Coverage Report

Created: 2022-07-16 07:03

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/CodeGen/CodeGenTypes.h
Line
Count
Source
1
//===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This is the code that handles AST -> LLVM type lowering.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
14
#define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
15
16
#include "CGCall.h"
17
#include "clang/Basic/ABI.h"
18
#include "clang/CodeGen/CGFunctionInfo.h"
19
#include "llvm/ADT/DenseMap.h"
20
#include "llvm/IR/Module.h"
21
22
namespace llvm {
23
class FunctionType;
24
class DataLayout;
25
class Type;
26
class LLVMContext;
27
class StructType;
28
}
29
30
namespace clang {
31
class ASTContext;
32
template <typename> class CanQual;
33
class CXXConstructorDecl;
34
class CXXMethodDecl;
35
class CodeGenOptions;
36
class FunctionProtoType;
37
class QualType;
38
class RecordDecl;
39
class TagDecl;
40
class TargetInfo;
41
class Type;
42
typedef CanQual<Type> CanQualType;
43
class GlobalDecl;
44
45
namespace CodeGen {
46
class ABIInfo;
47
class CGCXXABI;
48
class CGRecordLayout;
49
class CodeGenModule;
50
class RequiredArgs;
51
52
/// This class organizes the cross-module state that is used while lowering
53
/// AST types to LLVM types.
54
class CodeGenTypes {
55
  CodeGenModule &CGM;
56
  // Some of this stuff should probably be left on the CGM.
57
  ASTContext &Context;
58
  llvm::Module &TheModule;
59
  const TargetInfo &Target;
60
  CGCXXABI &TheCXXABI;
61
62
  // This should not be moved earlier, since its initialization depends on some
63
  // of the previous reference members being already initialized
64
  const ABIInfo &TheABIInfo;
65
66
  /// The opaque type map for Objective-C interfaces. All direct
67
  /// manipulation is done by the runtime interfaces, which are
68
  /// responsible for coercing to the appropriate type; these opaque
69
  /// types are never refined.
70
  llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
71
72
  /// Maps clang struct type with corresponding record layout info.
73
  llvm::DenseMap<const Type*, std::unique_ptr<CGRecordLayout>> CGRecordLayouts;
74
75
  /// Contains the LLVM IR type for any converted RecordDecl.
76
  llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
77
78
  /// Hold memoized CGFunctionInfo results.
79
  llvm::FoldingSet<CGFunctionInfo> FunctionInfos{FunctionInfosLog2InitSize};
80
81
  /// This set keeps track of records that we're currently converting
82
  /// to an IR type.  For example, when converting:
83
  /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
84
  /// types will be in this set.
85
  llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
86
87
  llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
88
89
  /// True if we didn't layout a function due to a being inside
90
  /// a recursive struct conversion, set this to true.
91
  bool SkippedLayout;
92
93
  SmallVector<const RecordDecl *, 8> DeferredRecords;
94
95
  /// This map keeps cache of llvm::Types and maps clang::Type to
96
  /// corresponding llvm::Type.
97
  llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
98
99
  llvm::DenseMap<const Type *, llvm::Type *> RecordsWithOpaqueMemberPointers;
100
101
  static constexpr unsigned FunctionInfosLog2InitSize = 9;
102
  /// Helper for ConvertType.
103
  llvm::Type *ConvertFunctionTypeInternal(QualType FT);
104
105
public:
106
  CodeGenTypes(CodeGenModule &cgm);
107
  ~CodeGenTypes();
108
109
568k
  const llvm::DataLayout &getDataLayout() const {
110
568k
    return TheModule.getDataLayout();
111
568k
  }
112
3.78M
  ASTContext &getContext() const { return Context; }
113
237k
  const ABIInfo &getABIInfo() const { return TheABIInfo; }
114
45.8k
  const TargetInfo &getTarget() const { return Target; }
115
264k
  CGCXXABI &getCXXABI() const { return TheCXXABI; }
116
1.16M
  llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
117
  const CodeGenOptions &getCodeGenOpts() const;
118
119
  /// Convert clang calling convention to LLVM callilng convention.
120
  unsigned ClangCallConvToLLVMCallConv(CallingConv CC);
121
122
  /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
123
  /// qualification.
124
  CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD);
125
126
  /// ConvertType - Convert type T into a llvm::Type.
127
  llvm::Type *ConvertType(QualType T);
128
129
  /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
130
  /// ConvertType in that it is used to convert to the memory representation for
131
  /// a type.  For example, the scalar representation for _Bool is i1, but the
132
  /// memory representation is usually i8 or i32, depending on the target.
133
  llvm::Type *ConvertTypeForMem(QualType T, bool ForBitField = false);
134
135
  /// GetFunctionType - Get the LLVM function type for \arg Info.
136
  llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
137
138
  llvm::FunctionType *GetFunctionType(GlobalDecl GD);
139
140
  /// isFuncTypeConvertible - Utility to check whether a function type can
141
  /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
142
  /// type).
143
  bool isFuncTypeConvertible(const FunctionType *FT);
144
  bool isFuncParamTypeConvertible(QualType Ty);
145
146
  /// Determine if a C++ inheriting constructor should have parameters matching
147
  /// those of its inherited constructor.
148
  bool inheritingCtorHasParams(const InheritedConstructor &Inherited,
149
                               CXXCtorType Type);
150
151
  /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
152
  /// given a CXXMethodDecl. If the method to has an incomplete return type,
153
  /// and/or incomplete argument types, this will return the opaque type.
154
  llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
155
156
  const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
157
158
  /// UpdateCompletedType - When we find the full definition for a TagDecl,
159
  /// replace the 'opaque' type we previously made for it if applicable.
160
  void UpdateCompletedType(const TagDecl *TD);
161
162
  /// Remove stale types from the type cache when an inheritance model
163
  /// gets assigned to a class.
164
  void RefreshTypeCacheForClass(const CXXRecordDecl *RD);
165
166
  // The arrangement methods are split into three families:
167
  //   - those meant to drive the signature and prologue/epilogue
168
  //     of a function declaration or definition,
169
  //   - those meant for the computation of the LLVM type for an abstract
170
  //     appearance of a function, and
171
  //   - those meant for performing the IR-generation of a call.
172
  // They differ mainly in how they deal with optional (i.e. variadic)
173
  // arguments, as well as unprototyped functions.
174
  //
175
  // Key points:
176
  // - The CGFunctionInfo for emitting a specific call site must include
177
  //   entries for the optional arguments.
178
  // - The function type used at the call site must reflect the formal
179
  //   signature of the declaration being called, or else the call will
180
  //   go awry.
181
  // - For the most part, unprototyped functions are called by casting to
182
  //   a formal signature inferred from the specific argument types used
183
  //   at the call-site.  However, some targets (e.g. x86-64) screw with
184
  //   this for compatibility reasons.
185
186
  const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
187
188
  /// Given a function info for a declaration, return the function info
189
  /// for a call with the given arguments.
190
  ///
191
  /// Often this will be able to simply return the declaration info.
192
  const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI,
193
                                    const CallArgList &args);
194
195
  /// Free functions are functions that are compatible with an ordinary
196
  /// C function pointer type.
197
  const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
198
  const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
199
                                                const FunctionType *Ty,
200
                                                bool ChainCall);
201
  const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
202
  const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
203
204
  /// A nullary function is a freestanding function of type 'void ()'.
205
  /// This method works for both calls and declarations.
206
  const CGFunctionInfo &arrangeNullaryFunction();
207
208
  /// A builtin function is a freestanding function using the default
209
  /// C conventions.
210
  const CGFunctionInfo &
211
  arrangeBuiltinFunctionDeclaration(QualType resultType,
212
                                    const FunctionArgList &args);
213
  const CGFunctionInfo &
214
  arrangeBuiltinFunctionDeclaration(CanQualType resultType,
215
                                    ArrayRef<CanQualType> argTypes);
216
  const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType,
217
                                                   const CallArgList &args);
218
219
  /// Objective-C methods are C functions with some implicit parameters.
220
  const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
221
  const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
222
                                                        QualType receiverType);
223
  const CGFunctionInfo &arrangeUnprototypedObjCMessageSend(
224
                                                     QualType returnType,
225
                                                     const CallArgList &args);
226
227
  /// Block invocation functions are C functions with an implicit parameter.
228
  const CGFunctionInfo &arrangeBlockFunctionDeclaration(
229
                                                 const FunctionProtoType *type,
230
                                                 const FunctionArgList &args);
231
  const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
232
                                                 const FunctionType *type);
233
234
  /// C++ methods have some special rules and also have implicit parameters.
235
  const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
236
  const CGFunctionInfo &arrangeCXXStructorDeclaration(GlobalDecl GD);
237
  const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
238
                                                  const CXXConstructorDecl *D,
239
                                                  CXXCtorType CtorKind,
240
                                                  unsigned ExtraPrefixArgs,
241
                                                  unsigned ExtraSuffixArgs,
242
                                                  bool PassProtoArgs = true);
243
244
  const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
245
                                             const FunctionProtoType *type,
246
                                             RequiredArgs required,
247
                                             unsigned numPrefixArgs);
248
  const CGFunctionInfo &
249
  arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD);
250
  const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
251
                                                 CXXCtorType CT);
252
  const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
253
                                             const FunctionProtoType *FTP,
254
                                             const CXXMethodDecl *MD);
255
256
  /// "Arrange" the LLVM information for a call or type with the given
257
  /// signature.  This is largely an internal method; other clients
258
  /// should use one of the above routines, which ultimately defer to
259
  /// this.
260
  ///
261
  /// \param argTypes - must all actually be canonical as params
262
  const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
263
                                                bool instanceMethod,
264
                                                bool chainCall,
265
                                                ArrayRef<CanQualType> argTypes,
266
                                                FunctionType::ExtInfo info,
267
                    ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
268
                                                RequiredArgs args);
269
270
  /// Compute a new LLVM record layout object for the given record.
271
  std::unique_ptr<CGRecordLayout> ComputeRecordLayout(const RecordDecl *D,
272
                                                      llvm::StructType *Ty);
273
274
  /// addRecordTypeName - Compute a name from the given record decl with an
275
  /// optional suffix and name the given LLVM type using it.
276
  void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
277
                         StringRef suffix);
278
279
280
public:  // These are internal details of CGT that shouldn't be used externally.
281
  /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
282
  llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
283
284
  /// getExpandedTypes - Expand the type \arg Ty into the LLVM
285
  /// argument types it would be passed as. See ABIArgInfo::Expand.
286
  void getExpandedTypes(QualType Ty,
287
                        SmallVectorImpl<llvm::Type *>::iterator &TI);
288
289
  /// IsZeroInitializable - Return whether a type can be
290
  /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
291
  bool isZeroInitializable(QualType T);
292
293
  /// Check if the pointer type can be zero-initialized (in the C++ sense)
294
  /// with an LLVM zeroinitializer.
295
  bool isPointerZeroInitializable(QualType T);
296
297
  /// IsZeroInitializable - Return whether a record type can be
298
  /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
299
  bool isZeroInitializable(const RecordDecl *RD);
300
301
  bool isRecordLayoutComplete(const Type *Ty) const;
302
4.56M
  bool noRecordsBeingLaidOut() const {
303
4.56M
    return RecordsBeingLaidOut.empty();
304
4.56M
  }
305
644k
  bool isRecordBeingLaidOut(const Type *Ty) const {
306
644k
    return RecordsBeingLaidOut.count(Ty);
307
644k
  }
308
309
};
310
311
}  // end namespace CodeGen
312
}  // end namespace clang
313
314
#endif