Coverage Report

Created: 2023-09-21 18:56

/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/StaticAnalyzer/Core/RangedConstraintManager.cpp
Line
Count
Source (jump to first uncovered line)
1
//== RangedConstraintManager.cpp --------------------------------*- C++ -*--==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//  This file defines RangedConstraintManager, a class that provides a
10
//  range-based constraint manager interface.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
15
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
16
17
namespace clang {
18
19
namespace ento {
20
21
16.2k
RangedConstraintManager::~RangedConstraintManager() {}
22
23
ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State,
24
                                                   SymbolRef Sym,
25
243k
                                                   bool Assumption) {
26
243k
  Sym = simplify(State, Sym);
27
28
  // Handle SymbolData.
29
243k
  if (isa<SymbolData>(Sym))
30
5.85k
    return assumeSymUnsupported(State, Sym, Assumption);
31
32
  // Handle symbolic expression.
33
237k
  if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Sym)) {
34
    // We can only simplify expressions whose RHS is an integer.
35
36
236k
    BinaryOperator::Opcode op = SIE->getOpcode();
37
236k
    if (BinaryOperator::isComparisonOp(op) && 
op != BO_Cmp236k
) {
38
236k
      if (!Assumption)
39
118k
        op = BinaryOperator::negateComparisonOp(op);
40
41
236k
      return assumeSymRel(State, SIE->getLHS(), op, SIE->getRHS());
42
236k
    }
43
44
    // Handle adjustment with non-comparison ops.
45
340
    const llvm::APSInt &Zero = getBasicVals().getValue(0, SIE->getType());
46
340
    return assumeSymRel(State, SIE, (Assumption ? 
BO_NE170
:
BO_EQ170
), Zero);
47
236k
  }
48
49
996
  if (const auto *SSE = dyn_cast<SymSymExpr>(Sym)) {
50
996
    BinaryOperator::Opcode Op = SSE->getOpcode();
51
996
    if (BinaryOperator::isComparisonOp(Op)) {
52
53
      // We convert equality operations for pointers only.
54
994
      if (Loc::isLocType(SSE->getLHS()->getType()) &&
55
994
          
Loc::isLocType(SSE->getRHS()->getType())982
) {
56
        // Translate "a != b" to "(b - a) != 0".
57
        // We invert the order of the operands as a heuristic for how loop
58
        // conditions are usually written ("begin != end") as compared to length
59
        // calculations ("end - begin"). The more correct thing to do would be
60
        // to canonicalize "a - b" and "b - a", which would allow us to treat
61
        // "a != b" and "b != a" the same.
62
63
982
        SymbolManager &SymMgr = getSymbolManager();
64
982
        QualType DiffTy = SymMgr.getContext().getPointerDiffType();
65
982
        SymbolRef Subtraction =
66
982
            SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);
67
68
982
        const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
69
982
        Op = BinaryOperator::reverseComparisonOp(Op);
70
982
        if (!Assumption)
71
491
          Op = BinaryOperator::negateComparisonOp(Op);
72
982
        return assumeSymRel(State, Subtraction, Op, Zero);
73
982
      }
74
75
12
      if (BinaryOperator::isEqualityOp(Op)) {
76
12
        SymbolManager &SymMgr = getSymbolManager();
77
78
12
        QualType ExprType = SSE->getType();
79
12
        SymbolRef CanonicalEquality =
80
12
            SymMgr.getSymSymExpr(SSE->getLHS(), BO_EQ, SSE->getRHS(), ExprType);
81
82
12
        bool WasEqual = SSE->getOpcode() == BO_EQ;
83
12
        bool IsExpectedEqual = WasEqual == Assumption;
84
85
12
        const llvm::APSInt &Zero = getBasicVals().getValue(0, ExprType);
86
87
12
        if (IsExpectedEqual) {
88
6
          return assumeSymNE(State, CanonicalEquality, Zero, Zero);
89
6
        }
90
91
6
        return assumeSymEQ(State, CanonicalEquality, Zero, Zero);
92
12
      }
93
12
    }
94
996
  }
95
96
  // If we get here, there's nothing else we can do but treat the symbol as
97
  // opaque.
98
2
  return assumeSymUnsupported(State, Sym, Assumption);
99
996
}
100
101
ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange(
102
    ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
103
12.6k
    const llvm::APSInt &To, bool InRange) {
104
105
12.6k
  Sym = simplify(State, Sym);
106
107
  // Get the type used for calculating wraparound.
108
12.6k
  BasicValueFactory &BVF = getBasicVals();
109
12.6k
  APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
110
111
12.6k
  llvm::APSInt Adjustment = WraparoundType.getZeroValue();
112
12.6k
  SymbolRef AdjustedSym = Sym;
113
12.6k
  computeAdjustment(AdjustedSym, Adjustment);
114
115
  // Convert the right-hand side integer as necessary.
116
12.6k
  APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
117
12.6k
  llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
118
12.6k
  llvm::APSInt ConvertedTo = ComparisonType.convert(To);
119
120
  // Prefer unsigned comparisons.
121
12.6k
  if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
122
12.6k
      
ComparisonType.isUnsigned()12.5k
&&
!WraparoundType.isUnsigned()350
)
123
8
    Adjustment.setIsSigned(false);
124
125
12.6k
  if (InRange)
126
6.30k
    return assumeSymWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
127
6.30k
                                         ConvertedTo, Adjustment);
128
6.30k
  return assumeSymOutsideInclusiveRange(State, AdjustedSym, ConvertedFrom,
129
6.30k
                                        ConvertedTo, Adjustment);
130
12.6k
}
131
132
ProgramStateRef
133
RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State,
134
40.8k
                                              SymbolRef Sym, bool Assumption) {
135
40.8k
  Sym = simplify(State, Sym);
136
137
40.8k
  BasicValueFactory &BVF = getBasicVals();
138
40.8k
  QualType T = Sym->getType();
139
140
  // Non-integer types are not supported.
141
40.8k
  if (!T->isIntegralOrEnumerationType())
142
4
    return State;
143
144
  // Reverse the operation and add directly to state.
145
40.8k
  const llvm::APSInt &Zero = BVF.getValue(0, T);
146
40.8k
  if (Assumption)
147
20.4k
    return assumeSymNE(State, Sym, Zero, Zero);
148
20.4k
  else
149
20.4k
    return assumeSymEQ(State, Sym, Zero, Zero);
150
40.8k
}
151
152
ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State,
153
                                                      SymbolRef Sym,
154
                                                      BinaryOperator::Opcode Op,
155
237k
                                                      const llvm::APSInt &Int) {
156
237k
  assert(BinaryOperator::isComparisonOp(Op) &&
157
237k
         "Non-comparison ops should be rewritten as comparisons to zero.");
158
159
  // Simplification: translate an assume of a constraint of the form
160
  // "(exp comparison_op expr) != 0" to true into an assume of
161
  // "exp comparison_op expr" to true. (And similarly, an assume of the form
162
  // "(exp comparison_op expr) == 0" to true into an assume of
163
  // "exp comparison_op expr" to false.)
164
237k
  if (Int == 0 && 
(177k
Op == BO_EQ177k
||
Op == BO_NE92.6k
)) {
165
169k
    if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym))
166
38.8k
      if (BinaryOperator::isComparisonOp(SE->getOpcode()))
167
212
        return assumeSym(State, Sym, (Op == BO_NE ? 
true106
:
false106
));
168
169k
  }
169
170
  // Get the type used for calculating wraparound.
171
237k
  BasicValueFactory &BVF = getBasicVals();
172
237k
  APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
173
174
  // We only handle simple comparisons of the form "$sym == constant"
175
  // or "($sym+constant1) == constant2".
176
  // The adjustment is "constant1" in the above expression. It's used to
177
  // "slide" the solution range around for modular arithmetic. For example,
178
  // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
179
  // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
180
  // the subclasses of SimpleConstraintManager to handle the adjustment.
181
237k
  llvm::APSInt Adjustment = WraparoundType.getZeroValue();
182
237k
  computeAdjustment(Sym, Adjustment);
183
184
  // Convert the right-hand side integer as necessary.
185
237k
  APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
186
237k
  llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
187
188
  // Prefer unsigned comparisons.
189
237k
  if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
190
237k
      
ComparisonType.isUnsigned()234k
&&
!WraparoundType.isUnsigned()132k
)
191
534
    Adjustment.setIsSigned(false);
192
193
237k
  switch (Op) {
194
0
  default:
195
0
    llvm_unreachable("invalid operation not caught by assertion above");
196
197
87.8k
  case BO_EQ:
198
87.8k
    return assumeSymEQ(State, Sym, ConvertedInt, Adjustment);
199
200
87.8k
  case BO_NE:
201
87.8k
    return assumeSymNE(State, Sym, ConvertedInt, Adjustment);
202
203
16.2k
  case BO_GT:
204
16.2k
    return assumeSymGT(State, Sym, ConvertedInt, Adjustment);
205
206
14.7k
  case BO_GE:
207
14.7k
    return assumeSymGE(State, Sym, ConvertedInt, Adjustment);
208
209
14.7k
  case BO_LT:
210
14.7k
    return assumeSymLT(State, Sym, ConvertedInt, Adjustment);
211
212
16.2k
  case BO_LE:
213
16.2k
    return assumeSymLE(State, Sym, ConvertedInt, Adjustment);
214
237k
  } // end switch
215
237k
}
216
217
void RangedConstraintManager::computeAdjustment(SymbolRef &Sym,
218
250k
                                                llvm::APSInt &Adjustment) {
219
  // Is it a "($sym+constant1)" expression?
220
250k
  if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
221
42.7k
    BinaryOperator::Opcode Op = SE->getOpcode();
222
42.7k
    if (Op == BO_Add || 
Op == BO_Sub40.1k
) {
223
3.96k
      Sym = SE->getLHS();
224
3.96k
      Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
225
226
      // Don't forget to negate the adjustment if it's being subtracted.
227
      // This should happen /after/ promotion, in case the value being
228
      // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
229
3.96k
      if (Op == BO_Sub)
230
1.40k
        Adjustment = -Adjustment;
231
3.96k
    }
232
42.7k
  }
233
250k
}
234
235
1.24M
SVal simplifyToSVal(ProgramStateRef State, SymbolRef Sym) {
236
1.24M
  SValBuilder &SVB = State->getStateManager().getSValBuilder();
237
1.24M
  return SVB.simplifySVal(State, SVB.makeSymbolVal(Sym));
238
1.24M
}
239
240
297k
SymbolRef simplify(ProgramStateRef State, SymbolRef Sym) {
241
297k
  SVal SimplifiedVal = simplifyToSVal(State, Sym);
242
297k
  if (SymbolRef SimplifiedSym = SimplifiedVal.getAsSymbol())
243
294k
    return SimplifiedSym;
244
2.57k
  return Sym;
245
297k
}
246
247
} // end of namespace ento
248
} // end of namespace clang