/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/Driver/ToolChains/Cuda.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | |
9 | | #include "Cuda.h" |
10 | | #include "CommonArgs.h" |
11 | | #include "clang/Basic/Cuda.h" |
12 | | #include "clang/Config/config.h" |
13 | | #include "clang/Driver/Compilation.h" |
14 | | #include "clang/Driver/Distro.h" |
15 | | #include "clang/Driver/Driver.h" |
16 | | #include "clang/Driver/DriverDiagnostic.h" |
17 | | #include "clang/Driver/InputInfo.h" |
18 | | #include "clang/Driver/Options.h" |
19 | | #include "llvm/ADT/StringExtras.h" |
20 | | #include "llvm/Option/ArgList.h" |
21 | | #include "llvm/Support/FileSystem.h" |
22 | | #include "llvm/Support/FormatAdapters.h" |
23 | | #include "llvm/Support/FormatVariadic.h" |
24 | | #include "llvm/Support/Path.h" |
25 | | #include "llvm/Support/Process.h" |
26 | | #include "llvm/Support/Program.h" |
27 | | #include "llvm/Support/VirtualFileSystem.h" |
28 | | #include "llvm/TargetParser/Host.h" |
29 | | #include "llvm/TargetParser/TargetParser.h" |
30 | | #include <system_error> |
31 | | |
32 | | using namespace clang::driver; |
33 | | using namespace clang::driver::toolchains; |
34 | | using namespace clang::driver::tools; |
35 | | using namespace clang; |
36 | | using namespace llvm::opt; |
37 | | |
38 | | namespace { |
39 | | |
40 | 18 | CudaVersion getCudaVersion(uint32_t raw_version) { |
41 | 18 | if (raw_version < 7050) |
42 | 0 | return CudaVersion::CUDA_70; |
43 | 18 | if (raw_version < 8000) |
44 | 0 | return CudaVersion::CUDA_75; |
45 | 18 | if (raw_version < 9000) |
46 | 18 | return CudaVersion::CUDA_80; |
47 | 0 | if (raw_version < 9010) |
48 | 0 | return CudaVersion::CUDA_90; |
49 | 0 | if (raw_version < 9020) |
50 | 0 | return CudaVersion::CUDA_91; |
51 | 0 | if (raw_version < 10000) |
52 | 0 | return CudaVersion::CUDA_92; |
53 | 0 | if (raw_version < 10010) |
54 | 0 | return CudaVersion::CUDA_100; |
55 | 0 | if (raw_version < 10020) |
56 | 0 | return CudaVersion::CUDA_101; |
57 | 0 | if (raw_version < 11000) |
58 | 0 | return CudaVersion::CUDA_102; |
59 | 0 | if (raw_version < 11010) |
60 | 0 | return CudaVersion::CUDA_110; |
61 | 0 | if (raw_version < 11020) |
62 | 0 | return CudaVersion::CUDA_111; |
63 | 0 | if (raw_version < 11030) |
64 | 0 | return CudaVersion::CUDA_112; |
65 | 0 | if (raw_version < 11040) |
66 | 0 | return CudaVersion::CUDA_113; |
67 | 0 | if (raw_version < 11050) |
68 | 0 | return CudaVersion::CUDA_114; |
69 | 0 | if (raw_version < 11060) |
70 | 0 | return CudaVersion::CUDA_115; |
71 | 0 | if (raw_version < 11070) |
72 | 0 | return CudaVersion::CUDA_116; |
73 | 0 | if (raw_version < 11080) |
74 | 0 | return CudaVersion::CUDA_117; |
75 | 0 | if (raw_version < 11090) |
76 | 0 | return CudaVersion::CUDA_118; |
77 | 0 | if (raw_version < 12010) |
78 | 0 | return CudaVersion::CUDA_120; |
79 | 0 | if (raw_version < 12020) |
80 | 0 | return CudaVersion::CUDA_121; |
81 | 0 | return CudaVersion::NEW; |
82 | 0 | } |
83 | | |
84 | 18 | CudaVersion parseCudaHFile(llvm::StringRef Input) { |
85 | | // Helper lambda which skips the words if the line starts with them or returns |
86 | | // std::nullopt otherwise. |
87 | 18 | auto StartsWithWords = |
88 | 18 | [](llvm::StringRef Line, |
89 | 72 | const SmallVector<StringRef, 3> words) -> std::optional<StringRef> { |
90 | 108 | for (StringRef word : words) { |
91 | 108 | if (!Line.consume_front(word)) |
92 | 54 | return {}; |
93 | 54 | Line = Line.ltrim(); |
94 | 54 | } |
95 | 18 | return Line; |
96 | 72 | }; |
97 | | |
98 | 18 | Input = Input.ltrim(); |
99 | 72 | while (!Input.empty()) { |
100 | 72 | if (auto Line = |
101 | 72 | StartsWithWords(Input.ltrim(), {"#", "define", "CUDA_VERSION"})) { |
102 | 18 | uint32_t RawVersion; |
103 | 18 | Line->consumeInteger(10, RawVersion); |
104 | 18 | return getCudaVersion(RawVersion); |
105 | 18 | } |
106 | | // Find next non-empty line. |
107 | 54 | Input = Input.drop_front(Input.find_first_of("\n\r")).ltrim(); |
108 | 54 | } |
109 | 0 | return CudaVersion::UNKNOWN; |
110 | 18 | } |
111 | | } // namespace |
112 | | |
113 | 18 | void CudaInstallationDetector::WarnIfUnsupportedVersion() { |
114 | 18 | if (Version > CudaVersion::PARTIALLY_SUPPORTED) { |
115 | 0 | std::string VersionString = CudaVersionToString(Version); |
116 | 0 | if (!VersionString.empty()) |
117 | 0 | VersionString.insert(0, " "); |
118 | 0 | D.Diag(diag::warn_drv_new_cuda_version) |
119 | 0 | << VersionString |
120 | 0 | << (CudaVersion::PARTIALLY_SUPPORTED != CudaVersion::FULLY_SUPPORTED) |
121 | 0 | << CudaVersionToString(CudaVersion::PARTIALLY_SUPPORTED); |
122 | 18 | } else if (Version > CudaVersion::FULLY_SUPPORTED) |
123 | 0 | D.Diag(diag::warn_drv_partially_supported_cuda_version) |
124 | 0 | << CudaVersionToString(Version); |
125 | 18 | } |
126 | | |
127 | | CudaInstallationDetector::CudaInstallationDetector( |
128 | | const Driver &D, const llvm::Triple &HostTriple, |
129 | | const llvm::opt::ArgList &Args) |
130 | 31.0k | : D(D) { |
131 | 31.0k | struct Candidate { |
132 | 31.0k | std::string Path; |
133 | 31.0k | bool StrictChecking; |
134 | | |
135 | 31.0k | Candidate(std::string Path, bool StrictChecking = false) |
136 | 115k | : Path(Path), StrictChecking(StrictChecking) {} |
137 | 31.0k | }; |
138 | 31.0k | SmallVector<Candidate, 4> Candidates; |
139 | | |
140 | | // In decreasing order so we prefer newer versions to older versions. |
141 | 31.0k | std::initializer_list<const char *> Versions = {"8.0", "7.5", "7.0"}; |
142 | 31.0k | auto &FS = D.getVFS(); |
143 | | |
144 | 31.0k | if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) { |
145 | 60 | Candidates.emplace_back( |
146 | 60 | Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ).str()); |
147 | 31.0k | } else if (HostTriple.isOSWindows()) { |
148 | 8.70k | for (const char *Ver : Versions) |
149 | 26.1k | Candidates.emplace_back( |
150 | 26.1k | D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" + |
151 | 26.1k | Ver); |
152 | 22.2k | } else { |
153 | 22.2k | if (!Args.hasArg(clang::driver::options::OPT_cuda_path_ignore_env)) { |
154 | | // Try to find ptxas binary. If the executable is located in a directory |
155 | | // called 'bin/', its parent directory might be a good guess for a valid |
156 | | // CUDA installation. |
157 | | // However, some distributions might installs 'ptxas' to /usr/bin. In that |
158 | | // case the candidate would be '/usr' which passes the following checks |
159 | | // because '/usr/include' exists as well. To avoid this case, we always |
160 | | // check for the directory potentially containing files for libdevice, |
161 | | // even if the user passes -nocudalib. |
162 | 22.2k | if (llvm::ErrorOr<std::string> ptxas = |
163 | 22.2k | llvm::sys::findProgramByName("ptxas")) { |
164 | 0 | SmallString<256> ptxasAbsolutePath; |
165 | 0 | llvm::sys::fs::real_path(*ptxas, ptxasAbsolutePath); |
166 | |
|
167 | 0 | StringRef ptxasDir = llvm::sys::path::parent_path(ptxasAbsolutePath); |
168 | 0 | if (llvm::sys::path::filename(ptxasDir) == "bin") |
169 | 0 | Candidates.emplace_back( |
170 | 0 | std::string(llvm::sys::path::parent_path(ptxasDir)), |
171 | 0 | /*StrictChecking=*/true); |
172 | 0 | } |
173 | 22.2k | } |
174 | | |
175 | 22.2k | Candidates.emplace_back(D.SysRoot + "/usr/local/cuda"); |
176 | 22.2k | for (const char *Ver : Versions) |
177 | 66.8k | Candidates.emplace_back(D.SysRoot + "/usr/local/cuda-" + Ver); |
178 | | |
179 | 22.2k | Distro Dist(FS, llvm::Triple(llvm::sys::getProcessTriple())); |
180 | 22.2k | if (Dist.IsDebian() || Dist.IsUbuntu()) |
181 | | // Special case for Debian to have nvidia-cuda-toolkit work |
182 | | // out of the box. More info on http://bugs.debian.org/882505 |
183 | 0 | Candidates.emplace_back(D.SysRoot + "/usr/lib/cuda"); |
184 | 22.2k | } |
185 | | |
186 | 31.0k | bool NoCudaLib = Args.hasArg(options::OPT_nogpulib); |
187 | | |
188 | 115k | for (const auto &Candidate : Candidates) { |
189 | 115k | InstallPath = Candidate.Path; |
190 | 115k | if (InstallPath.empty()115k || !FS.exists(InstallPath)) |
191 | 115k | continue; |
192 | | |
193 | 50 | BinPath = InstallPath + "/bin"; |
194 | 50 | IncludePath = InstallPath + "/include"; |
195 | 50 | LibDevicePath = InstallPath + "/nvvm/libdevice"; |
196 | | |
197 | 54 | if (!(50 FS.exists(IncludePath)50 && FS.exists(BinPath))) |
198 | 0 | continue; |
199 | 50 | bool CheckLibDevice = (!NoCudaLib || Candidate.StrictChecking29 ); |
200 | 50 | if (CheckLibDevice && !FS.exists(LibDevicePath)25 ) |
201 | 0 | continue; |
202 | | |
203 | 50 | Version = CudaVersion::UNKNOWN; |
204 | 50 | if (auto CudaHFile = FS.getBufferForFile(InstallPath + "/include/cuda.h")) |
205 | 18 | Version = parseCudaHFile((*CudaHFile)->getBuffer()); |
206 | | // As the last resort, make an educated guess between CUDA-7.0, which had |
207 | | // old-style libdevice bitcode, and an unknown recent CUDA version. |
208 | 50 | if (Version == CudaVersion::UNKNOWN) { |
209 | 36 | Version = FS.exists(LibDevicePath + "/libdevice.10.bc") |
210 | 36 | ? CudaVersion::NEW0 |
211 | 36 | : CudaVersion::CUDA_70; |
212 | 36 | } |
213 | | |
214 | 50 | if (Version >= CudaVersion::CUDA_90) { |
215 | | // CUDA-9+ uses single libdevice file for all GPU variants. |
216 | 0 | std::string FilePath = LibDevicePath + "/libdevice.10.bc"; |
217 | 0 | if (FS.exists(FilePath)) { |
218 | 0 | for (int Arch = (int)CudaArch::SM_30, E = (int)CudaArch::LAST; Arch < E; |
219 | 0 | ++Arch) { |
220 | 0 | CudaArch GpuArch = static_cast<CudaArch>(Arch); |
221 | 0 | if (!IsNVIDIAGpuArch(GpuArch)) |
222 | 0 | continue; |
223 | 0 | std::string GpuArchName(CudaArchToString(GpuArch)); |
224 | 0 | LibDeviceMap[GpuArchName] = FilePath; |
225 | 0 | } |
226 | 0 | } |
227 | 50 | } else { |
228 | 50 | std::error_code EC; |
229 | 50 | for (llvm::vfs::directory_iterator LI = FS.dir_begin(LibDevicePath, EC), |
230 | 50 | LE; |
231 | 198 | !EC194 && LI != LE; LI = LI.increment(EC)144 ) { |
232 | 144 | StringRef FilePath = LI->path(); |
233 | 144 | StringRef FileName = llvm::sys::path::filename(FilePath); |
234 | | // Process all bitcode filenames that look like |
235 | | // libdevice.compute_XX.YY.bc |
236 | 144 | const StringRef LibDeviceName = "libdevice."; |
237 | 144 | if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc"))) |
238 | 0 | continue; |
239 | 144 | StringRef GpuArch = FileName.slice( |
240 | 144 | LibDeviceName.size(), FileName.find('.', LibDeviceName.size())); |
241 | 144 | LibDeviceMap[GpuArch] = FilePath.str(); |
242 | | // Insert map entries for specific devices with this compute |
243 | | // capability. NVCC's choice of the libdevice library version is |
244 | | // rather peculiar and depends on the CUDA version. |
245 | 144 | if (GpuArch == "compute_20") { |
246 | 18 | LibDeviceMap["sm_20"] = std::string(FilePath); |
247 | 18 | LibDeviceMap["sm_21"] = std::string(FilePath); |
248 | 18 | LibDeviceMap["sm_32"] = std::string(FilePath); |
249 | 126 | } else if (GpuArch == "compute_30") { |
250 | 54 | LibDeviceMap["sm_30"] = std::string(FilePath); |
251 | 54 | if (Version < CudaVersion::CUDA_80) { |
252 | 36 | LibDeviceMap["sm_50"] = std::string(FilePath); |
253 | 36 | LibDeviceMap["sm_52"] = std::string(FilePath); |
254 | 36 | LibDeviceMap["sm_53"] = std::string(FilePath); |
255 | 36 | } |
256 | 54 | LibDeviceMap["sm_60"] = std::string(FilePath); |
257 | 54 | LibDeviceMap["sm_61"] = std::string(FilePath); |
258 | 54 | LibDeviceMap["sm_62"] = std::string(FilePath); |
259 | 72 | } else if (GpuArch == "compute_35") { |
260 | 54 | LibDeviceMap["sm_35"] = std::string(FilePath); |
261 | 54 | LibDeviceMap["sm_37"] = std::string(FilePath); |
262 | 54 | } else if (18 GpuArch == "compute_50"18 ) { |
263 | 18 | if (Version >= CudaVersion::CUDA_80) { |
264 | 18 | LibDeviceMap["sm_50"] = std::string(FilePath); |
265 | 18 | LibDeviceMap["sm_52"] = std::string(FilePath); |
266 | 18 | LibDeviceMap["sm_53"] = std::string(FilePath); |
267 | 18 | } |
268 | 18 | } |
269 | 144 | } |
270 | 50 | } |
271 | | |
272 | | // Check that we have found at least one libdevice that we can link in if |
273 | | // -nocudalib hasn't been specified. |
274 | 50 | if (LibDeviceMap.empty() && !NoCudaLib0 ) |
275 | 0 | continue; |
276 | | |
277 | 50 | IsValid = true; |
278 | 50 | break; |
279 | 50 | } |
280 | 31.0k | } |
281 | | |
282 | | void CudaInstallationDetector::AddCudaIncludeArgs( |
283 | 134 | const ArgList &DriverArgs, ArgStringList &CC1Args) const { |
284 | 134 | if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { |
285 | | // Add cuda_wrappers/* to our system include path. This lets us wrap |
286 | | // standard library headers. |
287 | 134 | SmallString<128> P(D.ResourceDir); |
288 | 134 | llvm::sys::path::append(P, "include"); |
289 | 134 | llvm::sys::path::append(P, "cuda_wrappers"); |
290 | 134 | CC1Args.push_back("-internal-isystem"); |
291 | 134 | CC1Args.push_back(DriverArgs.MakeArgString(P)); |
292 | 134 | } |
293 | | |
294 | 134 | if (DriverArgs.hasArg(options::OPT_nogpuinc)) |
295 | 56 | return; |
296 | | |
297 | 78 | if (!isValid()) { |
298 | 64 | D.Diag(diag::err_drv_no_cuda_installation); |
299 | 64 | return; |
300 | 64 | } |
301 | | |
302 | 14 | CC1Args.push_back("-include"); |
303 | 14 | CC1Args.push_back("__clang_cuda_runtime_wrapper.h"); |
304 | 14 | } |
305 | | |
306 | | void CudaInstallationDetector::CheckCudaVersionSupportsArch( |
307 | 86 | CudaArch Arch) const { |
308 | 86 | if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN || |
309 | 86 | ArchsWithBadVersion[(int)Arch]22 ) |
310 | 64 | return; |
311 | | |
312 | 22 | auto MinVersion = MinVersionForCudaArch(Arch); |
313 | 22 | auto MaxVersion = MaxVersionForCudaArch(Arch); |
314 | 22 | if (Version < MinVersion || Version > MaxVersion) { |
315 | 0 | ArchsWithBadVersion[(int)Arch] = true; |
316 | 0 | D.Diag(diag::err_drv_cuda_version_unsupported) |
317 | 0 | << CudaArchToString(Arch) << CudaVersionToString(MinVersion) |
318 | 0 | << CudaVersionToString(MaxVersion) << InstallPath |
319 | 0 | << CudaVersionToString(Version); |
320 | 0 | } |
321 | 22 | } |
322 | | |
323 | 148 | void CudaInstallationDetector::print(raw_ostream &OS) const { |
324 | 148 | if (isValid()) |
325 | 0 | OS << "Found CUDA installation: " << InstallPath << ", version " |
326 | 0 | << CudaVersionToString(Version) << "\n"; |
327 | 148 | } |
328 | | |
329 | | namespace { |
330 | | /// Debug info level for the NVPTX devices. We may need to emit different debug |
331 | | /// info level for the host and for the device itselfi. This type controls |
332 | | /// emission of the debug info for the devices. It either prohibits disable info |
333 | | /// emission completely, or emits debug directives only, or emits same debug |
334 | | /// info as for the host. |
335 | | enum DeviceDebugInfoLevel { |
336 | | DisableDebugInfo, /// Do not emit debug info for the devices. |
337 | | DebugDirectivesOnly, /// Emit only debug directives. |
338 | | EmitSameDebugInfoAsHost, /// Use the same debug info level just like for the |
339 | | /// host. |
340 | | }; |
341 | | } // anonymous namespace |
342 | | |
343 | | /// Define debug info level for the NVPTX devices. If the debug info for both |
344 | | /// the host and device are disabled (-g0/-ggdb0 or no debug options at all). If |
345 | | /// only debug directives are requested for the both host and device |
346 | | /// (-gline-directvies-only), or the debug info only for the device is disabled |
347 | | /// (optimization is on and --cuda-noopt-device-debug was not specified), the |
348 | | /// debug directves only must be emitted for the device. Otherwise, use the same |
349 | | /// debug info level just like for the host (with the limitations of only |
350 | | /// supported DWARF2 standard). |
351 | 160 | static DeviceDebugInfoLevel mustEmitDebugInfo(const ArgList &Args) { |
352 | 160 | const Arg *A = Args.getLastArg(options::OPT_O_Group); |
353 | 160 | bool IsDebugEnabled = !A || A->getOption().matches(options::OPT_O0)36 || |
354 | 160 | Args.hasFlag(options::OPT_cuda_noopt_device_debug, |
355 | 27 | options::OPT_no_cuda_noopt_device_debug, |
356 | 27 | /*Default=*/false); |
357 | 160 | if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) { |
358 | 48 | const Option &Opt = A->getOption(); |
359 | 48 | if (Opt.matches(options::OPT_gN_Group)) { |
360 | 27 | if (Opt.matches(options::OPT_g0) || Opt.matches(options::OPT_ggdb0)24 ) |
361 | 6 | return DisableDebugInfo; |
362 | 21 | if (Opt.matches(options::OPT_gline_directives_only)) |
363 | 3 | return DebugDirectivesOnly; |
364 | 21 | } |
365 | 39 | return IsDebugEnabled ? EmitSameDebugInfoAsHost30 : DebugDirectivesOnly9 ; |
366 | 48 | } |
367 | 112 | return willEmitRemarks(Args) ? DebugDirectivesOnly4 : DisableDebugInfo108 ; |
368 | 160 | } |
369 | | |
370 | | void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA, |
371 | | const InputInfo &Output, |
372 | | const InputInfoList &Inputs, |
373 | | const ArgList &Args, |
374 | 47 | const char *LinkingOutput) const { |
375 | 47 | const auto &TC = |
376 | 47 | static_cast<const toolchains::NVPTXToolChain &>(getToolChain()); |
377 | 47 | assert(TC.getTriple().isNVPTX() && "Wrong platform"); |
378 | | |
379 | 47 | StringRef GPUArchName; |
380 | | // If this is a CUDA action we need to extract the device architecture |
381 | | // from the Job's associated architecture, otherwise use the -march=arch |
382 | | // option. This option may come from -Xopenmp-target flag or the default |
383 | | // value. |
384 | 47 | if (JA.isDeviceOffloading(Action::OFK_Cuda)) { |
385 | 47 | GPUArchName = JA.getOffloadingArch(); |
386 | 47 | } else { |
387 | 0 | GPUArchName = Args.getLastArgValue(options::OPT_march_EQ); |
388 | 0 | assert(!GPUArchName.empty() && "Must have an architecture passed in."); |
389 | 0 | } |
390 | | |
391 | | // Obtain architecture from the action. |
392 | 47 | CudaArch gpu_arch = StringToCudaArch(GPUArchName); |
393 | 47 | assert(gpu_arch != CudaArch::UNKNOWN && |
394 | 47 | "Device action expected to have an architecture."); |
395 | | |
396 | | // Check that our installation's ptxas supports gpu_arch. |
397 | 47 | if (!Args.hasArg(options::OPT_no_cuda_version_check)) { |
398 | 47 | TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch); |
399 | 47 | } |
400 | | |
401 | 47 | ArgStringList CmdArgs; |
402 | 47 | CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32"0 ); |
403 | 47 | DeviceDebugInfoLevel DIKind = mustEmitDebugInfo(Args); |
404 | 47 | if (DIKind == EmitSameDebugInfoAsHost) { |
405 | | // ptxas does not accept -g option if optimization is enabled, so |
406 | | // we ignore the compiler's -O* options if we want debug info. |
407 | 10 | CmdArgs.push_back("-g"); |
408 | 10 | CmdArgs.push_back("--dont-merge-basicblocks"); |
409 | 10 | CmdArgs.push_back("--return-at-end"); |
410 | 37 | } else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) { |
411 | | // Map the -O we received to -O{0,1,2,3}. |
412 | | // |
413 | | // TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's |
414 | | // default, so it may correspond more closely to the spirit of clang -O2. |
415 | | |
416 | | // -O3 seems like the least-bad option when -Osomething is specified to |
417 | | // clang but it isn't handled below. |
418 | 5 | StringRef OOpt = "3"; |
419 | 5 | if (A->getOption().matches(options::OPT_O4) || |
420 | 5 | A->getOption().matches(options::OPT_Ofast)) |
421 | 0 | OOpt = "3"; |
422 | 5 | else if (A->getOption().matches(options::OPT_O0)) |
423 | 0 | OOpt = "0"; |
424 | 5 | else if (A->getOption().matches(options::OPT_O)) { |
425 | | // -Os, -Oz, and -O(anything else) map to -O2, for lack of better options. |
426 | 5 | OOpt = llvm::StringSwitch<const char *>(A->getValue()) |
427 | 5 | .Case("1", "1") |
428 | 5 | .Case("2", "2") |
429 | 5 | .Case("3", "3") |
430 | 5 | .Case("s", "2") |
431 | 5 | .Case("z", "2") |
432 | 5 | .Default("2"); |
433 | 5 | } |
434 | 5 | CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt)); |
435 | 32 | } else { |
436 | | // If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond |
437 | | // to no optimizations, but ptxas's default is -O3. |
438 | 32 | CmdArgs.push_back("-O0"); |
439 | 32 | } |
440 | 47 | if (DIKind == DebugDirectivesOnly) |
441 | 5 | CmdArgs.push_back("-lineinfo"); |
442 | | |
443 | | // Pass -v to ptxas if it was passed to the driver. |
444 | 47 | if (Args.hasArg(options::OPT_v)) |
445 | 0 | CmdArgs.push_back("-v"); |
446 | | |
447 | 47 | CmdArgs.push_back("--gpu-name"); |
448 | 47 | CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch))); |
449 | 47 | CmdArgs.push_back("--output-file"); |
450 | 47 | std::string OutputFileName = TC.getInputFilename(Output); |
451 | | |
452 | | // If we are invoking `nvlink` internally we need to output a `.cubin` file. |
453 | | // FIXME: This should hopefully be removed if NVIDIA updates their tooling. |
454 | 47 | if (!C.getInputArgs().getLastArg(options::OPT_c)) { |
455 | 5 | SmallString<256> Filename(Output.getFilename()); |
456 | 5 | llvm::sys::path::replace_extension(Filename, "cubin"); |
457 | 5 | OutputFileName = Filename.str(); |
458 | 5 | } |
459 | 47 | if (Output.isFilename() && OutputFileName != Output.getFilename()) |
460 | 40 | C.addTempFile(Args.MakeArgString(OutputFileName)); |
461 | | |
462 | 47 | CmdArgs.push_back(Args.MakeArgString(OutputFileName)); |
463 | 47 | for (const auto &II : Inputs) |
464 | 47 | CmdArgs.push_back(Args.MakeArgString(II.getFilename())); |
465 | | |
466 | 47 | for (const auto &A : Args.getAllArgValues(options::OPT_Xcuda_ptxas)) |
467 | 0 | CmdArgs.push_back(Args.MakeArgString(A)); |
468 | | |
469 | 47 | bool Relocatable; |
470 | 47 | if (JA.isOffloading(Action::OFK_OpenMP)) |
471 | | // In OpenMP we need to generate relocatable code. |
472 | 0 | Relocatable = Args.hasFlag(options::OPT_fopenmp_relocatable_target, |
473 | 0 | options::OPT_fnoopenmp_relocatable_target, |
474 | 0 | /*Default=*/true); |
475 | 47 | else if (JA.isOffloading(Action::OFK_Cuda)) |
476 | | // In CUDA we generate relocatable code by default. |
477 | 47 | Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, |
478 | 47 | /*Default=*/false); |
479 | 0 | else |
480 | | // Otherwise, we are compiling directly and should create linkable output. |
481 | 0 | Relocatable = true; |
482 | | |
483 | 47 | if (Relocatable) |
484 | 0 | CmdArgs.push_back("-c"); |
485 | | |
486 | 47 | const char *Exec; |
487 | 47 | if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ)) |
488 | 0 | Exec = A->getValue(); |
489 | 47 | else |
490 | 47 | Exec = Args.MakeArgString(TC.GetProgramPath("ptxas")); |
491 | 47 | C.addCommand(std::make_unique<Command>( |
492 | 47 | JA, *this, |
493 | 47 | ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, |
494 | 47 | "--options-file"}, |
495 | 47 | Exec, CmdArgs, Inputs, Output)); |
496 | 47 | } |
497 | | |
498 | 40 | static bool shouldIncludePTX(const ArgList &Args, const char *gpu_arch) { |
499 | 40 | bool includePTX = true; |
500 | 392 | for (Arg *A : Args) { |
501 | 392 | if (!(A->getOption().matches(options::OPT_cuda_include_ptx_EQ) || |
502 | 392 | A->getOption().matches(options::OPT_no_cuda_include_ptx_EQ))) |
503 | 392 | continue; |
504 | 0 | A->claim(); |
505 | 0 | const StringRef ArchStr = A->getValue(); |
506 | 0 | if (ArchStr == "all" || ArchStr == gpu_arch) { |
507 | 0 | includePTX = A->getOption().matches(options::OPT_cuda_include_ptx_EQ); |
508 | 0 | continue; |
509 | 0 | } |
510 | 0 | } |
511 | 40 | return includePTX; |
512 | 40 | } |
513 | | |
514 | | // All inputs to this linker must be from CudaDeviceActions, as we need to look |
515 | | // at the Inputs' Actions in order to figure out which GPU architecture they |
516 | | // correspond to. |
517 | | void NVPTX::FatBinary::ConstructJob(Compilation &C, const JobAction &JA, |
518 | | const InputInfo &Output, |
519 | | const InputInfoList &Inputs, |
520 | | const ArgList &Args, |
521 | 40 | const char *LinkingOutput) const { |
522 | 40 | const auto &TC = |
523 | 40 | static_cast<const toolchains::CudaToolChain &>(getToolChain()); |
524 | 40 | assert(TC.getTriple().isNVPTX() && "Wrong platform"); |
525 | | |
526 | 40 | ArgStringList CmdArgs; |
527 | 40 | if (TC.CudaInstallation.version() <= CudaVersion::CUDA_100) |
528 | 40 | CmdArgs.push_back("--cuda"); |
529 | 40 | CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32"0 ); |
530 | 40 | CmdArgs.push_back(Args.MakeArgString("--create")); |
531 | 40 | CmdArgs.push_back(Args.MakeArgString(Output.getFilename())); |
532 | 40 | if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) |
533 | 10 | CmdArgs.push_back("-g"); |
534 | | |
535 | 80 | for (const auto &II : Inputs) { |
536 | 80 | auto *A = II.getAction(); |
537 | 80 | assert(A->getInputs().size() == 1 && |
538 | 80 | "Device offload action is expected to have a single input"); |
539 | 80 | const char *gpu_arch_str = A->getOffloadingArch(); |
540 | 80 | assert(gpu_arch_str && |
541 | 80 | "Device action expected to have associated a GPU architecture!"); |
542 | 80 | CudaArch gpu_arch = StringToCudaArch(gpu_arch_str); |
543 | | |
544 | 80 | if (II.getType() == types::TY_PP_Asm && |
545 | 80 | !shouldIncludePTX(Args, gpu_arch_str)40 ) |
546 | 0 | continue; |
547 | | // We need to pass an Arch of the form "sm_XX" for cubin files and |
548 | | // "compute_XX" for ptx. |
549 | 80 | const char *Arch = (II.getType() == types::TY_PP_Asm) |
550 | 80 | ? CudaArchToVirtualArchString(gpu_arch)40 |
551 | 80 | : gpu_arch_str40 ; |
552 | 80 | CmdArgs.push_back( |
553 | 80 | Args.MakeArgString(llvm::Twine("--image=profile=") + Arch + |
554 | 80 | ",file=" + getToolChain().getInputFilename(II))); |
555 | 80 | } |
556 | | |
557 | 40 | for (const auto &A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary)) |
558 | 0 | CmdArgs.push_back(Args.MakeArgString(A)); |
559 | | |
560 | 40 | const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary")); |
561 | 40 | C.addCommand(std::make_unique<Command>( |
562 | 40 | JA, *this, |
563 | 40 | ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, |
564 | 40 | "--options-file"}, |
565 | 40 | Exec, CmdArgs, Inputs, Output)); |
566 | 40 | } |
567 | | |
568 | | void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA, |
569 | | const InputInfo &Output, |
570 | | const InputInfoList &Inputs, |
571 | | const ArgList &Args, |
572 | 0 | const char *LinkingOutput) const { |
573 | 0 | const auto &TC = |
574 | 0 | static_cast<const toolchains::NVPTXToolChain &>(getToolChain()); |
575 | 0 | ArgStringList CmdArgs; |
576 | |
|
577 | 0 | assert(TC.getTriple().isNVPTX() && "Wrong platform"); |
578 | | |
579 | 0 | assert((Output.isFilename() || Output.isNothing()) && "Invalid output."); |
580 | 0 | if (Output.isFilename()) { |
581 | 0 | CmdArgs.push_back("-o"); |
582 | 0 | CmdArgs.push_back(Output.getFilename()); |
583 | 0 | } |
584 | |
|
585 | 0 | if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) |
586 | 0 | CmdArgs.push_back("-g"); |
587 | |
|
588 | 0 | if (Args.hasArg(options::OPT_v)) |
589 | 0 | CmdArgs.push_back("-v"); |
590 | |
|
591 | 0 | StringRef GPUArch = Args.getLastArgValue(options::OPT_march_EQ); |
592 | 0 | assert(!GPUArch.empty() && "At least one GPU Arch required for nvlink."); |
593 | | |
594 | 0 | CmdArgs.push_back("-arch"); |
595 | 0 | CmdArgs.push_back(Args.MakeArgString(GPUArch)); |
596 | | |
597 | | // Add paths specified in LIBRARY_PATH environment variable as -L options. |
598 | 0 | addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH"); |
599 | | |
600 | | // Add paths for the default clang library path. |
601 | 0 | SmallString<256> DefaultLibPath = |
602 | 0 | llvm::sys::path::parent_path(TC.getDriver().Dir); |
603 | 0 | llvm::sys::path::append(DefaultLibPath, CLANG_INSTALL_LIBDIR_BASENAME); |
604 | 0 | CmdArgs.push_back(Args.MakeArgString(Twine("-L") + DefaultLibPath)); |
605 | |
|
606 | 0 | for (const auto &II : Inputs) { |
607 | 0 | if (II.getType() == types::TY_LLVM_IR || II.getType() == types::TY_LTO_IR || |
608 | 0 | II.getType() == types::TY_LTO_BC || II.getType() == types::TY_LLVM_BC) { |
609 | 0 | C.getDriver().Diag(diag::err_drv_no_linker_llvm_support) |
610 | 0 | << getToolChain().getTripleString(); |
611 | 0 | continue; |
612 | 0 | } |
613 | | |
614 | | // Currently, we only pass the input files to the linker, we do not pass |
615 | | // any libraries that may be valid only for the host. |
616 | 0 | if (!II.isFilename()) |
617 | 0 | continue; |
618 | | |
619 | | // The 'nvlink' application performs RDC-mode linking when given a '.o' |
620 | | // file and device linking when given a '.cubin' file. We always want to |
621 | | // perform device linking, so just rename any '.o' files. |
622 | | // FIXME: This should hopefully be removed if NVIDIA updates their tooling. |
623 | 0 | auto InputFile = getToolChain().getInputFilename(II); |
624 | 0 | if (llvm::sys::path::extension(InputFile) != ".cubin") { |
625 | | // If there are no actions above this one then this is direct input and we |
626 | | // can copy it. Otherwise the input is internal so a `.cubin` file should |
627 | | // exist. |
628 | 0 | if (II.getAction() && II.getAction()->getInputs().size() == 0) { |
629 | 0 | const char *CubinF = |
630 | 0 | Args.MakeArgString(getToolChain().getDriver().GetTemporaryPath( |
631 | 0 | llvm::sys::path::stem(InputFile), "cubin")); |
632 | 0 | if (llvm::sys::fs::copy_file(InputFile, C.addTempFile(CubinF))) |
633 | 0 | continue; |
634 | | |
635 | 0 | CmdArgs.push_back(CubinF); |
636 | 0 | } else { |
637 | 0 | SmallString<256> Filename(InputFile); |
638 | 0 | llvm::sys::path::replace_extension(Filename, "cubin"); |
639 | 0 | CmdArgs.push_back(Args.MakeArgString(Filename)); |
640 | 0 | } |
641 | 0 | } else { |
642 | 0 | CmdArgs.push_back(Args.MakeArgString(InputFile)); |
643 | 0 | } |
644 | 0 | } |
645 | |
|
646 | 0 | C.addCommand(std::make_unique<Command>( |
647 | 0 | JA, *this, |
648 | 0 | ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, |
649 | 0 | "--options-file"}, |
650 | 0 | Args.MakeArgString(getToolChain().GetProgramPath("nvlink")), CmdArgs, |
651 | 0 | Inputs, Output)); |
652 | 0 | } |
653 | | |
654 | | void NVPTX::getNVPTXTargetFeatures(const Driver &D, const llvm::Triple &Triple, |
655 | | const llvm::opt::ArgList &Args, |
656 | 63 | std::vector<StringRef> &Features) { |
657 | 63 | if (Args.hasArg(options::OPT_cuda_feature_EQ)) { |
658 | 0 | StringRef PtxFeature = |
659 | 0 | Args.getLastArgValue(options::OPT_cuda_feature_EQ, "+ptx42"); |
660 | 0 | Features.push_back(Args.MakeArgString(PtxFeature)); |
661 | 0 | return; |
662 | 0 | } |
663 | 63 | CudaInstallationDetector CudaInstallation(D, Triple, Args); |
664 | | |
665 | | // New CUDA versions often introduce new instructions that are only supported |
666 | | // by new PTX version, so we need to raise PTX level to enable them in NVPTX |
667 | | // back-end. |
668 | 63 | const char *PtxFeature = nullptr; |
669 | 63 | switch (CudaInstallation.version()) { |
670 | 0 | #define CASE_CUDA_VERSION(CUDA_VER, PTX_VER) \ |
671 | 0 | case CudaVersion::CUDA_##CUDA_VER: \ |
672 | 0 | PtxFeature = "+ptx" #PTX_VER; \ |
673 | 0 | break; |
674 | 0 | CASE_CUDA_VERSION(121, 81); |
675 | 0 | CASE_CUDA_VERSION(120, 80); |
676 | 0 | CASE_CUDA_VERSION(118, 78); |
677 | 0 | CASE_CUDA_VERSION(117, 77); |
678 | 0 | CASE_CUDA_VERSION(116, 76); |
679 | 0 | CASE_CUDA_VERSION(115, 75); |
680 | 0 | CASE_CUDA_VERSION(114, 74); |
681 | 0 | CASE_CUDA_VERSION(113, 73); |
682 | 0 | CASE_CUDA_VERSION(112, 72); |
683 | 0 | CASE_CUDA_VERSION(111, 71); |
684 | 0 | CASE_CUDA_VERSION(110, 70); |
685 | 0 | CASE_CUDA_VERSION(102, 65); |
686 | 0 | CASE_CUDA_VERSION(101, 64); |
687 | 0 | CASE_CUDA_VERSION(100, 63); |
688 | 0 | CASE_CUDA_VERSION(92, 61); |
689 | 0 | CASE_CUDA_VERSION(91, 61); |
690 | 0 | CASE_CUDA_VERSION(90, 60); |
691 | 0 | #undef CASE_CUDA_VERSION |
692 | 63 | default: |
693 | 63 | PtxFeature = "+ptx42"; |
694 | 63 | } |
695 | 63 | Features.push_back(PtxFeature); |
696 | 63 | } |
697 | | |
698 | | /// NVPTX toolchain. Our assembler is ptxas, and our linker is nvlink. This |
699 | | /// operates as a stand-alone version of the NVPTX tools without the host |
700 | | /// toolchain. |
701 | | NVPTXToolChain::NVPTXToolChain(const Driver &D, const llvm::Triple &Triple, |
702 | | const llvm::Triple &HostTriple, |
703 | | const ArgList &Args, bool Freestanding = false) |
704 | 101 | : ToolChain(D, Triple, Args), CudaInstallation(D, HostTriple, Args), |
705 | 101 | Freestanding(Freestanding) { |
706 | 101 | if (CudaInstallation.isValid()) |
707 | 18 | getProgramPaths().push_back(std::string(CudaInstallation.getBinPath())); |
708 | | // Lookup binaries into the driver directory, this is used to |
709 | | // discover the 'nvptx-arch' executable. |
710 | 101 | getProgramPaths().push_back(getDriver().Dir); |
711 | 101 | } |
712 | | |
713 | | /// We only need the host triple to locate the CUDA binary utilities, use the |
714 | | /// system's default triple if not provided. |
715 | | NVPTXToolChain::NVPTXToolChain(const Driver &D, const llvm::Triple &Triple, |
716 | | const ArgList &Args) |
717 | 0 | : NVPTXToolChain(D, Triple, llvm::Triple(LLVM_HOST_TRIPLE), Args, |
718 | 0 | /*Freestanding=*/true) {} Unexecuted instantiation: clang::driver::toolchains::NVPTXToolChain::NVPTXToolChain(clang::driver::Driver const&, llvm::Triple const&, llvm::opt::ArgList const&) Unexecuted instantiation: clang::driver::toolchains::NVPTXToolChain::NVPTXToolChain(clang::driver::Driver const&, llvm::Triple const&, llvm::opt::ArgList const&) |
719 | | |
720 | | llvm::opt::DerivedArgList * |
721 | | NVPTXToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, |
722 | | StringRef BoundArch, |
723 | 0 | Action::OffloadKind DeviceOffloadKind) const { |
724 | 0 | DerivedArgList *DAL = |
725 | 0 | ToolChain::TranslateArgs(Args, BoundArch, DeviceOffloadKind); |
726 | 0 | if (!DAL) |
727 | 0 | DAL = new DerivedArgList(Args.getBaseArgs()); |
728 | |
|
729 | 0 | const OptTable &Opts = getDriver().getOpts(); |
730 | |
|
731 | 0 | for (Arg *A : Args) |
732 | 0 | if (!llvm::is_contained(*DAL, A)) |
733 | 0 | DAL->append(A); |
734 | |
|
735 | 0 | if (!DAL->hasArg(options::OPT_march_EQ)) |
736 | 0 | DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), |
737 | 0 | CudaArchToString(CudaArch::CudaDefault)); |
738 | |
|
739 | 0 | return DAL; |
740 | 0 | } |
741 | | |
742 | | void NVPTXToolChain::addClangTargetOptions( |
743 | | const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, |
744 | 0 | Action::OffloadKind DeviceOffloadingKind) const { |
745 | | // If we are compiling with a standalone NVPTX toolchain we want to try to |
746 | | // mimic a standard environment as much as possible. So we enable lowering |
747 | | // ctor / dtor functions to global symbols that can be registered. |
748 | 0 | if (Freestanding) |
749 | 0 | CC1Args.append({"-mllvm", "--nvptx-lower-global-ctor-dtor"}); |
750 | 0 | } |
751 | | |
752 | 20 | bool NVPTXToolChain::supportsDebugInfoOption(const llvm::opt::Arg *A) const { |
753 | 20 | const Option &O = A->getOption(); |
754 | 20 | return (O.matches(options::OPT_gN_Group) && |
755 | 20 | !O.matches(options::OPT_gmodules)13 ) || |
756 | 20 | O.matches(options::OPT_g_Flag)7 || |
757 | 20 | O.matches(options::OPT_ggdbN_Group)0 || O.matches(options::OPT_ggdb)0 || |
758 | 20 | O.matches(options::OPT_gdwarf)0 || O.matches(options::OPT_gdwarf_2)0 || |
759 | 20 | O.matches(options::OPT_gdwarf_3)0 || O.matches(options::OPT_gdwarf_4)0 || |
760 | 20 | O.matches(options::OPT_gdwarf_5)0 || |
761 | 20 | O.matches(options::OPT_gcolumn_info)0 ; |
762 | 20 | } |
763 | | |
764 | | void NVPTXToolChain::adjustDebugInfoKind( |
765 | | llvm::codegenoptions::DebugInfoKind &DebugInfoKind, |
766 | 73 | const ArgList &Args) const { |
767 | 73 | switch (mustEmitDebugInfo(Args)) { |
768 | 57 | case DisableDebugInfo: |
769 | 57 | DebugInfoKind = llvm::codegenoptions::NoDebugInfo; |
770 | 57 | break; |
771 | 6 | case DebugDirectivesOnly: |
772 | 6 | DebugInfoKind = llvm::codegenoptions::DebugDirectivesOnly; |
773 | 6 | break; |
774 | 10 | case EmitSameDebugInfoAsHost: |
775 | | // Use same debug info level as the host. |
776 | 10 | break; |
777 | 73 | } |
778 | 73 | } |
779 | | |
780 | | /// CUDA toolchain. Our assembler is ptxas, and our "linker" is fatbinary, |
781 | | /// which isn't properly a linker but nonetheless performs the step of stitching |
782 | | /// together object files from the assembler into a single blob. |
783 | | |
784 | | CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple, |
785 | | const ToolChain &HostTC, const ArgList &Args) |
786 | 101 | : NVPTXToolChain(D, Triple, HostTC.getTriple(), Args), HostTC(HostTC) {} |
787 | | |
788 | | void CudaToolChain::addClangTargetOptions( |
789 | | const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, |
790 | 73 | Action::OffloadKind DeviceOffloadingKind) const { |
791 | 73 | HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind); |
792 | | |
793 | 73 | StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ); |
794 | 73 | assert(!GpuArch.empty() && "Must have an explicit GPU arch."); |
795 | 73 | assert((DeviceOffloadingKind == Action::OFK_OpenMP || |
796 | 73 | DeviceOffloadingKind == Action::OFK_Cuda) && |
797 | 73 | "Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs."); |
798 | | |
799 | 73 | if (DeviceOffloadingKind == Action::OFK_Cuda) { |
800 | 73 | CC1Args.append( |
801 | 73 | {"-fcuda-is-device", "-mllvm", "-enable-memcpyopt-without-libcalls"}); |
802 | | |
803 | | // Unsized function arguments used for variadics were introduced in CUDA-9.0 |
804 | | // We still do not support generating code that actually uses variadic |
805 | | // arguments yet, but we do need to allow parsing them as recent CUDA |
806 | | // headers rely on that. https://github.com/llvm/llvm-project/issues/58410 |
807 | 73 | if (CudaInstallation.version() >= CudaVersion::CUDA_90) |
808 | 0 | CC1Args.push_back("-fcuda-allow-variadic-functions"); |
809 | 73 | } |
810 | | |
811 | 73 | if (DriverArgs.hasArg(options::OPT_nogpulib)) |
812 | 30 | return; |
813 | | |
814 | 43 | if (DeviceOffloadingKind == Action::OFK_OpenMP && |
815 | 43 | DriverArgs.hasArg(options::OPT_S)0 ) |
816 | 0 | return; |
817 | | |
818 | 43 | std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch); |
819 | 43 | if (LibDeviceFile.empty()) { |
820 | 34 | getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch; |
821 | 34 | return; |
822 | 34 | } |
823 | | |
824 | 9 | CC1Args.push_back("-mlink-builtin-bitcode"); |
825 | 9 | CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile)); |
826 | | |
827 | 9 | clang::CudaVersion CudaInstallationVersion = CudaInstallation.version(); |
828 | | |
829 | 9 | if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr, |
830 | 9 | options::OPT_fno_cuda_short_ptr, false)) |
831 | 0 | CC1Args.append({"-mllvm", "--nvptx-short-ptr"}); |
832 | | |
833 | 9 | if (CudaInstallationVersion >= CudaVersion::UNKNOWN) |
834 | 9 | CC1Args.push_back( |
835 | 9 | DriverArgs.MakeArgString(Twine("-target-sdk-version=") + |
836 | 9 | CudaVersionToString(CudaInstallationVersion))); |
837 | | |
838 | 9 | if (DeviceOffloadingKind == Action::OFK_OpenMP) { |
839 | 0 | if (CudaInstallationVersion < CudaVersion::CUDA_92) { |
840 | 0 | getDriver().Diag( |
841 | 0 | diag::err_drv_omp_offload_target_cuda_version_not_support) |
842 | 0 | << CudaVersionToString(CudaInstallationVersion); |
843 | 0 | return; |
844 | 0 | } |
845 | | |
846 | | // Link the bitcode library late if we're using device LTO. |
847 | 0 | if (getDriver().isUsingLTO(/* IsOffload */ true)) |
848 | 0 | return; |
849 | | |
850 | 0 | addOpenMPDeviceRTL(getDriver(), DriverArgs, CC1Args, GpuArch.str(), |
851 | 0 | getTriple()); |
852 | 0 | } |
853 | 9 | } |
854 | | |
855 | | llvm::DenormalMode CudaToolChain::getDefaultDenormalModeForType( |
856 | | const llvm::opt::ArgList &DriverArgs, const JobAction &JA, |
857 | 146 | const llvm::fltSemantics *FPType) const { |
858 | 146 | if (JA.getOffloadingDeviceKind() == Action::OFK_Cuda) { |
859 | 146 | if (FPType && FPType == &llvm::APFloat::IEEEsingle()73 && |
860 | 146 | DriverArgs.hasFlag(options::OPT_fgpu_flush_denormals_to_zero, |
861 | 73 | options::OPT_fno_gpu_flush_denormals_to_zero, false)) |
862 | 3 | return llvm::DenormalMode::getPreserveSign(); |
863 | 146 | } |
864 | | |
865 | 143 | assert(JA.getOffloadingDeviceKind() != Action::OFK_Host); |
866 | 143 | return llvm::DenormalMode::getIEEE(); |
867 | 143 | } |
868 | | |
869 | | void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs, |
870 | 71 | ArgStringList &CC1Args) const { |
871 | | // Check our CUDA version if we're going to include the CUDA headers. |
872 | 71 | if (!DriverArgs.hasArg(options::OPT_nogpuinc) && |
873 | 71 | !DriverArgs.hasArg(options::OPT_no_cuda_version_check)39 ) { |
874 | 39 | StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ); |
875 | 39 | assert(!Arch.empty() && "Must have an explicit GPU arch."); |
876 | 39 | CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch)); |
877 | 39 | } |
878 | 71 | CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args); |
879 | 71 | } |
880 | | |
881 | 127 | std::string CudaToolChain::getInputFilename(const InputInfo &Input) const { |
882 | | // Only object files are changed, for example assembly files keep their .s |
883 | | // extensions. If the user requested device-only compilation don't change it. |
884 | 127 | if (Input.getType() != types::TY_Object || getDriver().offloadDeviceOnly()87 ) |
885 | 47 | return ToolChain::getInputFilename(Input); |
886 | | |
887 | | // Replace extension for object files with cubin because nvlink relies on |
888 | | // these particular file names. |
889 | 80 | SmallString<256> Filename(ToolChain::getInputFilename(Input)); |
890 | 80 | llvm::sys::path::replace_extension(Filename, "cubin"); |
891 | 80 | return std::string(Filename.str()); |
892 | 127 | } |
893 | | |
894 | | llvm::opt::DerivedArgList * |
895 | | CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, |
896 | | StringRef BoundArch, |
897 | 151 | Action::OffloadKind DeviceOffloadKind) const { |
898 | 151 | DerivedArgList *DAL = |
899 | 151 | HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind); |
900 | 151 | if (!DAL) |
901 | 105 | DAL = new DerivedArgList(Args.getBaseArgs()); |
902 | | |
903 | 151 | const OptTable &Opts = getDriver().getOpts(); |
904 | | |
905 | | // For OpenMP device offloading, append derived arguments. Make sure |
906 | | // flags are not duplicated. |
907 | | // Also append the compute capability. |
908 | 151 | if (DeviceOffloadKind == Action::OFK_OpenMP) { |
909 | 0 | for (Arg *A : Args) |
910 | 0 | if (!llvm::is_contained(*DAL, A)) |
911 | 0 | DAL->append(A); |
912 | |
|
913 | 0 | if (!DAL->hasArg(options::OPT_march_EQ)) { |
914 | 0 | StringRef Arch = BoundArch; |
915 | 0 | if (Arch.empty()) { |
916 | 0 | auto ArchsOrErr = getSystemGPUArchs(Args); |
917 | 0 | if (!ArchsOrErr) { |
918 | 0 | std::string ErrMsg = |
919 | 0 | llvm::formatv("{0}", llvm::fmt_consume(ArchsOrErr.takeError())); |
920 | 0 | getDriver().Diag(diag::err_drv_undetermined_gpu_arch) |
921 | 0 | << llvm::Triple::getArchTypeName(getArch()) << ErrMsg << "-march"; |
922 | 0 | Arch = CudaArchToString(CudaArch::CudaDefault); |
923 | 0 | } else { |
924 | 0 | Arch = Args.MakeArgString(ArchsOrErr->front()); |
925 | 0 | } |
926 | 0 | } |
927 | 0 | DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), Arch); |
928 | 0 | } |
929 | |
|
930 | 0 | return DAL; |
931 | 0 | } |
932 | | |
933 | 1.28k | for (Arg *A : Args)151 { |
934 | 1.28k | DAL->append(A); |
935 | 1.28k | } |
936 | | |
937 | 151 | if (!BoundArch.empty()) { |
938 | 71 | DAL->eraseArg(options::OPT_march_EQ); |
939 | 71 | DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), |
940 | 71 | BoundArch); |
941 | 71 | } |
942 | 151 | return DAL; |
943 | 151 | } |
944 | | |
945 | | Expected<SmallVector<std::string>> |
946 | 0 | CudaToolChain::getSystemGPUArchs(const ArgList &Args) const { |
947 | | // Detect NVIDIA GPUs availible on the system. |
948 | 0 | std::string Program; |
949 | 0 | if (Arg *A = Args.getLastArg(options::OPT_nvptx_arch_tool_EQ)) |
950 | 0 | Program = A->getValue(); |
951 | 0 | else |
952 | 0 | Program = GetProgramPath("nvptx-arch"); |
953 | |
|
954 | 0 | auto StdoutOrErr = executeToolChainProgram(Program); |
955 | 0 | if (!StdoutOrErr) |
956 | 0 | return StdoutOrErr.takeError(); |
957 | | |
958 | 0 | SmallVector<std::string, 1> GPUArchs; |
959 | 0 | for (StringRef Arch : llvm::split((*StdoutOrErr)->getBuffer(), "\n")) |
960 | 0 | if (!Arch.empty()) |
961 | 0 | GPUArchs.push_back(Arch.str()); |
962 | |
|
963 | 0 | if (GPUArchs.empty()) |
964 | 0 | return llvm::createStringError(std::error_code(), |
965 | 0 | "No NVIDIA GPU detected in the system"); |
966 | | |
967 | 0 | return std::move(GPUArchs); |
968 | 0 | } |
969 | | |
970 | 0 | Tool *NVPTXToolChain::buildAssembler() const { |
971 | 0 | return new tools::NVPTX::Assembler(*this); |
972 | 0 | } |
973 | | |
974 | 0 | Tool *NVPTXToolChain::buildLinker() const { |
975 | 0 | return new tools::NVPTX::Linker(*this); |
976 | 0 | } |
977 | | |
978 | 47 | Tool *CudaToolChain::buildAssembler() const { |
979 | 47 | return new tools::NVPTX::Assembler(*this); |
980 | 47 | } |
981 | | |
982 | 40 | Tool *CudaToolChain::buildLinker() const { |
983 | 40 | return new tools::NVPTX::FatBinary(*this); |
984 | 40 | } |
985 | | |
986 | 73 | void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const { |
987 | 73 | HostTC.addClangWarningOptions(CC1Args); |
988 | 73 | } |
989 | | |
990 | | ToolChain::CXXStdlibType |
991 | 0 | CudaToolChain::GetCXXStdlibType(const ArgList &Args) const { |
992 | 0 | return HostTC.GetCXXStdlibType(Args); |
993 | 0 | } |
994 | | |
995 | | void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, |
996 | 139 | ArgStringList &CC1Args) const { |
997 | 139 | HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args); |
998 | | |
999 | 139 | if (!DriverArgs.hasArg(options::OPT_nogpuinc) && CudaInstallation.isValid()78 ) |
1000 | 14 | CC1Args.append( |
1001 | 14 | {"-internal-isystem", |
1002 | 14 | DriverArgs.MakeArgString(CudaInstallation.getIncludePath())}); |
1003 | 139 | } |
1004 | | |
1005 | | void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args, |
1006 | 139 | ArgStringList &CC1Args) const { |
1007 | 139 | HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args); |
1008 | 139 | } |
1009 | | |
1010 | | void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args, |
1011 | 0 | ArgStringList &CC1Args) const { |
1012 | 0 | HostTC.AddIAMCUIncludeArgs(Args, CC1Args); |
1013 | 0 | } |
1014 | | |
1015 | 73 | SanitizerMask CudaToolChain::getSupportedSanitizers() const { |
1016 | | // The CudaToolChain only supports sanitizers in the sense that it allows |
1017 | | // sanitizer arguments on the command line if they are supported by the host |
1018 | | // toolchain. The CudaToolChain will actually ignore any command line |
1019 | | // arguments for any of these "supported" sanitizers. That means that no |
1020 | | // sanitization of device code is actually supported at this time. |
1021 | | // |
1022 | | // This behavior is necessary because the host and device toolchains |
1023 | | // invocations often share the command line, so the device toolchain must |
1024 | | // tolerate flags meant only for the host toolchain. |
1025 | 73 | return HostTC.getSupportedSanitizers(); |
1026 | 73 | } |
1027 | | |
1028 | | VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D, |
1029 | 73 | const ArgList &Args) const { |
1030 | 73 | return HostTC.computeMSVCVersion(D, Args); |
1031 | 73 | } |