Coverage Report

Created: 2023-09-21 18:56

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/StaticAnalyzer/Core/CallEvent.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file This file defines CallEvent and its subclasses, which represent path-
10
/// sensitive instances of different kinds of function and method calls
11
/// (C, C++, and Objective-C).
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16
#include "clang/AST/ASTContext.h"
17
#include "clang/AST/Attr.h"
18
#include "clang/AST/Decl.h"
19
#include "clang/AST/DeclBase.h"
20
#include "clang/AST/DeclCXX.h"
21
#include "clang/AST/DeclObjC.h"
22
#include "clang/AST/Expr.h"
23
#include "clang/AST/ExprCXX.h"
24
#include "clang/AST/ExprObjC.h"
25
#include "clang/AST/ParentMap.h"
26
#include "clang/AST/Stmt.h"
27
#include "clang/AST/Type.h"
28
#include "clang/Analysis/AnalysisDeclContext.h"
29
#include "clang/Analysis/CFG.h"
30
#include "clang/Analysis/CFGStmtMap.h"
31
#include "clang/Analysis/PathDiagnostic.h"
32
#include "clang/Analysis/ProgramPoint.h"
33
#include "clang/Basic/IdentifierTable.h"
34
#include "clang/Basic/LLVM.h"
35
#include "clang/Basic/SourceLocation.h"
36
#include "clang/Basic/SourceManager.h"
37
#include "clang/Basic/Specifiers.h"
38
#include "clang/CrossTU/CrossTranslationUnit.h"
39
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
40
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
41
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
42
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
43
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
46
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
49
#include "llvm/ADT/ArrayRef.h"
50
#include "llvm/ADT/DenseMap.h"
51
#include "llvm/ADT/ImmutableList.h"
52
#include "llvm/ADT/PointerIntPair.h"
53
#include "llvm/ADT/SmallSet.h"
54
#include "llvm/ADT/SmallVector.h"
55
#include "llvm/ADT/StringExtras.h"
56
#include "llvm/ADT/StringRef.h"
57
#include "llvm/Support/Casting.h"
58
#include "llvm/Support/Compiler.h"
59
#include "llvm/Support/Debug.h"
60
#include "llvm/Support/ErrorHandling.h"
61
#include "llvm/Support/raw_ostream.h"
62
#include <cassert>
63
#include <optional>
64
#include <utility>
65
66
#define DEBUG_TYPE "static-analyzer-call-event"
67
68
using namespace clang;
69
using namespace ento;
70
71
56.6k
QualType CallEvent::getResultType() const {
72
56.6k
  ASTContext &Ctx = getState()->getStateManager().getContext();
73
56.6k
  const Expr *E = getOriginExpr();
74
56.6k
  if (!E)
75
4
    return Ctx.VoidTy;
76
56.6k
  return Ctx.getReferenceQualifiedType(E);
77
56.6k
}
78
79
32.1k
static bool isCallback(QualType T) {
80
  // If a parameter is a block or a callback, assume it can modify pointer.
81
32.1k
  if (T->isBlockPointerType() ||
82
32.1k
      
T->isFunctionPointerType()31.9k
||
83
32.1k
      
T->isObjCSelType()31.9k
)
84
270
    return true;
85
86
  // Check if a callback is passed inside a struct (for both, struct passed by
87
  // reference and by value). Dig just one level into the struct for now.
88
89
31.8k
  if (T->isAnyPointerType() || 
T->isReferenceType()19.3k
)
90
15.3k
    T = T->getPointeeType();
91
92
31.8k
  if (const RecordType *RT = T->getAsStructureType()) {
93
14.5k
    const RecordDecl *RD = RT->getDecl();
94
15.1k
    for (const auto *I : RD->fields()) {
95
15.1k
      QualType FieldT = I->getType();
96
15.1k
      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
97
9
        return true;
98
15.1k
    }
99
14.5k
  }
100
31.8k
  return false;
101
31.8k
}
102
103
27.3k
static bool isVoidPointerToNonConst(QualType T) {
104
27.3k
  if (const auto *PT = T->getAs<PointerType>()) {
105
9.68k
    QualType PointeeTy = PT->getPointeeType();
106
9.68k
    if (PointeeTy.isConstQualified())
107
4.55k
      return false;
108
5.13k
    return PointeeTy->isVoidType();
109
9.68k
  } else
110
17.6k
    return false;
111
27.3k
}
112
113
71.4k
bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
114
71.4k
  unsigned NumOfArgs = getNumArgs();
115
116
  // If calling using a function pointer, assume the function does not
117
  // satisfy the callback.
118
  // TODO: We could check the types of the arguments here.
119
71.4k
  if (!getDecl())
120
103
    return false;
121
122
71.3k
  unsigned Idx = 0;
123
71.3k
  for (CallEvent::param_type_iterator I = param_type_begin(),
124
71.3k
                                      E = param_type_end();
125
132k
       I != E && 
Idx < NumOfArgs62.8k
;
++I, ++Idx60.9k
) {
126
    // If the parameter is 0, it's harmless.
127
62.8k
    if (getArgSVal(Idx).isZeroConstant())
128
3.38k
      continue;
129
130
59.4k
    if (Condition(*I))
131
1.86k
      return true;
132
59.4k
  }
133
69.5k
  return false;
134
71.3k
}
135
136
39.9k
bool CallEvent::hasNonZeroCallbackArg() const {
137
39.9k
  return hasNonNullArgumentsWithType(isCallback);
138
39.9k
}
139
140
31.5k
bool CallEvent::hasVoidPointerToNonConstArg() const {
141
31.5k
  return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
142
31.5k
}
143
144
125k
bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
145
125k
  const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
146
125k
  if (!FD)
147
7.38k
    return false;
148
149
118k
  return CheckerContext::isCLibraryFunction(FD, FunctionName);
150
125k
}
151
152
34.7k
AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
153
34.7k
  const Decl *D = getDecl();
154
34.7k
  if (!D)
155
0
    return nullptr;
156
157
34.7k
  AnalysisDeclContext *ADC =
158
34.7k
      LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
159
160
34.7k
  return ADC;
161
34.7k
}
162
163
const StackFrameContext *
164
34.7k
CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
165
34.7k
  AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
166
34.7k
  if (!ADC)
167
0
    return nullptr;
168
169
34.7k
  const Expr *E = getOriginExpr();
170
34.7k
  if (!E)
171
0
    return nullptr;
172
173
  // Recover CFG block via reverse lookup.
174
  // TODO: If we were to keep CFG element information as part of the CallEvent
175
  // instead of doing this reverse lookup, we would be able to build the stack
176
  // frame for non-expression-based calls, and also we wouldn't need the reverse
177
  // lookup.
178
34.7k
  CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
179
34.7k
  const CFGBlock *B = Map->getBlock(E);
180
34.7k
  assert(B);
181
182
  // Also recover CFG index by scanning the CFG block.
183
34.7k
  unsigned Idx = 0, Sz = B->size();
184
470k
  for (; Idx < Sz; 
++Idx435k
)
185
470k
    if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
186
470k
      if (StmtElem->getStmt() == E)
187
34.7k
        break;
188
34.7k
  assert(Idx < Sz);
189
190
34.7k
  return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
191
34.7k
}
192
193
const ParamVarRegion
194
20.9k
*CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
195
20.9k
  const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
196
  // We cannot construct a VarRegion without a stack frame.
197
20.9k
  if (!SFC)
198
0
    return nullptr;
199
200
20.9k
  const ParamVarRegion *PVR =
201
20.9k
    State->getStateManager().getRegionManager().getParamVarRegion(
202
20.9k
        getOriginExpr(), Index, SFC);
203
20.9k
  return PVR;
204
20.9k
}
205
206
/// Returns true if a type is a pointer-to-const or reference-to-const
207
/// with no further indirection.
208
27.6k
static bool isPointerToConst(QualType Ty) {
209
27.6k
  QualType PointeeTy = Ty->getPointeeType();
210
27.6k
  if (PointeeTy == QualType())
211
15.4k
    return false;
212
12.1k
  if (!PointeeTy.isConstQualified())
213
5.35k
    return false;
214
6.81k
  if (PointeeTy->isAnyPointerType())
215
43
    return false;
216
6.76k
  return true;
217
6.81k
}
218
219
// Try to retrieve the function declaration and find the function parameter
220
// types which are pointers/references to a non-pointer const.
221
// We will not invalidate the corresponding argument regions.
222
static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
223
33.4k
                                 const CallEvent &Call) {
224
33.4k
  unsigned Idx = 0;
225
33.4k
  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
226
33.4k
                                      E = Call.param_type_end();
227
61.0k
       I != E; 
++I, ++Idx27.6k
) {
228
27.6k
    if (isPointerToConst(*I))
229
6.76k
      PreserveArgs.insert(Idx);
230
27.6k
  }
231
33.4k
}
232
233
ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
234
35.4k
                                             ProgramStateRef Orig) const {
235
35.4k
  ProgramStateRef Result = (Orig ? 
Orig35.4k
:
getState()7
);
236
237
  // Don't invalidate anything if the callee is marked pure/const.
238
35.4k
  if (const Decl *callee = getDecl())
239
35.3k
    if (callee->hasAttr<PureAttr>() || 
callee->hasAttr<ConstAttr>()35.2k
)
240
90
      return Result;
241
242
35.3k
  SmallVector<SVal, 8> ValuesToInvalidate;
243
35.3k
  RegionAndSymbolInvalidationTraits ETraits;
244
245
35.3k
  getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
246
247
  // Indexes of arguments whose values will be preserved by the call.
248
35.3k
  llvm::SmallSet<unsigned, 4> PreserveArgs;
249
35.3k
  if (!argumentsMayEscape())
250
33.4k
    findPtrToConstParams(PreserveArgs, *this);
251
252
67.5k
  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; 
++Idx32.2k
) {
253
    // Mark this region for invalidation.  We batch invalidate regions
254
    // below for efficiency.
255
32.2k
    if (PreserveArgs.count(Idx))
256
6.76k
      if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
257
6.45k
        ETraits.setTrait(MR->getBaseRegion(),
258
6.45k
                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
259
        // TODO: Factor this out + handle the lower level const pointers.
260
261
32.2k
    ValuesToInvalidate.push_back(getArgSVal(Idx));
262
263
    // If a function accepts an object by argument (which would of course be a
264
    // temporary that isn't lifetime-extended), invalidate the object itself,
265
    // not only other objects reachable from it. This is necessary because the
266
    // destructor has access to the temporary object after the call.
267
    // TODO: Support placement arguments once we start
268
    // constructing them directly.
269
    // TODO: This is unnecessary when there's no destructor, but that's
270
    // currently hard to figure out.
271
32.2k
    if (getKind() != CE_CXXAllocator)
272
31.3k
      if (isArgumentConstructedDirectly(Idx))
273
9.91k
        if (auto AdjIdx = getAdjustedParameterIndex(Idx))
274
9.91k
          if (const TypedValueRegion *TVR =
275
9.91k
                  getParameterLocation(*AdjIdx, BlockCount))
276
9.91k
            ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
277
32.2k
  }
278
279
  // Invalidate designated regions using the batch invalidation API.
280
  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
281
  //  global variables.
282
35.3k
  return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
283
35.3k
                                   BlockCount, getLocationContext(),
284
35.3k
                                   /*CausedByPointerEscape*/ true,
285
35.3k
                                   /*Symbols=*/nullptr, this, &ETraits);
286
35.4k
}
287
288
ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
289
1.11M
                                        const ProgramPointTag *Tag) const {
290
291
1.11M
  if (const Expr *E = getOriginExpr()) {
292
1.10M
    if (IsPreVisit)
293
665k
      return PreStmt(E, getLocationContext(), Tag);
294
437k
    return PostStmt(E, getLocationContext(), Tag);
295
1.10M
  }
296
297
16.8k
  const Decl *D = getDecl();
298
16.8k
  assert(D && "Cannot get a program point without a statement or decl");
299
16.8k
  assert(ElemRef.getParent() &&
300
16.8k
         "Cannot get a program point without a CFGElementRef");
301
302
16.8k
  SourceLocation Loc = getSourceRange().getBegin();
303
16.8k
  if (IsPreVisit)
304
10.9k
    return PreImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag);
305
5.93k
  return PostImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag);
306
16.8k
}
307
308
339k
SVal CallEvent::getArgSVal(unsigned Index) const {
309
339k
  const Expr *ArgE = getArgExpr(Index);
310
339k
  if (!ArgE)
311
4.64k
    return UnknownVal();
312
335k
  return getSVal(ArgE);
313
339k
}
314
315
90.4k
SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
316
90.4k
  const Expr *ArgE = getArgExpr(Index);
317
90.4k
  if (!ArgE)
318
1.04k
    return {};
319
89.3k
  return ArgE->getSourceRange();
320
90.4k
}
321
322
32.1k
SVal CallEvent::getReturnValue() const {
323
32.1k
  const Expr *E = getOriginExpr();
324
32.1k
  if (!E)
325
13
    return UndefinedVal();
326
32.1k
  return getSVal(E);
327
32.1k
}
328
329
0
LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
330
331
16
void CallEvent::dump(raw_ostream &Out) const {
332
16
  ASTContext &Ctx = getState()->getStateManager().getContext();
333
16
  if (const Expr *E = getOriginExpr()) {
334
16
    E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
335
16
    return;
336
16
  }
337
338
0
  if (const Decl *D = getDecl()) {
339
0
    Out << "Call to ";
340
0
    D->print(Out, Ctx.getPrintingPolicy());
341
0
    return;
342
0
  }
343
344
0
  Out << "Unknown call (type " << getKindAsString() << ")";
345
0
}
346
347
1.73M
bool CallEvent::isCallStmt(const Stmt *S) {
348
1.73M
  return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(S);
349
1.73M
}
350
351
20.3k
QualType CallEvent::getDeclaredResultType(const Decl *D) {
352
20.3k
  assert(D);
353
20.3k
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
354
19.2k
    return FD->getReturnType();
355
1.06k
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
356
1.02k
    return MD->getReturnType();
357
36
  if (const auto *BD = dyn_cast<BlockDecl>(D)) {
358
    // Blocks are difficult because the return type may not be stored in the
359
    // BlockDecl itself. The AST should probably be enhanced, but for now we
360
    // just do what we can.
361
    // If the block is declared without an explicit argument list, the
362
    // signature-as-written just includes the return type, not the entire
363
    // function type.
364
    // FIXME: All blocks should have signatures-as-written, even if the return
365
    // type is inferred. (That's signified with a dependent result type.)
366
36
    if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
367
32
      QualType Ty = TSI->getType();
368
32
      if (const FunctionType *FT = Ty->getAs<FunctionType>())
369
28
        Ty = FT->getReturnType();
370
32
      if (!Ty->isDependentType())
371
15
        return Ty;
372
32
    }
373
374
21
    return {};
375
36
  }
376
377
0
  llvm_unreachable("unknown callable kind");
378
0
}
379
380
17.0k
bool CallEvent::isVariadic(const Decl *D) {
381
17.0k
  assert(D);
382
383
17.0k
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
384
16.1k
    return FD->isVariadic();
385
912
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
386
774
    return MD->isVariadic();
387
138
  if (const auto *BD = dyn_cast<BlockDecl>(D))
388
138
    return BD->isVariadic();
389
390
0
  llvm_unreachable("unknown callable kind");
391
0
}
392
393
23.1k
static bool isTransparentUnion(QualType T) {
394
23.1k
  const RecordType *UT = T->getAsUnionType();
395
23.1k
  return UT && 
UT->getDecl()->hasAttr<TransparentUnionAttr>()4
;
396
23.1k
}
397
398
// In some cases, symbolic cases should be transformed before we associate
399
// them with parameters.  This function incapsulates such cases.
400
static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
401
23.1k
                            const ParmVarDecl *Parameter, SValBuilder &SVB) {
402
23.1k
  QualType ParamType = Parameter->getType();
403
23.1k
  QualType ArgumentType = ArgumentExpr->getType();
404
405
  // Transparent unions allow users to easily convert values of union field
406
  // types into union-typed objects.
407
  //
408
  // Also, more importantly, they allow users to define functions with different
409
  // different parameter types, substituting types matching transparent union
410
  // field types with the union type itself.
411
  //
412
  // Here, we check specifically for latter cases and prevent binding
413
  // field-typed values to union-typed regions.
414
23.1k
  if (isTransparentUnion(ParamType) &&
415
      // Let's check that we indeed trying to bind different types.
416
23.1k
      
!isTransparentUnion(ArgumentType)3
) {
417
2
    BasicValueFactory &BVF = SVB.getBasicValueFactory();
418
419
2
    llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
420
2
    CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
421
422
    // Wrap it with compound value.
423
2
    return SVB.makeCompoundVal(ParamType, CompoundSVals);
424
2
  }
425
426
23.1k
  return Value;
427
23.1k
}
428
429
/// Cast the argument value to the type of the parameter at the function
430
/// declaration.
431
/// Returns the argument value if it didn't need a cast.
432
/// Or returns the cast argument if it needed a cast.
433
/// Or returns 'Unknown' if it would need a cast but the callsite and the
434
/// runtime definition don't match in terms of argument and parameter count.
435
static SVal castArgToParamTypeIfNeeded(const CallEvent &Call, unsigned ArgIdx,
436
23.1k
                                       SVal ArgVal, SValBuilder &SVB) {
437
23.1k
  const FunctionDecl *RTDecl =
438
23.1k
      Call.getRuntimeDefinition().getDecl()->getAsFunction();
439
23.1k
  const auto *CallExprDecl = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
440
441
23.1k
  if (!RTDecl || 
!CallExprDecl22.9k
)
442
147
    return ArgVal;
443
444
  // The function decl of the Call (in the AST) will not have any parameter
445
  // declarations, if it was 'only' declared without a prototype. However, the
446
  // engine will find the appropriate runtime definition - basically a
447
  // redeclaration, which has a function body (and a function prototype).
448
22.9k
  if (CallExprDecl->hasPrototype() || 
!RTDecl->hasPrototype()6
)
449
22.9k
    return ArgVal;
450
451
  // Only do this cast if the number arguments at the callsite matches with
452
  // the parameters at the runtime definition.
453
6
  if (Call.getNumArgs() != RTDecl->getNumParams())
454
1
    return UnknownVal();
455
456
5
  const Expr *ArgExpr = Call.getArgExpr(ArgIdx);
457
5
  const ParmVarDecl *Param = RTDecl->getParamDecl(ArgIdx);
458
5
  return SVB.evalCast(ArgVal, Param->getType(), ArgExpr->getType());
459
6
}
460
461
static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
462
                                         CallEvent::BindingsTy &Bindings,
463
                                         SValBuilder &SVB,
464
                                         const CallEvent &Call,
465
35.1k
                                         ArrayRef<ParmVarDecl*> parameters) {
466
35.1k
  MemRegionManager &MRMgr = SVB.getRegionManager();
467
468
  // If the function has fewer parameters than the call has arguments, we simply
469
  // do not bind any values to them.
470
35.1k
  unsigned NumArgs = Call.getNumArgs();
471
35.1k
  unsigned Idx = 0;
472
35.1k
  ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
473
61.2k
  for (; I != E && 
Idx < NumArgs26.0k
;
++I, ++Idx26.0k
) {
474
26.0k
    assert(*I && "Formal parameter has no decl?");
475
476
    // TODO: Support allocator calls.
477
26.0k
    if (Call.getKind() != CE_CXXAllocator)
478
25.6k
      if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
479
962
        continue;
480
481
    // TODO: Allocators should receive the correct size and possibly alignment,
482
    // determined in compile-time but not represented as arg-expressions,
483
    // which makes getArgSVal() fail and return UnknownVal.
484
25.0k
    SVal ArgVal = Call.getArgSVal(Idx);
485
25.0k
    const Expr *ArgExpr = Call.getArgExpr(Idx);
486
487
25.0k
    if (ArgVal.isUnknown())
488
1.94k
      continue;
489
490
    // Cast the argument value to match the type of the parameter in some
491
    // edge-cases.
492
23.1k
    ArgVal = castArgToParamTypeIfNeeded(Call, Idx, ArgVal, SVB);
493
494
23.1k
    Loc ParamLoc = SVB.makeLoc(
495
23.1k
        MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
496
23.1k
    Bindings.push_back(
497
23.1k
        std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
498
23.1k
  }
499
500
  // FIXME: Variadic arguments are not handled at all right now.
501
35.1k
}
502
503
22
const ConstructionContext *CallEvent::getConstructionContext() const {
504
22
  const StackFrameContext *StackFrame = getCalleeStackFrame(0);
505
22
  if (!StackFrame)
506
0
    return nullptr;
507
508
22
  const CFGElement Element = StackFrame->getCallSiteCFGElement();
509
22
  if (const auto Ctor = Element.getAs<CFGConstructor>()) {
510
9
    return Ctor->getConstructionContext();
511
9
  }
512
513
13
  if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
514
13
    return RecCall->getConstructionContext();
515
13
  }
516
517
0
  return nullptr;
518
13
}
519
520
17
std::optional<SVal> CallEvent::getReturnValueUnderConstruction() const {
521
17
  const auto *CC = getConstructionContext();
522
17
  if (!CC)
523
0
    return std::nullopt;
524
525
17
  EvalCallOptions CallOpts;
526
17
  ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
527
17
  SVal RetVal = Engine.computeObjectUnderConstruction(
528
17
      getOriginExpr(), getState(), &Engine.getBuilderContext(),
529
17
      getLocationContext(), CC, CallOpts);
530
17
  return RetVal;
531
17
}
532
533
3.14M
ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
534
3.14M
  const FunctionDecl *D = getDecl();
535
3.14M
  if (!D)
536
35
    return std::nullopt;
537
3.14M
  return D->parameters();
538
3.14M
}
539
540
88.9k
RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
541
88.9k
  const FunctionDecl *FD = getDecl();
542
88.9k
  if (!FD)
543
34
    return {};
544
545
  // Note that the AnalysisDeclContext will have the FunctionDecl with
546
  // the definition (if one exists).
547
88.8k
  AnalysisDeclContext *AD =
548
88.8k
    getLocationContext()->getAnalysisDeclContext()->
549
88.8k
    getManager()->getContext(FD);
550
88.8k
  bool IsAutosynthesized;
551
88.8k
  Stmt* Body = AD->getBody(IsAutosynthesized);
552
88.8k
  LLVM_DEBUG({
553
88.8k
    if (IsAutosynthesized)
554
88.8k
      llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
555
88.8k
                   << "\n";
556
88.8k
  });
557
558
88.8k
  ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
559
88.8k
  cross_tu::CrossTranslationUnitContext &CTUCtx =
560
88.8k
      *Engine.getCrossTranslationUnitContext();
561
562
88.8k
  AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
563
564
88.8k
  if (Body) {
565
60.0k
    const Decl* Decl = AD->getDecl();
566
60.0k
    if (Opts.IsNaiveCTUEnabled && 
CTUCtx.isImportedAsNew(Decl)210
) {
567
      // A newly created definition, but we had error(s) during the import.
568
168
      if (CTUCtx.hasError(Decl))
569
0
        return {};
570
168
      return RuntimeDefinition(Decl, /*Foreign=*/true);
571
168
    }
572
59.8k
    return RuntimeDefinition(Decl, /*Foreign=*/false);
573
60.0k
  }
574
575
  // Try to get CTU definition only if CTUDir is provided.
576
28.8k
  if (!Opts.IsNaiveCTUEnabled)
577
28.7k
    return {};
578
579
98
  llvm::Expected<const FunctionDecl *> CTUDeclOrError =
580
98
      CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
581
98
                                  Opts.DisplayCTUProgress);
582
583
98
  if (!CTUDeclOrError) {
584
16
    handleAllErrors(CTUDeclOrError.takeError(),
585
16
                    [&](const cross_tu::IndexError &IE) {
586
16
                      CTUCtx.emitCrossTUDiagnostics(IE);
587
16
                    });
588
16
    return {};
589
16
  }
590
591
82
  return RuntimeDefinition(*CTUDeclOrError, /*Foreign=*/true);
592
98
}
593
594
void AnyFunctionCall::getInitialStackFrameContents(
595
                                        const StackFrameContext *CalleeCtx,
596
34.4k
                                        BindingsTy &Bindings) const {
597
34.4k
  const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
598
34.4k
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
599
34.4k
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
600
34.4k
                               D->parameters());
601
34.4k
}
602
603
31.7k
bool AnyFunctionCall::argumentsMayEscape() const {
604
31.7k
  if (CallEvent::argumentsMayEscape() || 
hasVoidPointerToNonConstArg()31.5k
)
605
1.75k
    return true;
606
607
29.9k
  const FunctionDecl *D = getDecl();
608
29.9k
  if (!D)
609
36
    return true;
610
611
29.9k
  const IdentifierInfo *II = D->getIdentifier();
612
29.9k
  if (!II)
613
4.31k
    return false;
614
615
  // This set of "escaping" APIs is
616
617
  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
618
  //   value into thread local storage. The value can later be retrieved with
619
  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
620
  //   parameter is 'const void *', the region escapes through the call.
621
25.6k
  if (II->isStr("pthread_setspecific"))
622
5
    return true;
623
624
  // - xpc_connection_set_context stores a value which can be retrieved later
625
  //   with xpc_connection_get_context.
626
25.6k
  if (II->isStr("xpc_connection_set_context"))
627
0
    return true;
628
629
  // - funopen - sets a buffer for future IO calls.
630
25.6k
  if (II->isStr("funopen"))
631
1
    return true;
632
633
  // - __cxa_demangle - can reallocate memory and can return the pointer to
634
  // the input buffer.
635
25.6k
  if (II->isStr("__cxa_demangle"))
636
8
    return true;
637
638
25.5k
  StringRef FName = II->getName();
639
640
  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
641
  //   buffer even if it is const.
642
25.5k
  if (FName.endswith("NoCopy"))
643
10
    return true;
644
645
  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
646
  //   be deallocated by NSMapRemove.
647
25.5k
  if (FName.startswith("NS") && 
FName.contains("Insert")78
)
648
4
    return true;
649
650
  // - Many CF containers allow objects to escape through custom
651
  //   allocators/deallocators upon container construction. (PR12101)
652
25.5k
  if (FName.startswith("CF") || 
FName.startswith("CG")24.9k
) {
653
677
    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
654
677
           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
655
677
           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
656
677
           
StrInStrNoCase(FName, "WithData") != StringRef::npos675
||
657
677
           
StrInStrNoCase(FName, "AppendValue") != StringRef::npos669
||
658
677
           
StrInStrNoCase(FName, "SetAttribute") != StringRef::npos663
;
659
677
  }
660
661
24.9k
  return false;
662
25.5k
}
663
664
5.19M
const FunctionDecl *SimpleFunctionCall::getDecl() const {
665
5.19M
  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
666
5.19M
  if (D)
667
5.17M
    return D;
668
669
25.6k
  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
670
5.19M
}
671
672
1.12M
const FunctionDecl *CXXInstanceCall::getDecl() const {
673
1.12M
  const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
674
1.12M
  if (!CE)
675
52.8k
    return AnyFunctionCall::getDecl();
676
677
1.07M
  const FunctionDecl *D = CE->getDirectCallee();
678
1.07M
  if (D)
679
1.07M
    return D;
680
681
438
  return getSVal(CE->getCallee()).getAsFunctionDecl();
682
1.07M
}
683
684
void CXXInstanceCall::getExtraInvalidatedValues(
685
5.81k
    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
686
5.81k
  SVal ThisVal = getCXXThisVal();
687
5.81k
  Values.push_back(ThisVal);
688
689
  // Don't invalidate if the method is const and there are no mutable fields.
690
5.81k
  if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
691
5.81k
    if (!D->isConst())
692
3.14k
      return;
693
    // Get the record decl for the class of 'This'. D->getParent() may return a
694
    // base class decl, rather than the class of the instance which needs to be
695
    // checked for mutable fields.
696
    // TODO: We might as well look at the dynamic type of the object.
697
2.67k
    const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts();
698
2.67k
    QualType T = Ex->getType();
699
2.67k
    if (T->isPointerType()) // Arrow or implicit-this syntax?
700
40
      T = T->getPointeeType();
701
2.67k
    const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
702
2.67k
    assert(ParentRecord);
703
2.67k
    if (ParentRecord->hasMutableFields())
704
3
      return;
705
    // Preserve CXXThis.
706
2.67k
    const MemRegion *ThisRegion = ThisVal.getAsRegion();
707
2.67k
    if (!ThisRegion)
708
1
      return;
709
710
2.67k
    ETraits->setTrait(ThisRegion->getBaseRegion(),
711
2.67k
                      RegionAndSymbolInvalidationTraits::TK_PreserveContents);
712
2.67k
  }
713
5.81k
}
714
715
54.3k
SVal CXXInstanceCall::getCXXThisVal() const {
716
54.3k
  const Expr *Base = getCXXThisExpr();
717
  // FIXME: This doesn't handle an overloaded ->* operator.
718
54.3k
  if (!Base)
719
0
    return UnknownVal();
720
721
54.3k
  SVal ThisVal = getSVal(Base);
722
54.3k
  assert(ThisVal.isUnknownOrUndef() || isa<Loc>(ThisVal));
723
54.3k
  return ThisVal;
724
54.3k
}
725
726
15.9k
RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
727
  // Do we have a decl at all?
728
15.9k
  const Decl *D = getDecl();
729
15.9k
  if (!D)
730
2
    return {};
731
732
  // If the method is non-virtual, we know we can inline it.
733
15.9k
  const auto *MD = cast<CXXMethodDecl>(D);
734
15.9k
  if (!MD->isVirtual())
735
15.6k
    return AnyFunctionCall::getRuntimeDefinition();
736
737
  // Do we know the implicit 'this' object being called?
738
309
  const MemRegion *R = getCXXThisVal().getAsRegion();
739
309
  if (!R)
740
0
    return {};
741
742
  // Do we know anything about the type of 'this'?
743
309
  DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
744
309
  if (!DynType.isValid())
745
0
    return {};
746
747
  // Is the type a C++ class? (This is mostly a defensive check.)
748
309
  QualType RegionType = DynType.getType()->getPointeeType();
749
309
  assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
750
751
309
  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
752
309
  if (!RD || !RD->hasDefinition())
753
0
    return {};
754
755
  // Find the decl for this method in that class.
756
309
  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
757
309
  if (!Result) {
758
    // We might not even get the original statically-resolved method due to
759
    // some particularly nasty casting (e.g. casts to sister classes).
760
    // However, we should at least be able to search up and down our own class
761
    // hierarchy, and some real bugs have been caught by checking this.
762
3
    assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
763
764
    // FIXME: This is checking that our DynamicTypeInfo is at least as good as
765
    // the static type. However, because we currently don't update
766
    // DynamicTypeInfo when an object is cast, we can't actually be sure the
767
    // DynamicTypeInfo is up to date. This assert should be re-enabled once
768
    // this is fixed.
769
    //
770
    // assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
771
772
3
    return {};
773
3
  }
774
775
  // Does the decl that we found have an implementation?
776
306
  const FunctionDecl *Definition;
777
306
  if (!Result->hasBody(Definition)) {
778
171
    if (!DynType.canBeASubClass())
779
148
      return AnyFunctionCall::getRuntimeDefinition();
780
23
    return {};
781
171
  }
782
783
  // We found a definition. If we're not sure that this devirtualization is
784
  // actually what will happen at runtime, make sure to provide the region so
785
  // that ExprEngine can decide what to do with it.
786
135
  if (DynType.canBeASubClass())
787
14
    return RuntimeDefinition(Definition, R->StripCasts());
788
121
  return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
789
135
}
790
791
void CXXInstanceCall::getInitialStackFrameContents(
792
                                            const StackFrameContext *CalleeCtx,
793
7.31k
                                            BindingsTy &Bindings) const {
794
7.31k
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
795
796
  // Handle the binding of 'this' in the new stack frame.
797
7.31k
  SVal ThisVal = getCXXThisVal();
798
7.31k
  if (!ThisVal.isUnknown()) {
799
7.31k
    ProgramStateManager &StateMgr = getState()->getStateManager();
800
7.31k
    SValBuilder &SVB = StateMgr.getSValBuilder();
801
802
7.31k
    const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
803
7.31k
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
804
805
    // If we devirtualized to a different member function, we need to make sure
806
    // we have the proper layering of CXXBaseObjectRegions.
807
7.31k
    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
808
31
      ASTContext &Ctx = SVB.getContext();
809
31
      const CXXRecordDecl *Class = MD->getParent();
810
31
      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
811
812
      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
813
31
      std::optional<SVal> V =
814
31
          StateMgr.getStoreManager().evalBaseToDerived(ThisVal, Ty);
815
31
      if (!V) {
816
        // We might have suffered some sort of placement new earlier, so
817
        // we're constructing in a completely unexpected storage.
818
        // Fall back to a generic pointer cast for this-value.
819
2
        const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
820
2
        const CXXRecordDecl *StaticClass = StaticMD->getParent();
821
2
        QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
822
2
        ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
823
2
      } else
824
29
        ThisVal = *V;
825
31
    }
826
827
7.31k
    if (!ThisVal.isUnknown())
828
7.31k
      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
829
7.31k
  }
830
7.31k
}
831
832
43.6k
const Expr *CXXMemberCall::getCXXThisExpr() const {
833
43.6k
  return getOriginExpr()->getImplicitObjectArgument();
834
43.6k
}
835
836
9.05k
RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
837
  // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
838
  // id-expression in the class member access expression is a qualified-id,
839
  // that function is called. Otherwise, its final overrider in the dynamic type
840
  // of the object expression is called.
841
9.05k
  if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
842
9.03k
    if (ME->hasQualifier())
843
251
      return AnyFunctionCall::getRuntimeDefinition();
844
845
8.80k
  return CXXInstanceCall::getRuntimeDefinition();
846
9.05k
}
847
848
17.0k
const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
849
17.0k
  return getOriginExpr()->getArg(0);
850
17.0k
}
851
852
3.73k
const BlockDataRegion *BlockCall::getBlockRegion() const {
853
3.73k
  const Expr *Callee = getOriginExpr()->getCallee();
854
3.73k
  const MemRegion *DataReg = getSVal(Callee).getAsRegion();
855
856
3.73k
  return dyn_cast_or_null<BlockDataRegion>(DataReg);
857
3.73k
}
858
859
697
ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
860
697
  const BlockDecl *D = getDecl();
861
697
  if (!D)
862
11
    return std::nullopt;
863
686
  return D->parameters();
864
697
}
865
866
void BlockCall::getExtraInvalidatedValues(ValueList &Values,
867
18
                  RegionAndSymbolInvalidationTraits *ETraits) const {
868
  // FIXME: This also needs to invalidate captured globals.
869
18
  if (const MemRegion *R = getBlockRegion())
870
8
    Values.push_back(loc::MemRegionVal(R));
871
18
}
872
873
void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
874
188
                                             BindingsTy &Bindings) const {
875
188
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
876
188
  ArrayRef<ParmVarDecl*> Params;
877
188
  if (isConversionFromLambda()) {
878
7
    auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
879
7
    Params = LambdaOperatorDecl->parameters();
880
881
    // For blocks converted from a C++ lambda, the callee declaration is the
882
    // operator() method on the lambda so we bind "this" to
883
    // the lambda captured by the block.
884
7
    const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
885
7
    SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
886
7
    Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
887
7
    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
888
181
  } else {
889
181
    Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
890
181
  }
891
892
188
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
893
188
                               Params);
894
188
}
895
896
55.5k
SVal AnyCXXConstructorCall::getCXXThisVal() const {
897
55.5k
  if (Data)
898
55.5k
    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
899
0
  return UnknownVal();
900
55.5k
}
901
902
void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
903
1.53k
                           RegionAndSymbolInvalidationTraits *ETraits) const {
904
1.53k
  SVal V = getCXXThisVal();
905
1.53k
  if (SymbolRef Sym = V.getAsSymbol(true))
906
92
    ETraits->setTrait(Sym,
907
92
                      RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
908
1.53k
  Values.push_back(V);
909
1.53k
}
910
911
void AnyCXXConstructorCall::getInitialStackFrameContents(
912
                                             const StackFrameContext *CalleeCtx,
913
9.36k
                                             BindingsTy &Bindings) const {
914
9.36k
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
915
916
9.36k
  SVal ThisVal = getCXXThisVal();
917
9.36k
  if (!ThisVal.isUnknown()) {
918
9.36k
    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
919
9.36k
    const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
920
9.36k
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
921
9.36k
    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
922
9.36k
  }
923
9.36k
}
924
925
const StackFrameContext *
926
90
CXXInheritedConstructorCall::getInheritingStackFrame() const {
927
90
  const StackFrameContext *SFC = getLocationContext()->getStackFrame();
928
103
  while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
929
13
    SFC = SFC->getParent()->getStackFrame();
930
90
  return SFC;
931
90
}
932
933
5.83k
SVal CXXDestructorCall::getCXXThisVal() const {
934
5.83k
  if (Data)
935
5.83k
    return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
936
0
  return UnknownVal();
937
5.83k
}
938
939
1.77k
RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
940
  // Base destructors are always called non-virtually.
941
  // Skip CXXInstanceCall's devirtualization logic in this case.
942
1.77k
  if (isBaseDestructor())
943
128
    return AnyFunctionCall::getRuntimeDefinition();
944
945
1.64k
  return CXXInstanceCall::getRuntimeDefinition();
946
1.77k
}
947
948
31.0k
ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
949
31.0k
  const ObjCMethodDecl *D = getDecl();
950
31.0k
  if (!D)
951
42
    return std::nullopt;
952
30.9k
  return D->parameters();
953
31.0k
}
954
955
void ObjCMethodCall::getExtraInvalidatedValues(
956
3.64k
    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
957
958
  // If the method call is a setter for property known to be backed by
959
  // an instance variable, don't invalidate the entire receiver, just
960
  // the storage for that instance variable.
961
3.64k
  if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
962
219
    if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
963
62
      SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
964
62
      if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
965
61
        ETraits->setTrait(
966
61
          IvarRegion,
967
61
          RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
968
61
        ETraits->setTrait(
969
61
          IvarRegion,
970
61
          RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
971
61
        Values.push_back(IvarLVal);
972
61
      }
973
62
      return;
974
62
    }
975
219
  }
976
977
3.57k
  Values.push_back(getReceiverSVal());
978
3.57k
}
979
980
29.7k
SVal ObjCMethodCall::getReceiverSVal() const {
981
  // FIXME: Is this the best way to handle class receivers?
982
29.7k
  if (!isInstanceMessage())
983
4.33k
    return UnknownVal();
984
985
25.3k
  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
986
23.4k
    return getSVal(RecE);
987
988
  // An instance message with no expression means we are sending to super.
989
  // In this case the object reference is the same as 'self'.
990
1.91k
  assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
991
1.91k
  SVal SelfVal = getState()->getSelfSVal(getLocationContext());
992
1.91k
  assert(SelfVal.isValid() && "Calling super but not in ObjC method");
993
1.91k
  return SelfVal;
994
1.91k
}
995
996
864
bool ObjCMethodCall::isReceiverSelfOrSuper() const {
997
864
  if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
998
864
      
getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass653
)
999
211
      return true;
1000
1001
653
  if (!isInstanceMessage())
1002
26
    return false;
1003
1004
627
  SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1005
627
  SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1006
1007
627
  return (RecVal == SelfVal);
1008
653
}
1009
1010
13
SourceRange ObjCMethodCall::getSourceRange() const {
1011
13
  switch (getMessageKind()) {
1012
13
  case OCM_Message:
1013
13
    return getOriginExpr()->getSourceRange();
1014
0
  case OCM_PropertyAccess:
1015
0
  case OCM_Subscript:
1016
0
    return getContainingPseudoObjectExpr()->getSourceRange();
1017
13
  }
1018
0
  llvm_unreachable("unknown message kind");
1019
0
}
1020
1021
using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1022
1023
189
const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1024
189
  assert(Data && "Lazy lookup not yet performed.");
1025
189
  assert(getMessageKind() != OCM_Message && "Explicit message send.");
1026
189
  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1027
189
}
1028
1029
static const Expr *
1030
468
getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1031
468
  const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens();
1032
1033
  // This handles the funny case of assigning to the result of a getter.
1034
  // This can happen if the getter returns a non-const reference.
1035
468
  if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1036
140
    Syntactic = BO->getLHS()->IgnoreParens();
1037
1038
468
  return Syntactic;
1039
468
}
1040
1041
8.39k
ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1042
8.39k
  if (!Data) {
1043
    // Find the parent, ignoring implicit casts.
1044
3.99k
    const ParentMap &PM = getLocationContext()->getParentMap();
1045
3.99k
    const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1046
1047
    // Check if parent is a PseudoObjectExpr.
1048
3.99k
    if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1049
279
      const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1050
1051
279
      ObjCMessageKind K;
1052
279
      switch (Syntactic->getStmtClass()) {
1053
238
      case Stmt::ObjCPropertyRefExprClass:
1054
238
        K = OCM_PropertyAccess;
1055
238
        break;
1056
40
      case Stmt::ObjCSubscriptRefExprClass:
1057
40
        K = OCM_Subscript;
1058
40
        break;
1059
1
      default:
1060
        // FIXME: Can this ever happen?
1061
1
        K = OCM_Message;
1062
1
        break;
1063
279
      }
1064
1065
279
      if (K != OCM_Message) {
1066
278
        const_cast<ObjCMethodCall *>(this)->Data
1067
278
          = ObjCMessageDataTy(POE, K).getOpaqueValue();
1068
278
        assert(getMessageKind() == K);
1069
278
        return K;
1070
278
      }
1071
279
    }
1072
1073
3.71k
    const_cast<ObjCMethodCall *>(this)->Data
1074
3.71k
      = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1075
3.71k
    assert(getMessageKind() == OCM_Message);
1076
3.71k
    return OCM_Message;
1077
3.71k
  }
1078
1079
4.39k
  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1080
4.39k
  if (!Info.getPointer())
1081
3.88k
    return OCM_Message;
1082
517
  return static_cast<ObjCMessageKind>(Info.getInt());
1083
4.39k
}
1084
1085
3.65k
const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1086
  // Look for properties accessed with property syntax (foo.bar = ...)
1087
3.65k
  if (getMessageKind() == OCM_PropertyAccess) {
1088
189
    const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1089
189
    assert(POE && "Property access without PseudoObjectExpr?");
1090
1091
189
    const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1092
189
    auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1093
1094
189
    if (RefExpr->isExplicitProperty())
1095
171
      return RefExpr->getExplicitProperty();
1096
189
  }
1097
1098
  // Look for properties accessed with method syntax ([foo setBar:...]).
1099
3.48k
  const ObjCMethodDecl *MD = getDecl();
1100
3.48k
  if (!MD || 
!MD->isPropertyAccessor()3.46k
)
1101
3.42k
    return nullptr;
1102
1103
  // Note: This is potentially quite slow.
1104
65
  return MD->findPropertyDecl();
1105
3.48k
}
1106
1107
bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1108
1.46k
                                             Selector Sel) const {
1109
1.46k
  assert(IDecl);
1110
1.46k
  AnalysisManager &AMgr =
1111
1.46k
      getState()->getStateManager().getOwningEngine().getAnalysisManager();
1112
  // If the class interface is declared inside the main file, assume it is not
1113
  // subcassed.
1114
  // TODO: It could actually be subclassed if the subclass is private as well.
1115
  // This is probably very rare.
1116
1.46k
  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1117
1.46k
  if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1118
1.33k
    return false;
1119
1120
  // Assume that property accessors are not overridden.
1121
138
  if (getMessageKind() == OCM_PropertyAccess)
1122
9
    return false;
1123
1124
  // We assume that if the method is public (declared outside of main file) or
1125
  // has a parent which publicly declares the method, the method could be
1126
  // overridden in a subclass.
1127
1128
  // Find the first declaration in the class hierarchy that declares
1129
  // the selector.
1130
129
  ObjCMethodDecl *D = nullptr;
1131
132
  while (true) {
1132
132
    D = IDecl->lookupMethod(Sel, true);
1133
1134
    // Cannot find a public definition.
1135
132
    if (!D)
1136
2
      return false;
1137
1138
    // If outside the main file,
1139
130
    if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1140
124
      return true;
1141
1142
6
    if (D->isOverriding()) {
1143
      // Search in the superclass on the next iteration.
1144
3
      IDecl = D->getClassInterface();
1145
3
      if (!IDecl)
1146
0
        return false;
1147
1148
3
      IDecl = IDecl->getSuperClass();
1149
3
      if (!IDecl)
1150
0
        return false;
1151
1152
3
      continue;
1153
3
    }
1154
1155
3
    return false;
1156
6
  };
1157
1158
0
  llvm_unreachable("The while loop should always terminate.");
1159
0
}
1160
1161
29
static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1162
29
  if (!MD)
1163
0
    return MD;
1164
1165
  // Find the redeclaration that defines the method.
1166
29
  if (!MD->hasBody()) {
1167
21
    for (auto *I : MD->redecls())
1168
28
      if (I->hasBody())
1169
7
        MD = cast<ObjCMethodDecl>(I);
1170
21
  }
1171
29
  return MD;
1172
29
}
1173
1174
struct PrivateMethodKey {
1175
  const ObjCInterfaceDecl *Interface;
1176
  Selector LookupSelector;
1177
  bool IsClassMethod;
1178
};
1179
1180
namespace llvm {
1181
template <> struct DenseMapInfo<PrivateMethodKey> {
1182
  using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1183
  using SelectorInfo = DenseMapInfo<Selector>;
1184
1185
4.30k
  static inline PrivateMethodKey getEmptyKey() {
1186
4.30k
    return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1187
4.30k
  }
1188
1189
3.19k
  static inline PrivateMethodKey getTombstoneKey() {
1190
3.19k
    return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1191
3.19k
            true};
1192
3.19k
  }
1193
1194
3.06k
  static unsigned getHashValue(const PrivateMethodKey &Key) {
1195
3.06k
    return llvm::hash_combine(
1196
3.06k
        llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1197
3.06k
        llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1198
3.06k
        Key.IsClassMethod);
1199
3.06k
  }
1200
1201
  static bool isEqual(const PrivateMethodKey &LHS,
1202
23.2k
                      const PrivateMethodKey &RHS) {
1203
23.2k
    return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1204
23.2k
           
SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector)11.6k
&&
1205
23.2k
           
LHS.IsClassMethod == RHS.IsClassMethod11.6k
;
1206
23.2k
  }
1207
};
1208
} // end namespace llvm
1209
1210
static const ObjCMethodDecl *
1211
lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1212
2.86k
                        Selector LookupSelector, bool InstanceMethod) {
1213
  // Repeatedly calling lookupPrivateMethod() is expensive, especially
1214
  // when in many cases it returns null.  We cache the results so
1215
  // that repeated queries on the same ObjCIntefaceDecl and Selector
1216
  // don't incur the same cost.  On some test cases, we can see the
1217
  // same query being issued thousands of times.
1218
  //
1219
  // NOTE: This cache is essentially a "global" variable, but it
1220
  // only gets lazily created when we get here.  The value of the
1221
  // cache probably comes from it being global across ExprEngines,
1222
  // where the same queries may get issued.  If we are worried about
1223
  // concurrency, or possibly loading/unloading ASTs, etc., we may
1224
  // need to revisit this someday.  In terms of memory, this table
1225
  // stays around until clang quits, which also may be bad if we
1226
  // need to release memory.
1227
2.86k
  using PrivateMethodCache =
1228
2.86k
      llvm::DenseMap<PrivateMethodKey, std::optional<const ObjCMethodDecl *>>;
1229
1230
2.86k
  static PrivateMethodCache PMC;
1231
2.86k
  std::optional<const ObjCMethodDecl *> &Val =
1232
2.86k
      PMC[{Interface, LookupSelector, InstanceMethod}];
1233
1234
  // Query lookupPrivateMethod() if the cache does not hit.
1235
2.86k
  if (!Val) {
1236
982
    Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1237
1238
982
    if (!*Val) {
1239
      // Query 'lookupMethod' as a backup.
1240
693
      Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1241
693
    }
1242
982
  }
1243
1244
2.86k
  return *Val;
1245
2.86k
}
1246
1247
4.29k
RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1248
4.29k
  const ObjCMessageExpr *E = getOriginExpr();
1249
4.29k
  assert(E);
1250
4.29k
  Selector Sel = E->getSelector();
1251
1252
4.29k
  if (E->isInstanceMessage()) {
1253
    // Find the receiver type.
1254
3.25k
    const ObjCObjectType *ReceiverT = nullptr;
1255
3.25k
    bool CanBeSubClassed = false;
1256
3.25k
    bool LookingForInstanceMethod = true;
1257
3.25k
    QualType SupersType = E->getSuperType();
1258
3.25k
    const MemRegion *Receiver = nullptr;
1259
1260
3.25k
    if (!SupersType.isNull()) {
1261
      // The receiver is guaranteed to be 'super' in this case.
1262
      // Super always means the type of immediate predecessor to the method
1263
      // where the call occurs.
1264
330
      ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1265
2.92k
    } else {
1266
2.92k
      Receiver = getReceiverSVal().getAsRegion();
1267
2.92k
      if (!Receiver)
1268
4
        return {};
1269
1270
2.92k
      DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1271
2.92k
      if (!DTI.isValid()) {
1272
1
        assert(isa<AllocaRegion>(Receiver) &&
1273
1
               "Unhandled untyped region class!");
1274
1
        return {};
1275
1
      }
1276
1277
2.92k
      QualType DynType = DTI.getType();
1278
2.92k
      CanBeSubClassed = DTI.canBeASubClass();
1279
1280
2.92k
      const auto *ReceiverDynT =
1281
2.92k
          dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1282
1283
2.92k
      if (ReceiverDynT) {
1284
2.79k
        ReceiverT = ReceiverDynT->getObjectType();
1285
1286
        // It can be actually class methods called with Class object as a
1287
        // receiver. This type of messages is treated by the compiler as
1288
        // instance (not class).
1289
2.79k
        if (ReceiverT->isObjCClass()) {
1290
1291
58
          SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1292
          // For [self classMethod], return compiler visible declaration.
1293
58
          if (Receiver == SelfVal.getAsRegion()) {
1294
29
            return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1295
29
          }
1296
1297
          // Otherwise, let's check if we know something about the type
1298
          // inside of this class object.
1299
29
          if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1300
29
            DynamicTypeInfo DTI =
1301
29
                getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1302
29
            if (DTI.isValid()) {
1303
              // Let's use this type for lookup.
1304
28
              ReceiverT =
1305
28
                  cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1306
1307
28
              CanBeSubClassed = DTI.canBeASubClass();
1308
              // And it should be a class method instead.
1309
28
              LookingForInstanceMethod = false;
1310
28
            }
1311
29
          }
1312
29
        }
1313
1314
2.76k
        if (CanBeSubClassed)
1315
1.69k
          if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1316
            // Even if `DynamicTypeInfo` told us that it can be
1317
            // not necessarily this type, but its descendants, we still want
1318
            // to check again if this selector can be actually overridden.
1319
1.46k
            CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1320
2.76k
      }
1321
2.92k
    }
1322
1323
    // Lookup the instance method implementation.
1324
3.22k
    if (ReceiverT)
1325
3.09k
      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1326
2.86k
        const ObjCMethodDecl *MD =
1327
2.86k
            lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1328
1329
2.86k
        if (MD && 
!MD->hasBody()2.84k
)
1330
2.46k
          MD = MD->getCanonicalDecl();
1331
1332
2.86k
        if (CanBeSubClassed)
1333
124
          return RuntimeDefinition(MD, Receiver);
1334
2.74k
        else
1335
2.74k
          return RuntimeDefinition(MD, nullptr);
1336
2.86k
      }
1337
3.22k
  } else {
1338
    // This is a class method.
1339
    // If we have type info for the receiver class, we are calling via
1340
    // class name.
1341
1.04k
    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1342
      // Find/Return the method implementation.
1343
1.04k
      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1344
1.04k
    }
1345
1.04k
  }
1346
1347
352
  return {};
1348
4.29k
}
1349
1350
3.69k
bool ObjCMethodCall::argumentsMayEscape() const {
1351
3.69k
  if (isInSystemHeader() && 
!isInstanceMessage()456
) {
1352
119
    Selector Sel = getSelector();
1353
119
    if (Sel.getNumArgs() == 1 &&
1354
119
        
Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")5
)
1355
2
      return true;
1356
119
  }
1357
1358
3.69k
  return CallEvent::argumentsMayEscape();
1359
3.69k
}
1360
1361
void ObjCMethodCall::getInitialStackFrameContents(
1362
                                             const StackFrameContext *CalleeCtx,
1363
572
                                             BindingsTy &Bindings) const {
1364
572
  const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1365
572
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1366
572
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1367
572
                               D->parameters());
1368
1369
572
  SVal SelfVal = getReceiverSVal();
1370
572
  if (!SelfVal.isUnknown()) {
1371
520
    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1372
520
    MemRegionManager &MRMgr = SVB.getRegionManager();
1373
520
    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1374
520
    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1375
520
  }
1376
572
}
1377
1378
CallEventRef<>
1379
CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1380
                                const LocationContext *LCtx,
1381
156k
                                CFGBlock::ConstCFGElementRef ElemRef) {
1382
156k
  if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1383
17.4k
    return create<CXXMemberCall>(MCE, State, LCtx, ElemRef);
1384
1385
139k
  if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1386
9.26k
    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1387
9.26k
    if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1388
9.07k
      if (MD->isInstance())
1389
9.07k
        return create<CXXMemberOperatorCall>(OpCE, State, LCtx, ElemRef);
1390
1391
130k
  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1392
618
    return create<BlockCall>(CE, State, LCtx, ElemRef);
1393
618
  }
1394
1395
  // Otherwise, it's a normal function call, static member function call, or
1396
  // something we can't reason about.
1397
129k
  return create<SimpleFunctionCall>(CE, State, LCtx, ElemRef);
1398
139k
}
1399
1400
CallEventRef<>
1401
CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1402
88.2k
                            ProgramStateRef State) {
1403
88.2k
  const LocationContext *ParentCtx = CalleeCtx->getParent();
1404
88.2k
  const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1405
88.2k
  CFGBlock::ConstCFGElementRef ElemRef = {CalleeCtx->getCallSiteBlock(),
1406
88.2k
                                          CalleeCtx->getIndex()};
1407
88.2k
  assert(CallerCtx && "This should not be used for top-level stack frames");
1408
1409
88.2k
  const Stmt *CallSite = CalleeCtx->getCallSite();
1410
1411
88.2k
  if (CallSite) {
1412
86.2k
    if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx, ElemRef))
1413
66.9k
      return Out;
1414
1415
19.3k
    SValBuilder &SVB = State->getStateManager().getSValBuilder();
1416
19.3k
    const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1417
19.3k
    Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1418
19.3k
    SVal ThisVal = State->getSVal(ThisPtr);
1419
1420
19.3k
    if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1421
19.3k
      return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx,
1422
19.3k
                                   ElemRef);
1423
8
    else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1424
8
      return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1425
8
                                            CallerCtx, ElemRef);
1426
0
    else {
1427
      // All other cases are handled by getCall.
1428
0
      llvm_unreachable("This is not an inlineable statement");
1429
0
    }
1430
19.3k
  }
1431
1432
  // Fall back to the CFG. The only thing we haven't handled yet is
1433
  // destructors, though this could change in the future.
1434
1.93k
  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1435
1.93k
  CFGElement E = (*B)[CalleeCtx->getIndex()];
1436
1.93k
  assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1437
1.93k
         "All other CFG elements should have exprs");
1438
1439
1.93k
  SValBuilder &SVB = State->getStateManager().getSValBuilder();
1440
1.93k
  const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1441
1.93k
  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1442
1.93k
  SVal ThisVal = State->getSVal(ThisPtr);
1443
1444
1.93k
  const Stmt *Trigger;
1445
1.93k
  if (std::optional<CFGAutomaticObjDtor> AutoDtor =
1446
1.93k
          E.getAs<CFGAutomaticObjDtor>())
1447
1.01k
    Trigger = AutoDtor->getTriggerStmt();
1448
918
  else if (std::optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1449
204
    Trigger = DeleteDtor->getDeleteExpr();
1450
714
  else
1451
714
    Trigger = Dtor->getBody();
1452
1453
1.93k
  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1454
1.93k
                              E.getAs<CFGBaseDtor>().has_value(), State,
1455
1.93k
                              CallerCtx, ElemRef);
1456
1.93k
}
1457
1458
CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1459
                                         const LocationContext *LC,
1460
86.8k
                                         CFGBlock::ConstCFGElementRef ElemRef) {
1461
86.8k
  if (const auto *CE = dyn_cast<CallExpr>(S)) {
1462
65.0k
    return getSimpleCall(CE, State, LC, ElemRef);
1463
65.0k
  } else 
if (const auto *21.7k
NE21.7k
= dyn_cast<CXXNewExpr>(S)) {
1464
557
    return getCXXAllocatorCall(NE, State, LC, ElemRef);
1465
21.2k
  } else if (const auto *DE = dyn_cast<CXXDeleteExpr>(S)) {
1466
6
    return getCXXDeallocatorCall(DE, State, LC, ElemRef);
1467
21.2k
  } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1468
1.89k
    return getObjCMethodCall(ME, State, LC, ElemRef);
1469
19.3k
  } else {
1470
19.3k
    return nullptr;
1471
19.3k
  }
1472
86.8k
}