Coverage Report

Created: 2023-09-30 09:22

/Users/buildslave/jenkins/workspace/coverage/llvm-project/lldb/include/lldb/Utility/ArchSpec.h
Line
Count
Source (jump to first uncovered line)
1
//===-- ArchSpec.h ----------------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#ifndef LLDB_UTILITY_ARCHSPEC_H
10
#define LLDB_UTILITY_ARCHSPEC_H
11
12
#include "lldb/Utility/CompletionRequest.h"
13
#include "lldb/lldb-enumerations.h"
14
#include "lldb/lldb-forward.h"
15
#include "lldb/lldb-private-enumerations.h"
16
#include "llvm/ADT/StringRef.h"
17
#include "llvm/TargetParser/Triple.h"
18
#include <cstddef>
19
#include <cstdint>
20
#include <string>
21
22
namespace lldb_private {
23
24
/// \class ArchSpec ArchSpec.h "lldb/Utility/ArchSpec.h" An architecture
25
/// specification class.
26
///
27
/// A class designed to be created from a cpu type and subtype, a
28
/// string representation, or an llvm::Triple.  Keeping all of the conversions
29
/// of strings to architecture enumeration values confined to this class
30
/// allows new architecture support to be added easily.
31
class ArchSpec {
32
public:
33
  enum MIPSSubType {
34
    eMIPSSubType_unknown,
35
    eMIPSSubType_mips32,
36
    eMIPSSubType_mips32r2,
37
    eMIPSSubType_mips32r6,
38
    eMIPSSubType_mips32el,
39
    eMIPSSubType_mips32r2el,
40
    eMIPSSubType_mips32r6el,
41
    eMIPSSubType_mips64,
42
    eMIPSSubType_mips64r2,
43
    eMIPSSubType_mips64r6,
44
    eMIPSSubType_mips64el,
45
    eMIPSSubType_mips64r2el,
46
    eMIPSSubType_mips64r6el,
47
  };
48
49
  // Masks for the ases word of an ABI flags structure.
50
  enum MIPSASE {
51
    eMIPSAse_dsp = 0x00000001,       // DSP ASE
52
    eMIPSAse_dspr2 = 0x00000002,     // DSP R2 ASE
53
    eMIPSAse_eva = 0x00000004,       // Enhanced VA Scheme
54
    eMIPSAse_mcu = 0x00000008,       // MCU (MicroController) ASE
55
    eMIPSAse_mdmx = 0x00000010,      // MDMX ASE
56
    eMIPSAse_mips3d = 0x00000020,    // MIPS-3D ASE
57
    eMIPSAse_mt = 0x00000040,        // MT ASE
58
    eMIPSAse_smartmips = 0x00000080, // SmartMIPS ASE
59
    eMIPSAse_virt = 0x00000100,      // VZ ASE
60
    eMIPSAse_msa = 0x00000200,       // MSA ASE
61
    eMIPSAse_mips16 = 0x00000400,    // MIPS16 ASE
62
    eMIPSAse_micromips = 0x00000800, // MICROMIPS ASE
63
    eMIPSAse_xpa = 0x00001000,       // XPA ASE
64
    eMIPSAse_mask = 0x00001fff,
65
    eMIPSABI_O32 = 0x00002000,
66
    eMIPSABI_N32 = 0x00004000,
67
    eMIPSABI_N64 = 0x00008000,
68
    eMIPSABI_O64 = 0x00020000,
69
    eMIPSABI_EABI32 = 0x00040000,
70
    eMIPSABI_EABI64 = 0x00080000,
71
    eMIPSABI_mask = 0x000ff000
72
  };
73
74
  // MIPS Floating point ABI Values
75
  enum MIPS_ABI_FP {
76
    eMIPS_ABI_FP_ANY = 0x00000000,
77
    eMIPS_ABI_FP_DOUBLE = 0x00100000, // hard float / -mdouble-float
78
    eMIPS_ABI_FP_SINGLE = 0x00200000, // hard float / -msingle-float
79
    eMIPS_ABI_FP_SOFT = 0x00300000,   // soft float
80
    eMIPS_ABI_FP_OLD_64 = 0x00400000, // -mips32r2 -mfp64
81
    eMIPS_ABI_FP_XX = 0x00500000,     // -mfpxx
82
    eMIPS_ABI_FP_64 = 0x00600000,     // -mips32r2 -mfp64
83
    eMIPS_ABI_FP_64A = 0x00700000,    // -mips32r2 -mfp64 -mno-odd-spreg
84
    eMIPS_ABI_FP_mask = 0x00700000
85
  };
86
87
  // ARM specific e_flags
88
  enum ARMeflags {
89
    eARM_abi_soft_float = 0x00000200,
90
    eARM_abi_hard_float = 0x00000400
91
  };
92
93
  enum RISCVeflags {
94
    eRISCV_rvc              = 0x00000001, /// RVC, +c
95
    eRISCV_float_abi_soft   = 0x00000000, /// soft float
96
    eRISCV_float_abi_single = 0x00000002, /// single precision floating point, +f
97
    eRISCV_float_abi_double = 0x00000004, /// double precision floating point, +d
98
    eRISCV_float_abi_quad   = 0x00000006, /// quad precision floating point, +q
99
    eRISCV_float_abi_mask   = 0x00000006,
100
    eRISCV_rve              = 0x00000008, /// RVE, +e
101
    eRISCV_tso              = 0x00000010, /// RVTSO (total store ordering)
102
  };
103
104
  enum RISCVSubType {
105
    eRISCVSubType_unknown,
106
    eRISCVSubType_riscv32,
107
    eRISCVSubType_riscv64,
108
  };
109
110
  enum LoongArchSubType {
111
    eLoongArchSubType_unknown,
112
    eLoongArchSubType_loongarch32,
113
    eLoongArchSubType_loongarch64,
114
  };
115
116
  enum Core {
117
    eCore_arm_generic,
118
    eCore_arm_armv4,
119
    eCore_arm_armv4t,
120
    eCore_arm_armv5,
121
    eCore_arm_armv5e,
122
    eCore_arm_armv5t,
123
    eCore_arm_armv6,
124
    eCore_arm_armv6m,
125
    eCore_arm_armv7,
126
    eCore_arm_armv7l,
127
    eCore_arm_armv7f,
128
    eCore_arm_armv7s,
129
    eCore_arm_armv7k,
130
    eCore_arm_armv7m,
131
    eCore_arm_armv7em,
132
    eCore_arm_xscale,
133
134
    eCore_thumb,
135
    eCore_thumbv4t,
136
    eCore_thumbv5,
137
    eCore_thumbv5e,
138
    eCore_thumbv6,
139
    eCore_thumbv6m,
140
    eCore_thumbv7,
141
    eCore_thumbv7s,
142
    eCore_thumbv7k,
143
    eCore_thumbv7f,
144
    eCore_thumbv7m,
145
    eCore_thumbv7em,
146
    eCore_arm_arm64,
147
    eCore_arm_armv8,
148
    eCore_arm_armv8l,
149
    eCore_arm_arm64e,
150
    eCore_arm_arm64_32,
151
    eCore_arm_aarch64,
152
153
    eCore_mips32,
154
    eCore_mips32r2,
155
    eCore_mips32r3,
156
    eCore_mips32r5,
157
    eCore_mips32r6,
158
    eCore_mips32el,
159
    eCore_mips32r2el,
160
    eCore_mips32r3el,
161
    eCore_mips32r5el,
162
    eCore_mips32r6el,
163
    eCore_mips64,
164
    eCore_mips64r2,
165
    eCore_mips64r3,
166
    eCore_mips64r5,
167
    eCore_mips64r6,
168
    eCore_mips64el,
169
    eCore_mips64r2el,
170
    eCore_mips64r3el,
171
    eCore_mips64r5el,
172
    eCore_mips64r6el,
173
174
    eCore_msp430,
175
176
    eCore_ppc_generic,
177
    eCore_ppc_ppc601,
178
    eCore_ppc_ppc602,
179
    eCore_ppc_ppc603,
180
    eCore_ppc_ppc603e,
181
    eCore_ppc_ppc603ev,
182
    eCore_ppc_ppc604,
183
    eCore_ppc_ppc604e,
184
    eCore_ppc_ppc620,
185
    eCore_ppc_ppc750,
186
    eCore_ppc_ppc7400,
187
    eCore_ppc_ppc7450,
188
    eCore_ppc_ppc970,
189
190
    eCore_ppc64le_generic,
191
    eCore_ppc64_generic,
192
    eCore_ppc64_ppc970_64,
193
194
    eCore_s390x_generic,
195
196
    eCore_sparc_generic,
197
198
    eCore_sparc9_generic,
199
200
    eCore_x86_32_i386,
201
    eCore_x86_32_i486,
202
    eCore_x86_32_i486sx,
203
    eCore_x86_32_i686,
204
205
    eCore_x86_64_x86_64,
206
    eCore_x86_64_x86_64h, // Haswell enabled x86_64
207
    eCore_hexagon_generic,
208
    eCore_hexagon_hexagonv4,
209
    eCore_hexagon_hexagonv5,
210
211
    eCore_riscv32,
212
    eCore_riscv64,
213
214
    eCore_loongarch32,
215
    eCore_loongarch64,
216
217
    eCore_uknownMach32,
218
    eCore_uknownMach64,
219
220
    eCore_arc, // little endian ARC
221
222
    eCore_avr,
223
224
    eCore_wasm32,
225
226
    kNumCores,
227
228
    kCore_invalid,
229
    // The following constants are used for wildcard matching only
230
    kCore_any,
231
    kCore_arm_any,
232
    kCore_ppc_any,
233
    kCore_ppc64_any,
234
    kCore_x86_32_any,
235
    kCore_x86_64_any,
236
    kCore_hexagon_any,
237
238
    kCore_arm_first = eCore_arm_generic,
239
    kCore_arm_last = eCore_arm_xscale,
240
241
    kCore_thumb_first = eCore_thumb,
242
    kCore_thumb_last = eCore_thumbv7em,
243
244
    kCore_ppc_first = eCore_ppc_generic,
245
    kCore_ppc_last = eCore_ppc_ppc970,
246
247
    kCore_ppc64_first = eCore_ppc64_generic,
248
    kCore_ppc64_last = eCore_ppc64_ppc970_64,
249
250
    kCore_x86_32_first = eCore_x86_32_i386,
251
    kCore_x86_32_last = eCore_x86_32_i686,
252
253
    kCore_x86_64_first = eCore_x86_64_x86_64,
254
    kCore_x86_64_last = eCore_x86_64_x86_64h,
255
256
    kCore_hexagon_first = eCore_hexagon_generic,
257
    kCore_hexagon_last = eCore_hexagon_hexagonv5,
258
259
    kCore_mips32_first = eCore_mips32,
260
    kCore_mips32_last = eCore_mips32r6,
261
262
    kCore_mips32el_first = eCore_mips32el,
263
    kCore_mips32el_last = eCore_mips32r6el,
264
265
    kCore_mips64_first = eCore_mips64,
266
    kCore_mips64_last = eCore_mips64r6,
267
268
    kCore_mips64el_first = eCore_mips64el,
269
    kCore_mips64el_last = eCore_mips64r6el,
270
271
    kCore_mips_first = eCore_mips32,
272
    kCore_mips_last = eCore_mips64r6el
273
274
  };
275
276
  /// Default constructor.
277
  ///
278
  /// Default constructor that initializes the object with invalid cpu type
279
  /// and subtype values.
280
  ArchSpec();
281
282
  /// Constructor over triple.
283
  ///
284
  /// Constructs an ArchSpec with properties consistent with the given Triple.
285
  explicit ArchSpec(const llvm::Triple &triple);
286
  explicit ArchSpec(const char *triple_cstr);
287
  explicit ArchSpec(llvm::StringRef triple_str);
288
  /// Constructor over architecture name.
289
  ///
290
  /// Constructs an ArchSpec with properties consistent with the given object
291
  /// type and architecture name.
292
  explicit ArchSpec(ArchitectureType arch_type, uint32_t cpu_type,
293
                    uint32_t cpu_subtype);
294
295
  /// Destructor.
296
  ~ArchSpec();
297
298
  /// Returns true if the OS, vendor and environment fields of the triple are
299
  /// unset. The triple is expected to be normalized
300
  /// (llvm::Triple::normalize).
301
  static bool ContainsOnlyArch(const llvm::Triple &normalized_triple);
302
303
  static void ListSupportedArchNames(StringList &list);
304
  static void AutoComplete(CompletionRequest &request);
305
306
  /// Returns a static string representing the current architecture.
307
  ///
308
  /// \return A static string corresponding to the current
309
  ///         architecture.
310
  const char *GetArchitectureName() const;
311
312
  /// if MIPS architecture return true.
313
  ///
314
  ///  \return a boolean value.
315
  bool IsMIPS() const;
316
317
  /// Returns a string representing current architecture as a target CPU for
318
  /// tools like compiler, disassembler etc.
319
  ///
320
  /// \return A string representing target CPU for the current
321
  ///         architecture.
322
  std::string GetClangTargetCPU() const;
323
324
  /// Return a string representing target application ABI.
325
  ///
326
  /// \return A string representing target application ABI.
327
  std::string GetTargetABI() const;
328
329
  /// Clears the object state.
330
  ///
331
  /// Clears the object state back to a default invalid state.
332
  void Clear();
333
334
  /// Returns the size in bytes of an address of the current architecture.
335
  ///
336
  /// \return The byte size of an address of the current architecture.
337
  uint32_t GetAddressByteSize() const;
338
339
  /// Returns a machine family for the current architecture.
340
  ///
341
  /// \return An LLVM arch type.
342
  llvm::Triple::ArchType GetMachine() const;
343
344
  /// Tests if this ArchSpec is valid.
345
  ///
346
  /// \return True if the current architecture is valid, false
347
  ///         otherwise.
348
3.05M
  bool IsValid() const {
349
3.05M
    return m_core >= eCore_arm_generic && m_core < kNumCores;
350
3.05M
  }
351
38.4k
  explicit operator bool() const { return IsValid(); }
352
353
143k
  bool TripleVendorWasSpecified() const {
354
143k
    return !m_triple.getVendorName().empty();
355
143k
  }
356
357
142k
  bool TripleOSWasSpecified() const { return !m_triple.getOSName().empty(); }
358
359
266k
  bool TripleEnvironmentWasSpecified() const {
360
266k
    return m_triple.hasEnvironment();
361
266k
  }
362
363
  /// Merges fields from another ArchSpec into this ArchSpec.
364
  ///
365
  /// This will use the supplied ArchSpec to fill in any fields of the triple
366
  /// in this ArchSpec which were unspecified.  This can be used to refine a
367
  /// generic ArchSpec with a more specific one. For example, if this
368
  /// ArchSpec's triple is something like i386-unknown-unknown-unknown, and we
369
  /// have a triple which is x64-pc-windows-msvc, then merging that triple
370
  /// into this one will result in the triple i386-pc-windows-msvc.
371
  ///
372
  void MergeFrom(const ArchSpec &other);
373
374
  /// Change the architecture object type, CPU type and OS type.
375
  ///
376
  /// \param[in] arch_type The object type of this ArchSpec.
377
  ///
378
  /// \param[in] cpu The required CPU type.
379
  ///
380
  /// \param[in] os The optional OS type
381
  /// The default value of 0 was chosen to from the ELF spec value
382
  /// ELFOSABI_NONE.  ELF is the only one using this parameter.  If another
383
  /// format uses this parameter and 0 does not work, use a value over
384
  /// 255 because in the ELF header this is value is only a byte.
385
  ///
386
  /// \return True if the object, and CPU were successfully set.
387
  ///
388
  /// As a side effect, the vendor value is usually set to unknown. The
389
  /// exceptions are
390
  ///   aarch64-apple-ios
391
  ///   arm-apple-ios
392
  ///   thumb-apple-ios
393
  ///   x86-apple-
394
  ///   x86_64-apple-
395
  ///
396
  /// As a side effect, the os value is usually set to unknown The exceptions
397
  /// are
398
  ///   *-*-aix
399
  ///   aarch64-apple-ios
400
  ///   arm-apple-ios
401
  ///   thumb-apple-ios
402
  ///   powerpc-apple-darwin
403
  ///   *-*-freebsd
404
  ///   *-*-linux
405
  ///   *-*-netbsd
406
  ///   *-*-openbsd
407
  ///   *-*-solaris
408
  bool SetArchitecture(ArchitectureType arch_type, uint32_t cpu, uint32_t sub,
409
                       uint32_t os = 0);
410
411
  /// Returns the byte order for the architecture specification.
412
  ///
413
  /// \return The endian enumeration for the current endianness of
414
  ///     the architecture specification
415
  lldb::ByteOrder GetByteOrder() const;
416
417
  /// Sets this ArchSpec's byte order.
418
  ///
419
  /// In the common case there is no need to call this method as the byte
420
  /// order can almost always be determined by the architecture. However, many
421
  /// CPU's are bi-endian (ARM, Alpha, PowerPC, etc) and the default/assumed
422
  /// byte order may be incorrect.
423
0
  void SetByteOrder(lldb::ByteOrder byte_order) { m_byte_order = byte_order; }
424
425
  uint32_t GetMinimumOpcodeByteSize() const;
426
427
  uint32_t GetMaximumOpcodeByteSize() const;
428
429
1.44M
  Core GetCore() const { return m_core; }
430
431
  uint32_t GetMachOCPUType() const;
432
433
  uint32_t GetMachOCPUSubType() const;
434
435
  /// Architecture data byte width accessor
436
  ///
437
  /// \return the size in 8-bit (host) bytes of a minimum addressable unit
438
  /// from the Architecture's data bus
439
  uint32_t GetDataByteSize() const;
440
441
  /// Architecture code byte width accessor
442
  ///
443
  /// \return the size in 8-bit (host) bytes of a minimum addressable unit
444
  /// from the Architecture's code bus
445
  uint32_t GetCodeByteSize() const;
446
447
  /// Architecture triple accessor.
448
  ///
449
  /// \return A triple describing this ArchSpec.
450
1.98M
  llvm::Triple &GetTriple() { return m_triple; }
451
452
  /// Architecture triple accessor.
453
  ///
454
  /// \return A triple describing this ArchSpec.
455
2.95M
  const llvm::Triple &GetTriple() const { return m_triple; }
456
457
  void DumpTriple(llvm::raw_ostream &s) const;
458
459
  /// Architecture triple setter.
460
  ///
461
  /// Configures this ArchSpec according to the given triple.  If the triple
462
  /// has unknown components in all of the vendor, OS, and the optional
463
  /// environment field (i.e. "i386-unknown-unknown") then default values are
464
  /// taken from the host.  Architecture and environment components are used
465
  /// to further resolve the CPU type and subtype, endian characteristics,
466
  /// etc.
467
  ///
468
  /// \return A triple describing this ArchSpec.
469
  bool SetTriple(const llvm::Triple &triple);
470
471
  bool SetTriple(llvm::StringRef triple_str);
472
473
  /// Returns the default endianness of the architecture.
474
  ///
475
  /// \return The endian enumeration for the default endianness of
476
  ///         the architecture.
477
  lldb::ByteOrder GetDefaultEndian() const;
478
479
  /// Returns true if 'char' is a signed type by default in the architecture
480
  /// false otherwise
481
  ///
482
  /// \return True if 'char' is a signed type by default on the
483
  ///         architecture and false otherwise.
484
  bool CharIsSignedByDefault() const;
485
486
  enum MatchType : bool { CompatibleMatch, ExactMatch };
487
488
  /// Compare this ArchSpec to another ArchSpec. \a match specifies the kind of
489
  /// matching that is to be done. CompatibleMatch requires only a compatible
490
  /// cpu type (e.g., armv7s is compatible with armv7). ExactMatch requires an
491
  /// exact match (armv7s is not an exact match with armv7).
492
  ///
493
  /// \return true if the two ArchSpecs match.
494
  bool IsMatch(const ArchSpec &rhs, MatchType match) const;
495
496
  /// Shorthand for IsMatch(rhs, ExactMatch).
497
17.3k
  bool IsExactMatch(const ArchSpec &rhs) const {
498
17.3k
    return IsMatch(rhs, ExactMatch);
499
17.3k
  }
500
501
  /// Shorthand for IsMatch(rhs, CompatibleMatch).
502
588k
  bool IsCompatibleMatch(const ArchSpec &rhs) const {
503
588k
    return IsMatch(rhs, CompatibleMatch);
504
588k
  }
505
506
  bool IsFullySpecifiedTriple() const;
507
508
  void PiecewiseTripleCompare(const ArchSpec &other, bool &arch_different,
509
                              bool &vendor_different, bool &os_different,
510
                              bool &os_version_different,
511
                              bool &env_different) const;
512
513
  /// Detect whether this architecture uses thumb code exclusively
514
  ///
515
  /// Some embedded ARM chips (e.g. the ARM Cortex M0-7 line) can only execute
516
  /// the Thumb instructions, never Arm.  We should normally pick up
517
  /// arm/thumbness from their the processor status bits (cpsr/xpsr) or hints
518
  /// on each function - but when doing bare-boards low level debugging
519
  /// (especially common with these embedded processors), we may not have
520
  /// those things easily accessible.
521
  ///
522
  /// \return true if this is an arm ArchSpec which can only execute Thumb
523
  ///         instructions
524
  bool IsAlwaysThumbInstructions() const;
525
526
266k
  uint32_t GetFlags() const { return m_flags; }
527
528
133k
  void SetFlags(uint32_t flags) { m_flags = flags; }
529
530
  void SetFlags(const std::string &elf_abi);
531
532
protected:
533
  void UpdateCore();
534
535
  llvm::Triple m_triple;
536
  Core m_core = kCore_invalid;
537
  lldb::ByteOrder m_byte_order = lldb::eByteOrderInvalid;
538
539
  // Additional arch flags which we cannot get from triple and core For MIPS
540
  // these are application specific extensions like micromips, mips16 etc.
541
  uint32_t m_flags = 0;
542
543
  // Called when m_def or m_entry are changed.  Fills in all remaining members
544
  // with default values.
545
  void CoreUpdated(bool update_triple);
546
};
547
548
/// \fn bool operator< (const ArchSpec& lhs, const ArchSpec& rhs) Less than
549
/// operator.
550
///
551
/// Tests two ArchSpec objects to see if \a lhs is less than \a rhs.
552
///
553
/// \param[in] lhs The Left Hand Side ArchSpec object to compare. \param[in]
554
/// rhs The Left Hand Side ArchSpec object to compare.
555
///
556
/// \return true if \a lhs is less than \a rhs
557
bool operator<(const ArchSpec &lhs, const ArchSpec &rhs);
558
bool operator==(const ArchSpec &lhs, const ArchSpec &rhs);
559
560
bool ParseMachCPUDashSubtypeTriple(llvm::StringRef triple_str, ArchSpec &arch);
561
562
} // namespace lldb_private
563
564
#endif // LLDB_UTILITY_ARCHSPEC_H