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1167
1168
  /// popCatchScope - Pops the catch scope at the top of the EHScope
1169
  /// stack, emitting any required code (other than the catch handlers
1170
  /// themselves).
1171
  void popCatchScope();
1172
1173
  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1174
  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1175
  llvm::BasicBlock *
1176
  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1177
1178
  /// An object to manage conditionally-evaluated expressions.
1179
  class ConditionalEvaluation {
1180
    llvm::BasicBlock *StartBB;
1181
1182
  public:
1183
    ConditionalEvaluation(CodeGenFunction &CGF)
1184
21.2k
      : StartBB(CGF.Builder.GetInsertBlock()) {}
1185
1186
30.8k
    void begin(CodeGenFunction &CGF) {
1187
30.8k
      assert(CGF.OutermostConditional != this);
1188
30.8k
      if (!CGF.OutermostConditional)
1189
30.6k
        CGF.OutermostConditional = this;
1190
30.8k
    }
1191
1192
30.8k
    void end(CodeGenFunction &CGF) {
1193
30.8k
      assert(CGF.OutermostConditional != nullptr);
1194
30.8k
      if (CGF.OutermostConditional == this)
1195
30.6k
        CGF.OutermostConditional = nullptr;
1196
30.8k
    }
1197
1198
    /// Returns a block which will be executed prior to each
1199
    /// evaluation of the conditional code.
1200
136
    llvm::BasicBlock *getStartingBlock() const {
1201
136
      return StartBB;
1202
136
    }
1203
  };
1204
1205
  /// isInConditionalBranch - Return true if we're currently emitting
1206
  /// one branch or the other of a conditional expression.
1207
10.9k
  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1208
1209
136
  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1210
136
    assert(isInConditionalBranch());
1211
0
    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1212
136
    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1213
136
    store->setAlignment(addr.getAlignment().getAsAlign());
1214
136
  }
1215
1216
  /// An RAII object to record that we're evaluating a statement
1217
  /// expression.
1218
  class StmtExprEvaluation {
1219
    CodeGenFunction &CGF;
1220
1221
    /// We have to save the outermost conditional: cleanups in a
1222
    /// statement expression aren't conditional just because the
1223
    /// StmtExpr is.
1224
    ConditionalEvaluation *SavedOutermostConditional;
1225
1226
  public:
1227
    StmtExprEvaluation(CodeGenFunction &CGF)
1228
4.27k
      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1229
4.27k
      CGF.OutermostConditional = nullptr;
1230
4.27k
    }
1231
1232
4.27k
    ~StmtExprEvaluation() {
1233
4.27k
      CGF.OutermostConditional = SavedOutermostConditional;
1234
4.27k
      CGF.EnsureInsertPoint();
1235
4.27k
    }
1236
  };
1237
1238
  /// An object which temporarily prevents a value from being
1239
  /// destroyed by aggressive peephole optimizations that assume that
1240
  /// all uses of a value have been realized in the IR.
1241
  class PeepholeProtection {
1242
    llvm::Instruction *Inst;
1243
    friend class CodeGenFunction;
1244
1245
  public:
1246
16.0k
    PeepholeProtection() : Inst(nullptr) {}
1247
  };
1248
1249
  /// A non-RAII class containing all the information about a bound
1250
  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1251
  /// this which makes individual mappings very simple; using this
1252
  /// class directly is useful when you have a variable number of
1253
  /// opaque values or don't want the RAII functionality for some
1254
  /// reason.
1255
  class OpaqueValueMappingData {
1256
    const OpaqueValueExpr *OpaqueValue;
1257
    bool BoundLValue;
1258
    CodeGenFunction::PeepholeProtection Protection;
1259
1260
    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1261
                           bool boundLValue)
1262
2.21k
      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1263
  public:
1264
12.1k
    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1265
1266
7.65k
    static bool shouldBindAsLValue(const Expr *expr) {
1267
      // gl-values should be bound as l-values for obvious reasons.
1268
      // Records should be bound as l-values because IR generation
1269
      // always keeps them in memory.  Expressions of function type
1270
      // act exactly like l-values but are formally required to be
1271
      // r-values in C.
1272
7.65k
      return expr->isGLValue() ||
1273
7.65k
             
expr->getType()->isFunctionType()4.50k
||
1274
7.65k
             
hasAggregateEvaluationKind(expr->getType())4.50k
;
1275
7.65k
    }
1276
1277
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1278
                                       const OpaqueValueExpr *ov,
1279
622
                                       const Expr *e) {
1280
622
      if (shouldBindAsLValue(ov))
1281
340
        return bind(CGF, ov, CGF.EmitLValue(e));
1282
282
      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1283
622
    }
1284
1285
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1286
                                       const OpaqueValueExpr *ov,
1287
519
                                       const LValue &lv) {
1288
519
      assert(shouldBindAsLValue(ov));
1289
0
      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1290
519
      return OpaqueValueMappingData(ov, true);
1291
519
    }
1292
1293
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1294
                                       const OpaqueValueExpr *ov,
1295
1.69k
                                       const RValue &rv) {
1296
1.69k
      assert(!shouldBindAsLValue(ov));
1297
0
      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1298
1299
1.69k
      OpaqueValueMappingData data(ov, false);
1300
1301
      // Work around an extremely aggressive peephole optimization in
1302
      // EmitScalarConversion which assumes that all other uses of a
1303
      // value are extant.
1304
1.69k
      data.Protection = CGF.protectFromPeepholes(rv);
1305
1306
1.69k
      return data;
1307
1.69k
    }
1308
1309
13.4k
    bool isValid() const { return OpaqueValue != nullptr; }
1310
6
    void clear() { OpaqueValue = nullptr; }
1311
1312
2.21k
    void unbind(CodeGenFunction &CGF) {
1313
2.21k
      assert(OpaqueValue && "no data to unbind!");
1314
1315
2.21k
      if (BoundLValue) {
1316
519
        CGF.OpaqueLValues.erase(OpaqueValue);
1317
1.69k
      } else {
1318
1.69k
        CGF.OpaqueRValues.erase(OpaqueValue);
1319
1.69k
        CGF.unprotectFromPeepholes(Protection);
1320
1.69k
      }
1321
2.21k
    }
1322
  };
1323
1324
  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1325
  class OpaqueValueMapping {
1326
    CodeGenFunction &CGF;
1327
    OpaqueValueMappingData Data;
1328
1329
  public:
1330
3.77k
    static bool shouldBindAsLValue(const Expr *expr) {
1331
3.77k
      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1332
3.77k
    }
1333
1334
    /// Build the opaque value mapping for the given conditional
1335
    /// operator if it's the GNU ?: extension.  This is a common
1336
    /// enough pattern that the convenience operator is really
1337
    /// helpful.
1338
    ///
1339
    OpaqueValueMapping(CodeGenFunction &CGF,
1340
11.8k
                       const AbstractConditionalOperator *op) : CGF(CGF) {
1341
11.8k
      if (isa<ConditionalOperator>(op))
1342
        // Leave Data empty.
1343
11.7k
        return;
1344
1345
29
      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1346
29
      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1347
29
                                          e->getCommon());
1348
29
    }
1349
1350
    /// Build the opaque value mapping for an OpaqueValueExpr whose source
1351
    /// expression is set to the expression the OVE represents.
1352
    OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1353
39
        : CGF(CGF) {
1354
39
      if (OV) {
1355
39
        assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1356
39
                                      "for OVE with no source expression");
1357
0
        Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1358
39
      }
1359
39
    }
1360
1361
    OpaqueValueMapping(CodeGenFunction &CGF,
1362
                       const OpaqueValueExpr *opaqueValue,
1363
                       LValue lvalue)
1364
169
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1365
169
    }
1366
1367
    OpaqueValueMapping(CodeGenFunction &CGF,
1368
                       const OpaqueValueExpr *opaqueValue,
1369
                       RValue rvalue)
1370
1.41k
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1371
1.41k
    }
1372
1373
6
    void pop() {
1374
6
      Data.unbind(CGF);
1375
6
      Data.clear();
1376
6
    }
1377
1378
13.4k
    ~OpaqueValueMapping() {
1379
13.4k
      if (Data.isValid()) 
Data.unbind(CGF)1.64k
;
1380
13.4k
    }
1381
  };
1382
1383
private:
1384
  CGDebugInfo *DebugInfo;
1385
  /// Used to create unique names for artificial VLA size debug info variables.
1386
  unsigned VLAExprCounter = 0;
1387
  bool DisableDebugInfo = false;
1388
1389
  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1390
  /// calling llvm.stacksave for multiple VLAs in the same scope.
1391
  bool DidCallStackSave = false;
1392
1393
  /// IndirectBranch - The first time an indirect goto is seen we create a block
1394
  /// with an indirect branch.  Every time we see the address of a label taken,
1395
  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1396
  /// codegen'd as a jump to the IndirectBranch's basic block.
1397
  llvm::IndirectBrInst *IndirectBranch = nullptr;
1398
1399
  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1400
  /// decls.
1401
  DeclMapTy LocalDeclMap;
1402
1403
  // Keep track of the cleanups for callee-destructed parameters pushed to the
1404
  // cleanup stack so that they can be deactivated later.
1405
  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1406
      CalleeDestructedParamCleanups;
1407
1408
  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1409
  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1410
  /// parameter.
1411
  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1412
      SizeArguments;
1413
1414
  /// Track escaped local variables with auto storage. Used during SEH
1415
  /// outlining to produce a call to llvm.localescape.
1416
  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1417
1418
  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1419
  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1420
1421
  // BreakContinueStack - This keeps track of where break and continue
1422
  // statements should jump to.
1423
  struct BreakContinue {
1424
    BreakContinue(JumpDest Break, JumpDest Continue)
1425
46.3k
      : BreakBlock(Break), ContinueBlock(Continue) {}
1426
1427
    JumpDest BreakBlock;
1428
    JumpDest ContinueBlock;
1429
  };
1430
  SmallVector<BreakContinue, 8> BreakContinueStack;
1431
1432
  /// Handles cancellation exit points in OpenMP-related constructs.
1433
  class OpenMPCancelExitStack {
1434
    /// Tracks cancellation exit point and join point for cancel-related exit
1435
    /// and normal exit.
1436
    struct CancelExit {
1437
316k
      CancelExit() = default;
1438
      CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1439
                 JumpDest ContBlock)
1440
4.42k
          : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1441
      OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1442
      /// true if the exit block has been emitted already by the special
1443
      /// emitExit() call, false if the default codegen is used.
1444
      bool HasBeenEmitted = false;
1445
      JumpDest ExitBlock;
1446
      JumpDest ContBlock;
1447
    };
1448
1449
    SmallVector<CancelExit, 8> Stack;
1450
1451
  public:
1452
316k
    OpenMPCancelExitStack() : Stack(1) {}
1453
316k
    ~OpenMPCancelExitStack() = default;
1454
    /// Fetches the exit block for the current OpenMP construct.
1455
9.13k
    JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1456
    /// Emits exit block with special codegen procedure specific for the related
1457
    /// OpenMP construct + emits code for normal construct cleanup.
1458
    void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1459
5.01k
                  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1460
5.01k
      if (Stack.back().Kind == Kind && 
getExitBlock().isValid()4.39k
) {
1461
93
        assert(CGF.getOMPCancelDestination(Kind).isValid());
1462
0
        assert(CGF.HaveInsertPoint());
1463
0
        assert(!Stack.back().HasBeenEmitted);
1464
0
        auto IP = CGF.Builder.saveAndClearIP();
1465
93
        CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1466
93
        CodeGen(CGF);
1467
93
        CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1468
93
        CGF.Builder.restoreIP(IP);
1469
93
        Stack.back().HasBeenEmitted = true;
1470
93
      }
1471
0
      CodeGen(CGF);
1472
5.01k
    }
1473
    /// Enter the cancel supporting \a Kind construct.
1474
    /// \param Kind OpenMP directive that supports cancel constructs.
1475
    /// \param HasCancel true, if the construct has inner cancel directive,
1476
    /// false otherwise.
1477
4.42k
    void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1478
4.42k
      Stack.push_back({Kind,
1479
4.42k
                       HasCancel ? 
CGF.getJumpDestInCurrentScope("cancel.exit")93
1480
4.42k
                                 : 
JumpDest()4.33k
,
1481
4.42k
                       HasCancel ? 
CGF.getJumpDestInCurrentScope("cancel.cont")93
1482
4.42k
                                 : 
JumpDest()4.33k
});
1483
4.42k
    }
1484
    /// Emits default exit point for the cancel construct (if the special one
1485
    /// has not be used) + join point for cancel/normal exits.
1486
4.42k
    void exit(CodeGenFunction &CGF) {
1487
4.42k
      if (getExitBlock().isValid()) {
1488
93
        assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1489
0
        bool HaveIP = CGF.HaveInsertPoint();
1490
93
        if (!Stack.back().HasBeenEmitted) {
1491
0
          if (HaveIP)
1492
0
            CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1493
0
          CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1494
0
          CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1495
0
        }
1496
93
        CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1497
93
        if (!HaveIP) {
1498
0
          CGF.Builder.CreateUnreachable();
1499
0
          CGF.Builder.ClearInsertionPoint();
1500
0
        }
1501
93
      }
1502
0
      Stack.pop_back();
1503
4.42k
    }
1504
  };
1505
  OpenMPCancelExitStack OMPCancelStack;
1506
1507
  /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1508
  llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1509
                                                    Stmt::Likelihood LH);
1510
1511
  CodeGenPGO PGO;
1512
1513
  /// Calculate branch weights appropriate for PGO data
1514
  llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1515
                                     uint64_t FalseCount) const;
1516
  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1517
  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1518
                                            uint64_t LoopCount) const;
1519
1520
public:
1521
  /// Increment the profiler's counter for the given statement by \p StepV.
1522
  /// If \p StepV is null, the default increment is 1.
1523
455k
  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1524
455k
    if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1525
455k
        
!CurFn->hasFnAttribute(llvm::Attribute::NoProfile)1.13k
)
1526
1.12k
      PGO.emitCounterIncrement(Builder, S, StepV);
1527
455k
    PGO.setCurrentStmt(S);
1528
455k
  }
1529
1530
  /// Get the profiler's count for the given statement.
1531
176k
  uint64_t getProfileCount(const Stmt *S) {
1532
176k
    Optional<uint64_t> Count = PGO.getStmtCount(S);
1533
176k
    if (!Count.hasValue())
1534
176k
      return 0;
1535
489
    return *Count;
1536
176k
  }
1537
1538
  /// Set the profiler's current count.
1539
9.22k
  void setCurrentProfileCount(uint64_t Count) {
1540
9.22k
    PGO.setCurrentRegionCount(Count);
1541
9.22k
  }
1542
1543
  /// Get the profiler's current count. This is generally the count for the most
1544
  /// recently incremented counter.
1545
158k
  uint64_t getCurrentProfileCount() {
1546
158k
    return PGO.getCurrentRegionCount();
1547
158k
  }
1548
1549
private:
1550
1551
  /// SwitchInsn - This is nearest current switch instruction. It is null if
1552
  /// current context is not in a switch.
1553
  llvm::SwitchInst *SwitchInsn = nullptr;
1554
  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1555
  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1556
1557
  /// The likelihood attributes of the SwitchCase.
1558
  SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1559
1560
  /// CaseRangeBlock - This block holds if condition check for last case
1561
  /// statement range in current switch instruction.
1562
  llvm::BasicBlock *CaseRangeBlock = nullptr;
1563
1564
  /// OpaqueLValues - Keeps track of the current set of opaque value
1565
  /// expressions.
1566
  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1567
  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1568
1569
  // VLASizeMap - This keeps track of the associated size for each VLA type.
1570
  // We track this by the size expression rather than the type itself because
1571
  // in certain situations, like a const qualifier applied to an VLA typedef,
1572
  // multiple VLA types can share the same size expression.
1573
  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1574
  // enter/leave scopes.
1575
  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1576
1577
  /// A block containing a single 'unreachable' instruction.  Created
1578
  /// lazily by getUnreachableBlock().
1579
  llvm::BasicBlock *UnreachableBlock = nullptr;
1580
1581
  /// Counts of the number return expressions in the function.
1582
  unsigned NumReturnExprs = 0;
1583
1584
  /// Count the number of simple (constant) return expressions in the function.
1585
  unsigned NumSimpleReturnExprs = 0;
1586
1587
  /// The last regular (non-return) debug location (breakpoint) in the function.
1588
  SourceLocation LastStopPoint;
1589
1590
public:
1591
  /// Source location information about the default argument or member
1592
  /// initializer expression we're evaluating, if any.
1593
  CurrentSourceLocExprScope CurSourceLocExprScope;
1594
  using SourceLocExprScopeGuard =
1595
      CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1596
1597
  /// A scope within which we are constructing the fields of an object which
1598
  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1599
  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1600
  class FieldConstructionScope {
1601
  public:
1602
    FieldConstructionScope(CodeGenFunction &CGF, Address This)
1603
25.4k
        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1604
25.4k
      CGF.CXXDefaultInitExprThis = This;
1605
25.4k
    }
1606
25.4k
    ~FieldConstructionScope() {
1607
25.4k
      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1608
25.4k
    }
1609
1610
  private:
1611
    CodeGenFunction &CGF;
1612
    Address OldCXXDefaultInitExprThis;
1613
  };
1614
1615
  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1616
  /// is overridden to be the object under construction.
1617
  class CXXDefaultInitExprScope  {
1618
  public:
1619
    CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1620
        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1621
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1622
1.17k
          SourceLocScope(E, CGF.CurSourceLocExprScope) {
1623
1.17k
      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1624
1.17k
      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1625
1.17k
    }
1626
1.17k
    ~CXXDefaultInitExprScope() {
1627
1.17k
      CGF.CXXThisValue = OldCXXThisValue;
1628
1.17k
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1629
1.17k
    }
1630
1631
  public:
1632
    CodeGenFunction &CGF;
1633
    llvm::Value *OldCXXThisValue;
1634
    CharUnits OldCXXThisAlignment;
1635
    SourceLocExprScopeGuard SourceLocScope;
1636
  };
1637
1638
  struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1639
    CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1640
4.11k
        : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1641
  };
1642
1643
  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1644
  /// current loop index is overridden.
1645
  class ArrayInitLoopExprScope {
1646
  public:
1647
    ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1648
39
      : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1649
39
      CGF.ArrayInitIndex = Index;
1650
39
    }
1651
39
    ~ArrayInitLoopExprScope() {
1652
39
      CGF.ArrayInitIndex = OldArrayInitIndex;
1653
39
    }
1654
1655
  private:
1656
    CodeGenFunction &CGF;
1657
    llvm::Value *OldArrayInitIndex;
1658
  };
1659
1660
  class InlinedInheritingConstructorScope {
1661
  public:
1662
    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1663
        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1664
          OldCurCodeDecl(CGF.CurCodeDecl),
1665
          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1666
          OldCXXABIThisValue(CGF.CXXABIThisValue),
1667
          OldCXXThisValue(CGF.CXXThisValue),
1668
          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1669
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1670
          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1671
          OldCXXInheritedCtorInitExprArgs(
1672
47
              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1673
47
      CGF.CurGD = GD;
1674
47
      CGF.CurFuncDecl = CGF.CurCodeDecl =
1675
47
          cast<CXXConstructorDecl>(GD.getDecl());
1676
47
      CGF.CXXABIThisDecl = nullptr;
1677
47
      CGF.CXXABIThisValue = nullptr;
1678
47
      CGF.CXXThisValue = nullptr;
1679
47
      CGF.CXXABIThisAlignment = CharUnits();
1680
47
      CGF.CXXThisAlignment = CharUnits();
1681
47
      CGF.ReturnValue = Address::invalid();
1682
47
      CGF.FnRetTy = QualType();
1683
47
      CGF.CXXInheritedCtorInitExprArgs.clear();
1684
47
    }
1685
47
    ~InlinedInheritingConstructorScope() {
1686
47
      CGF.CurGD = OldCurGD;
1687
47
      CGF.CurFuncDecl = OldCurFuncDecl;
1688
47
      CGF.CurCodeDecl = OldCurCodeDecl;
1689
47
      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1690
47
      CGF.CXXABIThisValue = OldCXXABIThisValue;
1691
47
      CGF.CXXThisValue = OldCXXThisValue;
1692
47
      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1693
47
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1694
47
      CGF.ReturnValue = OldReturnValue;
1695
47
      CGF.FnRetTy = OldFnRetTy;
1696
47
      CGF.CXXInheritedCtorInitExprArgs =
1697
47
          std::move(OldCXXInheritedCtorInitExprArgs);
1698
47
    }
1699
1700
  private:
1701
    CodeGenFunction &CGF;
1702
    GlobalDecl OldCurGD;
1703
    const Decl *OldCurFuncDecl;
1704
    const Decl *OldCurCodeDecl;
1705
    ImplicitParamDecl *OldCXXABIThisDecl;
1706
    llvm::Value *OldCXXABIThisValue;
1707
    llvm::Value *OldCXXThisValue;
1708
    CharUnits OldCXXABIThisAlignment;
1709
    CharUnits OldCXXThisAlignment;
1710
    Address OldReturnValue;
1711
    QualType OldFnRetTy;
1712
    CallArgList OldCXXInheritedCtorInitExprArgs;
1713
  };
1714
1715
  // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1716
  // region body, and finalization codegen callbacks. This will class will also
1717
  // contain privatization functions used by the privatization call backs
1718
  //
1719
  // TODO: this is temporary class for things that are being moved out of
1720
  // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1721
  // utility function for use with the OMPBuilder. Once that move to use the
1722
  // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1723
  // directly, or a new helper class that will contain functions used by both
1724
  // this and the OMPBuilder
1725
1726
  struct OMPBuilderCBHelpers {
1727
1728
    OMPBuilderCBHelpers() = delete;
1729
    OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1730
    OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1731
1732
    using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1733
1734
    /// Cleanup action for allocate support.
1735
    class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1736
1737
    private:
1738
      llvm::CallInst *RTLFnCI;
1739
1740
    public:
1741
0
      OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1742
0
        RLFnCI->removeFromParent();
1743
0
      }
1744
1745
0
      void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1746
0
        if (!CGF.HaveInsertPoint())
1747
0
          return;
1748
0
        CGF.Builder.Insert(RTLFnCI);
1749
0
      }
1750
    };
1751
1752
    /// Returns address of the threadprivate variable for the current
1753
    /// thread. This Also create any necessary OMP runtime calls.
1754
    ///
1755
    /// \param VD VarDecl for Threadprivate variable.
1756
    /// \param VDAddr Address of the Vardecl
1757
    /// \param Loc  The location where the barrier directive was encountered
1758
    static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1759
                                          const VarDecl *VD, Address VDAddr,
1760
                                          SourceLocation Loc);
1761
1762
    /// Gets the OpenMP-specific address of the local variable /p VD.
1763
    static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1764
                                             const VarDecl *VD);
1765
    /// Get the platform-specific name separator.
1766
    /// \param Parts different parts of the final name that needs separation
1767
    /// \param FirstSeparator First separator used between the initial two
1768
    ///        parts of the name.
1769
    /// \param Separator separator used between all of the rest consecutinve
1770
    ///        parts of the name
1771
    static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1772
                                             StringRef FirstSeparator = ".",
1773
                                             StringRef Separator = ".");
1774
    /// Emit the Finalization for an OMP region
1775
    /// \param CGF  The Codegen function this belongs to
1776
    /// \param IP Insertion point for generating the finalization code.
1777
176
    static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1778
176
      CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1779
176
      assert(IP.getBlock()->end() != IP.getPoint() &&
1780
176
             "OpenMP IR Builder should cause terminated block!");
1781
1782
0
      llvm::BasicBlock *IPBB = IP.getBlock();
1783
176
      llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1784
176
      assert(DestBB && "Finalization block should have one successor!");
1785
1786
      // erase and replace with cleanup branch.
1787
0
      IPBB->getTerminator()->eraseFromParent();
1788
176
      CGF.Builder.SetInsertPoint(IPBB);
1789
176
      CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1790
176
      CGF.EmitBranchThroughCleanup(Dest);
1791
176
    }
1792
1793
    /// Emit the body of an OMP region
1794
    /// \param CGF            The Codegen function this belongs to
1795
    /// \param RegionBodyStmt The body statement for the OpenMP region being
1796
    ///                       generated
1797
    /// \param AllocaIP       Where to insert alloca instructions
1798
    /// \param CodeGenIP      Where to insert the region code
1799
    /// \param RegionName     Name to be used for new blocks
1800
    static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1801
                                         const Stmt *RegionBodyStmt,
1802
                                         InsertPointTy AllocaIP,
1803
                                         InsertPointTy CodeGenIP,
1804
                                         Twine RegionName);
1805
1806
    static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1807
                                llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1808
8
                                ArrayRef<llvm::Value *> Args) {
1809
8
      llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1810
8
      if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1811
0
        CodeGenIPBBTI->eraseFromParent();
1812
1813
8
      CGF.Builder.SetInsertPoint(CodeGenIPBB);
1814
1815
8
      if (Fn->doesNotThrow())
1816
0
        CGF.EmitNounwindRuntimeCall(Fn, Args);
1817
8
      else
1818
8
        CGF.EmitRuntimeCall(Fn, Args);
1819
1820
8
      if (CGF.Builder.saveIP().isSet())
1821
8
        CGF.Builder.CreateBr(&FiniBB);
1822
8
    }
1823
1824
    /// Emit the body of an OMP region that will be outlined in
1825
    /// OpenMPIRBuilder::finalize().
1826
    /// \param CGF            The Codegen function this belongs to
1827
    /// \param RegionBodyStmt The body statement for the OpenMP region being
1828
    ///                       generated
1829
    /// \param AllocaIP       Where to insert alloca instructions
1830
    /// \param CodeGenIP      Where to insert the region code
1831
    /// \param RegionName     Name to be used for new blocks
1832
    static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1833
                                          const Stmt *RegionBodyStmt,
1834
                                          InsertPointTy AllocaIP,
1835
                                          InsertPointTy CodeGenIP,
1836
                                          Twine RegionName);
1837
1838
    /// RAII for preserving necessary info during Outlined region body codegen.
1839
    class OutlinedRegionBodyRAII {
1840
1841
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1842
      CodeGenFunction::JumpDest OldReturnBlock;
1843
      CodeGenFunction &CGF;
1844
1845
    public:
1846
      OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1847
                             llvm::BasicBlock &RetBB)
1848
50
          : CGF(cgf) {
1849
50
        assert(AllocaIP.isSet() &&
1850
50
               "Must specify Insertion point for allocas of outlined function");
1851
0
        OldAllocaIP = CGF.AllocaInsertPt;
1852
50
        CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1853
1854
50
        OldReturnBlock = CGF.ReturnBlock;
1855
50
        CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1856
50
      }
1857
1858
50
      ~OutlinedRegionBodyRAII() {
1859
50
        CGF.AllocaInsertPt = OldAllocaIP;
1860
50
        CGF.ReturnBlock = OldReturnBlock;
1861
50
      }
1862
    };
1863
1864
    /// RAII for preserving necessary info during inlined region body codegen.
1865
    class InlinedRegionBodyRAII {
1866
1867
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1868
      CodeGenFunction &CGF;
1869
1870
    public:
1871
      InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1872
                            llvm::BasicBlock &FiniBB)
1873
98
          : CGF(cgf) {
1874
        // Alloca insertion block should be in the entry block of the containing
1875
        // function so it expects an empty AllocaIP in which case will reuse the
1876
        // old alloca insertion point, or a new AllocaIP in the same block as
1877
        // the old one
1878
98
        assert((!AllocaIP.isSet() ||
1879
98
                CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1880
98
               "Insertion point should be in the entry block of containing "
1881
98
               "function!");
1882
0
        OldAllocaIP = CGF.AllocaInsertPt;
1883
98
        if (AllocaIP.isSet())
1884
0
          CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1885
1886
        // TODO: Remove the call, after making sure the counter is not used by
1887
        //       the EHStack.
1888
        // Since this is an inlined region, it should not modify the
1889
        // ReturnBlock, and should reuse the one for the enclosing outlined
1890
        // region. So, the JumpDest being return by the function is discarded
1891
98
        (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1892
98
      }
1893
1894
98
      ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1895
    };
1896
  };
1897
1898
private:
1899
  /// CXXThisDecl - When generating code for a C++ member function,
1900
  /// this will hold the implicit 'this' declaration.
1901
  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1902
  llvm::Value *CXXABIThisValue = nullptr;
1903
  llvm::Value *CXXThisValue = nullptr;
1904
  CharUnits CXXABIThisAlignment;
1905
  CharUnits CXXThisAlignment;
1906
1907
  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1908
  /// this expression.
1909
  Address CXXDefaultInitExprThis = Address::invalid();
1910
1911
  /// The current array initialization index when evaluating an
1912
  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1913
  llvm::Value *ArrayInitIndex = nullptr;
1914
1915
  /// The values of function arguments to use when evaluating
1916
  /// CXXInheritedCtorInitExprs within this context.
1917
  CallArgList CXXInheritedCtorInitExprArgs;
1918
1919
  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1920
  /// destructor, this will hold the implicit argument (e.g. VTT).
1921
  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1922
  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1923
1924
  /// OutermostConditional - Points to the outermost active
1925
  /// conditional control.  This is used so that we know if a
1926
  /// temporary should be destroyed conditionally.
1927
  ConditionalEvaluation *OutermostConditional = nullptr;
1928
1929
  /// The current lexical scope.
1930
  LexicalScope *CurLexicalScope = nullptr;
1931
1932
  /// The current source location that should be used for exception
1933
  /// handling code.
1934
  SourceLocation CurEHLocation;
1935
1936
  /// BlockByrefInfos - For each __block variable, contains
1937
  /// information about the layout of the variable.
1938
  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1939
1940
  /// Used by -fsanitize=nullability-return to determine whether the return
1941
  /// value can be checked.
1942
  llvm::Value *RetValNullabilityPrecondition = nullptr;
1943
1944
  /// Check if -fsanitize=nullability-return instrumentation is required for
1945
  /// this function.
1946
1.14M
  bool requiresReturnValueNullabilityCheck() const {
1947
1.14M
    return RetValNullabilityPrecondition;
1948
1.14M
  }
1949
1950
  /// Used to store precise source locations for return statements by the
1951
  /// runtime return value checks.
1952
  Address ReturnLocation = Address::invalid();
1953
1954
  /// Check if the return value of this function requires sanitization.
1955
  bool requiresReturnValueCheck() const;
1956
1957
  llvm::BasicBlock *TerminateLandingPad = nullptr;
1958
  llvm::BasicBlock *TerminateHandler = nullptr;
1959
  llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1960
1961
  /// Terminate funclets keyed by parent funclet pad.
1962
  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1963
1964
  /// Largest vector width used in ths function. Will be used to create a
1965
  /// function attribute.
1966
  unsigned LargestVectorWidth = 0;
1967
1968
  /// True if we need emit the life-time markers. This is initially set in
1969
  /// the constructor, but could be overwritten to true if this is a coroutine.
1970
  bool ShouldEmitLifetimeMarkers;
1971
1972
  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1973
  /// the function metadata.
1974
  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1975
                                llvm::Function *Fn);
1976
1977
public:
1978
  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1979
  ~CodeGenFunction();
1980
1981
551k
  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1982
15.9M
  ASTContext &getContext() const { return CGM.getContext(); }
1983
12.0M
  CGDebugInfo *getDebugInfo() {
1984
12.0M
    if (DisableDebugInfo)
1985
7.76k
      return nullptr;
1986
12.0M
    return DebugInfo;
1987
12.0M
  }
1988
2.80k
  void disableDebugInfo() { DisableDebugInfo = true; }
1989
2.80k
  void enableDebugInfo() { DisableDebugInfo = false; }
1990
1991
229
  bool shouldUseFusedARCCalls() {
1992
229
    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1993
229
  }
1994
1995
11.6M
  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1996
1997
  /// Returns a pointer to the function's exception object and selector slot,
1998
  /// which is assigned in every landing pad.
1999
  Address getExceptionSlot();
2000
  Address getEHSelectorSlot();
2001
2002
  /// Returns the contents of the function's exception object and selector
2003
  /// slots.
2004
  llvm::Value *getExceptionFromSlot();
2005
  llvm::Value *getSelectorFromSlot();
2006
2007
  Address getNormalCleanupDestSlot();
2008
2009
435
  llvm::BasicBlock *getUnreachableBlock() {
2010
435
    if (!UnreachableBlock) {
2011
390
      UnreachableBlock = createBasicBlock("unreachable");
2012
390
      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2013
390
    }
2014
435
    return UnreachableBlock;
2015
435
  }
2016
2017
229k
  llvm::BasicBlock *getInvokeDest() {
2018
229k
    if (!EHStack.requiresLandingPad()) 
return nullptr191k
;
2019
38.2k
    return getInvokeDestImpl();
2020
229k
  }
2021
2022
366k
  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
2023
2024
607k
  const TargetInfo &getTarget() const { return Target; }
2025
3.38M
  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2026
28.5k
  const TargetCodeGenInfo &getTargetHooks() const {
2027
28.5k
    return CGM.getTargetCodeGenInfo();
2028
28.5k
  }
2029
2030
  //===--------------------------------------------------------------------===//
2031
  //                                  Cleanups
2032
  //===--------------------------------------------------------------------===//
2033
2034
  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2035
2036
  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2037
                                        Address arrayEndPointer,
2038
                                        QualType elementType,
2039
                                        CharUnits elementAlignment,
2040
                                        Destroyer *destroyer);
2041
  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2042
                                      llvm::Value *arrayEnd,
2043
                                      QualType elementType,
2044
                                      CharUnits elementAlignment,
2045
                                      Destroyer *destroyer);
2046
2047
  void pushDestroy(QualType::DestructionKind dtorKind,
2048
                   Address addr, QualType type);
2049
  void pushEHDestroy(QualType::DestructionKind dtorKind,
2050
                     Address addr, QualType type);
2051
  void pushDestroy(CleanupKind kind, Address addr, QualType type,
2052
                   Destroyer *destroyer, bool useEHCleanupForArray);
2053
  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2054
                                   QualType type, Destroyer *destroyer,
2055
                                   bool useEHCleanupForArray);
2056
  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2057
                                   llvm::Value *CompletePtr,
2058
                                   QualType ElementType);
2059
  void pushStackRestore(CleanupKind kind, Address SPMem);
2060
  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2061
                   bool useEHCleanupForArray);
2062
  llvm::Function *generateDestroyHelper(Address addr, QualType type,
2063
                                        Destroyer *destroyer,
2064
                                        bool useEHCleanupForArray,
2065
                                        const VarDecl *VD);
2066
  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2067
                        QualType elementType, CharUnits elementAlign,
2068
                        Destroyer *destroyer,
2069
                        bool checkZeroLength, bool useEHCleanup);
2070
2071
  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2072
2073
  /// Determines whether an EH cleanup is required to destroy a type
2074
  /// with the given destruction kind.
2075
23.5k
  bool needsEHCleanup(QualType::DestructionKind kind) {
2076
23.5k
    switch (kind) {
2077
17.3k
    case QualType::DK_none:
2078
17.3k
      return false;
2079
5.07k
    case QualType::DK_cxx_destructor:
2080
5.56k
    case QualType::DK_objc_weak_lifetime:
2081
5.65k
    case QualType::DK_nontrivial_c_struct:
2082
5.65k
      return getLangOpts().Exceptions;
2083
559
    case QualType::DK_objc_strong_lifetime:
2084
559
      return getLangOpts().Exceptions &&
2085
559
             
CGM.getCodeGenOpts().ObjCAutoRefCountExceptions90
;
2086
23.5k
    }
2087
0
    llvm_unreachable("bad destruction kind");
2088
0
  }
2089
2090
1.83k
  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2091
1.83k
    return (needsEHCleanup(kind) ? 
NormalAndEHCleanup906
:
NormalCleanup929
);
2092
1.83k
  }
2093
2094
  //===--------------------------------------------------------------------===//
2095
  //                                  Objective-C
2096
  //===--------------------------------------------------------------------===//
2097
2098
  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2099
2100
  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2101
2102
  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2103
  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2104
                          const ObjCPropertyImplDecl *PID);
2105
  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2106
                              const ObjCPropertyImplDecl *propImpl,
2107
                              const ObjCMethodDecl *GetterMothodDecl,
2108
                              llvm::Constant *AtomicHelperFn);
2109
2110
  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2111
                                  ObjCMethodDecl *MD, bool ctor);
2112
2113
  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2114
  /// for the given property.
2115
  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2116
                          const ObjCPropertyImplDecl *PID);
2117
  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2118
                              const ObjCPropertyImplDecl *propImpl,
2119
                              llvm::Constant *AtomicHelperFn);
2120
2121
  //===--------------------------------------------------------------------===//
2122
  //                                  Block Bits
2123
  //===--------------------------------------------------------------------===//
2124
2125
  /// Emit block literal.
2126
  /// \return an LLVM value which is a pointer to a struct which contains
2127
  /// information about the block, including the block invoke function, the
2128
  /// captured variables, etc.
2129
  llvm::Value *EmitBlockLiteral(const BlockExpr *);
2130
2131
  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2132
                                        const CGBlockInfo &Info,
2133
                                        const DeclMapTy &ldm,
2134
                                        bool IsLambdaConversionToBlock,
2135
                                        bool BuildGlobalBlock);
2136
2137
  /// Check if \p T is a C++ class that has a destructor that can throw.
2138
  static bool cxxDestructorCanThrow(QualType T);
2139
2140
  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2141
  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2142
  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2143
                                             const ObjCPropertyImplDecl *PID);
2144
  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2145
                                             const ObjCPropertyImplDecl *PID);
2146
  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2147
2148
  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2149
                         bool CanThrow);
2150
2151
  class AutoVarEmission;
2152
2153
  void emitByrefStructureInit(const AutoVarEmission &emission);
2154
2155
  /// Enter a cleanup to destroy a __block variable.  Note that this
2156
  /// cleanup should be a no-op if the variable hasn't left the stack
2157
  /// yet; if a cleanup is required for the variable itself, that needs
2158
  /// to be done externally.
2159
  ///
2160
  /// \param Kind Cleanup kind.
2161
  ///
2162
  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2163
  /// structure that will be passed to _Block_object_dispose. When
2164
  /// \p LoadBlockVarAddr is true, the address of the field of the block
2165
  /// structure that holds the address of the __block structure.
2166
  ///
2167
  /// \param Flags The flag that will be passed to _Block_object_dispose.
2168
  ///
2169
  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2170
  /// \p Addr to get the address of the __block structure.
2171
  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2172
                         bool LoadBlockVarAddr, bool CanThrow);
2173
2174
  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2175
                                llvm::Value *ptr);
2176
2177
  Address LoadBlockStruct();
2178
  Address GetAddrOfBlockDecl(const VarDecl *var);
2179
2180
  /// BuildBlockByrefAddress - Computes the location of the
2181
  /// data in a variable which is declared as __block.
2182
  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2183
                                bool followForward = true);
2184
  Address emitBlockByrefAddress(Address baseAddr,
2185
                                const BlockByrefInfo &info,
2186
                                bool followForward,
2187
                                const llvm::Twine &name);
2188
2189
  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2190
2191
  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2192
2193
  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2194
                    const CGFunctionInfo &FnInfo);
2195
2196
  /// Annotate the function with an attribute that disables TSan checking at
2197
  /// runtime.
2198
  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2199
2200
  /// Emit code for the start of a function.
2201
  /// \param Loc       The location to be associated with the function.
2202
  /// \param StartLoc  The location of the function body.
2203
  void StartFunction(GlobalDecl GD,
2204
                     QualType RetTy,
2205
                     llvm::Function *Fn,
2206
                     const CGFunctionInfo &FnInfo,
2207
                     const FunctionArgList &Args,
2208
                     SourceLocation Loc = SourceLocation(),
2209
                     SourceLocation StartLoc = SourceLocation());
2210
2211
  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2212
2213
  void EmitConstructorBody(FunctionArgList &Args);
2214
  void EmitDestructorBody(FunctionArgList &Args);
2215
  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2216
  void EmitFunctionBody(const Stmt *Body);
2217
  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2218
2219
  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2220
                                  CallArgList &CallArgs);
2221
  void EmitLambdaBlockInvokeBody();
2222
  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2223
  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2224
71
  void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2225
71
    EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2226
71
  }
2227
  void EmitAsanPrologueOrEpilogue(bool Prologue);
2228
2229
  /// Emit the unified return block, trying to avoid its emission when
2230
  /// possible.
2231
  /// \return The debug location of the user written return statement if the
2232
  /// return block is is avoided.
2233
  llvm::DebugLoc EmitReturnBlock();
2234
2235
  /// FinishFunction - Complete IR generation of the current function. It is
2236
  /// legal to call this function even if there is no current insertion point.
2237
  void FinishFunction(SourceLocation EndLoc=SourceLocation());
2238
2239
  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2240
                  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2241
2242
  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2243
                                 const ThunkInfo *Thunk, bool IsUnprototyped);
2244
2245
  void FinishThunk();
2246
2247
  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2248
  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2249
                         llvm::FunctionCallee Callee);
2250
2251
  /// Generate a thunk for the given method.
2252
  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2253
                     GlobalDecl GD, const ThunkInfo &Thunk,
2254
                     bool IsUnprototyped);
2255
2256
  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2257
                                       const CGFunctionInfo &FnInfo,
2258
                                       GlobalDecl GD, const ThunkInfo &Thunk);
2259
2260
  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2261
                        FunctionArgList &Args);
2262
2263
  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2264
2265
  /// Struct with all information about dynamic [sub]class needed to set vptr.
2266
  struct VPtr {
2267
    BaseSubobject Base;
2268
    const CXXRecordDecl *NearestVBase;
2269
    CharUnits OffsetFromNearestVBase;
2270
    const CXXRecordDecl *VTableClass;
2271
  };
2272
2273
  /// Initialize the vtable pointer of the given subobject.
2274
  void InitializeVTablePointer(const VPtr &vptr);
2275
2276
  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2277
2278
  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2279
  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2280
2281
  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2282
                         CharUnits OffsetFromNearestVBase,
2283
                         bool BaseIsNonVirtualPrimaryBase,
2284
                         const CXXRecordDecl *VTableClass,
2285
                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2286
2287
  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2288
2289
  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2290
  /// to by This.
2291
  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2292
                            const CXXRecordDecl *VTableClass);
2293
2294
  enum CFITypeCheckKind {
2295
    CFITCK_VCall,
2296
    CFITCK_NVCall,
2297
    CFITCK_DerivedCast,
2298
    CFITCK_UnrelatedCast,
2299
    CFITCK_ICall,
2300
    CFITCK_NVMFCall,
2301
    CFITCK_VMFCall,
2302
  };
2303
2304
  /// Derived is the presumed address of an object of type T after a
2305
  /// cast. If T is a polymorphic class type, emit a check that the virtual
2306
  /// table for Derived belongs to a class derived from T.
2307
  void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2308
                                 CFITypeCheckKind TCK, SourceLocation Loc);
2309
2310
  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2311
  /// If vptr CFI is enabled, emit a check that VTable is valid.
2312
  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2313
                                 CFITypeCheckKind TCK, SourceLocation Loc);
2314
2315
  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2316
  /// RD using llvm.type.test.
2317
  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2318
                          CFITypeCheckKind TCK, SourceLocation Loc);
2319
2320
  /// If whole-program virtual table optimization is enabled, emit an assumption
2321
  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2322
  /// enabled, emit a check that VTable is a member of RD's type identifier.
2323
  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2324
                                    llvm::Value *VTable, SourceLocation Loc);
2325
2326
  /// Returns whether we should perform a type checked load when loading a
2327
  /// virtual function for virtual calls to members of RD. This is generally
2328
  /// true when both vcall CFI and whole-program-vtables are enabled.
2329
  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2330
2331
  /// Emit a type checked load from the given vtable.
2332
  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2333
                                         llvm::Value *VTable,
2334
                                         llvm::Type *VTableTy,
2335
                                         uint64_t VTableByteOffset);
2336
2337
  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2338
  /// given phase of destruction for a destructor.  The end result
2339
  /// should call destructors on members and base classes in reverse
2340
  /// order of their construction.
2341
  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2342
2343
  /// ShouldInstrumentFunction - Return true if the current function should be
2344
  /// instrumented with __cyg_profile_func_* calls
2345
  bool ShouldInstrumentFunction();
2346
2347
  /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2348
  /// should not be instrumented with sanitizers.
2349
  bool ShouldSkipSanitizerInstrumentation();
2350
2351
  /// ShouldXRayInstrument - Return true if the current function should be
2352
  /// instrumented with XRay nop sleds.
2353
  bool ShouldXRayInstrumentFunction() const;
2354
2355
  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2356
  /// XRay custom event handling calls.
2357
  bool AlwaysEmitXRayCustomEvents() const;
2358
2359
  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2360
  /// XRay typed event handling calls.
2361
  bool AlwaysEmitXRayTypedEvents() const;
2362
2363
  /// Encode an address into a form suitable for use in a function prologue.
2364
  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2365
                                             llvm::Constant *Addr);
2366
2367
  /// Decode an address used in a function prologue, encoded by \c
2368
  /// EncodeAddrForUseInPrologue.
2369
  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2370
                                        llvm::Value *EncodedAddr);
2371
2372
  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2373
  /// arguments for the given function. This is also responsible for naming the
2374
  /// LLVM function arguments.
2375
  void EmitFunctionProlog(const CGFunctionInfo &FI,
2376
                          llvm::Function *Fn,
2377
                          const FunctionArgList &Args);
2378
2379
  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2380
  /// given temporary.
2381
  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2382
                          SourceLocation EndLoc);
2383
2384
  /// Emit a test that checks if the return value \p RV is nonnull.
2385
  void EmitReturnValueCheck(llvm::Value *RV);
2386
2387
  /// EmitStartEHSpec - Emit the start of the exception spec.
2388
  void EmitStartEHSpec(const Decl *D);
2389
2390
  /// EmitEndEHSpec - Emit the end of the exception spec.
2391
  void EmitEndEHSpec(const Decl *D);
2392
2393
  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2394
  llvm::BasicBlock *getTerminateLandingPad();
2395
2396
  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2397
  /// terminate.
2398
  llvm::BasicBlock *getTerminateFunclet();
2399
2400
  /// getTerminateHandler - Return a handler (not a landing pad, just
2401
  /// a catch handler) that just calls terminate.  This is used when
2402
  /// a terminate scope encloses a try.
2403
  llvm::BasicBlock *getTerminateHandler();
2404
2405
  llvm::Type *ConvertTypeForMem(QualType T);
2406
  llvm::Type *ConvertType(QualType T);
2407
22.2k
  llvm::Type *ConvertType(const TypeDecl *T) {
2408
22.2k
    return ConvertType(getContext().getTypeDeclType(T));
2409
22.2k
  }
2410
2411
  /// LoadObjCSelf - Load the value of self. This function is only valid while
2412
  /// generating code for an Objective-C method.
2413
  llvm::Value *LoadObjCSelf();
2414
2415
  /// TypeOfSelfObject - Return type of object that this self represents.
2416
  QualType TypeOfSelfObject();
2417
2418
  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2419
  static TypeEvaluationKind getEvaluationKind(QualType T);
2420
2421
3.88M
  static bool hasScalarEvaluationKind(QualType T) {
2422
3.88M
    return getEvaluationKind(T) == TEK_Scalar;
2423
3.88M
  }
2424
2425
769k
  static bool hasAggregateEvaluationKind(QualType T) {
2426
769k
    return getEvaluationKind(T) == TEK_Aggregate;
2427
769k
  }
2428
2429
  /// createBasicBlock - Create an LLVM basic block.
2430
  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2431
                                     llvm::Function *parent = nullptr,
2432
1.22M
                                     llvm::BasicBlock *before = nullptr) {
2433
1.22M
    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2434
1.22M
  }
2435
2436
  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2437
  /// label maps to.
2438
  JumpDest getJumpDestForLabel(const LabelDecl *S);
2439
2440
  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2441
  /// another basic block, simplify it. This assumes that no other code could
2442
  /// potentially reference the basic block.
2443
  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2444
2445
  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2446
  /// adding a fall-through branch from the current insert block if
2447
  /// necessary. It is legal to call this function even if there is no current
2448
  /// insertion point.
2449
  ///
2450
  /// IsFinished - If true, indicates that the caller has finished emitting
2451
  /// branches to the given block and does not expect to emit code into it. This
2452
  /// means the block can be ignored if it is unreachable.
2453
  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2454
2455
  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2456
  /// near its uses, and leave the insertion point in it.
2457
  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2458
2459
  /// EmitBranch - Emit a branch to the specified basic block from the current
2460
  /// insert block, taking care to avoid creation of branches from dummy
2461
  /// blocks. It is legal to call this function even if there is no current
2462
  /// insertion point.
2463
  ///
2464
  /// This function clears the current insertion point. The caller should follow
2465
  /// calls to this function with calls to Emit*Block prior to generation new
2466
  /// code.
2467
  void EmitBranch(llvm::BasicBlock *Block);
2468
2469
  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2470
  /// indicates that the current code being emitted is unreachable.
2471
2.34M
  bool HaveInsertPoint() const {
2472
2.34M
    return Builder.GetInsertBlock() != nullptr;
2473
2.34M
  }
2474
2475
  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2476
  /// emitted IR has a place to go. Note that by definition, if this function
2477
  /// creates a block then that block is unreachable; callers may do better to
2478
  /// detect when no insertion point is defined and simply skip IR generation.
2479
22.0k
  void EnsureInsertPoint() {
2480
22.0k
    if (!HaveInsertPoint())
2481
2.36k
      EmitBlock(createBasicBlock());
2482
22.0k
  }
2483
2484
  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2485
  /// specified stmt yet.
2486
  void ErrorUnsupported(const Stmt *S, const char *Type);
2487
2488
  //===--------------------------------------------------------------------===//
2489
  //                                  Helpers
2490
  //===--------------------------------------------------------------------===//
2491
2492
  LValue MakeAddrLValue(Address Addr, QualType T,
2493
2.25M
                        AlignmentSource Source = AlignmentSource::Type) {
2494
2.25M
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2495
2.25M
                            CGM.getTBAAAccessInfo(T));
2496
2.25M
  }
2497
2498
  LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2499
720k
                        TBAAAccessInfo TBAAInfo) {
2500
720k
    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2501
720k
  }
2502
2503
  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2504
3.45k
                        AlignmentSource Source = AlignmentSource::Type) {
2505
3.45k
    Address Addr(V, ConvertTypeForMem(T), Alignment);
2506
3.45k
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2507
3.45k
                            CGM.getTBAAAccessInfo(T));
2508
3.45k
  }
2509
2510
  LValue
2511
  MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2512
30
                            AlignmentSource Source = AlignmentSource::Type) {
2513
30
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2514
30
                            TBAAAccessInfo());
2515
30
  }
2516
2517
  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2518
  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2519
2520
  Address EmitLoadOfReference(LValue RefLVal,
2521
                              LValueBaseInfo *PointeeBaseInfo = nullptr,
2522
                              TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2523
  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2524
  LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2525
                                   AlignmentSource Source =
2526
63.9k
                                       AlignmentSource::Type) {
2527
63.9k
    LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2528
63.9k
                                    CGM.getTBAAAccessInfo(RefTy));
2529
63.9k
    return EmitLoadOfReferenceLValue(RefLVal);
2530
63.9k
  }
2531
2532
  /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2533
  /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2534
  /// it is loaded from.
2535
  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2536
                            LValueBaseInfo *BaseInfo = nullptr,
2537
                            TBAAAccessInfo *TBAAInfo = nullptr);
2538
  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2539
2540
  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2541
  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2542
  /// insertion point of the builder. The caller is responsible for setting an
2543
  /// appropriate alignment on
2544
  /// the alloca.
2545
  ///
2546
  /// \p ArraySize is the number of array elements to be allocated if it
2547
  ///    is not nullptr.
2548
  ///
2549
  /// LangAS::Default is the address space of pointers to local variables and
2550
  /// temporaries, as exposed in the source language. In certain
2551
  /// configurations, this is not the same as the alloca address space, and a
2552
  /// cast is needed to lift the pointer from the alloca AS into
2553
  /// LangAS::Default. This can happen when the target uses a restricted
2554
  /// address space for the stack but the source language requires
2555
  /// LangAS::Default to be a generic address space. The latter condition is
2556
  /// common for most programming languages; OpenCL is an exception in that
2557
  /// LangAS::Default is the private address space, which naturally maps
2558
  /// to the stack.
2559
  ///
2560
  /// Because the address of a temporary is often exposed to the program in
2561
  /// various ways, this function will perform the cast. The original alloca
2562
  /// instruction is returned through \p Alloca if it is not nullptr.
2563
  ///
2564
  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2565
  /// more efficient if the caller knows that the address will not be exposed.
2566
  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2567
                                     llvm::Value *ArraySize = nullptr);
2568
  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2569
                           const Twine &Name = "tmp",
2570
                           llvm::Value *ArraySize = nullptr,
2571
                           Address *Alloca = nullptr);
2572
  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2573
                                      const Twine &Name = "tmp",
2574
                                      llvm::Value *ArraySize = nullptr);
2575
2576
  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2577
  /// default ABI alignment of the given LLVM type.
2578
  ///
2579
  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2580
  /// any given AST type that happens to have been lowered to the
2581
  /// given IR type.  This should only ever be used for function-local,
2582
  /// IR-driven manipulations like saving and restoring a value.  Do
2583
  /// not hand this address off to arbitrary IRGen routines, and especially
2584
  /// do not pass it as an argument to a function that might expect a
2585
  /// properly ABI-aligned value.
2586
  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2587
                                       const Twine &Name = "tmp");
2588
2589
  /// CreateIRTemp - Create a temporary IR object of the given type, with
2590
  /// appropriate alignment. This routine should only be used when an temporary
2591
  /// value needs to be stored into an alloca (for example, to avoid explicit
2592
  /// PHI construction), but the type is the IR type, not the type appropriate
2593
  /// for storing in memory.
2594
  ///
2595
  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2596
  /// ConvertType instead of ConvertTypeForMem.
2597
  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2598
2599
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2600
  /// appropriate alignmen and cast it to the default address space. Returns
2601
  /// the original alloca instruction by \p Alloca if it is not nullptr.
2602
  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2603
                        Address *Alloca = nullptr);
2604
  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2605
                        Address *Alloca = nullptr);
2606
2607
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2608
  /// appropriate alignmen without casting it to the default address space.
2609
  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2610
  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2611
                                   const Twine &Name = "tmp");
2612
2613
  /// CreateAggTemp - Create a temporary memory object for the given
2614
  /// aggregate type.
2615
  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2616
10.1k
                             Address *Alloca = nullptr) {
2617
10.1k
    return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2618
10.1k
                                 T.getQualifiers(),
2619
10.1k
                                 AggValueSlot::IsNotDestructed,
2620
10.1k
                                 AggValueSlot::DoesNotNeedGCBarriers,
2621
10.1k
                                 AggValueSlot::IsNotAliased,
2622
10.1k
                                 AggValueSlot::DoesNotOverlap);
2623
10.1k
  }
2624
2625
  /// Emit a cast to void* in the appropriate address space.
2626
  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2627
2628
  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2629
  /// expression and compare the result against zero, returning an Int1Ty value.
2630
  llvm::Value *EvaluateExprAsBool(const Expr *E);
2631
2632
  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2633
  void EmitIgnoredExpr(const Expr *E);
2634
2635
  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2636
  /// any type.  The result is returned as an RValue struct.  If this is an
2637
  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2638
  /// the result should be returned.
2639
  ///
2640
  /// \param ignoreResult True if the resulting value isn't used.
2641
  RValue EmitAnyExpr(const Expr *E,
2642
                     AggValueSlot aggSlot = AggValueSlot::ignored(),
2643
                     bool ignoreResult = false);
2644
2645
  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2646
  // or the value of the expression, depending on how va_list is defined.
2647
  Address EmitVAListRef(const Expr *E);
2648
2649
  /// Emit a "reference" to a __builtin_ms_va_list; this is
2650
  /// always the value of the expression, because a __builtin_ms_va_list is a
2651
  /// pointer to a char.
2652
  Address EmitMSVAListRef(const Expr *E);
2653
2654
  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2655
  /// always be accessible even if no aggregate location is provided.
2656
  RValue EmitAnyExprToTemp(const Expr *E);
2657
2658
  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2659
  /// arbitrary expression into the given memory location.
2660
  void EmitAnyExprToMem(const Expr *E, Address Location,
2661
                        Qualifiers Quals, bool IsInitializer);
2662
2663
  void EmitAnyExprToExn(const Expr *E, Address Addr);
2664
2665
  /// EmitExprAsInit - Emits the code necessary to initialize a
2666
  /// location in memory with the given initializer.
2667
  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2668
                      bool capturedByInit);
2669
2670
  /// hasVolatileMember - returns true if aggregate type has a volatile
2671
  /// member.
2672
4.63k
  bool hasVolatileMember(QualType T) {
2673
4.63k
    if (const RecordType *RT = T->getAs<RecordType>()) {
2674
3.14k
      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2675
3.14k
      return RD->hasVolatileMember();
2676
3.14k
    }
2677
1.48k
    return false;
2678
4.63k
  }
2679
2680
  /// Determine whether a return value slot may overlap some other object.
2681
6.54k
  AggValueSlot::Overlap_t getOverlapForReturnValue() {
2682
    // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2683
    // class subobjects. These cases may need to be revisited depending on the
2684
    // resolution of the relevant core issue.
2685
6.54k
    return AggValueSlot::DoesNotOverlap;
2686
6.54k
  }
2687
2688
  /// Determine whether a field initialization may overlap some other object.
2689
  AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2690
2691
  /// Determine whether a base class initialization may overlap some other
2692
  /// object.
2693
  AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2694
                                                const CXXRecordDecl *BaseRD,
2695
                                                bool IsVirtual);
2696
2697
  /// Emit an aggregate assignment.
2698
4.17k
  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2699
4.17k
    bool IsVolatile = hasVolatileMember(EltTy);
2700
4.17k
    EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2701
4.17k
  }
2702
2703
  void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2704
5.83k
                             AggValueSlot::Overlap_t MayOverlap) {
2705
5.83k
    EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2706
5.83k
  }
2707
2708
  /// EmitAggregateCopy - Emit an aggregate copy.
2709
  ///
2710
  /// \param isVolatile \c true iff either the source or the destination is
2711
  ///        volatile.
2712
  /// \param MayOverlap Whether the tail padding of the destination might be
2713
  ///        occupied by some other object. More efficient code can often be
2714
  ///        generated if not.
2715
  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2716
                         AggValueSlot::Overlap_t MayOverlap,
2717
                         bool isVolatile = false);
2718
2719
  /// GetAddrOfLocalVar - Return the address of a local variable.
2720
196k
  Address GetAddrOfLocalVar(const VarDecl *VD) {
2721
196k
    auto it = LocalDeclMap.find(VD);
2722
196k
    assert(it != LocalDeclMap.end() &&
2723
196k
           "Invalid argument to GetAddrOfLocalVar(), no decl!");
2724
0
    return it->second;
2725
196k
  }
2726
2727
  /// Given an opaque value expression, return its LValue mapping if it exists,
2728
  /// otherwise create one.
2729
  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2730
2731
  /// Given an opaque value expression, return its RValue mapping if it exists,
2732
  /// otherwise create one.
2733
  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2734
2735
  /// Get the index of the current ArrayInitLoopExpr, if any.
2736
78
  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2737
2738
  /// getAccessedFieldNo - Given an encoded value and a result number, return
2739
  /// the input field number being accessed.
2740
  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2741
2742
  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2743
  llvm::BasicBlock *GetIndirectGotoBlock();
2744
2745
  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2746
  static bool IsWrappedCXXThis(const Expr *E);
2747
2748
  /// EmitNullInitialization - Generate code to set a value of the given type to
2749
  /// null, If the type contains data member pointers, they will be initialized
2750
  /// to -1 in accordance with the Itanium C++ ABI.
2751
  void EmitNullInitialization(Address DestPtr, QualType Ty);
2752
2753
  /// Emits a call to an LLVM variable-argument intrinsic, either
2754
  /// \c llvm.va_start or \c llvm.va_end.
2755
  /// \param ArgValue A reference to the \c va_list as emitted by either
2756
  /// \c EmitVAListRef or \c EmitMSVAListRef.
2757
  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2758
  /// calls \c llvm.va_end.
2759
  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2760
2761
  /// Generate code to get an argument from the passed in pointer
2762
  /// and update it accordingly.
2763
  /// \param VE The \c VAArgExpr for which to generate code.
2764
  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2765
  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2766
  /// \returns A pointer to the argument.
2767
  // FIXME: We should be able to get rid of this method and use the va_arg
2768
  // instruction in LLVM instead once it works well enough.
2769
  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2770
2771
  /// emitArrayLength - Compute the length of an array, even if it's a
2772
  /// VLA, and drill down to the base element type.
2773
  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2774
                               QualType &baseType,
2775
                               Address &addr);
2776
2777
  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2778
  /// the given variably-modified type and store them in the VLASizeMap.
2779
  ///
2780
  /// This function can be called with a null (unreachable) insert point.
2781
  void EmitVariablyModifiedType(QualType Ty);
2782
2783
  struct VlaSizePair {
2784
    llvm::Value *NumElts;
2785
    QualType Type;
2786
2787
12.2k
    VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2788
  };
2789
2790
  /// Return the number of elements for a single dimension
2791
  /// for the given array type.
2792
  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2793
  VlaSizePair getVLAElements1D(QualType vla);
2794
2795
  /// Returns an LLVM value that corresponds to the size,
2796
  /// in non-variably-sized elements, of a variable length array type,
2797
  /// plus that largest non-variably-sized element type.  Assumes that
2798
  /// the type has already been emitted with EmitVariablyModifiedType.
2799
  VlaSizePair getVLASize(const VariableArrayType *vla);
2800
  VlaSizePair getVLASize(QualType vla);
2801
2802
  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2803
  /// generating code for an C++ member function.
2804
160k
  llvm::Value *LoadCXXThis() {
2805
160k
    assert(CXXThisValue && "no 'this' value for this function");
2806
0
    return CXXThisValue;
2807
160k
  }
2808
  Address LoadCXXThisAddress();
2809
2810
  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2811
  /// virtual bases.
2812
  // FIXME: Every place that calls LoadCXXVTT is something
2813
  // that needs to be abstracted properly.
2814
325
  llvm::Value *LoadCXXVTT() {
2815
325
    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2816
0
    return CXXStructorImplicitParamValue;
2817
325
  }
2818
2819
  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2820
  /// complete class to the given direct base.
2821
  Address
2822
  GetAddressOfDirectBaseInCompleteClass(Address Value,
2823
                                        const CXXRecordDecl *Derived,
2824
                                        const CXXRecordDecl *Base,
2825
                                        bool BaseIsVirtual);
2826
2827
  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2828
2829
  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2830
  /// load of 'this' and returns address of the base class.
2831
  Address GetAddressOfBaseClass(Address Value,
2832
                                const CXXRecordDecl *Derived,
2833
                                CastExpr::path_const_iterator PathBegin,
2834
                                CastExpr::path_const_iterator PathEnd,
2835
                                bool NullCheckValue, SourceLocation Loc);
2836
2837
  Address GetAddressOfDerivedClass(Address Value,
2838
                                   const CXXRecordDecl *Derived,
2839
                                   CastExpr::path_const_iterator PathBegin,
2840
                                   CastExpr::path_const_iterator PathEnd,
2841
                                   bool NullCheckValue);
2842
2843
  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2844
  /// base constructor/destructor with virtual bases.
2845
  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2846
  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2847
  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2848
                               bool Delegating);
2849
2850
  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2851
                                      CXXCtorType CtorType,
2852
                                      const FunctionArgList &Args,
2853
                                      SourceLocation Loc);
2854
  // It's important not to confuse this and the previous function. Delegating
2855
  // constructors are the C++0x feature. The constructor delegate optimization
2856
  // is used to reduce duplication in the base and complete consturctors where
2857
  // they are substantially the same.
2858
  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2859
                                        const FunctionArgList &Args);
2860
2861
  /// Emit a call to an inheriting constructor (that is, one that invokes a
2862
  /// constructor inherited from a base class) by inlining its definition. This
2863
  /// is necessary if the ABI does not support forwarding the arguments to the
2864
  /// base class constructor (because they're variadic or similar).
2865
  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2866
                                               CXXCtorType CtorType,
2867
                                               bool ForVirtualBase,
2868
                                               bool Delegating,
2869
                                               CallArgList &Args);
2870
2871
  /// Emit a call to a constructor inherited from a base class, passing the
2872
  /// current constructor's arguments along unmodified (without even making
2873
  /// a copy).
2874
  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2875
                                       bool ForVirtualBase, Address This,
2876
                                       bool InheritedFromVBase,
2877
                                       const CXXInheritedCtorInitExpr *E);
2878
2879
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2880
                              bool ForVirtualBase, bool Delegating,
2881
                              AggValueSlot ThisAVS, const CXXConstructExpr *E);
2882
2883
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2884
                              bool ForVirtualBase, bool Delegating,
2885
                              Address This, CallArgList &Args,
2886
                              AggValueSlot::Overlap_t Overlap,
2887
                              SourceLocation Loc, bool NewPointerIsChecked);
2888
2889
  /// Emit assumption load for all bases. Requires to be be called only on
2890
  /// most-derived class and not under construction of the object.
2891
  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2892
2893
  /// Emit assumption that vptr load == global vtable.
2894
  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2895
2896
  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2897
                                      Address This, Address Src,
2898
                                      const CXXConstructExpr *E);
2899
2900
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2901
                                  const ArrayType *ArrayTy,
2902
                                  Address ArrayPtr,
2903
                                  const CXXConstructExpr *E,
2904
                                  bool NewPointerIsChecked,
2905
                                  bool ZeroInitialization = false);
2906
2907
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2908
                                  llvm::Value *NumElements,
2909
                                  Address ArrayPtr,
2910
                                  const CXXConstructExpr *E,
2911
                                  bool NewPointerIsChecked,
2912
                                  bool ZeroInitialization = false);
2913
2914
  static Destroyer destroyCXXObject;
2915
2916
  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2917
                             bool ForVirtualBase, bool Delegating, Address This,
2918
                             QualType ThisTy);
2919
2920
  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2921
                               llvm::Type *ElementTy, Address NewPtr,
2922
                               llvm::Value *NumElements,
2923
                               llvm::Value *AllocSizeWithoutCookie);
2924
2925
  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2926
                        Address Ptr);
2927
2928
  void EmitSehCppScopeBegin();
2929
  void EmitSehCppScopeEnd();
2930
  void EmitSehTryScopeBegin();
2931
  void EmitSehTryScopeEnd();
2932
2933
  llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2934
  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2935
2936
  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2937
  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2938
2939
  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2940
                      QualType DeleteTy, llvm::Value *NumElements = nullptr,
2941
                      CharUnits CookieSize = CharUnits());
2942
2943
  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2944
                                  const CallExpr *TheCallExpr, bool IsDelete);
2945
2946
  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2947
  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2948
  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2949
2950
  /// Situations in which we might emit a check for the suitability of a
2951
  /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2952
  /// compiler-rt.
2953
  enum TypeCheckKind {
2954
    /// Checking the operand of a load. Must be suitably sized and aligned.
2955
    TCK_Load,
2956
    /// Checking the destination of a store. Must be suitably sized and aligned.
2957
    TCK_Store,
2958
    /// Checking the bound value in a reference binding. Must be suitably sized
2959
    /// and aligned, but is not required to refer to an object (until the
2960
    /// reference is used), per core issue 453.
2961
    TCK_ReferenceBinding,
2962
    /// Checking the object expression in a non-static data member access. Must
2963
    /// be an object within its lifetime.
2964
    TCK_MemberAccess,
2965
    /// Checking the 'this' pointer for a call to a non-static member function.
2966
    /// Must be an object within its lifetime.
2967
    TCK_MemberCall,
2968
    /// Checking the 'this' pointer for a constructor call.
2969
    TCK_ConstructorCall,
2970
    /// Checking the operand of a static_cast to a derived pointer type. Must be
2971
    /// null or an object within its lifetime.
2972
    TCK_DowncastPointer,
2973
    /// Checking the operand of a static_cast to a derived reference type. Must
2974
    /// be an object within its lifetime.
2975
    TCK_DowncastReference,
2976
    /// Checking the operand of a cast to a base object. Must be suitably sized
2977
    /// and aligned.
2978
    TCK_Upcast,
2979
    /// Checking the operand of a cast to a virtual base object. Must be an
2980
    /// object within its lifetime.
2981
    TCK_UpcastToVirtualBase,
2982
    /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2983
    TCK_NonnullAssign,
2984
    /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2985
    /// null or an object within its lifetime.
2986
    TCK_DynamicOperation
2987
  };
2988
2989
  /// Determine whether the pointer type check \p TCK permits null pointers.
2990
  static bool isNullPointerAllowed(TypeCheckKind TCK);
2991
2992
  /// Determine whether the pointer type check \p TCK requires a vptr check.
2993
  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2994
2995
  /// Whether any type-checking sanitizers are enabled. If \c false,
2996
  /// calls to EmitTypeCheck can be skipped.
2997
  bool sanitizePerformTypeCheck() const;
2998
2999
  /// Emit a check that \p V is the address of storage of the
3000
  /// appropriate size and alignment for an object of type \p Type
3001
  /// (or if ArraySize is provided, for an array of that bound).
3002
  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3003
                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
3004
                     SanitizerSet SkippedChecks = SanitizerSet(),
3005
                     llvm::Value *ArraySize = nullptr);
3006
3007
  /// Emit a check that \p Base points into an array object, which
3008
  /// we can access at index \p Index. \p Accessed should be \c false if we
3009
  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3010
  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3011
                       QualType IndexType, bool Accessed);
3012
3013
  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3014
                                       bool isInc, bool isPre);
3015
  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3016
                                         bool isInc, bool isPre);
3017
3018
  /// Converts Location to a DebugLoc, if debug information is enabled.
3019
  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3020
3021
  /// Get the record field index as represented in debug info.
3022
  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3023
3024
3025
  //===--------------------------------------------------------------------===//
3026
  //                            Declaration Emission
3027
  //===--------------------------------------------------------------------===//
3028
3029
  /// EmitDecl - Emit a declaration.
3030
  ///
3031
  /// This function can be called with a null (unreachable) insert point.
3032
  void EmitDecl(const Decl &D);
3033
3034
  /// EmitVarDecl - Emit a local variable declaration.
3035
  ///
3036
  /// This function can be called with a null (unreachable) insert point.
3037
  void EmitVarDecl(const VarDecl &D);
3038
3039
  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3040
                      bool capturedByInit);
3041
3042
  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3043
                             llvm::Value *Address);
3044
3045
  /// Determine whether the given initializer is trivial in the sense
3046
  /// that it requires no code to be generated.
3047
  bool isTrivialInitializer(const Expr *Init);
3048
3049
  /// EmitAutoVarDecl - Emit an auto variable declaration.
3050
  ///
3051
  /// This function can be called with a null (unreachable) insert point.
3052
  void EmitAutoVarDecl(const VarDecl &D);
3053
3054
  class AutoVarEmission {
3055
    friend class CodeGenFunction;
3056
3057
    const VarDecl *Variable;
3058
3059
    /// The address of the alloca for languages with explicit address space
3060
    /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3061
    /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3062
    /// as a global constant.
3063
    Address Addr;
3064
3065
    llvm::Value *NRVOFlag;
3066
3067
    /// True if the variable is a __block variable that is captured by an
3068
    /// escaping block.
3069
    bool IsEscapingByRef;
3070
3071
    /// True if the variable is of aggregate type and has a constant
3072
    /// initializer.
3073
    bool IsConstantAggregate;
3074
3075
    /// Non-null if we should use lifetime annotations.
3076
    llvm::Value *SizeForLifetimeMarkers;
3077
3078
    /// Address with original alloca instruction. Invalid if the variable was
3079
    /// emitted as a global constant.
3080
    Address AllocaAddr;
3081
3082
    struct Invalid {};
3083
    AutoVarEmission(Invalid)
3084
        : Variable(nullptr), Addr(Address::invalid()),
3085
68
          AllocaAddr(Address::invalid()) {}
3086
3087
    AutoVarEmission(const VarDecl &variable)
3088
        : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3089
          IsEscapingByRef(false), IsConstantAggregate(false),
3090
254k
          SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3091
3092
491k
    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3093
3094
  public:
3095
68
    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3096
3097
258k
    bool useLifetimeMarkers() const {
3098
258k
      return SizeForLifetimeMarkers != nullptr;
3099
258k
    }
3100
3.79k
    llvm::Value *getSizeForLifetimeMarkers() const {
3101
3.79k
      assert(useLifetimeMarkers());
3102
0
      return SizeForLifetimeMarkers;
3103
3.79k
    }
3104
3105
    /// Returns the raw, allocated address, which is not necessarily
3106
    /// the address of the object itself. It is casted to default
3107
    /// address space for address space agnostic languages.
3108
36.3k
    Address getAllocatedAddress() const {
3109
36.3k
      return Addr;
3110
36.3k
    }
3111
3112
    /// Returns the address for the original alloca instruction.
3113
3.79k
    Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3114
3115
    /// Returns the address of the object within this declaration.
3116
    /// Note that this does not chase the forwarding pointer for
3117
    /// __block decls.
3118
246k
    Address getObjectAddress(CodeGenFunction &CGF) const {
3119
246k
      if (!IsEscapingByRef) 
return Addr245k
;
3120
3121
257
      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3122
246k
    }
3123
  };
3124
  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3125
  void EmitAutoVarInit(const AutoVarEmission &emission);
3126
  void EmitAutoVarCleanups(const AutoVarEmission &emission);
3127
  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3128
                              QualType::DestructionKind dtorKind);
3129
3130
  /// Emits the alloca and debug information for the size expressions for each
3131
  /// dimension of an array. It registers the association of its (1-dimensional)
3132
  /// QualTypes and size expression's debug node, so that CGDebugInfo can
3133
  /// reference this node when creating the DISubrange object to describe the
3134
  /// array types.
3135
  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3136
                                              const VarDecl &D,
3137
                                              bool EmitDebugInfo);
3138
3139
  void EmitStaticVarDecl(const VarDecl &D,
3140
                         llvm::GlobalValue::LinkageTypes Linkage);
3141
3142
  class ParamValue {
3143
    llvm::Value *Value;
3144
    llvm::Type *ElementType;
3145
    unsigned Alignment;
3146
    ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3147
526k
        : Value(V), ElementType(T), Alignment(A) {}
3148
  public:
3149
512k
    static ParamValue forDirect(llvm::Value *value) {
3150
512k
      return ParamValue(value, nullptr, 0);
3151
512k
    }
3152
14.3k
    static ParamValue forIndirect(Address addr) {
3153
14.3k
      assert(!addr.getAlignment().isZero());
3154
0
      return ParamValue(addr.getPointer(), addr.getElementType(),
3155
14.3k
                        addr.getAlignment().getQuantity());
3156
14.3k
    }
3157
3158
1.05M
    bool isIndirect() const { return Alignment != 0; }
3159
526k
    llvm::Value *getAnyValue() const { return Value; }
3160
3161
512k
    llvm::Value *getDirectValue() const {
3162
512k
      assert(!isIndirect());
3163
0
      return Value;
3164
512k
    }
3165
3166
14.3k
    Address getIndirectAddress() const {
3167
14.3k
      assert(isIndirect());
3168
0
      return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3169
14.3k
    }
3170
  };
3171
3172
  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3173
  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3174
3175
  /// protectFromPeepholes - Protect a value that we're intending to
3176
  /// store to the side, but which will probably be used later, from
3177
  /// aggressive peepholing optimizations that might delete it.
3178
  ///
3179
  /// Pass the result to unprotectFromPeepholes to declare that
3180
  /// protection is no longer required.
3181
  ///
3182
  /// There's no particular reason why this shouldn't apply to
3183
  /// l-values, it's just that no existing peepholes work on pointers.
3184
  PeepholeProtection protectFromPeepholes(RValue rvalue);
3185
  void unprotectFromPeepholes(PeepholeProtection protection);
3186
3187
  void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3188
                                    SourceLocation Loc,
3189
                                    SourceLocation AssumptionLoc,
3190
                                    llvm::Value *Alignment,
3191
                                    llvm::Value *OffsetValue,
3192
                                    llvm::Value *TheCheck,
3193
                                    llvm::Instruction *Assumption);
3194
3195
  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3196
                               SourceLocation Loc, SourceLocation AssumptionLoc,
3197
                               llvm::Value *Alignment,
3198
                               llvm::Value *OffsetValue = nullptr);
3199
3200
  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3201
                               SourceLocation AssumptionLoc,
3202
                               llvm::Value *Alignment,
3203
                               llvm::Value *OffsetValue = nullptr);
3204
3205
  //===--------------------------------------------------------------------===//
3206
  //                             Statement Emission
3207
  //===--------------------------------------------------------------------===//
3208
3209
  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3210
  void EmitStopPoint(const Stmt *S);
3211
3212
  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3213
  /// this function even if there is no current insertion point.
3214
  ///
3215
  /// This function may clear the current insertion point; callers should use
3216
  /// EnsureInsertPoint if they wish to subsequently generate code without first
3217
  /// calling EmitBlock, EmitBranch, or EmitStmt.
3218
  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3219
3220
  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3221
  /// necessarily require an insertion point or debug information; typically
3222
  /// because the statement amounts to a jump or a container of other
3223
  /// statements.
3224
  ///
3225
  /// \return True if the statement was handled.
3226
  bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3227
3228
  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3229
                           AggValueSlot AVS = AggValueSlot::ignored());
3230
  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3231
                                       bool GetLast = false,
3232
                                       AggValueSlot AVS =
3233
                                                AggValueSlot::ignored());
3234
3235
  /// EmitLabel - Emit the block for the given label. It is legal to call this
3236
  /// function even if there is no current insertion point.
3237
  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3238
3239
  void EmitLabelStmt(const LabelStmt &S);
3240
  void EmitAttributedStmt(const AttributedStmt &S);
3241
  void EmitGotoStmt(const GotoStmt &S);
3242
  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3243
  void EmitIfStmt(const IfStmt &S);
3244
3245
  void EmitWhileStmt(const WhileStmt &S,
3246
                     ArrayRef<const Attr *> Attrs = None);
3247
  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3248
  void EmitForStmt(const ForStmt &S,
3249
                   ArrayRef<const Attr *> Attrs = None);
3250
  void EmitReturnStmt(const ReturnStmt &S);
3251
  void EmitDeclStmt(const DeclStmt &S);
3252
  void EmitBreakStmt(const BreakStmt &S);
3253
  void EmitContinueStmt(const ContinueStmt &S);
3254
  void EmitSwitchStmt(const SwitchStmt &S);
3255
  void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3256
  void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3257
  void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3258
  void EmitAsmStmt(const AsmStmt &S);
3259
3260
  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3261
  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3262
  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3263
  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3264
  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3265
3266
  void EmitCoroutineBody(const CoroutineBodyStmt &S);
3267
  void EmitCoreturnStmt(const CoreturnStmt &S);
3268
  RValue EmitCoawaitExpr(const CoawaitExpr &E,
3269
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3270
                         bool ignoreResult = false);
3271
  LValue EmitCoawaitLValue(const CoawaitExpr *E);
3272
  RValue EmitCoyieldExpr(const CoyieldExpr &E,
3273
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3274
                         bool ignoreResult = false);
3275
  LValue EmitCoyieldLValue(const CoyieldExpr *E);
3276
  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3277
3278
  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3279
  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3280
3281
  void EmitCXXTryStmt(const CXXTryStmt &S);
3282
  void EmitSEHTryStmt(const SEHTryStmt &S);
3283
  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3284
  void EnterSEHTryStmt(const SEHTryStmt &S);
3285
  void ExitSEHTryStmt(const SEHTryStmt &S);
3286
  void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3287
                           llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3288
3289
  void pushSEHCleanup(CleanupKind kind,
3290
                      llvm::Function *FinallyFunc);
3291
  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3292
                              const Stmt *OutlinedStmt);
3293
3294
  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3295
                                            const SEHExceptStmt &Except);
3296
3297
  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3298
                                             const SEHFinallyStmt &Finally);
3299
3300
  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3301
                                llvm::Value *ParentFP,
3302
                                llvm::Value *EntryEBP);
3303
  llvm::Value *EmitSEHExceptionCode();
3304
  llvm::Value *EmitSEHExceptionInfo();
3305
  llvm::Value *EmitSEHAbnormalTermination();
3306
3307
  /// Emit simple code for OpenMP directives in Simd-only mode.
3308
  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3309
3310
  /// Scan the outlined statement for captures from the parent function. For
3311
  /// each capture, mark the capture as escaped and emit a call to
3312
  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3313
  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3314
                          bool IsFilter);
3315
3316
  /// Recovers the address of a local in a parent function. ParentVar is the
3317
  /// address of the variable used in the immediate parent function. It can
3318
  /// either be an alloca or a call to llvm.localrecover if there are nested
3319
  /// outlined functions. ParentFP is the frame pointer of the outermost parent
3320
  /// frame.
3321
  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3322
                                    Address ParentVar,
3323
                                    llvm::Value *ParentFP);
3324
3325
  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3326
                           ArrayRef<const Attr *> Attrs = None);
3327
3328
  /// Controls insertion of cancellation exit blocks in worksharing constructs.
3329
  class OMPCancelStackRAII {
3330
    CodeGenFunction &CGF;
3331
3332
  public:
3333
    OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3334
                       bool HasCancel)
3335
4.42k
        : CGF(CGF) {
3336
4.42k
      CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3337
4.42k
    }
3338
4.42k
    ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3339
  };
3340
3341
  /// Returns calculated size of the specified type.
3342
  llvm::Value *getTypeSize(QualType Ty);
3343
  LValue InitCapturedStruct(const CapturedStmt &S);
3344
  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3345
  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3346
  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3347
  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3348
                                                     SourceLocation Loc);
3349
  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3350
                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
3351
  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3352
                          SourceLocation Loc);
3353
  /// Perform element by element copying of arrays with type \a
3354
  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3355
  /// generated by \a CopyGen.
3356
  ///
3357
  /// \param DestAddr Address of the destination array.
3358
  /// \param SrcAddr Address of the source array.
3359
  /// \param OriginalType Type of destination and source arrays.
3360
  /// \param CopyGen Copying procedure that copies value of single array element
3361
  /// to another single array element.
3362
  void EmitOMPAggregateAssign(
3363
      Address DestAddr, Address SrcAddr, QualType OriginalType,
3364
      const llvm::function_ref<void(Address, Address)> CopyGen);
3365
  /// Emit proper copying of data from one variable to another.
3366
  ///
3367
  /// \param OriginalType Original type of the copied variables.
3368
  /// \param DestAddr Destination address.
3369
  /// \param SrcAddr Source address.
3370
  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3371
  /// type of the base array element).
3372
  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3373
  /// the base array element).
3374
  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3375
  /// DestVD.
3376
  void EmitOMPCopy(QualType OriginalType,
3377
                   Address DestAddr, Address SrcAddr,
3378
                   const VarDecl *DestVD, const VarDecl *SrcVD,
3379
                   const Expr *Copy);
3380
  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3381
  /// \a X = \a E \a BO \a E.
3382
  ///
3383
  /// \param X Value to be updated.
3384
  /// \param E Update value.
3385
  /// \param BO Binary operation for update operation.
3386
  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3387
  /// expression, false otherwise.
3388
  /// \param AO Atomic ordering of the generated atomic instructions.
3389
  /// \param CommonGen Code generator for complex expressions that cannot be
3390
  /// expressed through atomicrmw instruction.
3391
  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3392
  /// generated, <false, RValue::get(nullptr)> otherwise.
3393
  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3394
      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3395
      llvm::AtomicOrdering AO, SourceLocation Loc,
3396
      const llvm::function_ref<RValue(RValue)> CommonGen);
3397
  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3398
                                 OMPPrivateScope &PrivateScope);
3399
  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3400
                            OMPPrivateScope &PrivateScope);
3401
  void EmitOMPUseDevicePtrClause(
3402
      const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3403
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3404
  void EmitOMPUseDeviceAddrClause(
3405
      const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3406
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3407
  /// Emit code for copyin clause in \a D directive. The next code is
3408
  /// generated at the start of outlined functions for directives:
3409
  /// \code
3410
  /// threadprivate_var1 = master_threadprivate_var1;
3411
  /// operator=(threadprivate_var2, master_threadprivate_var2);
3412
  /// ...
3413
  /// __kmpc_barrier(&loc, global_tid);
3414
  /// \endcode
3415
  ///
3416
  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3417
  /// \returns true if at least one copyin variable is found, false otherwise.
3418
  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3419
  /// Emit initial code for lastprivate variables. If some variable is
3420
  /// not also firstprivate, then the default initialization is used. Otherwise
3421
  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3422
  /// method.
3423
  ///
3424
  /// \param D Directive that may have 'lastprivate' directives.
3425
  /// \param PrivateScope Private scope for capturing lastprivate variables for
3426
  /// proper codegen in internal captured statement.
3427
  ///
3428
  /// \returns true if there is at least one lastprivate variable, false
3429
  /// otherwise.
3430
  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3431
                                    OMPPrivateScope &PrivateScope);
3432
  /// Emit final copying of lastprivate values to original variables at
3433
  /// the end of the worksharing or simd directive.
3434
  ///
3435
  /// \param D Directive that has at least one 'lastprivate' directives.
3436
  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3437
  /// it is the last iteration of the loop code in associated directive, or to
3438
  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3439
  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3440
                                     bool NoFinals,
3441
                                     llvm::Value *IsLastIterCond = nullptr);
3442
  /// Emit initial code for linear clauses.
3443
  void EmitOMPLinearClause(const OMPLoopDirective &D,
3444
                           CodeGenFunction::OMPPrivateScope &PrivateScope);
3445
  /// Emit final code for linear clauses.
3446
  /// \param CondGen Optional conditional code for final part of codegen for
3447
  /// linear clause.
3448
  void EmitOMPLinearClauseFinal(
3449
      const OMPLoopDirective &D,
3450
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3451
  /// Emit initial code for reduction variables. Creates reduction copies
3452
  /// and initializes them with the values according to OpenMP standard.
3453
  ///
3454
  /// \param D Directive (possibly) with the 'reduction' clause.
3455
  /// \param PrivateScope Private scope for capturing reduction variables for
3456
  /// proper codegen in internal captured statement.
3457
  ///
3458
  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3459
                                  OMPPrivateScope &PrivateScope,
3460
                                  bool ForInscan = false);
3461
  /// Emit final update of reduction values to original variables at
3462
  /// the end of the directive.
3463
  ///
3464
  /// \param D Directive that has at least one 'reduction' directives.
3465
  /// \param ReductionKind The kind of reduction to perform.
3466
  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3467
                                   const OpenMPDirectiveKind ReductionKind);
3468
  /// Emit initial code for linear variables. Creates private copies
3469
  /// and initializes them with the values according to OpenMP standard.
3470
  ///
3471
  /// \param D Directive (possibly) with the 'linear' clause.
3472
  /// \return true if at least one linear variable is found that should be
3473
  /// initialized with the value of the original variable, false otherwise.
3474
  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3475
3476
  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3477
                                        llvm::Function * /*OutlinedFn*/,
3478
                                        const OMPTaskDataTy & /*Data*/)>
3479
      TaskGenTy;
3480
  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3481
                                 const OpenMPDirectiveKind CapturedRegion,
3482
                                 const RegionCodeGenTy &BodyGen,
3483
                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3484
  struct OMPTargetDataInfo {
3485
    Address BasePointersArray = Address::invalid();
3486
    Address PointersArray = Address::invalid();
3487
    Address SizesArray = Address::invalid();
3488
    Address MappersArray = Address::invalid();
3489
    unsigned NumberOfTargetItems = 0;
3490
9.82k
    explicit OMPTargetDataInfo() = default;
3491
    OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3492
                      Address SizesArray, Address MappersArray,
3493
                      unsigned NumberOfTargetItems)
3494
        : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3495
          SizesArray(SizesArray), MappersArray(MappersArray),
3496
0
          NumberOfTargetItems(NumberOfTargetItems) {}
3497
  };
3498
  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3499
                                       const RegionCodeGenTy &BodyGen,
3500
                                       OMPTargetDataInfo &InputInfo);
3501
3502
  void EmitOMPMetaDirective(const OMPMetaDirective &S);
3503
  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3504
  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3505
  void EmitOMPTileDirective(const OMPTileDirective &S);
3506
  void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3507
  void EmitOMPForDirective(const OMPForDirective &S);
3508
  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3509
  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3510
  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3511
  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3512
  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3513
  void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3514
  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3515
  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3516
  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3517
  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3518
  void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3519
  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3520
  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3521
  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3522
  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3523
  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3524
  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3525
  void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3526
  void EmitOMPScanDirective(const OMPScanDirective &S);
3527
  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3528
  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3529
  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3530
  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3531
  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3532
  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3533
  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3534
  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3535
  void
3536
  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3537
  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3538
  void
3539
  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3540
  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3541
  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3542
  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3543
  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3544
  void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3545
  void
3546
  EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3547
  void EmitOMPParallelMasterTaskLoopDirective(
3548
      const OMPParallelMasterTaskLoopDirective &S);
3549
  void EmitOMPParallelMasterTaskLoopSimdDirective(
3550
      const OMPParallelMasterTaskLoopSimdDirective &S);
3551
  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3552
  void EmitOMPDistributeParallelForDirective(
3553
      const OMPDistributeParallelForDirective &S);
3554
  void EmitOMPDistributeParallelForSimdDirective(
3555
      const OMPDistributeParallelForSimdDirective &S);
3556
  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3557
  void EmitOMPTargetParallelForSimdDirective(
3558
      const OMPTargetParallelForSimdDirective &S);
3559
  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3560
  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3561
  void
3562
  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3563
  void EmitOMPTeamsDistributeParallelForSimdDirective(
3564
      const OMPTeamsDistributeParallelForSimdDirective &S);
3565
  void EmitOMPTeamsDistributeParallelForDirective(
3566
      const OMPTeamsDistributeParallelForDirective &S);
3567
  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3568
  void EmitOMPTargetTeamsDistributeDirective(
3569
      const OMPTargetTeamsDistributeDirective &S);
3570
  void EmitOMPTargetTeamsDistributeParallelForDirective(
3571
      const OMPTargetTeamsDistributeParallelForDirective &S);
3572
  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3573
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3574
  void EmitOMPTargetTeamsDistributeSimdDirective(
3575
      const OMPTargetTeamsDistributeSimdDirective &S);
3576
  void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3577
  void EmitOMPInteropDirective(const OMPInteropDirective &S);
3578
3579
  /// Emit device code for the target directive.
3580
  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3581
                                          StringRef ParentName,
3582
                                          const OMPTargetDirective &S);
3583
  static void
3584
  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3585
                                      const OMPTargetParallelDirective &S);
3586
  /// Emit device code for the target parallel for directive.
3587
  static void EmitOMPTargetParallelForDeviceFunction(
3588
      CodeGenModule &CGM, StringRef ParentName,
3589
      const OMPTargetParallelForDirective &S);
3590
  /// Emit device code for the target parallel for simd directive.
3591
  static void EmitOMPTargetParallelForSimdDeviceFunction(
3592
      CodeGenModule &CGM, StringRef ParentName,
3593
      const OMPTargetParallelForSimdDirective &S);
3594
  /// Emit device code for the target teams directive.
3595
  static void
3596
  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3597
                                   const OMPTargetTeamsDirective &S);
3598
  /// Emit device code for the target teams distribute directive.
3599
  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3600
      CodeGenModule &CGM, StringRef ParentName,
3601
      const OMPTargetTeamsDistributeDirective &S);
3602
  /// Emit device code for the target teams distribute simd directive.
3603
  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3604
      CodeGenModule &CGM, StringRef ParentName,
3605
      const OMPTargetTeamsDistributeSimdDirective &S);
3606
  /// Emit device code for the target simd directive.
3607
  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3608
                                              StringRef ParentName,
3609
                                              const OMPTargetSimdDirective &S);
3610
  /// Emit device code for the target teams distribute parallel for simd
3611
  /// directive.
3612
  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3613
      CodeGenModule &CGM, StringRef ParentName,
3614
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3615
3616
  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3617
      CodeGenModule &CGM, StringRef ParentName,
3618
      const OMPTargetTeamsDistributeParallelForDirective &S);
3619
3620
  /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3621
  /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3622
  /// future it is meant to be the number of loops expected in the loop nests
3623
  /// (usually specified by the "collapse" clause) that are collapsed to a
3624
  /// single loop by this function.
3625
  llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3626
                                                             int Depth);
3627
3628
  /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3629
  void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3630
3631
  /// Emit inner loop of the worksharing/simd construct.
3632
  ///
3633
  /// \param S Directive, for which the inner loop must be emitted.
3634
  /// \param RequiresCleanup true, if directive has some associated private
3635
  /// variables.
3636
  /// \param LoopCond Bollean condition for loop continuation.
3637
  /// \param IncExpr Increment expression for loop control variable.
3638
  /// \param BodyGen Generator for the inner body of the inner loop.
3639
  /// \param PostIncGen Genrator for post-increment code (required for ordered
3640
  /// loop directvies).
3641
  void EmitOMPInnerLoop(
3642
      const OMPExecutableDirective &S, bool RequiresCleanup,
3643
      const Expr *LoopCond, const Expr *IncExpr,
3644
      const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3645
      const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3646
3647
  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3648
  /// Emit initial code for loop counters of loop-based directives.
3649
  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3650
                                  OMPPrivateScope &LoopScope);
3651
3652
  /// Helper for the OpenMP loop directives.
3653
  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3654
3655
  /// Emit code for the worksharing loop-based directive.
3656
  /// \return true, if this construct has any lastprivate clause, false -
3657
  /// otherwise.
3658
  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3659
                              const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3660
                              const CodeGenDispatchBoundsTy &CGDispatchBounds);
3661
3662
  /// Emit code for the distribute loop-based directive.
3663
  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3664
                             const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3665
3666
  /// Helpers for the OpenMP loop directives.
3667
  void EmitOMPSimdInit(const OMPLoopDirective &D);
3668
  void EmitOMPSimdFinal(
3669
      const OMPLoopDirective &D,
3670
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3671
3672
  /// Emits the lvalue for the expression with possibly captured variable.
3673
  LValue EmitOMPSharedLValue(const Expr *E);
3674
3675
private:
3676
  /// Helpers for blocks.
3677
  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3678
3679
  /// struct with the values to be passed to the OpenMP loop-related functions
3680
  struct OMPLoopArguments {
3681
    /// loop lower bound
3682
    Address LB = Address::invalid();
3683
    /// loop upper bound
3684
    Address UB = Address::invalid();
3685
    /// loop stride
3686
    Address ST = Address::invalid();
3687
    /// isLastIteration argument for runtime functions
3688
    Address IL = Address::invalid();
3689
    /// Chunk value generated by sema
3690
    llvm::Value *Chunk = nullptr;
3691
    /// EnsureUpperBound
3692
    Expr *EUB = nullptr;
3693
    /// IncrementExpression
3694
    Expr *IncExpr = nullptr;
3695
    /// Loop initialization
3696
    Expr *Init = nullptr;
3697
    /// Loop exit condition
3698
    Expr *Cond = nullptr;
3699
    /// Update of LB after a whole chunk has been executed
3700
    Expr *NextLB = nullptr;
3701
    /// Update of UB after a whole chunk has been executed
3702
    Expr *NextUB = nullptr;
3703
164
    OMPLoopArguments() = default;
3704
    OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3705
                     llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3706
                     Expr *IncExpr = nullptr, Expr *Init = nullptr,
3707
                     Expr *Cond = nullptr, Expr *NextLB = nullptr,
3708
                     Expr *NextUB = nullptr)
3709
        : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3710
          IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3711
2.27k
          NextUB(NextUB) {}
3712
  };
3713
  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3714
                        const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3715
                        const OMPLoopArguments &LoopArgs,
3716
                        const CodeGenLoopTy &CodeGenLoop,
3717
                        const CodeGenOrderedTy &CodeGenOrdered);
3718
  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3719
                           bool IsMonotonic, const OMPLoopDirective &S,
3720
                           OMPPrivateScope &LoopScope, bool Ordered,
3721
                           const OMPLoopArguments &LoopArgs,
3722
                           const CodeGenDispatchBoundsTy &CGDispatchBounds);
3723
  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3724
                                  const OMPLoopDirective &S,
3725
                                  OMPPrivateScope &LoopScope,
3726
                                  const OMPLoopArguments &LoopArgs,
3727
                                  const CodeGenLoopTy &CodeGenLoopContent);
3728
  /// Emit code for sections directive.
3729
  void EmitSections(const OMPExecutableDirective &S);
3730
3731
public:
3732
3733
  //===--------------------------------------------------------------------===//
3734
  //                         LValue Expression Emission
3735
  //===--------------------------------------------------------------------===//
3736
3737
  /// Create a check that a scalar RValue is non-null.
3738
  llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3739
3740
  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3741
  RValue GetUndefRValue(QualType Ty);
3742
3743
  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3744
  /// and issue an ErrorUnsupported style diagnostic (using the
3745
  /// provided Name).
3746
  RValue EmitUnsupportedRValue(const Expr *E,
3747
                               const char *Name);
3748
3749
  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3750
  /// an ErrorUnsupported style diagnostic (using the provided Name).
3751
  LValue EmitUnsupportedLValue(const Expr *E,
3752
                               const char *Name);
3753
3754
  /// EmitLValue - Emit code to compute a designator that specifies the location
3755
  /// of the expression.
3756
  ///
3757
  /// This can return one of two things: a simple address or a bitfield
3758
  /// reference.  In either case, the LLVM Value* in the LValue structure is
3759
  /// guaranteed to be an LLVM pointer type.
3760
  ///
3761
  /// If this returns a bitfield reference, nothing about the pointee type of
3762
  /// the LLVM value is known: For example, it may not be a pointer to an
3763
  /// integer.
3764
  ///
3765
  /// If this returns a normal address, and if the lvalue's C type is fixed
3766
  /// size, this method guarantees that the returned pointer type will point to
3767
  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3768
  /// variable length type, this is not possible.
3769
  ///
3770
  LValue EmitLValue(const Expr *E);
3771
3772
  /// Same as EmitLValue but additionally we generate checking code to
3773
  /// guard against undefined behavior.  This is only suitable when we know
3774
  /// that the address will be used to access the object.
3775
  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3776
3777
  RValue convertTempToRValue(Address addr, QualType type,
3778
                             SourceLocation Loc);
3779
3780
  void EmitAtomicInit(Expr *E, LValue lvalue);
3781
3782
  bool LValueIsSuitableForInlineAtomic(LValue Src);
3783
3784
  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3785
                        AggValueSlot Slot = AggValueSlot::ignored());
3786
3787
  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3788
                        llvm::AtomicOrdering AO, bool IsVolatile = false,
3789
                        AggValueSlot slot = AggValueSlot::ignored());
3790
3791
  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3792
3793
  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3794
                       bool IsVolatile, bool isInit);
3795
3796
  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3797
      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3798
      llvm::AtomicOrdering Success =
3799
          llvm::AtomicOrdering::SequentiallyConsistent,
3800
      llvm::AtomicOrdering Failure =
3801
          llvm::AtomicOrdering::SequentiallyConsistent,
3802
      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3803
3804
  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3805
                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
3806
                        bool IsVolatile);
3807
3808
  /// EmitToMemory - Change a scalar value from its value
3809
  /// representation to its in-memory representation.
3810
  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3811
3812
  /// EmitFromMemory - Change a scalar value from its memory
3813
  /// representation to its value representation.
3814
  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3815
3816
  /// Check if the scalar \p Value is within the valid range for the given
3817
  /// type \p Ty.
3818
  ///
3819
  /// Returns true if a check is needed (even if the range is unknown).
3820
  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3821
                            SourceLocation Loc);
3822
3823
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3824
  /// care to appropriately convert from the memory representation to
3825
  /// the LLVM value representation.
3826
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3827
                                SourceLocation Loc,
3828
                                AlignmentSource Source = AlignmentSource::Type,
3829
4.66k
                                bool isNontemporal = false) {
3830
4.66k
    return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3831
4.66k
                            CGM.getTBAAAccessInfo(Ty), isNontemporal);
3832
4.66k
  }
3833
3834
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3835
                                SourceLocation Loc, LValueBaseInfo BaseInfo,
3836
                                TBAAAccessInfo TBAAInfo,
3837
                                bool isNontemporal = false);
3838
3839
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3840
  /// care to appropriately convert from the memory representation to
3841
  /// the LLVM value representation.  The l-value must be a simple
3842
  /// l-value.
3843
  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3844
3845
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3846
  /// care to appropriately convert from the memory representation to
3847
  /// the LLVM value representation.
3848
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3849
                         bool Volatile, QualType Ty,
3850
                         AlignmentSource Source = AlignmentSource::Type,
3851
1.19k
                         bool isInit = false, bool isNontemporal = false) {
3852
1.19k
    EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3853
1.19k
                      CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3854
1.19k
  }
3855
3856
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3857
                         bool Volatile, QualType Ty,
3858
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3859
                         bool isInit = false, bool isNontemporal = false);
3860
3861
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3862
  /// care to appropriately convert from the memory representation to
3863
  /// the LLVM value representation.  The l-value must be a simple
3864
  /// l-value.  The isInit flag indicates whether this is an initialization.
3865
  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3866
  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3867
3868
  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3869
  /// this method emits the address of the lvalue, then loads the result as an
3870
  /// rvalue, returning the rvalue.
3871
  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3872
  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3873
  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3874
  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3875
3876
  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3877
  /// lvalue, where both are guaranteed to the have the same type, and that type
3878
  /// is 'Ty'.
3879
  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3880
  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3881
  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3882
3883
  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3884
  /// as EmitStoreThroughLValue.
3885
  ///
3886
  /// \param Result [out] - If non-null, this will be set to a Value* for the
3887
  /// bit-field contents after the store, appropriate for use as the result of
3888
  /// an assignment to the bit-field.
3889
  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3890
                                      llvm::Value **Result=nullptr);
3891
3892
  /// Emit an l-value for an assignment (simple or compound) of complex type.
3893
  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3894
  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3895
  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3896
                                             llvm::Value *&Result);
3897
3898
  // Note: only available for agg return types
3899
  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3900
  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3901
  // Note: only available for agg return types
3902
  LValue EmitCallExprLValue(const CallExpr *E);
3903
  // Note: only available for agg return types
3904
  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3905
  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3906
  LValue EmitStringLiteralLValue(const StringLiteral *E);
3907
  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3908
  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3909
  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3910
  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3911
                                bool Accessed = false);
3912
  LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3913
  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3914
                                 bool IsLowerBound = true);
3915
  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3916
  LValue EmitMemberExpr(const MemberExpr *E);
3917
  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3918
  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3919
  LValue EmitInitListLValue(const InitListExpr *E);
3920
  void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
3921
  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3922
  LValue EmitCastLValue(const CastExpr *E);
3923
  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3924
  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3925
3926
  Address EmitExtVectorElementLValue(LValue V);
3927
3928
  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3929
3930
  Address EmitArrayToPointerDecay(const Expr *Array,
3931
                                  LValueBaseInfo *BaseInfo = nullptr,
3932
                                  TBAAAccessInfo *TBAAInfo = nullptr);
3933
3934
  class ConstantEmission {
3935
    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3936
    ConstantEmission(llvm::Constant *C, bool isReference)
3937
6.48k
      : ValueAndIsReference(C, isReference) {}
3938
  public:
3939
1.00M
    ConstantEmission() {}
3940
60
    static ConstantEmission forReference(llvm::Constant *C) {
3941
60
      return ConstantEmission(C, true);
3942
60
    }
3943
6.42k
    static ConstantEmission forValue(llvm::Constant *C) {
3944
6.42k
      return ConstantEmission(C, false);
3945
6.42k
    }
3946
3947
1.02M
    explicit operator bool() const {
3948
1.02M
      return ValueAndIsReference.getOpaqueValue() != nullptr;
3949
1.02M
    }
3950
3951
12.9k
    bool isReference() const { return ValueAndIsReference.getInt(); }
3952
60
    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3953
60
      assert(isReference());
3954
0
      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3955
60
                                            refExpr->getType());
3956
60
    }
3957
3958
6.42k
    llvm::Constant *getValue() const {
3959
6.42k
      assert(!isReference());
3960
0
      return ValueAndIsReference.getPointer();
3961
6.42k
    }
3962
  };
3963
3964
  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3965
  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3966
  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3967
3968
  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3969
                                AggValueSlot slot = AggValueSlot::ignored());
3970
  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3971
3972
  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3973
                              const ObjCIvarDecl *Ivar);
3974
  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3975
  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3976
3977
  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3978
  /// if the Field is a reference, this will return the address of the reference
3979
  /// and not the address of the value stored in the reference.
3980
  LValue EmitLValueForFieldInitialization(LValue Base,
3981
                                          const FieldDecl* Field);
3982
3983
  LValue EmitLValueForIvar(QualType ObjectTy,
3984
                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
3985
                           unsigned CVRQualifiers);
3986
3987
  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3988
  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3989
  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3990
  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3991
3992
  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3993
  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3994
  LValue EmitStmtExprLValue(const StmtExpr *E);
3995
  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3996
  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3997
  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3998
3999
  //===--------------------------------------------------------------------===//
4000
  //                         Scalar Expression Emission
4001
  //===--------------------------------------------------------------------===//
4002
4003
  /// EmitCall - Generate a call of the given function, expecting the given
4004
  /// result type, and using the given argument list which specifies both the
4005
  /// LLVM arguments and the types they were derived from.
4006
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4007
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
4008
                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4009
                  SourceLocation Loc);
4010
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4011
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
4012
                  llvm::CallBase **callOrInvoke = nullptr,
4013
18.4k
                  bool IsMustTail = false) {
4014
18.4k
    return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4015
18.4k
                    IsMustTail, SourceLocation());
4016
18.4k
  }
4017
  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4018
                  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4019
  RValue EmitCallExpr(const CallExpr *E,
4020
                      ReturnValueSlot ReturnValue = ReturnValueSlot());
4021
  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4022
  CGCallee EmitCallee(const Expr *E);
4023
4024
  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4025
  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4026
4027
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4028
                                  const Twine &name = "");
4029
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4030
                                  ArrayRef<llvm::Value *> args,
4031
                                  const Twine &name = "");
4032
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4033
                                          const Twine &name = "");
4034
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4035
                                          ArrayRef<llvm::Value *> args,
4036
                                          const Twine &name = "");
4037
4038
  SmallVector<llvm::OperandBundleDef, 1>
4039
  getBundlesForFunclet(llvm::Value *Callee);
4040
4041
  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4042
                                   ArrayRef<llvm::Value *> Args,
4043
                                   const Twine &Name = "");
4044
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4045
                                          ArrayRef<llvm::Value *> args,
4046
                                          const Twine &name = "");
4047
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4048
                                          const Twine &name = "");
4049
  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4050
                                       ArrayRef<llvm::Value *> args);
4051
4052
  CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4053
                                     NestedNameSpecifier *Qual,
4054
                                     llvm::Type *Ty);
4055
4056
  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4057
                                               CXXDtorType Type,
4058
                                               const CXXRecordDecl *RD);
4059
4060
  // Return the copy constructor name with the prefix "__copy_constructor_"
4061
  // removed.
4062
  static std::string getNonTrivialCopyConstructorStr(QualType QT,
4063
                                                     CharUnits Alignment,
4064
                                                     bool IsVolatile,
4065
                                                     ASTContext &Ctx);
4066
4067
  // Return the destructor name with the prefix "__destructor_" removed.
4068
  static std::string getNonTrivialDestructorStr(QualType QT,
4069
                                                CharUnits Alignment,
4070
                                                bool IsVolatile,
4071
                                                ASTContext &Ctx);
4072
4073
  // These functions emit calls to the special functions of non-trivial C
4074
  // structs.
4075
  void defaultInitNonTrivialCStructVar(LValue Dst);
4076
  void callCStructDefaultConstructor(LValue Dst);
4077
  void callCStructDestructor(LValue Dst);
4078
  void callCStructCopyConstructor(LValue Dst, LValue Src);
4079
  void callCStructMoveConstructor(LValue Dst, LValue Src);
4080
  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4081
  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4082
4083
  RValue
4084
  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4085
                              const CGCallee &Callee,
4086
                              ReturnValueSlot ReturnValue, llvm::Value *This,
4087
                              llvm::Value *ImplicitParam,
4088
                              QualType ImplicitParamTy, const CallExpr *E,
4089
                              CallArgList *RtlArgs);
4090
  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4091
                               llvm::Value *This, QualType ThisTy,
4092
                               llvm::Value *ImplicitParam,
4093
                               QualType ImplicitParamTy, const CallExpr *E);
4094
  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4095
                               ReturnValueSlot ReturnValue);
4096
  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4097
                                               const CXXMethodDecl *MD,
4098
                                               ReturnValueSlot ReturnValue,
4099
                                               bool HasQualifier,
4100
                                               NestedNameSpecifier *Qualifier,
4101
                                               bool IsArrow, const Expr *Base);
4102
  // Compute the object pointer.
4103
  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4104
                                          llvm::Value *memberPtr,
4105
                                          const MemberPointerType *memberPtrType,
4106
                                          LValueBaseInfo *BaseInfo = nullptr,
4107
                                          TBAAAccessInfo *TBAAInfo = nullptr);
4108
  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4109
                                      ReturnValueSlot ReturnValue);
4110
4111
  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4112
                                       const CXXMethodDecl *MD,
4113
                                       ReturnValueSlot ReturnValue);
4114
  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4115
4116
  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4117
                                ReturnValueSlot ReturnValue);
4118
4119
  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4120
  RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4121
  RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4122
4123
  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4124
                         const CallExpr *E, ReturnValueSlot ReturnValue);
4125
4126
  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4127
4128
  /// Emit IR for __builtin_os_log_format.
4129
  RValue emitBuiltinOSLogFormat(const CallExpr &E);
4130
4131
  /// Emit IR for __builtin_is_aligned.
4132
  RValue EmitBuiltinIsAligned(const CallExpr *E);
4133
  /// Emit IR for __builtin_align_up/__builtin_align_down.
4134
  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4135
4136
  llvm::Function *generateBuiltinOSLogHelperFunction(
4137
      const analyze_os_log::OSLogBufferLayout &Layout,
4138
      CharUnits BufferAlignment);
4139
4140
  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4141
4142
  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4143
  /// is unhandled by the current target.
4144
  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4145
                                     ReturnValueSlot ReturnValue);
4146
4147
  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4148
                                             const llvm::CmpInst::Predicate Fp,
4149
                                             const llvm::CmpInst::Predicate Ip,
4150
                                             const llvm::Twine &Name = "");
4151
  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4152
                                  ReturnValueSlot ReturnValue,
4153
                                  llvm::Triple::ArchType Arch);
4154
  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4155
                                     ReturnValueSlot ReturnValue,
4156
                                     llvm::Triple::ArchType Arch);
4157
  llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4158
                                     ReturnValueSlot ReturnValue,
4159
                                     llvm::Triple::ArchType Arch);
4160
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4161
                                   QualType RTy);
4162
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4163
                                   QualType RTy);
4164
4165
  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4166
                                         unsigned LLVMIntrinsic,
4167
                                         unsigned AltLLVMIntrinsic,
4168
                                         const char *NameHint,
4169
                                         unsigned Modifier,
4170
                                         const CallExpr *E,
4171
                                         SmallVectorImpl<llvm::Value *> &Ops,
4172
                                         Address PtrOp0, Address PtrOp1,
4173
                                         llvm::Triple::ArchType Arch);
4174
4175
  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4176
                                          unsigned Modifier, llvm::Type *ArgTy,
4177
                                          const CallExpr *E);
4178
  llvm::Value *EmitNeonCall(llvm::Function *F,
4179
                            SmallVectorImpl<llvm::Value*> &O,
4180
                            const char *name,
4181
                            unsigned shift = 0, bool rightshift = false);
4182
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4183
                             const llvm::ElementCount &Count);
4184
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4185
  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4186
                                   bool negateForRightShift);
4187
  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4188
                                 llvm::Type *Ty, bool usgn, const char *name);
4189
  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4190
  /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4191
  /// access builtin.  Only required if it can't be inferred from the base
4192
  /// pointer operand.
4193
  llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4194
4195
  SmallVector<llvm::Type *, 2>
4196
  getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4197
                      ArrayRef<llvm::Value *> Ops);
4198
  llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4199
  llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4200
  llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4201
  llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4202
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4203
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4204
  llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4205
  llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4206
                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4207
                            unsigned BuiltinID);
4208
  llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4209
                           llvm::ArrayRef<llvm::Value *> Ops,
4210
                           unsigned BuiltinID);
4211
  llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4212
                                    llvm::ScalableVectorType *VTy);
4213
  llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4214
                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4215
                                 unsigned IntID);
4216
  llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4217
                                   llvm::SmallVectorImpl<llvm::Value *> &Ops,
4218
                                   unsigned IntID);
4219
  llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4220
                                 SmallVectorImpl<llvm::Value *> &Ops,
4221
                                 unsigned BuiltinID, bool IsZExtReturn);
4222
  llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4223
                                  SmallVectorImpl<llvm::Value *> &Ops,
4224
                                  unsigned BuiltinID);
4225
  llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4226
                                   SmallVectorImpl<llvm::Value *> &Ops,
4227
                                   unsigned BuiltinID);
4228
  llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4229
                                     SmallVectorImpl<llvm::Value *> &Ops,
4230
                                     unsigned IntID);
4231
  llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4232
                                 SmallVectorImpl<llvm::Value *> &Ops,
4233
                                 unsigned IntID);
4234
  llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4235
                                  SmallVectorImpl<llvm::Value *> &Ops,
4236
                                  unsigned IntID);
4237
  llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4238
4239
  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4240
                                      llvm::Triple::ArchType Arch);
4241
  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4242
4243
  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4244
  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4245
  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4246
  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4247
  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4248
  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4249
  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4250
                                          const CallExpr *E);
4251
  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4252
  llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4253
                                    ReturnValueSlot ReturnValue);
4254
  bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4255
                               llvm::AtomicOrdering &AO,
4256
                               llvm::SyncScope::ID &SSID);
4257
4258
  enum class MSVCIntrin;
4259
  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4260
4261
  llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4262
4263
  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4264
  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4265
  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4266
  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4267
  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4268
  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4269
                                const ObjCMethodDecl *MethodWithObjects);
4270
  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4271
  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4272
                             ReturnValueSlot Return = ReturnValueSlot());
4273
4274
  /// Retrieves the default cleanup kind for an ARC cleanup.
4275
  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4276
1.13k
  CleanupKind getARCCleanupKind() {
4277
1.13k
    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4278
1.13k
             ? 
NormalAndEHCleanup84
:
NormalCleanup1.05k
;
4279
1.13k
  }
4280
4281
  // ARC primitives.
4282
  void EmitARCInitWeak(Address addr, llvm::Value *value);
4283
  void EmitARCDestroyWeak(Address addr);
4284
  llvm::Value *EmitARCLoadWeak(Address addr);
4285
  llvm::Value *EmitARCLoadWeakRetained(Address addr);
4286
  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4287
  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4288
  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4289
  void EmitARCCopyWeak(Address dst, Address src);
4290
  void EmitARCMoveWeak(Address dst, Address src);
4291
  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4292
  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4293
  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4294
                                  bool resultIgnored);
4295
  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4296
                                      bool resultIgnored);
4297
  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4298
  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4299
  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4300
  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4301
  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4302
  llvm::Value *EmitARCAutorelease(llvm::Value *value);
4303
  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4304
  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4305
  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4306
  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4307
4308
  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4309
  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4310
                                      llvm::Type *returnType);
4311
  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4312
4313
  std::pair<LValue,llvm::Value*>
4314
  EmitARCStoreAutoreleasing(const BinaryOperator *e);
4315
  std::pair<LValue,llvm::Value*>
4316
  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4317
  std::pair<LValue,llvm::Value*>
4318
  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4319
4320
  llvm::Value *EmitObjCAlloc(llvm::Value *value,
4321
                             llvm::Type *returnType);
4322
  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4323
                                     llvm::Type *returnType);
4324
  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4325
4326
  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4327
  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4328
  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4329
4330
  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4331
  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4332
                                            bool allowUnsafeClaim);
4333
  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4334
  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4335
  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4336
4337
  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4338
4339
  void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4340
4341
  static Destroyer destroyARCStrongImprecise;
4342
  static Destroyer destroyARCStrongPrecise;
4343
  static Destroyer destroyARCWeak;
4344
  static Destroyer emitARCIntrinsicUse;
4345
  static Destroyer destroyNonTrivialCStruct;
4346
4347
  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4348
  llvm::Value *EmitObjCAutoreleasePoolPush();
4349
  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4350
  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4351
  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4352
4353
  /// Emits a reference binding to the passed in expression.
4354
  RValue EmitReferenceBindingToExpr(const Expr *E);
4355
4356
  //===--------------------------------------------------------------------===//
4357
  //                           Expression Emission
4358
  //===--------------------------------------------------------------------===//
4359
4360
  // Expressions are broken into three classes: scalar, complex, aggregate.
4361
4362
  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4363
  /// scalar type, returning the result.
4364
  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4365
4366
  /// Emit a conversion from the specified type to the specified destination
4367
  /// type, both of which are LLVM scalar types.
4368
  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4369
                                    QualType DstTy, SourceLocation Loc);
4370
4371
  /// Emit a conversion from the specified complex type to the specified
4372
  /// destination type, where the destination type is an LLVM scalar type.
4373
  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4374
                                             QualType DstTy,
4375
                                             SourceLocation Loc);
4376
4377
  /// EmitAggExpr - Emit the computation of the specified expression
4378
  /// of aggregate type.  The result is computed into the given slot,
4379
  /// which may be null to indicate that the value is not needed.
4380
  void EmitAggExpr(const Expr *E, AggValueSlot AS);
4381
4382
  /// EmitAggExprToLValue - Emit the computation of the specified expression of
4383
  /// aggregate type into a temporary LValue.
4384
  LValue EmitAggExprToLValue(const Expr *E);
4385
4386
  /// Build all the stores needed to initialize an aggregate at Dest with the
4387
  /// value Val.
4388
  void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4389
4390
  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4391
  /// make sure it survives garbage collection until this point.
4392
  void EmitExtendGCLifetime(llvm::Value *object);
4393
4394
  /// EmitComplexExpr - Emit the computation of the specified expression of
4395
  /// complex type, returning the result.
4396
  ComplexPairTy EmitComplexExpr(const Expr *E,
4397
                                bool IgnoreReal = false,
4398
                                bool IgnoreImag = false);
4399
4400
  /// EmitComplexExprIntoLValue - Emit the given expression of complex
4401
  /// type and place its result into the specified l-value.
4402
  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4403
4404
  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4405
  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4406
4407
  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4408
  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4409
4410
  Address emitAddrOfRealComponent(Address complex, QualType complexType);
4411
  Address emitAddrOfImagComponent(Address complex, QualType complexType);
4412
4413
  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4414
  /// global variable that has already been created for it.  If the initializer
4415
  /// has a different type than GV does, this may free GV and return a different
4416
  /// one.  Otherwise it just returns GV.
4417
  llvm::GlobalVariable *
4418
  AddInitializerToStaticVarDecl(const VarDecl &D,
4419
                                llvm::GlobalVariable *GV);
4420
4421
  // Emit an @llvm.invariant.start call for the given memory region.
4422
  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4423
4424
  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4425
  /// variable with global storage.
4426
  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4427
                                bool PerformInit);
4428
4429
  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4430
                                   llvm::Constant *Addr);
4431
4432
  llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4433
                                      llvm::FunctionCallee Dtor,
4434
                                      llvm::Constant *Addr,
4435
                                      llvm::FunctionCallee &AtExit);
4436
4437
  /// Call atexit() with a function that passes the given argument to
4438
  /// the given function.
4439
  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4440
                                    llvm::Constant *addr);
4441
4442
  /// Call atexit() with function dtorStub.
4443
  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4444
4445
  /// Call unatexit() with function dtorStub.
4446
  llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4447
4448
  /// Emit code in this function to perform a guarded variable
4449
  /// initialization.  Guarded initializations are used when it's not
4450
  /// possible to prove that an initialization will be done exactly
4451
  /// once, e.g. with a static local variable or a static data member
4452
  /// of a class template.
4453
  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4454
                          bool PerformInit);
4455
4456
  enum class GuardKind { VariableGuard, TlsGuard };
4457
4458
  /// Emit a branch to select whether or not to perform guarded initialization.
4459
  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4460
                                llvm::BasicBlock *InitBlock,
4461
                                llvm::BasicBlock *NoInitBlock,
4462
                                GuardKind Kind, const VarDecl *D);
4463
4464
  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4465
  /// variables.
4466
  void
4467
  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4468
                            ArrayRef<llvm::Function *> CXXThreadLocals,
4469
                            ConstantAddress Guard = ConstantAddress::invalid());
4470
4471
  /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4472
  /// variables.
4473
  void GenerateCXXGlobalCleanUpFunc(
4474
      llvm::Function *Fn,
4475
      ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4476
                          llvm::Constant *>>
4477
          DtorsOrStermFinalizers);
4478
4479
  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4480
                                        const VarDecl *D,
4481
                                        llvm::GlobalVariable *Addr,
4482
                                        bool PerformInit);
4483
4484
  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4485
4486
  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4487
4488
  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4489
4490
  RValue EmitAtomicExpr(AtomicExpr *E);
4491
4492
  //===--------------------------------------------------------------------===//
4493
  //                         Annotations Emission
4494
  //===--------------------------------------------------------------------===//
4495
4496
  /// Emit an annotation call (intrinsic).
4497
  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4498
                                  llvm::Value *AnnotatedVal,
4499
                                  StringRef AnnotationStr,
4500
                                  SourceLocation Location,
4501
                                  const AnnotateAttr *Attr);
4502
4503
  /// Emit local annotations for the local variable V, declared by D.
4504
  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4505
4506
  /// Emit field annotations for the given field & value. Returns the
4507
  /// annotation result.
4508
  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4509
4510
  //===--------------------------------------------------------------------===//
4511
  //                             Internal Helpers
4512
  //===--------------------------------------------------------------------===//
4513
4514
  /// ContainsLabel - Return true if the statement contains a label in it.  If
4515
  /// this statement is not executed normally, it not containing a label means
4516
  /// that we can just remove the code.
4517
  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4518
4519
  /// containsBreak - Return true if the statement contains a break out of it.
4520
  /// If the statement (recursively) contains a switch or loop with a break
4521
  /// inside of it, this is fine.
4522
  static bool containsBreak(const Stmt *S);
4523
4524
  /// Determine if the given statement might introduce a declaration into the
4525
  /// current scope, by being a (possibly-labelled) DeclStmt.
4526
  static bool mightAddDeclToScope(const Stmt *S);
4527
4528
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4529
  /// to a constant, or if it does but contains a label, return false.  If it
4530
  /// constant folds return true and set the boolean result in Result.
4531
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4532
                                    bool AllowLabels = false);
4533
4534
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4535
  /// to a constant, or if it does but contains a label, return false.  If it
4536
  /// constant folds return true and set the folded value.
4537
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4538
                                    bool AllowLabels = false);
4539
4540
  /// isInstrumentedCondition - Determine whether the given condition is an
4541
  /// instrumentable condition (i.e. no "&&" or "||").
4542
  static bool isInstrumentedCondition(const Expr *C);
4543
4544
  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4545
  /// increments a profile counter based on the semantics of the given logical
4546
  /// operator opcode.  This is used to instrument branch condition coverage
4547
  /// for logical operators.
4548
  void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4549
                                llvm::BasicBlock *TrueBlock,
4550
                                llvm::BasicBlock *FalseBlock,
4551
                                uint64_t TrueCount = 0,
4552
                                Stmt::Likelihood LH = Stmt::LH_None,
4553
                                const Expr *CntrIdx = nullptr);
4554
4555
  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4556
  /// if statement) to the specified blocks.  Based on the condition, this might
4557
  /// try to simplify the codegen of the conditional based on the branch.
4558
  /// TrueCount should be the number of times we expect the condition to
4559
  /// evaluate to true based on PGO data.
4560
  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4561
                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4562
                            Stmt::Likelihood LH = Stmt::LH_None);
4563
4564
  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4565
  /// nonnull, if \p LHS is marked _Nonnull.
4566
  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4567
4568
  /// An enumeration which makes it easier to specify whether or not an
4569
  /// operation is a subtraction.
4570
  enum { NotSubtraction = false, IsSubtraction = true };
4571
4572
  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4573
  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4574
  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4575
  /// \p IsSubtraction indicates whether the expression used to form the GEP
4576
  /// is a subtraction.
4577
  llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4578
                                      ArrayRef<llvm::Value *> IdxList,
4579
                                      bool SignedIndices,
4580
                                      bool IsSubtraction,
4581
                                      SourceLocation Loc,
4582
                                      const Twine &Name = "");
4583
4584
  /// Specifies which type of sanitizer check to apply when handling a
4585
  /// particular builtin.
4586
  enum BuiltinCheckKind {
4587
    BCK_CTZPassedZero,
4588
    BCK_CLZPassedZero,
4589
  };
4590
4591
  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4592
  /// enabled, a runtime check specified by \p Kind is also emitted.
4593
  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4594
4595
  /// Emit a description of a type in a format suitable for passing to
4596
  /// a runtime sanitizer handler.
4597
  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4598
4599
  /// Convert a value into a format suitable for passing to a runtime
4600
  /// sanitizer handler.
4601
  llvm::Value *EmitCheckValue(llvm::Value *V);
4602
4603
  /// Emit a description of a source location in a format suitable for
4604
  /// passing to a runtime sanitizer handler.
4605
  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4606
4607
  /// Create a basic block that will either trap or call a handler function in
4608
  /// the UBSan runtime with the provided arguments, and create a conditional
4609
  /// branch to it.
4610
  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4611
                 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4612
                 ArrayRef<llvm::Value *> DynamicArgs);
4613
4614
  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4615
  /// if Cond if false.
4616
  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4617
                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4618
                            ArrayRef<llvm::Constant *> StaticArgs);
4619
4620
  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4621
  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4622
  void EmitUnreachable(SourceLocation Loc);
4623
4624
  /// Create a basic block that will call the trap intrinsic, and emit a
4625
  /// conditional branch to it, for the -ftrapv checks.
4626
  void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4627
4628
  /// Emit a call to trap or debugtrap and attach function attribute
4629
  /// "trap-func-name" if specified.
4630
  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4631
4632
  /// Emit a stub for the cross-DSO CFI check function.
4633
  void EmitCfiCheckStub();
4634
4635
  /// Emit a cross-DSO CFI failure handling function.
4636
  void EmitCfiCheckFail();
4637
4638
  /// Create a check for a function parameter that may potentially be
4639
  /// declared as non-null.
4640
  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4641
                           AbstractCallee AC, unsigned ParmNum);
4642
4643
  /// EmitCallArg - Emit a single call argument.
4644
  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4645
4646
  /// EmitDelegateCallArg - We are performing a delegate call; that
4647
  /// is, the current function is delegating to another one.  Produce
4648
  /// a r-value suitable for passing the given parameter.
4649
  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4650
                           SourceLocation loc);
4651
4652
  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4653
  /// point operation, expressed as the maximum relative error in ulp.
4654
  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4655
4656
  /// Set the codegen fast-math flags.
4657
  void SetFastMathFlags(FPOptions FPFeatures);
4658
4659
  // Truncate or extend a boolean vector to the requested number of elements.
4660
  llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
4661
                                     unsigned NumElementsDst,
4662
                                     const llvm::Twine &Name = "");
4663
4664
private:
4665
  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4666
  void EmitReturnOfRValue(RValue RV, QualType Ty);
4667
4668
  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4669
4670
  llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4671
      DeferredReplacements;
4672
4673
  /// Set the address of a local variable.
4674
793k
  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4675
793k
    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4676
0
    LocalDeclMap.insert({VD, Addr});
4677
793k
  }
4678
4679
  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4680
  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4681
  ///
4682
  /// \param AI - The first function argument of the expansion.
4683
  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4684
                          llvm::Function::arg_iterator &AI);
4685
4686
  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4687
  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4688
  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4689
  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4690
                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
4691
                        unsigned &IRCallArgPos);
4692
4693
  std::pair<llvm::Value *, llvm::Type *>
4694
  EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4695
               std::string &ConstraintStr);
4696
4697
  std::pair<llvm::Value *, llvm::Type *>
4698
  EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4699
                     QualType InputType, std::string &ConstraintStr,
4700
                     SourceLocation Loc);
4701
4702
  /// Attempts to statically evaluate the object size of E. If that
4703
  /// fails, emits code to figure the size of E out for us. This is
4704
  /// pass_object_size aware.
4705
  ///
4706
  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4707
  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4708
                                               llvm::IntegerType *ResType,
4709
                                               llvm::Value *EmittedE,
4710
                                               bool IsDynamic);
4711
4712
  /// Emits the size of E, as required by __builtin_object_size. This
4713
  /// function is aware of pass_object_size parameters, and will act accordingly
4714
  /// if E is a parameter with the pass_object_size attribute.
4715
  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4716
                                     llvm::IntegerType *ResType,
4717
                                     llvm::Value *EmittedE,
4718
                                     bool IsDynamic);
4719
4720
  void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4721
                                       Address Loc);
4722
4723
public:
4724
  enum class EvaluationOrder {
4725
    ///! No language constraints on evaluation order.
4726
    Default,
4727
    ///! Language semantics require left-to-right evaluation.
4728
    ForceLeftToRight,
4729
    ///! Language semantics require right-to-left evaluation.
4730
    ForceRightToLeft
4731
  };
4732
4733
  // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4734
  // an ObjCMethodDecl.
4735
  struct PrototypeWrapper {
4736
    llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4737
4738
304k
    PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4739
11.9k
    PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4740
  };
4741
4742
  void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4743
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4744
                    AbstractCallee AC = AbstractCallee(),
4745
                    unsigned ParamsToSkip = 0,
4746
                    EvaluationOrder Order = EvaluationOrder::Default);
4747
4748
  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4749
  /// emit the value and compute our best estimate of the alignment of the
4750
  /// pointee.
4751
  ///
4752
  /// \param BaseInfo - If non-null, this will be initialized with
4753
  /// information about the source of the alignment and the may-alias
4754
  /// attribute.  Note that this function will conservatively fall back on
4755
  /// the type when it doesn't recognize the expression and may-alias will
4756
  /// be set to false.
4757
  ///
4758
  /// One reasonable way to use this information is when there's a language
4759
  /// guarantee that the pointer must be aligned to some stricter value, and
4760
  /// we're simply trying to ensure that sufficiently obvious uses of under-
4761
  /// aligned objects don't get miscompiled; for example, a placement new
4762
  /// into the address of a local variable.  In such a case, it's quite
4763
  /// reasonable to just ignore the returned alignment when it isn't from an
4764
  /// explicit source.
4765
  Address EmitPointerWithAlignment(const Expr *Addr,
4766
                                   LValueBaseInfo *BaseInfo = nullptr,
4767
                                   TBAAAccessInfo *TBAAInfo = nullptr);
4768
4769
  /// If \p E references a parameter with pass_object_size info or a constant
4770
  /// array size modifier, emit the object size divided by the size of \p EltTy.
4771
  /// Otherwise return null.
4772
  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4773
4774
  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4775
4776
  struct MultiVersionResolverOption {
4777
    llvm::Function *Function;
4778
    struct Conds {
4779
      StringRef Architecture;
4780
      llvm::SmallVector<StringRef, 8> Features;
4781
4782
      Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4783
338
          : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4784
    } Conditions;
4785
4786
    MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4787
                               ArrayRef<StringRef> Feats)
4788
338
        : Function(F), Conditions(Arch, Feats) {}
4789
  };
4790
4791
  // Emits the body of a multiversion function's resolver. Assumes that the
4792
  // options are already sorted in the proper order, with the 'default' option
4793
  // last (if it exists).
4794
  void EmitMultiVersionResolver(llvm::Function *Resolver,
4795
                                ArrayRef<MultiVersionResolverOption> Options);
4796
4797
private:
4798
  QualType getVarArgType(const Expr *Arg);
4799
4800
  void EmitDeclMetadata();
4801
4802
  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4803
                                  const AutoVarEmission &emission);
4804
4805
  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4806
4807
  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4808
  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4809
  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4810
  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4811
  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4812
  llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4813
  llvm::Value *EmitX86CpuInit();
4814
  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4815
};
4816
4817
/// TargetFeatures - This class is used to check whether the builtin function
4818
/// has the required tagert specific features. It is able to support the
4819
/// combination of ','(and), '|'(or), and '()'. By default, the priority of
4820
/// ',' is higher than that of '|' .
4821
/// E.g:
4822
/// A,B|C means the builtin function requires both A and B, or C.
4823
/// If we want the builtin function requires both A and B, or both A and C,
4824
/// there are two ways: A,B|A,C or A,(B|C).
4825
/// The FeaturesList should not contain spaces, and brackets must appear in
4826
/// pairs.
4827
class TargetFeatures {
4828
  struct FeatureListStatus {
4829
    bool HasFeatures;
4830
    StringRef CurFeaturesList;
4831
  };
4832
4833
  const llvm::StringMap<bool> &CallerFeatureMap;
4834
4835
22.6k
  FeatureListStatus getAndFeatures(StringRef FeatureList) {
4836
22.6k
    int InParentheses = 0;
4837
22.6k
    bool HasFeatures = true;
4838
22.6k
    size_t SubexpressionStart = 0;
4839
262k
    for (size_t i = 0, e = FeatureList.size(); i < e; 
++i239k
) {
4840
246k
      char CurrentToken = FeatureList[i];
4841
246k
      switch (CurrentToken) {
4842
218k
      default:
4843
218k
        break;
4844
218k
      case '(':
4845
2.19k
        if (InParentheses == 0)
4846
2.19k
          SubexpressionStart = i + 1;
4847
2.19k
        ++InParentheses;
4848
2.19k
        break;
4849
2.19k
      case ')':
4850
2.19k
        --InParentheses;
4851
2.19k
        assert(InParentheses >= 0 && "Parentheses are not in pair");
4852
2.19k
        LLVM_FALLTHROUGH;
4853
22.4k
      case '|':
4854
25.4k
      case ',':
4855
25.4k
        if (InParentheses == 0) {
4856
12.2k
          if (HasFeatures && 
i != SubexpressionStart11.5k
) {
4857
10.7k
            StringRef F = FeatureList.slice(SubexpressionStart, i);
4858
10.7k
            HasFeatures = CurrentToken == ')' ? 
hasRequiredFeatures(F)1.86k
4859
10.7k
                                              : 
CallerFeatureMap.lookup(F)8.91k
;
4860
10.7k
          }
4861
12.2k
          SubexpressionStart = i + 1;
4862
12.2k
          if (CurrentToken == '|') {
4863
7.06k
            return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4864
7.06k
          }
4865
12.2k
        }
4866
18.4k
        break;
4867
246k
      }
4868
246k
    }
4869
15.5k
    assert(InParentheses == 0 && "Parentheses are not in pair");
4870
15.5k
    if (HasFeatures && 
SubexpressionStart != FeatureList.size()15.1k
)
4871
14.4k
      HasFeatures =
4872
14.4k
          CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4873
15.5k
    return {HasFeatures, StringRef()};
4874
22.6k
  }
4875
4876
public:
4877
17.1k
  bool hasRequiredFeatures(StringRef FeatureList) {
4878
17.1k
    FeatureListStatus FS = {false, FeatureList};
4879
39.7k
    while (!FS.HasFeatures && 
!FS.CurFeaturesList.empty()23.5k
)
4880
22.6k
      FS = getAndFeatures(FS.CurFeaturesList);
4881
17.1k
    return FS.HasFeatures;
4882
17.1k
  }
4883
4884
  TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4885
15.2k
      : CallerFeatureMap(CallerFeatureMap) {}
4886
};
4887
4888
inline DominatingLLVMValue::saved_type
4889
142
DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4890
142
  if (!needsSaving(value)) 
return saved_type(value, false)101
;
4891
4892
  // Otherwise, we need an alloca.
4893
41
  auto align = CharUnits::fromQuantity(
4894
41
            CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4895
41
  Address alloca =
4896
41
    CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4897
41
  CGF.Builder.CreateStore(value, alloca);
4898
4899
41
  return saved_type(alloca.getPointer(), true);
4900
142
}
4901
4902
inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4903
147
                                                 saved_type value) {
4904
  // If the value says it wasn't saved, trust that it's still dominating.
4905
147
  if (!value.getInt()) 
return value.getPointer()120
;
4906
4907
  // Otherwise, it should be an alloca instruction, as set up in save().
4908
27
  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4909
27
  return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4910
27
                                       alloca->getAlign());
4911
147
}
4912
4913
}  // end namespace CodeGen
4914
4915
// Map the LangOption for floating point exception behavior into
4916
// the corresponding enum in the IR.
4917
llvm::fp::ExceptionBehavior
4918
ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4919
}  // end namespace clang
4920
4921
#endif