/Users/buildslave/jenkins/workspace/coverage/llvm-project/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file defines SimpleSValBuilder, a basic implementation of SValBuilder. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" |
14 | | #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" |
15 | | #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
16 | | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
17 | | #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" |
18 | | #include <optional> |
19 | | |
20 | | using namespace clang; |
21 | | using namespace ento; |
22 | | |
23 | | namespace { |
24 | | class SimpleSValBuilder : public SValBuilder { |
25 | | |
26 | | // Query the constraint manager whether the SVal has only one possible |
27 | | // (integer) value. If that is the case, the value is returned. Otherwise, |
28 | | // returns NULL. |
29 | | // This is an implementation detail. Checkers should use `getKnownValue()` |
30 | | // instead. |
31 | | const llvm::APSInt *getConstValue(ProgramStateRef state, SVal V); |
32 | | |
33 | | // With one `simplifySValOnce` call, a compound symbols might collapse to |
34 | | // simpler symbol tree that is still possible to further simplify. Thus, we |
35 | | // do the simplification on a new symbol tree until we reach the simplest |
36 | | // form, i.e. the fixpoint. |
37 | | // Consider the following symbol `(b * b) * b * b` which has this tree: |
38 | | // * |
39 | | // / \ |
40 | | // * b |
41 | | // / \ |
42 | | // / b |
43 | | // (b * b) |
44 | | // Now, if the `b * b == 1` new constraint is added then during the first |
45 | | // iteration we have the following transformations: |
46 | | // * * |
47 | | // / \ / \ |
48 | | // * b --> b b |
49 | | // / \ |
50 | | // / b |
51 | | // 1 |
52 | | // We need another iteration to reach the final result `1`. |
53 | | SVal simplifyUntilFixpoint(ProgramStateRef State, SVal Val); |
54 | | |
55 | | // Recursively descends into symbolic expressions and replaces symbols |
56 | | // with their known values (in the sense of the getConstValue() method). |
57 | | // We traverse the symbol tree and query the constraint values for the |
58 | | // sub-trees and if a value is a constant we do the constant folding. |
59 | | SVal simplifySValOnce(ProgramStateRef State, SVal V); |
60 | | |
61 | | public: |
62 | | SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, |
63 | | ProgramStateManager &stateMgr) |
64 | 16.2k | : SValBuilder(alloc, context, stateMgr) {} |
65 | 16.2k | ~SimpleSValBuilder() override {} |
66 | | |
67 | | SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op, |
68 | | NonLoc lhs, NonLoc rhs, QualType resultTy) override; |
69 | | SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op, |
70 | | Loc lhs, Loc rhs, QualType resultTy) override; |
71 | | SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op, |
72 | | Loc lhs, NonLoc rhs, QualType resultTy) override; |
73 | | |
74 | | /// Evaluates a given SVal by recursively evaluating and |
75 | | /// simplifying the children SVals. If the SVal has only one possible |
76 | | /// (integer) value, that value is returned. Otherwise, returns NULL. |
77 | | const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override; |
78 | | |
79 | | SVal simplifySVal(ProgramStateRef State, SVal V) override; |
80 | | |
81 | | SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, |
82 | | const llvm::APSInt &RHS, QualType resultTy); |
83 | | }; |
84 | | } // end anonymous namespace |
85 | | |
86 | | SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, |
87 | | ASTContext &context, |
88 | 16.2k | ProgramStateManager &stateMgr) { |
89 | 16.2k | return new SimpleSValBuilder(alloc, context, stateMgr); |
90 | 16.2k | } |
91 | | |
92 | | // Checks if the negation the value and flipping sign preserve |
93 | | // the semantics on the operation in the resultType |
94 | | static bool isNegationValuePreserving(const llvm::APSInt &Value, |
95 | 773 | APSIntType ResultType) { |
96 | 773 | const unsigned ValueBits = Value.getSignificantBits(); |
97 | 773 | if (ValueBits == ResultType.getBitWidth()) { |
98 | | // The value is the lowest negative value that is representable |
99 | | // in signed integer with bitWith of result type. The |
100 | | // negation is representable if resultType is unsigned. |
101 | 641 | return ResultType.isUnsigned(); |
102 | 641 | } |
103 | | |
104 | | // If resultType bitWith is higher that number of bits required |
105 | | // to represent RHS, the sign flip produce same value. |
106 | 132 | return ValueBits < ResultType.getBitWidth(); |
107 | 773 | } |
108 | | |
109 | | //===----------------------------------------------------------------------===// |
110 | | // Transfer function for binary operators. |
111 | | //===----------------------------------------------------------------------===// |
112 | | |
113 | | SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, |
114 | | BinaryOperator::Opcode op, |
115 | | const llvm::APSInt &RHS, |
116 | 98.7k | QualType resultTy) { |
117 | 98.7k | bool isIdempotent = false; |
118 | | |
119 | | // Check for a few special cases with known reductions first. |
120 | 98.7k | switch (op) { |
121 | 37.2k | default: |
122 | | // We can't reduce this case; just treat it normally. |
123 | 37.2k | break; |
124 | 37.2k | case BO_Mul: |
125 | | // a*0 and a*1 |
126 | 12.3k | if (RHS == 0) |
127 | 1.26k | return makeIntVal(0, resultTy); |
128 | 11.0k | else if (RHS == 1) |
129 | 93 | isIdempotent = true; |
130 | 11.0k | break; |
131 | 11.0k | case BO_Div: |
132 | | // a/0 and a/1 |
133 | 126 | if (RHS == 0) |
134 | | // This is also handled elsewhere. |
135 | 0 | return UndefinedVal(); |
136 | 126 | else if (RHS == 1) |
137 | 37 | isIdempotent = true; |
138 | 126 | break; |
139 | 126 | case BO_Rem: |
140 | | // a%0 and a%1 |
141 | 62 | if (RHS == 0) |
142 | | // This is also handled elsewhere. |
143 | 0 | return UndefinedVal(); |
144 | 62 | else if (RHS == 1) |
145 | 0 | return makeIntVal(0, resultTy); |
146 | 62 | break; |
147 | 27.6k | case BO_Add: |
148 | 30.6k | case BO_Sub: |
149 | 30.7k | case BO_Shl: |
150 | 30.7k | case BO_Shr: |
151 | 30.7k | case BO_Xor: |
152 | | // a+0, a-0, a<<0, a>>0, a^0 |
153 | 30.7k | if (RHS == 0) |
154 | 13.5k | isIdempotent = true; |
155 | 30.7k | break; |
156 | 18.0k | case BO_And: |
157 | | // a&0 and a&(~0) |
158 | 18.0k | if (RHS == 0) |
159 | 4 | return makeIntVal(0, resultTy); |
160 | 18.0k | else if (RHS.isAllOnes()) |
161 | 1 | isIdempotent = true; |
162 | 18.0k | break; |
163 | 18.0k | case BO_Or: |
164 | | // a|0 and a|(~0) |
165 | 41 | if (RHS == 0) |
166 | 8 | isIdempotent = true; |
167 | 33 | else if (RHS.isAllOnes()) { |
168 | 3 | const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); |
169 | 3 | return nonloc::ConcreteInt(Result); |
170 | 3 | } |
171 | 38 | break; |
172 | 98.7k | } |
173 | | |
174 | | // Idempotent ops (like a*1) can still change the type of an expression. |
175 | | // Wrap the LHS up in a NonLoc again and let evalCast do the |
176 | | // dirty work. |
177 | 97.4k | if (isIdempotent) |
178 | 13.7k | return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{}); |
179 | | |
180 | | // If we reach this point, the expression cannot be simplified. |
181 | | // Make a SymbolVal for the entire expression, after converting the RHS. |
182 | 83.7k | const llvm::APSInt *ConvertedRHS = &RHS; |
183 | 83.7k | if (BinaryOperator::isComparisonOp(op)) { |
184 | | // We're looking for a type big enough to compare the symbolic value |
185 | | // with the given constant. |
186 | | // FIXME: This is an approximation of Sema::UsualArithmeticConversions. |
187 | 37.2k | ASTContext &Ctx = getContext(); |
188 | 37.2k | QualType SymbolType = LHS->getType(); |
189 | 37.2k | uint64_t ValWidth = RHS.getBitWidth(); |
190 | 37.2k | uint64_t TypeWidth = Ctx.getTypeSize(SymbolType); |
191 | | |
192 | 37.2k | if (ValWidth < TypeWidth) { |
193 | | // If the value is too small, extend it. |
194 | 1.89k | ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); |
195 | 35.3k | } else if (ValWidth == TypeWidth) { |
196 | | // If the value is signed but the symbol is unsigned, do the comparison |
197 | | // in unsigned space. [C99 6.3.1.8] |
198 | | // (For the opposite case, the value is already unsigned.) |
199 | 34.0k | if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType()26.5k ) |
200 | 841 | ConvertedRHS = &BasicVals.Convert(SymbolType, RHS); |
201 | 34.0k | } |
202 | 46.4k | } else if (BinaryOperator::isAdditiveOp(op) && RHS.isNegative()17.1k ) { |
203 | | // Change a+(-N) into a-N, and a-(-N) into a+N |
204 | | // Adjust addition/subtraction of negative value, to |
205 | | // subtraction/addition of the negated value. |
206 | 773 | APSIntType resultIntTy = BasicVals.getAPSIntType(resultTy); |
207 | 773 | if (isNegationValuePreserving(RHS, resultIntTy)) { |
208 | 128 | ConvertedRHS = &BasicVals.getValue(-resultIntTy.convert(RHS)); |
209 | 128 | op = (op == BO_Add) ? BO_Sub96 : BO_Add32 ; |
210 | 645 | } else { |
211 | 645 | ConvertedRHS = &BasicVals.Convert(resultTy, RHS); |
212 | 645 | } |
213 | 773 | } else |
214 | 45.6k | ConvertedRHS = &BasicVals.Convert(resultTy, RHS); |
215 | | |
216 | 83.7k | return makeNonLoc(LHS, op, *ConvertedRHS, resultTy); |
217 | 97.4k | } |
218 | | |
219 | | // See if Sym is known to be a relation Rel with Bound. |
220 | | static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym, |
221 | 9.40k | llvm::APSInt Bound, ProgramStateRef State) { |
222 | 9.40k | SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
223 | 9.40k | SVal Result = |
224 | 9.40k | SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym), |
225 | 9.40k | nonloc::ConcreteInt(Bound), SVB.getConditionType()); |
226 | 9.40k | if (auto DV = Result.getAs<DefinedSVal>()) { |
227 | 9.40k | return !State->assume(*DV, false); |
228 | 9.40k | } |
229 | 0 | return false; |
230 | 9.40k | } |
231 | | |
232 | | // See if Sym is known to be within [min/4, max/4], where min and max |
233 | | // are the bounds of the symbol's integral type. With such symbols, |
234 | | // some manipulations can be performed without the risk of overflow. |
235 | | // assume() doesn't cause infinite recursion because we should be dealing |
236 | | // with simpler symbols on every recursive call. |
237 | | static bool isWithinConstantOverflowBounds(SymbolRef Sym, |
238 | 4.73k | ProgramStateRef State) { |
239 | 4.73k | SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
240 | 4.73k | BasicValueFactory &BV = SVB.getBasicValueFactory(); |
241 | | |
242 | 4.73k | QualType T = Sym->getType(); |
243 | 4.73k | assert(T->isSignedIntegerOrEnumerationType() && |
244 | 4.73k | "This only works with signed integers!"); |
245 | 4.73k | APSIntType AT = BV.getAPSIntType(T); |
246 | | |
247 | 4.73k | llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; |
248 | 4.73k | return isInRelation(BO_LE, Sym, Max, State) && |
249 | 4.73k | isInRelation(BO_GE, Sym, Min, State)4.66k ; |
250 | 4.73k | } |
251 | | |
252 | | // Same for the concrete integers: see if I is within [min/4, max/4]. |
253 | 4.66k | static bool isWithinConstantOverflowBounds(llvm::APSInt I) { |
254 | 4.66k | APSIntType AT(I); |
255 | 4.66k | assert(!AT.isUnsigned() && |
256 | 4.66k | "This only works with signed integers!"); |
257 | | |
258 | 4.66k | llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max; |
259 | 4.66k | return (I <= Max) && (I >= -Max); |
260 | 4.66k | } |
261 | | |
262 | | static std::pair<SymbolRef, llvm::APSInt> |
263 | 4.83k | decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) { |
264 | 4.83k | if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym)) |
265 | 1.22k | if (BinaryOperator::isAdditiveOp(SymInt->getOpcode())) |
266 | 1.22k | return std::make_pair(SymInt->getLHS(), |
267 | 1.22k | (SymInt->getOpcode() == BO_Add) ? |
268 | 652 | (SymInt->getRHS()) : |
269 | 1.22k | (-SymInt->getRHS())568 ); |
270 | | |
271 | | // Fail to decompose: "reduce" the problem to the "$x + 0" case. |
272 | 3.61k | return std::make_pair(Sym, BV.getValue(0, Sym->getType())); |
273 | 4.83k | } |
274 | | |
275 | | // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the |
276 | | // same signed integral type and no overflows occur (which should be checked |
277 | | // by the caller). |
278 | | static NonLoc doRearrangeUnchecked(ProgramStateRef State, |
279 | | BinaryOperator::Opcode Op, |
280 | | SymbolRef LSym, llvm::APSInt LInt, |
281 | 2.35k | SymbolRef RSym, llvm::APSInt RInt) { |
282 | 2.35k | SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
283 | 2.35k | BasicValueFactory &BV = SVB.getBasicValueFactory(); |
284 | 2.35k | SymbolManager &SymMgr = SVB.getSymbolManager(); |
285 | | |
286 | 2.35k | QualType SymTy = LSym->getType(); |
287 | 2.35k | assert(SymTy == RSym->getType() && |
288 | 2.35k | "Symbols are not of the same type!"); |
289 | 2.35k | assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) && |
290 | 2.35k | "Integers are not of the same type as symbols!"); |
291 | 2.35k | assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) && |
292 | 2.35k | "Integers are not of the same type as symbols!"); |
293 | | |
294 | 2.35k | QualType ResultTy; |
295 | 2.35k | if (BinaryOperator::isComparisonOp(Op)) |
296 | 2.33k | ResultTy = SVB.getConditionType(); |
297 | 19 | else if (BinaryOperator::isAdditiveOp(Op)) |
298 | 19 | ResultTy = SymTy; |
299 | 0 | else |
300 | 0 | llvm_unreachable("Operation not suitable for unchecked rearrangement!"); |
301 | | |
302 | 2.35k | if (LSym == RSym) |
303 | 716 | return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt), |
304 | 716 | nonloc::ConcreteInt(RInt), ResultTy) |
305 | 716 | .castAs<NonLoc>(); |
306 | | |
307 | 1.63k | SymbolRef ResultSym = nullptr; |
308 | 1.63k | BinaryOperator::Opcode ResultOp; |
309 | 1.63k | llvm::APSInt ResultInt; |
310 | 1.63k | if (BinaryOperator::isComparisonOp(Op)) { |
311 | | // Prefer comparing to a non-negative number. |
312 | | // FIXME: Maybe it'd be better to have consistency in |
313 | | // "$x - $y" vs. "$y - $x" because those are solver's keys. |
314 | 1.63k | if (LInt > RInt) { |
315 | 250 | ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy); |
316 | 250 | ResultOp = BinaryOperator::reverseComparisonOp(Op); |
317 | 250 | ResultInt = LInt - RInt; // Opposite order! |
318 | 1.38k | } else { |
319 | 1.38k | ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy); |
320 | 1.38k | ResultOp = Op; |
321 | 1.38k | ResultInt = RInt - LInt; // Opposite order! |
322 | 1.38k | } |
323 | 1.63k | } else { |
324 | 1 | ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy); |
325 | 1 | ResultInt = (Op == BO_Add) ? (LInt + RInt)0 : (LInt - RInt); |
326 | 1 | ResultOp = BO_Add; |
327 | | // Bring back the cosmetic difference. |
328 | 1 | if (ResultInt < 0) { |
329 | 0 | ResultInt = -ResultInt; |
330 | 0 | ResultOp = BO_Sub; |
331 | 1 | } else if (ResultInt == 0) { |
332 | | // Shortcut: Simplify "$x + 0" to "$x". |
333 | 1 | return nonloc::SymbolVal(ResultSym); |
334 | 1 | } |
335 | 1 | } |
336 | 1.63k | const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt); |
337 | 1.63k | return nonloc::SymbolVal( |
338 | 1.63k | SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy)); |
339 | 1.63k | } |
340 | | |
341 | | // Rearrange if symbol type matches the result type and if the operator is a |
342 | | // comparison operator, both symbol and constant must be within constant |
343 | | // overflow bounds. |
344 | | static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op, |
345 | 4.77k | SymbolRef Sym, llvm::APSInt Int, QualType Ty) { |
346 | 4.77k | return Sym->getType() == Ty && |
347 | 4.77k | (4.77k !BinaryOperator::isComparisonOp(Op)4.77k || |
348 | 4.77k | (4.73k isWithinConstantOverflowBounds(Sym, State)4.73k && |
349 | 4.73k | isWithinConstantOverflowBounds(Int)4.66k )); |
350 | 4.77k | } |
351 | | |
352 | | static std::optional<NonLoc> tryRearrange(ProgramStateRef State, |
353 | | BinaryOperator::Opcode Op, NonLoc Lhs, |
354 | 46.0k | NonLoc Rhs, QualType ResultTy) { |
355 | 46.0k | ProgramStateManager &StateMgr = State->getStateManager(); |
356 | 46.0k | SValBuilder &SVB = StateMgr.getSValBuilder(); |
357 | | |
358 | | // We expect everything to be of the same type - this type. |
359 | 46.0k | QualType SingleTy; |
360 | | |
361 | | // FIXME: After putting complexity threshold to the symbols we can always |
362 | | // rearrange additive operations but rearrange comparisons only if |
363 | | // option is set. |
364 | 46.0k | if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation) |
365 | 43.6k | return std::nullopt; |
366 | | |
367 | 2.44k | SymbolRef LSym = Lhs.getAsSymbol(); |
368 | 2.44k | if (!LSym) |
369 | 0 | return std::nullopt; |
370 | | |
371 | 2.44k | if (BinaryOperator::isComparisonOp(Op)) { |
372 | 2.42k | SingleTy = LSym->getType(); |
373 | 2.42k | if (ResultTy != SVB.getConditionType()) |
374 | 0 | return std::nullopt; |
375 | | // Initialize SingleTy later with a symbol's type. |
376 | 2.42k | } else if (20 BinaryOperator::isAdditiveOp(Op)20 ) { |
377 | 20 | SingleTy = ResultTy; |
378 | 20 | if (LSym->getType() != SingleTy) |
379 | 1 | return std::nullopt; |
380 | 20 | } else { |
381 | | // Don't rearrange other operations. |
382 | 0 | return std::nullopt; |
383 | 0 | } |
384 | | |
385 | 2.44k | assert(!SingleTy.isNull() && "We should have figured out the type by now!"); |
386 | | |
387 | | // Rearrange signed symbolic expressions only |
388 | 2.44k | if (!SingleTy->isSignedIntegerOrEnumerationType()) |
389 | 20 | return std::nullopt; |
390 | | |
391 | 2.42k | SymbolRef RSym = Rhs.getAsSymbol(); |
392 | 2.42k | if (!RSym || RSym->getType() != SingleTy) |
393 | 6 | return std::nullopt; |
394 | | |
395 | 2.41k | BasicValueFactory &BV = State->getBasicVals(); |
396 | 2.41k | llvm::APSInt LInt, RInt; |
397 | 2.41k | std::tie(LSym, LInt) = decomposeSymbol(LSym, BV); |
398 | 2.41k | std::tie(RSym, RInt) = decomposeSymbol(RSym, BV); |
399 | 2.41k | if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) || |
400 | 2.41k | !shouldRearrange(State, Op, RSym, RInt, SingleTy)2.35k ) |
401 | 66 | return std::nullopt; |
402 | | |
403 | | // We know that no overflows can occur anymore. |
404 | 2.35k | return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt); |
405 | 2.41k | } |
406 | | |
407 | | SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state, |
408 | | BinaryOperator::Opcode op, |
409 | | NonLoc lhs, NonLoc rhs, |
410 | 329k | QualType resultTy) { |
411 | 329k | NonLoc InputLHS = lhs; |
412 | 329k | NonLoc InputRHS = rhs; |
413 | | |
414 | | // Constraints may have changed since the creation of a bound SVal. Check if |
415 | | // the values can be simplified based on those new constraints. |
416 | 329k | SVal simplifiedLhs = simplifySVal(state, lhs); |
417 | 329k | SVal simplifiedRhs = simplifySVal(state, rhs); |
418 | 329k | if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) |
419 | 329k | lhs = *simplifiedLhsAsNonLoc; |
420 | 329k | if (auto simplifiedRhsAsNonLoc = simplifiedRhs.getAs<NonLoc>()) |
421 | 329k | rhs = *simplifiedRhsAsNonLoc; |
422 | | |
423 | | // Handle trivial case where left-side and right-side are the same. |
424 | 329k | if (lhs == rhs) |
425 | 77.1k | switch (op) { |
426 | 2.88k | default: |
427 | 2.88k | break; |
428 | 7.82k | case BO_EQ: |
429 | 7.88k | case BO_LE: |
430 | 8.73k | case BO_GE: |
431 | 8.73k | return makeTruthVal(true, resultTy); |
432 | 63.9k | case BO_LT: |
433 | 64.3k | case BO_GT: |
434 | 64.6k | case BO_NE: |
435 | 64.6k | return makeTruthVal(false, resultTy); |
436 | 24 | case BO_Xor: |
437 | 608 | case BO_Sub: |
438 | 608 | if (resultTy->isIntegralOrEnumerationType()) |
439 | 608 | return makeIntVal(0, resultTy); |
440 | 0 | return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy, |
441 | 0 | QualType{}); |
442 | 279 | case BO_Or: |
443 | 292 | case BO_And: |
444 | 292 | return evalCast(lhs, resultTy, QualType{}); |
445 | 77.1k | } |
446 | | |
447 | 279k | while (255k true) { |
448 | 279k | switch (lhs.getSubKind()) { |
449 | 0 | default: |
450 | 0 | return makeSymExprValNN(op, lhs, rhs, resultTy); |
451 | 2 | case nonloc::PointerToMemberKind: { |
452 | 2 | assert(rhs.getSubKind() == nonloc::PointerToMemberKind && |
453 | 2 | "Both SVals should have pointer-to-member-type"); |
454 | 2 | auto LPTM = lhs.castAs<nonloc::PointerToMember>(), |
455 | 2 | RPTM = rhs.castAs<nonloc::PointerToMember>(); |
456 | 2 | auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData(); |
457 | 2 | switch (op) { |
458 | 2 | case BO_EQ: |
459 | 2 | return makeTruthVal(LPTMD == RPTMD, resultTy); |
460 | 0 | case BO_NE: |
461 | 0 | return makeTruthVal(LPTMD != RPTMD, resultTy); |
462 | 0 | default: |
463 | 0 | return UnknownVal(); |
464 | 2 | } |
465 | 2 | } |
466 | 242 | case nonloc::LocAsIntegerKind: { |
467 | 242 | Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc(); |
468 | 242 | switch (rhs.getSubKind()) { |
469 | 0 | case nonloc::LocAsIntegerKind: |
470 | | // FIXME: at the moment the implementation |
471 | | // of modeling "pointers as integers" is not complete. |
472 | 0 | if (!BinaryOperator::isComparisonOp(op)) |
473 | 0 | return UnknownVal(); |
474 | 0 | return evalBinOpLL(state, op, lhsL, |
475 | 0 | rhs.castAs<nonloc::LocAsInteger>().getLoc(), |
476 | 0 | resultTy); |
477 | 238 | case nonloc::ConcreteIntKind: { |
478 | | // FIXME: at the moment the implementation |
479 | | // of modeling "pointers as integers" is not complete. |
480 | 238 | if (!BinaryOperator::isComparisonOp(op)) |
481 | 150 | return UnknownVal(); |
482 | | // Transform the integer into a location and compare. |
483 | | // FIXME: This only makes sense for comparisons. If we want to, say, |
484 | | // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it, |
485 | | // then pack it back into a LocAsInteger. |
486 | 88 | llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue(); |
487 | | // If the region has a symbolic base, pay attention to the type; it |
488 | | // might be coming from a non-default address space. For non-symbolic |
489 | | // regions it doesn't matter that much because such comparisons would |
490 | | // most likely evaluate to concrete false anyway. FIXME: We might |
491 | | // still need to handle the non-comparison case. |
492 | 88 | if (SymbolRef lSym = lhs.getAsLocSymbol(true)) |
493 | 84 | BasicVals.getAPSIntType(lSym->getType()).apply(i); |
494 | 4 | else |
495 | 4 | BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i); |
496 | 88 | return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); |
497 | 238 | } |
498 | 4 | default: |
499 | 4 | switch (op) { |
500 | 0 | case BO_EQ: |
501 | 0 | return makeTruthVal(false, resultTy); |
502 | 0 | case BO_NE: |
503 | 0 | return makeTruthVal(true, resultTy); |
504 | 4 | default: |
505 | | // This case also handles pointer arithmetic. |
506 | 4 | return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); |
507 | 4 | } |
508 | 242 | } |
509 | 242 | } |
510 | 130k | case nonloc::ConcreteIntKind: { |
511 | 130k | llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue(); |
512 | | |
513 | | // If we're dealing with two known constants, just perform the operation. |
514 | 130k | if (const llvm::APSInt *KnownRHSValue = getConstValue(state, rhs)) { |
515 | 111k | llvm::APSInt RHSValue = *KnownRHSValue; |
516 | 111k | if (BinaryOperator::isComparisonOp(op)) { |
517 | | // We're looking for a type big enough to compare the two values. |
518 | | // FIXME: This is not correct. char + short will result in a promotion |
519 | | // to int. Unfortunately we have lost types by this point. |
520 | 85.2k | APSIntType CompareType = std::max(APSIntType(LHSValue), |
521 | 85.2k | APSIntType(RHSValue)); |
522 | 85.2k | CompareType.apply(LHSValue); |
523 | 85.2k | CompareType.apply(RHSValue); |
524 | 85.2k | } else if (26.3k !BinaryOperator::isShiftOp(op)26.3k ) { |
525 | 24.9k | APSIntType IntType = BasicVals.getAPSIntType(resultTy); |
526 | 24.9k | IntType.apply(LHSValue); |
527 | 24.9k | IntType.apply(RHSValue); |
528 | 24.9k | } |
529 | | |
530 | 111k | const llvm::APSInt *Result = |
531 | 111k | BasicVals.evalAPSInt(op, LHSValue, RHSValue); |
532 | 111k | if (!Result) |
533 | 15 | return UndefinedVal(); |
534 | | |
535 | 111k | return nonloc::ConcreteInt(*Result); |
536 | 111k | } |
537 | | |
538 | | // Swap the left and right sides and flip the operator if doing so |
539 | | // allows us to better reason about the expression (this is a form |
540 | | // of expression canonicalization). |
541 | | // While we're at it, catch some special cases for non-commutative ops. |
542 | 18.5k | switch (op) { |
543 | 2.13k | case BO_LT: |
544 | 2.23k | case BO_GT: |
545 | 2.37k | case BO_LE: |
546 | 2.39k | case BO_GE: |
547 | 2.39k | op = BinaryOperator::reverseComparisonOp(op); |
548 | 2.39k | [[fallthrough]]; |
549 | 2.53k | case BO_EQ: |
550 | 3.04k | case BO_NE: |
551 | 15.7k | case BO_Add: |
552 | 17.0k | case BO_Mul: |
553 | 17.0k | case BO_And: |
554 | 17.1k | case BO_Xor: |
555 | 17.1k | case BO_Or: |
556 | 17.1k | std::swap(lhs, rhs); |
557 | 17.1k | continue; |
558 | 22 | case BO_Shr: |
559 | | // (~0)>>a |
560 | 22 | if (LHSValue.isAllOnes() && LHSValue.isSigned()2 ) |
561 | 1 | return evalCast(lhs, resultTy, QualType{}); |
562 | 22 | [[fallthrough]];21 |
563 | 35 | case BO_Shl: |
564 | | // 0<<a and 0>>a |
565 | 35 | if (LHSValue == 0) |
566 | 2 | return evalCast(lhs, resultTy, QualType{}); |
567 | 33 | return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); |
568 | 229 | case BO_Div: |
569 | | // 0 / x == 0 |
570 | 287 | case BO_Rem: |
571 | | // 0 % x == 0 |
572 | 287 | if (LHSValue == 0) |
573 | 30 | return makeZeroVal(resultTy); |
574 | 287 | [[fallthrough]];257 |
575 | 1.33k | default: |
576 | 1.33k | return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); |
577 | 18.5k | } |
578 | 18.5k | } |
579 | 149k | case nonloc::SymbolValKind: { |
580 | | // We only handle LHS as simple symbols or SymIntExprs. |
581 | 149k | SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol(); |
582 | | |
583 | | // LHS is a symbolic expression. |
584 | 149k | if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) { |
585 | | |
586 | | // Is this a logical not? (!x is represented as x == 0.) |
587 | 40.3k | if (op == BO_EQ && rhs.isZeroConstant()612 ) { |
588 | | // We know how to negate certain expressions. Simplify them here. |
589 | | |
590 | 428 | BinaryOperator::Opcode opc = symIntExpr->getOpcode(); |
591 | 428 | switch (opc) { |
592 | 94 | default: |
593 | | // We don't know how to negate this operation. |
594 | | // Just handle it as if it were a normal comparison to 0. |
595 | 94 | break; |
596 | 94 | case BO_LAnd: |
597 | 0 | case BO_LOr: |
598 | 0 | llvm_unreachable("Logical operators handled by branching logic."); |
599 | 0 | case BO_Assign: |
600 | 0 | case BO_MulAssign: |
601 | 0 | case BO_DivAssign: |
602 | 0 | case BO_RemAssign: |
603 | 0 | case BO_AddAssign: |
604 | 0 | case BO_SubAssign: |
605 | 0 | case BO_ShlAssign: |
606 | 0 | case BO_ShrAssign: |
607 | 0 | case BO_AndAssign: |
608 | 0 | case BO_XorAssign: |
609 | 0 | case BO_OrAssign: |
610 | 0 | case BO_Comma: |
611 | 0 | llvm_unreachable("'=' and ',' operators handled by ExprEngine."); |
612 | 0 | case BO_PtrMemD: |
613 | 0 | case BO_PtrMemI: |
614 | 0 | llvm_unreachable("Pointer arithmetic not handled here."); |
615 | 0 | case BO_LT: |
616 | 0 | case BO_GT: |
617 | 0 | case BO_LE: |
618 | 0 | case BO_GE: |
619 | 5 | case BO_EQ: |
620 | 334 | case BO_NE: |
621 | 334 | assert(resultTy->isBooleanType() || |
622 | 334 | resultTy == getConditionType()); |
623 | 334 | assert(symIntExpr->getType()->isBooleanType() || |
624 | 334 | getContext().hasSameUnqualifiedType(symIntExpr->getType(), |
625 | 334 | getConditionType())); |
626 | | // Negate the comparison and make a value. |
627 | 334 | opc = BinaryOperator::negateComparisonOp(opc); |
628 | 334 | return makeNonLoc(symIntExpr->getLHS(), opc, |
629 | 334 | symIntExpr->getRHS(), resultTy); |
630 | 428 | } |
631 | 428 | } |
632 | | |
633 | | // For now, only handle expressions whose RHS is a constant. |
634 | 40.0k | if (const llvm::APSInt *RHSValue = getConstValue(state, rhs)) { |
635 | | // If both the LHS and the current expression are additive, |
636 | | // fold their constants and try again. |
637 | 21.0k | if (BinaryOperator::isAdditiveOp(op)) { |
638 | 14.9k | BinaryOperator::Opcode lop = symIntExpr->getOpcode(); |
639 | 14.9k | if (BinaryOperator::isAdditiveOp(lop)) { |
640 | | // Convert the two constants to a common type, then combine them. |
641 | | |
642 | | // resultTy may not be the best type to convert to, but it's |
643 | | // probably the best choice in expressions with mixed type |
644 | | // (such as x+1U+2LL). The rules for implicit conversions should |
645 | | // choose a reasonable type to preserve the expression, and will |
646 | | // at least match how the value is going to be used. |
647 | 6.72k | APSIntType IntType = BasicVals.getAPSIntType(resultTy); |
648 | 6.72k | const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS()); |
649 | 6.72k | const llvm::APSInt &second = IntType.convert(*RHSValue); |
650 | | |
651 | | // If the op and lop agrees, then we just need to |
652 | | // sum the constants. Otherwise, we change to operation |
653 | | // type if substraction would produce negative value |
654 | | // (and cause overflow for unsigned integers), |
655 | | // as consequence x+1U-10 produces x-9U, instead |
656 | | // of x+4294967287U, that would be produced without this |
657 | | // additional check. |
658 | 6.72k | const llvm::APSInt *newRHS; |
659 | 6.72k | if (lop == op) { |
660 | 5.92k | newRHS = BasicVals.evalAPSInt(BO_Add, first, second); |
661 | 5.92k | } else if (798 first >= second798 ) { |
662 | 741 | newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); |
663 | 741 | op = lop; |
664 | 741 | } else { |
665 | 57 | newRHS = BasicVals.evalAPSInt(BO_Sub, second, first); |
666 | 57 | } |
667 | | |
668 | 6.72k | assert(newRHS && "Invalid operation despite common type!"); |
669 | 6.72k | rhs = nonloc::ConcreteInt(*newRHS); |
670 | 6.72k | lhs = nonloc::SymbolVal(symIntExpr->getLHS()); |
671 | 6.72k | continue; |
672 | 6.72k | } |
673 | 14.9k | } |
674 | | |
675 | | // Otherwise, make a SymIntExpr out of the expression. |
676 | 14.2k | return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy); |
677 | 21.0k | } |
678 | 40.0k | } |
679 | | |
680 | | // Is the RHS a constant? |
681 | 127k | if (const llvm::APSInt *RHSValue = getConstValue(state, rhs)) |
682 | 81.7k | return MakeSymIntVal(Sym, op, *RHSValue, resultTy); |
683 | | |
684 | 46.0k | if (std::optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy)) |
685 | 2.35k | return *V; |
686 | | |
687 | | // Give up -- this is not a symbolic expression we can handle. |
688 | 43.6k | return makeSymExprValNN(op, InputLHS, InputRHS, resultTy); |
689 | 46.0k | } |
690 | 279k | } |
691 | 279k | } |
692 | 255k | } |
693 | | |
694 | | static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR, |
695 | | const FieldRegion *RightFR, |
696 | | BinaryOperator::Opcode op, |
697 | | QualType resultTy, |
698 | 12 | SimpleSValBuilder &SVB) { |
699 | | // Only comparisons are meaningful here! |
700 | 12 | if (!BinaryOperator::isComparisonOp(op)) |
701 | 0 | return UnknownVal(); |
702 | | |
703 | | // Next, see if the two FRs have the same super-region. |
704 | | // FIXME: This doesn't handle casts yet, and simply stripping the casts |
705 | | // doesn't help. |
706 | 12 | if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) |
707 | 2 | return UnknownVal(); |
708 | | |
709 | 10 | const FieldDecl *LeftFD = LeftFR->getDecl(); |
710 | 10 | const FieldDecl *RightFD = RightFR->getDecl(); |
711 | 10 | const RecordDecl *RD = LeftFD->getParent(); |
712 | | |
713 | | // Make sure the two FRs are from the same kind of record. Just in case! |
714 | | // FIXME: This is probably where inheritance would be a problem. |
715 | 10 | if (RD != RightFD->getParent()) |
716 | 0 | return UnknownVal(); |
717 | | |
718 | | // We know for sure that the two fields are not the same, since that |
719 | | // would have given us the same SVal. |
720 | 10 | if (op == BO_EQ) |
721 | 2 | return SVB.makeTruthVal(false, resultTy); |
722 | 8 | if (op == BO_NE) |
723 | 2 | return SVB.makeTruthVal(true, resultTy); |
724 | | |
725 | | // Iterate through the fields and see which one comes first. |
726 | | // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field |
727 | | // members and the units in which bit-fields reside have addresses that |
728 | | // increase in the order in which they are declared." |
729 | 6 | bool leftFirst = (op == BO_LT || op == BO_LE2 ); |
730 | 6 | for (const auto *I : RD->fields()) { |
731 | 6 | if (I == LeftFD) |
732 | 6 | return SVB.makeTruthVal(leftFirst, resultTy); |
733 | 0 | if (I == RightFD) |
734 | 0 | return SVB.makeTruthVal(!leftFirst, resultTy); |
735 | 0 | } |
736 | | |
737 | 0 | llvm_unreachable("Fields not found in parent record's definition"); |
738 | 0 | } |
739 | | |
740 | | // This is used in debug builds only for now because some downstream users |
741 | | // may hit this assert in their subsequent merges. |
742 | | // There are still places in the analyzer where equal bitwidth Locs |
743 | | // are compared, and need to be found and corrected. Recent previous fixes have |
744 | | // addressed the known problems of making NULLs with specific bitwidths |
745 | | // for Loc comparisons along with deprecation of APIs for the same purpose. |
746 | | // |
747 | | static void assertEqualBitWidths(ProgramStateRef State, Loc RhsLoc, |
748 | 25.6k | Loc LhsLoc) { |
749 | | // Implements a "best effort" check for RhsLoc and LhsLoc bit widths |
750 | 25.6k | ASTContext &Ctx = State->getStateManager().getContext(); |
751 | 25.6k | uint64_t RhsBitwidth = |
752 | 25.6k | RhsLoc.getType(Ctx).isNull() ? 00 : Ctx.getTypeSize(RhsLoc.getType(Ctx)); |
753 | 25.6k | uint64_t LhsBitwidth = |
754 | 25.6k | LhsLoc.getType(Ctx).isNull() ? 00 : Ctx.getTypeSize(LhsLoc.getType(Ctx)); |
755 | 25.6k | if (RhsBitwidth && LhsBitwidth && |
756 | 25.6k | (LhsLoc.getSubKind() == RhsLoc.getSubKind())) { |
757 | 19.6k | assert(RhsBitwidth == LhsBitwidth && |
758 | 19.6k | "RhsLoc and LhsLoc bitwidth must be same!"); |
759 | 19.6k | } |
760 | 25.6k | } |
761 | | |
762 | | // FIXME: all this logic will change if/when we have MemRegion::getLocation(). |
763 | | SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state, |
764 | | BinaryOperator::Opcode op, |
765 | | Loc lhs, Loc rhs, |
766 | 25.6k | QualType resultTy) { |
767 | | |
768 | | // Assert that bitwidth of lhs and rhs are the same. |
769 | | // This can happen if two different address spaces are used, |
770 | | // and the bitwidths of the address spaces are different. |
771 | | // See LIT case clang/test/Analysis/cstring-checker-addressspace.c |
772 | | // FIXME: See comment above in the function assertEqualBitWidths |
773 | 25.6k | assertEqualBitWidths(state, rhs, lhs); |
774 | | |
775 | | // Only comparisons and subtractions are valid operations on two pointers. |
776 | | // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. |
777 | | // However, if a pointer is casted to an integer, evalBinOpNN may end up |
778 | | // calling this function with another operation (PR7527). We don't attempt to |
779 | | // model this for now, but it could be useful, particularly when the |
780 | | // "location" is actually an integer value that's been passed through a void*. |
781 | 25.6k | if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub140 )) |
782 | 0 | return UnknownVal(); |
783 | | |
784 | | // Special cases for when both sides are identical. |
785 | 25.6k | if (lhs == rhs) { |
786 | 17.2k | switch (op) { |
787 | 0 | default: |
788 | 0 | llvm_unreachable("Unimplemented operation for two identical values"); |
789 | 7 | case BO_Sub: |
790 | 7 | return makeZeroVal(resultTy); |
791 | 16.8k | case BO_EQ: |
792 | 16.8k | case BO_LE: |
793 | 16.8k | case BO_GE: |
794 | 16.8k | return makeTruthVal(true, resultTy); |
795 | 422 | case BO_NE: |
796 | 425 | case BO_LT: |
797 | 436 | case BO_GT: |
798 | 436 | return makeTruthVal(false, resultTy); |
799 | 17.2k | } |
800 | 17.2k | } |
801 | | |
802 | 8.35k | switch (lhs.getSubKind()) { |
803 | 0 | default: |
804 | 0 | llvm_unreachable("Ordering not implemented for this Loc."); |
805 | |
|
806 | 24 | case loc::GotoLabelKind: |
807 | | // The only thing we know about labels is that they're non-null. |
808 | 24 | if (rhs.isZeroConstant()) { |
809 | 22 | switch (op) { |
810 | 0 | default: |
811 | 0 | break; |
812 | 0 | case BO_Sub: |
813 | 0 | return evalCast(lhs, resultTy, QualType{}); |
814 | 14 | case BO_EQ: |
815 | 14 | case BO_LE: |
816 | 14 | case BO_LT: |
817 | 14 | return makeTruthVal(false, resultTy); |
818 | 4 | case BO_NE: |
819 | 6 | case BO_GT: |
820 | 8 | case BO_GE: |
821 | 8 | return makeTruthVal(true, resultTy); |
822 | 22 | } |
823 | 22 | } |
824 | | // There may be two labels for the same location, and a function region may |
825 | | // have the same address as a label at the start of the function (depending |
826 | | // on the ABI). |
827 | | // FIXME: we can probably do a comparison against other MemRegions, though. |
828 | | // FIXME: is there a way to tell if two labels refer to the same location? |
829 | 2 | return UnknownVal(); |
830 | | |
831 | 190 | case loc::ConcreteIntKind: { |
832 | 190 | auto L = lhs.castAs<loc::ConcreteInt>(); |
833 | | |
834 | | // If one of the operands is a symbol and the other is a constant, |
835 | | // build an expression for use by the constraint manager. |
836 | 190 | if (SymbolRef rSym = rhs.getAsLocSymbol()) { |
837 | | // We can only build expressions with symbols on the left, |
838 | | // so we need a reversible operator. |
839 | 150 | if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp135 ) |
840 | 15 | return UnknownVal(); |
841 | | |
842 | 135 | op = BinaryOperator::reverseComparisonOp(op); |
843 | 135 | return makeNonLoc(rSym, op, L.getValue(), resultTy); |
844 | 150 | } |
845 | | |
846 | | // If both operands are constants, just perform the operation. |
847 | 40 | if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { |
848 | 29 | assert(BinaryOperator::isComparisonOp(op) || op == BO_Sub); |
849 | | |
850 | 29 | if (const auto *ResultInt = |
851 | 29 | BasicVals.evalAPSInt(op, L.getValue(), rInt->getValue())) |
852 | 29 | return evalCast(nonloc::ConcreteInt(*ResultInt), resultTy, QualType{}); |
853 | 0 | return UnknownVal(); |
854 | 29 | } |
855 | | |
856 | | // Special case comparisons against NULL. |
857 | | // This must come after the test if the RHS is a symbol, which is used to |
858 | | // build constraints. The address of any non-symbolic region is guaranteed |
859 | | // to be non-NULL, as is any label. |
860 | 11 | assert((isa<loc::MemRegionVal, loc::GotoLabel>(rhs))); |
861 | 11 | if (lhs.isZeroConstant()) { |
862 | 7 | switch (op) { |
863 | 0 | default: |
864 | 0 | break; |
865 | 0 | case BO_EQ: |
866 | 0 | case BO_GT: |
867 | 0 | case BO_GE: |
868 | 0 | return makeTruthVal(false, resultTy); |
869 | 3 | case BO_NE: |
870 | 5 | case BO_LT: |
871 | 7 | case BO_LE: |
872 | 7 | return makeTruthVal(true, resultTy); |
873 | 7 | } |
874 | 7 | } |
875 | | |
876 | | // Comparing an arbitrary integer to a region or label address is |
877 | | // completely unknowable. |
878 | 4 | return UnknownVal(); |
879 | 11 | } |
880 | 8.14k | case loc::MemRegionValKind: { |
881 | 8.14k | if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) { |
882 | | // If one of the operands is a symbol and the other is a constant, |
883 | | // build an expression for use by the constraint manager. |
884 | 5.78k | if (SymbolRef lSym = lhs.getAsLocSymbol(true)) { |
885 | 2.66k | if (BinaryOperator::isComparisonOp(op)) |
886 | 2.63k | return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); |
887 | 35 | return UnknownVal(); |
888 | 2.66k | } |
889 | | // Special case comparisons to NULL. |
890 | | // This must come after the test if the LHS is a symbol, which is used to |
891 | | // build constraints. The address of any non-symbolic region is guaranteed |
892 | | // to be non-NULL. |
893 | 3.11k | if (rInt->isZeroConstant()) { |
894 | 3.10k | if (op == BO_Sub) |
895 | 0 | return evalCast(lhs, resultTy, QualType{}); |
896 | | |
897 | 3.10k | if (BinaryOperator::isComparisonOp(op)) { |
898 | 3.10k | QualType boolType = getContext().BoolTy; |
899 | 3.10k | NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>(); |
900 | 3.10k | NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>(); |
901 | 3.10k | return evalBinOpNN(state, op, l, r, resultTy); |
902 | 3.10k | } |
903 | 3.10k | } |
904 | | |
905 | | // Comparing a region to an arbitrary integer is completely unknowable. |
906 | 2 | return UnknownVal(); |
907 | 3.11k | } |
908 | | |
909 | | // Get both values as regions, if possible. |
910 | 2.36k | const MemRegion *LeftMR = lhs.getAsRegion(); |
911 | 2.36k | assert(LeftMR && "MemRegionValKind SVal doesn't have a region!"); |
912 | | |
913 | 2.36k | const MemRegion *RightMR = rhs.getAsRegion(); |
914 | 2.36k | if (!RightMR) |
915 | | // The RHS is probably a label, which in theory could address a region. |
916 | | // FIXME: we can probably make a more useful statement about non-code |
917 | | // regions, though. |
918 | 0 | return UnknownVal(); |
919 | | |
920 | 2.36k | const MemRegion *LeftBase = LeftMR->getBaseRegion(); |
921 | 2.36k | const MemRegion *RightBase = RightMR->getBaseRegion(); |
922 | 2.36k | const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace(); |
923 | 2.36k | const MemSpaceRegion *RightMS = RightBase->getMemorySpace(); |
924 | 2.36k | const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion(); |
925 | | |
926 | | // If the two regions are from different known memory spaces they cannot be |
927 | | // equal. Also, assume that no symbolic region (whose memory space is |
928 | | // unknown) is on the stack. |
929 | 2.36k | if (LeftMS != RightMS && |
930 | 2.36k | (617 (617 LeftMS != UnknownMS617 && RightMS != UnknownMS541 ) || |
931 | 617 | (518 isa<StackSpaceRegion>(LeftMS)518 || isa<StackSpaceRegion>(RightMS)80 ))) { |
932 | 549 | switch (op) { |
933 | 200 | default: |
934 | 200 | return UnknownVal(); |
935 | 212 | case BO_EQ: |
936 | 212 | return makeTruthVal(false, resultTy); |
937 | 137 | case BO_NE: |
938 | 137 | return makeTruthVal(true, resultTy); |
939 | 549 | } |
940 | 549 | } |
941 | | |
942 | | // If both values wrap regions, see if they're from different base regions. |
943 | | // Note, heap base symbolic regions are assumed to not alias with |
944 | | // each other; for example, we assume that malloc returns different address |
945 | | // on each invocation. |
946 | | // FIXME: ObjC object pointers always reside on the heap, but currently |
947 | | // we treat their memory space as unknown, because symbolic pointers |
948 | | // to ObjC objects may alias. There should be a way to construct |
949 | | // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker |
950 | | // guesses memory space for ObjC object pointers manually instead of |
951 | | // relying on us. |
952 | 1.81k | if (LeftBase != RightBase && |
953 | 1.81k | (1.34k (1.34k !isa<SymbolicRegion>(LeftBase)1.34k && !isa<SymbolicRegion>(RightBase)612 ) || |
954 | 1.34k | (738 isa<HeapSpaceRegion>(LeftMS)738 || isa<HeapSpaceRegion>(RightMS)730 )) ){ |
955 | 627 | switch (op) { |
956 | 108 | default: |
957 | 108 | return UnknownVal(); |
958 | 503 | case BO_EQ: |
959 | 503 | return makeTruthVal(false, resultTy); |
960 | 16 | case BO_NE: |
961 | 16 | return makeTruthVal(true, resultTy); |
962 | 627 | } |
963 | 627 | } |
964 | | |
965 | | // Handle special cases for when both regions are element regions. |
966 | 1.18k | const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); |
967 | 1.18k | const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR); |
968 | 1.18k | if (RightER && LeftER491 ) { |
969 | | // Next, see if the two ERs have the same super-region and matching types. |
970 | | // FIXME: This should do something useful even if the types don't match, |
971 | | // though if both indexes are constant the RegionRawOffset path will |
972 | | // give the correct answer. |
973 | 428 | if (LeftER->getSuperRegion() == RightER->getSuperRegion() && |
974 | 428 | LeftER->getElementType() == RightER->getElementType()417 ) { |
975 | | // Get the left index and cast it to the correct type. |
976 | | // If the index is unknown or undefined, bail out here. |
977 | 385 | SVal LeftIndexVal = LeftER->getIndex(); |
978 | 385 | std::optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>(); |
979 | 385 | if (!LeftIndex) |
980 | 0 | return UnknownVal(); |
981 | 385 | LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{}); |
982 | 385 | LeftIndex = LeftIndexVal.getAs<NonLoc>(); |
983 | 385 | if (!LeftIndex) |
984 | 0 | return UnknownVal(); |
985 | | |
986 | | // Do the same for the right index. |
987 | 385 | SVal RightIndexVal = RightER->getIndex(); |
988 | 385 | std::optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>(); |
989 | 385 | if (!RightIndex) |
990 | 0 | return UnknownVal(); |
991 | 385 | RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{}); |
992 | 385 | RightIndex = RightIndexVal.getAs<NonLoc>(); |
993 | 385 | if (!RightIndex) |
994 | 0 | return UnknownVal(); |
995 | | |
996 | | // Actually perform the operation. |
997 | | // evalBinOpNN expects the two indexes to already be the right type. |
998 | 385 | return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); |
999 | 385 | } |
1000 | 428 | } |
1001 | | |
1002 | | // Special handling of the FieldRegions, even with symbolic offsets. |
1003 | 801 | const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); |
1004 | 801 | const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR); |
1005 | 801 | if (RightFR && LeftFR12 ) { |
1006 | 12 | SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy, |
1007 | 12 | *this); |
1008 | 12 | if (!R.isUnknown()) |
1009 | 10 | return R; |
1010 | 12 | } |
1011 | | |
1012 | | // Compare the regions using the raw offsets. |
1013 | 791 | RegionOffset LeftOffset = LeftMR->getAsOffset(); |
1014 | 791 | RegionOffset RightOffset = RightMR->getAsOffset(); |
1015 | | |
1016 | 791 | if (LeftOffset.getRegion() != nullptr && |
1017 | 791 | LeftOffset.getRegion() == RightOffset.getRegion() && |
1018 | 791 | !LeftOffset.hasSymbolicOffset()69 && !RightOffset.hasSymbolicOffset()61 ) { |
1019 | 55 | int64_t left = LeftOffset.getOffset(); |
1020 | 55 | int64_t right = RightOffset.getOffset(); |
1021 | | |
1022 | 55 | switch (op) { |
1023 | 4 | default: |
1024 | 4 | return UnknownVal(); |
1025 | 0 | case BO_LT: |
1026 | 0 | return makeTruthVal(left < right, resultTy); |
1027 | 32 | case BO_GT: |
1028 | 32 | return makeTruthVal(left > right, resultTy); |
1029 | 0 | case BO_LE: |
1030 | 0 | return makeTruthVal(left <= right, resultTy); |
1031 | 0 | case BO_GE: |
1032 | 0 | return makeTruthVal(left >= right, resultTy); |
1033 | 15 | case BO_EQ: |
1034 | 15 | return makeTruthVal(left == right, resultTy); |
1035 | 4 | case BO_NE: |
1036 | 4 | return makeTruthVal(left != right, resultTy); |
1037 | 55 | } |
1038 | 55 | } |
1039 | | |
1040 | | // At this point we're not going to get a good answer, but we can try |
1041 | | // conjuring an expression instead. |
1042 | 736 | SymbolRef LHSSym = lhs.getAsLocSymbol(); |
1043 | 736 | SymbolRef RHSSym = rhs.getAsLocSymbol(); |
1044 | 736 | if (LHSSym && RHSSym676 ) |
1045 | 612 | return makeNonLoc(LHSSym, op, RHSSym, resultTy); |
1046 | | |
1047 | | // If we get here, we have no way of comparing the regions. |
1048 | 124 | return UnknownVal(); |
1049 | 736 | } |
1050 | 8.35k | } |
1051 | 8.35k | } |
1052 | | |
1053 | | SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state, |
1054 | | BinaryOperator::Opcode op, Loc lhs, |
1055 | 12.4k | NonLoc rhs, QualType resultTy) { |
1056 | 12.4k | if (op >= BO_PtrMemD && op <= BO_PtrMemI) { |
1057 | 37 | if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) { |
1058 | 37 | if (PTMSV->isNullMemberPointer()) |
1059 | 1 | return UndefinedVal(); |
1060 | | |
1061 | 36 | auto getFieldLValue = [&](const auto *FD) -> SVal { |
1062 | 17 | SVal Result = lhs; |
1063 | | |
1064 | 17 | for (const auto &I : *PTMSV) |
1065 | 21 | Result = StateMgr.getStoreManager().evalDerivedToBase( |
1066 | 21 | Result, I->getType(), I->isVirtual()); |
1067 | | |
1068 | 17 | return state->getLValue(FD, Result); |
1069 | 17 | }; SimpleSValBuilder.cpp:clang::ento::SVal (anonymous namespace)::SimpleSValBuilder::evalBinOpLN(llvm::IntrusiveRefCntPtr<clang::ento::ProgramState const>, clang::BinaryOperatorKind, clang::ento::Loc, clang::ento::NonLoc, clang::QualType)::$_0::operator()<clang::FieldDecl>(clang::FieldDecl const*) const Line | Count | Source | 1061 | 13 | auto getFieldLValue = [&](const auto *FD) -> SVal { | 1062 | 13 | SVal Result = lhs; | 1063 | | | 1064 | 13 | for (const auto &I : *PTMSV) | 1065 | 21 | Result = StateMgr.getStoreManager().evalDerivedToBase( | 1066 | 21 | Result, I->getType(), I->isVirtual()); | 1067 | | | 1068 | 13 | return state->getLValue(FD, Result); | 1069 | 13 | }; |
SimpleSValBuilder.cpp:clang::ento::SVal (anonymous namespace)::SimpleSValBuilder::evalBinOpLN(llvm::IntrusiveRefCntPtr<clang::ento::ProgramState const>, clang::BinaryOperatorKind, clang::ento::Loc, clang::ento::NonLoc, clang::QualType)::$_0::operator()<clang::IndirectFieldDecl>(clang::IndirectFieldDecl const*) const Line | Count | Source | 1061 | 4 | auto getFieldLValue = [&](const auto *FD) -> SVal { | 1062 | 4 | SVal Result = lhs; | 1063 | | | 1064 | 4 | for (const auto &I : *PTMSV) | 1065 | 0 | Result = StateMgr.getStoreManager().evalDerivedToBase( | 1066 | 0 | Result, I->getType(), I->isVirtual()); | 1067 | | | 1068 | 4 | return state->getLValue(FD, Result); | 1069 | 4 | }; |
|
1070 | | |
1071 | 36 | if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) { |
1072 | 13 | return getFieldLValue(FD); |
1073 | 13 | } |
1074 | 23 | if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) { |
1075 | 4 | return getFieldLValue(FD); |
1076 | 4 | } |
1077 | 23 | } |
1078 | | |
1079 | 19 | return rhs; |
1080 | 37 | } |
1081 | | |
1082 | 12.3k | assert(!BinaryOperator::isComparisonOp(op) && |
1083 | 12.3k | "arguments to comparison ops must be of the same type"); |
1084 | | |
1085 | | // Special case: rhs is a zero constant. |
1086 | 12.3k | if (rhs.isZeroConstant()) |
1087 | 463 | return lhs; |
1088 | | |
1089 | | // Perserve the null pointer so that it can be found by the DerefChecker. |
1090 | 11.9k | if (lhs.isZeroConstant()) |
1091 | 7 | return lhs; |
1092 | | |
1093 | | // We are dealing with pointer arithmetic. |
1094 | | |
1095 | | // Handle pointer arithmetic on constant values. |
1096 | 11.9k | if (std::optional<nonloc::ConcreteInt> rhsInt = |
1097 | 11.9k | rhs.getAs<nonloc::ConcreteInt>()) { |
1098 | 2.63k | if (std::optional<loc::ConcreteInt> lhsInt = |
1099 | 2.63k | lhs.getAs<loc::ConcreteInt>()) { |
1100 | 15 | const llvm::APSInt &leftI = lhsInt->getValue(); |
1101 | 15 | assert(leftI.isUnsigned()); |
1102 | 15 | llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); |
1103 | | |
1104 | | // Convert the bitwidth of rightI. This should deal with overflow |
1105 | | // since we are dealing with concrete values. |
1106 | 15 | rightI = rightI.extOrTrunc(leftI.getBitWidth()); |
1107 | | |
1108 | | // Offset the increment by the pointer size. |
1109 | 15 | llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); |
1110 | 15 | QualType pointeeType = resultTy->getPointeeType(); |
1111 | 15 | Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity(); |
1112 | 15 | rightI *= Multiplicand; |
1113 | | |
1114 | | // Compute the adjusted pointer. |
1115 | 15 | switch (op) { |
1116 | 2 | case BO_Add: |
1117 | 2 | rightI = leftI + rightI; |
1118 | 2 | break; |
1119 | 13 | case BO_Sub: |
1120 | 13 | rightI = leftI - rightI; |
1121 | 13 | break; |
1122 | 0 | default: |
1123 | 0 | llvm_unreachable("Invalid pointer arithmetic operation"); |
1124 | 15 | } |
1125 | 15 | return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); |
1126 | 15 | } |
1127 | 2.63k | } |
1128 | | |
1129 | | // Handle cases where 'lhs' is a region. |
1130 | 11.8k | if (const MemRegion *region = lhs.getAsRegion()) { |
1131 | 11.8k | rhs = convertToArrayIndex(rhs).castAs<NonLoc>(); |
1132 | 11.8k | SVal index = UnknownVal(); |
1133 | 11.8k | const SubRegion *superR = nullptr; |
1134 | | // We need to know the type of the pointer in order to add an integer to it. |
1135 | | // Depending on the type, different amount of bytes is added. |
1136 | 11.8k | QualType elementType; |
1137 | | |
1138 | 11.8k | if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { |
1139 | 11.1k | assert(op == BO_Add || op == BO_Sub); |
1140 | 11.1k | index = evalBinOpNN(state, op, elemReg->getIndex(), rhs, |
1141 | 11.1k | getArrayIndexType()); |
1142 | 11.1k | superR = cast<SubRegion>(elemReg->getSuperRegion()); |
1143 | 11.1k | elementType = elemReg->getElementType(); |
1144 | 11.1k | } |
1145 | 753 | else if (isa<SubRegion>(region)) { |
1146 | 753 | assert(op == BO_Add || op == BO_Sub); |
1147 | 753 | index = (op == BO_Add) ? rhs554 : evalMinus(rhs)199 ; |
1148 | 753 | superR = cast<SubRegion>(region); |
1149 | | // TODO: Is this actually reliable? Maybe improving our MemRegion |
1150 | | // hierarchy to provide typed regions for all non-void pointers would be |
1151 | | // better. For instance, we cannot extend this towards LocAsInteger |
1152 | | // operations, where result type of the expression is integer. |
1153 | 753 | if (resultTy->isAnyPointerType()) |
1154 | 753 | elementType = resultTy->getPointeeType(); |
1155 | 753 | } |
1156 | | |
1157 | | // Represent arithmetic on void pointers as arithmetic on char pointers. |
1158 | | // It is fine when a TypedValueRegion of char value type represents |
1159 | | // a void pointer. Note that arithmetic on void pointers is a GCC extension. |
1160 | 11.8k | if (elementType->isVoidType()) |
1161 | 5 | elementType = getContext().CharTy; |
1162 | | |
1163 | 11.8k | if (std::optional<NonLoc> indexV = index.getAs<NonLoc>()) { |
1164 | 11.8k | return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, |
1165 | 11.8k | superR, getContext())); |
1166 | 11.8k | } |
1167 | 11.8k | } |
1168 | 0 | return UnknownVal(); |
1169 | 11.8k | } |
1170 | | |
1171 | | const llvm::APSInt *SimpleSValBuilder::getConstValue(ProgramStateRef state, |
1172 | 298k | SVal V) { |
1173 | 298k | if (V.isUnknownOrUndef()) |
1174 | 0 | return nullptr; |
1175 | | |
1176 | 298k | if (std::optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>()) |
1177 | 8 | return &X->getValue(); |
1178 | | |
1179 | 298k | if (std::optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>()) |
1180 | 215k | return &X->getValue(); |
1181 | | |
1182 | 83.7k | if (SymbolRef Sym = V.getAsSymbol()) |
1183 | 83.7k | return state->getConstraintManager().getSymVal(state, Sym); |
1184 | | |
1185 | 9 | return nullptr; |
1186 | 83.7k | } |
1187 | | |
1188 | | const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state, |
1189 | 799 | SVal V) { |
1190 | 799 | return getConstValue(state, simplifySVal(state, V)); |
1191 | 799 | } |
1192 | | |
1193 | 1.95M | SVal SimpleSValBuilder::simplifyUntilFixpoint(ProgramStateRef State, SVal Val) { |
1194 | 1.95M | SVal SimplifiedVal = simplifySValOnce(State, Val); |
1195 | 2.08M | while (SimplifiedVal != Val) { |
1196 | 129k | Val = SimplifiedVal; |
1197 | 129k | SimplifiedVal = simplifySValOnce(State, Val); |
1198 | 129k | } |
1199 | 1.95M | return SimplifiedVal; |
1200 | 1.95M | } |
1201 | | |
1202 | 1.95M | SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) { |
1203 | 1.95M | return simplifyUntilFixpoint(State, V); |
1204 | 1.95M | } |
1205 | | |
1206 | 2.08M | SVal SimpleSValBuilder::simplifySValOnce(ProgramStateRef State, SVal V) { |
1207 | | // For now, this function tries to constant-fold symbols inside a |
1208 | | // nonloc::SymbolVal, and does nothing else. More simplifications should |
1209 | | // be possible, such as constant-folding an index in an ElementRegion. |
1210 | | |
1211 | 2.08M | class Simplifier : public FullSValVisitor<Simplifier, SVal> { |
1212 | 2.08M | ProgramStateRef State; |
1213 | 2.08M | SValBuilder &SVB; |
1214 | | |
1215 | | // Cache results for the lifetime of the Simplifier. Results change every |
1216 | | // time new constraints are added to the program state, which is the whole |
1217 | | // point of simplifying, and for that very reason it's pointless to maintain |
1218 | | // the same cache for the duration of the whole analysis. |
1219 | 2.08M | llvm::DenseMap<SymbolRef, SVal> Cached; |
1220 | | |
1221 | 4.60M | static bool isUnchanged(SymbolRef Sym, SVal Val) { |
1222 | 4.60M | return Sym == Val.getAsSymbol(); |
1223 | 4.60M | } |
1224 | | |
1225 | 2.99M | SVal cache(SymbolRef Sym, SVal V) { |
1226 | 2.99M | Cached[Sym] = V; |
1227 | 2.99M | return V; |
1228 | 2.99M | } |
1229 | | |
1230 | 2.97M | SVal skip(SymbolRef Sym) { |
1231 | 2.97M | return cache(Sym, SVB.makeSymbolVal(Sym)); |
1232 | 2.97M | } |
1233 | | |
1234 | | // Return the known const value for the Sym if available, or return Undef |
1235 | | // otherwise. |
1236 | 4.61M | SVal getConst(SymbolRef Sym) { |
1237 | 4.61M | const llvm::APSInt *Const = |
1238 | 4.61M | State->getConstraintManager().getSymVal(State, Sym); |
1239 | 4.61M | if (Const) |
1240 | 9.38k | return Loc::isLocType(Sym->getType()) ? (SVal)SVB.makeIntLocVal(*Const)382 |
1241 | 9.38k | : (SVal)SVB.makeIntVal(*Const)9.00k ; |
1242 | 4.60M | return UndefinedVal(); |
1243 | 4.61M | } |
1244 | | |
1245 | 4.61M | SVal getConstOrVisit(SymbolRef Sym) { |
1246 | 4.61M | const SVal Ret = getConst(Sym); |
1247 | 4.61M | if (Ret.isUndef()) |
1248 | 4.60M | return Visit(Sym); |
1249 | 9.38k | return Ret; |
1250 | 4.61M | } |
1251 | | |
1252 | 2.08M | public: |
1253 | 2.08M | Simplifier(ProgramStateRef State) |
1254 | 2.08M | : State(State), SVB(State->getStateManager().getSValBuilder()) {} |
1255 | | |
1256 | 2.96M | SVal VisitSymbolData(const SymbolData *S) { |
1257 | | // No cache here. |
1258 | 2.96M | if (const llvm::APSInt *I = |
1259 | 2.96M | State->getConstraintManager().getSymVal(State, S)) |
1260 | 120k | return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)0 |
1261 | 120k | : (SVal)SVB.makeIntVal(*I); |
1262 | 2.84M | return SVB.makeSymbolVal(S); |
1263 | 2.96M | } |
1264 | | |
1265 | 2.08M | SVal VisitSymIntExpr(const SymIntExpr *S) { |
1266 | 1.25M | auto I = Cached.find(S); |
1267 | 1.25M | if (I != Cached.end()) |
1268 | 933 | return I->second; |
1269 | | |
1270 | 1.25M | SVal LHS = getConstOrVisit(S->getLHS()); |
1271 | 1.25M | if (isUnchanged(S->getLHS(), LHS)) |
1272 | 1.24M | return skip(S); |
1273 | | |
1274 | 9.75k | SVal RHS; |
1275 | | // By looking at the APSInt in the right-hand side of S, we cannot |
1276 | | // figure out if it should be treated as a Loc or as a NonLoc. |
1277 | | // So make our guess by recalling that we cannot multiply pointers |
1278 | | // or compare a pointer to an integer. |
1279 | 9.75k | if (Loc::isLocType(S->getLHS()->getType()) && |
1280 | 9.75k | BinaryOperator::isComparisonOp(S->getOpcode())290 ) { |
1281 | | // The usual conversion of $sym to &SymRegion{$sym}, as they have |
1282 | | // the same meaning for Loc-type symbols, but the latter form |
1283 | | // is preferred in SVal computations for being Loc itself. |
1284 | 290 | if (SymbolRef Sym = LHS.getAsSymbol()) { |
1285 | 0 | assert(Loc::isLocType(Sym->getType())); |
1286 | 0 | LHS = SVB.makeLoc(Sym); |
1287 | 0 | } |
1288 | 290 | RHS = SVB.makeIntLocVal(S->getRHS()); |
1289 | 9.46k | } else { |
1290 | 9.46k | RHS = SVB.makeIntVal(S->getRHS()); |
1291 | 9.46k | } |
1292 | | |
1293 | 9.75k | return cache( |
1294 | 9.75k | S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); |
1295 | 9.75k | } |
1296 | | |
1297 | 2.08M | SVal VisitIntSymExpr(const IntSymExpr *S) { |
1298 | 107k | auto I = Cached.find(S); |
1299 | 107k | if (I != Cached.end()) |
1300 | 0 | return I->second; |
1301 | | |
1302 | 107k | SVal RHS = getConstOrVisit(S->getRHS()); |
1303 | 107k | if (isUnchanged(S->getRHS(), RHS)) |
1304 | 106k | return skip(S); |
1305 | | |
1306 | 1.53k | SVal LHS = SVB.makeIntVal(S->getLHS()); |
1307 | 1.53k | return cache( |
1308 | 1.53k | S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); |
1309 | 107k | } |
1310 | | |
1311 | 2.08M | SVal VisitSymSymExpr(const SymSymExpr *S) { |
1312 | 1.64M | auto I = Cached.find(S); |
1313 | 1.64M | if (I != Cached.end()) |
1314 | 21.9k | return I->second; |
1315 | | |
1316 | | // For now don't try to simplify mixed Loc/NonLoc expressions |
1317 | | // because they often appear from LocAsInteger operations |
1318 | | // and we don't know how to combine a LocAsInteger |
1319 | | // with a concrete value. |
1320 | 1.62M | if (Loc::isLocType(S->getLHS()->getType()) != |
1321 | 1.62M | Loc::isLocType(S->getRHS()->getType())) |
1322 | 19 | return skip(S); |
1323 | | |
1324 | 1.62M | SVal LHS = getConstOrVisit(S->getLHS()); |
1325 | 1.62M | SVal RHS = getConstOrVisit(S->getRHS()); |
1326 | | |
1327 | 1.62M | if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS)1.61M ) |
1328 | 1.61M | return skip(S); |
1329 | | |
1330 | 9.41k | return cache( |
1331 | 9.41k | S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType())); |
1332 | 1.62M | } |
1333 | | |
1334 | 2.08M | SVal VisitSymbolCast(const SymbolCast *S) { |
1335 | 277 | auto I = Cached.find(S); |
1336 | 277 | if (I != Cached.end()) |
1337 | 0 | return I->second; |
1338 | 277 | const SymExpr *OpSym = S->getOperand(); |
1339 | 277 | SVal OpVal = getConstOrVisit(OpSym); |
1340 | 277 | if (isUnchanged(OpSym, OpVal)) |
1341 | 254 | return skip(S); |
1342 | | |
1343 | 23 | return cache(S, SVB.evalCast(OpVal, S->getType(), OpSym->getType())); |
1344 | 277 | } |
1345 | | |
1346 | 2.08M | SVal VisitUnarySymExpr(const UnarySymExpr *S) { |
1347 | 101 | auto I = Cached.find(S); |
1348 | 101 | if (I != Cached.end()) |
1349 | 0 | return I->second; |
1350 | 101 | SVal Op = getConstOrVisit(S->getOperand()); |
1351 | 101 | if (isUnchanged(S->getOperand(), Op)) |
1352 | 97 | return skip(S); |
1353 | | |
1354 | 4 | return cache( |
1355 | 4 | S, SVB.evalUnaryOp(State, S->getOpcode(), Op, S->getType())); |
1356 | 101 | } |
1357 | | |
1358 | 2.08M | SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }0 |
1359 | | |
1360 | 2.08M | SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }0 |
1361 | | |
1362 | 2.08M | SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { |
1363 | | // Simplification is much more costly than computing complexity. |
1364 | | // For high complexity, it may be not worth it. |
1365 | 1.37M | return Visit(V.getSymbol()); |
1366 | 1.37M | } |
1367 | | |
1368 | 2.08M | SVal VisitSVal(SVal V) { return V; }712k |
1369 | 2.08M | }; |
1370 | | |
1371 | 2.08M | SVal SimplifiedV = Simplifier(State).Visit(V); |
1372 | 2.08M | return SimplifiedV; |
1373 | 2.08M | } |