Coverage Report

Created: 2022-05-14 11:35

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/Sema/SemaCUDA.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
/// This file implements semantic analysis for CUDA constructs.
10
///
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/AST/ASTContext.h"
14
#include "clang/AST/Decl.h"
15
#include "clang/AST/ExprCXX.h"
16
#include "clang/Basic/Cuda.h"
17
#include "clang/Basic/TargetInfo.h"
18
#include "clang/Lex/Preprocessor.h"
19
#include "clang/Sema/Lookup.h"
20
#include "clang/Sema/ScopeInfo.h"
21
#include "clang/Sema/Sema.h"
22
#include "clang/Sema/SemaDiagnostic.h"
23
#include "clang/Sema/SemaInternal.h"
24
#include "clang/Sema/Template.h"
25
#include "llvm/ADT/Optional.h"
26
#include "llvm/ADT/SmallVector.h"
27
using namespace clang;
28
29
60
template <typename AttrT> static bool hasExplicitAttr(const VarDecl *D) {
30
60
  if (!D)
31
0
    return false;
32
60
  if (auto *A = D->getAttr<AttrT>())
33
60
    return !A->isImplicit();
34
0
  return false;
35
60
}
36
37
7
void Sema::PushForceCUDAHostDevice() {
38
7
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
39
0
  ForceCUDAHostDeviceDepth++;
40
7
}
41
42
5
bool Sema::PopForceCUDAHostDevice() {
43
5
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
44
5
  if (ForceCUDAHostDeviceDepth == 0)
45
0
    return false;
46
5
  ForceCUDAHostDeviceDepth--;
47
5
  return true;
48
5
}
49
50
ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
51
                                         MultiExprArg ExecConfig,
52
179
                                         SourceLocation GGGLoc) {
53
179
  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
54
179
  if (!ConfigDecl)
55
0
    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
56
0
                     << getCudaConfigureFuncName());
57
179
  QualType ConfigQTy = ConfigDecl->getType();
58
59
179
  DeclRefExpr *ConfigDR = new (Context)
60
179
      DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
61
179
  MarkFunctionReferenced(LLLLoc, ConfigDecl);
62
63
179
  return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
64
179
                       /*IsExecConfig=*/true);
65
179
}
66
67
Sema::CUDAFunctionTarget
68
34
Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
69
34
  bool HasHostAttr = false;
70
34
  bool HasDeviceAttr = false;
71
34
  bool HasGlobalAttr = false;
72
34
  bool HasInvalidTargetAttr = false;
73
35
  for (const ParsedAttr &AL : Attrs) {
74
35
    switch (AL.getKind()) {
75
13
    case ParsedAttr::AT_CUDAGlobal:
76
13
      HasGlobalAttr = true;
77
13
      break;
78
10
    case ParsedAttr::AT_CUDAHost:
79
10
      HasHostAttr = true;
80
10
      break;
81
12
    case ParsedAttr::AT_CUDADevice:
82
12
      HasDeviceAttr = true;
83
12
      break;
84
0
    case ParsedAttr::AT_CUDAInvalidTarget:
85
0
      HasInvalidTargetAttr = true;
86
0
      break;
87
0
    default:
88
0
      break;
89
35
    }
90
35
  }
91
92
34
  if (HasInvalidTargetAttr)
93
0
    return CFT_InvalidTarget;
94
95
34
  if (HasGlobalAttr)
96
13
    return CFT_Global;
97
98
21
  if (HasHostAttr && 
HasDeviceAttr10
)
99
6
    return CFT_HostDevice;
100
101
15
  if (HasDeviceAttr)
102
6
    return CFT_Device;
103
104
9
  return CFT_Host;
105
15
}
106
107
template <typename A>
108
111k
static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109
111k
  return D->hasAttrs() && 
llvm::any_of(D->getAttrs(), [&](Attr *Attribute) 79.3k
{
110
107k
           return isa<A>(Attribute) &&
111
107k
                  
!(56.9k
IgnoreImplicitAttr56.9k
&&
Attribute->isImplicit()78
);
112
107k
         });
SemaCUDA.cpp:bool hasAttr<clang::CUDADeviceAttr>(clang::FunctionDecl const*, bool)::'lambda'(clang::Attr*)::operator()(clang::Attr*) const
Line
Count
Source
109
52.4k
  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110
52.4k
           return isa<A>(Attribute) &&
111
52.4k
                  
!(34.1k
IgnoreImplicitAttr34.1k
&&
Attribute->isImplicit()40
);
112
52.4k
         });
SemaCUDA.cpp:bool hasAttr<clang::CUDAHostAttr>(clang::FunctionDecl const*, bool)::'lambda'(clang::Attr*)::operator()(clang::Attr*) const
Line
Count
Source
109
55.0k
  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110
55.0k
           return isa<A>(Attribute) &&
111
55.0k
                  
!(22.8k
IgnoreImplicitAttr22.8k
&&
Attribute->isImplicit()38
);
112
55.0k
         });
113
111k
}
SemaCUDA.cpp:bool hasAttr<clang::CUDADeviceAttr>(clang::FunctionDecl const*, bool)
Line
Count
Source
108
55.6k
static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109
55.6k
  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110
39.6k
           return isa<A>(Attribute) &&
111
39.6k
                  !(IgnoreImplicitAttr && Attribute->isImplicit());
112
39.6k
         });
113
55.6k
}
SemaCUDA.cpp:bool hasAttr<clang::CUDAHostAttr>(clang::FunctionDecl const*, bool)
Line
Count
Source
108
55.6k
static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109
55.6k
  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110
39.6k
           return isa<A>(Attribute) &&
111
39.6k
                  !(IgnoreImplicitAttr && Attribute->isImplicit());
112
39.6k
         });
113
55.6k
}
114
115
/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
116
Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
117
58.7k
                                                  bool IgnoreImplicitHDAttr) {
118
  // Code that lives outside a function is run on the host.
119
58.7k
  if (D == nullptr)
120
277
    return CFT_Host;
121
122
58.4k
  if (D->hasAttr<CUDAInvalidTargetAttr>())
123
39
    return CFT_InvalidTarget;
124
125
58.4k
  if (D->hasAttr<CUDAGlobalAttr>())
126
2.74k
    return CFT_Global;
127
128
55.6k
  if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
129
34.1k
    if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
130
17.8k
      return CFT_HostDevice;
131
16.2k
    return CFT_Device;
132
34.1k
  } else 
if (21.5k
hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)21.5k
) {
133
4.93k
    return CFT_Host;
134
16.6k
  } else if ((D->isImplicit() || 
!D->isUserProvided()16.0k
) &&
135
16.6k
             
!IgnoreImplicitHDAttr588
) {
136
    // Some implicit declarations (like intrinsic functions) are not marked.
137
    // Set the most lenient target on them for maximal flexibility.
138
588
    return CFT_HostDevice;
139
588
  }
140
141
16.0k
  return CFT_Host;
142
55.6k
}
143
144
/// IdentifyTarget - Determine the CUDA compilation target for this variable.
145
624
Sema::CUDAVariableTarget Sema::IdentifyCUDATarget(const VarDecl *Var) {
146
624
  if (Var->hasAttr<HIPManagedAttr>())
147
68
    return CVT_Unified;
148
  // Only constexpr and const variabless with implicit constant attribute
149
  // are emitted on both sides. Such variables are promoted to device side
150
  // only if they have static constant intializers on device side.
151
556
  if ((Var->isConstexpr() || 
Var->getType().isConstQualified()500
) &&
152
556
      
Var->hasAttr<CUDAConstantAttr>()162
&&
153
556
      
!hasExplicitAttr<CUDAConstantAttr>(Var)60
)
154
60
    return CVT_Both;
155
496
  if (Var->hasAttr<CUDADeviceAttr>() || 
Var->hasAttr<CUDAConstantAttr>()355
||
156
496
      
Var->hasAttr<CUDASharedAttr>()285
||
157
496
      
Var->getType()->isCUDADeviceBuiltinSurfaceType()215
||
158
496
      
Var->getType()->isCUDADeviceBuiltinTextureType()211
)
159
289
    return CVT_Device;
160
  // Function-scope static variable without explicit device or constant
161
  // attribute are emitted
162
  //  - on both sides in host device functions
163
  //  - on device side in device or global functions
164
207
  if (auto *FD = dyn_cast<FunctionDecl>(Var->getDeclContext())) {
165
28
    switch (IdentifyCUDATarget(FD)) {
166
12
    case CFT_HostDevice:
167
12
      return CVT_Both;
168
10
    case CFT_Device:
169
10
    case CFT_Global:
170
10
      return CVT_Device;
171
6
    default:
172
6
      return CVT_Host;
173
28
    }
174
28
  }
175
179
  return CVT_Host;
176
207
}
177
178
// * CUDA Call preference table
179
//
180
// F - from,
181
// T - to
182
// Ph - preference in host mode
183
// Pd - preference in device mode
184
// H  - handled in (x)
185
// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
186
//
187
// | F  | T  | Ph  | Pd  |  H  |
188
// |----+----+-----+-----+-----+
189
// | d  | d  | N   | N   | (c) |
190
// | d  | g  | --  | --  | (a) |
191
// | d  | h  | --  | --  | (e) |
192
// | d  | hd | HD  | HD  | (b) |
193
// | g  | d  | N   | N   | (c) |
194
// | g  | g  | --  | --  | (a) |
195
// | g  | h  | --  | --  | (e) |
196
// | g  | hd | HD  | HD  | (b) |
197
// | h  | d  | --  | --  | (e) |
198
// | h  | g  | N   | N   | (c) |
199
// | h  | h  | N   | N   | (c) |
200
// | h  | hd | HD  | HD  | (b) |
201
// | hd | d  | WS  | SS  | (d) |
202
// | hd | g  | SS  | --  |(d/a)|
203
// | hd | h  | SS  | WS  | (d) |
204
// | hd | hd | HD  | HD  | (b) |
205
206
Sema::CUDAFunctionPreference
207
Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
208
17.8k
                             const FunctionDecl *Callee) {
209
17.8k
  assert(Callee && "Callee must be valid.");
210
0
  CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
211
17.8k
  CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
212
213
  // If one of the targets is invalid, the check always fails, no matter what
214
  // the other target is.
215
17.8k
  if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
216
7
    return CFP_Never;
217
218
  // (a) Can't call global from some contexts until we support CUDA's
219
  // dynamic parallelism.
220
17.8k
  if (CalleeTarget == CFT_Global &&
221
17.8k
      
(682
CallerTarget == CFT_Global682
||
CallerTarget == CFT_Device681
))
222
7
    return CFP_Never;
223
224
  // (b) Calling HostDevice is OK for everyone.
225
17.8k
  if (CalleeTarget == CFT_HostDevice)
226
10.5k
    return CFP_HostDevice;
227
228
  // (c) Best case scenarios
229
7.30k
  if (CalleeTarget == CallerTarget ||
230
7.30k
      
(2.45k
CallerTarget == CFT_Host2.45k
&&
CalleeTarget == CFT_Global755
) ||
231
7.30k
      
(1.80k
CallerTarget == CFT_Global1.80k
&&
CalleeTarget == CFT_Device328
))
232
5.83k
    return CFP_Native;
233
234
  // (d) HostDevice behavior depends on compilation mode.
235
1.47k
  if (CallerTarget == CFT_HostDevice) {
236
    // It's OK to call a compilation-mode matching function from an HD one.
237
1.26k
    if ((getLangOpts().CUDAIsDevice && 
CalleeTarget == CFT_Device592
) ||
238
1.26k
        
(994
!getLangOpts().CUDAIsDevice994
&&
239
994
         
(674
CalleeTarget == CFT_Host674
||
CalleeTarget == CFT_Global293
)))
240
669
      return CFP_SameSide;
241
242
    // Calls from HD to non-mode-matching functions (i.e., to host functions
243
    // when compiling in device mode or to device functions when compiling in
244
    // host mode) are allowed at the sema level, but eventually rejected if
245
    // they're ever codegened.  TODO: Reject said calls earlier.
246
597
    return CFP_WrongSide;
247
1.26k
  }
248
249
  // (e) Calling across device/host boundary is not something you should do.
250
212
  if ((CallerTarget == CFT_Host && 
CalleeTarget == CFT_Device101
) ||
251
212
      
(111
CallerTarget == CFT_Device111
&&
CalleeTarget == CFT_Host109
) ||
252
212
      
(2
CallerTarget == CFT_Global2
&&
CalleeTarget == CFT_Host2
))
253
212
    return CFP_Never;
254
255
0
  llvm_unreachable("All cases should've been handled by now.");
256
0
}
257
258
0
template <typename AttrT> static bool hasImplicitAttr(const FunctionDecl *D) {
259
0
  if (!D)
260
0
    return false;
261
0
  if (auto *A = D->getAttr<AttrT>())
262
0
    return A->isImplicit();
263
0
  return D->isImplicit();
264
0
}
Unexecuted instantiation: SemaCUDA.cpp:bool hasImplicitAttr<clang::CUDADeviceAttr>(clang::FunctionDecl const*)
Unexecuted instantiation: SemaCUDA.cpp:bool hasImplicitAttr<clang::CUDAHostAttr>(clang::FunctionDecl const*)
265
266
0
bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) {
267
0
  bool IsImplicitDevAttr = hasImplicitAttr<CUDADeviceAttr>(D);
268
0
  bool IsImplicitHostAttr = hasImplicitAttr<CUDAHostAttr>(D);
269
0
  return IsImplicitDevAttr && IsImplicitHostAttr;
270
0
}
271
272
void Sema::EraseUnwantedCUDAMatches(
273
    const FunctionDecl *Caller,
274
4
    SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
275
4
  if (Matches.size() <= 1)
276
0
    return;
277
278
4
  using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
279
280
  // Gets the CUDA function preference for a call from Caller to Match.
281
20
  auto GetCFP = [&](const Pair &Match) {
282
20
    return IdentifyCUDAPreference(Caller, Match.second);
283
20
  };
284
285
  // Find the best call preference among the functions in Matches.
286
4
  CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
287
4
      Matches.begin(), Matches.end(),
288
4
      [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
289
290
  // Erase all functions with lower priority.
291
4
  llvm::erase_if(Matches,
292
8
                 [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
293
4
}
294
295
/// When an implicitly-declared special member has to invoke more than one
296
/// base/field special member, conflicts may occur in the targets of these
297
/// members. For example, if one base's member __host__ and another's is
298
/// __device__, it's a conflict.
299
/// This function figures out if the given targets \param Target1 and
300
/// \param Target2 conflict, and if they do not it fills in
301
/// \param ResolvedTarget with a target that resolves for both calls.
302
/// \return true if there's a conflict, false otherwise.
303
static bool
304
resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
305
                                Sema::CUDAFunctionTarget Target2,
306
67
                                Sema::CUDAFunctionTarget *ResolvedTarget) {
307
  // Only free functions and static member functions may be global.
308
67
  assert(Target1 != Sema::CFT_Global);
309
0
  assert(Target2 != Sema::CFT_Global);
310
311
67
  if (Target1 == Sema::CFT_HostDevice) {
312
37
    *ResolvedTarget = Target2;
313
37
  } else 
if (30
Target2 == Sema::CFT_HostDevice30
) {
314
1
    *ResolvedTarget = Target1;
315
29
  } else if (Target1 != Target2) {
316
25
    return true;
317
25
  } else {
318
4
    *ResolvedTarget = Target1;
319
4
  }
320
321
42
  return false;
322
67
}
323
324
bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
325
                                                   CXXSpecialMember CSM,
326
                                                   CXXMethodDecl *MemberDecl,
327
                                                   bool ConstRHS,
328
2.63k
                                                   bool Diagnose) {
329
  // If the defaulted special member is defined lexically outside of its
330
  // owning class, or the special member already has explicit device or host
331
  // attributes, do not infer.
332
2.63k
  bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
333
2.63k
  bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
334
2.63k
  bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
335
2.63k
  bool HasExplicitAttr =
336
2.63k
      (HasD && 
!MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()1.27k
) ||
337
2.63k
      
(2.63k
HasH2.63k
&&
!MemberDecl->getAttr<CUDAHostAttr>()->isImplicit()1.27k
);
338
2.63k
  if (!InClass || 
HasExplicitAttr2.63k
)
339
14
    return false;
340
341
2.62k
  llvm::Optional<CUDAFunctionTarget> InferredTarget;
342
343
  // We're going to invoke special member lookup; mark that these special
344
  // members are called from this one, and not from its caller.
345
2.62k
  ContextRAII MethodContext(*this, MemberDecl);
346
347
  // Look for special members in base classes that should be invoked from here.
348
  // Infer the target of this member base on the ones it should call.
349
  // Skip direct and indirect virtual bases for abstract classes.
350
2.62k
  llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
351
2.62k
  for (const auto &B : ClassDecl->bases()) {
352
279
    if (!B.isVirtual()) {
353
279
      Bases.push_back(&B);
354
279
    }
355
279
  }
356
357
2.62k
  if (!ClassDecl->isAbstract()) {
358
2.62k
    llvm::append_range(Bases, llvm::make_pointer_range(ClassDecl->vbases()));
359
2.62k
  }
360
361
2.62k
  for (const auto *B : Bases) {
362
279
    const RecordType *BaseType = B->getType()->getAs<RecordType>();
363
279
    if (!BaseType) {
364
0
      continue;
365
0
    }
366
367
279
    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
368
279
    Sema::SpecialMemberOverloadResult SMOR =
369
279
        LookupSpecialMember(BaseClassDecl, CSM,
370
279
                            /* ConstArg */ ConstRHS,
371
279
                            /* VolatileArg */ false,
372
279
                            /* RValueThis */ false,
373
279
                            /* ConstThis */ false,
374
279
                            /* VolatileThis */ false);
375
376
279
    if (!SMOR.getMethod())
377
5
      continue;
378
379
274
    CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
380
274
    if (!InferredTarget.hasValue()) {
381
244
      InferredTarget = BaseMethodTarget;
382
244
    } else {
383
30
      bool ResolutionError = resolveCalleeCUDATargetConflict(
384
30
          InferredTarget.getValue(), BaseMethodTarget,
385
30
          InferredTarget.getPointer());
386
30
      if (ResolutionError) {
387
13
        if (Diagnose) {
388
3
          Diag(ClassDecl->getLocation(),
389
3
               diag::note_implicit_member_target_infer_collision)
390
3
              << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
391
3
        }
392
13
        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
393
13
        return true;
394
13
      }
395
30
    }
396
274
  }
397
398
  // Same as for bases, but now for special members of fields.
399
2.61k
  for (const auto *F : ClassDecl->fields()) {
400
2.00k
    if (F->isInvalidDecl()) {
401
0
      continue;
402
0
    }
403
404
2.00k
    const RecordType *FieldType =
405
2.00k
        Context.getBaseElementType(F->getType())->getAs<RecordType>();
406
2.00k
    if (!FieldType) {
407
1.83k
      continue;
408
1.83k
    }
409
410
166
    CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
411
166
    Sema::SpecialMemberOverloadResult SMOR =
412
166
        LookupSpecialMember(FieldRecDecl, CSM,
413
166
                            /* ConstArg */ ConstRHS && 
!F->isMutable()66
,
414
166
                            /* VolatileArg */ false,
415
166
                            /* RValueThis */ false,
416
166
                            /* ConstThis */ false,
417
166
                            /* VolatileThis */ false);
418
419
166
    if (!SMOR.getMethod())
420
0
      continue;
421
422
166
    CUDAFunctionTarget FieldMethodTarget =
423
166
        IdentifyCUDATarget(SMOR.getMethod());
424
166
    if (!InferredTarget.hasValue()) {
425
129
      InferredTarget = FieldMethodTarget;
426
129
    } else {
427
37
      bool ResolutionError = resolveCalleeCUDATargetConflict(
428
37
          InferredTarget.getValue(), FieldMethodTarget,
429
37
          InferredTarget.getPointer());
430
37
      if (ResolutionError) {
431
12
        if (Diagnose) {
432
4
          Diag(ClassDecl->getLocation(),
433
4
               diag::note_implicit_member_target_infer_collision)
434
4
              << (unsigned)CSM << InferredTarget.getValue()
435
4
              << FieldMethodTarget;
436
4
        }
437
12
        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
438
12
        return true;
439
12
      }
440
37
    }
441
166
  }
442
443
444
  // If no target was inferred, mark this member as __host__ __device__;
445
  // it's the least restrictive option that can be invoked from any target.
446
2.60k
  bool NeedsH = true, NeedsD = true;
447
2.60k
  if (InferredTarget.hasValue()) {
448
348
    if (InferredTarget.getValue() == CFT_Device)
449
58
      NeedsH = false;
450
290
    else if (InferredTarget.getValue() == CFT_Host)
451
67
      NeedsD = false;
452
348
  }
453
454
  // We either setting attributes first time, or the inferred ones must match
455
  // previously set ones.
456
2.60k
  if (NeedsD && 
!HasD2.53k
)
457
1.26k
    MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
458
2.60k
  if (NeedsH && 
!HasH2.54k
)
459
1.27k
    MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
460
461
2.60k
  return false;
462
2.61k
}
463
464
23
bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
465
23
  if (!CD->isDefined() && 
CD->isTemplateInstantiation()0
)
466
0
    InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
467
468
  // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
469
  // empty at a point in the translation unit, if it is either a
470
  // trivial constructor
471
23
  if (CD->isTrivial())
472
9
    return true;
473
474
  // ... or it satisfies all of the following conditions:
475
  // The constructor function has been defined.
476
  // The constructor function has no parameters,
477
  // and the function body is an empty compound statement.
478
14
  if (!(CD->hasTrivialBody() && 
CD->getNumParams() == 05
))
479
9
    return false;
480
481
  // Its class has no virtual functions and no virtual base classes.
482
5
  if (CD->getParent()->isDynamicClass())
483
0
    return false;
484
485
  // Union ctor does not call ctors of its data members.
486
5
  if (CD->getParent()->isUnion())
487
4
    return true;
488
489
  // The only form of initializer allowed is an empty constructor.
490
  // This will recursively check all base classes and member initializers
491
1
  if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
492
0
        if (const CXXConstructExpr *CE =
493
0
                dyn_cast<CXXConstructExpr>(CI->getInit()))
494
0
          return isEmptyCudaConstructor(Loc, CE->getConstructor());
495
0
        return false;
496
0
      }))
497
0
    return false;
498
499
1
  return true;
500
1
}
501
502
22
bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
503
  // No destructor -> no problem.
504
22
  if (!DD)
505
13
    return true;
506
507
9
  if (!DD->isDefined() && 
DD->isTemplateInstantiation()0
)
508
0
    InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
509
510
  // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
511
  // empty at a point in the translation unit, if it is either a
512
  // trivial constructor
513
9
  if (DD->isTrivial())
514
4
    return true;
515
516
  // ... or it satisfies all of the following conditions:
517
  // The destructor function has been defined.
518
  // and the function body is an empty compound statement.
519
5
  if (!DD->hasTrivialBody())
520
3
    return false;
521
522
2
  const CXXRecordDecl *ClassDecl = DD->getParent();
523
524
  // Its class has no virtual functions and no virtual base classes.
525
2
  if (ClassDecl->isDynamicClass())
526
0
    return false;
527
528
  // Union does not have base class and union dtor does not call dtors of its
529
  // data members.
530
2
  if (DD->getParent()->isUnion())
531
2
    return true;
532
533
  // Only empty destructors are allowed. This will recursively check
534
  // destructors for all base classes...
535
0
  if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
536
0
        if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
537
0
          return isEmptyCudaDestructor(Loc, RD->getDestructor());
538
0
        return true;
539
0
      }))
540
0
    return false;
541
542
  // ... and member fields.
543
0
  if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
544
0
        if (CXXRecordDecl *RD = Field->getType()
545
0
                                    ->getBaseElementTypeUnsafe()
546
0
                                    ->getAsCXXRecordDecl())
547
0
          return isEmptyCudaDestructor(Loc, RD->getDestructor());
548
0
        return true;
549
0
      }))
550
0
    return false;
551
552
0
  return true;
553
0
}
554
555
namespace {
556
enum CUDAInitializerCheckKind {
557
  CICK_DeviceOrConstant, // Check initializer for device/constant variable
558
  CICK_Shared,           // Check initializer for shared variable
559
};
560
561
768
bool IsDependentVar(VarDecl *VD) {
562
768
  if (VD->getType()->isDependentType())
563
22
    return true;
564
746
  if (const auto *Init = VD->getInit())
565
669
    return Init->isValueDependent();
566
77
  return false;
567
746
}
568
569
// Check whether a variable has an allowed initializer for a CUDA device side
570
// variable with global storage. \p VD may be a host variable to be checked for
571
// potential promotion to device side variable.
572
//
573
// CUDA/HIP allows only empty constructors as initializers for global
574
// variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
575
// __shared__ variables whether they are local or not (they all are implicitly
576
// static in CUDA). One exception is that CUDA allows constant initializers
577
// for __constant__ and __device__ variables.
578
bool HasAllowedCUDADeviceStaticInitializer(Sema &S, VarDecl *VD,
579
259
                                           CUDAInitializerCheckKind CheckKind) {
580
259
  assert(!VD->isInvalidDecl() && VD->hasGlobalStorage());
581
0
  assert(!IsDependentVar(VD) && "do not check dependent var");
582
0
  const Expr *Init = VD->getInit();
583
259
  auto IsEmptyInit = [&](const Expr *Init) {
584
259
    if (!Init)
585
0
      return true;
586
259
    if (const auto *CE = dyn_cast<CXXConstructExpr>(Init)) {
587
23
      return S.isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
588
23
    }
589
236
    return false;
590
259
  };
591
259
  auto IsConstantInit = [&](const Expr *Init) {
592
244
    assert(Init);
593
0
    ASTContext::CUDAConstantEvalContextRAII EvalCtx(S.Context,
594
244
                                                    /*NoWronSidedVars=*/true);
595
244
    return Init->isConstantInitializer(S.Context,
596
244
                                       VD->getType()->isReferenceType());
597
244
  };
598
259
  auto HasEmptyDtor = [&](VarDecl *VD) {
599
231
    if (const auto *RD = VD->getType()->getAsCXXRecordDecl())
600
22
      return S.isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
601
209
    return true;
602
231
  };
603
259
  if (CheckKind == CICK_Shared)
604
5
    return IsEmptyInit(Init) && 
HasEmptyDtor(VD)4
;
605
254
  return S.LangOpts.GPUAllowDeviceInit ||
606
254
         ((IsEmptyInit(Init) || 
IsConstantInit(Init)244
) &&
HasEmptyDtor(VD)227
);
607
259
}
608
} // namespace
609
610
1.47k
void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
611
  // Do not check dependent variables since the ctor/dtor/initializer are not
612
  // determined. Do it after instantiation.
613
1.47k
  if (VD->isInvalidDecl() || 
!VD->hasInit()1.46k
||
!VD->hasGlobalStorage()918
||
614
1.47k
      
IsDependentVar(VD)312
)
615
1.18k
    return;
616
287
  const Expr *Init = VD->getInit();
617
287
  bool IsSharedVar = VD->hasAttr<CUDASharedAttr>();
618
287
  bool IsDeviceOrConstantVar =
619
287
      !IsSharedVar &&
620
287
      
(282
VD->hasAttr<CUDADeviceAttr>()282
||
VD->hasAttr<CUDAConstantAttr>()188
);
621
287
  if (IsDeviceOrConstantVar || 
IsSharedVar107
) {
622
185
    if (HasAllowedCUDADeviceStaticInitializer(
623
185
            *this, VD, IsSharedVar ? 
CICK_Shared5
:
CICK_DeviceOrConstant180
))
624
169
      return;
625
16
    Diag(VD->getLocation(),
626
16
         IsSharedVar ? 
diag::err_shared_var_init2
:
diag::err_dynamic_var_init14
)
627
16
        << Init->getSourceRange();
628
16
    VD->setInvalidDecl();
629
102
  } else {
630
    // This is a host-side global variable.  Check that the initializer is
631
    // callable from the host side.
632
102
    const FunctionDecl *InitFn = nullptr;
633
102
    if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
634
29
      InitFn = CE->getConstructor();
635
73
    } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
636
3
      InitFn = CE->getDirectCallee();
637
3
    }
638
102
    if (InitFn) {
639
32
      CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
640
32
      if (InitFnTarget != CFT_Host && 
InitFnTarget != CFT_HostDevice24
) {
641
3
        Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
642
3
            << InitFnTarget << InitFn;
643
3
        Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
644
3
        VD->setInvalidDecl();
645
3
      }
646
32
    }
647
102
  }
648
287
}
649
650
// With -fcuda-host-device-constexpr, an unattributed constexpr function is
651
// treated as implicitly __host__ __device__, unless:
652
//  * it is a variadic function (device-side variadic functions are not
653
//    allowed), or
654
//  * a __device__ function with this signature was already declared, in which
655
//    case in which case we output an error, unless the __device__ decl is in a
656
//    system header, in which case we leave the constexpr function unattributed.
657
//
658
// In addition, all function decls are treated as __host__ __device__ when
659
// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
660
//   #pragma clang force_cuda_host_device_begin/end
661
// pair).
662
void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
663
3.33k
                                       const LookupResult &Previous) {
664
3.33k
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
665
666
3.33k
  if (ForceCUDAHostDeviceDepth > 0) {
667
7
    if (!NewD->hasAttr<CUDAHostAttr>())
668
5
      NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
669
7
    if (!NewD->hasAttr<CUDADeviceAttr>())
670
5
      NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
671
7
    return;
672
7
  }
673
674
3.32k
  if (!getLangOpts().CUDAHostDeviceConstexpr || 
!NewD->isConstexpr()3.30k
||
675
3.32k
      
NewD->isVariadic()33
||
NewD->hasAttr<CUDAHostAttr>()29
||
676
3.32k
      
NewD->hasAttr<CUDADeviceAttr>()25
||
NewD->hasAttr<CUDAGlobalAttr>()21
)
677
3.30k
    return;
678
679
  // Is D a __device__ function with the same signature as NewD, ignoring CUDA
680
  // attributes?
681
21
  auto IsMatchingDeviceFn = [&](NamedDecl *D) {
682
12
    if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
683
4
      D = Using->getTargetDecl();
684
12
    FunctionDecl *OldD = D->getAsFunction();
685
12
    return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
686
12
           !OldD->hasAttr<CUDAHostAttr>() &&
687
12
           !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
688
12
                       /* ConsiderCudaAttrs = */ false);
689
12
  };
690
21
  auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
691
21
  if (It != Previous.end()) {
692
    // We found a __device__ function with the same name and signature as NewD
693
    // (ignoring CUDA attrs).  This is an error unless that function is defined
694
    // in a system header, in which case we simply return without making NewD
695
    // host+device.
696
12
    NamedDecl *Match = *It;
697
12
    if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
698
4
      Diag(NewD->getLocation(),
699
4
           diag::err_cuda_unattributed_constexpr_cannot_overload_device)
700
4
          << NewD;
701
4
      Diag(Match->getLocation(),
702
4
           diag::note_cuda_conflicting_device_function_declared_here);
703
4
    }
704
12
    return;
705
12
  }
706
707
9
  NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
708
9
  NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
709
9
}
710
711
// TODO: `__constant__` memory may be a limited resource for certain targets.
712
// A safeguard may be needed at the end of compilation pipeline if
713
// `__constant__` memory usage goes beyond limit.
714
2.26M
void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) {
715
  // Do not promote dependent variables since the cotr/dtor/initializer are
716
  // not determined. Do it after instantiation.
717
2.26M
  if (getLangOpts().CUDAIsDevice && 
!VD->hasAttr<CUDAConstantAttr>()618
&&
718
2.26M
      
!VD->hasAttr<CUDAConstantAttr>()570
&&
!VD->hasAttr<CUDASharedAttr>()570
&&
719
2.26M
      
(532
VD->isFileVarDecl()532
||
VD->isStaticDataMember()335
) &&
720
2.26M
      
!IsDependentVar(VD)197
&&
721
2.26M
      
(189
(189
VD->isConstexpr()189
||
VD->getType().isConstQualified()151
) &&
722
189
       HasAllowedCUDADeviceStaticInitializer(*this, VD,
723
74
                                             CICK_DeviceOrConstant))) {
724
59
    VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
725
59
  }
726
2.26M
}
727
728
Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
729
106
                                                       unsigned DiagID) {
730
106
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
731
0
  FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
732
106
  SemaDiagnosticBuilder::Kind DiagKind = [&] {
733
106
    if (!CurFunContext)
734
2
      return SemaDiagnosticBuilder::K_Nop;
735
104
    switch (CurrentCUDATarget()) {
736
8
    case CFT_Global:
737
60
    case CFT_Device:
738
60
      return SemaDiagnosticBuilder::K_Immediate;
739
34
    case CFT_HostDevice:
740
      // An HD function counts as host code if we're compiling for host, and
741
      // device code if we're compiling for device.  Defer any errors in device
742
      // mode until the function is known-emitted.
743
34
      if (!getLangOpts().CUDAIsDevice)
744
6
        return SemaDiagnosticBuilder::K_Nop;
745
28
      if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
746
7
        return SemaDiagnosticBuilder::K_Immediate;
747
21
      return (getEmissionStatus(CurFunContext) ==
748
21
              FunctionEmissionStatus::Emitted)
749
21
                 ? 
SemaDiagnosticBuilder::K_ImmediateWithCallStack5
750
21
                 : 
SemaDiagnosticBuilder::K_Deferred16
;
751
10
    default:
752
10
      return SemaDiagnosticBuilder::K_Nop;
753
104
    }
754
104
  }();
755
106
  return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
756
106
}
757
758
Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
759
35
                                                     unsigned DiagID) {
760
35
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
761
0
  FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
762
35
  SemaDiagnosticBuilder::Kind DiagKind = [&] {
763
35
    if (!CurFunContext)
764
0
      return SemaDiagnosticBuilder::K_Nop;
765
35
    switch (CurrentCUDATarget()) {
766
6
    case CFT_Host:
767
6
      return SemaDiagnosticBuilder::K_Immediate;
768
1
    case CFT_HostDevice:
769
      // An HD function counts as host code if we're compiling for host, and
770
      // device code if we're compiling for device.  Defer any errors in device
771
      // mode until the function is known-emitted.
772
1
      if (getLangOpts().CUDAIsDevice)
773
0
        return SemaDiagnosticBuilder::K_Nop;
774
1
      if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
775
0
        return SemaDiagnosticBuilder::K_Immediate;
776
1
      return (getEmissionStatus(CurFunContext) ==
777
1
              FunctionEmissionStatus::Emitted)
778
1
                 ? 
SemaDiagnosticBuilder::K_ImmediateWithCallStack0
779
1
                 : SemaDiagnosticBuilder::K_Deferred;
780
28
    default:
781
28
      return SemaDiagnosticBuilder::K_Nop;
782
35
    }
783
35
  }();
784
35
  return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
785
35
}
786
787
10.7k
bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
788
10.7k
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
789
0
  assert(Callee && "Callee may not be null.");
790
791
0
  auto &ExprEvalCtx = ExprEvalContexts.back();
792
10.7k
  if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
793
27
    return true;
794
795
  // FIXME: Is bailing out early correct here?  Should we instead assume that
796
  // the caller is a global initializer?
797
10.7k
  FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
798
10.7k
  if (!Caller)
799
236
    return true;
800
801
  // If the caller is known-emitted, mark the callee as known-emitted.
802
  // Otherwise, mark the call in our call graph so we can traverse it later.
803
10.5k
  bool CallerKnownEmitted =
804
10.5k
      getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
805
10.5k
  SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee,
806
10.5k
                                          CallerKnownEmitted] {
807
10.5k
    switch (IdentifyCUDAPreference(Caller, Callee)) {
808
20
    case CFP_Never:
809
146
    case CFP_WrongSide:
810
146
      assert(Caller && "Never/wrongSide calls require a non-null caller");
811
      // If we know the caller will be emitted, we know this wrong-side call
812
      // will be emitted, so it's an immediate error.  Otherwise, defer the
813
      // error until we know the caller is emitted.
814
146
      return CallerKnownEmitted
815
146
                 ? 
SemaDiagnosticBuilder::K_ImmediateWithCallStack58
816
146
                 : 
SemaDiagnosticBuilder::K_Deferred88
;
817
10.3k
    default:
818
10.3k
      return SemaDiagnosticBuilder::K_Nop;
819
10.5k
    }
820
10.5k
  }();
821
822
10.5k
  if (DiagKind == SemaDiagnosticBuilder::K_Nop) {
823
    // For -fgpu-rdc, keep track of external kernels used by host functions.
824
10.3k
    if (LangOpts.CUDAIsDevice && 
LangOpts.GPURelocatableDeviceCode6.00k
&&
825
10.3k
        
Callee->hasAttr<CUDAGlobalAttr>()216
&&
!Callee->isDefined()20
)
826
16
      getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Callee);
827
10.3k
    return true;
828
10.3k
  }
829
830
  // Avoid emitting this error twice for the same location.  Using a hashtable
831
  // like this is unfortunate, but because we must continue parsing as normal
832
  // after encountering a deferred error, it's otherwise very tricky for us to
833
  // ensure that we only emit this deferred error once.
834
146
  if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
835
60
    return true;
836
837
86
  SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
838
86
      << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee
839
86
      << IdentifyCUDATarget(Caller);
840
86
  if (!Callee->getBuiltinID())
841
86
    SemaDiagnosticBuilder(DiagKind, Callee->getLocation(),
842
86
                          diag::note_previous_decl, Caller, *this)
843
86
        << Callee;
844
86
  return DiagKind != SemaDiagnosticBuilder::K_Immediate &&
845
86
         DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack;
846
146
}
847
848
// Check the wrong-sided reference capture of lambda for CUDA/HIP.
849
// A lambda function may capture a stack variable by reference when it is
850
// defined and uses the capture by reference when the lambda is called. When
851
// the capture and use happen on different sides, the capture is invalid and
852
// should be diagnosed.
853
void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee,
854
98
                                  const sema::Capture &Capture) {
855
  // In host compilation we only need to check lambda functions emitted on host
856
  // side. In such lambda functions, a reference capture is invalid only
857
  // if the lambda structure is populated by a device function or kernel then
858
  // is passed to and called by a host function. However that is impossible,
859
  // since a device function or kernel can only call a device function, also a
860
  // kernel cannot pass a lambda back to a host function since we cannot
861
  // define a kernel argument type which can hold the lambda before the lambda
862
  // itself is defined.
863
98
  if (!LangOpts.CUDAIsDevice)
864
32
    return;
865
866
  // File-scope lambda can only do init captures for global variables, which
867
  // results in passing by value for these global variables.
868
66
  FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
869
66
  if (!Caller)
870
0
    return;
871
872
  // In device compilation, we only need to check lambda functions which are
873
  // emitted on device side. For such lambdas, a reference capture is invalid
874
  // only if the lambda structure is populated by a host function then passed
875
  // to and called in a device function or kernel.
876
66
  bool CalleeIsDevice = Callee->hasAttr<CUDADeviceAttr>();
877
66
  bool CallerIsHost =
878
66
      !Caller->hasAttr<CUDAGlobalAttr>() && !Caller->hasAttr<CUDADeviceAttr>();
879
66
  bool ShouldCheck = CalleeIsDevice && CallerIsHost;
880
66
  if (!ShouldCheck || 
!Capture.isReferenceCapture()56
)
881
26
    return;
882
40
  auto DiagKind = SemaDiagnosticBuilder::K_Deferred;
883
40
  if (Capture.isVariableCapture()) {
884
19
    SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
885
19
                          diag::err_capture_bad_target, Callee, *this)
886
19
        << Capture.getVariable();
887
21
  } else if (Capture.isThisCapture()) {
888
    // Capture of this pointer is allowed since this pointer may be pointing to
889
    // managed memory which is accessible on both device and host sides. It only
890
    // results in invalid memory access if this pointer points to memory not
891
    // accessible on device side.
892
21
    SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
893
21
                          diag::warn_maybe_capture_bad_target_this_ptr, Callee,
894
21
                          *this);
895
21
  }
896
40
}
897
898
221
void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
899
221
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
900
221
  if (Method->hasAttr<CUDAHostAttr>() || 
Method->hasAttr<CUDADeviceAttr>()181
)
901
90
    return;
902
131
  Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
903
131
  Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
904
131
}
905
906
void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
907
4.88k
                                   const LookupResult &Previous) {
908
4.88k
  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
909
0
  CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
910
4.88k
  for (NamedDecl *OldND : Previous) {
911
2.33k
    FunctionDecl *OldFD = OldND->getAsFunction();
912
2.33k
    if (!OldFD)
913
91
      continue;
914
915
2.24k
    CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
916
    // Don't allow HD and global functions to overload other functions with the
917
    // same signature.  We allow overloading based on CUDA attributes so that
918
    // functions can have different implementations on the host and device, but
919
    // HD/global functions "exist" in some sense on both the host and device, so
920
    // should have the same implementation on both sides.
921
2.24k
    if (NewTarget != OldTarget &&
922
2.24k
        
(1.02k
(NewTarget == CFT_HostDevice)1.02k
||
(OldTarget == CFT_HostDevice)855
||
923
1.02k
         
(NewTarget == CFT_Global)841
||
(OldTarget == CFT_Global)841
) &&
924
2.24k
        !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
925
184
                    /* ConsiderCudaAttrs = */ false)) {
926
4
      Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
927
4
          << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
928
4
      Diag(OldFD->getLocation(), diag::note_previous_declaration);
929
4
      NewFD->setInvalidDecl();
930
4
      break;
931
4
    }
932
2.24k
  }
933
4.88k
}
934
935
template <typename AttrTy>
936
static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
937
33
                              const FunctionDecl &TemplateFD) {
938
33
  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
939
18
    AttrTy *Clone = Attribute->clone(S.Context);
940
18
    Clone->setInherited(true);
941
18
    FD->addAttr(Clone);
942
18
  }
943
33
}
SemaCUDA.cpp:void copyAttrIfPresent<clang::CUDAGlobalAttr>(clang::Sema&, clang::FunctionDecl*, clang::FunctionDecl const&)
Line
Count
Source
937
11
                              const FunctionDecl &TemplateFD) {
938
11
  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
939
0
    AttrTy *Clone = Attribute->clone(S.Context);
940
0
    Clone->setInherited(true);
941
0
    FD->addAttr(Clone);
942
0
  }
943
11
}
SemaCUDA.cpp:void copyAttrIfPresent<clang::CUDAHostAttr>(clang::Sema&, clang::FunctionDecl*, clang::FunctionDecl const&)
Line
Count
Source
937
11
                              const FunctionDecl &TemplateFD) {
938
11
  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
939
9
    AttrTy *Clone = Attribute->clone(S.Context);
940
9
    Clone->setInherited(true);
941
9
    FD->addAttr(Clone);
942
9
  }
943
11
}
SemaCUDA.cpp:void copyAttrIfPresent<clang::CUDADeviceAttr>(clang::Sema&, clang::FunctionDecl*, clang::FunctionDecl const&)
Line
Count
Source
937
11
                              const FunctionDecl &TemplateFD) {
938
11
  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
939
9
    AttrTy *Clone = Attribute->clone(S.Context);
940
9
    Clone->setInherited(true);
941
9
    FD->addAttr(Clone);
942
9
  }
943
11
}
944
945
void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
946
11
                                  const FunctionTemplateDecl &TD) {
947
11
  const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
948
11
  copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
949
11
  copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
950
11
  copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
951
11
}
952
953
2.28k
std::string Sema::getCudaConfigureFuncName() const {
954
2.28k
  if (getLangOpts().HIP)
955
685
    return getLangOpts().HIPUseNewLaunchAPI ? 
"__hipPushCallConfiguration"18
956
685
                                            : 
"hipConfigureCall"667
;
957
958
  // New CUDA kernel launch sequence.
959
1.59k
  if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
960
1.59k
                         CudaFeature::CUDA_USES_NEW_LAUNCH))
961
73
    return "__cudaPushCallConfiguration";
962
963
  // Legacy CUDA kernel configuration call
964
1.52k
  return "cudaConfigureCall";
965
1.59k
}